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Abstract

Creating 3D Models using Reconstruction Techniques

J J Martin

Thesis: M.Sc (Computer Science)

December 2018

Virtual reality models of real world environments have a number of compelling
applications, such as preserving the architecture and designs of older build-
ings. This process can be achieved by using 3D artists to reconstruct the
environment, however this is a long and expensive process. Thus, this thesis
investigates various techniques and approaches used in 3D reconstruction of
environments using a single RGB-D camera and aims to reconstruct the 3D
environment to generate a 3D model. This would allow non-technical users to
reconstruct environments and use these models in business and simulations,
such as selling real-estate, modifying pre-existing structures for renovation and
planning. With the recent improvements in virtual reality technology such as
the Oculus Rift and HTC Vive, a user can be immersed into virtual reality
environments created from real world structures. A system based on Kinect
Fusion is implemented to reconstruct an environment and track the motion of
the camera within the environment. The system is designed as a series of self-
contained subsystems that allows for each of the subsystems to be modified,
expanded upon or easily replaced by alternative methods. The system is made
available as an open source C++ project using Nvidia’s CUDA framework to
aid reproducibility and provides a platform for future research. The system
makes use of the Kinect sensor to capture information about the environment.
A coarse-to-fine least squares approach is used to estimate the motion of the
camera. In addition, the system employs a frame-to-model approach that uses
a view of the estimated reconstruction of the model as the reference frame and
the incoming scene data as the target. This minimises the drift with respect
to the true trajectory of the camera. The model is built using a volumetric
approach, with volumetric information implicitly stored as a truncated signed
distance function. The system filters out noise in the raw sensor data by us-
ing a bilateral filter. A point cloud is extracted from the volume using an
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orthogonal ray caster which enables an improved hole-filling approach. This
allows the system to extract both the explicit and implicit structure from the
volume. The 3D reconstruction is followed by mesh generation based on the
point cloud. This is achieved by using an approach related to Delaunay trian-
gulation, the ball-pivot algorithm. The resulting system processes frames at
30Hz, enabling real-time point cloud generation, while the mesh generation oc-
curs offline. This system is initially tested using Blender to generate synthetic
data, followed by a series of real world tests. The synthetic data is used to test
the presented system’s motion tracking against the ground truth. While the
presented system suffers from the effects of drift over long frame sequences, it
is shown to be capable of tracking the motion of the camera. This thesis finds
that the ball pivot algorithm can generate the edges and faces for synthetic
point clouds, however it performs poorly when using the noisy synthetic and
real world data sets. Based on the results obtained it is recommended that the
obtained point cloud be preprocessed to remove noise before it is provided to
the mesh generation algorithm and an alternative mesh generation technique
should be employed that is more robust to noise.

Stellenbosch University  https://scholar.sun.ac.za



Uittreksel

3D-modelle met behulp van Rekonstruksie Tegnieke

J J Martin

Tesis: M.Sc (Rekenaar Wetenskap)

Desember 2018

Modelle in virtuele realiteit van werklike omgewings het ’n aantal belangrike
toepassings, soos byvoorbeeld die behoud van die argitektuur en ontwerpe van
geskiedkundig belangrike geboue. 3D kunstenaars kan ingespan word om om-
gewings te modelleer, maar dit is ’n lang en duur proses. Hierdie proefskrif
ondersoek verskillende tegnieke en benaderings wat gebruik word in die 3D
rekonstruksie van omgewings deur gebruik van ’n enkele RGB-D kamera en
beoog om die 3D rekonstruksie van die omgewing te omskep in ’n 3D-model.
Hierdie sal nie-tegniese gebruikers toelaat om self modelle te skep van omge-
wings, en om hierdie modelle te gebruik in besigheid toepassings en simulasies,
soos byvoorbeeld die verkoop van vaste eiendom, die wysiging van bestaande
strukture vir beplanning en opknapping. Met die onlangse tegnologiese ver-
beteringe in die veld van virtuele realiteit soos, byvoorbeeld, die Oculus Rift
en HTC Vive, kan ’n gebruiker geplaas word in ’n virtuele omgewing wat ge-
skep was vanaf strukture in die werklike wêreld. ’n Stelsel gebaseer op Kinect
Fusion word gëımplementeer om ’n omgewing te rekonstrueer en die beweging
van die kamera binne die omgewing te volg. Die stelsel is ontwerp as ’n reeks
selfstandige modules wat die afsonderlike aanpassing, uitbreiding of vervanging
van die modules vergemaklik. Die stelsel word beskikbaar gestel as ’n open
source C++ projek met behulp van Nvidia se CUDA raamwerk om reprodu-
seerbaarheid te bevorder en bied ook ’n platform vir toekomstige navorsing.
Die stelsel maak gebruik van die Kinect-sensor om inligting oor die omgewing
vas te vang. ’n Grof-tot-fyn kleinste kwadraat benadering word gebruik om
die beweging van die kamera te skat. Daarbenewens gebruik die stelsel ’n
beeld-tot-model benadering wat gebruik maak van die beraamde rekonstruk-
sie van die model as die verwysingsraamwerk en die inkomende toneel data as
die teiken. Dit verminder die drywing ten opsigte van die ware trajek van die
kamera. Die model word gebou met behulp van ’n volumetriese benadering,
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met volumetriese inligting wat implisiet gestoor word as ’n verkorte getekende
afstandfunksie. Die stelsel filter ruis in die ruwe sensor data uit deur om ’n
bilaterale filter te gebruik. ’n Puntwolk word uit die volume onttrek deur ’n or-
togonale straalvolger te gebruik wat die vul van gate in die model verbeter. Dit
laat die stelsel toe om die eksplisiete en implisiete struktuur van die volume te
onttrek. Die 3D-rekonstruksie word gevolg deur maasgenerasie gebaseer op die
puntwolk. Dit word behaal deur ’n benadering wat verband hou met Delaunay
triangulasie, die bal wentelings algoritme, te gebruik. Die resulterende stel-
sel verwerk beelde teen 30Hz, wat intydse-puntwolkgenerasie moontlik maak,
terwyl die maasgenerering aflyn plassvind. Hierdie stelsel word aanvanklik ge-
toets deur om met Blender sintetiese data te genereer, gevolg deur ’n reeks
werklike wêreldtoetse. Die sintetiese data word gebruik om die stelsel se afge-
skatte trajek teenoor die korrekte trajek te vergelyk. Terwyl die stelsel ly aan
die effekte van wegdrywing oor langdurige intreevideos, word dit getoon dat
die stelsel wel die lokale beweging van die kamera kan volg. Hierdie proefskrif
bevind dat die bal wentelingsalgoritme die oppervlaktes en bygaande rande
vir sintetiese puntwolke kan genereer, maar dit is sterk gevoelig vir ruis in
sintetiese en werklike datastelle. Op grond van die resultate wat verkry word,
word aanbeveel dat die verkrygde puntwolk vooraf verwerk word om ruis te
verwyder voordat dit aan die maasgenereringsalgoritme verskaf word, en ’n
alternatiewe maasgenereringstegniek moet gebruik word wat meer robuust is
ten opsigte van ruis.

Stellenbosch University  https://scholar.sun.ac.za



Contents

Declaration i

Abstract ii

Uittreksel iv

Contents vi

List of Figures ix

List of Tables xiv

1 Introduction 1
1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Aims and Objectives . . . . . . . . . . . . . . . . . . . 2
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background 5
2.1 Pinhole Camera Model . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Converting to Camera Space . . . . . . . . . . . . . . . 5
2.1.2 Converting to World Space . . . . . . . . . . . . . . . . 8

2.2 Transformation Matrix . . . . . . . . . . . . . . . . . . . . . . 8
2.2.1 Homogeneous Coordinates . . . . . . . . . . . . . . . . 9
2.2.2 Rotation Matrix . . . . . . . . . . . . . . . . . . . . . . 10
2.2.3 Building the Transformation Matrix . . . . . . . . . . . 11
2.2.4 Quaternions . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Least Squares . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.1 Linear Least Squares . . . . . . . . . . . . . . . . . . . 16
2.3.2 Non-Linear Least Squares . . . . . . . . . . . . . . . . 17

2.4 3D Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.1 Polygon Modelling . . . . . . . . . . . . . . . . . . . . 19
2.4.2 Curve Modelling . . . . . . . . . . . . . . . . . . . . . 19
2.4.3 Sculpting . . . . . . . . . . . . . . . . . . . . . . . . . 19

vi

Stellenbosch University  https://scholar.sun.ac.za



CONTENTS vii

2.4.4 Manifold Mesh . . . . . . . . . . . . . . . . . . . . . . 20
2.5 Kinect Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5.1 Generating the World . . . . . . . . . . . . . . . . . . 22
2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Related Work 24
3.1 Motion Estimation . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 SLAM Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.1 Extended Kalman Filter . . . . . . . . . . . . . . . . . 28
3.2.2 Rao-Blackwellized Particle Filter . . . . . . . . . . . . 29
3.2.3 GraphSLAM . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 Alternative Solutions . . . . . . . . . . . . . . . . . . . . . . . 31
3.3.1 Bundle Adjustments . . . . . . . . . . . . . . . . . . . 32
3.3.2 Kinect Fusion . . . . . . . . . . . . . . . . . . . . . . . 32
3.3.3 Parallel Tracking and Mapping . . . . . . . . . . . . . 33
3.3.4 Dense Tracking and Mapping . . . . . . . . . . . . . . 34
3.3.5 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4 Depth Estimation . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.5 Mesh Reconstruction . . . . . . . . . . . . . . . . . . . . . . . 35

3.5.1 Mesh reconstruction techniques . . . . . . . . . . . . . 36
3.5.2 Mesh Reconstruction Benchmarks . . . . . . . . . . . . 40

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4 Methodology 43
4.1 Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2 Mesh Generation . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.3.1 Reconstruction . . . . . . . . . . . . . . . . . . . . . . 45
4.3.2 Mesh Generation . . . . . . . . . . . . . . . . . . . . . 46

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5 Kinect Fusion 47
5.1 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.2 Pyramid Construction . . . . . . . . . . . . . . . . . . . . . . 48
5.3 Bilateral Filter . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.4 Iterative Closest Point . . . . . . . . . . . . . . . . . . . . . . 51

5.4.1 Projective Data Association . . . . . . . . . . . . . . . 52
5.4.2 Error Function . . . . . . . . . . . . . . . . . . . . . . 52
5.4.3 Solving the Non-Linear System . . . . . . . . . . . . . 53
5.4.4 Iterative Closest Point Algorithm . . . . . . . . . . . . 55

5.5 Truncated Signed Distance Function . . . . . . . . . . . . . . 56
5.5.1 Signed Distance Function . . . . . . . . . . . . . . . . 58
5.5.2 Implementation and Moving Volume . . . . . . . . . . 61

Stellenbosch University  https://scholar.sun.ac.za



CONTENTS viii

5.6 Raycasting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.7 Point Cloud Extraction and Hole Filling . . . . . . . . . . . . 69
5.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6 Mesh Reconstruction 72
6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.2 Pivoting Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 73

6.2.1 Finding a Valid Seed Triangle . . . . . . . . . . . . . . 76
6.2.2 Pivoting Operation . . . . . . . . . . . . . . . . . . . . 79
6.2.3 Join and Glue Operation . . . . . . . . . . . . . . . . . 79
6.2.4 Multiple Passes . . . . . . . . . . . . . . . . . . . . . . 85

6.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

7 Experiments 88
7.1 Data sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7.1.1 Synthetic Data Sets . . . . . . . . . . . . . . . . . . . . 89
7.1.2 Real-world Data Sets . . . . . . . . . . . . . . . . . . . 92

7.2 Trajectory Analysis . . . . . . . . . . . . . . . . . . . . . . . . 95
7.2.1 Translation Test . . . . . . . . . . . . . . . . . . . . . . 96
7.2.2 Rotation Test . . . . . . . . . . . . . . . . . . . . . . . 100
7.2.3 Circling Table . . . . . . . . . . . . . . . . . . . . . . . 103
7.2.4 Moving Around . . . . . . . . . . . . . . . . . . . . . . 106
7.2.5 Additional Experiments . . . . . . . . . . . . . . . . . 113
7.2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.3 Point Cloud Analysis . . . . . . . . . . . . . . . . . . . . . . . 114
7.3.1 Hole-Filling . . . . . . . . . . . . . . . . . . . . . . . . 114
7.3.2 Point Cloud Analysis of Synthetic Data Sets . . . . . . 119
7.3.3 Point Cloud Analysis of Real-World Data Sets . . . . . 125
7.3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . 131

7.4 Mesh Generation . . . . . . . . . . . . . . . . . . . . . . . . . 132
7.4.1 Synthetic Data Sets . . . . . . . . . . . . . . . . . . . . 132
7.4.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . 133

7.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

8 Conclusion 140
8.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

8.1.1 Aims and Objectives . . . . . . . . . . . . . . . . . . . 140
8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
8.3 Reproducibility . . . . . . . . . . . . . . . . . . . . . . . . . . 143

List of References 144

Stellenbosch University  https://scholar.sun.ac.za



List of Figures

2.1 Illustration of the basic pinhole camera model. . . . . . . . . . . 6
2.2 Illustration of a ray of light from an object falling on the image

plane for the X and Y axes. . . . . . . . . . . . . . . . . . . . . 6
2.3 Illustration of a ray of light from an object falling on the image

plane for the Y and Z axes. . . . . . . . . . . . . . . . . . . . . 7
2.4 Illustration of the shifted image plane into the positive XY plane. 7
2.5 Illustration of a rotation around a fixed point. . . . . . . . . . . 12
2.6 Illustration of gimbal lock. . . . . . . . . . . . . . . . . . . . . . 14
2.7 A cube displaying the normals to the surface in teal. Normals

indicate the exterior direction that surface is facing. This helps
the modelling application know the inside and outside of the model. 18

2.8 Illustration of polygon modelling concepts. . . . . . . . . . . . . 18
2.9 Illustration of a curve with two control points. . . . . . . . . . . 19
2.10 Illustration of sculpting a sphere. . . . . . . . . . . . . . . . . . 20
2.11 Illustration of a few non-manifold meshes. . . . . . . . . . . . . 21
2.12 Illustration of the two versions of the Microsoft Kinect. . . . . . 22
2.13 Example of Kinect output. . . . . . . . . . . . . . . . . . . . . . 22

3.1 Illustration of the graph created during GraphSLAM. . . . . . . 31
3.2 Illustrates the construction of triangles using Delaunay triangu-

lation on a set of 3D points projected on a 2D plane. . . . . . . 37
3.3 Illustrates a configuration of the marching cube intersection that

generates a line in 2D. . . . . . . . . . . . . . . . . . . . . . . . 40

ix

Stellenbosch University  https://scholar.sun.ac.za



LIST OF FIGURES x

4.1 An illustration of the proposed system and its different subcom-
ponents. The system takes input in the form of a depth image
and an RGB image. The depth image passes through the bilateral
filter and propagates to the TSDF component. The RGB image
is inserted directly into the TSDF component where the results
are fused. The ICP component uses the input from the bilateral
filter and the ray caster to compute the best motion estimate for
the system. The TSDF component uses the motion estimate from
the ICP component to fuse the depth image with the RGB image
from the correct position. Following this, the ray caster generates
a virtual image to provide the ICP component with a new model
view. The ray caster also extracts points from the TSDF volume
when points move out of the mapping area. . . . . . . . . . . . . 45

5.1 An outline of the original Kinect Fusion system. . . . . . . . . . 48
5.2 Illustrates the image pyramid with the successive sub-sampled

images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.3 Illustration of a point being back projected on a different image

plane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.4 Illustrates the point-to-plane error metric between two surfaces. 53
5.5 Illustrates the ground truth and line of sight of the depth camera. 59
5.6 Illustrates the TSDF values around the surface. . . . . . . . . . 60
5.7 Illustrates the zero-crossing before and after integrating a second

measurement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.8 Illustration of limiting the update region of the TSDF values. . . 62
5.9 Illustration of the TSDF volume being virtually translated. . . . 64
5.10 Illustrates the camera moving outside the threshold region and

the TSDF volume being virtually translated. . . . . . . . . . . . 65
5.11 Illustrates the rays being cast from the virtual camera into the

TSDF volume. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.12 Illustration of the different points found between the two ray cast-

ing techniques. . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.1 Illustration of the BPA in 2D. . . . . . . . . . . . . . . . . . . . 73
6.2 Illustration of the pivoting operation in R3. . . . . . . . . . . . 74
6.3 Illustration of the BPA in 2D using a slightly larger ball. . . . . 75
6.4 Illustration of multiple fronts with the ball unable to pivot be-

tween them. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.5 Illustration of a ball pivoting to a point with the incorrect normal

direction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.6 Illustration of a sphere generated in the outward half-space of the

points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.7 Illustrates the pivoting operation in detail. . . . . . . . . . . . . 80

Stellenbosch University  https://scholar.sun.ac.za



LIST OF FIGURES xi

6.8 Illustration of the Join operation on an unused point. . . . . . . 81
6.9 Illustration of the Join operation in the second situation, a used

point that is an internal point. . . . . . . . . . . . . . . . . . . . 81
6.10 Illustration of the Join operation in the third situation, a used

point that is on a front. . . . . . . . . . . . . . . . . . . . . . . . 82
6.11 Illustration of the Join operation creating coincident edges. . . . 82
6.12 Illustration of the different types of Glue operations. . . . . . . 83
6.13 Illustrates the consecutive loop of the Glue operation. . . . . . . 83
6.14 Illustration of the closed loop from the Glue operation. . . . . . 84
6.15 Illustration of the two fronts merging in 3D. . . . . . . . . . . . 84
6.16 Illustrates the split loop of the Glue operation. . . . . . . . . . . 85
6.17 Illustrates a merge loop from the Glue operation. . . . . . . . . 86

7.1 Illustration of the Table Top Scene. . . . . . . . . . . . . . . . . 89
7.2 Illustration of the Room Scene. . . . . . . . . . . . . . . . . . . . 89
7.3 Illustration of the global coordinate system in Blender. . . . . . 91
7.4 Illustration of frames from the Rotation Test data set. . . . . . 92
7.5 Illustration frames from the Circling Table data set. . . . . . 93
7.6 Overview of the Room Closed Loop data set. . . . . . . . . . . . 94
7.7 Frames from the Desk data set. . . . . . . . . . . . . . . . . . . 94
7.8 Overview of the Lab Room data set. . . . . . . . . . . . . . . . . 95
7.9 The results of the translation error and the rotation error for each

axis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
7.10 The results for the estimated position of the camera for each axis

during the Translation Test. . . . . . . . . . . . . . . . . . . 98
7.11 The results for the absolute rotation of the camera for each axis

during the Translation Test. . . . . . . . . . . . . . . . . . . 99
7.12 The dot product between the ground truth quaternion and esti-

mated quaternion for the Translation Test. . . . . . . . . . . 100
7.13 The results for the translation and rotational error for the Rotation

Test data set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
7.14 The dot product between the ground truth’s quaternion and es-

timated quaternion for the Rotation Test. . . . . . . . . . . . 103
7.15 The results for the absolute rotation of the camera for each axis

during the Rotation Test. . . . . . . . . . . . . . . . . . . . . 104
7.16 The results for the position of the camera for each axis during the

Rotation Test. . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
7.17 The results for the error in the translation and rotation during

the Circling Table data set. . . . . . . . . . . . . . . . . . . . 107
7.18 The results for the absolute position of the camera for each axis

during the Circling Table data set. . . . . . . . . . . . . . . . 108
7.19 The results for the absolute rotation of the camera for each axis

during the Circling Table data set. . . . . . . . . . . . . . . . 109

Stellenbosch University  https://scholar.sun.ac.za



LIST OF FIGURES xii

7.20 The results for the error in the translation and rotation during
the Moving Around data set. . . . . . . . . . . . . . . . . . . . . 110

7.21 The results for the absolute position of the camera for each axis
during the Moving Around data set. . . . . . . . . . . . . . . . . 111

7.22 The results for the absolute rotation of the camera for each axis
during the Moving Around data set. . . . . . . . . . . . . . . . . 112

7.23 Illustration of the data used to test the different point cloud ex-
traction techniques. . . . . . . . . . . . . . . . . . . . . . . . . . 114

7.24 Illustration of the extracted point cloud using the original ray
casting technique. . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7.25 Illustration of the extracted point cloud using the orthogonal ray
casting technique. . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.26 Illustration of the experiment setup to demonstrate interference
that can occur while integrating range images into the TSDF
volume. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.27 Illustration of the TSDF values when the depth images are inte-
grated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.28 Illustration of the extracted point cloud using the orthogonal ray
caster and limiting the voxel update region. . . . . . . . . . . . 118

7.29 Illustration of the hole filling properties when limiting the update
region. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.30 The results of the three variations of ray casting. . . . . . . . . . 119
7.31 Illustration of the point cloud generated from the Circling Table

data set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
7.32 Illustration of the point cloud generated from the Moving Around

data set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
7.33 Illustrates a side by side comparison of the original model view

with a view from the extracted point cloud for the Moving Around

data set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
7.34 Illustrates the global axis in Blender for the Moving Around data

set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
7.35 Illustration of the extracted point cloud from the Room Closed

Loop data set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
7.36 Illustration of the visible warping of the scene due to the drift. . 126
7.37 Illustration of the RGB-D data taken from the Kinect. . . . . . 127
7.38 Illustration of incorrectly reported depth data. . . . . . . . . . . 127
7.39 Illustration of noise generated from interfering IR light. . . . . . 128
7.40 Illustration of the reflectivity of IR light. . . . . . . . . . . . . . 128
7.41 Illustration of the artefacts generated from sensor noise. . . . . . 129
7.42 Illustration of noise from the depth image. . . . . . . . . . . . . 130
7.43 Illustration of the extracted point cloud from the Lab Room data

set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
7.44 Illustration of the noise generated from IR light. . . . . . . . . . 131

Stellenbosch University  https://scholar.sun.ac.za



LIST OF FIGURES xiii

7.45 Illustration of the Terrain reconstruction data set. . . . . . . 133
7.46 Illustration of the Terrain reconstruction data set reconstructed

into a mesh. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
7.47 Illustration of the mesh reconstructed from the Stanford Bunny

data set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
7.48 Illustration of the generated mesh from the extracted point cloud

of the Circling Table data set. . . . . . . . . . . . . . . . . . . 135
7.49 More illustrations of the generated mesh from the extracted point

cloud of the Circling Table data set. . . . . . . . . . . . . . . 136
7.50 Illustration of the reconstruction using the extracted point cloud

from the Moving Around data set. . . . . . . . . . . . . . . . . . 137
7.51 Illustration of the reconstruction using the extracted point cloud

from the Room Closed Loop data set. . . . . . . . . . . . . . . . 138

Stellenbosch University  https://scholar.sun.ac.za



List of Tables

7.1 Properties of the data sets with scenes used and the area that the
camera moves through. . . . . . . . . . . . . . . . . . . . . . . . 89

7.2 Average error over all frames for the Translation Test data set. 96
7.3 The magnitude of the error averaged over all frames of each trans-

lation and rotation component for the Rotation Test data set. 103

xiv

Stellenbosch University  https://scholar.sun.ac.za



List of Algorithms

1 Pseudocode for the Kinect Fusion’s ICP algorithm. . . . . . . . 57
2 Pseudocode for the AddEquation function of the ICP algorithm. 58
3 Pseudocode for the ray casting operation. . . . . . . . . . . . . 69

4 Pseudocode for the ball-pivoting algorithm. . . . . . . . . . . . 77

xv

Stellenbosch University  https://scholar.sun.ac.za



List of Common Symbols

d The distance represented by the TSDF volume.

dj A destination point in the local coordinate system used in the ICP algo-
rithm.

dgj A destination point in the global coordinate system used in the ICP algo-
rithm.

f The focal length for the X and Y axis, the distance between the camera
centre and the image plane.

fx The focal length for the X axis.

fy The focal length for the Y axis.

gmax The maximum value that the distance function can be.

gmin The minimum value that the distance function can be.

gs A vector that contains the dimensions of the volume containing the voxels.

G(x) The combination of a series of signed distance functions with x repre-
senting a point in 3D space.

g(x) The signed distance function with x representing a point in 3D space.

I The image plane (as illustrated in Figures 2.2, 2.3 and 2.4).

Ii An RGB-D image captured at time i.

Pi Point cloud generated from the RGB-D image at time i.

K The camera intrinsic matrix. Converts between 3D world coordinates to
2D camera coordinates.

Nd,g
l The destination normal map constructed from the pyramid at level l in

the global coordinate system.

ndj The normal vector at the destination point in the local coordinate system.

xvi

Stellenbosch University  https://scholar.sun.ac.za



List of Common Symbols xvii

nd,gj The normal vector at the destination point in the global coordinate sys-
tem.

nsj The normal vector at the source point in the local coordinate system.

ns,gj The normal vector at the source point in the global coordinate system.

N s
l The source normal map constructed from the pyramid at level l.

N s,g
l The source normal map constructed from the pyramid at level l in the

global coordinate system.

o The centre of the image plane.

ox The displacement of the optical axis along the X axis.

oy The displacement of the optical axis along the Y axis.

pcamera The position of the camera in 3D space.

pH A homogeneous coordinate in 2D space.

pobject The position of a object in 3D space.

R The raw depth image obtained from the Kinect sensor.

RayDir The unit vector of RayNext. The direction of the ray being cast from
the camera’s position to the image plane.

RayNext This is a vector generated from a ray being cast from the camera’s
position to a pixel location on the image plane.

sj A source point in the local coordinate system used in the ICP algorithm.

sgj A source point in the global coordinate system used in the ICP algorithm.

StepSize The size that the ray is incrementally increased in length by.

ti+1 The translation vector obtained from the transformation matrix Ti+1.

u A pixel location on the image plane.
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Chapter 1

Introduction

Low cost 3D-sensing hardware such as the Microsoft Kinect have facilitated
broad-based development of faster and higher quality 3D reconstruction. As
a result, many advances have been made in the field. Research on structure
from motion (SFM), multi-view stereo (MVS) and improving hardware have
led to more efficient systems. SFM is a ranging technique for estimating 3D
structures from 2D images. MVS is a group of techniques that uses stereo
correspondence to reconstruct objects in 3D. With the emergence of low cost
virtual reality equipment, such as the Oculus Rift and the HTC Vive, 3D
reconstructions could be used in game engines to display environments in vir-
tual reality. Currently there are many proposed solutions to the problems of
3D reconstruction and mesh reconstruction. This thesis aims to investigate
the problem of 3D reconstruction and mesh reconstruction for the creation of
virtual reality environments.

Most 3D reconstruction techniques are either used in research for self driv-
ing cars or commercial robotics systems that mainly focus on trajectory re-
construction. It is difficult for a non-technical user to make use of these 3D
modelling techniques. The proposed system opens its usages to many appli-
cations such as creating assets from real world objects in gaming, viewing
3D models of properties online and simulations for virtual reality exposure
therapy.

Virtual reality exposure therapy is a treatment method where patients
are slowly exposed to traumatic stimuli with the assistance of virtual reality
equipment. This allows patients to interact with their phobia virtually, without
access to the real phobia itself. The use of this system could allow technicians
to assist therapists in simulating real-world environments for patients.

Such a system could also be applied in the property industry. Instead of
viewing buildings by visiting them, the model could be placed on a website to
display the 3D mesh of the building for potential clients to view. This would
allow measurements of the rooms and dimensions to be easily accessible for
the potential clients.

1
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CHAPTER 1. INTRODUCTION 2

1.1 Problem Statement

Virtual environments are used to create visualizations for simulations, virtual
reality and games. These environments are time-consuming to create, requiring
artists to model and texture the environment. Creating a digital version of a
room automatically from photos could accelerate the process and reduce the
cost of modelling.

