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Abstract

The efficiency and effectiveness of fuel usage in a typical nuclear reactor is influenced by the
specific arrangement of available fuel assemblies in the reactor core positions. This arrangement
of assemblies is referred to as a fuel reload configuration and usually has to be determined anew
for each operational cycle of a reactor. Very often, multiple objectives are pursued simultaneously
when designing a reload configuration, especially in the context of nuclear research reactors. In
the multiobjective in-core fuel management optimisation (MICFMO) problem, the aim is to
identify a Pareto optimal set of compromise or trade-off reload configurations. Such a set may
then be presented to a decision maker (i.e. a nuclear reactor operator) for consideration so as
to select a preferred configuration.

In the first part of this dissertation, a scalarisation-based methodology for MICFMO is pro-
posed in order to address several shortcomings associated with the popular weighting method
often employed in the literature for solving the MICFMO problem. The proposed methodology
has been implemented in a reactor simulation code, called the OSCAR-4 system. In order to
demonstrate its practical applicability, the methodology is applied to solve several MICFMO
problem instances in the context of two research reactors.

In the second part of the dissertation, an extensive investigation is conducted into the suitability
of several multiobjective optimisation algorithms for solving the constrained MICFMO problem.
The computation time required to perform the investigation is reduced through the usage of
several artificial neural networks constructed in the dissertation for objective and constraint
function evaluations. Eight multiobjective metaheuristics are compared in the context of a
test suite of several MICFMO problem instances, based on the SAFARI-1 research reactor
in South Africa. The investigation reveals that the NSGA-II, the P-ACO algorithm and the
MOOCEM are generally the best-performing metaheuristics across the problem instances in the
test suite, while the MOVNS algorithm also performs well in the context of bi-objective problem
instances. As part of this investigation, a multiplicative penalty function (MPF) constraint
handling technique is also proposed and compared to an existing constraint handling technique,
called constrained-domination. The comparison reveals that the MPF technique is a competitive
alternative to constrained-domination.

In an attempt to raise the level of generality at which MICFMO may be performed and po-
tentially improve the quality of optimisation results, a multiobjective hyperheuristic, called the
AMALGAM method, is also considered in this dissertation. This hyperheuristic incorporates
multiple metaheuristic sub-algorithms simultaneously for optimisation. Testing reveals that the
AMALGAM method yields superior results in the majority of problem instances in the test
suite, thus achieving the dual goal of raising the level of generality and of yielding improved
optimisation results. The method has also been implemented in the OSCAR-4 system and is
applied to solve several MICFMO case study problem instances, based on two research reactors,
in order to demonstrate its practical applicability.

Finally, in the third part of this dissertation, a conceptual framework is proposed for an
optimisation-based personal decision support system, dedicated to MICFM. This framework may
serve as the basis for developing a computerised tool to aid nuclear reactor operators in designing
suitable reload configurations.
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Uittreksel

Die doeltreffendheid en doelmatigheid van brandstofverbruik in ’n tipiese kernreaktor word deur
die spesifieke rangskikking van beskikbare brandstofelemente in die laaiposisies van die reak-
tor bëınvloed. Hierdie rangskikking staan bekend as ’n brandstof herlaaikonfigurasie en word
gewoonlik opnuut bepaal vir elke operasionele siklus van ’n reaktor. Die gelyktydige optimering
van veelvuldige doele word dikwels tydens die ontwerp van ’n herlaaikonfigurasie nagestreef,
veral binne die konteks van navorsingsreaktore. Die doelwit van meerdoelige binne-kern brand-
stofbeheeroptimering (MBKBBO) is om ’n Pareto optimale versameling van herlaaikonfigurasie-
afruilings te identifiseer. Só ’n versameling mag dan vir oorweging (deur byvoorbeeld ’n kern-
reaktoroperateur) voorgelê word sodat ’n voorkeurkonfigurasie gekies kan word.

In die eerste gedeelte van hierdie proefskrif word ’n skalariseringsgebaseerde metodologie vir
MBKBBO voorgestel om verskeie tekortkominge in die gewilde gewigverswaringsmetode aan
te spreek. Laasgenoemde metode word gereeld in die literatuur gebruik om die MBKBBO
probleem op te los. Die voorgestelde metodologie is in ’n reaktorsimulasiestelsel, bekend as die
OSCAR-4 stelsel, gëımplementeer. Om die praktiese toepasbaarheid daarvan te demonstreer,
word die metodologie gebruik om ’n aantal MBKBBO probleemgevalle binne die konteks van
twee navorsingsreaktore op te los.

In die tweede gedeelte van die proefskrif word ’n uitgebreide ondersoek ingestel om die geskikt-
heid van verskeie meerdoelige optimeringsalgoritmes vir die oplos van die beperkte MBKBBO
probleem te bepaal. Die berekeningstyd wat vir die ondersoek benodig word, word verminder
deur die gebruik van kunsmatige neurale netwerke, wat in die proefskrif gekonstrueer word,
om doelfunksies en beperkings te evalueer. Agt meerdoelige metaheuristieke word binne die
konteks van verskeie MBKBBO toetsprobleemgevalle vergelyk wat op die SAFARI-1 navor-
singsreaktor in Suid-Afrika gebaseer is. Toetse dui daarop dat die NSGA-II, die P-ACO algo-
ritme en die MOOCEM oor die algemeen die beste oor al die toetsprobleemgevalle presteer. Die
MOVNS algoritme presteer ook goed in die konteks van tweedoelige probleemgevalle. ’n Ver-
menigvuldigende boetefunksie (VBF) beperkinghanteringstegniek word ook voorgestel en verge-
lyk met ’n bestaande tegniek bekend as beperkte dominasie. Daar word bevind dat the VBF
tegniek ’n mededingende alternatief tot beperkte dominasie is.

’n Poging word aangewend om die vlak van algemeenheid waarmee MBKBBO uitgevoer word,
te verhoog, asook om potensieel die kwaliteit van die optimeringsresultate te verbeter. ’n Meer-
doelige hiperheuristiek, bekend as die AMALGAM metode, word in die nastreef van hierdie twee
doelwitte oorweeg. Die metode funksioneer deur middel van die gelyktydige insluiting van ’n
aantal metaheuristieke deel-algoritmes. Toetse dui daarop dat the AMALGAM metode beter
resultate vir die meerderheid van toetsprobleme lewer, en dus word die bogenoemde twee doel-
witte bereik. Die metode is ook in the OSCAR-4 stelsel gëımplementeer en word gebruik om ’n
aantal MBKBBO gevallestudie probleemgevalle (binne die konteks van twee navorsingsreaktore)
op te los. Sodoende word die praktiese toepasbaarheid van die metode gedemonstreer.

In die derde deel van die proefskrif word ’n konseptuele raamwerk laastens vir ’n optimerings-
gebaseerde persoonlike besluitsteunstelsel gemik op MBKBB, voorgestel. Hierdie raamwerk mag
as grondslag dien vir die ontwikkeling van ’n gerekenariseerde hulpmiddel vir kernreaktoropera-
teurs om aanvaarbare herlaaikonfigurasies te ontwerp.
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In 1920, Ernest Rutherford first theorised the existence of a neutrally-charged atomic particle
which was in time to be called the neutron [178]. It was not until 1932, however, that the
neutron was finally discovered [50]. Following this discovery, scientists investigated the nuclear
reactions produced by bombarding various elements with this neutrally-charged particle. One
such experiment proved that bombarding uranium (a heavy element with an atomic number of
92) with neutrons produced, amongst others, isotopes of barium (a much lighter element with
an atomic number of 56) [50]. An explanation of this phenomenon suggested that the uranium
nucleus, after capturing a neutron, “divided itself into two nuclei of roughly equal size” [135].
This new nuclear reaction was referred to as fission and it was calculated that a large amount of
energy is emitted by it. Not long thereafter it was proved experimentally that a fission reaction
also emitted additional neutrons which could induce fission in other uranium nuclei [50]. This
discovery revealed that a self-sustaining chain reaction, in which significant amounts of energy
may be released, was possible.

1.1 Background

At 15:25 on 2 December 1942, the first man-made, controlled, self-sustaining nuclear chain
reaction was produced by Enrico Fermi and his colleagues [107]. The reaction was produced
in the world’s first nuclear reactor1, the Chicago Pile Number One (CP-1), which was built on
a squash court at the University of Chicago. The CP-1 reactor was literally a pile (hence the
name) of graphite blocks that enclosed pieces of uranium metal and uranium oxide as fuel [107].
An artist’s rendition of the CP-1 reactor and the events of 2 December 1942 may be found in
Figure 1.1.

1A nuclear reactor is a device in which a controlled nuclear fission chain reaction can be maintained [42].

1
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Figure 1.1: Artist’s rendition of the CP-1 reactor and the events of 2 December 1942 [6].

The successful experiment of the CP-1 reactor was a major step in the Manhattan Project, the
American research project during World War II that saw the development of the first atomic
(nuclear fission) bomb [49, 107]. Following the experiment, so-called production reactors were
quickly designed and built for the purpose of producing plutonium2 to be used in atomic bombs.
The X-10 reactor at Oak Ridge, Tennessee, was the first of these reactors and was built as
an interim measure until a large-scale production reactor at Hanford, Washington, could be
completed [51]. By 1945, sufficient amounts of plutonium had been produced for a nuclear
explosive device, and the corresponding weapon development and design were advanced enough
to proceed with a field test. Under the code name Trinity, the first atomic bomb successfully
exploded at Alamogordo, New Mexico at 05:30 on 16 July 1945 [49].

America was not the only country that designed and built nuclear reactors during those early
years. The first Canadian reactor was completed in 1945, whereas the Soviet Union achieved
their first controlled fission chain reaction in 1946 using the F-1 pile. Europe followed shortly
thereafter, with the first British and French nuclear reactors starting up in 1947 and 1948,
respectively [51].

After World War II, research efforts could also be focussed toward nuclear power generation,
although weapons development still continued. Significant efforts went into developing small,
compact reactors for maritime applications and it culminated in the launch of the first nuclear-
powered submarine in 1954, called the Nautilus (see Figure 1.2(a)). It was only in 1959, however,
that the first nuclear-powered surface vessel was put into service, namely the icebreaker Lenin
shown in Figure 1.2(b).

Countries also invested heavily into nuclear-powered electricity generation research, shifting the
focus away from plutonium production reactors towards commercial power reactors [51]. Several
power reactor types were developed during this research phase, a listing of which may be found
in [51]. Of these reactor types, the pressurised water reactor (PWR) and the boiling water
reactor (BWR) are arguably the most prominent. In a PWR, the reactor core is cooled by water
maintained at a high pressure of approximately 15 megapascal (so as to prevent boiling) [111]. In
a BWR, however, the reactor core is cooled by water which is then allowed to boil, thus producing
steam for a turbine [111]. Both reactor types are examples of thermal light water nuclear

2Plutonium was discovered in 1941 during an experiment in which uranium was bombarded by deuteron [52].
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(a) The submarine Nautilus (b) The icebreaker Lenin

Figure 1.2: The first nuclear-powered submarine and surface vessel (the Nautilus [207] and the ice-
breaker Lenin [5], respectively).

reactors because they primarily employ low-energy neutrons to induce fission, and utilise H2O
as coolant. The first nuclear reactor that produced electricity, in 1951, was the Experimental
Breeder Reactor Number 1, although it was not designed for electricity production. In that
respect, the world’s first nuclear-powered electricity generator was the Atom Mirny 1 (AM-1)
reactor at the Obnisk Nuclear Power Station and it produced electricity from 1954 until 1959.
Several other prototype nuclear power reactors were built all over the world during that time,
followed by large-scale commercial nuclear power plants in the decades thereafter. According
to the International Atomic Energy Agency (IAEA) there are 438 nuclear power reactors in
operation world-wide, as of 31 December 2014 [151].

Apart from power reactors, there are also numerous nuclear research reactors the world over.
The primary use of a research reactor is to serve as a neutron source for research and other
applications, as well as for training and education purposes. The research component generally
revolves around the study of material properties, whereas fields of application include medicine,
biology, agriculture, chemistry and new technologies [173]. Research reactors are much smaller
and simpler than power reactors, operating at lower temperatures and using less fuel. According
to the research reactor database of the IAEA [88], there are 246 research reactors currently
operational in the world (as of November 2015). A variety of different research reactor designs
prevail, with a common design being the pool-type reactor. In such a reactor, the core consists
of a cluster of fuel assemblies residing within a large open pool of water. There are typically
control rods and empty spaces (for experiments) between the fuel assemblies [173]. In Figure 1.3,
a picture of a TRIGA reactor3 core is presented as an example of a popular pool-type reactor.

Nuclear reactors are not without controversy, primarily due to safety concerns and public fears
following nuclear accidents. The two worst nuclear accidents in the world, according to the inter-
national nuclear event scale introduced by the IAEA, were those of Chernobyl and Fukushima.
In 1986, a combination of human error and a flawed reactor design led to the accident at the
Chernobyl nuclear power plant in Ukraine. A steam explosion and several fires thereafter caused
a significant release of radioactive material into the environment. The accident resulted in a
number of human deaths, an increased prevalence of thyriod cancer among the affected commu-
nities in the area, and the evacuation of more than 100 000 people [234]. More recently, in 2011,
a tsunami (caused by a major earthquake off the coast of Japan) hit the Fukushima Daiichi

3The acronym TRIGA stands for Training, Research, Isotopes, General Atomics [173].
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Figure 1.3: The core of a TRIGA nuclear reactor [66].

nuclear power plant with a wave height of approximately 15 meters. Although the reactors at
the plant withstood the earthquake and the hit from the wave, subsequent flooding disabled
almost all of the cooling systems. Three of the reactor cores ultimately melted as a result, and
radioactive material was released into the ocean and atmosphere. Fortunately, no nuclear-related
deaths have been recorded from the accident [234]. Despite the safety concerns, an analysis by
the Nuclear Energy Agency (NEA) in 2010 revealed that nuclear energy had the safest energy
chain4 during the period 1969–2000 when compared to fossil and hydro energy chains, measured
in terms of fatalities [149].