This could be performed by ‘scanning’ the environment through taking
photos and collecting the depth information. This would allow automatic
reconstruction of the environment from this data. This approach would reduce
the time taken to model the environment and would not require the skill of a
CGI artist. The process of ‘scanning’ requires the use of a depth sensor such
as the Cyberware 3030 (Cyberware Incorporated, 2018) or Microsoft Kinect
(Microsoft, 2018). The ability to reconstruct a room gives a person the power
to create a digital version of an environment by pre-arranging a room according
to their desire.

One key problem is the scarcity of open-source integration of existing tech-
niques.

The 3D reconstruction problem has several challenges that must be over-
come. Two things are required to reconstruct the environment: the position
of the camera and the view from that position. The main challenge in 3D
reconstruction is computing the position of the view.

Mesh reconstruction has the problem of ambiguity when generating meshes
from point clouds. Since information about the surface is not known, mesh
reconstruction algorithms need to determine the surface given a set of arbitrary
points.

1.1.1 Aims and Objectives

The aim of this work is to create a system that allows a non-technical user
to build a 3D model relatively quickly and export it to a common format
that can be easily incorporated into 3D modelling tools and virtual reality
simulations. In order to do this, the following objectives were set out for the
system proposed in this thesis.

• Collect depth and colour data from the environment.

• Estimate the motion of the depth sensor.

• Achieve online motion estimation speeds.

• Pre-process the sensor data to reduce noise.

• Fuse successive sensory data sets together.
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CHAPTER 1. INTRODUCTION 3

• Enable generation of large scale environments.

• Extract the implicit and explicit structure of the environment as a point
cloud.

• Generate a mesh from the final point cloud data.

• Integrate colour data into the mesh.

• Export the meshed point cloud with the texture map in a universal
format.

1.2 Contributions

This thesis makes the following contributions:

• A system was developed that allows for 3D reconstruction of environ-
ments. A scan-matching algorithm was implemented to estimate the
motion of the camera. This works in conjunction with a volumetric
model to reduce drift using a frame-to-model scan-matching technique.
The volumetric model was assisted by a ray caster that allows the system
to extract the implicit structure of the environment.

• A plug-in was developed that allowed synthetic data sets to be created
along with ground truth information. This was achieved using Blender’s
Python interface.1

• Provision was made for large scale environments by using a volumetric
approach to 3D reconstruction in combination with a wrap-around in-
dexing system that allows the system to continuously map new areas
(Section 5.5.2).

• It is demonstrated in Section 7.4 that the ball-pivoting algorithm (Bernar-
dini, Mittleman, Rushmeier, Silva and Taubin, 1999) is more suited for
object reconstruction, as opposed to being used for environment recon-
struction.

• To facilitate reproducibility and future work by other researchers, the
entire system is provided as an open-source implementation under the
MIT license (Martin, 2017).

1Scripts are provided in an open-source repository to create synthetic data sets and record
the ground truth trajectory (https://gitlab.com/pleased/3d-reconstruction).
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CHAPTER 1. INTRODUCTION 4

1.3 Outline

This thesis is divided into 8 chapters. Chapter 2 (Background) introduces the
concepts and the mathematical methods that are required to understand the
rest of the thesis. Chapter 3 (Related Work) reviews existing techniques that
are used for 3D reconstruction and mesh generation. Chapter 4 (Methodology)
specifies the techniques that will be used in the system to achieve the aims and
objectives of this thesis. Chapter 5 (Kinect Fusion) details the implementation
used to reconstruct the point cloud as mentioned in the methodology. Chap-
ter 6 (Mesh Generation) discusses generating a mesh from the point cloud
obtained in the Kinect Fusion chapter. Chapter 7 (Experiments) describes
the experiments performed to test the system’s performance and analyses the
results. This is followed by a summary of the system’s performance. Chapter
8 (Conclusion) summarizes the thesis results and considers the proposed sys-
tem’s advantages and disadvantages. Finally, the chapter discusses additional
work that could be considered for improving on reported results.
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Chapter 2

Background

This chapter provides essential background information about various tech-
niques and mathematical methods used in this thesis. This chapter covers
the pinhole camera model (Section 2.1), which facilitates conversions between
camera coordinates and real-world coordinates. 3D transformation matrices
(Section 2.2) and quaternions (Section 2.2.4) are also discussed, providing a
means for representing the location and orientation of the camera. Next, linear
and non-linear least squares optimisation is presented to provide a method to
compute motion estimates for the 3D transformation (Section 2.3). This is fol-
lowed by the foundations of 3D modelling, demonstrating various techniques
used during the 3D modelling process (Section 2.4). Finally, some background
information about the Kinect sensor is provided (Section 2.5).

2.1 Pinhole Camera Model

The pinhole camera model describes a method for projecting the three-dimensional
world onto a two-dimensional image plane. Imagine a closed box with a very
small aperture that allows light in. Rays of light from an object in front of
the box pass through the aperture and fall on the interior surface at the rear
of the box. These light rays that pass through the aperture create an inverted
image on this surface. This is illustrated in Figure 2.1.

2.1.1 Converting to Camera Space

The pinhole camera projection process is described mathematically as follows:
Given a 3D Cartesian coordinate system, a point pcamera (representing the
pinhole) located at the origin, a 2D plane I representing the image plane (i.e.
the back of the box) with I intersecting the Z axis at pcamera, the point o
representing the centre of the image plane, a 3D point pobject, and f the focal
length (the perpendicular distance between o and pcamera). In this situation

5
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Figure 2.1: The basic pinhole camera model illustrates the reflected light from
a tree entering the box through the aperture and falling on the interior surface
at the rear of the box.

the Z axis is the optical axis, the direction the camera is facing. The goal is
to project the 3D point pobject onto the 2D plane I. Projecting all the objects
in the scene in this manner produces an image.

The projection is performed by drawing a line from pobject passing through
pcamera to the plane I. This produces two similar triangles that can be used to
compute the projected point on the image plane as shown in Figure 2.2. This
process is repeated for the YZ plane in Figure 2.3 producing Equation 2.1 that
computes the location on the image plane.

Z

X

pcamera

pobject

I

Ipobject

f

−ux z

xo

Figure 2.2: This figure demonstrates a ray of light from pobject passing through
pcamera and intercepting the plane I at location −ux. This is illustrated for
the XZ axis.

(ux, uy) =

(
−fx
z

,
−fy
z

)
(2.1)

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 2. BACKGROUND 7

Z

Y

pcamera

pobject

I

Ipobject

f

−uy z

yo

Figure 2.3: This figure demonstrates a ray of light from pobject passing through
pcamera and intercepting the plane I at location −uy. This is illustrated for
the YZ axis.

The image plane currently has its centre located at the origin o on the
X and Y axes. However, the image centre region does not always coincide
with a rectangle centred at the origin in I due to inaccuracies in the camera
mount created during the camera’s construction (i.e due to inaccuracies when
placing the lens relative to the image sensor), thus ox and oy are introduced to
model the displacement of the optical axis. Typically, ox and oy are half the
resolution of the image and is added to Equation 2.1 to ensure that the image
plane is only defined in the positive XY axis as shown in Figure 2.4. This
allows the image coordinates to start at position (0, 0), which is convenient
for implementation. This updates Equation 2.1 to produce Equation 2.2.

Z

X

pcamera

pobject

I

Ipobject

f

ux
z

xo

Figure 2.4: This demonstrates a ray of light from pobject passing through pcamera
and intercepting the plane I with the plane shifted such that all intercepts are
defined in the positive XY plane.
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(ux, uy) =

(
fx

z
+ ox,

fy

z
+ oy

)
(2.2)

This produces the coordinates on the image plane I for the object pobject. For
simplicity a matrix K, the camera intrinsic matrix, is constructed that allows
this transformation to be applied through matrix multiplication as shown in
Equation 2.3. In reality, the focal length f is two values fx and fy on a low-cost
image sensor because each individual pixel (light sensor) on the image plane is
rectangular rather than square. The actual value of the focal length, fx, is the
product of the physical focal length and the width of the light sensor. Similarly,
fy is the product of the physical focal length and height of the light sensor.
The values for the physical focal length, the width of the light sensor and the
height of the light sensor can generally not be obtained without physically
opening the camera and directly measuring these values. The parameters fx,
fy, ox and oy can be obtained through camera calibration.

K =

fx 0 ox
0 fy oy
0 0 1

 uxuy
1

 =

K

xy
z


z

(2.3)

2.1.2 Converting to World Space

Given the camera space projection (a 2D image) of the three-dimensional
world, it is possible to compute the world space coordinates. The world space
coordinates are the 3D positions relative to the origin on the camera. This is
done by applying the inverse operations starting with the image space coor-
dinates ux and uy to obtain two world coordinates. Since many points in the
three-dimensional world can project to the same image location, z is used as
the last world coordinate. This is achieved by performing the inverse transfor-
mation from the previous section.

K−1

uxuy
1

 zworld =

xy
z

 (2.4)

2.2 Transformation Matrix

A transformation matrix is a combination of a rotation matrix and a trans-
lation vector. An n-dimensional rotation matrix R is an n × n matrix that
comprises the rotational information of the local coordinate system. The ele-
ments contained in the rotation matrix are further described in Section 2.2.2.
The size of this matrix depends on whether it is a 2D or 3D problem, using
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a 2× 2 or 3× 3 rotation matrix. The translation vector T is a n-dimensional
vector, depending on the dimensionality of the problem, containing the x, y
and z translation. The 3D transformation matrix is constructed as follows: R T

0 1

 (2.5)

The transformation matrix is used to translate and rotate points in space.
It is also used to convert between different coordinate systems.

2.2.1 Homogeneous Coordinates

Homogeneous coordinates are a way of representing points that allow for affine
and projective transformations to be easily represented in the form of a matrix.
A point p in R2 is represented by two values such as the points in two coor-
dinates. This is extended by adding an extra dimension to the vector p. The
new representation is defined as the vector pH with an additional dimension
containing the value 1:

p =

[
x
y

]
pH =

xy
1

 (2.6)

To represent an arbitrary point in R2 as a homogeneous coordinate, pH is
constructed as shown in Equation 2.7. The variable s is a non-zero scaling
factor for the vector. Scaling a homogeneous vector by a non-zero factor does
not change the point.

pH =

sxsy
s

 (2.7)

To compute the x and y values of a R2 homogeneous vector, one simply
divides the vector by the scaling factor as shown

pH =

sxsy
s

 =

sx/ssy/s
s/s

 =

xy
1

 (2.8)

Vectors pH1 and pH2 illustrate two vectors that represent the same point.

pH1 =

 8
12
4

 pH2 =

4
6
2

 =
1

2
pH1 (2.9)
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Homogeneous coordinates can be extended to R3, which therefore require
the use of a vector in R4.

pH3 =


sx
sy
sz
s

 (2.10)

For more information about homogeneous coordinates, the reader is referred
to Hartley and Zisserman (2004).

2.2.2 Rotation Matrix

A rotation matrix is a way of rotating points in 2D or 3D Euclidean space.
Given a 2D coordinate system, a point p can be rotated around the origin by
an angle of φ radians in a counterclockwise direction to produce a new point
q as shown:

q = Rp

[
qx
qy

]
=

[
cos(φ) − sin(φ)
sin(φ) cos(φ)

] [
px
py

]
(2.11)

This concept can be extended to 3D, producing three rotation matrices, one
for each axis. Using the parameters θ, φ and α which represent the rotation
in radians in the X axis, Y axis and Z axis respectively the following matrices
are obtained.

Rx(θ) =

1 0 0
0 cos(θ) − sin(θ)
0 sin(θ) cos(θ)

 (2.12)

Ry(φ) =

 cos(φ) 0 sin(φ)
0 1 0

− sin(φ) 0 cos(φ)

 (2.13)

Rz(α) =

cos(α) − sin(α) 0
sin(α) cos(α) 0

0 0 1

 (2.14)

These rotation matrices can be consolidated into a single rotation matrix
to produce the desired effect of the combined rotations.

Rzyx = Rz(α)Ry(φ)Rx(θ) (2.15)

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 2. BACKGROUND 11

Any rotation matrix R is an orthogonal matrix, therefore the following
property holds: the inverse matrix can be computed as follows.

R−1 = RT

It follows that the determinant of the rotation matrix is

det(R) = ±1.

We can now use the combined rotation matrix Rzyx to rotate a point p
around the origin as follows.

p′ = Rzyxp (2.16)

Similarly the point can be rotated in the opposite direction by computing the
inverse rotation matrix or transpose R−1zyx = RT

zyx. This is called the inverse
rotation.

RT
zyxp

′ = p (2.17)

Equation 2.16 allows one to transform points around the origin. This will not
work for rotating points around a fixed point.

To rotate the point p1 around the fixed point pF , p1 needs to be adjusted
by subtracting the fixed point pF from the point p1 as follows

pOrigin1 = p1 − pF . (2.18)

The point pOrigin1 can now be rotated using the rotation matrix R to obtain
the new point pOrigin1′

pOrigin1′ = RpOrigin1 . (2.19)

When the point has been rotated, it can be adjusted by adding the point
pF to produce the final point p1′ . The rotation around a fixed point can be
rewritten as shown in Equation 2.20. This is demonstrated in Figure 2.5.

p1′ = R(p1 − pF ) + pF (2.20)

2.2.3 Building the Transformation Matrix

In order to rotate a point p about the origin and then translate it, a rotation
matrix R and translation vector T can be applied as follows:

p′ = Rp + T. (2.21)
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pF

p1

(0.5, 0.5)

(1, 0.5)

(a) Original points

pOrigin1
pO

(0, 0) (0.5, 0)

(b) Adjusted point p1 to obtain pOrigin1

pOrigin1′

pO (0, 0)

(−0.35, 0.35)

(c) The rotated point pOrigin1′ after a ro-
tation by 3π

4 .

p1′

pF (0.5, 0.5)

(0.15, 0.85)

(d) p1′ The final position of p1 after a
rotation by 3π

4 .

Figure 2.5: This figure illustrates how a rotation around a fixed point is per-
formed. Subfigure (a) illustrates the scenario, the point p1 is the point that
needs to be rotated around the fixed point pF . Subfigure (b) illustrates that
each point has been moved to the origin by subtracting pF . This results in
a new point pOrigin1 . Subfigure (c) illustrates the rotation applied to pOrigin1

resulting in the point pOrigin1′ . Subfigure (d) illustrates the points shifted by
pF resulting in a rotation of the point p1 around the fixed point pF producing
the point p1′ .
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This is called a rigid body transformation. The inverse of this transformation
can be computed by applying the inverted operations on a point p′ to obtain

RT (p′ −T) = RTp′ −RTT = p. (2.22)

Equation 2.21 can be condensed by constructing a 4 × 4 transformation ma-
trix M that will apply the rotation matrix R followed by the addition of the
translation vector T

M =

 R T

0 0 0 1

 . (2.23)

Given this transformation matrix M and a point p in homogeneous coordi-
nates, the point can be transformed as follows

p′ = Mp. (2.24)

Similarly, the original point p can be computed given the point p′ and an
associated transformation matrix M by multiplying by M−1 to obtain

M−1p′ = p. (2.25)

The inverse transformation matrix M−1 exists, and can be obtained from
the components of the transformation matrix as

M−1 =

 RT −RTT

0 0 0 1

 . (2.26)

2.2.4 Quaternions

Another method of representing rotations is using quaternions (Hamilton,
1844). Quaternions are a way of representing rotations using only four values.
Quaternions were created to get around the problem of gimbal lock when using
Euler angles. Gimbal lock occurs when a series of rotations cause a loss of one
degree of freedom in three-dimensions. This happens when two of the three
axes are in a parallel configuration which cause a rotation around two of the
axes to have the same effect, as shown in Figure 2.6. Quaternions approach the
rotation from a different perspective. Quaternions use a vector to represent
the rotation and can be easily converted to a rotation matrix and back. In
computer graphics and the gaming industry, OpenGL uses rotation and trans-
formation matrices during rendering. However, when computing rotations,
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(a) (b)

Figure 2.6: Subfigure (a) illustrates a plane with its associated rotation axes.
Subfigure (b) shows a configuration such that two gimbals are in alignment,
causing gimbal lock.

developers tend to use quaternions when constructing the rotations that need
to be applied to the game world. Once this quaternion is constructed, it is
converted to its rotation matrix representation and applied to the objects in
the scene. Quaternions are an extension of the complex numbers by defining
two more values j and k; then the quaternions are

q = w + xi+ yj + zk.

with the following properties

i2 = j2 = k2 = −1 (2.27)

ij = k jk = i ik = j. (2.28)

To understand how quaternions can be used to represent rotation, q is rewritten
as follows

q = (w,v) (2.29)

v = (x, y, z). (2.30)

Represented in this way, quaternions encapsulate the idea that there is a vec-
tor v that represents an axis in space around which the object will be rotated.
Given an axis around which the rotation will be performed, the angle of rota-
tion is required. The quaternions are always represented as a unit quaternion,
i.e. the length of the quaternion is 1. The vector q is further adjusted to
encode the rotational angle about the axis as follows

q = (cos θ, (sin θ)v). (2.31)

This allows us to store the angle of rotation in the quaternion representation,
which can easily be extracted by computing cos−1w. The advantage of using
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quaternions is that quaternion multiplication can combine a series of rotations
to produce a single axis around which the rotation occurs. This is the com-
bination of all the quaternion rotations. Quaternions also have the advantage
of never suffering from gimbal lock, which is a problem when employing Euler
angles in rotation. The quaternion is represented as a vector, which allows us
to check the similarity of two quaternions by computing their dot product.

2.3 Least Squares

The method of least squares (Stewart, 2007) is a technique used to obtain an
approximate solution to an overdetermined system of equations that has no
exact solution. It is based on observation values and the values predicted by
a candidate solution (expected/ estimated value) minimising the sum of the
squared differences between observed value and the estimated value for each of
the equations in the system. A residual is such a difference between an actual
value and an estimated value. One common purpose of using the least squares
method is to fit a data model to a set of observations. An example of this is to
fit a collection of (x, y) points to a straight line, y = Dx+ C, by determining
the coefficients D and C that will minimise the sum of the squared residuals.
For example given three points (0, 6), (1, 0) and (2, 0), a straight line needs to
be fit to these points. Using the straight line equation the following equations
are generated

0 ·D + C = 6 (2.32)

1 ·D + C = 0 (2.33)

2 ·D + C = 0. (2.34)

This system has no solution. This is rewritten in the form of

Ax = b (2.35)0 1
1 1
2 1

[D
C

]
=

6
0
0

 (2.36)

The aim is now to find some D and C that best satisfies this system of equa-
tions. The basic idea of solving this is minimising S, the sum of the squared
residual functions. The residual function r is the difference between the ob-
served values yi and the estimated values of the approximation f(xi, x), where

f(xi,x) = xiD + C
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in the example above.

ri = yi − f(xi, x) (2.37)

S =
n∑
i=0

r2i (2.38)

Least squares problems are often divided into two categories: linear and non-
linear least squares problems. The difference between linear and non-linear
depends on the parameters that need to be determined. Linear least squares
problems use models that are linear with respect to the model parameters. For
example solving v and w in

y = vx2 + wx+ 2.

However, for example, the following equations are non-linear with respect to
the parameters (v, w, σ, µ):

y = sin v cosx,

y =
v

σ
√

2π
exp

(
−(x− µ)2

2σ2

)
+ w,

or y = w2x+ vx.

These equations cannot be solved using linear least squares. An approach
to tackling these types of equations will be briefly explained in Section 2.3.2.

2.3.1 Linear Least Squares

Minimising Equation 2.38 can be performed by setting the gradient of S to 0
as follows

∇S = 0 . (2.39)

In the linear case, solving Equation 2.39 generates a set of normal equations

ATAx = AT b, (2.40)

with corresponding solution

x = (ATA)−1AT b.

Solving Equation 2.40 is equivalent to solving the Equation 2.39. For more
information refer to Strang (2016) on least squares. The solutions to computing
a linear least squares problem and a non-linear least squares problem diverge
before Equation 2.40.
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2.3.2 Non-Linear Least Squares

Solving non-linear least squares problems requires more steps. This is due to
the derivative of S in Equation 2.38. The gradient produces a function that
does not generally have a closed-form solution. Since the derivative is non-
linear, the solution has to be calculated iteratively with an initial estimate x0
for x chosen. At each iteration, an incremental difference that the estimate
needs to be updated by will be computed. Given the estimate of the solution
xj at iteration j + 1 and the newly calculated incremental change ∆xj+1, the
estimate at iteration j + 1 is calculated as

xj+1 = xj + ∆xj+1 . (2.41)

Since the derivative is non-linear at each iteration, the model is linearised
using a Taylor series expansion around xj. In terms of the linearised model,
the gradient is now a list of gradient equations ∂ri

∂x
= −J ji . At every iteration

xj the Jacobian Jj has to be recalculated due to the changing linearisation
point used. Using the Jacobian, each iteration of the non-linear least squares
solution is approximated as follows(

JTJ
)

∆xj+1 = JT∆b . (2.42)

Solving non-linear least squares problems requires multiple iterations and de-
pending on the initial value used, the technique can produce a value that is
only locally optimal. In the linear case, Equation 2.42 has a constant Jacobian
so just one step is needed.

2.4 3D Modelling

3D modelling is the process of developing surface representations of 3D objects.
A surface consists of a group of faces. In 3D modelling, there are 3 concepts
that are used to create a model: a vertex, an edge and a face. A vertex is a
point in R3 defined by an x, y and z coordinate. Two connected vertices form
an edge. Three or more coplanar edges in a cycle form a face. Creating these
vertices, edges and faces produces a 3D model that can be used in a variety of
ways. Examples of these concepts are shown in 2D in Figure 2.8. These 3D
models are often used as designs in manufacturing or used as visual representa-
tions in the gaming industry. One fundamental approach to representing such
models is a point cloud. A point cloud consists of a set of points in R3. Such
a point cloud is generally obtained from a surface that has been sampled in
R3. Figure 2.7 illustrates a cube generated in R3 with vertices, edges, faces
and illustrates the normal to each face in teal. The modelling process consists
of techniques that are categorised as polygon modelling, curve modelling and
sculpting.
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Figure 2.7: A cube displaying the normals to the surface in teal. Normals
indicate the exterior direction that surface is facing. This helps the modelling
application know the inside and outside of the model.

v1

(a) A vertex

v1 v2

(b) An edge

v1 v2

v3

(c) A face

Figure 2.8: Illustration of polygon modelling concepts. Subfigure (a) illustrates
a single vertex. Subfigure (b) illustrates two connected vertices, this forms an
edge between the vertices. Subfigure (c) illustrates three vertices that are
connected. The edges form a cycle creating a face.
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P1

P2

(a)

P1

P2

(b)

Figure 2.9: Subfigure (a) illustrates a line with weighted control points with
the start and end points fixed. Subfigure (b) illustrates the result of moving
the control points P1 and P2. It shows how moving the control points P1 and
P2 change the path of the line.

2.4.1 Polygon Modelling

Polygon modelling uses the basic concepts of adjusting and creating vertices,
edges and faces to create a mesh. Meshes are generally made by creating a
sequence of vertices at specific 3D points and creating edges and faces from
them. Once they have been created and adjusted to the creator’s satisfaction,
the mesh is complete.

2.4.2 Curve Modelling

Curve modelling uses the concept of weighted control points for a curve. A
curve has control points that can be adjusted to pull the curve closer to the
control point. These curves can be defined in multiple ways such as non-
uniform rational basis splines (NURBS) (Schoenberg, 1964). Figure 2.9 shows
how control points influence a straight line to produce a curve.

2.4.3 Sculpting

3D sculpting is relatively new to the 3D modelling world. It allows manipula-
tion of a mesh in a way that is organic. Sculpting allows the user to smooth,
grab and pull the surface as if it was made from clay. Various techniques are
used to obtain these effects, such as using polygon modelling as described in
Section 2.4.1 and volumetric based methods. Volumetric techniques create a
3D volume around the surface of a mesh and allow the user to push and pull
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(a) (b)

Figure 2.10: This illustrates the sculpting of a sphere, before in Subfigure (a)
and after in Subfigure (b).

the volume as demonstrated in Figure 2.10. This allows the user to add much
higher detail to smaller areas while retaining the shape of the rest of the mesh.

2.4.4 Manifold Mesh

Meshes created in 3D applications do not have to adhere to the same rules as
objects in reality. For this reason a mesh can fall into one of two categories, a
manifold mesh or a non-manifold mesh. A manifold mesh is mesh that can be
represented in the real world and a non-manifold mesh is a mesh that cannot
be represented in the real world. A face of a manifold mesh has two sides,
one side of this must face the internal region of the mesh and the other must
face the external region of the mesh. The faces of the mesh are infinitely thin
and therefore cannot have both sides facing an external or internal region, if
this is the case it is a non-manifold mesh. The manifold mesh must contain a
finite volume. To represent an object such as a plank, a rectangle with a finite
width, depth and height must be constructed. Therefore, a manifold mesh
would consist of a finite volume (a closed surface) and each face would have
a side facing the internal and external region to be classified as a manifold
mesh. If one of these conditions are not met, it would be classified a non-
manifold mesh. If the internal region of the mesh is ambiguous, the mesh is
a non-manifold mesh. A non-manifold mesh is a mesh that could also contains
things such as disconnected vertices, edges and internal faces. Figure 2.11
illustrates three different non-manifold meshes.
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(a) (b)

(c)

Figure 2.11: These subfigures illustrate different non-manifold meshes. Sub-
figure (a) illustrates a non-manifold mesh. This mesh is non-manifold due to
the inability to distinguish the inside and outside region of the mesh (i.e it
is not a closed surface). Subfigure (b) shows the inside of a cube mesh with
additional internal face. This internal face has both of its sides facing the in-
terior of the outer model and is therefore a non-manifold mesh. Subfigure (c)
illustrates two pyramids connected by a single vertex. This is a non-manifold
mesh because the connecting point of the two pyramids can be infinitely small
point.

2.5 Kinect Sensor

The Kinect is a motion sensing device created by Microsoft for their home
gaming console, the Xbox. This device has an RGB camera and an infra-red
camera. Figure 2.12 shows the two iterations of the Kinect so far: the first
version for the Xbox 360 and the second for the Xbox One. The infra-red
camera allows the Kinect to generate an image that stores the depth infor-
mation of the environment. This allows the Kinect to generate two images
of the environment, a regular RGB image and a depth image, as shown in
Figure 2.13. The outputs from the Kinect are called RGB-D images. The
depth image allows us to compute a 3D point for each of the pixels, assuming
valid depth data. Some regions of the depth image may be too close or too
far for the sensor to correctly detect depth. If this is the case, those regions
will be report as zero depth in the image. Assuming the calibration matrix K
is known, the 3D points can be computed using the techniques mentioned in
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(a) (b)

Figure 2.12: Subfigure (a) illustrates the Kinect for Xbox 360. Subfigure (b)
illustrates the Kinect for Xbox One.

(a) RGB image (b) Brightened depth image

Figure 2.13: These figures are the example of the output from the Kinect
sensor. Subfigure (a) is a RGB image from the Kinect. Subfigure (b) is (a
brightened version of) the depth image.

Section 2.1.2.

2.5.1 Generating the World

The Kinect can be used to rebuild the world over time as a sequence of point
clouds from the perspective of the Kinect. This is done by capturing a sequence
of RGB-D images I1 . . . Ii . . . In, then generating a point cloud P1 . . . Pi . . . Pn
corresponding to each image. Each of these generated point clouds contains
a collection of points from the perspective of the Kinect at a given time step.
If the position and orientation of the camera is known for when each of the
RGB-D images were taken, then the point clouds can in principle be trans-
lated, rotated and combined, assuming the scene is stationary (Hartley and
Zisserman, 2004). This will in theory provide a single point cloud that repre-
sents all the captured information about the 3D environment. Essentially this
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is the approach employed in the first part of the proposed system discussed in
this thesis.