According to the IAEA, world-wide electrical generating capacity is estimated to almost double
by 2030 (from its 2014 level), with nuclear generating capacity likely accounting for approxi-
mately 5% of the total [54]. With seventy power reactors [151] and six research reactors [88]
under construction across the world as of 31 December 2014, the figures show that the future
holds much promise for nuclear energy.

1.2 Informal problem description

During the operation of a typical nuclear reactor, a fraction of fuel assemblies are periodically
replaced with fresh ones in order to sustain the fission chain reaction occurring in the reactor
core. This time period between the reloading of fuel is referred to as an operating cycle for the
reactor. The efficiency and effectiveness of fuel usage in a reactor is influenced by the specific
arrangement of available fuel assemblies in the reactor core positions. This arrangement of
assemblies is referred to as a fuel reload configuration (or fuel loading pattern). In general terms,
a reload configuration should be designed with the aim to optimise some reactor performance
objective(s), subject to operational and/or safety constraints. The problem of finding such
an optimal fuel reload configuration for a nuclear reactor core is known as the in-core fuel
management optimisation (ICFMO) problem.

A topic closely related to ICFMO is known as out-of-core fuel management, and it generally
entails making long-term (i.e. multi-cycle) fuel management decisions. These include, for exam-
ple, determination of the operational cycle length, as well as the number and type of fresh fuel
assemblies to consider [217]. This topic, however, is not considered in this dissertation.

4According to the NEA report, “an energy chain comprises exploration, extraction, transport, storage, power
and/or heat generation, transmission, local distribution, waste treatment and disposal” [149].
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The ICFMO problem is a difficult nonlinear combinatorial optimisation problem which requires
time-consuming reactor core simulation calculations in order to evaluate the quality of potential
solutions [217, 218]. ICFMO is also very context-specific given the various types of reactors
currently in operation across the world (differing, for example, in their design, size, geometry,
fuel type, utilisation requirements, and so forth).

1.2.1 ICFMO within the context of power reactors and research reactors

In the context of power reactors, safety and the economical usage of fuel are two of the primary
objectives pursued in the design of a reload configuration. Consider, for example, a typical
PWR with three fuel regions5. These regions are generally classified according to the number
of operating cycles during which the assemblies have remained in the core e.g. once-burned or
twice-burned. Otherwise, if the fuel assemblies are fresh, the region is classified as having feed
assemblies.

A very popular reload configuration for PWR cores is known as an out-in checkerboard design.
In this design, feed assemblies are loaded into the peripheral core positions. In order to flatten
the (radial) power profile across the core and prevent a power peak from occurring, the burned
regions’ assemblies are then loaded according to a “checkerboard” pattern in the interior posi-
tions of the core. As such, this design is motivated from the point of view of a safety-related
objective. An example of a three-region out-in checkerboard design is presented in Figure 1.4(a).
Note that the central fuel assembly is treated separately. According to Turinsky [217], this reload
configuration was the preferred design for many years due to its effectiveness in respect of min-
imising power peaking within a reactor core. A major drawback of the design, however, is the
fact that large numbers of neutrons leak out of the core. Less energy is therefore extracted from
the fuel, resulting in a detrimental effect in the economical usage thereof.

Feed

Once-burned

Twice-burned

Central assembly

(a) An out-in checkerboard reload con-
figuration (reproduced from [195])

Feed

Once-burned

Twice-burned

Central assembly

(b) An L3P reload configuration
(adapted from [217])

Figure 1.4: Examples of PWR reload configurations.

5A subset of fuel assemblies that are loaded into the core together is known as a fuel region [217].
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More recently, a reduction in neutron leakage out of the core has been pursued in an attempt to
improve the economical usage of fuel, as well as to reduce the radiation damage inflicted to the
reactor vessel. This may be achieved by loading the feed assemblies away from the peripheral
core positions. A compromise, however, has to be struck such that power peaking considerations
are still adhered to in the interior of the core. The resulting reload configuration is referred to
as a low leakage loading pattern (L3P) design. In such a design, some of the most-burned fuel
assemblies are loaded into the peripheral core positions (i.e. the high leakage positions). The
majority of feed assemblies are then loaded adjacent to the aforementioned burned ones. Often,
these feed assemblies are referred to as a ring of fire since they tend to operate at the highest
power levels [217]. The remaining assemblies are finally loaded according to a checkerboard
pattern in the interior positions of the core. Preference is, however, given to loading a most-
burned assembly adjacent to a feed assembly. An example of a three-region L3P design is
presented in Figure 1.4(b).

In the context of research reactors, other objectives are often pursued since these reactors serve
primarily as neutron sources for research and experimental purposes, as well as other irradiation
applications. Accordingly, the design approaches adopted in power reactor reload configurations
are not necessarily transferable to research reactors. Further complicating this observation is
the fact that research reactor core geometries are often asymmetric, with additional (non-fuel)
components also present throughout the core. This results in core layouts that are much more
“heterogeneous” than those of power reactors, thus contributing to the difficulty of designing
good reload configurations. The McMaster Nuclear Reactor’s reference core configuration, as
specified in an IAEA benchmarking database [175], is presented in Figure 1.5 as an example of
such an heterogeneous core layout.

Fuel loading positions

Other component positions

Figure 1.5: The McMaster Nuclear Reactor reference core configuration (adapted from [175]).

1.2.2 The South African context

There are three nuclear reactors currently in operation in South Africa. The Koeberg Nuclear
Power Station houses two power reactors of PWR type, and is operated by the state-owned
utility Eskom. The third is a research reactor (of tank-in-pool type) called SAFARI-1, which
is an acronym for South Africa Fundamental Atomic Research Installation One. The reactor is
owned and operated by the South African Nuclear Energy Corporation SOC Limited (Necsa)
at their Pelindaba site. Photographs of the Koeberg power station and the Pelindaba site are
presented in Figure 1.6.

SAFARI-1 is widely regarded as one of the highest utilised research reactors in the world,
achieving an average operational availability of more than 300 days per year [145]. The reactor’s
utilisation is strongly focussed towards commercial irradiation services, as well as nuclear re-
search, training and materials testing activities. These different goals are often conflicting and,
in conjunction with safety and operational constraints, they present a particular challenge to a
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(a) The Koeberg Nuclear Power Station [161] (b) The Pelindaba site, home to the
SAFARI-1 reactor [146]

Figure 1.6: South African nuclear reactors.

SAFARI-1 operator tasked with designing an appropriate reload configuration. This challenge
is, however, not restricted to SAFARI-1 as there are other research reactors in the rest of the
world operating under similar conditions (i.e. with multipurpose utilisation goals). Accordingly,
finding an “optimal” reload configuration for SAFARI-1 and similar-type reactors requires con-
sideration of multiple objectives simultaneously. These multiple objectives may also change
from one operational cycle to the next, when a multipurpose research reactor has to respond to
a change in its research or commercial demands. Flexibility in the reload configuration design,
on a cycle-to-cycle basis, is therefore essential for the successful operation of such a reactor so
as to accommodate its utilisation requirements.

This dissertation is concerned with the topic of constrained multiobjective in-core fuel man-
agement optimisation (MICFMO) for nuclear research reactors, with a particular emphasis on
the SAFARI-1 reactor in South Africa. In multiobjective optimisation (MOO), the aim is to
identify a set of compromise or trade-off solutions, based on the notion of Pareto optimality.
Once such a set of solutions has been identified, it may be presented to a decision maker (i.e.
a nuclear reactor operator) for consideration so as to select a preferred solution. Accordingly,
optimisation-based decision support may be rendered to a reactor operator tasked with designing
a reload configuration by solving the particular MICFMO problem instance.

1.3 Prelude to this dissertation

One of the tools employed at Necsa to provide calculation support to the SAFARI-1 reactor
is the in house-developed reactor core calculation code system OSCAR-4. The name is an
acronym for Overall System for the Calculation of Reactors, version 4. There was an initial
effort during 2009 and 2010 by the developers of OSCAR-4 to include MICFMO capabilities in
the system as a decision support feature. That effort was, however, put on hold because the
optimisation methodology employed exhibited several shortcomings. The first of these was the
use of a rudimentary scalarising objective function in which minimisation objectives and the
reciprocals of maximisation objectives were aggregated together by means of a linear weighted
sum. Furthermore, the notion of Pareto optimality was not considered in the methodology and,
as a result, it did not yield a set of trade-off solutions. The final shortcoming was the lack of
a constraint handling technique. A metaheuristic, called harmony search [64], was employed as
the solution technique in the methodology.
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There was renewed interest in 2012 to implement a working version of the MICFMO decision sup-
port feature in OSCAR-4 [182]. Some of the shortcomings in the original optimisation method-
ology were therefore addressed. In particular, the scalarising objective function was altered
slightly and an additive penalty function was incorporated as a constraint handling technique.
In the altered scalarising objective function, a maximisation objective was transformed into a
minimisation objective simply by multiplying it by −1 (instead of taking its reciprocal). Scaling
factors were further introduced for all objectives in order to create dimensionless function values
that are equally scaled by order of magnitude. These scaled objectives were aggregated together,
as before, by means of a linear weighted sum. In the additive penalty function, penalty values
related to the magnitude of the constraint violations were calculated and subsequently added to
the scalarising objective function. The harmony search algorithm was employed without modi-
fication, again, as the solution technique in the methodology. The notion of Pareto optimality,
however, was still not incorporated during optimisation.

The author of this dissertation inherited the aforementioned working version of the MICFMO
decision support feature in the OSCAR-4 system. The feature was, however, recognised to be
inadequate for rendering advanced MICFMO decision support to users of the system. Two
reasons for this are the naive scalarising objective function and the lack of incorporating the
notion of Pareto optimality during optimisation. A priority in this dissertation is therefore to
address the remaining shortcomings present in this inherited methodology. Another priority is
to investigate alternative multiobjective computational methods in terms of their suitability in
finding sets of high-quality trade-off solutions to the MICFMO problem. In doing so, state-
of-the-art methods may be incorporated into the OSCAR-4 feature, thus enabling it to render
advanced MICFMO decision support.

1.4 Dissertation scope and objectives

The following twelve objectives are pursued in this dissertation:

I To provide an introduction to nuclear reactor analysis and relevant information pertaining
to nuclear reactors so as to garner a basic understanding of the concepts and terminology
employed in the field.

II To perform a literature survey on the topic of ICFMO, focussing on:

(a) Popular objective functions and constraints adopted in existing model formulations.

(b) Typical solution techniques previously employed to solve the problem (in the contexts
of both single-objective and multiobjective optimisation).

(c) Approaches adopted to reduce the computational burden associated with ICFMO.

III To formulate a suitable model for the MICFMO problem.

IV To propose a scalarisation-based approach to MICFMO in order to address the shortcom-
ings of the inherited methodology in the OSCAR-4 system, to implement this approach
within the system, and to compare its effectiveness in solving MICFMO problem instances
to those of current approaches employed at different research reactors.

V To construct surrogate calculation models for predicting SAFARI-1 reactor core parameters
by using artificial neural networks.
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VI To establish a test suite of several constrained MICFMO problem instances, based on the
SAFARI-1 reactor.

VII To compare several multiobjective metaheuristics for solving the constrained MICFMO
problem in a structured and statistically sound manner based on the test suite of problem
instances established in pursuit of Objective VI.

VIII To propose a new (multiplicative) penalty function constraint handling technique for MOO
and compare it to an existing technique called constrained-domination [34] in the context
of the test suite established in pursuit of Objective VI.

IX To investigate the suitability of several variations of a multiobjective hyperheuristic known
as the AMALGAM6 method [226] in terms of solving the constrained MICFMO problem
by incorporating the findings of Objective VII into the method.

X To implement the preferred variation of the AMALGAM method within the OSCAR-4
system and to apply it to carry out different research reactor MICFMO case studies.

XI To propose a generic optimisation-based decision support system framework for multiob-
jective in-core fuel management.

XII To propose follow-up work related to the contents of this dissertation which may be pursued
in the future.

The scope of this dissertation is restricted to the MICFMO problem found within the broader
context of nuclear fuel management, and therefore excludes out-of-core fuel management opti-
misation, as well as any fuel cycle7 optimisation. Only single-cycle optimisation is considered
within the context of thermal light water nuclear research reactors.

Utilisation of a reactor core calculation code system in this dissertation is restricted to that
of the OSCAR-4 system, involving only neutronic calculations. A full understanding, and an
evaluation of the accuracy and appropriateness of the system (i.e. the mathematical models
and their associated numerical solution schemes) are considered to fall outside the scope of this
dissertation. Accordingly, the OSCAR-4 system is employed throughout the dissertation as a
“black-box” function evaluator during MICFMO.

The specific values of operational targets and/or limits for the nuclear reactors considered in
this dissertation are proprietary knowledge and are therefore not divulged. All computational
results reported in this dissertation are, however, scaled with respect to these values. In order
to allow for the recovery of true values from the computational results, the scaling constants are
documented in a confidential report to be kept at Necsa [181].

Finally, only a conceptual framework of a decision support system for multiobjective in-core fuel
management is considered in this dissertation. Populating the components of the system, as
well as the subsequent implementation of the system on a personal computer, falls outside the
scope of this dissertation.

6AMALGAM is an acronym for a multi-algorithm, genetically adaptive multiobjective.
7The fuel cycle mentioned here refers to the overall life-cycle of nuclear fuel, e.g. from the mining of raw

materials through to nuclear waste disposal [217].
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1.5 Dissertation organisation

This dissertation comprises eleven further chapters, five appendices and a bibliography, following
this introductory chapter. In Chapter 2, the reader is introduced to some of the fundamental
concepts and terminology found in nuclear reactor analysis and theory. The most important
nuclear reactions are briefly described, followed by a more detailed discussion on nuclear fission
and its chain reaction. A brief overview of the basic components of a nuclear reactor core is also
presented. The chapter closes with a description of the primary neutronic aspects of interest
within nuclear reactor analysis, as well as a discussion on the necessity of reactor core calculation
code systems.

Chapter 3 contains a survey of the relevant literature pertaining to ICFMO. The aim is to
provide the reader with the necessary background knowledge required to proceed with new
research towards ICFMO in an informed manner. General ICFMO modelling considerations
and an historical overview of early research in the field are presented first. Thereafter, the
most popular objective functions and constraints adopted in model formulations for the ICFMO
problem are mentioned. The complexity in respect of the ICFMO problem’s decision space
is also elaborated upon. In the next section, a brief description of solution techniques that
are typically applied to solve the problem is presented, with a particular emphasis placed on
metaheuristics. The most prominent single- and multiobjective metaheuristics are described in
some detail. Finally, a brief discussion follows on different approaches considered in the literature
for reducing the computational burden associated with solving instances of the ICFMO problem.

Chapter 4 opens with a brief discussion on the topic of nuclear fuel management, thus placing
ICFMO in context within this broader topic. Several problem assumptions are elucidated before
the optimisation model adopted in this dissertation for the MICFMO problem is formulated.
The reactor core calculation code system, OSCAR-4, which is utilised in this dissertation is also
briefly described. In the next sections, two nuclear research reactors, namely the SAFARI-1
and HOR reactors, are discussed in detail since they are considered as case studies later in this
dissertation. Typical objectives and constraints associated with each reactor for the MICFMO
problem are specified, while a description of the current reload configuration design approach
followed at each reactor is also presented.

In the first section of Chapter 5, the reader is provided with a detailed description of the
notion of Pareto optimality and other related concepts in order to gain a better understand-
ing of the MOO modelling process and solution techniques employed in the dissertation. The
popularly-employed weighting method of incorporating multiple objectives into a single func-
tion is described next and its shortcomings are pointed out. Thereafter, a scalarisation-based
methodology for MICFMO is proposed in order to address the shortcomings present in the ex-
isting optimisation methodology within the OSCAR-4 system. The applicability of the proposed
methodology is then demonstrated on problem instances within the context of the SAFARI-1
and HOR reactors.

In Chapter 6, several artificial neural networks are constructed for the prediction of SAFARI-1
core parameters corresponding to various ICFMO objectives and constraints. The chapter opens
with a motivation of the necessity of these neural networks. Thereafter, general concepts per-
taining to artificial neural networks are presented before moving on to a more comprehensive
description of multilayer feedforward neural networks. Details are provided on the construction
of a suite of neural networks for the SAFARI-1 core parameters, before the chapter closes with
numerical results obtained during the training and application of the networks, as well as a
discussion of these results.
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In Chapter 7, two constraint handling techniques (of which one is newly-proposed in this dis-
sertation) and eight multiobjective metaheuristics, to be employed in a comparative study later
in the dissertation, are discussed. A pseudo-code listing of each metaheuristic is also provided.
The chapter closes with a discussion on the topic of performance assessment of multiobjective
optimisation algorithms and two performance indicators are identified for use in this dissertation.

In the first section of Chapter 8, a test suite of constrained MICFMO problem instances, based on
the SAFARI-1 reactor, is created for use in the algorithmic comparative studies to be conducted
in the chapter. The experimental design and the nonparametric statistical testing procedure
followed in these studies are then described. Finally, the numerical results of the constraint
handling technique comparison and that of the multiobjective metaheuristic comparisons (in
the context of the MICFMO test suite) are presented and discussed at the close of the chapter.

In Chapter 9, the AMALGAM method, which is a multiobjective hyperheuristic that incorpo-
rates multiple sub-algorithms simultaneously, is investigated in terms of its ability to conduct
constrained MICFMO in the context of the aforementioned test suite. The chapter opens with a
discussion on the general working of the AMALGAM method, after which four variants thereof
are considered for comprehensive investigation in a two-stage comparative study. During the
first stage, the variants of the AMALGAM method are compared to one another in order to
select a preferred variant. Then, during the second stage, that preferred variant is compared
with its constituent sub-algorithms. The numerical results of these studies are presented and
discussed at the close of the chapter.

The preferred variant of the AMALGAM method identified in Chapter 9 has been implemented
in the OSCAR-4 system. In order to demonstrate the practical applicability of the method, it
is employed in Chapter 10 to solve a variety of case study problem instances in the context of
the SAFARI-1 and HOR research reactors. The numerical results thus obtained are presented
in this chapter.

In Chapter 11, a conceptual framework is proposed for an optimisation-based personal decision
support system, dedicated to MICFM. The chapter opens with a motivation for the proposal,
along with some basic background information relating to decision support systems. Thereafter,
the proposed framework is presented and each constituent component of the decision support
system is discussed in some detail. Several suggestions are also put forward for populating the
components of the system.

Finally, the dissertation closes in Chapter 12 with a summary of the work contained therein, an
appraisal of the contributions of the dissertation, and suggestions for related future work.
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A brief introduction to nuclear
reactor analysis
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In this chapter, the reader is introduced to some of the fundamental concepts and terminology
found in nuclear reactor analysis and theory. The necessary background information pertain-
ing to nuclear reactors is provided so as to gain a better understanding of the characteristics
of ICFMO and its underlying processes. This information is crucial for the interpretation of
objectives, constraints and solutions to the ICFMO problem.

2.1 Introductory concepts

An atom contains a positively-charged nucleus composed of protons and neutrons, collectively
known as nucleons. The nucleus is surrounded by a cloud of negatively-charged electrons [115].
Following standard notation, the number of protons in a nucleus, which is called the atomic
number, is denoted by Z. Similarly, the total number of nucleons, called the atomic mass
number, is denoted by A [115]. Finally, the number of neutrons is denoted by N .

The various species of nuclei containing particular numbers of protons and neutrons are referred
to as nuclides [202]. A specific nuclide is denoted by the symbol AZX, where X is the chemical
symbol from the periodic table for the element in question. For example, the notations 1

1H and
238
92U refer to hydrogen and uranium nuclides, respectively. Since the chemical symbol already

specifies the value of Z, it is often omitted (i.e. 1H and 238U are written instead of 1
1H and

13
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238
92U, respectively). Atoms whose nuclei consist of the same atomic number but different atomic

mass numbers (i.e. the same Z but a different A and thus a different number of neutrons N)
are called isotopes. For example, the naturally occuring isotopes of uranium are 234U, 235U and
238U (corresponding to Z = 92 as well as N = 142, 143 and 146, respectively).

There are essentially two types of nuclear reactions that are important in the study of nuclear
reactors [42]. The first is spontaneous disintegrations of nuclei whereas the second is reactions
that are due to collisions between nuclei and/or atomic particles. These two types of reactions
are further elaborated upon in the remainder of this section.

2.1.1 Radioactive decay

Certain nuclei have too many or too few neutrons for a given number of protons and may
spontaneously undergo a transformation into another nucleus [111]. Such a transformation
is usually accompanied by energetic particle emissions. These nuclei are referred to as being
unstable, and the spontaneous nuclear transformation is called radioactive decay.

The decay process of any nucleus is governed by a single fundamental law based on experimental
observation. According to this law, the probability that a nucleus will decay within a given time
period is essentially a constant, independent of time (i.e. the age of the nucleus) and only
dependent on the type of nucleus itself [42]. Consider a sample of a radioactive material that
decays. The total number of transformations/disintegrations occurring within the sample during
a unit time is called the activity of the sample. Activity is usually measured in units of curies,
where one curie is defined as 3.7× 1010 disintegrations per second. The activity of a radioactive
sample decreases exponentially over time. The period of time during which the activity of a
sample is reduced by a factor 2 is called the half-life of the sample.

2.1.2 Nuclear collision reactions

The focus of this section is on collisions between neutrons and nuclei. Since neutrons are
neutrally charged particles, they are neither affected by the positively charged nucleus of an
atom nor the negatively charged electrons surrounding the nucleus. Neutrons therefore pass
through the electron cloud of an atom and (potentially) interact directly with the nucleus. The
interactions include, but are not limited to, the following:

Radiative capture. In this type of reaction, a neutron is captured/absorbed by the nucleus
during a collision and a new nucleus of atomic mass number A+1 is formed. The reaction
is also accompanied by the emission of gamma rays, which are high-energy photons.

Scattering. A neutron simply scatters off from the nucleus during a collision in this type of
reaction. When the energy state of the nucleus remains the same after the collision, the
reaction is referred to as elastic scattering. If, however, the energy state of nucleus is
excited, the reaction is referred to as inelastic scattering. A gamma ray will then be
emitted by such a nucleus.

Nuclear fission. As mentioned in Chapter 1, when a neutron interacts with the nucleus of
certain nuclides, it may cause the nucleus to split apart into lighter nuclei, thus undergoing
fission. These fission products/fragments are also accompanied by the release of several
neutrons, typically two or three, and a significant amount of energy (approximately 200
MeV). The additional neutrons that are released may then potentially induce more fission
reactions, thus leading to a chain reaction. The energy released during such chain reactions
may be utilised for practical applications.
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2.1.3 Nuclear cross-sections

The probability of a neutron interacting with some nucleus is characterised by a quantity known
as a cross-section. The quantity is typically defined by the following experiment1:

Consider a beam of neutrons travelling at the same speed (i.e. with the same energy) in the same
direction. Suppose this beam strikes a very thin target of material (assumed to be sufficiently
thin such that no nuclei shield other nuclei from the neutron beam) uniformly. Then, a certain
number of neutrons will pass straight through the target of material without interacting with
the nuclei, whereas some neutrons will interact.

Let I be the beam intensity, defined as the number of neutrons per unit area per unit time
striking the target. Furthermore, let NA be the number of nuclei per unit area in the target of
material. Then, the rate R at which neutrons interact with the target is proportional to I and
NA. This rate, along with the corresponding units of measurement, may be written as

R = σ I NA ,[
#

cm2·s

]
[cm2]

[
#

cm2·s

] [
#

cm2

]

where σ is the proportionality constant, and is referred to as the cross-section. It is also known
as the microscopic cross-section. Each of reactions described in §2.1.2, as well as other nuclear
reactions not specified there, is associated with its own characteristic cross-section. Therefore,
fission is characterised by a fission cross-section σf , scattering by a scattering cross-section σs,
and so forth. There is a strong dependence between these cross-sections on the incident neutron
energy [202].

Let NV denote the number density of a substance (i.e. the number of atoms or molecules
contained within a unit volume of some substance). The product between a number density and
a cross-section is referred to as a macroscopic cross-section, and is denoted by Σ (in units of
cm−1) such that Σ = NV σ. As stated in Duderstadt and Hamilton [42], “it is natural to interpret
Σ as the probability per unit path length travelled that the neutron will undergo a reaction with
a nucleus in the sample.” The macroscopic cross-section occurs frequently in nuclear reactor
physics and is used, for example, in the neutron transport equation, which is described later in
this chapter.

2.2 Nuclear fission and its chain reaction

The nuclear fission reaction may be viewed as the absorption of a neutron by a nucleus, resulting
in a compound nucleus having an increased energy state. When this increased energy is sufficient
to split the nucleus apart, fission is induced. In certain heavy nuclei, such as 233U, 235U, 239Pu
and 241Pu, the incident neutron may even have zero kinetic energy and induce fission [111]. Such
nuclides are called fissile nuclides and they represent the primary fuel used in nuclear reactors
because they can sustain a fission chain reaction. For most heavy nuclides, the increased energy
state following the absorption of a neutron is insufficient to induce fission. If, however, the
neutron itself has sufficient kinetic energy before it is absorbed, certain nuclei may be induced
to fission. Nuclides like 232Th, 238U and 240Pu, which can be fissioned by such energetic neutrons,
are called fissionable nuclides [111]. Fissionable nuclides cannot sustain a stable fission chain
reaction alone, and must be used in conjunction with fissile nuclides to act as nuclear fuel.

1This description to follow has been reproduced from Duderstadt and Hamilton [42].
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16 Chapter 2. A brief introduction to nuclear reactor analysis

The only fissile nuclide found in nature is 235U and it only occurs as approximately 0.711% of
natural uranium, which is primarily composed of 238U [42]. Although certain nuclear reactors
can operate using natural uranium as fuel, the majority of present-day reactors are fueled with
enriched uranium. This means that the percentage of 235U has been increased (by artificial
means) above its natural value. If the enriched uranium contains less than 20% of 235U it
is classified as low enriched uranium (LEU), whereas highly enriched uranium (HEU) contains
more than 20% of 235U. Fissile nuclides can also be obtained from so-called fertile nuclides which,
after the absorbtion of a neutron, are transformed through a series of radioactive disintegrations
(i.e. decays) into a fissile nuclide [42].

The fission chain reactions maintained in nuclear reactors are made possible by the release of
neutrons during a fission reaction, thus allowing these fission neutrons to induce more fission
reactions. A simple diagrammatical representation of a fission chain reaction is presented in
Figure 2.1.

energy

235U 235U
neutron

neutron

neutron

neutron

neutron

fission fragment fission fragment

energy

235U

energy

fission
fragment

fission
fragment

Figure 2.1: A simple diagrammatical representation of a fission chain reaction.

In order to maintain a stable fission chain reaction, a nuclear reactor has to be configured so
that exactly one neutron emitted during each fission will induce another fission reaction. The
remaining neutrons emitted during fission should either be absorbed in capture reactions, or
should simply be allowed to leak out of the system. A nuclear chain reaction can be characterised
quantitatively in terms of its multiplication factor, denoted by k. This factor is defined as the
ratio of the number of fission neutrons in one generation to the number of fission neutrons in
the preceding generation [42].