2.6 Summary

This chapter outlined key mathematical methods and concepts used in the
thesis. This included the concept of the pinhole camera, which allows for
transformations between world coordinates and image coordinates, as well as
transformation matrices and quaternions for representing translation and ro-
tations. This was followed by approaches to solving linear and non-linear least
squares problems. The basic concepts of 3D modelling were introduced and an
overview of the Kinect sensor was provided. The next chapter reviews existing
techniques that are used for 3D reconstruction and mesh generation.
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Chapter 3

Related Work

This chapter discusses work that has been done in previous systems for re-
constructing 3D environments, including the problems encountered and solu-
tions explored by other researchers. The problem of environment reconstruc-
tion is generally stated as the simultaneous localisation and mapping problem
(SLAM). Typically, the trajectory of the camera needs to be recovered and
the environment rebuilt at the same time. However, if this is not the case
and the poses are known, this is referred to as mapping with known poses.
This chapter reviews a number of solutions to the SLAM problem. Following
this, alternative approaches to 3D reconstruction are discussed. After tackling
the problem of 3D reconstruction, a series of techniques for generating meshes
from point clouds are discussed.

3.1 Motion Estimation

Motion estimation is the process of computing the transformation between
sequential 2D images. Motion estimation problems are generally addressed
using hardware solutions, including mounting sensors such as optical encoders
and magnetic sensors to provide odometry. These sensors can be mounted on
a robot or vehicle to provide an estimation of motion during data capture.
This is used in combination with inertial motion units to detect changes in
orientation and estimate the vehicle’s rotation.

The proposed system considers using a hand-held camera which does not
capture odometry information thus we only discuss approaches of this kind.
The techniques referred to below are often called registration or scan-matching.
They operate by ‘registering’ the initial or source image to a ‘reference’ or
destination image, which computes the motion from the initial image to the
reference. Each of these images can be converted to a set of points in 3D space.

24
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Iterative Closest Point

The iterative closest point (ICP) algorithm uses multiple techniques to com-
pute the motion between two sets of points. The algorithm has many variants
since parts of the algorithm can be replaced by alternative techniques. The
ICP algorithm has three iterated stages: the first is point association, the
second is point rejection, and the last is a minimisation step. ICP works by
iteratively attempting to make new associations between different point pairs
and minimise an error function during each iteration. There are multiple ways
in which the point associations, the point rejections and the minimisation of
the error function can be performed. Rusinkiewicz and Levoy (2001) have
compared various combinations of these approaches to find the most efficient
variants of ICP.

The first variant of ICP, detailed in Besl and McKay (1992), creates its
association between the two sets of points by computing the Euclidean distance
between a point from the first set to each point in the second. The point in that
second set that has the smallest distance is associated with the point in the first
set. At this stage associations with a large value can be discarded if necessary
as the point rejection step, depending on the overlap area that the two point
sets have. After this, the ICP algorithm attempts to minimise an error function
that computes the estimated transformation matrix from the first point set to
the second. The transformation is estimated in two parts, the first attempting
to compute the quaternion that represents the rotational component of the
transformation by using the approach in Horn (1987). The algorithm then
estimates the translation component as the change in the centres of mass
between the point clouds to construct the estimated transformation matrix.
The point cloud is transformed by the estimated transformation matrix and
the process is repeated by performing all three stages again due to the point
association technique used. The association technique has no way to ensure
that the matches are correct and thus its results are iteratively refined. Then
a point-to-point error metric is used to determine the quality of the estimated
transformation in which the sum of the squared distance between points in
each correspondence pair is calculated. This process stops once the error has
reduced to an acceptable tolerance or a certain number of iterations have
passed.

The next approach by Low (2004) replaces the point association and min-
imises a different error function compared to Besl and McKay (1992). To
create the association, a projective data association approach is used. Two
depth images are used to store the point cloud data and the association is
made between their pixels. This occurs by projecting a pixel from the source
depth image onto the target image; the position where the projection lands is
the associated pixel. Since this method uses a projective data association tech-
nique, it requires that the changes between the two images be relatively small
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because linearisation is performed during motion estimation. This technique
uses the associated pixels from the depth images to compute the 3D position
of each pixel. Once the associations of the 2D pixels are made and are con-
verted to 3D, the point-to-plane error metric is used (Chen and Medioni, 1992).
The point-to-plane error metric aims to minimise the sum of the squared dis-
tance between the source point and the tangent plane at its correspondence
destination point. The point-to-plane error metric allows point rejection by
testing two metrics; the similarity between the tangents to the source and des-
tination point and the Euclidean distance between these points. If tangents
deviate beyond a threshold or the euclidean distance exceeds a set threshold,
the point pairs are rejected. This technique is used in the proposed system,
and is further discussed in Section 5.4.

The scan-matching techniques often only use a subset of points that have
strong associations between them to improve robustness and reduce computa-
tional complexity. However, other techniques such as Steinbrücker, Sturm and
Cremers (2011) make use of all the pixels present in an image. Steinbrücker,
Sturm and Cremers (2011) present an energy-based approach for RGB-D im-
ages. An energy function is presented that aims to obtain the best rigid body
transformation from one RGB-D image to the other. This technique aims
at minimizing the back-projection error to find a rigid body transformation
from the special Euclidean group SE(3) representing the camera motion such
that the second image exactly matches the first. For large motion this tech-
nique implements a coarse-to-fine approach iteratively improving on the rigid
body transformation. The presented approach was compared to a state-of-the-
art implementation of ICP known as Generalized-ICP (GICP). GICP proved
more robust with larger camera motion than the technique presented; how-
ever, Steinbrücker, Sturm and Cremers (2011) provided more accurate results
in regions of smaller motion while being faster than the GICP method.

Huang and Bachrach (2017) use a feature-based approach to achieve real-
time motion estimation using the Kinect sensor. This technique is designed to
operate on a low cost device mounted on a quadrocopter to estimate its local
position and stabilize the quadrocopter for autonomous flight. This approach
combines multiple techniques to provide high performance with six stages to
the motion estimation: The first stage is image preprocessing, where the in-
coming depth image is processed through a Gaussian filter, the RGB image is
converted to greyscale and a Gaussian pyramid is constructed. This allows the
detection of features on a larger scale. The second stage is feature extraction;
the FAST (Rosten and Drummond, 2006) feature extractor is used on each
level of the pyramid to extract the features, and the depth image is used to
extract the associated depth. The third stage is generating an initial rotation
estimate; this is performed using a homography-based 3D tracking algorithm
(Mei, Benhimane, Malis and Rives, 2008). This technique computes a warping
function that is used to warp the source image to the target image. This al-
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lows the system to constrain the search window for the feature-matching. This
stage could also use the addition of an IMU to compute the initial rotation.
The next stage is feature matching, which computes the sum of the differences
between the pixels of the feature from the source image and the destination
image (Howard, 2008) as the metric for feature similarity. The fifth stage is in-
lier detection; this ensures that the Euclidean distance between two features at
one time should match their distance at another time. Finally, stage six does
the final motion estimation using Horn’s absolute orientation method (Horn,
1987) to compute rotation and a non-linear least squares solver to minimise
the reprojection errors of features in the environment.

Estimating the motion of the camera using ICP is generally performed
using an inter-frame approach. This is done by using one image as the reference
frame and computing the motion from the reference frame to the next frame
called the target. Computing the camera’s motion in this way causes the
location estimate to drift as the motion errors accumulate for every image
processed. To prevent this from happening, the system needs to correct this
drift using SLAM techniques and loop closure techniques.

3.2 SLAM Solutions

Rebuilding scenes in 3D requires knowing the position of the camera and the
distance from the sensor to objects in the scene. The simultaneous localization
and mapping problem (SLAM) was originally formalized in 1986 by Smith and
Cheeseman (1986) in which a generalised method for estimating the spatial
location of objects was presented, followed by improvements in Smith, Self
and Cheeseman (1987). Informally, the SLAM problem involves determining
where a given robot or vehicle is within an environment while simultaneously
mapping the environment. This section outlines a number of approaches to
tackling the SLAM problem.

Informally SLAM works by tracking key features, known as landmarks,
detected in images or other sensory data to determine the camera or sensor’s
position and orientation. In an extreme case, every pixel of an image might
be considered a landmark.

A probabilistic formulation of SLAM was pioneered in the work of Smith
and Cheeseman (1986) on probabilistic spatial representation. This laid the
groundwork for a 6 degrees of freedom model for estimating relationships be-
tween camera position and environmental objects in three dimensions, as well
as the associated uncertainty. Durrant-Whyte (1988) produced work on trans-
forming the uncertain points, curves, and surfaces from one coordinate frame
to another.

Major breakthroughs occurred in the late 1990’s and early 2000’s due to the
decreasing price of sensory devices and faster processors. This gave standard
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desktop computers and mobile devices the ability to adequately perform the
complex calculations required by SLAM systems.

SLAM systems are categorized as being online SLAM or offline SLAM; on-
line SLAM focuses on estimating the current location of the sensor, typically
while streaming data into the system while offline SLAM attempts to recon-
struct the entire trajectory of the sensor correcting the previous estimates of
the sensors location.

The two main variations of SLAM solutions, derived from the Bayes filter
(Arulampalam, Maskell and Gordon, 2002), are the extended Kalman filter
(EKF) (Gamini Dissanayake, Newman, Clark, Durrant-Whyte and Csorba,
2001) and the Rao-Blackwellized particle filter (RBPF) (Montemerlo, Thrun,
Koller and Wegbreit, 2002). Both techniques can be performed online or offline.
Other offline SLAM techniques exist, such as GraphSLAM. SLAM algorithms
generally use a motion model for predicting the motion of the camera and
updating the estimated position. These motion models are generally velocity
or odometry-based. Extensions to these methods such as submapping and
state augmentation are discussed in Bailey and Durrant-Whyte (2006). The
EKF and the RBPF both use landmarks to help estimate the correct camera
trajectory. The use of landmarks allows the system to correct the current
estimated pose of the robot. Further detail is provided on these two main
approaches to SLAM below.

3.2.1 Extended Kalman Filter

The extended Kalman filter approach to the SLAM problem developed by
Gamini Dissanayake et al. (2001), was the first solution to the SLAM problem
with proof that the system converges as more observations are taken. That
is, the covariance of each landmark decreases as successive observations are
made. However, Harris and Pike (1988) were the first to use Kalman filters to
accurately estimate the position of 3D landmarks from an image sequence.

The approach developed by Gamini Dissanayake et al. (2001) is used to
estimate hidden model states using observation data. The approach estimates
model states by fusing multiple sources of noisy data to find a joint state esti-
mate. However, the Kalman filter makes two key assumptions: that the uncer-
tainty of the position follows a Gaussian distribution and the model states are
linear. The extended Kalman filter (EKF) (Kalman, 1960) introduces general-
izations that allow the Kalman filter to be applied to non-linear models. This
is done by performing local linearisation with a first-order Taylor expansion.
This approach maintains a state estimate of the robot as well as landmark
locations found in the environment.

The estimator maintains a matrix that stores the covariance between each
estimated covariance of their pose, as well as the variance of the robot’s pose.
This requires a large amount of memory to maintain the covariance matrix,
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limiting this approach to considering only a couple of hundred landmarks. The
accuracy of the map and the vehicle location will converge to a lower bound
defined by the initial uncertainty of the vehicle. (Generally, this is irrelevant
when building a new map since the starting position is known.)

Variants of the extended Kalman filter, as described in Thrun (2005), two
notable examples are the unscented Kalman filter and the sparse extended
information filter.

Unscented Kalman Filter

This gives a lower uncertainty and provides better linearisation of the model
dynamics than the Taylor expansion with higher order non-linear functions
(Julier and Uhlmann, 1997). This is slower than the standard EKF and still
assumes that the error distribution is Gaussian.

(Sparse) Extended Information Filter

The EIF uses the canonical form (Maybeck, 1982) to represent Gaussian dis-
tributions. Instead of a covariance matrix, a precision matrix, the inverse of
the covariance matrix is maintained. In addition, an information vector, which
is the precision matrix multiplied by the mean is maintained. There is little
to no difference in performance between EKF and EIF: The EIF method pro-
vides a slow prediction step and an efficient correction step, while the EKF
algorithm provides an efficient prediction step and a slow correction step (Net-
tleton, Gibbens and Durrant-Whyte, 2000). However, the EIF forms the basis
for the sparse extended information filter (Thrun, Liu, Koller, Ng, Ghahra-
mani and Durrant-Whyte, 2004). This is an approximation that decreases the
EIF’s computational complexity. This is achieved by performing a sparsifica-
tion step that removes the dependence between the locations of landmarks and
the robot. Removing the dependence is achieved by setting the values in the
precision matrix to zero. The SEIF does this by using two sets of landmarks:
an active set and passive set. The active set of landmarks are a set of land-
marks in the area that include the currently observed landmarks. This set of
landmarks is usually set to a fixed size. The SEIF maintains all dependencies
for the active landmarks while it removes the dependence between the robot
and the passive landmarks.

3.2.2 Rao-Blackwellized Particle Filter

The Rao-Blackwellized particle filter introduced by Montemerlo et al. (2002)
or more commonly known as fastSLAM provides a solution to the SLAM
problem that avoids assuming a Gaussian distribution for the motion model.
This approach can represent thousands of landmarks (as opposed to EKF,

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 3. RELATED WORK 30

which can generally only represent hundreds due to memory constraints). The
Rao-Blackwellized particle filter was based on the work in three key papers:
Murphy (2000), Doucet, de Freitas, Murphy and Russell (2000) and Gamini
Dissanayake et al. (2001).

The Rao-Blackwellized particle filter is the combination of two ideas. The
first is the particle filter, similar to the Monte Carlo localization algorithm by
Dellaert, Fox, Burgard and Thrun (1999). The particle filter generates samples
around a particle and computes an error for each sample, from these samples
it selects a subset of particles with the lowest error as the new set of particles,
this is discussed in more detail later in this section. This process filters out
particles with high error values. The particle filter is used to sample differ-
ent estimates for the pose of the camera. The second is making conditional
landmark estimates by using EKFs. The RBPF uses a key insight from the
Rao-Blackwell theorem (Blackwell (1947) Rao (1945)) to lower the uncertainty
of the estimated camera position in the system. Instead of jointly estimating
the position of the camera and the landmarks directly, it uses a particle filter
to estimate the trajectory of the camera only. If the best estimate for the
trajectory is known, the landmark locations can be retrieved. This exploits
the dependency between knowing the location of the estimated camera and
the location of the landmarks. The particle filter simulates having hundreds
of samples (particles), known as the pose hypotheses. The particle filter will
then apply a motion command based on the motion model to all the parti-
cles. It assumes that each particle that is moved is perturbed by Gaussian
noise. For each of these particles, the system computes the best estimate for
the new position of the camera. If the system uses RGB-D data, the system
can compute the best particle as the one with the smallest projection error
from all the estimated landmarks. Once the system has computed the error
of the particles, it selects a new sub set of particles with a higher chance of
picking samples with low error and a lower chance of picking particles with
larger errors. This causes the particles with high errors to be less likely to be
chosen, and thus slowly eliminates the particles with high errors over time.
This is known as particle depletion.

3.2.3 GraphSLAM

Another popular version of offline SLAM employs a PGM-based approach (Lu
and Milios, 1997). It is a least squares approach to the SLAM problem and
attempts to recursively minimise the error function. This approach builds a
graph that connects each position and an observation as a node with motion
estimates represented by the edges in the graph, as shown in Figure 3.1. The
motion estimate probabilistically constrain the relative pose at each node. This
allows the graph to relate the position of nodes to those of other nodes. Thus,
if the system revisits a location and views the same landmarks again, it can
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Figure 3.1: This illustrates the graph created during GraphSLAM. The nodes
x0 to x3 illustrate the position and edges to the nodes l0 to l2 illustrate the
observations from each position. The edges u0 to u2 represent the estimated
motion between the nodes.

create additional constraints between the current node and other nodes that
have viewed the same landmark (known as a virtual constraint). Using this
idea, the system needs to find a node configuration that maximises a goodness-
of-fit metric parametrized by the motions on the edges. Once the metric has
been maximised, the system has reconstructed the optimal trajectory under
the model. With this optimal trajectory, the system can generate the map
using RGB-D data. This optimal node configuration produces a smoothing
effect of the camera’s trajectory. This approach to SLAM is often referred to
as smoothing and mapping (SAM). A new incremental approach of SAM has
been created by Kaess, Ranganathan and Dellaert (2008). GraphSLAM can
also be run online directly by optimising the graph after adding a new node
to the graph.

Alternative techniques to 3D reconstruction are discussed in the subsequent
section.

3.3 Alternative Solutions

This section describes alternative techniques and approaches to 3D recon-
struction. Specifically, we describe the approaches of bundle adjustments
(Triggs, McLauchlan, Hartley and Fitzgibbon, 1999), the Kinect Fusion algo-
rithm (Newcombe, Izadi, Hilliges, Molyneaux, Kim, Davison, Kohli, Shotton,
Hodges and Fitzgibbon, 2011a), parallel tracking and mapping (Klein and
Murray, 2007) and dense tracking and mapping (Newcombe, Lovegrove and
Davison, 2011b).
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3.3.1 Bundle Adjustments

Bundle adjustments is used as the final step in most 3D landmark-based re-
construction algorithms. It follows a similar approach to the graph-based ap-
proach described in Grisetti, Kummerle, Stachniss and Burgard (2010). The
term bundle refers to a group of light rays leaving a 3D feature and converging
on a camera centre, which are adjusted optimally with respect to both feature
and camera positions. This is done by posing the problem as a geometric esti-
mation problem that uses the combined 3D feature coordinates, camera poses,
and calibration as the parameters. The parameters are estimated using a non-
linear least squares formulation with the cost function based on the projection
errors. Triggs et al. (1999) describe the bundle adjustments algorithm, along
with the various assumptions, misconceptions and techniques around it.

3.3.2 Kinect Fusion

The Kinect Fusion system by Newcombe et al. (2011a) is a system designed
to create a 3D reconstruction of a fixed area and incrementally update the
scene. This system is able to leverage GPU programming to achieve real-time
performance. To reduce noise, this system uses bilateral filtering (Tomasi
and Manduchi, 1998) and a volumetric-based approach is used to build the
model, as described in Curless and Levoy (1996a). This approach averages
the estimated location of each surface measurement from the environment
using the RGB-D images by means of a truncated signed distance function
(TSDF). The volumetric-based approach removes the need for landmarks and
uses scan-matching techniques to best correct the motion by using a frame-
to-model match. Typically, systems use a frame-to-frame approach which
computes motion from the one frame to another, these frames are input to
the system from the real world. Using the frame-to-frame approach, relative
motion is computed between the frames, however this becomes an issue when
the motion is not computed accurately enough. The frame-to-frame approach
assumes that the camera is in the position on the first input frame, over time
with the inaccuracies the position of the camera and the expected view for
the next frame will not be aligned. The misalignment of the position and the
frame is known as drift. The frame-to-model approach does not assume the
position of the camera, it uses the camera to compute a virtual image from
the estimated location in the environment. The virtual image is a synthetic
image generated from previous input images, this is described in more detail
in Chapter 5.

The main difference in this system, compared to other techniques, is its
ability to refine the model using the method described in Curless and Levoy
(1996a). This filters out noise and helps reduce the drift during the motion
estimation by using a frame-to-model approach as opposed to a frame-to-frame
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approach. The frame-to-model approach is achieved by the TSDF volume. The
TSDF volume is a 3D volume of TSDF values, each one representing a sub-
volume in 3D space. Each of the TSDF values in the sub-volume are positive
or negative depending on the distance and direction the sub-volume is from
the closest surface measurement. The model that is represented in the TSDF
volume is defined as having a surface at all boundaries between positive and
negative values. These are called zero-crossings. Multiple range images are
integrated into this volumetric representation. This allows the TSDF values
to take on an average value which reduces the sensor noise.

Correcting the motion by using the frame-to-model approach only works
when precise sensors such as the Microsoft Kinect are used. In this case, the
accuracy of the depth information allows the motion estimation to be more
accurate, thus reducing the drift. The frame-to-model approach raycasts the
volumetric model to create a virtual image and then computes the motion
from the virtual image to the incoming image instead of using the two frames
from an image sequence. Using this technique, the position of the camera view
is not assumed at any point and is generated from the estimated location of
the camera. The position of the camera is based on the relative position of
the volumetric model. This system has two main limitation in that it is de-
signed to reconstruct a fixed volume and due to the frame-to-model approach
in its motion estimation, fast camera movements and motion blur will pre-
vent the system from computing the motion between the model and frame
correctly. This system can be used with SLAM techniques such as Graph-
SLAM to optimise and correct the trajectory. For the work reported in this
thesis, this system is chosen to reconstruct the environment due to its ability
to reduce noise and its robustness to changes in the scene (Izadi, Kim, Hilliges,
Molyneaux, Newcombe, Kohli, Shotton, Hodges, Freeman and Davison, 2011).
This technique is presented in Chapter 5.

Extensions to the Kinect Fusion system have been made in Whelan and
Kaess (2012) by removing the fixed volume limitation using a wrap-around
indexing system for the volume. This removes the limitation that fixes the
volume’s location and allows the volume to move large distances while per-
forming the reconstruction. This is achieved by discarding old sections of the
TSDF volume and overwriting them. This feature is incorporated into the
system that is proposed in this thesis.

3.3.3 Parallel Tracking and Mapping

Klein and Murray (2007) developed a real-time mapping and tracking algo-
rithm named PTAM (parallel tracking and mapping). This is a feature-based
reconstruction algorithm that focuses on reconstructing the environment using
a single RGB camera. This system is divided into two threads. One thread
is used for tracking camera motion and the second thread for building the
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map. The map building uses batch optimisation techniques (such as bundle
adjustments) to allow it to run in real-time. The main contribution of this
algorithm is that the authors focus on computing the motion of the camera
(which is hand-held) without odometry commands as in SLAM.

3.3.4 Dense Tracking and Mapping

The dense tracking and mapping system was developed by Newcombe et al.
(2011b). It was developed as a single-camera (monocular) system that creates
dense maps, avoiding the reliance on feature-based techniques. It creates a
dense 3D model, and uses it for frame-to-model tracking similarly to the Kinect
Fusion system. The model is built in patches using multiple frames of the same
area for the reconstruction. As with the Kinect Fusion system, the system is
stated to be limited by fast camera motion and motion blur.

3.3.5 Benchmarks

General data sets and evaluation tools for SLAM have been presented in Sturm,
Engelhard, Endres, Burgard and Cremers (2012) for the SLAM community.
These include 39 data sets of indoor environments and automated tools to
compute the relative trajectory error from the ground truth. In their work they
use one performance metric, the accuracy of the estimated camera trajectory.
This only focuses on the trajectory that was estimated and does not consider
the accuracy for the reconstructed environment. In these data sets, the camera
is moving rapidly between frames, and the images are often blurred due to this
motion.

3.4 Depth Estimation

In order to use the techniques mentioned in the previous section, the system
may need to estimate the depth of landmarks or regions and compute the
camera’s motion between successive frames.

With increases in processing power and faster algorithms, much progress
has been made in estimating depth from camera information using structure-
from-motion (SFM) and multi-view stereo (MVS) systems (Hartley and Zisser-
man, 2004). Systems that use monocular setups usually need to estimate the
depth of the scene using a sequence of images. This tends to cause the system
to operate offline due to the computationally complex operations required to
estimate the depth (Hartley and Zisserman, 2004). These systems are often
based on Harris and Pike (1988), which used an image sequence to generate 3D
features and accurately estimate their positions using Kalman filters. These
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systems have managed to achieve real-time performance in recent years with
systems such as that described by Davison, Reid, Molton and Stasse (2007).

Stereoscopic (MVS) systems make use of two or more cameras that allow
the system to estimate depth by performing triangulation. These systems re-
quire two cameras next to each other to take images simultaneously to generate
two images of the same environment from different viewpoints. Using these
viewpoints, it is possible to estimate the depth of a feature visible from both
images, as described in Hartley and Zisserman (2004).

Many modern systems make use of laser range finders to estimate depth.
These are called time-of-flight (ToF) sensors. A ToF sensor uses the speed
of light to compute distance from time differences: It emits a light beam and
measures the time taken for its reflection to be sensed. This removes the com-
putational complexity of estimating depth by techniques such as triangulation
and is able to compute the depth to each pixel as opposed to triangulation
which generally only computes the depth to each feature, but requires special
hardware.

3.5 Mesh Reconstruction

Reconstruction algorithms do not initially produce meshes; instead they pro-
duce point clouds. A point cloud is a set of points in 3D space that may
represent a surface in the environment. Since it is a set of points, no infor-
mation about the objects’ surface connectivity has been explicitly recorded.
Instead, this needs to be reconstructed. Reconstructing the surfaces from a set
of points can create many possible interpretations of the surface of the object.
Remondino (2003) summarizes a number of techniques for converting point
clouds to meshes.

Point cloud based mesh construction techniques can be separated into two
types:

• Systems based on object measurements, such as triangulation and laser
scanning.

• System that do not use measurements, such as computer animation soft-
ware and 3D modelling applications.

Algorithms based on object measurements are the most relevant to this
study, and generally are divided into the following categories.

Surface-oriented approaches focus on generating surfaces and do not distin-
guish between closed (water tight) or open surfaces, such as in Hoppe,
DeRose, Duchamp, McDonald and Stuetzle (1992).
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Volume-oriented approaches focus on constructing a closed surface, these
approaches are commonly based on the Delaunay triangulation of a set of
3D points, such as in Boissonnat (1984) and Curless and Levoy (1996a).
The most commonly used derivative of Delaunay triangulation is known
as the Crusts algorithm (Amenta, Bern and Kamvysselis, 1998). Im-
provements on the original Crusts algorithm have let to the Cocone
algorithm (Dey and Giesen, 2001) and, later, the water-tight Cocone
algorithm (Dey and Goswami, 2003).

Both of the categories above include methods that aim to reproduce the surface
of the object using either all or a subset of the points in the point cloud. Surface
oriented approaches are further subdivided into the following groups.

Parametric representation
These use parametric equations to represent surface patches. Multi-
ple patches can be pieced together to form a continuous surface. This
usually uses formulations such as B-splines or Bezier curves such as in
Terzopoulos (1988).

Implicit representation
Attempts to find a smooth function that passes through all the points
such as in Gotsman and Keren (1998). This however, is susceptible to
noise in the point cloud data.

Approximated surfaces
These do not always contain all the original points, but add new points as
close as possible to points in the original point cloud. Such methods use
a distance function to approximate the correct mesh such as in Hoppe
et al. (1992).

Interpolated surfaces
This approach uses the original points and interpolates between these
points. This can result in points in the original set being excluded from
the final surface such as in Bernardini et al. (1999). This is discussed
further in Chapter 6.

3.5.1 Mesh reconstruction techniques

One of the most popular techniques used in surface reconstruction is Delaunay
triangulation (Delaunay, 1934). This works by considering spheres between
three random points in a subset of points: if a sphere does not contain any
other point inside it, the sphere is considered valid. The three points of a
valid sphere are used to produce a triangle that is used as a face in the model.
The triangulation procedure also attempts to maximize the minimum angle of
all the internal angles of all the triangles. This prevents the algorithm from
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(a) (b) (c)

Figure 3.2: Subfigure (a) shows some 3D points projected onto a 2D plane.
Subfigure (b) shows some possible circles generated during the Delaunay tri-
angulation. Subfigure (c) shows the generated triangles using Delaunay trian-
gulation.

generating skinny triangles, where the base is very small compared to the
height. Delaunay triangulation forms the basis for many other reconstruction
techniques including those described in Boissonnat (1984), Bernardini et al.
(1999) and Isselhard, Brunnett and Schreiber (1997).

Boissonnat (1984) describes a surface-orientated method using nearest neigh-
bours structures and a projective approach to generate the mesh. It aims to
operate in a small local area and projects the points from the point cloud onto
a plane and creates triangles between these projected points on the plane. The
triangles created on the 2D plane will be created in the 3D point cloud as well.
Figure 3.2 illustrates the points projected on a 2D plane in a local region and
the circles generated during Delaunay triangulation which will create triangles
between them.

A more powerful and popular version of the work by Boissonnat (1984)
is known as the Power Crust algorithm, as described by Amenta, Choi and
Kolluri (2001). The Power Crust algorithm produces a surfaced mesh and
an approximate medial axis. The medial axis transform (Bium, 1964) is a
skeletal shape representation which has been proposed as a tool for various
applications in shape recognition and manipulation. It represents a solid by
the set of maximal balls completely contained in the interior of the point set,
as contemplated in Boissonnat (1984). The approach is to first approximate
the medial axis transform of the object and to then use an inverse transform
to produce the surface representation from the medial axis transform.

One problem with the technique of Delaunay triangulation is that it as-
sumes the availability of arbitrary precision mathematical operations. This
results in situations where floating point errors and overflow occur, so that
fixed-width binary representations can cause this method to incorrectly incor-
porate triangles. A different technique to Delaunay triangulation was devel-
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oped by Bernardini et al. (1999), known as the ball pivot algorithm (BPA).
This technique follows an analogous method to building triangles from spheres,
constructing the mesh by simulating a sphere rolling over the point cloud. In-
stead of finding spheres to fit the points exactly, a single sphere of a certain
fixed radius is chosen in advance. This sphere is rolled over the point cloud and
when the sphere touches three points a face is generated between them. The
sphere is initially placed on the point cloud by finding three random points
that the surface of the sphere can touch at the same time. The sphere should
not contain points inside and the direction of the points (surface normals)
should be in the same direction. Once placed on the initial three points the
algorithm creates a triangle using the points as vertices. This generated trian-
gle is the first face that the algorithm has generated. While each of its edges
form a boundary of the reconstructed area. The algorithm selects one of these
edges and pivots the sphere along the edge until the sphere makes contact
with another point from the point cloud. A new triangle is created between
the edge that the sphere is pivoting on and the new point. The process of
pivoting the sphere along an edge and generating triangles continues until the
sphere does not make contact with any new points and can not create any
new triangles. This technique has two main challenges. The first is that each
point requires surface normal information. The second is that the reconstruc-
tion quality depends on the initially selected sphere size. These additional
challenges are balanced by the algorithm’s inherent simplicity and is chosen to
be incorporated into the proposed system due to this. It is discussed in more
detail in Chapter 6.

Another common reconstruction technique is Poisson surface reconstruc-
tion (Kazhdan, Bolitho and Hoppe, 2006). This poses the surface reconstruc-
tion problem as a spatial Poisson process (Weil, Hug, Baddeley, Capasso,
Bárány, Villa and Schneider, 2006). It aims to approximate a 2D slice of the
3D model using a function. This is achieved by imagining a 2D plane passing
through a model and finding a function that represents the intersection of the
model with the plane. Further improvements of Poisson surface reconstruction
include implementing a parallelized Poisson surface reconstruction technique,
as well as the ability to stream point cloud data into memory for large scale
models, as described by Bolitho, Kazhdan, Burns and Hoppe (2009).

Gopi and Krishnan (2000) employed a projection-based approach to surface
reconstruction similar to Boissonnat (1984). This algorithm makes three key
assumptions for it to operate correctly. The first is that the points are locally
uniform, ensuring that the points in the region of interest are relatively close to
one another. The second is that it is able to distinguish different layers of the
object. This entails that there is a minimum distance between each side of the
object. The third assumption is that the normal deviation between any two
triangles on a vertex is less than 90◦. For any model this is easily accomplished
by increasing the sampling of the object’s surface. The algorithm picks a data
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point from the point set called the reference point. This reference point is the
initial starting point for the triangulation. The technique then finds all the
triangles incident on the reference point within a specified distance from the
reference point. The algorithm then performs a breadth-first search, iterating
through the vertices adjacent to the reference point repeating the process of
finding the incident triangles on the adjacent point.

The algorithm accomplishes the reconstruction in three stages: the buck-
eting stage, the pruning stage and the triangulation stage. The bucketing
stage uses the reference point and orthographically projects points in the lo-
cal area onto a 3D grid. This grid uses the Z axis as the depth and the X
and Y axes encodes the position of the point, multiple points that project to
the same X and Y location are sorted by the depth value. The next stage of
the algorithm is the pruning stage. This is designed to remove points until
the remaining points are the incident triangles on the reference point. This
stage initially uses the 3D grid as the search space for these points. Following
this, the L2 metric is applied from the reference point to reduce the number
of possible triangles created. The L2 metric rejects points that lie outside a
sphere from the reference point. The remaining points are referred to as the
candidate points for the reference point. These points are then sorted by angle
from the reference point and undergo a visibility test. The visibility ensures
that the no mesh boundary lies between the reference point and the candidate
point. If a mesh boundary does lie between them, the point is rejected. The
remaining points are passed into the next stage, the triangulation stage. The
triangulation stage is the final step in generating the incident triangles. This
is accomplished by connecting the candidate points around the reference point
the in the sorted order of angle.

In addition, this method does not need any additional information such as
surface normals.

Other function-fitting algorithms use the marching cube intersection algo-
rithm outlined in Lorensen and Cline (1987) for the final stage in performing
the mesh reconstruction. These function-fitting algorithms always use an in-
dicator function that determines if a region is inside or outside of the model.
This technique of generating triangles looks at the volumetric properties of the
indicator function in a 3D grid. Given the function value for a cube and its
neighbours it is possible to determine the triangle that should be generated.
Depending on the neighbourhood type, generally a Von Neumann neighbour-
hood or Moore neighbourhood, there are a maximum number of unique neigh-
bour configurations that specify whether a triangle should be generated. For
example, in the 2D Figure 3.3, we demonstrate that the triangle needs to be
generated in the square due to specific neighbours being inside the model.
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(a) (b)

Figure 3.3: This figure demonstrates a configuration that requires the marching
cube intersection method of generating a line in 2D. If this were in 3D, it would
generate a triangle. White indicates the square is outside the model and black
indicates the square is inside the model. The green line indicates the generated
edge in the 2D case.

3.5.2 Mesh Reconstruction Benchmarks

Stanford has created a repository (Curless and Levoy, 1996b) of point clouds
that are used to evaluate reconstruction algorithms. The Stanford repository
contains four models: a bunny, a drill bit, a Buddha statue and a dragon.
These models were scanned using a Cyberware 3030MS optical triangulation
scanner as a series of range images. They provide the point cloud in multiple
sections in their local space as well as a transformation for each section of the
model to put them in the same coordinate system.

These models were obtained from the Stanford University Computer Graph-
ics Laboratory. The bunny model, often referred to as the Stanford bunny, is
generally considered the standard for testing mesh reconstruction algorithms.
For more complex tests, the Buddha and dragon point cloud are used. These
point clouds will be used as an initial test to verify that our implemented
mesh generation algorithm works correctly the resulting meshes are discussed
further in Chapter 7.

3.6 Summary

This chapter considered various aspects of approaches to 3D reconstruction.
This included techniques for estimating motion and depth, correcting drift and
reconstructing models. Motion estimation techniques used in current 3D re-
construction techniques usually use sensors such as inertial motion units and
optical encoders. These provide excellent initial estimates for the motion of a
robot or vehicle. However, our system targets hand-held cameras, as these re-
quire the least specialized hardware. Due to this, we considered scan-matching
approaches and more specifically ICP algorithms. ICP algorithms can have a
variety of different subcomponents that can be modified for various user cases.
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These subroutines consist of point selection, point association, point rejection,
the error function and finally the minimisation technique applied to the error
function. ICP algorithms operate by using two sets of points and attempting
to find an association between each point in one cloud with a point in the other.
Once an association is made, the ICP algorithm attempts to minimise an error
function that transforms a point to its associated point in the other point cloud.
However, scan-matching approaches are not perfect at estimating motion and
cause the estimated trajectory to drift over long sequences. The depth esti-
mation problem has a multitude of established techniques, including software
and hardware solutions. Software solutions are based on multi-view geometry.
These established techniques typically require two or more viewpoints of the
same object with known distances between the different viewpoints, allowing
triangulation of the light beams from each camera. For monocular systems,
the depth is estimated using a similar approach, except the motion between
each frame is estimated. Time-of-flight sensors are the hardware solutions.
The most common and easiest to access time-of-flight sensor was developed
by Microsoft, known as the Kinect sensor. To reduce the complexity of depth
estimation, we make use of the Kinect sensor for obtaining 3D information
about the environment.

The most common approach to 3D reconstruction is the use of a SLAM
system. We discussed the estimation techniques that use Kalman filters such
as the particle filter and the EKF. These techniques work by saving land-
marks and maintaining probabilistic information about the location of the
landmarks. By incorporating multiple location estimates of landmarks, the
system is capable of reducing the uncertainty about the location of camera
and the landmarks. The main variants of the Kalman filter, such as the UKF
and SEIF, were outlined and their differences briefly explored. This assumes
some characteristics of the motion and creates a smoothing of the camera’s
trajectory. A different solution to SLAM was the graph-based variant that
attempts to maximise the goodness of fit model. This builds a graph using the
motion estimates, observations and the positions of the camera to find an opti-
mal configuration of the nodes in the graph. Unfortunately, SLAM systems are
based on a motion model and generally require odometry information. This
requires the system to have a fairly predictable motion, which is not the case
with hand-held cameras. However, a motion model for hand-held cameras has
been created as described in Davison, Reid, Molton and Stasse (2007). Newer,
less common techniques were discussed such as PTAM, DTAM and the Kinect
Fusion system. Since PTAM and DTAM focus on using a single RGB camera
to perform the reconstruction, these systems were avoided as the depth would
only be recoverable to a scale. The Kinect Fusion system was discussed since
it was created for use with a depth sensor. This removes the complexity of
estimating depth and provides a fast and efficient approach to modelling a
3D environment. This system also provides techniques to remove noise from
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the incoming sensor data and minimise drift using the frame-to-model motion
estimation approach discussed in Chapter 5.

The final step was to find an approach to rebuild a point cloud into a
mesh. Various techniques were described and explored. Most commonly, the
techniques were based on Delaunay triangulation. To remove the challenge of
numerical stability with Delaunay triangulation, the BPA was chosen. This
removed the problem that could be caused if the estimated radius causes a
numerical overflow.

The next chapter specifies the approach to the 3D reconstruction problem
proposed in this thesis, and how the proposed system will be evaluated.
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Methodology

This chapter focuses on how the aims and objectives of this thesis will be
reached. In particular, we describe how we collect data from the environment,
estimate the motion of the depth sensor, achieve online motion estimation
speeds, reduce noise from the sensor data, fuse successive sensory data sets
together, enable generation of large scale environments, extract the implicit
and explicit structure of the environment, generate a mesh from the final point
cloud, integrate colour data into the mesh and export the meshed point cloud
(Section 1.1.1).

The methodology is divided into three sections: the 3D reconstruction
process, the mesh generation process and the evaluation of the system. The
reconstruction section presents a method of building a 3D point cloud from a
camera feed. The mesh generation section focuses on converting the generated
point cloud from the reconstruction phase into a mesh. Finally, the evaluation
section explains how the results from the reconstruction and mesh generation
sections will be analysed and evaluated. The proposed combined system is
shown in Figure 4.1.

4.1 Reconstruction

To perform the 3D reconstruction, a Microsoft Kinect sensor will be used to
collect sensory information from the environment. The reconstruction will be
performed using the techniques described in Newcombe et al. (2011a). This
approach is chosen due to the system’s ability to operate at high speeds using
GPU programming. This allows the system to create the virtual model at
online speeds. This process begins with smoothing the raw pixel data obtained
from the depth sensor with a simple bilateral filter as described in Tomasi and
Manduchi (1998).

After the bilateral filter has been applied to the raw data, the filtered data
can be integrated into a single volume using the volumetric model represen-
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tation from Curless and Levoy (1996a). The volumetric model representation
uses a truncated signed distance function (TSDF) to represent the surface of
the model. This allows multiple data sets obtained from the sensor to be fused
into a single volume. The technique used to fuse the data sets also provides
a method of removing outliers in the filtered sensor’s depth data by averaging
it. This helps reduce the remaining noise in the filtered sensor data.

The camera motion estimation is implemented using ICP, specifically the
method presented in Low (2004). This implementation is chosen because the
algorithm employs multiple independent calculations as opposed to the imple-
mentation described in Besl and McKay (1992). This allows its computations
to run in parallel, enabling a faster reconstruction process.

The ICP algorithm uses the points obtained from a ray casting procedure as
input, as discussed in Curless and Levoy (1996a). These points are used as the
destination points during the motion estimation, while the points generated
from the incoming depth image are used as the source points.

The system implemented in Newcombe et al. (2011a) has an important
restriction in that the volume which it is capable of reconstructing is limited.
To enable larger scale model reconstruction, a wrap-around indexing system is
used. This technique is modelled after Whelan and Kaess (2012) and removes
the boundary constraints from Newcombe et al. (2011a). However, still limits
the local reconstruction space to the size of the volume.

To extract the point cloud, orthogonal rays are cast through the volume
to detect locations of zero-crossings. These zero-crossing points will form the
vertices of the point cloud. To build the point cloud rapidly, most of this system
is implemented in Nvidia’s CUDA framework for fast GPU computations.

4.2 Mesh Generation

The point cloud extracted from the volume, it must be converted into a mesh.
For this, the ball-pivot algorithm by Bernardini et al. (1999) is used. This
algorithm allows for a natural generation of the mesh by simulating a ball
rolling over the surface of the point cloud. Once the mesh has been constructed,
it is converted into a common format that allows it to be used in most 3D
modelling tools.

4.3 Evaluation

The system evaluation is divided into two sections: the reconstruction phase,
which contains the evaluation of the generated point cloud, and the mesh
generation phase, which contains the evaluation of the surfaced mesh.
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Figure 4.1: An illustration of the proposed system and its different subcom-
ponents. The system takes input in the form of a depth image and an RGB
image. The depth image passes through the bilateral filter and propagates to
the TSDF component. The RGB image is inserted directly into the TSDF
component where the results are fused. The ICP component uses the input
from the bilateral filter and the ray caster to compute the best motion estimate
for the system. The TSDF component uses the motion estimate from the ICP
component to fuse the depth image with the RGB image from the correct po-
sition. Following this, the ray caster generates a virtual image to provide the
ICP component with a new model view. The ray caster also extracts points
from the TSDF volume when points move out of the mapping area.

4.3.1 Reconstruction

The reconstruction algorithm is evaluated based on the reconstruction created
from several synthetic data sets (Section 7.1). These synthetic data sets will be
obtained using Blender and it’s Python interface to generate RGB-D images.
Blender is an open-source 3D modelling and rendering tool that allows design-
ers and artists to create photo-realistic scenes (Blender Online Community,
2018). It supports a full 3D pipeline, including modelling, rigging, animation,
simulation, rendering, compositing, motion tracking, video editing and game
creation. The system will reconstruct the synthetic 3D world which will be
evaluated by comparing the shape and position of the point cloud with the
ground truth model, artefacts generated and the accuracy of the estimated
camera trajectory. When analysing the reconstructed trajectory, the accumu-
lated error over the full frame sequence will be analysed for each axis. This
analysis will compare the translation data from the estimated trajectory for
each axis against the ground truth translation data. For the rotational data,
the error analysis compares the Euler angles and quaternions of the estimated
orientation against the ground truth orientation data. Thus, the reconstructed
point cloud will be evaluated indirectly by evaluating the accuracy of trajec-
tory of the camera.
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4.3.2 Mesh Generation

The mesh is evaluated by performing two types of experiments. The first type
of experiment involves taking a selection of meshes, removing (but keeping
the vertices) the faces and edges, and then passing them through the mesh
generation process. This provides an evaluation of the mesh generation in
isolation from earlier subsystems in the combined system. The second set of
experiments will be a continuation of the reconstruction experiments: after the
point clouds have been generated from the sensor data, they will be passed
through the mesh generation component. The meshes in the first type of
experiments will be compared to the original synthetic meshes. Results of the
second group of experiments are evaluated qualitatively, the meshes will be
examined and compared to the expected output. The generated meshes will
be analysed by inspecting their faces and their known topologies.

4.4 Summary

In this chapter a proposed approach to generating 3D point clouds using the
Kinect Fusion system was proposed with a few modifications. In addition, a
mesh reconstruction algorithm was identified that can convert the point clouds
generated from the proposed system to meshes. The evaluation of the results
from the modified Kinect Fusion system and the mesh generation component
are discussed.

The next chapter focuses on the implementation of the above 3D recon-
struction techniques that are used to build point clouds.
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Kinect Fusion

This chapter describes a modified implementation of the Kinect Fusion system
by Newcombe et al. (2011a). This implementation is used to produce a 3D
point cloud.

5.1 System Overview

The original Kinect Fusion system implemented by Newcombe et al. (2011a)
is outlined in Figure 5.1. This system is extended by (a) integrating the RGB
image into the 3D volume, and (b) implementing the moving volume concept
as described in Whelan and Kaess (2012) (Section 5.5.2). The Kinect Fusion
system has four components: the bilateral filter component, ICP component,
truncated signed distance function (TSDF) component and the ray caster com-
ponent. The images obtained from the Kinect are RGB-D images which are
susceptible to errors in the depth measurements. Therefore, the depth im-
ages from the Kinect are passed through a bilateral filter to filter out noise by
generating an average reading for each pixel using similar pixel values in its
local area. The resulting filtered images are then passed through to the ICP
and TSDF components in turn. This system uses a coarse-to-fine approach
to estimate the relative motion between successive frames. In order to map
the RGB data to the model a 3D volume is used to store the data. At each
position in this volume an estimate for the RGB colour is integrated whenever
a new depth and RGB image is integrated. This enables the system to produce
a point cloud that has associated colour data. The moving volume concept
allows the TSDF volume to virtually translate in the environment, allowing
large scale mapping. The TSDF volume stores the estimated surface until it
is required to move the volume. The ray caster then extracts the point cloud
from that region and resets it.

47
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Figure 5.1: An outline of the original Kinect Fusion system.

5.2 Pyramid Construction

An image pyramid is a set of images derived from a single image such that at
each level the image resolution is halved from the previous level. Starting from
the original image at level 0, the image at level i+1 is a sub-sampled version of
the image at level i, such that the image at level i+1 has half the resolution of
the image at level i. This process continues until some predetermined number
of levels has been generated. Figure 5.2 illustrates the sub-sampled images of
the pyramid. A common operation on an image pyramid is applying a filter to
it: in this case a bilateral filter will be applied to each image in the pyramid,
as discussed further in the next section. The image pyramid is generated for
each incoming depth image from the Kinect sensor. This modifies the Kinect
camera parameters for each level l as follows:

K−l =

f−lx 0 o−lx
0 f−ly o−ly
0 0 1

 .

5.3 Bilateral Filter

Bilateral filtering is a technique used in image processing to filter out noise and
smooth an image while preserving edges (Tomasi and Manduchi, 1998). This
technique works by combining the concepts of range and domain filtering.

When applying the bilateral filter to an image, the domain is the spatial
location of a pixel, as shown in Equation 5.1, and the image information for
that pixel location are the range as shown in Equation 5.2.

u =

[
ux
uy

]
(5.1)

y = f(u) (5.2)

Two filters are applied: a closeness filter and a similarity filter. The close-
ness filter, c, is a simple filter that uses the geometric distance between the
reference point u and a nearby point ξ. This filter thus operates on the do-
main.
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Figure 5.2: The image pyramid with the original image at level 0 (bottom),
and the coarsest sub-sampled image (with the lowest resolution) at level 4
(IIPImage, 2018).

Domain filtering attempts to filter a digital signal based on the input values
of some function. This modifies the input values by applying a filter function to
each of the values. For example given a function y = g(x), the filtering function
d is applied to the x values. The new y value is computed as y = g(d(x)).
More formally, a convolutional filter c can be applied to the image f centred at
u, the closeness function c operates in the domain of f as shown in Equation
5.3:

hc(u) = k−1d (u)

∫ ∞
−∞

∫ ∞
−∞

f(ξ) c(ξ,u) dξ, (5.3)

where

kd(u) =

∫ ∞
−∞

∫ ∞
−∞

c(ξ,u) dξ (5.4)

is a normalizing factor.
The similarity filter, s, measures the photometric similarity between the

pixels. This operates on the range. Range filtering takes the function output
values and simply filters the values according to the filter function. For example
given a function y = g(x), with the filtering function r, the filter is applied as
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y = r(g(x)). More formally the range of an image f can be filtered by a range
filter s as shown in Equation 5.5

hs(u) = k−1r (u)

∫ ∞
−∞

∫ ∞
−∞

f(ξ) s(f(ξ), f(u)) dξ, (5.5)

where

kr(u) =

∫ ∞
−∞

∫ ∞
−∞

s(f(ξ), f(u)) dξ (5.6)

is a normalizing factor.
The filters c and s are combined to obtain

hs,c(u) = k−1(u)

∫ ∞
−∞

∫ ∞
−∞

f(ξ) c(ξ,u) s(f(ξ), f(u)) dξ, (5.7)

with normalizing factor

k(u) =

∫ ∞
−∞

∫ ∞
−∞

c(ξ,u) s(f(ξ), f(u)) dξ. (5.8)

This bilateral filter replaces pixel values by an average of nearby similar
pixels, effectively averaging out the noisy values. Using this filter gives a larger
influence to closer pixels with similar values than values which are further away
and dissimilar.

The filters can be applied as simple difference measurements as shown in
Equations 5.9 and 5.10. However, Gaussian-based closeness and similarity
functions given in Equations 5.11 and 5.12 are used. This preserves the struc-
ture of the image, while removing noise.

d(ξ,u) = (u− ξ)2 (5.9)

r(ξ,u) = f(u)− f(ξ) (5.10)

c(ξ,u) = e
− 1

2

(
d(ξ,u)

σ2
d

)
(5.11)

s(ξ,u) = e
− 1

2

(
r(ξ,u)

σ2r

)
(5.12)

The bilateral filter is applied to the incoming raw depth image, R, with
σr = 4.5 and σd = 30 for all levels in the image pyramid in the main system.
These parameters were determined to be sufficient for the system by manually
tuning the parameters until the desired results were obtained. To improve
the system’s performance, the filters are applied using a 13x13 mask. These
parameters provide adequate filtering to smooth the depth image. This is
applied to the image pyramid resulting in a new image D at each level.

A new image pyramid is generate with the bilateral filter, the resulting
image pyramid is fed into the next component: the iterative closest point
component.
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5.4 Iterative Closest Point

In the original Kinect Fusion system, ICP is used to compute the relative
motion between successive RGB-D frames. This motion estimation step is
based on the papers by Low (2004) and Chen and Medioni (1992), and uses
the point-to-plane error metric. The point-to-plane error metric is used to
compute the distance error between each source point and the tangent plane
at the corresponding destination point. The ICP algorithm is solved iteratively
for each level during a single time step (motion estimate between frames). The
ICP algorithm estimates the motion between two frames by performing the
projective data association, computing the error and solving the non-linear
system. This is a single iteration of the ICP algorithm but due to the non-
linearity of the system, this needs to be solved iteratively. The ICP algorithm
iteratively refines the estimate by computing a solution several times on a
single level. After several iterations on a level, it moves to the next level using
the previous levels estimate. At the end of all the levels the final estimate
between the two frames is obtained.

In this section, the symbols sj and dj are reused to indicate the source and
destination points respectively in the local coordinate system, with j a specific
index in the collection of source or destination points. Similarly, sgj and dgj
are used to indicate the source and destination points in the global (or world)
coordinate system, and ndj is used for the unit normal tangent to the plane
surface at dj, the methods used to obtained these points are detailed further
in this section. The points and normals in the local coordinate system can be
transformed to the global coordinate system as shown in Equation 5.13 with
an associated transformation matrix T and the rotation matrix R extracted
from the transformation matrix T .

sgj = T sj ns,gj = Rnsj (5.13)

A vertex and a normal map is constructed for each image in the pyramid,
denoted by V s

l and N s
l for level l. Given a depth image, D, from the bilateral

filter, a vertex V (u) is generated for each pixel u using the techniques discussed
in Section 2.1.2. The vertices generated are stored in a vertex map V s

l .

V (u) =

D(u) (ux−ox)
fx

D(u) (uy−oy)
fy

D(u)

 (5.14)

From the vertex map V , a unit normal map is generated. Since the vertex
map is generated from an image, the surface normal can be generated using
the neighbours of the pixel point u as shown in Equation 5.15.

N(u) = (V (ux + 1, uy)− V (ux, uy))× (V (ux, uy + 1)− V (ux, uy)) (5.15)
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This approximates the surface normal vector by computing two direction vec-
tors, from the current vertex to two of its neighbours, and then computing
the cross product which results in a vector orthogonal to them. This vector is
then normalised to unit length and stored in the normal map.

The vertex and normal maps constructed from the bilateral filtered pyramid
are known as the source points. These vertex and normal maps are 2D arrays
that store the generated vertex positions and surface normals from the depth
image. These 2D arrays are the size of the resolution of each image at the
level of the pyramid. For each frame, the ICP algorithm is applied to the
input from the bilateral filter as well as from the ray caster. The output from
the ray caster is the same as the output of the bilateral filter: a pyramid
of vertex and normal maps. The ray caster’s vertex and normal maps are
called the destination points. These are denoted by V d,g

l and Nd,g
l , d is used

to indicate that the vertex and normal map contain the destination points.
Obtaining the ray caster pyramid will be discussed in a Section 5.6.

The ICP algorithm begins by creating a set of point associations from the
source to destination points. The output of the ICP algorithm is a 3D rigid
body transformation that approximately transforms the source points to the
destination points. The ICP algorithm accomplishes this by minimising an
error metric. This implementation uses, projective data association and the
point-to-plane error metric.

5.4.1 Projective Data Association

Projective data association works by projecting a point from one coordinate
system onto another. To transform points between coordinate systems the
appropriate transformation matrix is used. Initially, the transformation matrix
T0 represents the starting position and orientation of our camera at time 0.
The idea is to generate a 3D point for each pixel using the initial camera
transformation T0 and back-project them onto the image plane of the camera
at T1. This is illustrated in Figure 5.3. Once the 3D points have been back-
projected, two pixel coordinates for a 3D point are obtained. u refers to the
pixel location from which the destination point was generated, while the back-
projected pixel û is the source pixel. The pixel u is now associated with the
pixel û.