According to the above definition, if k = 1, the number of neutrons in any two consecutive
fission generations remains constant and the chain reaction will therefore be time-independent.
Such a system, in which the chain reaction is characterised by k = 1, is said to be critical. If,
however, k > 1, the number of neutrons increases from generation to generation, thus leading to
a chain reaction that grows without bound. In this case, the system is said to be supercritical.
Similarly, if k < 1, the number of neutrons decreases in each successive generation and the chain
reaction will ultimately die out. Such a system is said to be subcritical.

In a nuclear reactor, the value of k can be adjusted in order to control the chain reaction.
Suppose, for example, the neutron population in the reactor has to be increased (i.e. the reactor
power has to be increased). The value of k can temporarily be increased to above unity, thus
making the reactor supercritical. When the desired neutron population/power level has been
achieved, the value of k may be adjusted back to unity so that the reactor becomes critical again,
at the new population/power level. This adjustment of the value of k is known as nuclear reactor
control and is typically achieved by inserting neutron absorbing material into or removing such
material from the reactor.
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2.3. Basic components of a nuclear reactor core 17

A quantity closely related to the multiplication factor is the core reactivity which is denoted by
ρ and defined as

ρ =
k − 1

k
.

Essentially, reactivity measures the deviation of the core multiplication from unity (i.e. from its
critical value).

2.3 Basic components of a nuclear reactor core

As mentioned in §2.1.3, cross-sections depend on the incident neutron energy. In a nuclear
reactor core, the energies of neutrons may vary from as much as 10 MeV (typically the maximum
energy of a fission neutron) down to 0.001 eV after having been subjected to several scattering
collisions with nuclei [115]. It is known that the fission cross-section σf is typically largest at
low energies. As such, a fission chain reaction is easier to maintain using “slow” low-energy
neutrons as opposed to “fast” energetic neutrons. These low-energy neutrons are also known
as thermal neutrons, because they are in thermal equilibrium with the surrounding material.
Nuclear reactors that primarily employ thermal neutrons to induce fission are referred to as
thermal reactors.

In general, the basic components of a thermal nuclear reactor core are: fuel assemblies, control
rods, a moderator, coolant and a reflector [111]. These components are usually located within a
reactor vessel made of a steel alloy, for example, although some reactor designs do not include
a vessel. In order to maintain the core geometry, some of these components are placed on a
support structure such as a grid plate. As an example, the top view of a VVER-1000 nuclear
reactor core is shown in Figure 2.2. The figure shows several fuel assemblies in the middle, the
grid plate at the bottom and the reflector on the periphery, all within the reactor vessel.

Grid plate

Fuel assembly

Reflector

Reactor vessel

Figure 2.2: Top view of a VVER-1000 nuclear reactor core [150].

A fuel assembly contains the fissile/fissionable/fertile material and is typically composed of
smaller, sealed units of fuel (such as cylindrical tubes or plates) that are bundled together.
Control rods are usually movable pieces of neutron absorbing material such as boron, cadmium
or gadolinium. As mentioned earlier, these rods are used to control the chain reaction (i.e. the
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value of k) in a reactor. Since high-energy neutrons are emitted during fission, they have to be
slowed down (or moderated) to the thermal energy range by means of scattering collisions. A
moderator is introduced into a thermal reactor for this purpose, and is typically a material of low
atomic mass number such as light water (H2O), heavy water (D2O), graphite or beryllium [111].
Given that a large amount of heat is also generated during fission, a reactor has to be cooled
continuously. Accordingly, a coolant is circulated through the reactor to remove this heat.
Examples of liquid coolant are water or sodium, while helium or carbon dioxide may be employed
as gaseous coolants. A reflector may finally be placed on the periphery of a core in order to
reflect (or scatter) neutrons back towards the core, instead of allowing them to leak out and
being lost to the system. Note that the same material may fulfill more than one purpose in a
reactor. Water may, for example, be used as both moderator and coolant, while beryllium may
be used as reflector and an additional moderator.

It should always be remembered that a nuclear reactor is a significant source of radiation.
Therefore, a reactor core will always have shielding components and/or material in order to
protect operating personnel, as well as other reactor components, from this harmful radiation.

2.4 Neutron transport

According to Duderstadt and Hamilton [42], the central problem of nuclear reactor theory is to
determine the distribution of neutrons in a given reactor. The reason for this is simply that the
rate at which various nuclear reactions occur inside a nuclear reactor is dictated by the neutron
distribution.

In a nuclear reactor, the distribution of neutrons is governed by the process of neutron transport,
i.e. the motion of neutrons and their interaction with matter [202]. This movement of any given
neutron is rather complex since it undergoes repeated collisions with other nuclei, before being
absorbed or leaking out of the reactor. In many reactor studies, however, neutron motion is
approximated by modelling it as a diffusion process (i.e. it is assumed that neutrons diffuse
from regions of high neutron concentration to regions of low neutron concentration). While
the derivation and analysis of the characteristic equations associated with neutron transport
and diffusion fall beyond the scope of this dissertation, a brief overview of these equations is
nevertheless presented here for the sake of completeness2.

The behaviour or state of a neutron is characterised by its position r, energy E, direction of
motion Ω and the observed time t. A population of neutrons may thus be represented by a
distribution, called the angular neutron density, which is denoted by n(r, E,Ω, t). Accordingly,
the expected number of neutrons at time t, in a volume d3r about r, having energy dE about
E, and moving in a solid angle d2Ω about Ω is given by n(r, E,Ω, t) d3r dE d2Ω.

The angular neutron flux, denoted by φ(r, E,Ω, t), is defined as the product of the neutron
speed vn and the angular neutron density. Therefore,

φ(r, E,Ω, t) = vnn(r, E,Ω, t). (2.1)

The maximum information about the population of neutrons is given by this angular flux [73].
Integrating over all angles of Ω in (2.1) yields the scalar neutron flux, denoted by φ(r, E, t). If
steady-state (i.e. time-independent) conditions are assumed, then the dependence on t in each
of the aforementioned flux quantities simply drops away.

2This overview is sourced from Duderstadt and Hamilton [42], Lamarsh and Baratta [111], Stacey [202], and
Hébert [73].

Stellenbosch University  https://scholar.sun.ac.za



2.4. Neutron transport 19

There are several different forms in which the neutron transport equation can be expressed. The
integro-differential form of the steady-state neutron transport equation is given by

nett leakage︷ ︸︸ ︷
Ω · ∇φ(r, E,Ω) +

collision loss︷ ︸︸ ︷
Σt(r, E)φ(r, E,Ω)

=

∫ ∞

0
dE′

∫

4π
Σs(r,Ω

′ ·Ω, E′ → E)φ(r, E′,Ω′) dΩ′

︸ ︷︷ ︸
inscattering

+S(r, E,Ω)

︸ ︷︷ ︸
source term

, (2.2)

where Σt and Σs are the macroscopic total and scattering cross-sections, respectively, and
S(r, E,Ω) is a source term. The unknown variable to solve for is therefore the angular neu-
tron flux. Appropriate boundary and initial conditions for (2.2) complete the specification of a
problem instance.

The derivation of the neutron transport equation is based on the principle of neutron conserva-
tion (i.e. balancing the gain and loss of neutrons in an arbitrary region d3r dE d2Ω of so-called
phase space (r, E,Ω) in some system). Such a region of phase space can gain neutrons by means
of any neutron source in the region. It can also gain neutrons when they flow into the region
through the surface of d3r. Finally, when neutrons, having a different energy E′ and/or direction
of motion Ω′, undergo a scattering collision in d3r such that E′ → E and/or Ω′ → Ω, then the
region also gains neutrons. This process is known as inscattering. Similarly, neutrons can be
lost to the region of phase space when they leak out of it through the surface of d3r, as well as
when they undergo collision reactions. A collision either leads to the absorption of a neutron,
or it results in a scattering collision, in which case E → E′ and/or Ω→ Ω′, and the neutron is
lost to the region (i.e. the opposite of inscattering).

Accordingly, the rate of change of the number of neutrons in a region of phase space is equal
to the rate at which neutrons enter the region from a source, together with the rate at which
neutrons flow into the region through the surface of the volume, less the rate at which neutrons
leak out of the region, together with the rate at which neutrons enter the region by means of
inscattering, less the rate at which neutrons are absorbed or scattered into energies or directions
not part of the region of phase space. This neutron balance relation is captured in (2.2).

In the diffusion approximation of neutron transport, Fick’s law is employed during its derivation.
It is therefore assumed that the movement of neutrons is similar to the movement of gas particles.
According to Fick’s law, then, neutrons will “flow” from a region of high neutron concentration to
a region of low concentration at a rate which is proportional to the gradient of the concentration.
There exists a rigorous mathematical derivation of the neutron diffusion model that starts from
the transport equation, as well as a more “heuristic physical derivation.” The reader is referred
to [42] for details on these derivations and only a final result is provided here.

The integro-differential form of the steady-state, energy-dependent, neutron diffusion equation
is given by

−∇ ·
(
D(r, E)∇φ(r, E)

)
+ Σt(r, E)φ(r, E) =

∫ ∞

0
Σs(r, E

′ → E)φ(r, E′) dE′ + S(r, E), (2.3)

with all notation as previously defined. Notice that there is no angular dependency in the
diffusion equation. The unknown variable to solve for is therefore the scalar neutron flux. As
before, appropriate boundary and initial conditions for (2.3) complete the specification of a
problem instance.

Although details have not been provided above in respect of the source terms in (2.2) and (2.3),
it is important to consider the following. It is typically assumed that a neutron source density
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consists only of neutrons produced by fission. Then, if the neutron leakage and absorption rate is
not equal to the production rate of fission neutrons, the steady-state condition is lost. In order to
maintain balance, the fission source term is divided by an unknown constant called the effective
multiplication factor, which is denoted by keff. Accordingly, solution of the transport/diffusion
equation becomes an eigenvalue problem, with keff as the eigenvalue and φ as the eigenvector.

2.5 Nuclear reactor analysis

The study of a nuclear reactor involves not only the neutronic analysis of the core, but also
the thermal-hydraulic analysis of cooling the core, the mechanical/structural analysis of core
components, and so forth. This adds further computational complexity to the modelling of a
nuclear reactor, and inclusion of these aspects in modelling approaches is often referred to as
multiphysics approaches. The scope of the dissertation is, however, limited to the (steady-state)
neutronic evaluation of any given core, as is typically the case in the ICFMO literature [219].
Accordingly, this section contains only a discription of the relevant aspects within neutronics.

Duderstadt and Hamilton [42] classify the primary neutronic aspects of interest into three cate-
gories. The first category is concerned with the calculation of the core multiplication (keff) and
neutron flux distribution (φ), i.e. the solution of the transport or diffusion equation. Then, the
neutron flux is used to calculate the power distribution throughout the core. A very important
parameter of interest is the maximum peak-to-average power ratio in the core, often referred
to as the core power peaking factor. It is a safety parameter used to determine whether the
thermal limitations of the core are adhered to. As such, the parameter is closely linked to the
thermal-hydraulic analysis of a reactor core.

The second category is concerned with core reactivity and control analysis. In order to allow a
nuclear reactor to operate at power for some extended period of time, the core is initially loaded
with a surplus of fuel well in excess of what would be required simply to achieve criticality.
Mechanisms such as neutron absorbing control rods (see §2.3) are then required to compensate
for the excess reactivity contained in the initial fuel loading, in addition to controlling the fission
chain reaction during the entire period of reactor operation (maintaining criticality, adjusting
power levels, etc.). There are several important parameters of interest in this category, and a
subset of these are:

Excess reactivity, denoted by ρex, is the core reactivity present when all the control rods are
fully withdrawn from the core. In general, larger values of ρex imply longer periods of time
during which the reactor may operate.

Shutdown margin, denoted by ρsdm, is a safety parameter corresponding to the amount of
reactivity by which a reactor is subcritical when all the control rods have been inserted
fully into the core. Usually, a limit for the shutdown margin is chosen such that the core
must be subcritical even when the most-reactive control rod is fully extracted from the
core (the so-called “stuck-rod criterion”).

Control bank worth (or total control rod worth), denoted by ρcbw, is the difference between
the core reactivity present when all the control rods are fully withdrawn from the core,
and when all the control rods are fully inserted into the core. Therefore, ρcbw = ρex +ρsdm

and this parameter measures the total negative reactivity that can be inserted into the
core by all the control rods.
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The third and last category is concerned with core composition changes and depletion analysis.
During reactor operation, the number densities of various isotopes within the core are continually
changing as a result of the nuclear reactions taking place. For example, fission reactions reduce
(deplete) the amount of fuel (i.e. the fissile/fissionable nuclide concentration) in the core while
also producing large quantities of fission products, which may be neutron absorbers. Neutron
capture, on the other hand, reduces the concentration of fertile nuclides while also increasing
the concentration of fissile nuclides (see §2.2). These composition changes affect the rate at
which nuclear reactions occur in the core. Accordingly, monitoring the isotopic composition in
the core during reactor operation is very important, because the production and/or depletion
of nuclides affect the neutron flux distribution, as well as the multiplication factor.

Such an analysis of isotopic composition changes is, however, complicated because the tempo-
ral and spatial variation in isotopic composition depend on the neutron flux distribution —
which itself depends on the isotopic composition in the core. A standard approach may be
taken in which this time-dependent phenomenon is considered as a sequence of static criticality
calculations (i.e. steady-state neutron transport/diffusion calculations) for each different core
composition state [42]. This is made possible because of the relatively slow manner in which
core composition changes occur (of the order of hours or days). In order to determine the new
isotopic number densities at each of these static points in time, isotopic depletion equations
are solved for each isotope that forms part of the analysis [217]. It is generally assumed that
neutron flux in these differential equations is known. Furthermore, in many cases, the equations
for different isotopes are coupled and therefore have to be solved accordingly.