5.4.2 Error Function

The point-to-plane error metric used is that described in Low (2004). Fig-
ure 5.4 helps illustrate the point-to-plane error between two surfaces. This
minimises the sum of the squared distances between each transformed source
point and the plane tangent at its associated destination point. More specifi-
cally given source points sj ∈ V s and associated destination points dgj ∈ V d,g
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Figure 5.3: This illustrates how a point located at position u on the image
plane I0 with the associated camera transformation T0 is back projected onto
the image plane, I1, of a camera located at position T1. This produces the
associated position û on image plane I1.
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Figure 5.4: Point-to-plane error metric between two surfaces. The destination
point with the normal and the associated source point.

and their unit normals, nd,gj ∈ Nd,g, the objective is to find a 3D rigid body
transformation that minimises∑

∀j

((
Tsj − dgj

)
· nd,gj

)2
. (5.16)

5.4.3 Solving the Non-Linear System

This optimisation problem is solved using a least squares approach. The trans-
formation matrix is represented as a state vector x with six parameters:

x =


θ
φ
α
x
y
z

 (5.17)

The first three parameters correspond to the rotation around each of the axes (θ
for the x axis, φ for the y axis and α for the z axis). Due to the non-linearity of
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the trigonometric functions in the rotation matrix it has to be solved as a non-
linear least squares system. Since the parameters θ, φ and α are inputs to non-
linear trigonometric functions in the rotation matrix, the rotation matrix needs
to be linearised. The transformation matrix T is factorized into the product
of a transformation matrix describing the rotation, TR, and a transformation
matrix describing the translation TT as follows

TR =


cosα cosφ − sinα cos θ + cosα sinφ sin θ sinα sin θ + cosα sinφ cosα 0
sinα cosφ cosα cos θ + sinα sinφ sin θ − cosα sin θ + sinα sinφ cos θ 0
− sinφ cosφ sin θ cosφ cos θ 0

0 0 0 1



and TT =


1 0 0 x
0 1 0 y
0 0 1 z
0 0 0 1

 .
The suggestion in Rusinkiewicz and Levoy (2001) is used: motion between two
successive images is assumed to be relatively small and thus rotation angles
between the two frames are small. In this regime, the non-linear trigonometric
functions are approximated by using the approximations

sin γ = γ and cos γ = 1.

This results in the linearised rotation transformation

TR ≈


1 θφ− α θα + φ 0
α θφα + 1 φα− θ 0
−φ θ 1 0
0 0 0 1

 .
The approximation of TR uses the estimate of the product of small angles tends
to 0 and leads us to T̂R

TR ≈


1 −α φ 0
α 1 −θ 0
−φ θ 1 0
0 0 0 1

 = T̂R.

The linearised rotation transformation and translation transformation are com-
bined to create T̂ as follows

T̂ = TT T̂R.

The state vector in Equation 5.17 is used to build the transformation matrix
T̂ . Now that the rotation matrix has been linearised, Equation 5.16 is rewritten
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using T̂ in Equation 5.18. In this case the Cholesky decomposition is used to
compute the solution.

Topt = arg min
T

∑
∀j

((
T̂ sj − dgj

)
· nd,gj

)2
(5.18)

Further detail about how this system is solved is described below.

5.4.4 Iterative Closest Point Algorithm

The ICP algorithm requires the vertex and normal maps that were generated
from the pyramid construction, V s

l and N s
l , and also those from the ray caster

(discussed in Section 5.6), V d,g
l andNd,g

l . In this section Ti describes the motion
estimate of the camera at frame i, while Ti,k describes the motion estimate at
frame i after the kth iteration of solving the non-linear system. The index k
represents the iteration of the ICP algorithm when solving Equation 5.18.

At time frame i, the current estimate of the camera’s transformation ma-
trix, Ti, is referred to as the predicted transformation and the camera’s previ-
ously estimated transformation at time i−1, Ti−1, is referred to as the current
transformation. Initially, the predicted transformation matrix is set to the
current transformation matrix

Ti,0 = Ti−1. (5.19)

A single iteration of the ICP algorithm is detailed and starts at the highest
level of the vertex map pyramids (the vertex maps with the lowest resolution).
For each pixel location u in the ray caster vertex map, the corresponding global
destination vertex V d,g

l (u), is transformed to the camera space V d
l (u). This is

then transformed to homogeneous coordinates in the image space, producing
an associated pixel û, using T−1i−1 and the camera matrix K as described in
Section 2.3. The image coordinates u and û are associated points from the ray
caster vertex map to the bilateral filtered vertex map. Using the associated
vertices and normals, V s

l (û), N s
l (û), V d,g

l (u) and Nd,g
l (u), the techniques used

in the previous section are used to compute the new motion estimate and can
be seen in Algorithm 1. The algorithm is applied to each level of the pyramid
iteratively, estimating the predicted transformation matrix at each level. Once
the association is made between u and û, the vertex and normal from the
source points, V s

l (û) and N s
l (û), are converted to global space, V s,g

l (û) and
N s,g
l (û), seen in line 16 and 17 of Algorithm 1. Before u and û are truly

declared as associated points, the vertices, V s,g
l (û) and V d,g

l (u), and normals,

N s,g
l (û) and Nd,g

l (u), are tested to ensure they are within a minimum distance
from each other and the surface normals are in a similar direction.

The DistanceThreshold and NormalThreshold are the parameters used
to ensure that the vertices and normal vectors associated with u and û are
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similar enough to be used to estimate the next iteration of the predicted trans-
formation. If u and û are similar enough, they are added as an equation to the
linear system as illustrated in Algorithm 2. These equations are generated to
minimise Equation 5.18. In this implementation, the DistanceThreshold is
set to 0.025 meters and the NormalThreshold is set to 0.65. This is the result
of the dot product between the two unit length vectors. These parameters were
varied to test the limits of this system. It was empirically determined that the
DistanceThreshold could be set as high as 0.05 meters before the camera
tracking started to fail and the NormalThreshold could be set as low as 0.55
before the camera tracking became unreliable. The non-linear system is solved
using the Cholesky decomposition to compute the incremental state estima-
tion vector in Equation 5.17. Since Equation 5.18 aims to solve a non-linear
problem, the new state vector needs to be applied to the predicted transfor-
mation, refer to Section 2.3.2. The update of the predicted transformation is
done by building a transformation matrix Tδ from the newly estimated state
vector x. The update is computed as

Ti,k+1 = TδTi,k. (5.20)

In this implementation a coarse-to-fine approach using a pyramid of 3 levels
applying ten iterations to level 2, five iterations to level 1 and four iterations
to level 0 is used. With the new pose estimate calculated from the ICP com-
ponent, a truncated signed distance function is used to build a consistent 3D
model from the streaming depth images.

5.5 Truncated Signed Distance Function

To create a 3D model, the volumetric method described in Curless and Levoy
(1996a) is used. Since the ICP algorithm provides the camera pose for each
depth image, the position of the camera in global space is assumed to be
known. This allows us to integrate each depth image into a global 3D space.
This technique uses a 3D grid to represent the global 3D space that the depth
images will be integrated into. Each element of the 3D grid is called a voxel
and it represents a unit of a volume. This 3D grid, known as the truncated
signed distance function (TSDF) volume, is made of equally sized voxels per
dimension in this implementation. The underlying voxel size is limited to the
memory of the GPU that is used. The 3D grid is defined by three parameters
the grid size, gs, the voxel cell size, vcs, and the voxel centre, vc.

gs =

gsx
gsy
gsz

 vcs =

vcsx
vcsy
vcsz

 vc =

vcx
vcy
vcz

 (5.21)
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Data: K, V s, N s, V d,g, Nd,g, Ti−1, levelmax, iterations
Result: Ti

1 k = 0;
2 Ti,k = Ti−1;
3 for i← 0 to levelmax do
4 for it→ iterations do
5 A = empty matrix (N x 6);
6 b = empty vector (N);
7 for u← [0, 0] to umax do

8 DestinationGlobal ← V d,g
l (u) ;

9 DestinationLocal ← T−1i−1 DestinationGlobal;
10 if DestinationLocalz < 0 then
11 continue;
12 end
13 û ← K DestinationLocal;
14 û ← û/ûz;
15 SourceGlobal ← Ti,k V

s
l (û);

16 ng ← Ti,j[: 3, : 3]N s(û);
17 distance ← |SourceGlobal− DestinationGlobal|;
18 normal ← Nd,g(û) ·ng;
19 if distance < DistanceThreshold and
20 normal > NormalThreshold then
21 AddEquation(A, b,DestinationGlobal,SourceGlobal,

Nd,g
l (u));

22 end

23 end
24 x← SolveCholesky(A, b);
25 Tincremental ← StateVectorToTransformationMatrix(x);
26 Ti,k+1 = TincrementalTi,k;
27 k = k + 1;

28 end

29 end
30 return Ti,k

Algorithm 1: Kinect Fusion ICP algorithm for all levels of the vertex
and normal pyramid.
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1 Function AddEquation(A, b, vmg, vg, Nd,g
l (u)):

2 a = vg × Nd,g
l (u);

3 row = [ax, ay, az, N
d,g
l (u)x, N

d,g
l (u)y, N

d,g
l (u)z];

4 A.append(row);

5 b.append(Nd,g
l (u) · (vmg − vg))

6 return;

7 end

Algorithm 2: This is the pseudocode for the AddEquation function. It
augments the matrix A and vector b by appending an additional row onto
each.

Two variables are ultimately stored per voxel, a TSDF value and a weight.
The TSDF value is a truncated version of the estimated signed distance from
the voxel to the closest surface (we discuss truncation of this value in Section
5.5.1). Since the camera is moving, the average of the TSDF values for each
camera position is stored in the voxel, the distance is calculated along the line
of sight of the camera. The distance d reported by the raw depth image, R,
is truncated such that the value lies within an arbitrary small value ±µ of the
3D point.

Since the Kinect sensor is being used, there are certain assumptions made
when using the volumetric representation described here. The information
gathered from each pixel in the depth image occurs on the corresponding line
of sight of the sensor. Given an arbitrary distance, da, and the distance along
the line of sight of the camera corresponding to the pixel u, (K−1u)R(u), the
points corresponding to da < (K−1u)R(u)−µ are free space. Similarly, points
with da > (K−1u)R(u) + µ are behind the front of the surface model from
the perspective of the sensor and the sensor provides no information beyond
this point, as shown in Figure 5.5. The actual surface is considered to lie
somewhere between (K−1u)R(u)− µ and (K−1u)R(u) + µ. To represent this
uncertainty, the signed distance function is used.

5.5.1 Signed Distance Function

The signed distance function (SDF) is a function G(x) represented by multiple
samples. These samples are the weighted signed distance to a voxel position x
for each depth measurement. The signed distance, g(x), is defined as follows:
given a voxel v, it is converted to world space to produce a 3D point p with v
located along the line of sight of the camera and its associated pixel location
u. The surface location R(u) is converted to world space using the predicted
transformation, Ti+1, and the camera matrix K as

Ti+1K
−1uR(u).

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 5. KINECT FUSION 59

Sensor

da > (K−1u)R(u) + µda < (K−1u)R(u)− µ

Figure 5.5: This figure illustrates the ground truth (black line) and the sensors
line of sight from the depth camera. The red line illustrates the free space in
front of the surface while the blue line illustrates the region where no depth in-
formation is available. The gap between the two lines indicate the uncertainty
margin of size 2µ.

The signed distance for the frame is then computed as follows

g(x) = |p− Ti+1K
−1uR(u)|.

The SDF is constructed by combining a series of signed distances and weights
g1(x), g2(x), . . . gn(x) and w1(x), w2(x), . . . wn(x) from a series of range images.
These functions are joined using a weighted sum given in Equations 5.22 and
5.23 to produce the SDF function value G(x) and the weight function W (x).

W (x) =
n∑
i=1

wi(x) (5.22)

G(x) =

∑n
i=1wi(x)gi(x)

W (x)
(5.23)

The results of G(x) and W (x) are stored in the TSDF volume at each voxel.
The functions G(x) and W (x) are represented in the TSDF volume with 16
bits per function value, i.e. they are limited in size. The function G(x) is
truncated resulting in a value between gmin and gmax as shown in Figure 5.6.
The function G(x) is then referred to as the TSDF. Figure 5.7 shows the
result of combining two range image surfaces in the TSDF volume. The true
position of the surface is located where a zero-crossing is found. This zero-
crossing is found by examining the values stored in the voxels. After integrating
multiple range surfaces into the volume, the voxels where the values change
from positive to negative along the line of sight of the camera are called zero-
crossings. A zero-crossing is the location of a estimated surface.

The weighting functions allow us to give more influence to SDF values that
are more certain rather than the newer SDF values that are being integrated
into the volume. This leads to a more consistent view of the surface. The
weighting function is typically dependent on the sensor used. In many cases
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1.0 1.0 0.78 0.38 −0.02 −0.42 −0.82 −1.0 −1.0

1.0 0.98 0.58 0.18 −0.22 −0.62 −1.0 −1.0 −1.0

1.0 0.81 0.41 0.01 −0.39 −0.79 −1.0 −1.0 −1.0

1.0 0.7 0.3 −0.1 −0.5 −0.9 −1.0 −1.0 −1.0

1.0 0.7 0.3 −0.1 −0.5 −0.92 −1.0 −1.0 −1.0

1.0 1.0 0.6 0.2 −0.2 −0.62 −1.0 −1.0 −1.0

1.0 1.0 1.0 0.6 0.2 −0.22 −0.62 −1.0 −1.0

Figure 5.6: Truncating the depth values around the surface. The truncation
values used here are gmin = −1 and gmax = 1. The values of 1 should be larger
for the cells that are further away from the red surface and the values of −1
should be smaller in the cells that are further from the red surface. However,
they were truncated to these values.

there is a reduction in the certainty of the measurement as the distance to the
surface increases.

Since this system is designed to be able to be run online and incrementally
take input from streaming RGB-D data, Equations 5.23 and 5.22 are written
using incremental updates in Equation 5.24 and 5.25.

Gi+1(x) =
Wi(x)Gi(x) + wi+1(x)gi+1(x)

Wi(x) + wi+1(x)
(5.24)

Wi+1(x) = Wi(x) + wi+1(x) (5.25)

However, for a simple average, the weighting function can be set to a constant,
wi+1(x) = 1. This allows the system to treat each input measurement equally,
making newer measurements weigh the same as older measurements. In this
implementation the simple average is used.

The updated region of the TSDF volume is limited to the region around
the surface estimate. This is done to prevent interference between the visible
surface and any other surfaces that may be present behind the surface. This
is dictated by the values gmin and gmax. Figure 5.8 demonstrates a situation
where there may be surface interference. Assume the camera integrates two
range images from two different locations from two different sides of a surface.
Updating all the voxels in the TSDF volume will override some surface mea-
surements. In the system, only voxels in the TSDF volume that are within 0.1
meters of the surface measurement will be updated.
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sensor

First range surface

zero-crossing

(a)

First range
surface

Second
range surface

sensor zero-crossing

(b)

Figure 5.7: Subfigure (a) shows the zero-crossing of a single integrated range
surface into the TSDF volume along the line of sight of the sensor shown in
red. Subfigure (b) shows the new estimated zero-crossing when a second range
surface is integrated into the TSDF volume. In Subfigure (b) the distance
between the range surfaces is exaggerated for visual clarity.

5.5.2 Implementation and Moving Volume

The TSDF volume is initialised using the grid size (gs), voxel centre (vc)
and voxel cell size (vcs). An additional parameter d, the distance the volume
represents along each axis is added. The volume size is set to 512× 512× 512
voxels. This is due to the memory currently available on common graphics
cards. Using a volume of 512 × 512 × 512 32-bit values would require about
536 megabytes of memory, while extending this volume to 1024× 1024× 1024
voxels requires about 4.3 gigabytes.1 A second volume is also used that is
responsible for storing the colour data for each voxel from the RGB images.
The colour volume data uses 32-bit values per voxel: 8-bits are used for each
of the red, green and blue channels. Additionally, there are 8-bits remaining
for an alpha value which is not used in this implementation. The update of
the colour value per voxel is performed by averaging the each colour channel
over all the input RGB images.

Given a distance that the volume needs to represent, d, the volume is
subdivided such that each voxel represents a uniform volume by setting

vcs =
d

gs
.

Assuming the world origin lies at voxel (0, 0, 0), world space coordinates for

1At the time of writing, most common graphics cards are limited to 4 gigabytes.
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(a) (b)

(c) (d)

Figure 5.8: This demonstration of the differences between limiting the TSDF
update to a region with a threshold from the surface. Subfigure (a) shows two
surfaces in the real world. Subfigure (b) shows the TSDF values when the first
image is integrated into the TSDF volume without limiting the TSDF update
area. Subfigure (c) shows the TSDF values when the second range image is
integrated from the rear. Subfigure (d) shows the TSDF values when they are
limited to a region around the surface.

voxels can be computed by performing element-wise multiplication between the
index coordinates, xindex, and the voxel cell size, vcs, as shown in Equation
5.27.

xindex =

xy
z

 (5.26)

xworld = xindexvcs (5.27)

To access a TSDF or weight value from the volume, x, y and z coordinates
are required. However, the 3D grid is implemented using a single-dimensional
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array representation. The 3D coordinates (x, y, z) are mapped to 1D space
using

i = x+ y(gsx) + z(gsxgsy). (5.28)

At this point, the volume can only be accessed for all locations (between
0 and 511) for each dimension. With the implementation as described above,
the system will be limited by the distance d.

The above follows the original paper by Newcombe et al. (2011a): the
TSDF is limited in the volume that can be reconstructed. To address this
limitation, the technique described in Whelan and Kaess (2012) that allows
the volume to ‘move’ is implemented. This allows the system to fuse depth
images without being limited to a fixed location. However, this only allows
fusing new depth information inside the current volume location. Instead of
moving data with in the TSDF volume, a wraparound buffer is implemented
which allows the volume to move efficiently in any direction. This is done
using the parameter vc, the voxel centre, as demonstrated in Figure 5.9.

To allow the system to use the wraparound buffer, a simple modification
to the indexing in Equation 5.28 allows the system to virtually translate the
voxels without performing any copy or move operations on the values stored
in the voxels. This is done by modifying the indices by adding the voxel centre
to each index and taking the modulus with respect to the grid size, gs.

The process virtually translates the TSDF volume, once the camera has
been moved further than a specified threshold from voxel centre. In this sys-
tem, the number of voxels, b, the camera needs to move in any direction before
the TSDF volume must be shifted is specified. Once the system detects that
the camera has passed this threshold, the system extracts and stores the zero-
crossings (discussed in Section 5.6) from the region that will no longer be
visible in the shifted TSDF volume. The TSDF values and weights in those
voxels are then reset.

The camera’s position is represented by the transformation matrix Ti+1

obtained from the ICP algorithm. This is used to determine how far the
camera has moved from the voxel centre, vc. Once the camera has moved b
voxels along any axis, the voxel centre, vc, is updated. The translation vector
ti+1 obtained from the transformation matrix Ti+1 is used to compute the voxel
coordinates. More specifically, the number of voxels moved are added to vc as
per Equation 5.29. Figure 5.10 shows the update of the threshold boundary
and the world space boundary in 2D.

vc =

⌊
ti+1

vcs

⌋
(5.29)

The calculation to determine the new voxel centre is performed by con-
verting the world coordinates of the new camera location to voxel coordinates.
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Figure 5.9: Illustration of the TSDF volume being virtually translated two
voxels to the right. The blue line indicates the boundary for the world space
in each direction. Subfigure (a) shows the initial setup. Subfigure (b) shows
the adjusted boundary that maps to space that is outside the volume before
the remapping. Subfigure (c) shows the adjusted boundary remapped to voxels
that are too far from the voxel centre.
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Figure 5.10: Subfigure (a) illustrates the initial setup of the volume with the
red box representing the distance b from vc and the blue box representing the
world space boundary. Subfigure (b) illustrates the camera moving from posi-
tion ti to position ti+1. ti+1 is still within the threshold boundary b. Subfigure
(c) illustrates the camera moving to the next position ti+2. This position is out-
side the boundary of b. The dashed red box represents the adjusted boundary
after moving to position ti+2. Subfigure (d) illustrates the adjusted threshold
boundary and the adjusted world space boundary after the voxel centre has
been updated to vc′.
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The TSDF volume now contains multiple integrated range images that repre-
sent the 3D surface. The next step is to extract the zero-crossings from the
TSDF volume to be placed into the ICP algorithm as the destination points.
The next section discusses how this is performed.

5.6 Raycasting

Section 5.4 discussed the use of destination points in the world space that are
obtained from the ray caster; this section describes how they are obtained. In
typical motion estimation using ranged images, a frame-to-frame technique is
applied. These techniques assume that the camera is at a position that has
the associated view. This means that the view state of the world is assumed
to be correct in the previous frame. This assumption, when incorrect leads to
motion drift. In the proposed system, a frame-to-model motion estimation is
applied whereby the current model stored in the volume is compared to the
incoming data from the RGB-D camera. The relative motion is computed
using the surface points of the model stored in the TSDF volume and the
source points from the incoming range surface. Since the previous frame is
not assumed, if the motion estimation from the previous ICP computation is
incorrect, the motion estimate can be corrected further when a new image is
obtained from the range sensor.

Once a range surface has been integrated into the TSDF volume, the surface
in the camera’s frustum needs to be extracted. This is done by performing
a ray casting operation. Just as in Section 5.4, the extracted surface points
and the unit normals are stored as vertex maps and normal maps in the form
of a pyramid. These are then used in the ICP algorithm as the destination
vertex and normal maps for estimating the next camera transformation. To
extract the zero-crossings, the estimated transformation matrix of the camera
Ti+1 and the camera parameters K are used to create a virtual range image.
From the estimated position of the camera, a ray is cast from the camera’s
position to the image plane for each pixel. These rays are then increased in
length until they encounter a zero-crossing in the TSDF volume. The world
positions where these zero-crossings occur are stored in the vertex maps. As
mentioned in Section 5.5, such a zero-crossing corresponds to the surface of
the model. The vertex maps and normal maps are used for the frame-to-model
ICP alignment. The vertex maps can also be used for visualising the current
model’s state and for point cloud extraction.

Since the ICP algorithm uses a coarse-to-fine approach with a multilevelled
pyramid, the ray caster has to create its own multilevelled pyramid from the
TSDF volume. This is achieved by scaling the camera parameters K, such
that it produces images that have the same parameters as each of the images
from the pyramid generated from the incoming RGB-D data. For each level
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of the pyramid, l, the new camera matrix is computed as K−l.
The transformation matrix Ti+1, obtained from the ICP algorithm is used

as the position and orientation for the virtual camera, with ti+1 the translation
vector and ri+1 the rotation matrix of the virtual camera. A vertex map is
generated using the same camera parameters and image dimensions as the
real RGB-D camera in our case, the Kinect sensor. A ray is cast for each
pixel coordinate of the virtual range image from the camera’s position to the
image plane. This is done by using the camera matrix K−l. This ray is then
normalised to produce a unit vector. More specifically, Equation 5.30 is used
to produce a unit vector.

RayNext = Tt+1K
−lu RayDir =

RayNext− ti+1

|RayNext− ti+1|
(5.30)

The ray caster is configured by choosing an increment size known as the
StepSize. Initially, RayDir is shortened to 1 mm to determine the first voxel
the ray intersects. Thereafter, a scaling factor j for RayDir is maintained.
After each iteration, j is updated and RayDir is scaled to extract the TSDF
value of the next voxel. The ray’s length is incrementally increased until a
zero-crossing between the current voxel and the next voxel is found. This ap-
proach has the possibility of stepping over voxels depending on the StepSize.
However, the main reason this approach is used, is due to this algorithm be-
ing implemented on the Nvidia’s CUDA framework that operates using single
instruction multiple data. Single instruction multiple data (SIMD), allows for
fast parallel execution of code that operates using the same instructions at the
exact same time with different data. In this case, for multiple pixels at the
same time. Figure 5.11 (a) is used as an example in this section. Figure 5.11
(b) shows rays being cast from the virtual camera and generating 2D points
at the positions where the TSDF values become negative. A zero-crossing is
found on a ray when the first voxel along the ray with a negative TSDF value
is found. The corresponding 3D world position is computed using the location
of the voxel where the zero-crossing occurs. This is computed by converting
the voxel location to world coordinates and is then stored in the vertex map.
The normal map is computed as in Equation 5.15. Algorithm 3 shows the ray
casting operation performed for each pixel, u, in the depth and colour map.
The vertex maps extracted from the ray casting operation store the 3D world
coordinates of the surface points of the model.

In addition to the vertex maps and normal maps being extracted, a colour
map is also extracted, for the highest resolution image only. This is done by
extracting the value stored in the colour volume, as mentioned in Section 5.5.2,
at the same position where the zero-crossing is detected. From the vertex map,
a virtual range image can be created as visualisation by applying the associated
inverse transformation matrix and storing the resulting z value for each pixel.
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Figure 5.11: Subfigure (a) illustrates the sign of the truncated signed distance
function volume and the virtual camera location represented by a point. Sub-
figure (b) illustrates rays being cast from the virtual camera into the TSDF
volume with the points of zero-crossings shown as red points.
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This will create a virtual range image, along with the colour map extracted
during this process, to produce a virtual RGB-D image.

Data: Ti+1, u, K, jmax
1 RayNext ← Tt+1K

−1u;

2 RayDir ← RayNext−ti+1

|RayNext−ti+1|
;

3 while j < jmax do
4 position ← ti+1 + RayDir ∗ j;
5 tsdf ← GetTsdfValue(position);
6 if tsdf < 0 then
7 return position;
8 end
9 j← j + StepSize;

10 end

Algorithm 3: The ray casting operation performed for each pixel in the
virtual pyramid images constructed.

5.7 Point Cloud Extraction and Hole Filling

The system as discussed so far creates a 3D virtual model by integrating new
range images into the TSDF volume and using the ray caster to assist in com-
puting the relative motion between the model and the new RGB-D data. The
task of extracting the surface of the 3D model stored in the TSDF volume as
a point cloud is now considered. A simple approach to this is using the vertex
map and the associated normal maps that result from the ray casting opera-
tion. In our implementation however, the ray caster’s vertex map is not used
to generate the final surface that is used for the model. This implementation
rather aims to extract a point cloud that has a uniform distance between each
point that represents the surface and extract implicit information about the
model’s structure. The uniform point cloud assists the mesh reconstruction
algorithm in generating the final model which will be discussed in Chapter 6.
The TSDF volume allows us to perform some basic hole-filling for the surface.
This gives the mesh generation algorithm more information about the model’s
surface, which would in turn enables a more accurate representation of the
model to be obtained. Figure 5.12 illustrates the hole-filling procedure.

In Figure 5.12 (b) the ray caster is used to extract the surface points for
use in the ICP algorithm from the current point of view of the camera. Since
the TSDF volume uses negative values to indicate the interior of the model,
more information about the surface points are implicitly present. Every zero-
crossing provides a surface measurement in the TSDF volume. In certain
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Figure 5.12: The dashed lines show where a zero-crossing is being checked, the
red circles indicate the 3D point detected by the ray. Subfigure (a) shows the
signs of the TSDF volume entries. Subfigure (b) shows the points extracted
from the TSDF volume using the regular ray casting techniques. Subfigure (c)
shows rays demonstrating the hole-filling techniques that extracts the hidden
structure of the model by checking for zero-crossings along the axes. Subfigure
(d) shows the points generated by checking each axis.

areas that have not been directly measured there is implicitly a surface. In
Figure 5.12 (c) it is shown that there are multiple areas that contain zero-
crossings that could be used as surface points if extracted. Instead of using
the original ray caster for the point cloud extraction, a second ray casting
algorithm is used. This algorithm simply casts a ray along each axis. Once the
ray detects a zero-crossing, a point is generated. The ray continues to detect
these crossings until the ray passes through the volume. This ray casting
technique is only executed in the area that needs to be reset, as discussed in
Section 5.5.2.

Fusing the generated points would produce a dense point cloud, with the
density determined by the voxel cell size. A voxel grid filter removes points
that are too close to each other, and is used to reduce the size of the generated
point cloud for further processing: The resulting point cloud is then output for
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processing by the mesh generation algorithm (discussed in the next chapter).

5.8 Summary

This chapter described the approach to integrate multiple range images along
with the associated RGB images to generate a model represented in a 3D
volume. The model is then extracted from the 3D volume to generate a 3D
point cloud. The algorithm has the ability to extract surface points from
the implicit information provided by the TSDF volume using the hole-filling
techniques mentioned. The point cloud extracted from this system is passed
into the next component, mesh generation, which aims to create edges and
faces for the point cloud. This process is described in the subsequent chapter.
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Chapter 6

Mesh Reconstruction

Once the points have been extracted from the TSDF volume and fused into a
single point cloud, they are provided to the mesh reconstruction algorithm.
The ball-pivoting algorithm (BPA) by Bernardini, Mittleman, Rushmeier,
Silva and Taubin (1999) is used to reconstruct the mesh.

Given a point cloud, the purpose of mesh reconstruction is to create edges
between points and faces between edges to produce a 3D surface model.

6.1 Overview

The BPA is a conceptually simple approach for surface reconstruction of a
point cloud. This technique is based on the idea of rolling a ball along a
surface. This algorithm is explained in R3, but illustrations of the analogous
process are given in R2 for simplicity. A basic example of the operation of
the BPA is illustrated in Figure 6.1. The algorithm requires a ball of given
radius p, and should be large enough that the ball cannot pass through the
point cloud anywhere without making contact with three points.

The ball attempts to pass through the point cloud which results in it making
contact with three points: Figure 6.1 (a) illustrates this with two points in R2.
Edges are created between the initial three points the ball makes contact with.
Once the ball has made the initial contact, the pivoting operation can begin.
The pivoting operation involves selecting one edge in contact with the ball and
pivots the ball on this edge. The ball is pivoted until it comes into contact
with any other point as shown in Figure 6.1 (b). Once this occurs, two new
edges are created, between the two points on the pivot edge and the new point.
This process continues until no new edges are created. In this implementation
the creation of edges are performed in a breadth-first manner. After this, the
ball is placed in the point cloud such that it does not make contact with any
point it has already touched. Then, the pivoting operation is repeated from
the three new points. An example of this in R3 is illustrated in Figure 6.2.

72

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 6. MESH RECONSTRUCTION 73

(a) (b) (c) (d)

Figure 6.1: Subfigure (a) shows the initial contact the ball has with the point
cloud. This creates edges between the points it makes contact with. The
ball then pivots about a point until it makes contact with any other point.
Subfigure (b) shows the ball after the pivoting operation. Subfigure (c) shows
the ball pivoting until it again makes contact with a point it has already hit.
The ball is too small to make contact with the next point. The ball starts
its pivoting operation from the original two points of contact and moves in
the opposite direction to complete the rest of the algorithm. Subfigure (d)
illustrates the completed mesh.

Point clouds generally do not contain equidistant points or are not uniform,
and therefore the ball may not be large enough as shown in Figure 6.1 (c).
This can result in gaps, where edges were unable to be rebuilt using the ball.
Instead, a larger ball could be used as shown in Figure 6.3. However, picking
a larger ball instead produces an overly smoothed version of the surface and
could use a subset of the point cloud. This shows that using a large ball can
result in a loss of detail. To avoid these issues in Section 6.2.4 we discuss a
method of varying the ball size.

6.2 Pivoting Algorithm

Given a 3D point cloud of a manifold mesh, a suitable surface can be con-
structed using a p-ball. Assuming the point cloud is dense enough that the
p-ball cannot pass through it without touching at least three points, the re-
constructed mesh is an approximation of the true surface.

The algorithm follows the advancing-front paradigm to incrementally build
a triangulated mesh. The BPA requires a list of points, σ, a list of each point’s
associated surface normal vector, σn, the radius p of the ball that is used during
the reconstruction, and in our implementation the RGB value associated with
each point.

The advancing-front paradigm progressively adds mesh elements starting
from the boundaries of the mesh area and works its way outwards to the
unmeshed area. This causes the boundary to advance throughout the point

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 6. MESH RECONSTRUCTION 74

(a) (b)

(c) (d)

Figure 6.2: This figure illustrates the pivoting operation in R3. Subfigure (a)
shows the the initial ball touching three points in the point cloud with the
edges between each of these points. Subfigure (b) illustrates the highlighted
edge that the pivoting operation will be performed on. Subfigure (c) illustrates
the sphere touching the two original points from the initial three and the new
third point that resulted from the pivoting operation (highlighted in orange).
Subfigure (d) illustrates the newly created edges resulting from the pivoting
operation.
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(a) (b) (c) (d)

Figure 6.3: Using a large ball. Subfigure (a) - (d) show that the surface is
overly smoothed. This problem is addressed in Section 6.2.4

cloud, incrementally building up the mesh. Pseudocode for the BPA is given
in Algorithm 4, and is referred to throughout the rest of the chapter. A
collection of fronts are represented by F : each element Fi represents a single
front. Each front consists of a list of edges. All the edges in a front form a
loop representing the boundary of the region that has been reconstructed, this
only applies to the 3D case. In this chapter the terms loop and front are used
interchangeably. Initially, the first front consists of three edges obtained from
the FindSeedTriangle operation. Each edge ei,j on the front is stored in a
data structure called a FrontEdge. A FrontEdge contains the two end-points
of the edge, σi and σj, the opposite vertex σk that completes the triangle
formed by the ball, the centre of the ball that touches all three vertices, and
the edge state. The edge status is either active or boundary.1

Due to the possibility of having discontinuous regions in the point cloud,
a collection of fronts are used instead of a single front. This is due to the ball
pivoting along a FrontEdge. When the pivoting operation touches a new or
already used point the front is updated using the Join and Glue operations dis-
cussed in Section 6.2.3 to keep the front in a consistent state. Figure 6.4 shows
a collection of fronts, F1, F2 and F3. The original implementation described by
Bernardini, Mittleman, Rushmeier, Silva and Taubin (1999) obtained points
in a region of the point cloud by using a 3D grid to subdivide the volume of
the point cloud into cubic subvolumes of side length (2p). Points would then
be placed in the corresponding subvolume. However, if the subvolume is small
the number of subvolumes created to represent the volume could be too large.
This approach allows for a constant lookup time to access the relevant sub-
volume and then a linear search can be performed through the points in that
subvolume. Initial testing of this method worked well; however, this approach

1The original implementation also uses a frozen state. The frozen state is used to allow
streaming of the point cloud data. However, this was not implemented in this system due
to time constraints.

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 6. MESH RECONSTRUCTION 76

F1

F2 F3

Figure 6.4: Fronts F1 and F2 on the point cloud and a new front F3 obtained
from the FindSeedTriangle operation. Note that the ball is unable to pivot
between F1 and F2.

uses a large amount of memory. When the point cloud covers a large area
with a high point density too many subvolumes are created and the system
is unable to allocate the necessary memory. Thus, in the proposed system a
kd-tree is constructed to store the points from the point cloud. This provides
fast spatial queries with a low construction time. In the following subsections,
the details of obtaining a valid seed triangle are discussed, followed by the
pivoting operation, and the required Join and Glue operations for updating
the fronts.

6.2.1 Finding a Valid Seed Triangle

A front starts with three initial FrontEdges in it. These FrontEdges are needed
to perform the pivoting operation to construct the mesh. They are obtained by
finding a seed triangle (line 16 of Algorithm 4). Finding a valid seed triangle
creates a new front for the algorithm to operate on. The seed triangle is found
by

• Picking a point σa that has not yet been used in the reconstruction
process.

• Obtain a list of all the points within a 2p radius of σa.

• Build a triangle by considering σa with all the point pairs σb and σc of
points from the list.

• For each triangle: (a) Verify the normals of each of the points are facing a
similar direction, this is referred to as the consistent normals condition,
Figure 6.5 illustrates the pivoting operation with inconsistent normals.
(b) Construct a p-ball where the centre lies in a similar direction of the
point normals and touches all three vertices, σa, σb and σc, and ensure
that it does not contain any other points from the point cloud within the
ball, as shown in Figure 6.6.
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input: σ, σn, p
1 while TRUE do
2 while ei,j = GetActiveEdge() do
3 σk = BallPivot(ei,j);
4 if σk!= null AND (NotUsed(σk) OR OnFront(σk)) then
5 Join(ei,j, σk);
6 if ek,i ∈ F and ei,k ∈ F then
7 Glue(ei,k, ek,i, F);
8 end
9 if ej,k ∈ F and ek,j ∈ F then

10 Glue(ek,j, ej,k, F);
11 end

12 else
13 MarkAsBoundary(ei,j);
14 end

15 end
16 if ei,j, ej,k, ek,i = FindSeedTriangle() then
17 CreateNewFront(ei,j, ej,k, ek,i);
18 else
19 break;
20 end

21 end

Algorithm 4: A overview of the ball-pivoting algorithm. The inputs are
a list of points, σ, a list of normal vectors, σn and the ball size p. The
BallPivot function returns the new vertex the ball makes contact with.
The explanations of the other methods are in the ensuing subsections.

The first reported triangle to have these properties is considered a valid seed
triangle. For each FrontEdge created the opposite vertex is the vertex on the
ball that is not used in the current edge. For example if the valid seed is found
using the points σa, σb and σc, the FrontEdge containing σa and σb uses σc as
the opposite vertex. The created FrontEdges are marked as active edges.

In practice, the point cloud has noisy point data, and additionally there
may be numerical stability issues depending on the point cloud density and
scaling factors. For this reason the search for nearby points uses a radius of
2.2p instead of 2p. Similarly, when determining whether any additional points
lie within the generated ball, the distance between the centre of the sphere and
the test points are scaled by a factor of 1.05. This gives the effect of ignoring
points that are close to the surface of the sphere. The other points are ignored
because the system is designed to only handle three points for the FrontEdge.
This forces any additional contact points to be ignored.
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σa σb

σc

σd σe

(a)

σa σb

σc

σd σe

(b)

σa σb

σc

σd σe

(c)

Figure 6.5: This illustrates the 3D points projected on a 2D side view and
the use of the normals to ensure the created surface is consistent. Subfigure
(a) illustrates the current location of the sphere, a series of points and the
normal direction of each point. An edge is created between the points σa
and σb that the ball is making contact with. Subfigure (b) illustrates a single
pivoting operation, with the sphere too small to make contact with the point
σc. Subfigure (c) illustrates the result of pivoting to the point with inconsistent
normals, the normals are pointing in opposite directions. Since the normals
are inconsistent, the generated surface is rejected.

α

σiσj

σk

Figure 6.6: The 3D points projected on a 2D side view, σi and σj are two
points that lie on the Z plane, σi with a positive Z value and σj a negative Z
value. This illustrates the direction that the centre of the ball must be relative
to the point it is in contact with. For a ball to be valid the centre point must
be located in the direction of the normals. If it is not, it is not a valid centre
location for a ball. This shows a valid sphere in the outward half-space with
its centre located at α.
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6.2.2 Pivoting Operation

The pivoting operation starts by selecting an active edge from any front illus-
trated in line 2 of Algorithm 4. Once an active edge is obtained, the ball is
pivoted on the edge and reports the point σk as the new point that the ball
has touched (line 3). The selected FrontEdge contains the data for a triangle
formed from a previous pivoting operation or an initial seed triangle obtained
as in Section 6.2.1. The FrontEdge ei,j that represents the edge between σi
and σj contains information about the edge endpoints σi and σj, as well as
σq the opposite vertex that the ball has made contact with, and cijq the ball
centre that touches all three vertices. Denote the centre point of the edge ei,j
by m. If the ball pivots on the edge ei,j, the centre point of the pivoting ball
always has to be at exactly |cijq−m| from m. All possible centre points for the
new p-ball forms a circle. This trajectory of possible locations is shown as a
dashed circle, γ, in Figure 6.7. The ball-pivoting operation pivots the ball on
the edge ei,j and returns the first point in the point cloud that it makes contact
with. To simulate the pivoting operation, all points within the radius of 2.2p
of point m are considered as the new contact point for the pivoting operation.
The ball is then fit between the original endpoints σi, σj of ei,j and each point
σo from the points considered as the new contact point. Before σo is accepted
as a valid contact point with the new ball position centre cijo, the algorithm
needs to ensure that no other points lie inside the new ball centred at cijo, and
the normals of the point’s σi, σj and σo are facing a similar direction. Once the
point is considered valid, the algorithm needs to ensure that the point has the
minimum angle between the lines m− cijq and m− cijo, this ensures it is the
first point of contact. This is illustrated in Figure 6.7. Once the centre with
the smallest angle has been found from all the points considered as the new
contact point, this new point σk is reported back to the rest of the algorithm.

6.2.3 Join and Glue Operation

Once the pivoting operation is complete a candidate triangle (σi, σj, σk) is
created. If the candidate triangle is added to the mesh, the front needs to
be updated to expand the boundary. The update is performed by the Join

and Glue operations. The candidate triangle can still be rejected by the Join

operation, if the addition of this triangle forms a non-manifold mesh. The
front first needs to be adjusted to add the newly created edges to the front,
allowing for an expansion of the front. This is accomplished by the Join

operation. The Glue operation is used after the Join operation to remove
duplicate FrontEdge’s.
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Figure 6.7: This illustrates the pivoting operation viewed from the side view as
shown in Figure 6.6. In this illustration σo, σk and σq are coplanar. Subfigure
(a) shows the points σi, σj, σq, the ball centre cijq and the possible locations
of a new centre along the trajectory γ. Subfigure (b) illustrates a new ball at
centre point cijo. Subfigure (c) illustrates a new ball at centre point cijk, with
the angle between the vector m → cijq and m → cijk smaller than the angle
between m→ cijq and m→ cijo. The ball-pivoting operation thus returns the
point σk as the first point it makes contact with.

Join Operation

The Join operation considers three situations that could affect the topology of
the front. The simplest situation is that the new point σk has not been used in
the reconstruction yet. The front is simply updated to include the new point
and adds this triangle to the mesh. The front is updated by removing ej,i and
adding ej,k and ek,i as shown in Figure 6.8.

The second situation is if σk has already been marked as used. Here there
are two possible cases. The first, shown in Figure 6.9, is that the candidate
point is part of the internal mesh, and not on any front. If this is the case,
generating a triangle using the endpoints of the pivoting edge and the internal
point results in generating a non-manifold mesh, (see Section 2.4.4). In this
situation, the edge σj,i is simply marked as a boundary edge in the Join

operation. The third situation is that σk is a point that has been marked
as used and is located on any of the fronts as shown in Figure 6.10. In this
situation the candidate triangle is checked to ensure a non-manifold mesh is
not created if it is added to the mesh. This is checked by the number of
edges between two points that the candidate triangle is going to add. If there
are currently two edges on the front between points σi and σj, the triangle is
rejected. 2 Otherwise, the Join operation is performed as stated in the first

2Any edge can only have a maximum of two faces if the mesh is manifold (Section 2.4.4).
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Figure 6.8: In this figure the green lines indicate the new edges created after
pivoting around the dashed edge (in blue), with the pivoting edge removed
from the front after the pivoting operation. Subfigure (a) shows the initial
front in red. Subfigure (b) shows the removal of edge ej,i from the front in
blue and the new edges added to the front in green, ej,k and ek,i. Subfigure (c)
shows the front after the Join operation.

σo

σj

σiσm
σk

Figure 6.9: This figure illustrates an example for the internal point. If the
pivoting operation occurred on edge ei,j and it reported the new point of
contact as σk (located in the meshed area) this would result in the candidate
triangle being rejected as it already exists in the mesh.

situation using the used point σk and the endpoints of edge ei,j, however this
can create coincident edges as shown in Figure 6.11. The Glue operation is
used to remove such coincident edges introduced by the Join operation.

Glue Operation

The Join operation can lead to four possible situations in which coincident
edges are arranged, shown in Figure 6.12. The possible situations are: a
consecutive loop, a closed loop, a split loop and a merge loop.

The consecutive loop occurs when two coincident edges are consecutive in
the loop with the presence of other edges in the front. This is illustrated in
Figure 6.13. The Glue operation simply removes both consecutive edges from
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Figure 6.10: Subfigure (a) shows two fronts with the pivoting operation on ei,j
that makes contact with the point σk. Subfigure (b) shows the updated front.
Here the green lines indicate the new edges created after pivoting around ei,j
(in blue), with the pivoting edge removed from the front after the pivoting
operation.
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Figure 6.11: Subfigure (a) and (b) shows the third situation in the Join op-
eration when pivoting on edge ei,j and reporting a used contact point σk that
results in creating a coincident edge ek,j. In this figure the green lines indicate
the new edges created after pivoting around ei,j (in blue), with the pivoting
edge removed from the front after the pivoting operation.

the front.
The closed loop is the simplest case of the Glue operation, this occurs

when two coincident edges form a loop with no other edges in the front. This
typically forms when two fronts exist and one of them starts to close in on
itself as shown in Figure 6.14 and 6.15. The Glue operation simply removes
both edges and the front is discarded.

A split loop occurs when the edges are not consecutive and belong to the
same front. This occurs when a series of joins are performed that split the
front in two, as illustrated in Figure 6.16. In this case, the front is split into
two fronts by removing the two coincident edges.

The final situation, a merge loop, occurs when two coincident edges belong
to two different fronts (and are thus not consecutive). This is rectified by
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(a) Consecutive Loop
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(b) Closed Loop
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(c) Split Loop
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ei,k ek,i

(d) Merge Loop

Figure 6.12: This illustrates the four situations that can occur in the Glue

operation. The dashed lines indicate the edges that cause the situation to
occur and are modified during the Glue operation and the solid lines indicate
a sequence of edges that are not modified during the Glue operation.
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Figure 6.13: In this figure the green lines indicates new edges created after
pivoting around the dashed edge (in blue), with the pivoting edge removed
from the front after the pivoting operation. Subfigure (a) shows the situation
where the consecutive loop occurs after a Join operation. Subfigure (b) shows
the result after the Glue operation.
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Figure 6.14: In this sequence of figures the green lines indicate new edges cre-
ated after pivoting around dashed edges (in blue), with pivoting edges removed
from the front after the pivoting operation. Subfigure (a) illustrates the initial
setup with two fronts F1 (shown in red) and F2 (shown in teal). The area
between the two fronts is the area that has been meshed, and the internal
area of the front F2 is an unmeshed region. All points in this figure have been
marked as used. Subfigure (b) shows the BPA performed on the front F2 and
a consecutive loop deletion to obtain Subfigure (c). Subfigure (c) shows the
situation after pivoting over the edge. Subfigure (d) shows the front F2 with
two consecutive loops following each other. Subfigure (e) shows the removal
of a consecutive loop, resulting in a single closed loop. Subfigure (f) shows
the result after removing the closed loop. For clarity, the meshing process is
demonstrated in a 3D viewer in Figure 6.15.

(a) (b) (c)

Figure 6.15: Subfigure (a) illustrates the initial setup as in Figure 6.14. Sub-
figure (b) illustrates the first pivot operation, reducing the size of the front F2.
Subfigure (c) illustrates the second pivoting operation removing the front F2

entirely.
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Figure 6.16: Example of how a split loop occurs. In these diagrams the green
lines indicate new edges created after pivoting around dashed edges (in blue),
with the pivoting edges removed from the front after the pivoting operation.
Subfigures (a) - (d) illustrates a single front as the BPA pivots along the front.
Subfigure (d) shows the situation where the split loop occurs. Subfigure (e)
illustrates the result of the split loop.

removing the coincident edges and merging the two fronts into a single front
as shown in Figure 6.17.

6.2.4 Multiple Passes

The effectiveness of the BPA is restricted by the choice of ball radius: The
reconstruction process only reconstructs areas of the mesh where points are
locally dense enough that the pivoting operation can make contact with other
points. This could result in an incomplete and disjoint mesh. This is addressed
by, instead considering an increasing sequence β = [p0, p1, . . . , pn] of ball radii.
The algorithm is only modified slightly: Once an initial pass of the algorithm
is completed, using p0 as the ball radius, the algorithm must then attempt
to find a seed triangle using p1. This is achieved by iterating through all the
edges on all fronts and attempting to fit the p1-ball between the edge and its
opposite vertex. If a seed triangle is found the edge is marked as an active
edge. After this, the BPA starts again using the FrontEdge’s that have been
marked as active with the ball radius of p1.

Since the BPA is very dependent on the input radii, a smart method of
selecting these radii has to be performed. The BPA algorithm depends on the
density of the point cloud for the ball radii to make contact with neighbouring
points. The scale of the point cloud does not matter in the BPA. A general
starting point for selecting a ball radius would be to use a radius slightly larger
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Figure 6.17: Example of how a merge loop occurs. In these figures the green
lines indicate new edges created after pivoting around dashed edges (in blue),
with the pivoting edges removed from the front after the pivoting operation.
Subfigure (a) illustrates two fronts close together. Subfigures (b) and (c) illus-
trates how a merge loop can occur. Subfigure (d) shows the situation where
the merge loop occurs. Subfigure (e) shows the result after a merge loop: the
two fronts have been combined into one.

than the average distance between points. Analysing the point cloud, knowing
how it was obtained and if there are large disconnected regions of points could
significantly help select radii for the BPA. In this thesis the TSDF volume
with the voxel grid filter provided a point cloud that has been arranged in a
grid-like pattern with points separated by 1 voxel. The size of a voxel can be
calculated using the parameters passed into the KinectFusion system.

6.3 Summary

This chapter presented the BPA which is employed to build triangles between
the points of a point cloud. The algorithm receives a point cloud, with the
associated surface normals for each point as input and attempts to create a
sphere that can be placed between three points. These three points form a
triangle that forms part of the mesh as the seed triangle. Once a seed triangle
is found, pivoting operations are performed using the sphere. The pivoting
operation pivots the sphere on one of the triangle’s edges until the sphere
touches another point in the point cloud such that the normals of these points
are facing in a similar direction. A triangle is formed between the pivoting
edge and the new contact point. The new edges of the resulting triangle are
added to the front as active edges, waiting for a pivot operation to later be
performed using them. The front is then updated to correctly represent the
boundary of the unmeshed area using the Join and Glue operations. The
pivoting operation is performed until no more active edges are found. Once no
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more active edges are found, all the valid triangles found form the faces of the
point cloud. Chapter 7 presents a number of experiments using the proposed
system for 3D reconstruction and mesh generation and considers the overall
performance and results of the system.
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Chapter 7

Experiments

This chapter details various experiments to test the accuracy, quality and per-
formance of the implemented reconstruction system, and discusses the results
obtained. The experiments are described in two sections, one considering 3D
reconstruction and the other mesh reconstruction. The 3D reconstruction sec-
tion focuses on building point clouds representing the environment. Analysis
of the reconstruction focuses on the accuracy of the estimated camera trajec-
tory, and the resulting output point cloud, and considers different approaches
to hole-filling using the volumetric information provided. The mesh recon-
struction section analyses the results obtained from the BPA.

7.1 Data sets

These experiments of the system are performed on data sets from two synthetic
scenes generated with Blender. The camera is animated to simulate moving
around the scene.

These data sets are constructed from two synthetic scenes for which the
associated ground truth of the camera is thus known. The ray tracer program,
Blender (Blender Online Community, 2018), is used to create each frame for
the synthetic data sets. During a scene render in Blender, a Z map is calcu-
lated. The map contains the distance for each pixel from the centre of the
camera to the first triangle that is intercepted by the ray generated from the
centre of the camera to the pixel centre. This Z map is converted to a depth
map and is saved in the same format as the depth information from the Kinect
sensor. This allowed the synthetic data set to be passed through the system
in the same way as any other data set captured using the Kinect sensor. For
generating the data sets, the quality is set to the same standard as the data
obtained from the Kinect sensor to simulate data obtained from the Kinect
sensor. A brief summary of the synthetic data sets are provided in Table 7.1.

88
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Data set Scene Area Testing purpose
Translation Test Table Top 2m2 Test isolated translation
Rotation Test Table Top 0m2 Test isolated rotation
Circling Table Table Top 4m2 Test combination of translation and rotation
Moving Around Room 2m2 Test combination of translation and rotation

Table 7.1: Properties of the data sets with scenes used and the area that the
camera moves through.

(a) (b) (c)

Figure 7.1: Each subfigure illustrates a different view of the Table Top Scene.

(a) (b) (c)

Figure 7.2: Each subfigure illustrates a different view of the Room Scene.

7.1.1 Synthetic Data Sets

Here the synthetic data sets are described that are used throughout the 3D re-
construction experiments. Two synthetic scenes were generated using Blender
and are described as follows:

Table Top : A table with the model of a monkey’s head from Blender’s
built-in models; as well as two torus rings and two hexagons as shown in
Figure 7.1. Datasets Translation Test, Rotation Test and Circling

Table uses this scene.

Room : A synthetic room reconstruction as shown in Figure 7.2. The Moving
Around data set uses this scene.

The accuracy of the motion estimation is used to evaluate the system’s abil-
ity to reconstruct the environment, i.e. the ICP tracking is evaluated. To do
this, two data sets were constructed using the Table Top Scene, Translation
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Test and Rotation Test. The synthetic data sets provide the ground truth
translation and quaternions that describe the virtual camera’s motion during
the capture of the data set. The Translation Test data set provides a test
that translates the camera through the scene without changing its orientation.
Similarly, the Rotation Test keeps the camera in a fixed position, and consec-
utively rotates the camera along each individual principle axis independently.
Once the Translation Test and Rotation Test have demonstrated the sys-
tem’s ability to track the translation and rotation independently, the Circling
Table data set provides a small-scale test with simultaneous translation and
rotation throughout the scene.

The data set Moving Around is generated from the Room Scene. This data
set captures the camera translating and rotating through a virtual room. This
provides a simulated test of rotation and translation for a room-sized test more
similar to the kind of data encountered in a real-world use case. The rotations
that occur within the data sets are illustrated in the camera’s local coordinate
system while the trajectory of the translation is shown in the world coordinate
system. The data sets were captured under the following conditions: The
camera was initially aligned with the Y axis in Blender’s global coordinate
system, with the positive Y axis in the direction of the camera’s principal
axis. The increasing X axis corresponds to the camera moving right. The
increasing Z axis corresponds to the camera moving upwards. The estimated
trajectories have been transformed from the camera’s coordinate system to
Blender’s global coordinate system. The differences in the coordinate systems
can be seen in Figure 7.3. All the synthetic data sets are passed through our
variant of the Kinect Fusion system with the known camera parameters (fx,
fy, ox, oy) = (588.81, 588.81, 320.97, 239.5) and the volume size set to 5.12m
for each axis.

Next, a short description of each of the synthetic data sets is provided.

Translation Test

This test from the Table Top Scene consists of the camera moving along the
global X, Y and Z axes in turn with no rotation performed. This test starts
with the camera located at the origin and ends with the camera located at
origin. The camera initially moves 0.75 meters forward in the direction of
the increasing global Y axis and then returns to the original position. This is
followed by moving 0.75 meters downward in the direction of the decreasing
global Z axis and returning to the original position. This is followed by 0.75
meters upwards in the direction of the increasing global Z axis and returns
to the original position. Finally, the camera moves 0.75 meters right (in the
direction of the increasing global X axis) and returns to the original position
followed by moving 0.75 meters left along the negative X axis. Where the
simulation stops. For the Z and Y axes, it uses 50 frames to cover 0.75 meters
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Figure 7.3: An illustration of the global coordinate system in Blender. The
red axis illustrates the global X axis, the green axis illustrates the global Y
axis and the blue axis illustrates the global Z axis.

but for the X axis it uses 100 frames to cover this distance.

Rotation Test

For this test, the camera performed a series of rotations without translation
in the following order: roll (camera’s Z axis), yaw (camera’s Y axis), and then
pitch (camera’s X axis). The roll was performed between frames 0 and 400,
then yaw between frames 401 and 800, and then pitch between frames 801
and 1000. The roll and yaw each perform a rotation of 90◦ counter-clockwise
and clockwise to return to the original orientation then another rotation of
90◦ clockwise then counter-clockwise was perform to return the camera to the
original orientation. The pitch performs a 45◦ rotation counter-clockwise and
then a 45◦ rotation clockwise to return to its original orientation. Frames of
this data set are illustrated in Figure 7.4.