2.6 Reactor core calculation code systems

Due to the complexities associated with nuclear reactor analysis, particularly for modern and
practical reactor applications, it is required that the various mathematical theories describing
the nuclear behaviour in a reactor core be implemented within computer codes. These codes
are employed as computational aid tools for the modelling of a reactor core and the numerical
solution of the various governing equations. An overview of a basic computational model of such
a code system is presented in Figure 2.3 and is loosely based on the one found in [42].

Arguably the most important part of a reactor core calculation code system (also referred to as
a reactor core simulator) is its neutronics solver. This part of the code system numerically solves
the appropriate set of transport/diffusion equations so as to yield the effective multiplication
factor and neutron flux throughout the core. It should be mentioned that the heterogeneity of
a nuclear reactor (as a result of the different core components having various material composi-
tions) adds to the difficulty in solving the relevant equations, because the computational reactor
model becomes extremely intricate.

The aforementioned equations may be solved by deterministic techniques (which employ various
numerical discretisation schemes for the variables) or stochastic techniques (which typically
employ Monte Carlo simulation methods). Deterministic approaches are generally much faster
than stochastic approaches and, as such, they are employed in the majority of code systems
capable of three-dimensional, full-core reactor analysis calculations. In particular, so-called
nodal diffusion methods are often employed [219].

During the early years of nuclear reactor analysis, very simplified mathematical models were
employed in calculations due to the limited capacity of computers at that time. As the com-
puting capability improved over the years, however, more realistic (and thus more complicated)
calculations became possible. Therefore, there is always a trade-off between the fidelity of a
reactor model, and the computational resources required/available to calculate its solution.
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Figure 2.3: A basic computational model of a reactor code system.

2.7 Chapter summary

In this chapter, the reader was introduced to some of the fundamental concepts and terminology
in nuclear reactor analysis and theory. The most important nuclear reactions in the context
of reactor physics were described in §2.1. This was followed by a more detailed discussion on
nuclear fission and its chain reaction (characterised by the multiplication factor) in §2.2. A brief
overview of the basic components of a nuclear reactor core was also presented in §2.3.

In §2.4 the process of neutron transport, which governs the distribution of neutrons in a reactor,
was discussed along with its diffusion approximation. In particular, the reader was introduced
to the concept of (angular) neutron flux — the unknown variable to solve for in the neutron
transport/diffusion equation. A description of the primary neutronic aspects of interest within
nuclear reactor analysis was presented in §2.5. It comprises three categories, namely the cal-
culation of the core multiplication and neutron flux distribution, core reactivity and control
analysis, and depletion analysis. Finally, in 2.6 the necessity of reactor core calculation code
systems was discussed, noting that there is a trade-off between the fidelity of a reactor model,
and the computational resources required to solve it.
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This chapter contains a survey of relevant literature pertaining to ICFMO that falls within the
scope of this dissertation. Background information on the early years of ICFMO research is
presented first, setting the stage for an overview of the most popular objective functions and
constraints adopted in model formulations for the ICFMO problem. Thereafter, a brief de-
scription of typical solution techniques that have been employed in the literature to solve the
problem is presented (in the context of both single-objective and multiobjective optimisation).
Since function evaluations during ICFMO are, in general, computationally expensive, a num-
ber of approaches adopted in the literature for reducing this computational burden are finally
touched upon at the end of the chapter.

3.1 General modelling considerations and background

As with any optimisation problem, the components of a mathematical model for the ICFMO
problem include one or more objective functions and a suite of constraints in terms of decision
variables. In general, objective functions and most constraints associated with the ICFMO prob-
lem are not available in closed form, i.e. they cannot be expressed as elementary mathematical
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functions of the decision variables. This is because of the complicated modelling requirements
for nuclear reactors, as described in Chapter 2. The majority of modern approaches toward
ICFMO, therefore, involve the evaluation of objective functions and the verification of con-
straint satisfaction in terms of reactor core parameters returned by a core simulator. In doing
so, an optimisation technique may be coupled with a core simulator in order to solve an in-
stance of the ICFMO problem. As noted in §2.6, the fidelity of the reactor model within a
core simulator comes at a trade-off to the computational resources required during calculations.
The quality of any solution to an ICFMO problem instance computed by the above-mentioned
coupling therefore depends on the fidelity of the core simulator.

During the early years of ICFMO research, however, there was a heavy reliance on simplified
reactor models and idealised problems due to the limited capacity of computers, poor fidelity
and inefficient reactor core simulators, and relatively few available optimisation methods at
that time [218]. Accordingly, fuel management optimisation problems were formulated as linear
programming problems [28, 71, 210] in order for them to be solved using traditional linear
programming techniques (e.g. the simplex algorithm1 or the branch-and-bound method2). In
some cases, nonlinear programming model formulations were also put forward which could be
solved by the method of successive linear programming3 [43, 206]. Dynamic programming was
also applied during those early years [227].

Apart from the above-mentioned solution approaches, there was also a heavy reliance on heuris-
tics at that time and these were largely based on the expert knowledge/experience of reload
design engineers [218]. According to Burke and Kendall [24], the Oxford Dictionary of Comput-
ing [154] defines a heuristic as “A ‘rule-of-thumb’ based on domain knowledge from a particular
application, that gives guidance in the solution of a problem.” The aim of employing heuristics
was to restrict the decision space of ICFMO problem instances, thereby reducing the computa-
tional complexity associated with solving such instances. Naft and Sesonske [143], for example,
designed a direct search4 scheme in which trial solutions are generated by means of binary
exchanges between fuel assemblies. They incorporated heuristic rules (based on symmetry con-
siderations in the core, the age of an assembly and its depletion profile) into the scheme so as
to restrict certain assemblies from being exchanged. Similar approaches, in which heuristics
restricted certain binary exchanges, were also adopted in [77, 78, 102].

Turinsky and Parks [219] claimed in 1999 that the most widely used optimisation technique for
nuclear fuel management, at that time, was the reload design engineer. According to Downar
and Sesonske [40], as well as Turinsky [218], the early research on ICFMO failed to meet the
needs of practical reload design and, in fact, led to skepticism about the usage of automated tools
for optimisation. The measures taken to reduce the computational burden of ICFMO simply
introduced too much inaccuracy in the reactor models and subsequent objective functions and
constraints. Accordingly, the survey presented in the remainder of this chapter is focussed on
more recent literature — specifically publications during the last 25–30 years.

1The simplex algorithm, developed by George Dantzig in 1947, is generally an efficient method for solving
linear programming problems. See [232] for more details.

2The branch-and-bound method was first proposed by Land and Doig [112] and it is a general technique that
may be applied in conjunction with the simplex algorithm to integer programming problems. An advantage of
the method is that it is guaranteed to find a globally optimal solution.

3In the method of successive linear programming, a sequence of linear approximations of solutions to nonlin-
ear programming problems is solved iteratively using traditional linear programming techniques. Each solution
obtained in the new approximation is closer to the (locally) optimal solution of the nonlinear program [155].

4Direct search, proposed by Hooke and Jeeves [84], is a general method for solving optimisation problems.
The method is described in [84] as a “sequential examination of trial solutions involving comparison of each trial
solution with the best obtained up to that time together with a strategy for determining (as a function of earlier
results) what the next trial solution will be.”
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3.2 Problem formulations in the literature

In general, the ICFMO problem is a nonlinear assignment problem in which fuel assemblies from
an available set have to be assigned in an optimal manner to fixed loading positions within a
reactor core. The desirability of such an assignment is determined by the associated objective
function(s), subject to the constraints imposed.

Since the scope of this dissertation is restricted to single-cycle ICFMO, the literature presented
in this section comprises only formulations within this restricted context.

3.2.1 Objective function formulations

As noted by Turinsky and Parks [219], many different objectives have been adopted for the
purpose of ICFMO, and they are often conflicting. This ultimately makes the ICFMO problem
multiobjective in nature, which means that a trade-off solution must typically be obtained. It
is also important to note that the type of reactor and the purpose of its operation influence
the objective(s) pursued during ICFMO. Power reactors are, for example, intended to generate
electricity whereas research reactors are generally intended for scientific experiments, and these
different applications call for the pursuit of different ICFMO objectives.

The primary ICFMO objective adopted in the literature is the economically-motivated minimi-
sation of the fuel cycle cost [218, 219]. This comes as no surprise given that the everwhelming
majority of ICFMO research is orientated towards power reactors, whose aim within a utility
is generally to produce electricity at the lowest cost possible. Fuel cycle costs, however, require
multicycle calculations due to the fact that any fuel assembly will usually reside in a reactor
core for more than one cycle [218]. In order to translate the fuel cycle cost objective into a
single-cycle optimisation paradigm, surrogate objectives have typically been formulated instead.
Several of these objectives are discussed below.

The most common surrogate objective for fuel cycle cost is the maximisation of the cycle length
(or, equivalently, the cycle energy production) of a reactor which is typically measured in effective
full-power days5. In practice, the reactor is shut down when its planned cycle length is reached.
If it could have operated for longer, the amount of fresh fuel loaded into the core, i.e. the amount
of 235U, could be reduced accordingly, thus saving on fuel costs [109]. This reduction may be
achieved by adjusting the feed enrichment6 or limiting the number of fresh fuel assemblies loaded
into the core.

In some cases, the cycle length is calculated explicitly as the objective function [60, 245]. For
the most part, however, the objective function is expressed as a reactor core parameter returned
by a core simulator. Several parameters have been adopted for this purpose. The most popular
choices in the literature are the effective multiplication factor [9, 35, 56, 100, 123, 168, 222, 243]
and, applicable only to PWRs, the soluble boron concentration7 in the reactor [1, 25, 76, 137,
138], with both parameters to be maximised. Other parameters that have been adopted include
excess reactivity [74] and core-average burnup over the cycle [238]. Burnup is a measure of the
amount of energy generated by nuclear fuel. It is typically measured as the energy released per
unit mass of initial fuel.

5Effective full-power days correspond to the number of days during which a reactor can produce power at its
full-rated level. See [217] for its calculation.

6Feed enrichment refers to the percentage of 235U present in fresh (new) fuel assemblies.
7In PWRs, boric acid (which is a neutron absorber) is added to the water, which acts as coolant and moderator.

By varying its concentration, it may be used as an effective reactivity control measure during reactor operation.
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Another common surrogate objective for fuel cycle cost is the maximisation of the discharge
burnup, i.e. the average burnup of all the fuel assemblies to be discharged from the core at the
end of the operational cycle. By maximising this objective, the burnup of the fuel remaining
in the core during future cycles is minimised. According to Turinsky [218], this implies that
more reactivity is carried forward into the next cycle, which means that the amount of fresh fuel
loaded into the core may be reduced. As before, a saving on fuel costs may then be achieved.
In general, core simulators are capable of calculating the discharge burnup, which has therefore
been used directly as the objective function without the need of a proxy [40, 109, 194, 218, 219].
It has been argued that, in the context of single-cycle optimisation, the objective of maximising
discharge burnup is preferable to the objective of maximising cycle length [218, 219]. The
argument is paraphrased here as follows. Maximisation of cycle length tends to yield reload
configurations in which fresh fuel assemblies are assigned to inner positions within the core,
while the older assemblies are assigned to outer positions. This causes the fresh assemblies to
operate at higher powers, thus attaining higher burnup and potentially leading to future cycles
requiring a larger amount of fresh fuel. Maximisation of discharge burnup, however, involves a
combination of extending the cycle length and shifting the core power to fuel assemblies that
are to be discharged. Accordingly, it tends to yield reload configurations with “less aggressive
burning of the fresh fuel assemblies” [219].

Secondary objectives employed in the literature primarily involve the operational safety of a
reactor or, as Turinsky [218] calls it, the minimisation of risk. It should be noted, however, that
the safety of a reactor is generally taken into account by the imposition of constraints. That
being said, the objectives are typically concerned with maximising thermal margins from their
limits (e.g. to ensure that fuel assemblies are adequately cooled and their structural integrity is
maintained as effectively as possible). One such objective frequently adopted is the minimisation
of the power peaking factor of a reactor [16, 40, 57, 62, 83]. It is recognised that minimising
the power peaking factor will also lead to a flattening of the power distribution in the core, and
vice versa. Accordingly, another objective adopted in the literature is to flatten the core power
distribution and this is typically achieved by minimising the sum of squares of the difference
between the normalised/relative power in each fuel position and unity [98, 165].

In research reactors, alternative objectives to the economically-motivated and safety-related ob-
jectives described above may be pursued during ICFMO. A common thread between the different
utilisation purposes of a research reactor is that enhanced neutron flux levels (in some specific
energy range) are sought in various locations throughout the reactor core, e.g. in irradiation
positions or at beam tubes [180]. A typical objective employed in the literature is therefore to
maximise the (thermal) neutron flux in irradiation positions within the core [74, 75, 128, 192].
Another objective also considered is the maximisation of neutron leakage from the core at beam
tube locations (according to some leakage measure, usually not specified by authors) [222].

The above-mentioned objectives are considered predominantly within the context of single-
objective optimisation in the ICFMO literature. There are, however several instances in which
the objectives are combined to form a multiobjective formulation for the ICFMO problem.
Examples of objective combinations are: cycle length and peaking factor [9, 123, 156], discharge
burnup and peaking factor [95], and cycle length and irradiation position neutron flux [75]. A
more detailed discussion on multiobjective formulations of the ICFMO problem is presented
later in this dissertation.

3.2.2 Constraint formulations

There are many requirements that have to be met when designing a reload configuration for a
nuclear reactor core. During ICFMO, these requirements may be imposed as constraints and, as
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mentioned above, most of these are related to safety. There are, of course, also several physical
constraints that are typically satisfied implicitly, such as assigning one fuel assembly to one
loading position, and maintaining symmetry when it has been assumed.