Circling Table

The next test from the Table Top Scene, labelled the Circling Table, pro-
vides a test for simultaneous rotation and translation of the camera. This test
uses 600 frames, with the camera starting at the origin and initially moving
to the start of a circular path while maintaining its orientation towards the
centre of the scene. While moving to the start of the circular path the cam-
era incrementally performs a pitch rotation equating to 25◦ degrees. Once
the camera has reached the start of the circular path, it begins moving along
the path while maintaining the camera’s orientation fixed on the centre of the
table. Frames from this data set are illustrated in Figure 7.5.
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(d) (e) (f)

Figure 7.4: An illustration of frames from the Rotation Test data set in the
order they occur in the data set. Subfigure (a) illustrates the initial position
of the camera, before any rotations occur. Subfigure (b) illustrates the first
rotation 90◦ counter-clockwise Subfigure (c) illustrates the second rotation, 90◦

to the original orientation and then another 90◦ to the orientation shown. The
camera then gets back to its original orientation. Subfigure (d) and (e) illus-
trates a 45◦ rotation on the yaw axis from the original orientation. Subfigure
(f) illustrates the last orientation, a rotation on the pitch axis.

Moving Around

Moving Around uses the Room Scene to provide synthetic data of a room. The
camera performs simultaneous translation in the X and Y axes while there is
no movement on the Z axis. This also contains rotations of the camera along
each axis throughout the scene. This test maps an area of 4m2 using 2000
frames. The data set can be seen in Figure 7.2.

7.1.2 Real-world Data Sets

Due to the frame rate requirements and volume restrictions, the data sets pub-
lished by Sturm, Engelhard, Endres, Burgard and Cremers (2012) produced
results that do not represent the environment. This is due to the data sets
having fast motion of the camera: the assumption the ICP algorithm makes
is that the motion between successive frames are small. Thus the proposed
system is sensitive to fast motion of the camera. For this system, three data
sets were captured using a Kinect sensor recorded moving slowly to prevent
blurring of the images and to ensure small motion between each frame. The
data sets are named Room Closed Loop, Desk, and Lab Room. These data sets
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Figure 7.5: An illustration of frames from the Circling Table data set. Sub-
figure (a) shows a frame from the start position. Subfigure (b) illustrates a
frame after the camera moves backwards and pitches upwards. After it has
reached the frame illustrated in Subfigure (b), the camera starts its circular
path around the table, remaining directed at the centre of the table. Subfigures
(c) - (f) illustrate frames along the circular path.

are briefly described below.

Room Closed Loop

The Room Closed Loop data set is recorded to test typical real-world use of
the proposed system. The data set is of a small bedroom of approximate floor
size 4m2 over 2000 frames. The camera moves in a small circle, performing a
360◦ rotation along the yaw axis. An overview of this data set is illustrated in
Figure 7.6.

Desk

In this data set, a desk is capture in a lab environment. The camera starts
on the right side of the desk and is manually moved approximately 2 meters
to the left of its starting position, while capturing the desk. This data set
does not perform much rotation during the image sequence and consists of 900
frames.

Lab Room

The Lab Room data set was recorded in a rest area of a lab. The data set
covers a floor area of approximately 4m2. This data set passes through an
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Figure 7.6: An overview of the Room Closed Loop data set during recording.

(a) (b)

(c) (d)

Figure 7.7: Frames from the Desk data set during recording.
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(a)

(b)

Figure 7.8: An overview of the Lab Room data set.

area capturing a lounge, a TV and a chess set. The data set contains 2000
frames. Sample frames from the data set is illustrated in Figure 7.8.

7.2 Trajectory Analysis

In order to evaluate the accuracy of the system, the camera trajectory esti-
mated by the system is analysed. The deviation of the reconstructed trajectory
from the ground truth trajectory is considered. Specifically, the analysis in-
vestigates the translation error along each axis, the rotation errors for each
axis and the dot product between the ground truth quaternion and the esti-
mated quaternion. Given the estimated transformation matrix, T̂i, and the
ground truth transformation matrix Ti, the relative transformation matrix is

computed as T̂i
−1
Ti. The translation obtained from this calculation is used

as the error for the translation component while the rotation matrix from the
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Component Average error
Roll error in radians 0.00458
Pitch error in radians 0.00863
Yaw error in radians 0.00618
X Translation in meters 0.02627
Y Translation in meters 0.01702
Z Translation in meters 0.00758

Table 7.2: The magnitude of the error averaged over all frames of each trans-
lation and rotation component for the Translation Test data set.

relative transformation matrix is converted to Euler angles for each axis and
represents the rotational error for each axis. The translational errors are mea-
sured in meters, and the rotational errors are measured in radians. The error
displayed in the graphs in subsequent subsections are used to demonstrate the
system’s performance and are computed as follows.

7.2.1 Translation Test

In the analysis of the Translation Test, zero change in the quaternion vec-
tor and Euler angles error is expected, due to no rotations occurring in this
experiment. This experiment is expected to solely report changes in the trans-
lation vector. Figure 7.9 graphs the relative error for the translation in meters
and rotation in radians. The ground truth is graphed against the estimated
position of each frame in Figure 7.10. The absolute ground truth rotation is
graphed against the estimated rotation in Figure 7.11.

The results from Figure 7.10 indicate that the motion estimation of the
system has followed the ground truth’s motion. This indicates that the mo-
tion estimation has performed adequately in estimating the camera’s position
throughout the scene. The translation error seen fluctuates through the move-
ment with most of the error accumulating in the X and Z axis. A maximum
deviation of about 0.4 meters in the X axis is observed. Since the system is
based on ICP using the depth data from the Kinect, it is expected to obtain a
minimal error on the Y axis (the direction the camera is facing). This is due to
the system receiving accurate information about the camera moving along the
Y axis from the depth information. However, the system estimates the X and
Z motion indirectly. Since the trajectory in this data set has no rotation, it is
expected that the estimated rotation should not change. However, estimated
rotation does deviate from the ground truth. Analysing the rotation error, it is
observed that the errors on each of the axes are below 0.02 radians. This gives
a clear indication that there is no significant error in the rotational estimate
for each of these axes. This conclusion is supported by comparing the dot
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(a)

(b)

Figure 7.9: Translation error for the X, Y and Z axis and rotation error for the
roll, pitch and yaw of the camera are illustrated for the Translation Test

data set. The graphs assign the horizontal axis as the frame number and the
vertical axis as the error. In this test the camera moves along the Y axis for
the first 200 frames, followed by movement along the Z axis for 200 frames
and finally, moving along the X axis for 200 frames. Subfigure (a) illustrates
the translation error while Subfigure (b) illustrates the rotation error for the
roll, pitch and yaw. Key points in the graph are marked with vertical dashed
lines to indicate a change in motion or points where the camera has returned
to its original orientation or position. The translation or rotation shown in the
legend indicates the start or continuation of the specified motion.
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(a)

(b)

(c)

Figure 7.10: The results for the Translation Test (Note different scales on
Y-axis). Subfigure (a) shows the estimated and ground truth motion along
the X axis. Subfigure (b) shows the estimated and ground truth motion along
the Y axis. Subfigure (c) shows the estimated and ground truth motion along
the Z axis. Key points in the graph are marked with vertical dashed lines
to indicate a change in motion or points where the camera has returned to
its original orientation or position. The translation or rotation shown in the
legend indicates the start or continuation of the specified motion.
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(a)

(b)

(c)

Figure 7.11: The results for the Translation Test. Subfigure (a) shows the
rotation of the estimated rotation to the ground truth rotation that occurred
along the roll axis. Subfigure (b) shows the rotation of the estimated rotation
to the ground truth that occurred along the pitch axis. Subfigure (c) shows
the rotation of the estimated rotation to the ground truth that occurred along
the yaw axis.
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Figure 7.12: The dot product between the ground truth quaternion and esti-
mated quaternion for the Translation Test.

product between the ground truth quaternion and the estimated quaternion
in Figure 7.12. The quaternions are unit vectors that represent the rotation
of the camera and the dot product can be used to obtain the cosine of the
angle between the two vectors. With the results of the dot product close to
1, the vectors are shown to be very similar. Table 7.2 summarises the error
in translation and rotation estimates during the frame sequence by presenting
the average error for each axis.

7.2.2 Rotation Test

The Translation Test data set was used to verify that the system is able
to estimate the translation in isolation. The ability of the system to estimate
rotation in isolation is tested next using the Rotation Test data set.

From the description in Section 7.1.1, the highest rotational errors for the
roll axis is expected between frames 0 to 400, for the yaw axis between 401 and
800 and the pitch axis during 801 and 1000. In addition, very low translational
errors are expected during the full frame sequence. Examining the rotational
errors, illustrated in Figure 7.13 (b), a sudden increase in error occurs on the
roll axis at the start of the experiment as the camera rotates on the roll axis
to reach the maximum 90 degree counter-clockwise rotation at frame 100. As
the camera rotates back to its original orientation, the error in the roll axis
decreases until it gets closer to 0 at frame 200. This is in accordance with the
expected results for the first 200 frames. However, the pitch and yaw axis also
see an increase in error, although not as significant relative to the roll axis.

The camera then proceeds to rotate along the roll axis again in the clock-
wise direction. A sudden rise and then a fall between frames 200 and 400
is expected for the roll axis and is observed. However, the decrease in the
rotational error is not as great as expected. After the roll rotation has been
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(a)

(b)

Figure 7.13: Translation error for the X, Y and Z axis and rotation error for
the roll, pitch and yaw of the camera are illustrated for the Rotation Test

data set. The graphs use the horizontal axis as the frame iteration and the
vertical axis as the error. Subfigure (a) illustrates the translation error while
Subfigure (b) illustrates the rotation error for the roll, pitch and yaw. Key
points in the graph are marked with vertical dashed lines to indicate a change
in motion or points where the camera has returned to its original orientation
or position. The translation or rotation shown in the legend indicates the start
or continuation of the specified motion.
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performed the error is approximately 0.01 radians. From frames 400 to 1000
no additional rotation is expected on the roll axis and minimal fluctuations
are expected around its already accumulated error of 0.01 radians. This is
observed throughout the rest of the graph, with the roll axis maintaining its
last error of 0.01 fluctuating between 0.007 and 0.013.

Next the yaw rotational trajectory is examined. During frames 0 - 400 no
rotation occurs on the yaw axis followed by a 45◦ rotation counter-clockwise,
a 45◦ rotation clockwise to return the camera to its original orientation, a 45◦

rotation clockwise, and then the last 45◦ rotation counter-clockwise to return
to its original orientation. No further rotation is performed on the yaw axis.
For this data set it is expected that minimal errors should occur during frames
0 - 400 and 801 - 1000 and most of the error to accumulate during the rotation
on yaw axis between frames 401 and 800. However, for this data set the error
during frames 0 to 400 appear to be similar to the error that occurred during
the roll. Since the system is estimating the rotation it is expected that some
rotational components would show around the other axes on a smaller scale.
At the end of the roll, the yaw axis has an error just below 0. Between frames
401 and 800 the error changes in nature, from a simple oscillation to a graph
with a series of sudden spike in an oscillating pattern. This is clearly due to
the rotation performed during these frames. Following the rotational motion,
after frames 801 when the camera has stopped rotating along the yaw axis,
the rotation begins to follow an oscillating pattern as seen between frames 0
and 400.

Next the pitch is examined, it is expected to have minimal errors through-
out frames 0 to 800 in which no rotation occurred along the pitch axis. Follow-
ing this, a 90◦ counter-clockwise rotation occurred along the pitch axis and an
additional 90◦ clockwise rotation occurred to orientate the camera to its origi-
nal orientation. The error along the pitch axis initially follows a similar trend
to the yaw axis, with an oscillating error between frames 0 and 400. After
frame 400, the axis error is maintained and decreases slightly as it approaches
frame 800. After frame 800 the error drastically increases and decreases in
accordance to the pitch rotation that has occurred during these frames. This
is the expected result of the rotation.

In this experiment, no translation was applied at any point, so minimal
errors are expected in the estimates of the camera location. Examining the
resulting graph, oscillation did however occur in the translational error along
all axes. For example, between frames 0 and 400 while the rotation is being
applied about the roll axis, which results in oscillating translation errors in
the X and Y axis. This appears again during frames 800 and 1000 with the
pitch rotation. These errors have a maximum value of 0.03 meters which is
negligible.

The results shown in Figure 7.15 indicate that the motion estimation is
working. This is supported by Figure 7.14 illustrating the dot product between
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Component Average error
Roll error in radians 0.00842
Pitch error in radians 0.01167
Yaw error in radians 0.00631
X Translation in meters 0.02218
Y Translation in meters 0.01889
Z Translation in meters 0.00882

Table 7.3: The magnitude of the error averaged over all frames of each trans-
lation and rotation component for the Rotation Test data set.

Figure 7.14: The results for the Rotation Test. Dot product between the
ground truth’s quaternion and estimated quaternion. Key points in the graph
are marked with vertical dashed lines to indicate a change in motion or points
where the camera has returned to its original orientation or position. The
translation or rotation shown in the legend indicates the start or continuation
of the specified motion.

the estimated rotation and the ground truth rotation; however, it is being
affected by the accumulated error over the frame sequence. This is illustrated
in the Figure 7.16 as the translational error along each axis increases and
does not return to the ground truth as the camera remains static. Table 7.3
summarises the error in translation and rotation estimates during the frame
sequence by presenting the average errors with respect to each axis.

Next a combination of rotation and translation is performed using the
Circling Table data set.

7.2.3 Circling Table

The translation and rotational errors resulting from applying our 3D recon-
struction system to the Circling Table data set are shown in Figure 7.17.
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Figure 7.15: The results for the Rotation Test. Subfigure (a) shows the
estimated rotation and the ground truth rotation that occurred along the roll
axis. Subfigure (b) shows the estimated rotation and the ground truth that
occurred along the pitch axis. Subfigure (c) shows the estimated rotation and
the ground truth that occurred along the yaw axis. Key points in the graph
are marked with vertical dashed lines to indicate a change in motion or points
where the camera has returned to its original orientation or position. The
translation or rotation shown in the legend indicates the start or continuation
of the specified motion.
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Figure 7.16: The results for the Rotation Test. Subfigure (a) shows estimated
and ground truth motion along the X axis. Subfigure (b) shows estimated and
ground truth motion along the Y axis. Subfigure (c) shows estimated and
ground truth motion along the Z axis.
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The trajectory is illustrated in Figure 7.18 and the absolute rotation is illus-
trated in Figure 7.19. Initially, errors for translation and rotation are accumu-
lated during the first 100 frames. During this time, the camera is moving away
from the centre of the scene to where the circular path starts, while rotating
about the pitch axis. The translation and rotation has sharp increase in the
error as the camera moves from the centre of the scene to the start of the path
due to the camera covering 1 meter over 100 frames, which is faster than in
the rest of the sequence: at a frame rate of 60Hz, this motion corresponds
to approximately 1.6m s−1. As the camera starts moving more slowly, when
it starts circling the table, the ICP is capable of reducing the initial transla-
tion errors accumulated during the first 100 frames, as can be seen in Figure
7.18. The translation error slowly follows an oscillating pattern as it circles
the table with changes in the X and Y axis. During this motion, the Z axis
has no translation and minimal error is expected. It is observed that the Z
axis reaches a maximum error of under 0.08m. This experiment illustrates the
motion estimators ability to simultaneously estimate the rotation and trans-
lation, as can be seen in Figures 7.18 and 7.19. The errors produced in the
estimated trajectory are relatively small and insignificant in comparison to the
motion achieved in the data set.

7.2.4 Moving Around

The final experiment performs a test of the system that aims to reconstruct a
room of about 4m2, created using the Room scene, as illustrated in Figure 7.2.
Figure 7.20 shows the translation and rotational errors during the reconstruc-
tion process for this experiment. This demonstrates the error in the rotation
and translation, showing a maximum translational error of 0.3 meters while
the rotational error has a maximum of about 0.15 radians. Figures 7.21 and
7.22 illustrate the absolute trajectory and rotation of the estimated camera
and the ground truth. From these figures it is observed that the estimated X
and Y axis trajectories are similar to the ground truth trajectories, although
it is observed that over time the trajectories slowly drift from each other. This
is due to compounded errors resulting in trajectory drift, however the system
partly recover from some of the drift over time. The Z trajectory is where
the largest error is observed. As shown in Figure 7.20, despite there being
hardly any ground truth movement along this axis, the estimated trajectory
has deviated around 20 cm towards the end of the sequence. As for the ro-
tational trajectory in Figure 7.21, the estimated camera rotation tracks the
ground truth rotation closely. This clearly indicates the system has the ability
to estimate the trajectory of the camera with its error related to the length
of the sequence. The point cloud generated in this experiment will be used in
Section 7.4 as a synthetic data set for the mesh reconstruction algorithm.
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Figure 7.17: Translation error for the X, Y and Z axes and rotation error for
the roll, pitch and yaw axes of the camera for the Circling Table data set.
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Figure 7.18: Illustrates the results for the Circling Table data set. Subfig-
ures (a) - (c) shows the estimated ground truth motion along the X, Y and Z
axis respectively. Note the difference in scale between each graph.
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Figure 7.19: Illustrates the results for the absolute rotation for the Circling

Table. The values on the Y axis are based on the interval between the ranges
[−π, π]. Subfigures (a) - (c) show the estimated rotation and the ground truth
rotation along the roll, pitch and yaw axis respectively.
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Figure 7.20: Translation error for the X, Y and Z axes (Subfigure (a)) and
rotation error for the roll, pitch and yaw of the camera (Subfigure (b)) for the
Moving Around data set.
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Figure 7.21: Illustrates results for the Moving Around data set.
Subfigures (a) - (c) show estimated motion along the X, Y and Z axis respec-
tively.
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Figure 7.22: Illustrates results for the Moving Around data set.
Subfigures (a) - (c) show the estimated rotation that occurred along the roll,
pitch and yaw axis respectively.
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7.2.5 Additional Experiments

An additional experiment was performed when attempting to incorporate more
accurate trajectory estimation techniques. Systems like that in Whelan and
Kaess (2012) moved away from the ICP-based motion estimation, instead opt-
ing for a motion estimation system based on Huang and Bachrach (2017). An
attempt to mimic this was made by modifying our system to use feature-based
estimation. This uses the incoming RGB image and the RGB image extracted
from the ray caster, but maintaining the frame-to-model approach. This ap-
proach could potentially provide better results because the feature matcher
can infer better point correspondences than the current ICP approach. This
was implemented using the ICP technique by Besl and McKay (1992). The
system was unable to produce adequate results due to the pixelated appear-
ance of the ray caster’s RGB image and the feature detectors not working well
on the RGB image. The system was unable to produce good key points or
enough matches between the incoming image and the extracted RGB image.
Pixelation occurs because the colour data is stored in a 3D volume, and the ray
caster image resolution is limited by that of the 3D volume. This pixelation
proved to be too much for the feature detectors to function well.

7.2.6 Conclusion

This section detailed experiments performed to test various aspects of the sys-
tem’s ability to estimate the camera’s motion. The data set Translation

Test aimed to test the motion estimator’s ability to estimate the translation
components. This data set featured a camera being translated along the X,
Y and Z axes in isolation. It was shown that the system has the ability to
estimate the translation along each axis with a reasonable degree of accuracy.
The Translation Test was followed by the Rotation Test that tested the
system’s ability to estimate the camera’s rotation. This consisted of rotat-
ing the camera along the roll, pitch and yaw axes in isolation. The system
was shown to be capable of estimating the rotation about each axis with a
reasonable degree of accuracy. This enabled the next experiment, using the
Circling Table data set. The Circling Table data set allowed simultane-
ous rotation and translation to be estimated. The system proved capable of
estimating a combination of different rotations and translation simultaneously.
This suggests that the system is capable of estimating combined translation
and rotation. The final data set that the motion estimation was performed on
was the Moving Around data set, representing a synthetic room. Analysis of
this experiment showed that the system has the ability to estimate the cam-
era’s pose over a long sequence of frames; however, the estimated trajectory
drifts from the ground truth.

In the next section, we discuss the results of various techniques used to
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(a) (b)

Figure 7.23: Test data that is used to illustrate the different point cloud
extraction techniques. Subfigure (a) is the depth map that shows a depth
measurement of 1 meter in the outer rectangle of the image and a 2 meter
measurement for the inner rectangle. Subfigure (b) illustrates the associated
RGB image that uses blue to represent the area that is 1 meter away from the
sensor and white to show the area that is 2 meters away from the sensor.

extract the point cloud from the TSDF volume. This includes analysis of
the point clouds that are generated from the synthetic data sets as well as a
selection of real-world data sets that were recorded with the Kinect.

7.3 Point Cloud Analysis

This section investigates different methods of point cloud extraction and hole-
filling, as presented in Chapter 5. This section analyses points clouds generated
from the synthetic tests described above, as well as a few real-world data sets
that were recorded with the Kinect sensor. The images presented in this section
are best viewed electronically to allow zooming to observe finer detail.

7.3.1 Hole-Filling

The ray caster used for the ICP algorithm is also used to extract the point
cloud in the original Kinect Fusion system. However, this is replaced with an
orthogonal ray caster as described in Whelan and Kaess (2012) to provide some
level of hole-filling of the extracted point cloud, the techniques were discussed
in Section 5.7. A synthetic depth image and RGB image (Figure 7.23) is used
to demonstrate the effects of these techniques.

The test depth and RGB frames shown in Figure 7.23 are input into the
Kinect system using the ray caster as the point cloud extraction technique
and then subsequently extracted as a point cloud. The results of using the
original point cloud extraction technique are shown in Figure 7.24. Here it is
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Figure 7.24: Subfigures (a) and (b) show the extracted point cloud using the
original ray casting technique from different angles.

observed that the points extracted illustrate the two planes of the test data.
These are the points of the zero-crossings along the line of sight of each pixel
from the camera. In Figure 7.25 the results of using the orthogonal ray caster
are given. This results in the same two planes with four additional connecting
planes. Since all the TSDF values behind the blue plane from the camera’s
line of sight are negative and all the TSDF values in front of the white plane
in the line of sight of the camera are positive, there are zero-crossings that lie
between these two volumes. These results are expected using the orthogonal
ray caster and were not encountered during the original ray casting process.
This illustrates the ability of the orthogonal ray caster to provide a basic level
of hole-filling for the point cloud.

The orthogonal ray casting technique provides an additional set of points
that fill key areas in the extracted TSDF volume. This provides additional
information about the surface in the point cloud compared to the original ray
casting technique.

After experimenting with this approach, an issue occurred that prevented
depth data of an area from being integrated from multiple directions. This
adversely affected the generation of the point cloud using the original ray caster
and the orthogonal ray caster. This is demonstrated in an experiment that
sets up the camera in two locations as shown in Figure 7.26. Both cameras
integrate the depth and RGB image into the volume at each position. This
could occur when the camera moves from one side of an object or a wall to
another side of the object or wall. Figure 7.27 illustrates a cross-section of the
TSDF volume and shows the result of these integrations. This illustrates that
the integration of the depth data will override previous data that lies behind
a surface with negative values. The figure illustrates that although Camera
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Figure 7.25: Subfigures (a) and (b) show the extracted point cloud using the
orthogonal ray casting technique. An illustration of this technique’s ability to
provide hole-filling.

Camera 1 Camera 2

Figure 7.26: In this experiment a camera is simulated at location Camera 1
and a second camera is simulated at Camera 2. The cameras are facing each
other. The dashed red lines indicate the field of view of Camera 1 and the
red surface illustrates the depth data that should be integrated into the TSDF
volume from Camera 1. Similarly, the dashed blue lines indicate the field of
view at Camera 2 and the blue surface illustrates the depth data that should
be integrated into the TSDF volume from Camera 2.
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Figure 7.27: An illustration of how the TSDF values change after each in-
tegration of the depth and RGB images. These figures use a background of
grey to illustrate negative values, and a white background to illustrate positive
values. Subfigure (a) illustrates a cross-section of the TSDF volume shown in
Figure 7.25. The TSDF values after the integration of the first depth and RGB
image from camera location 1. Subfigure (b) illustrates the TSDF values after
the second integration of the depth and RGB image from camera location 2.
The values stored in the TSDF after integrating the two depth images does
not implicitly represent the actual geometry.

1 has integrated positive TSDF values into the volume, these positions lie
behind the surface being integrated from the perspective of Camera 2, thus
overriding the positive TSDF value in the voxels and replacing these with
negative values. This is clearly not the desired result. The resulting point
cloud shows that all of the TSDF values inside the volume have resulted in a
negative value, because every voxel lies behind and far away from the surface
from the perspective of either Camera 1 or Camera 2. To avoid situations like
this, where the camera might be facing the surface from the opposite side, a
limit must be imposed on the TSDF volume voxel updates.

This is addressed with a simple modification to prevent the TSDF volume
from updating voxels located too far from the depth measurement. This is
implemented by limiting the update region to within 10cm of the surface.

This results in the desired point cloud given in Figure 7.28. Since the
system no longer updates all the voxels in the TSDF volume, the hole-filling
becomes less effective than that shown in Figure 7.25 when integrating the
depth data from a single view point: Instead, the system is only able to fill
holes within 10cm of the surface, as shown in Figure 7.29. The hole-filling
properties of the three techniques, the original ray caster, the orthogonal ray
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(a) (b)

Figure 7.28: The point cloud extraction using the orthogonal ray caster limit-
ing the voxel update region.

(a) (b)

Figure 7.29: Hole filling by updating all TSDF voxels within 10 cm of the
surface from two different angles

caster without limiting the update and the orthogonal ray caster with limiting
the update region, were examined for synthetic cases. It is confirmed that the
ray caster with limiting the update region has the ability to fill regions within
a distance of 10cm from the surface and the filled holes are present in the real
world data sets. Figure 7.30 shows three point clouds using data collected
from the Kinect: the original ray caster for the extraction updating all the
voxels, the orthogonal ray caster updating all the voxels, and the orthogonal
ray caster with limited voxel updating. The results are similar to the results
obtained on the synthetic data sets shown in Figure 7.29.
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(a) (b)

(c)

Figure 7.30: Hole-filling using the different methods on real world data set.
The region of interest is shown with a red rectangle. Subfigure (a) uses the
original ray caster as the point cloud extraction technique as in the original
system. It can be seen that the highlighted region has not been filled. Subfigure
(b) uses the orthogonal ray caster but updates all voxels in the region. The
highlighted region illustrates that it has been filled. Subfigure (c) uses the
orthogonal ray caster but limits the voxel update. It illustrates a partially
filled region in the highlighted region.

7.3.2 Point Cloud Analysis of Synthetic Data Sets

This section analyses the point clouds generated from Table Top scene using
the Circling Table data set and the Room scene using the Moving Around

data set, and discusses observations stemming from the results. All synthetic
and real-world data sets were processed by limiting the update region of the
TSDF volume and extracting the point cloud using the orthogonal ray caster.

Figure 7.31 shows the reconstructed point cloud of the Table Top scene
using the Circling Table data set (see Figure 7.1) generated by the system.
This demonstrates the ability of the system to generate the point cloud from
the given depth images.

Three problems are observed with this point cloud: the inaccuracy of cer-
tain regions of the point cloud, the inaccuracy of some colours, and artefacts
(noise) in the point cloud. These problems are addressed by analysing the
system implementation and its effect on the results. Due to this system im-
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(a)

(b)

(c)

Figure 7.31: The point cloud generated from the Circling Table data set,
viewed from three different angles.

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 7. EXPERIMENTS 121

plementing a voxel-based approach to reconstruction, it tends to produce pix-
elated results. This can be seen by inspecting the colour of the surface. This
also contributes to the loss of detail in certain geometric objects, such as the
top of the cone and the detail in the monkey’s head. The colour in the recon-
struction tends to have a bleeding effect, adding incorrect colour to a nearby
area or projectively close area. This effect can be seen on the edges of objects
on the table, such as the purple sphere and the monkey head.

Next, the point cloud generated from the Moving Around data set is shown
in Figure 7.32. The general shape of the point cloud appears consistent with
the synthetic 3D model shown in Figure 7.2. However, the results illustrate an
offset in the height from one side of the point cloud to another that can be seen
in Figure 7.33. In Figure 7.33a the monkey head model can be seen separated
into two sections, the rear part of the monkey head can be seen high up in
the image while the jaw of it can be seen much lower. The system warped
one of the sides of the point cloud to be higher than the starting area. This
warping is due to the error in the camera’s estimated height obtained from
the ICP, as shown in Figure 7.21c. While the errors obtained from ICP are
not initially large, the accumulated error over time can have a large impact
on the alignment of the points. This means that even a relatively small error
in the ICP algorithm can ultimately lead to large misalignments. Figure 7.34
illustrates the global axes of the scene, the Z axis facing upward, the Y axis
in the same direction as the principle axis and the X axis to the right of the
camera. The translation analysis shows a large drift of −0.28 meters in the
estimated translation along the X and Z axis within the last 500 frames, while
the estimated Y axis drifts around 0.1 meters. The drift in the X axis estimate
is noticeable from the generated point cloud in Figure 7.32: The point cloud
should depict a rectangular room. Instead, the trajectory drift has led to
visible distortion. The drift in the Z axis estimate is visible from the warping
of the height component of the point cloud. From this section we see how
the effects of drift from the motion estimation impact the generated point
cloud. Now the real-world data sets Room Closed Loop, Desk, and Lab Room

are investigated.
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(a)

(b)

(c)

Figure 7.32: This shows three image views of the point cloud generated from
the Moving Around data set. Subfigure (a) shows a view from the top looking
down on the point cloud. Subfigure (b) shows a view looking at the left side
of the point cloud, and Subfigure (c) shows a second aerial view of the point
cloud.
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(a) (b)

(c) (d)

Figure 7.33: An illustration of a side by side comparison of the point cloud and
the synthetic model generated in Blender. The red rectangle indicates a region
of inconsistency due to the motion drift. Subfigure (a) shows the front of the
wall (marked in red) from the reconstruction data. Subfigure (b) shows the
same view as in Subfigure (a) but from the perspective of the synthetic model.
Subfigure (c) illustrates the rear section of the wall (marked in red) from the
reconstruction data. Subfigure (d) illustrates the same view as Subfigure (c),
but from the perspective of the synthetic model.
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Figure 7.34: The global axes of the Moving Around data set in Blender: the
X axis in red, the Y axis in green and the Z axis in blue. The camera initially
faces the positive Y axis. The positive Z axis would correspond to the camera
moving upward and the positive X axis would correspond to the camera moving
to the right.
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7.3.3 Point Cloud Analysis of Real-World Data Sets

In the real-world data sets no ground truth was obtained so the analysis of
the results are qualitative. The Room Closed Loop point cloud can be viewed
in Figures 7.35 and 7.36. Due to limitations in the RGB data, points that
have depth information but no RGB information appear in white in the point
cloud. This is due to differences in the camera parameters of the Kinect infra-
red and RGB camera. An illustration of the differences between the depth
and RGB data is shown in Figure 7.37. The main areas that are missing RGB
information are the top and bottom of the image this is due to the different
camera parameters between the two types of cameras.

In this experiment, the Kinect sensor is simply moved around in a circle
by hand to capture the complete room. In Figure 7.36 a similar effect has
occurred as in the Moving Around data set: the accumulated error has warped
the room such that the walls do not align in the region where the camera starts
and ends. In this region, items have been duplicated and the wall alignment
is off by a rotational and translational component. On further inspection one
can see that other inconsistencies are present in the point clouds. Specifically,
Figure 7.38 shows that the surface points on the box next to the cylinder
appear to form an indentation. Viewing the incoming depth data in Figure
7.40, it can be seen that the depth data is incorrectly reported by the sensor

(a) (b)

(c)

Figure 7.35: These figures illustrate the reconstructed point cloud from the
Room Closed Loop data set from three different angles.
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(a) (b)

(c)

Figure 7.36: An illustration of the visible warping that occurred in the Room

Closed Loop data set. Subfigure (a) provides an aerial view of the recon-
structed point cloud, showing visible warping due to the error in the trajec-
tory. Subfigure (b) illustrates the visible warping that occurs at the position
where the camera started and stopped the reconstruction (area marked in red).
Subfigure (c) illustrates the duplication of a region where the camera closed
the loop from the starting and ending position.

in the highlighted area. This incorrectly reported data is then integrated into
the TSDF estimation of the surface. The incorrectly reported depth data
can likely be attributed to the reflective nature of the surface: the IR light
used by the sensor is reflected off a box and onto the nearby surface. This
sensitivity to reflective surfaces is one of the limitations of the Kinect sensor
as a sensing device, as discussed in Sarbolandi, Lefloch and Kolb (2015). To
verify this hypothesis, a similar test was performed on a reflective granite
surface, producing similar results. The reconstruction produced an area of
noise at the location of the window as shown in Figure 7.39. However, since
there was only a small section of the window in the scene, the issue was limited
to a correspondingly small region in the final model. The reason this occurred
is due to the reflection of IR light emitted from the sun which is discussed in
more detail in the next data set.

The next data set, Desk is reconstructed in Figure 7.41. The generated
point cloud produces noisy points towards the top of the point cloud. These
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(a) (b)

Figure 7.37: Subfigure (a) illustrates the RGB image and Subfigure (b) illus-
trates the depth image taken at the same time. However, the RGB image was
captured using a high definition wide screen camera while the depth image was
captured using an infra-red camera with different camera parameters and from
a different position than the RGB camera. Subfigure (a) is a corrected version
of the original RGB image to match the location and camera parameters of the
infra-red camera which is used for all the experiments. These images illustrate
the RGB and depth image as if they were taken from the same position. The
RGB image has been corrected to simulate this. Since the RGB image has not
been taken from the exact same position, some information is missing due to
the perspective change. This is commonly noticed along the edges of objects.
It is also missing RGB information at the top and bottom of the image (black
bars) while the depth image has information in this area.

(a) (b)

Figure 7.38: An illustration of the apparent indentation on the box next to
the cylinder. This can be hard to see in the 2D images.
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(a) (b)

Figure 7.39: These figures illustrate the noisy points generated in the Room

Closed Loop data set in the region of the window from two different angles.
The spray of white points behind the surface is the noise generated from ex-
ternal factors.

Figure 7.40: This demonstrates the Kinect’s inability to handle very reflective
surfaces as seen in this image. This image shows four views of the surface,
the top left image is the raw RGB image, the top right image illustrates the
bilaterally filtered depth image and the bottom images show the view from the
RGB volume and the TSDF volume. A reflection of the surface behind the
box is shown on the box. The IR light is being reflected.
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(a) (b)

(c)

Figure 7.41: Various artefacts near the top of the point cloud generated from
noisy sensor data in the Desk data set.

points clearly do not represent a surface due to their position. To examine the
source of these points, a view of the incoming depth image is shown in Figure
7.42. Further examination of the depth image reveals that the artefacts in the
point cloud were created where there is no depth data in the depth image. This
effect results from the interaction of two factors, the first being that the IR
light is being sent too far and unable to return to the sensor resulting in most of
the region returning a 0 measurement (black). The second interaction is that
the data set was recorded in an environment featuring substantial reflected
sunlight. A known issue of the Kinect sensor and its basis of operation is its
sensitivity to IR light: this can cause the direct or reflected IR light from the
sun or other sources to overpower the IR light sent from the sensor. This can
cause incorrect depth measurements in the data if the reflected IR light from
another source is stronger in a region where the sensor’s IR light is weaker or
too weak to report the correct values (i.e. the surface is out of the sensor’s
IR light range or the IR light is weaker than the alternate source). In this
experiment, areas where the reflected IR light from the sun was more intense
than the IR light reflected to the Kinect reported incorrect depth data.

Similar results are obtained using the Lab Room data set, in which incorrect
depth data produces a noisy set of points in the reconstruction. Figure 7.43
shows the reconstructed point cloud with the noise being produced from the
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Figure 7.42: This image shows four views of the surface, the top left image
is the raw RGB image, the top right image illustrates the bilaterally filtered
depth image and the bottom images show the view from the RGB volume and
the TSDF volume. The input RGB and depth images from the Desk data set
with the red rectangle highlighting the sensor noise obtained from interference
due to reflected sunlight.

(a) (b)

(c)

Figure 7.43: Point cloud reconstruction from the Lab Room data set. As in
Figure 7.41, artefacts generated from reflected IR light are present.
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(a) (b)

Figure 7.44: The input RGB and depth images showing the noise generated
from the reflected IR light causing problems in Figure 7.43.

raw depth images shown in Figure 7.44.

7.3.4 Summary

This section examined point cloud extraction techniques for extracting im-
plicit information about the surfaces contained within the TSDF volume. The
orthogonal ray caster method was capable of extracting additional surfaces
from the TSDF volume. However, to avoid overwriting TSDF values in situa-
tions where the camera views an object from opposite sides, only voxels that lie
within a certain distance of the depth measurement are allowed to be updated.
This allows the system to integrate depth data into the TSDF volume from
multiple angles without overwriting TSDF values that have been integrated
from behind the surface.

In experiments on synthetic data sets, a clear warping of the generated
point clouds was observed. Comparisons to the trajectory analysis indicated
that the warping is related to the drift from the ICP algorithm. In the Moving

Around data set, a high error on the final Z axis position indicated that the
camera height estimate was higher than its starting height. This is observed
in the point cloud as the point cloud do not align with respect to the height
at the start and end region of the point cloud. A similar issue occurred for the
X axis.

Experiments were also performed to a lesser extent on some data sets that
were recorded using the Kinect in two environments namely; a bedroom and
a lab. Using the data set generated from the bedroom, Room Closed Loop,
the system produced a point cloud that suffered from the same effect apparent
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in the synthetic point clouds, a warping of the points in the point cloud with
respect to the start and end frames. This point cloud had two additional issues
that were not present in the synthetic experiments. In certain areas, there were
sets of noisy points generated, while in other areas, indentations in the point
cloud had formed that did not correspond to the real-world surfaces. These
problems were analysed and it was found that the noisy points generated were
due to incorrect depth measurements from IR light reflected by other sources
into the IR sensor. This led to inaccuracies in the depth maps returned from
the sensor. Therefore, spurious IR sources should be avoided at all times
when working with the Kinect sensor and other IR based sensors. The issue of
spurious indentations appearing in certain areas was discovered to be due to the
reflectivity of the surface the sensor was viewing. The IR light had reflected off
these surfaces and reported the depth from the sensor to the reflective surface
plus the additional distance to the next less reflective surface the IR light hit.
This was verified by testing the sensor data on a large reflective surface.

The next section, presents an analysis of the mesh reconstruction from the
generated point clouds.

7.4 Mesh Generation

A selection of synthetic point clouds are used to evaluate the mesh generation
algorithm. Following this, a selection of point clouds from the previous data
sets are used to evaluate the system. The mesh generation component of
the system was tested by initially creating a 3D model in Blender and using
Blender’s Python interface to extract the model’s vertices and their associated
normal vectors to use as ground truth. Initially, a few basic synthetic tests were
performed to verify that the mesh generation works as expected. Following
this, the mesh generation algorithm is applied to the synthetic and real-world
data sets mentioned in Section 7.1. The results of the real-world data sets are
analysed qualitatively due to there being no ground truth data available.

7.4.1 Synthetic Data Sets

This section details various synthetic data sets that were initially used to test
the mesh reconstruction algorithm in order to verify that it can reconstruct
the faces of point clouds.

Terrain Reconstruction

The Terrain reconstruction test is a modified plane with a series of hills
and valleys that simulates a basic terrain surface, as is illustrated in Figure
7.45. A simple surface with multiple dips and bumps simulating a basic terrain
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(a) (b) (c)

Figure 7.45: Blender views of the Terrain reconstruction data set.

surface. This is the initial test that will be used to ensure that the BPA works
correctly. This data set was self-designed as a basic test for the BPA.

Stanford Bunny

We also use the Stanford bunny model, a widely used point cloud from the
Stanford 3D scanning repository (Curless and Levoy, 1996b), as the basis for
testing. Due to the post-processing required for the Stanford point clouds, only
the Stanford Bunny data set was used. The Stanford point clouds provided
the vertices of each point without the surface normal information required for
the BPA. The surface normal information for each point needs to be generated
manually. With point clouds of tens of thousands of points, this was infeasible
for all other Stanford data sets.

7.4.2 Experiments

The initial tests of the BPA are show in Figure 7.46. It illustrates the mesh
generated from the Terrain reconstruction. The algorithm produced a gen-
erally well-structured mesh, capable of easily reconstructing the surface of the
mesh in areas that did not have a sharp change in gradient. However, in most
areas where steep gradient changes occurred the mesh generation algorithm
was unable to fill some of these areas with the appropriate triangles. The
reconstruction produced accurate results in areas of small gradient changes.

Once the system produced adequate reconstruction results that resemble
the original mesh, the system was tested using the Stanford bunny model.
Figure 7.47 shows the generated mesh from the Stanford Bunny point cloud.
It can be seen that there are two issues that occur in the mesh. Some areas of
the mesh have missing triangles as seen in Figures 7.47c, 7.47d and 7.47f. In
certain situations when processing fine detail, the BPA is unable to create a
p-ball that only touches three points without including any additional points.
This case occurs when multiple p-balls are used in areas with large changes in
gradient. The missing triangles can be seen in Figure 7.46 and Figure 7.47d .
The large triangles created between the ears shown in Figures 7.47a and 7.47e,
are created by choosing a p-ball that is too large for the density of the given
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(a) (b)

Figure 7.46: This illustrates the reconstruction of the Terrain

reconstruction point cloud.

(a) (b) (c)

(d) (e) (f)

Figure 7.47: An illustration of the generated mesh of the Stanford Bunny

data set. Subfigures (a) - (c) illustrate an overview of the generated mesh
from two side views and a top view. Subfigure (d) and (f) illustrates sections
of missing triangles in the mesh. Subfigure (e) illustrates an area where a
triangle is incorrectly generated.
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(a) (b)

(c)

Figure 7.48: Various views of the mesh reconstruction for the Circling Table

data sets.

point cloud. This produces incorrect triangles for the model.
During the mesh assembly, building the model in Blender using the results

from the BPA, Blender has a limit on the maximum number of materials it can
use in a model. Due to this, some of these generations do not include colour
data. Since the extracted point cloud is too dense, a voxel grid filter is used
to replace all points in a 0.025 m3 volume with a single point that represents
the centroid of the points in the volume. The original Kinect Fusion system
did not have this implemented as the reconstruction area was limited due to
the system being unable to move the TSDF volume. This is performed due to
the number of points created during the point cloud extraction. This reduces
the number of points from millions to tens of thousands, which decreases the
runtime of the mesh generation. Next, the reconstruction results from the data
sets Circling Table, Moving Around and Room Closed Loop are considered.

Mesh Construction

This section analyses the meshes constructed from the data sets Circling

Table, Moving Around and Room Closed Loop presented in Section 7.1. Look-
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(a) (b)

(c)

Figure 7.49: An illustration of the Circling Table data set’s mesh recon-
struction close up.

ing at the mesh generation in Figure 7.48, many examples of missing triangles
are observed, far more than the number observed for the Stanford Bunny data
set. Looking closer at the constructed mesh, sudden spikes along the surface
throughout the mesh are shown. The BPA created triangles that are initially
under the surface as shown in Figure 7.49. This situation can occur when the
small ball size is insufficient to complete the surface, a larger ball was used that
interpolated over the previous meshed surface. This results in triangles that
are connected on one side and completely disconnected on the other, as shown
in the figure. This behaviour could be attributed to multiple factors such as
noise, the order in which the points are selected for generated triangles, the
accuracy of the point cloud extraction and the voxel grid filter changing the
centroid of the points.

Similar results are observed in Figures 7.50 and 7.51 for a synthetic and
real world data set respectively. These observations are visible on all results
of the synthetic and real world data sets.

Figures 7.46 and 7.47 clearly show that the algorithm can successfully con-
struct the meshes. However, the point clouds from the system generate a mesh
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(a) (b)

(c)

Figure 7.50: Three views of the mesh reconstruction, of the Moving Around

data set.

that has noisy surfaces. This could be due to the noise generated when in-
tegrating the TSDF data into the volume or the adjustments the voxel grid
filter introduces. This contrast in meshing accuracy suggests that this method
of mesh generation is more practical for meshing smaller scale and less noisy
data sets such as objects as opposed to environment.

7.5 Summary

The trajectory reconstructions generated by the system provided a reasonable
estimate of the initial camera path with a relatively small error as shown in
Section 7.2. However, it was also observed that the accumulated error over
many frames can distort the final model significantly.

In Section 7.2.5, an attempt at using a kind of feature-based motion esti-
mation technique with the frame-to-model implementation failed due to the
low resolution output from the ray caster’s colour volume. This resulted in in-
sufficient features being detected in the ray cast image, leading to insufficient
matching pairs. Ultimately this prevented feature-based motion estimation
from further implementation.
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(a) (b)

(c)

Figure 7.51: Three views of the mesh reconstruction of the Room Closed Loop

data set.

From the analysis of point clouds performed in Section 7.3, it can be con-
cluded that the original ray casting method provides a dense point cloud that
can be sufficient for general use. Using the orthogonal ray casting technique,
extraction of additional information about the surfaces represented by the
TSDF was obtained. If it is assumed that the system would not have to view
the same area again from the opposite side as illustrated in Figure 7.27, the
TSDF volume could update all the voxels in the reconstruction region. This
would allow the system to fill any section where there is a sudden change in
depth information from the sensor. However, this assumption is not made in
this system because certain situations can occur where this would negatively
impact the generated point cloud. Instead, we limit the voxel region update,
updating voxels within 10cm of the surface measurement.

Some important limitations of the Kinect sensor were highlighted in these
experiments, namely the inability of the sensor to handle reflective surfaces or
spurious IR light reflecting onto the sensor. These limitations constrain the
system to use in indoor environments or night-time scenarios with artificial
light where there is minimal IR light present.

While the system can produce high resolution point clouds, which accu-
rately represent the 3D world these do suffer from accumulated trajectory
error. Although not implemented in this work, such drift can in principle be
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corrected using loop closure techniques.
Overall, the mesh generation experiments in Section 7.4 showed a reason-

able measure of success, but there are clear issues when using the extracted
point cloud data. The BPA was unable to completely rebuild most of these
data sets. The mesh generation experiments that were performed on clean
synthetic point clouds worked well, however there are still limitations.

An issue with using the BPA is that the points in the cloud require the
associated normals which, in other reconstruction methods, are typically dif-
ficult to obtain. This technique seems better adapted to cleaner point clouds
than the ones produced by the proposed system. This might be addressed by
preprocessing the candidate point cloud using some form of function fitting to
smooth out the noise in the point cloud. The concept of inputting a sequence
of ball sizes also limits the reconstruction: if the system is given balls that
are too big or too small, the reconstruction will perform poorly or entirely
fail. Although an ideal place to start is using the average distance between the
points as the smallest ball size, this is a factor that will significantly impact the
runtime of this algorithm. The next chapter concludes the thesis and discusses
future work that can improve this system as a whole.
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Conclusion

This chapter gives an overview of the thesis, reviews its aims and objectives,
evaluates whether they have been achieved, and discusses potential improve-
ments and extensions to the current implementation.

8.1 Summary

This thesis focused on researching and implementing an approach allowing non-
specialists to easily perform fast environment reconstruction using consumer-
grade products. Specifically, this work considered the low-cost Microsoft Kinect
sensor, which allows consumers to record depth and colour data from the en-
vironment. A system was proposed for 3D reconstruction that is capable of
high throughput motion estimation on a large scale reconstruction, and can
be operated without much user intervention.

This thesis provided a review of fundamental concepts in Chapter 2 and
presented a summary of various techniques and approaches that have been
considered by other researchers in Chapter 3. Chapter 4 discussed a method-
ology that established the approach employed in this thesis and provided de-
tail on the testing procedure employed when evaluating the proposed system.
This thesis then detailed the motion estimation technique and the volumetric
method used to construct the 3D model in Chapter 5, while Chapter 6 detailed
the mesh generation algorithm. The detailed techniques were presented with
tests and experiments. The tests and experiments were performed to evaluate
the system in Chapter 7. Next, we review the aims and objects for the thesis
and evaluate them.

8.1.1 Aims and Objectives

This section reviews the aims and objectives of this thesis, before evaluating
how the thesis contributes towards their fulfilment.

140
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Collecting Data

In this thesis we used the Microsoft Kinect to acquire depth and colour data
from the environment that can be used to reconstruct the environment. This
is a low-cost consumer grade device that is widely accessible.

Estimating the Motion of the Depth Sensor at Online Speeds

An iterative closest point technique based on scan-matching was used to com-
pute the motion of the Kinect sensor. However, this motion estimation tech-
nique suffers from drift over the image sequence. Over a large area, it is
observed that the system begins to warp the model such that it is consistent
with the drift in the motion estimate. This source of error was reduced by
using a frame-to-model method as opposed to a frame-to-frame method of
motion estimation. The iterative closest point technique allows the system to
estimate motion at a frame rate of 30Hz using readily available GPU hard-
ware and the CUDA framework, thus allowing real-time reconstruction of the
environment. An alternative motion estimation technique was investigated
by adding feature-based motion estimation using a frame-to-model approach.
However, this produced poor features from the model view. Since it was un-
able to create enough feature matches between points, this alternative method
was thus unused.

Pre-processing Sensor Data to Reduce Noise

To further improve the quality of the reconstructed point cloud, the sensor
data was preprocessed by applying a bilateral filter, to help reduce noise in
the sensor data and improve the motion estimation. This is as discussed in
Section 5.3

Fuse Successive Sensory Data Sets Together

A volumetric technique using a truncated signed distance function was used
to fuse successive depth images together. The TSDF allows the system to
compute an average surface location for each surface measurement obtained
by the depth sensor. This helps to reduce noise and adjust for inconsistencies
within the environment such as noise in the sensor readings.

Enable Generation of Large Scale Environments

The system was able to produce larger environments than the original system
(Newcombe et al., 2011a) by introducing a moving volume, using a wraparound
indexing system for the memory allocated to the TSDF volume. The original
system allowed the capture of a global volume of 512 × 512 × 512 voxels.
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This system removes this limit and allows the system to integrate new areas
until memory limitations are reached by the computer. The Moving Around

experiment covered three 512× 512× 512 volumes.

Extraction of Implicit and Explicit Structure

Investigation into extracting the inferred structure from the volumetric model
using hole-filling techniques proved fruitful. This allows the system to extract
a surface even where there are no direct observations. This is achieved by
using an orthogonal ray caster that searches for the point where TSDF values
change from positive to negative along each axis of the volume.

Generate a Mesh from the Point Cloud and Integrate Colour

The technique of point cloud extraction provides a set of points that are sepa-
rated by a minimum distance of the voxel size, due to each voxel representing a
point in world space. The resulting point cloud with its associated colours are
converted to a colourized mesh by applying a surface reconstruction algorithm.
In this system, the ball-pivoting algorithm (Bernardini, Mittleman, Rushmeier,
Silva and Taubin, 1999) was chosen due to its simplicity. The results of this
algorithm proved mixed. The initial testing stages on the Stanford Bunny and
Terrain reconstruction data sets, the results indicated that it was able to
reconstruct the surfaces with a reasonable degree of accuracy. However, in the
synthetic and real-world data sets that were generated from the Kinect Fusion
system the generated mesh showed inconsistent surfaces that did not depict
the true structure of the environment. Planar surfaces had noise attached to
the surface and produce a rough plane with sections of missing triangles. It
was possible to see the general structure of the environment, but this is not
well represented in the generated mesh.

Exporting the Mesh to a Universal Format

The mesh is finally converted into the blend file format used in Blender, the
mesh is converted to the FBX file format using Blender’s internal API.

Summary

Most of the aims and objectives of this thesis have been met, the proposed
system is capable of estimating the motion of the Microsoft Kinect sensor at
30Hz and integrating the depth and colour information into a 3D volume that
builds a point cloud representing the model. The data represented in the 3D
volume is extracted using a technique that extracts implicit and explicit points
from the 3D volume. This is then passed to a mesh generation algorithm that
is capable of generating a mesh that largely represents the environment. The
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mesh generation provided a rough structure of the point cloud; however, it did
not closely match the true geometry of the real-world environment.

8.2 Future Work

This section identifies a few promising extensions that can be incorporated
into the system to improve its ability to reconstruct the environment.

• Correcting the drift can be improved by replacing the current motion
estimation technique with a more reliable motion estimation technique
such as a feature-based motion estimator or including sensor data from
an inertial motion unit (Huang and Bachrach, 2017).

• Correcting drift, can also be performed by incorporating loop closure
techniques that allow the system to correct itself after it views an area
that has already been seen (Ho and Newman, 2007).

• When the sensor revisits an area that has previously been extracted as
a point cloud, the point cloud could be integrated back into the TSDF
volume. This would allow old data to be updated and allow the system
to perform corrections on its position. If old data does not align with
the recently acquired sensor information, it could then be corrected.

• A preprocessing method to detect and correct reflections and spurious
IR light that might affect the sensor data, could improve point cloud
quality.

• To improve the mesh reconstruction, eliminating the need for the voxel
grid filter and adding post-processing of the point clouds to remove noise
could help to improve the results.

• Instead of using an RGB volume to associate a point with a colour, the
RGB images can be projected onto the generated mesh from the different
camera locations as a texture for the model. This should produce a higher
resolution on the RGB mesh for the colour.

8.3 Reproducibility

To facilitate reproducibility and future extensions, this system is provided as
an open-source C++ implementation of the Kinect Fusion algorithm, including
the hole-filling and moving volume extensions. It uses the CUDA framework
and is available at https://gitlab.com/pleased/3d-reconstruction under
the MIT license.
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Steinbrücker, F., Sturm, J. and Cremers, D. (2011). Real-time visual odometry
from dense RGB-D images. Proceedings of the IEEE International Confer-
ence on Computer Vision, pp. 719–722.

Stewart, J. (2007). Calculus. Cengage Learning. ISBN 9780495011606.

Strang, G. (2016). Linear Algebra. 5th edn. Wellesley-Cambridge Press.

Sturm, J., Engelhard, N., Endres, F., Burgard, W. and Cremers, D. (2012). A
benchmark for the evaluation of RGB-D SLAM systems. IEEE International
Conference on Intelligent Robots and Systems, pp. 573–580.

Terzopoulos, D. (1988). The computation of visible-surface representations.
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 10,
no. 4, pp. 417–438.

Thrun, S. (2005). Probabilistic Robotics. MIT Press, Cambridge, Mass. ISBN
9780262201629.

Thrun, S., Liu, Y., Koller, D., Ng, A.Y., Ghahramani, Z. and Durrant-Whyte,
H. (2004). Simultaneous localization and mapping with sparse extended
information filters. The International Journal of Robotics Research, vol. 23,
no. 7-8, pp. 693–716.

Tomasi, C. and Manduchi, R. (1998). Bilateral filtering for gray and color
images. Sixth International Conference on Computer Vision, pp. 839–846.

Triggs, B., McLauchlan, P.F., Hartley, R.I. and Fitzgibbon, A.W. (1999). Bun-
dle adjustment modern synthesis. In: International workshop on vision al-
gorithms, pp. 298–372. Springer.

Stellenbosch University  https://scholar.sun.ac.za



LIST OF REFERENCES 150

Weil, W., Hug, D., Baddeley, A., Capasso, V., Bárány, I., Villa, E. and Schnei-
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