The overwhelming majority of constraints adopted in the literature, however, involve power
peaking thermal limits in the reactor core [1, 35, 56, 100, 121, 131, 137, 238, 245]. These
thermal limits typically ensure that fuel assemblies can be cooled adequately and that their
structural integrity can be maintained. Other important constraints include ensuring sufficient
excess reactivity in the core so as to meet the cycle energy requirement (i.e. cycle length) [121],
adhering to the maximum burnup of a fuel assembly [238], and ensuring there is sufficient
shutdown margin (i.e. reactivity control) [74]. All these constraints, however, by no means
constitute the full spectrum of those employed in the literature. A more comprehensive listing
of other typical constraints may be found in [218, 219, 223].

3.2.3 The decision space

Since the ICFMO problem may be considered as a nonlinear assignment problem, its decision
space comprises a finite set of combinatorial solutions. The cardinality of this set (i.e. the size
of the decision space) depends on the number of available fuel assemblies, denoted here by m,
as well as the number of loading positions in the reactor core, denoted by n, with m ≥ n. A
solution to the ICFMO problem may then be represented by a partial permutation8 decision
vector x = [x1, . . . , xn] where xi = j denotes that fuel assembly j ∈ {1, . . . ,m} is assigned to
loading position i ∈ {1, . . . , n}. The size of the ICFMO problem decision space is therefore the
number of distinct partial permutations formed when using n fuel assemblies from the total set
of m assemblies, namely m!/(m− n)!.

Consider, for example, a typical Westinghouse 4-loop PWR core. As illustrated in Figure 3.1,
such a core consists of 193 fuel loading positions. If there are exactly 193 fuel assemblies available

8A partial permutation, also known as a sequence without repetition, or a k-permutation of n, is an ordered
arrangement of a subset of k elements selected from a set of n elements.

Full core: 193 loading positions

1/4 reflective symmetry: 56 loading positions

1/8 reflective symmetry: 31 loading positions

Figure 3.1: Top view of the core layout of a Westinghouse 4-loop PWR with supporting illustrations
of its 1/4 sector and 1/8 sector reflective symmetries.
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for ICFMO, then the size of this decision space is 193! ≈ 6.85× 10358. This immense size may,
however, be reduced significantly if it is assumed that the core will be loaded with fuel assemblies
according to a symmetrical design. By assuming a 1/4 sector reflective symmetry, the number
of loading positions in the problem instance is reduced to 56, as shown in Figure 3.1. If there
are also exactly 56 fuel assemblies available for ICFMO in this problem instance, the size of the
decision space becomes 56! ≈ 7.11× 1074, which is a significant reduction compared to the full
core instance. Similarly, by assuming a 1/8 sector reflective symmetry, the number of loading
positions in the problem instance is reduced even further to 31 (see Figure 3.1). With 31 fuel
assemblies available for ICFMO, the size of the decision space is reduced to 31! ≈ 8.22× 1033.

As a second example, consider a typical VVER-1000 PWR core which consists of 163 hexagonal
fuel loading positions, as shown in Figure 3.2. If there are exactly 163 fuel assemblies available
for ICFMO, then the size of this decision space is 163! ≈ 2.00 × 10291. By assuming a 30◦

sector rotational symmetry, however, the number of loading positions in the problem instance
is reduced to 28, as shown in Figure 3.2. With exactly 28 fuel assemblies available for ICFMO,
the size of the decision space becomes only 28! ≈ 3.05× 1029.

Full core: 163 loading positions

30◦ rotational symmetry: 28 loading positions

Figure 3.2: Top view of the core layout of a VVER-1000 PWR with a supporting illustration of its 30◦

rotational symmetry.

Unlike for typical power reactors, whose core geometries easily lend themselves to symmetry,
it is not always possible to assume any form of symmetrical fuel loading in research reactors.
Consider, for example, the SAFARI-1 materials testing reactor. Its core consists of 26 fuel
loading positions in an asymmetric geometry, as illustrated in Figure 3.3. Clearly, it is not
possible to assume any symmetry and therefore the full core has to be taken into account during
ICFMO. If there are exactly 26 fuel assemblies available for ICFMO, then the size of this decision
space is 26! ≈ 4.03× 1026.

It is also worth mentioning that asymmetry in a research reactor is not restricted to the fuel
loading positions in the core. Very often, other positions are filled with various (and different)
materials having different physical properties affecting the neutron flux in the core. Similarly,
reflector placement also has a significant effect on the flux distribution in the core which may
lead to asymmetry in the problem. These factors are generally not found in power reactors.

Based on the examples given above, it is clear that the decision space of a typical ICFMO problem
instance is much too large to consider solving the optimisation problem by total enumeration
(i.e. an exhaustive search).
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Fuel loading positions

Other component positions

Full core: 26 fuel loading positions

Figure 3.3: Top view of the core layout of the SAFARI-1 materials testing reactor.

3.3 Typical solution techniques in the literature

It has been established in §3.2.3 that the ICFMO problem is a very large combinatorial opti-
misation problem. Suitable modern solution techniques may, however, be able to obtain good
solutions to such large problem instances within a reasonable computation time. Many solu-
tion techniques have been employed in the context of ICFMO and several of the popular ones
are presented in this section. These include knowledge-based/expert systems, mathematical
programming techniques, and metaheuristics.

3.3.1 Knowledge-based/expert systems

Nuclear reactors have been operated in various places around the world for several decades
and a vast amount of experience has been accumulated by field experts charged with designing
reload configurations. Their invaluable knowledge may be included in expert systems in order
to attempt solving instances of the ICFMO problem. An expert system is, however, only as
effective as the rule sets contained in its knowledge base. Examples of expert systems in the
literature include those designed by Kim et al. [100], Lin and Lin [121], and Tahara et al. [212].

The FUELCON system is arguably the most prominent expert system for ICFMO available in
the literature [61, 62, 63, 147]. A brief discussion on its working is presented as an example.
FUELCON contains a knowledge base in the form of “IF-THEN” rule sets that may generally
be classified as forbidden-type rules or preference rules. The difference between these two classes
is the following. Forbidden-type rules correspond to strict requirements that aim to exclude
potentially infeasible solutions (i.e. they are constraint-related) whereas preference rules are
enforced only when possible so as to guide the search towards preferable solutions (i.e. they
are objective-related). In FUELCON, solutions are constructed one fuel assembly at a time
according to a predefined loading sequence. Using the rule sets within an exhaustive enumeration
search mechanism results in the identification of families of potential solutions. The system is
interactive, thereby allowing the reload design engineer to expand or refine the rule sets according
to the feedback he/she receives. In a later version of FUELCON, this manual revision of the
rule sets may be performed by an automated procedure employing neural network learning
algorithms [148].

3.3.2 Mathematical programming techniques

It was mentioned in §3.1 that, during the early years of ICFMO research, simplified reactor
models were employed so as to formulate fuel management optimisation problems as linear and
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nonlinear programming problems. This was done in order to take advantage of the traditional
mathematical programming solution techniques available at that time. Over the years, signifi-
cant improvements have been made in computing power and in the efficiency of mathematical
programming techniques. Accordingly, less restrictive simplifications may be assumed in reactor
models, allowing for more realistic (albeit still simplified) ICFMO problem formulations to be
considered in a linear or nonlinear programming context.

The renowned simplex algorithm still forms the basis of many linear programming solvers used
today and was employed in the context of ICFMO, for example, in [208]. Similarly, branch-and-
bound methods are generally used for solving integer optimisation problems since they are still
the most viable solution methods available for such problems. The integer program in [194], the
mixed-integer linear program in [101] and the mixed-integer nonlinear program in [168] were,
for example, all solved by algorithms that employ a branch-and-bound method. Finally, two
popular techniques for solving nonlinear programming problems are the method of successive
linear programming and the generalised reduced gradient9 algorithm. These two techniques were
employed in [128, 206] and in [31, 168] within the context of ICFMO to solve a mixed-integer
nonlinear program.

3.3.3 Single-objective metaheuristics

The design and application of metaheuristic10 techniques for solving hard optimisation problems
is a very active field of research. Although there is no universally accepted definition of what a
metaheuristic is, the following definition was recently proposed by Sörensen and Glover [199]:

“A metaheuristic is a high-level problem-independent algorithmic framework that pro-
vides a set of guidelines or strategies to develop heuristic optimization algorithms.
The term is also used to refer to a problem-specific implementation of a heuristic
optimization algorithm according to the guidelines expressed in such a framework.”

Metaheuristics are approximate solution techniques designed specifically to find high-quality
solutions to hard optimisation problems within acceptable computation times. As a result,
there is no guarantee that a solution obtained by a metaheuristic is optimal. Therefore, the
term “approximate solution” is adopted in this dissertation when referring to a solution yielded
by a metaheuristic. In contrast, exact solution techniques are designed in such a way that an
optimal solution is guaranteed to be found within a finite amount of time (although this time
may be prohibitively long).

The application of several metaheuristics to the ICFMO problem in recent years has garnered
much attention in the literature. An overview of the most widely-used metaheuristics in the
context of ICFMO is presented in this section, namely simulated annealing, genetic algorithms,
particle swarm optimisation and ant colony optimisation. A number of additional metaheuristics,
attracting less attention in the literature, are also briefly mentioned.

9The reduced gradient method was developed for solving linearly constrained nonlinear programming problems.
It involves the partitioning of variables into two groups (independent and dependent) and, at each stage of the
method, the problem is considered only in terms of the independent variables. The generalised reduced gradient
algorithm, in turn, extends the reduced gradient method by allowing nonlinear constraints and arbitrary bounds
on variables. See [124] for more details.

10The term metaheuristic, first used by Fred Glover in 1986, is derived from the Greek prefix meta- (μετα-),
which means beyond, above, or at a higher level, and the Greek word heuriskein (ευρισκειν), which means to find.
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Simulated annealing

Simulated annealing (SA), developed by Kirkpatrick et al. [103], is a local search11 metaheuristic
based on an analogy with the physical phenomenon of annealing. During the process of anneal-
ing, a physical system is led to a low energy state by carefully controlling its temperature [41].
In the context of strengthening metals, for example, the annealing process starts by heating the
metal to bestow a high energy to it. Thereafter, the metal is slowly cooled in stages, with the
temperature being kept constant during each stage for a sufficient duration. Such a controlled
decrease in temperature eventually leads to the metal attaining a stable solid state which corre-
sponds to an absolute minimum energy configuration. Metals are typically very strong in such
a state, containing few defects.

The SA algorithm may be used to solve an optimisation problem in a manner analogous to
the process of annealing described above. In the analogy, a solution corresponds to a certain
state of the metal whereas the objective function (in a minimisation problem) corresponds
to the free energy in the system. A temperature control parameter determines the number of
accessible energy states and, when lowered, it should lead to an optimal state. The final solution
corresponds to the system attaining its absolute minimum energy, i.e. being frozen in its ground
state.

The following two principles from the field of statistical physics are utilised in the SA algo-
rithm [41]. When a system reaches thermodynamic equilibrium, the probability of the system
attaining an energy E is proportional to the Boltzmann factor, exp(−E/kBT ), where kB denotes
the Boltzmann constant, and T is the temperature. The energy states then follow the Boltz-
mann distribution at the given temperature. Furthermore, the so-called Metropolis algorithm
is usually employed for simulating the state changes in a system during its progress towards
thermodynamic equilibrium (at a given temperature). Starting from an initial state, the system
is subjected to a perturbation. If the perturbation causes a decrease in energy, the perturbed
state is accepted with certainty; otherwise, the perturbed state, with an increased energy of
∆E, is only accepted with probability exp(−∆E/T ). Repeated iterations of the Metropolis
algorithm results in the system eventually reaching its equilibrium state for a given tempera-
ture. At that point, the temperature may be decreased in order for the system to reach a new
equilibrium state, and so forth. The effect of the temperature is that at high temperatures, the
factor exp(−∆E/T ) is close to 1, thus causing the Metropolis algorithm to accept the majority
of perturbed states. At low temperatures, however, the factor exp(−∆E/T ) is close to 0, thus
causing the Metropolis algorithm to reject the majority of increasing energy perturbations.

In the analogy, therefore, some initial solution is slightly modified and, if it results in an improved
objective function value, the modified solution is accepted as the new solution; otherwise, it is
only accepted with a certain probability related to the magnitude of objective function value
difference. This occational worsening in objective function value prevents the system (or search)
from becoming trapped in a local minimum. Also, by starting at a high temperature, the SA
algorithm considers as many solutions as possible in an attempt to explore the decision space.
Thereafter, the temperature is decreased according to a specific cooling schedule in order for
the algorithm to converge to a solution which yields a minimum objective function value. The
basic working of the SA algorithm is illustrated in Figure 3.4 by means of a flow diagram.

In 1991, the SA algorithm was, to the best knowledge of the author, the first application of any
metaheuristic to the ICFMO problem [109]. That same work led to the development of a suite of
computer codes for fuel management optimisation called Fuel Optimization for Reloads: Multiple
Objectives by Simulated Annealing (FORMOSA) [129, 142]. Stevens et al. [204] implemented the

11A local search seeks good solutions by iteratively making small modifications to a single solution [68].
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Figure 3.4: Flow diagram of the simulated annealing algorithm in the context of a minimisation problem.

SA algorithm as solution technique within the SIMAN optimisation module of the commercial
software package XIMAGE12. Another example of commercial software employing SA as solution
technique is the ROSA13 package [223]. Notable applications of the SA algorithm to ICFMO,
in addition to those mentioned above, include [74, 114, 131, 197, 237].

Genetic algorithms

A genetic algorithm (GA) is a population-based14 metaheuristic inspired by the biological the-
ory of evolution by natural selection proposed by Charles Darwin. Paraphrased from [41], these
theories together state that evolution in a biological species occurs due to the competition in
which the best-adapted individuals are selected for survival, while ensuring the continuation
of the species through the transmission of useful characteristics from these individuals to their
offspring. This transmission (i.e. inheritance) is based on a form of cooperative sexual reproduc-
tion. Genetic algorithms reside within a broader class of metaheuristics known as evolutionary
algorithms. According to [41], GAs were first proposed Holland [81] in 1975, although they only
became popular after the seminal work of Goldberg [69] in 1989.

In an analogy to Darwin’s theory, solutions to an optimisation problem may be thought of as
corresponding to the individuals of a species, while a subset of individuals considered simul-
tanously at any point in time is referred to as a population. Each individual is associated with a
fitness level which specifies the desirability of the individual being selected for reproduction or
replacement. Fitness levels are determined by a fitness function which naturally depends on the

12XIMAGE/SIMAN-PWR is a graphical fuel management and loading pattern optimisation suite developed by
Studsvik Scandpower, Inc. [235].

13ROSA is an acronym for Reload Optimization by Simulated Annealing and is developed by the Nuclear
Research and consultancy Group (NRG) in the Netherlands.

14A population-based method seeks good solutions by iteratively selecting and then combining solutions from
an existing set, usually referred to as the population [68].
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objective function associated with the optimisation problem. A population iteratively evolves
over time, with each iteration being referred to as a generation. During each generation, specific
evolutionary operators act on the individuals of the current population in order to create a new
population for the next generation. This new population is created by individuals reproducing,
surviving or disappearing from the current population. The existing individuals that are used
during reproduction are called parents, while the new individuals created during reproduction
are called offspring.

The evolutionary operators are partitioned into two categories. The first category consists of two
selection operators, namely: 1) selection for reproduction, which determines the likelihood that
an individual will be chosen to reproduce; and 2) selection for replacement, which determines the
specific individuals that will have to be discarded (or kept) so as to maintain a fixed population
size. The second category consists of variation operators which are further partitioned into
mutation operators and crossover operators. Mutation operators modify a single individual to
form another one, whereas crossover operators fulfil the role of sexual reproduction by creating
one or more offspring from a combination of two or more parents.

The above-mentioned description encompasses the basic working of a generic GA. This working
is also illustrated by means of a flow diagram in Figure 3.5. The oval shapes indicate the
application of the selection operators whereas the hexagonal shapes correspond to variation
operators.

Generate
an initial

population

Population
fitness

evaluation

Selection for
reproduction

Selection for
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Figure 3.5: Flow diagram of a generic genetic algorithm.

According to Jayalal et al. [92], the first application of a GA to the ICFMO problem was
by Poon an Parks [163] in 1992, only one year after SA was first applied. Examples of fuel
management optimisation software packages employing GAs as their solution techniques are the
code independent genetic algorithm reactor optimization (CIGARO) system [35], and the more
extensive genetic algorithm reactor code optimization (GARCO) package [1], both of which were
developed at Pennsylvania State University over many years. Other notable applications of GAs
to the ICFMO problem may be found in [27, 56, 83, 242, 245]. A fairly extensive survey on GA
applications to fuel management optimisation may be found in [92].
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Particle swarm optimisation

Proposed initially by Kennedy and Eberhart [96] in 1995, particle swarm optimisation (PSO) is
a population-based metaheuristic inspired by the flocking of birds. A particular source of inspi-
ration was computer simulation studies in which simple rules for information sharing between
individuals were employed to model the coordinated search for food by a flock of birds. PSO
resides within the broader class of metaheuristics known as swarm intelligence methods, which
consist of techniques inspired by the collective behaviour of swarms and social insect colonies.
These techniques are often characterised by principles of self-organisation and local/indirect
information exchange [24, 41].

In PSO, a population of particles (referred to as the swarm) is maintained, with each particle
representing a location in the decision space of an optimisation problem. Particles search for an
optimal location by moving through the decision space, analogous to a flock of birds flying over
some region foraging for food. The flight path that an individual bird decides to take is based
on cognitive aspects (modelled by the influence of its own location history) and social aspects
(modelled by the influence of other birds’ location histories) [24]. A bird, therefore, may fly
towards a location containing food that it knows about, or towards a location containing food
that the rest of the flock knows about. Accordingly, in PSO, the movements of any particle are
governed by its current velocity, and the positions of good locations already found by the particle
itself (cognitive aspect) or by other particles in the swarm (social aspect). Typically, the social
aspects are considered in the context of a neighbourhood topology (i.e. the social network within
the swarm). This topology defines, for any particle, with whom it can communicate and is often
chosen as a fully-connected network topology, meaning that every particle can communicate
with every other particle.

The basic PSO algorithm proceeds as follows. A swarm of particles is initialised with certain
positions and velocities. Thereafter, the personal best position of each particle is tracked, as well
as the global best position of the swarm (or the neighbourhood best solution, if a limited topology
is chosen). The velocity of each particle is then iteratively adjusted towards a combination of
its personal best and the global best solutions, along with a random component. The working
of the PSO algorithm is illustrated by means of a flow diagram in Figure 3.6.

PSO was first applied in the context of ICFMO by Meneses et al. [137] in 2009. Since then,
different versions of the PSO algorithm have been applied on multiple occasions for solving
instances of the ICFMO problem [9, 90, 123, 136].
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Figure 3.6: Flow diagram of the basic particle swarm optimisation algorithm.
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Ant colony optimisation

The term ant colony optimisation (ACO) refers to a class of constructive15 metaheuristics that
are inspired by the foraging behaviour of ants, always seemingly to be able to find a shortest
path between their nest and a food source. The success of the ants is driven by their ability
to communicate indirectly with one another by dynamically modifying their environment —
a concept known as stygmergy [41]. ACO also resides within the class of swarm intelligence
metaheuristics.

Ants use volatile substances, called pheromones, to communicate with one another. These
pheromones are deposited onto the ground, leaving an odorous trail for other ants to follow.
Over time, however, the pheromones evaporate unless more ants deposit new pheromones along
the same path. This is exactly where a natural optimisation of the routes occurs. An ant
typically follows a path along which higher pheromone levels have been deposited with a larger
probability. Since a shorter path may be traversed faster, the quantity of pheromone is slightly
more significant than on a longer path due to evaporation. Ants therefore travel more frequently
along these shorter paths, which results in more pheromone being deposited along those paths.
In contrast, pheromone levels along longer paths decrease over time. The end result is a system
reinforcing itself until all the ants follow a single (shortest) path.

The first ant algorithm, proposed by Dorigo et al. [39] and called the Ant System (AS), was
specifically designed for solving the travelling salesman problem16. The analogy is simple: cities
correspond to different food sources and the ants have to find the shortest path connecting all
the cities (visiting each city exactly once). Numerous improvements and variations have been
made to the AS algorithm since then, leading to the variety of ACO algorithms available today.
The AS algorithm is presented here as an example of a basic ACO algorithm.

Consider a complete graph in which the vertices correspond to the cities of the travelling salesman
problem and the edges correspond to the roads between the cities. During each iteration of the
AS algorithm, each ant traverses the graph and constructs a complete path that translates into a
solution. Suppose an ant is at a given vertex during the construction of its path. The probability
that the ant moves to a next vertex is determined by a so-called “rule of displacement” (or the
transition rule) [41]. This probability depends on: 1) the list of vertices not yet visited by the
ant; 2) the visibility of each vertex, determined by heuristic information; and 3) the quantity of
pheromone deposited on the edge joining the two vertices, called the trail intensity.

At the end of every iteration, each ant deposits a quantity of pheromone along its entire path.
Such a pheromone deposit, which depends on the quality of a solution, promotes the search for
good solutions. The evaporation of existing pheromones should, however, also receive attention
at the end of every iteration in order for the system to move beyond poor solutions obtained
during previous iterations [41]. This may be achieved by a constant decrease in trail intensity to
counterbalance the additive effects of pheromone deposits by ants. In Figure 3.7, a flow diagram
is presented illustrating the working of the AS algorithm.

As mentioned earlier, there are a variety of ACO algorithms available in the literature. Specific
examples of ACO applied to the ICFMO problem include: the Ant-Q algorithm [126], the ant
colony system [32], the max-min ant system [79] and the rank-based ant system [119]. In the ant
model adopted by Machado and Schirru [126], for example, vertices in the graph correspond to
the fuel assemblies of the ICFMO problem whereas the edges in the graph now depend on the

15A constructive method seeks good solutions by constructing a solution from its constituting elements, i.e. by
adding elements one at a time to a partial solution [68].

16Given a number of cities and the distances between all pairs of cities, the travelling salesman problem asks
for a shortest closed tour in which each city is visited exactly once [130].
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Figure 3.7: Flow diagram of the ant system algorithm.

loading positions. The authors created a so-called “ordering map” which assigns a fuel assembly
selected by an ant traversing the graph to a specific loading position (so that a complete path
may translate into a valid reload configuration). Accordingly, an edge represents the possibility
of a fuel assembly being selected and assigned to a specific loading position.

Other metaheuristics

Apart from the more prominent metaheuristic applications discussed above, a number of other
metaheuristics have also been considered in the context of ICFMO. Since they have attracted
less attention in the literature, only a brief mention is made of each in this section.

Tabu search is a local search metaheuristic that incorporates a memory structure to prohibit
the revisitation of recent solutions or moves. Escapes from local optima are possible, because
non-improving solutions are allowed when no improving solution is found within the neighbour-
hood17 of the current solution. Tabu search was one of the earliest metaheuristics applied to
ICFMO [120], but re-emerged only recently in the literature [76].

Harmony search is a constructive metaheuristic based on an analogy to an improvisation jazz
band playing different sounds on their instruments (different values for decision variables) in
order to find a pleasing combination of sound (good objective function values). Applications of
harmony search to the ICFMO problem may be found in [165, 182].

The artificial bee colony algorithm and the firefly algorithm are two swarm intelligence meta-
heuristics closely related to PSO. Application of these techniques to the ICFMO problem may
be found in [33] and [166], respectively.

Finally, a number of probabilistic model-based metaheuristics have also been proposed in the
context of ICFMO. In these metaheuristics, a probability model is constructed, taking into
account the performance of previous solutions. New solutions are then generated (sampled)
according to this distribution. Examples of ICFMO applications include population-based incre-
mental learning [25] and several estimation of distribution algorithms [93].

17The neighbourhood of a solution consists of several solutions that are “close” to it and may be generated by
applying a neighbourhood move operator, or move set, to the solution in question. This operator/set defines how
elementary modification may be affected to a solution.
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3.3.4 Multiobjective metaheuristics

The metaheuristics described in §3.3.3 were all designed for solving single-objective optimisation
problems. In such instances, the aim of a metaheuristic is to find a solution that optimises one
objective function. In multiobjective optimisation problems, however, several objective functions
have to be optimised simultaneously. There is typically no single solution that is optimal with
respect to every objective function simultaneously. Instead, a set of trade-off solutions, also
known as nondominated solutions, may be sought. A solution is said to be dominated if another
solution exists that is better than the original solution with respect to at least one objective,
and no worse than that solution with respect to all of the other objectives. A solution is then
nondominated if no other solution dominates it. The aim of a multiobjective metaheuristic is
therefore to find a set of nondominated solutions.

A very limited amount of literature is available on MICFMO, especially in respect of solution
techniques. In this section, an overview is presented of the multiobjective metaheuristics that
have been applied to the ICFMO problem.

Several of these metaheuristics employ a quantity known as the nondominated rank of a solution
as a measure of its quality. These ranks may be calculated as follows. Given some set of solutions,
all nondominated solutions contained therein are identified, and allocated a rank of 0. Then,
those solutions are removed from future consideration. The nondominated solutions contained
in the remainder of the set are then identified, and allocated a rank of 1. This procedure is
repeated until all the solutions have been ranked.

In addition, some of the metaheuristics employ an external (or secondary) set of solutions dur-
ing their execution. This set is often referred to as an archive and it generally contains the
nondominated solutions to the optimisation problem found thus far.

Multiobjective genetic algorithm approaches

Parks [157] designed a multiobjective genetic algorithm (MOGA) that utilises nondominated
ranks and an archive of nondominated solutions. In this algorithm, each solution is assigned a
fitness value equal to its nondominated rank within the population. Accordingly, solutions with a
lower rank have a better fitness and are therefore more likely to be selected for reproduction and
retained in the next generation. During the execution of the MOGA, an archive of nondominated
solutions is also maintained. After a new solution has been evaluated, it may be considered for
inclusion in the archive by means of domination testing18. The archive in this MOGA has a fixed
size. When it is full, a new nondominated solution is only inserted if the solution is sufficiently
dissimilar (in decision space) to an existing archive member. A dissimilarity measure based on
reactivity distributions is defined in [157] for this purpose. Finally, a form of multiobjective
elitism19 is introduced into the MOGA by selecting every solution in the archive (up to a
maximum of one quarter the size of the population) for reproduction.

Do and Nguyen [37] borrowed the notion of multiobjective elitism employed in the MOGA by
Parks [157] in their GA for the ICFMO problem. In this algorithm, a linear weighted sum ag-
gregation of multiple objectives is employed as the fitness function. An archive of nondominated

18Assume that the nondominated archive may have an unlimited size. Then, if any members in the archive are
dominated by the new solution, those are removed and the new solution is inserted. Similarly, if the new solution
is nondominated with respect to the archive, it is inserted. Otherwise, if the new solution is dominated by any
member in the archive, it is not inserted.

19Elitism, or an elitist strategy, refers to the preservation of (at least) the best solution in the population, from
one generation to the next one [41].

Stellenbosch University  https://scholar.sun.ac.za



38 Chapter 3. Literature survey

solutions is also maintained by the algorithm. There is, however, no dissimilarity measure to
differentiate between two nondominated solutions. Instead, only the fitness function value is
considered in this regard. As was the case in the algorithm of Parks [157], every solution in the
archive is selected for reproduction in this GA as a form of multiobjective elitism.

Finally, in 2009, Hedayat et al. [75] applied the highly-popular nondominated sorting genetic
algorithm II (NSGA-II) to the ICFMO problem. The algorithm was initially developed by Deb
et al. [34] as an improvement over its predecessor. Within the NSGA-II, the fitness of a solution
is determined by its nondominated rank, as well as its crowding distance, which is a measure
of the density of solutions surrounding a particular solution. A so-called crowded comparison
operator is used to differentiate between two nondominated solutions. In contrast to the two
algorithms described above, the NSGA-II does not employ an archive of nondominated solutions.
Instead, elitism is introduced by combining the offspring and parent populations into a single set,
sorting (ordering) the solutions according to their nondominated ranks and crowding distances,
and then truncating this combined set of solutions to the required population size. A more
detailed discussion on the working of the NSGA-II is presented in a later chapter since it is
employed as a solution technique in this dissertation.

Multiobjective simulated annealing approaches

A multiobjective simulated annealing (MOSA) algorithm was designed by Engrand [55] for ap-
plication to the ICFMO problem. In the algorithm, an aggregating function G is defined as
G(x) =

∑q
k=1 ln fk(x), where fk denotes objective function k ∈ {1, . . . , q}. This function rep-

resents the energy of the system, and is used within the Metropolis algorithm to calculate the
acceptance probability of a modified solution. In the context of minimisation, when ∆G ≤ 0, the
modified solution improves the objectives “on average” and it is accepted as the new solution.
Otherwise, when ∆G > 0, the modified solution is only accepted with probability exp(−∆G/T ).
During the execution of the MOSA algorithm, an archive of nondominated solutions is again
maintained. Only after a modified solution has been accepted as the new solution, however,
may it be considered for inclusion in the archive. Finally, the MOSA algorithm may periodically
reset the current solution to one that is present in the archive.

Improvements on Engrand’s MOSA algorithm were suggested by Parks and Suppapitnarm [158]
after they identified two weaknesses in the original algorithm. The first of these weaknesses
relate to the aggregating function G, which may favour some objectives over others, whereas
the second relates to the acceptance criterion and subsequent archiving of a solution, which
may exclude certain nondominated solutions. In their improved MOSA algorithm, a modified
solution is considered for inclusion in the archive before the acceptance test is performed. If this
solution is archived, it is also automatically accepted as the new solution. Otherwise, an overall
acceptance probability is calculated as the product of the individual acceptance probabilities
corresponding to each objective, i.e. it is given by

∏q
k=1 exp(−∆Ek/Tk), where the pursuit of

objective k is equipped with its own temperature Tk. As such, there is no longer an aggregating
energy function in this improved MOSA algorithm. Also, instead of choosing any solution in the
archive during the periodic resetting of the current solution, only a subset of archived solutions is
considered in the modified algorithm. This subset should always include those solutions attaining
the best objective function value in each objective, along with a few randomly chosen solutions.
Parks and Suppapitnarm mention that constraints may be handled according to the discretion of
the user. They may, for example, be treated as hard constraints such that any solution violating
a constraint is never accepted (or archived), or the magnitude of the constraint violation may
be considered as an additional objective to be minimised.
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Further refinements on Parks and Suppapitnarm’s improvement of Engrand’s MOSA algorithm
were suggested by Kellar [95]. Most of these refinements were technical in nature, such as an
equivalent expression for the acceptance probability which avoids arithmetic over/underflow,
and modifications to the cooling schedule. More importantly, however, Keller introduced a
temperature weighted aggregating function in order to differentiate between two nondominated
solutions (for when a new solution potentially replaces an existing member in the archive).
In addition, only those archived solutions attaining the best objective function value in each
objective are contained in the subset to choose from during the periodic resetting of the current
solution. Keller considered constraint violations as an additional objective in the refined MOSA
algorithm. He suggested, however, that the nondominated archive should be limited only to
solutions that do not violate any constraints.

Park et al. [156] proposed a MOSA algorithm similar to the one designed by Engrand [55] for
solving the ICFMO problem. In their algorithm, objectives and constraints are aggregated into
a so-called discontinuous penalty function J to be minimised. The minimum value that J can
attain is zero and corresponds to a feasible solution having been found. During the execution of
this MOSA algorithm, an archive of nondominated solutions is also maintained. In the algorithm,
the current solution xc is modified to create solution xm, which is then tested for feasibility, i.e.
whether or not J(xm) = 0. If xm is feasible, it is accepted as the new solution whenever the
current solution is infeasible, or when both solutions are feasible and xm dominates the current
solution. If both solutions are feasible, but xm does not dominate the current solution, then
xm may still be accepted, provided that it is not dominated by any member in the archive.
Any feasible solution is also considered for inclusion in the nondominated archive. When xm is
infeasible, however, it is accepted as the new solution if its discontinuous penalty function value
is less than that of the current solution. Otherwise, if this value is worse, it is only accepted
with probability exp(−∆J/T ). This acceptance procedure is illustrated in Figure 3.8.
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Figure 3.8: New solution acceptance procedure in the MOSA algorithm proposed by Park et al. [156].

Multiobjective particle swarm optimisation

Babazadeh et al. [9] applied the vector evaluated particle swarm optimisation (VEPSO) al-
gorithm to the ICFMO problem. The algorithm was initially proposed by Parsopoulos and
Vrahatis [159] and is based on using a separate swarm for each objective, along with some form
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of information exchange between the swarms. In the VEPSO algorithm, each swarm is evaluated
according to its own associated objective function. When the velocity of a particle in one swarm
is updated, however, it uses information obtained from another swarm to do so (e.g. the global
best solution from another swarm). Alternatively, it may also use a combination of personal
best solutions and the global best solution from another swarm. In the implementation of the
VEPSO algorithm by Babazadeh et al. [9], only the global best solutions within different swarms
are considered for information exchange. Accordingly, the velocity of each particle is iteratively
adjusted towards its own personal best solution, and the global best solution obtained within
another swarm, along with a random component.

3.4 Approaches to reduce the ICFMO computational burden

It has been established that the ICFMO problem suffers from computationally expensive function
evaluations. Several approaches have been adopted in the literature attempting to reduce this
computational burden. Three such examples are touched upon in this section.

3.4.1 Simplified reactor models

As mentioned earlier, the use of simplified reactor models is one approach to overcoming this
dilemma and was applied extensively during the early years of ICFMO research. The inaccuracy
in reactor models thus introduced may, however, result in objective functions and constraints
whose values are of unacceptable accuracy. Given the advancements made in computer technol-
ogy over the years, simplified models with improved accuracy have been suggested for ICFMO
again (see §3.3.2). These improved models have been employed successfully in the literature to
reduce the computational burden associated with ICFMO [168, 194, 223].

3.4.2 Perturbation theory

An alternative approach that has received attention in the literature is to use perturbation the-
ory20 for estimating function values. One of the advantages associated with perturbation theory
is the ability to control/determine the exact perturbation errors that arise from its usage. Pertur-
bation theory is particularly useful (i.e. accurate) when utilised in conjunction with a local search
metaheuristic, since new solutions are created by making small modifications/perturbations to
an existing solution. The FORMOSA suite of computer codes (see §3.3.3) is a prominent ex-
ample where perturbation theory has been employed in the context of ICFMO [109, 129]. Note
that the SA method is employed as solution technique in FORMOSA.

3.4.3 Surrogate computational models

Finally, the computational cost associated with ICFMO function evaluations may also be re-
duced by replacing the core simulator with a computationally cheaper surrogate model. A
popular approach adopted in the literature is to employ an artificial neural network21 (ANN)
for the prediction of reactor core parameters corresponding to objectives and constraints. In

20In perturbation theory, an approximate solution to a problem instance is sought by starting from the exact
solution of a related problem.

21According to Fausett [58], “an artificial neural network is an information-processing system that has certain
performance characteristics in common with biological neural networks.”
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this context, an ANN is used for function approximation and therefore has to follow a training
process, called supervised training. During this process, training is performed by presenting
the ANN with a set of known input-output pairs (i.e. solutions that have been evaluated by a
core simulator, and their corresponding function values). A training algorithm then adjusts the
network in such a way that the predicted and known outputs are close to one another. Unlike
in perturbation theory, however, the prediction errors that arise from using ANNs cannot be
controlled/determined exactly since the networks are trained on a limited number of solutions.
Fortunately, the accuracy associated with ANNs in the context of ICFMO has been found to
be acceptable. Examples in the literature of their usage may be found in [56, 131, 236]. A
more detailed discussion on ANNs is presented in a later chapter since it is employed in this
dissertation for reducing the computation time of ICFMO function evaluations.

3.5 Chapter summary

In this chapter, a survey of the most relevant literature pertaining to the ICFMO problem was
presented. The aim thereof was to provide the reader with the necessary background knowledge
required to proceed with new research towards ICFMO in an informed manner.

General ICFMO modelling considerations and an historical overview of early research in the
field were mentioned in §3.1. This was followed, in §3.2, by discussions on the most popular
objective function formulations in the literature, as well as typical constraints. The complexity
in respect of the ICFMO problem’s decision space was also elaborated on in §3.2.3.

An assortment of typical solution techniques applicable to the ICFMO problem was reviewed
in §3.3, with a particular emphasis on metaheuristics. The most prominent single- and mul-
tiobjective metaheuristics were described in moderate detail in §3.3.3 and §3.3.4, respectively.
Furthermore, several examples of their application in the ICFMO literature were also provided.

The chapter closed with a brief discussion in §3.4 on three different approaches considered in
the literature for reducing the computational burden associated with solving instances of the
ICFMO problem.
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The MICFMO problem in context
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This chapter opens with a brief discussion on the topic of nuclear fuel management, thus placing
ICFMO in context within this broader topic. This discussion is followed by an elucidation of
several problem assumptions that are required in order to formulate a model for the MICFMO
problem. The reactor core calculation code system utilised in this dissertation is also briefly
described. Thereafter, the two nuclear research reactors considered as case studies in this dis-
sertation are discussed in detail, along with the objectives and constraints associated with each
reactor for MICFMO. A short description of the current reload configuration design approach
employed at each reactor is also presented.
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4.1 Nuclear fuel management

It was mentioned in Chapter 1 that ICFMO is contained within the broader topic of nuclear fuel
management, which is one of the most important aspects of nuclear reactor operation. Silven-
noinen [195] states that nuclear fuel management encompasses the fuel composition and loading
aspects (be they related to physical, engineering or economic considerations) that influence op-
timal fuel utilisation in a reactor core, subject to the design limits imposed on it. In the context
of light water reactors, nuclear fuel management is typically partitioned into two topics, namely
out-of-core fuel management (OCFM) and in-core fuel management (ICFM) [219]. Due to its
convenience in terms of reducing the complexity of nuclear fuel management and its widespread
utilisation in the field of nuclear engineering, [40, 217, 219, 221], the above partitioning is also
adopted in this dissertation.

The topic of OCFM is essentially aimed at answering the questions “What to purchase?” and
“What to reload?” over a planning horizon that spans multiple operational cycles [219]. Once
a decision has been made as to the fuel assemblies available for loading during a specific opera-
tional cycle, the topic of ICFM is aimed at answering the question “Where to position?” these
available assemblies [219]. A listing of specific decisions related to light water reactor nuclear
fuel management may be found in [217]. These decisions, and how they relate to the above
partitioning of nuclear fuel management, are presented diagrammatically in Figure 4.1.
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Figure 4.1: Nuclear fuel management in the context of light water reactors.

Cycle length is influenced by the utilisation requirements specific to a reactor (e.g. for a utility to
meet its seasonal electricity generation demand) as well as the fuel cycle costs. The composition
and design of fresh fuel assemblies, the type and quantity of burnable absorbers1, the number
of fresh fuel assemblies to load, and which of the partially-spent fuel assemblies to reload in the
core, are highly-coupled decisions [217]. They are influenced by the cycle energy requirements,
fuel cycle costs and reactor safety requirements. The fuel reload configuration design, as already
mentioned, involves decision making on where to locate the available fuel assemblies in the
reactor core. In some reactors, especially in PWRs, the locations of burnable absorbers in

1A burnable absorber, also known as a burnable poison, is a neutron-absorbing material whose effectiveness
decreases over time when introduced in an active reactor core. It is generally used to control the power peaking
in a reactor during the initial stages of its operating cycle.
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the fresh fuel assemblies across the core have to be determined because of their significant
effect on the power distribution [217]. Finally, for BWRs, a control rod programme2 has to be
determined for a specific fuel reload configuration. This programme affects the power and burnup
distribution across the core, while also ensuring adequate reactivity control in the reactor.

4.2 Problem assumptions

In this section, several assumptions are made in respect of the ICFMO problem, residing within
the broader context of nuclear fuel management, in order to reduce its complexity to manageable
levels without significantly compromising its practical applicability.

4.2.1 Out-of-core fuel management

The partitioning of nuclear fuel management into OCFM (as a multicycle decision process) and
ICFM (as a single-cycle decision process) is convenient, but artificial — the decisions in these
two contexts clearly affect one another [217].

The ICFMO problem may therefore be modelled together with OCFM decisions as a single
optimisation problem, with its solution being applicable to the entire multicycle planning hori-
zon. The dimensionality of the optimisation problem, however, increases significantly for each
cycle added to the planning horizon. Ultimately, the computational burden associated with
a multicycle may escalate beyond practicality. A multicycle problem also requires additional
burnup calculations to be performed by a core simulator in order to estimate fuel assembly
isotopic compositions over the entire planning horizon. These additional computations may be
excessively time-consuming, thus also potentially rendering the problem impractical. Further-
more, deviations from a reactor’s planned operating schedule may occur due to new operational
requirements or unforeseen events, such as a change in cycle length or power output, a reactor
scram3, the replacement of defective fuel assemblies, etc. [221]. These deviations will cause dis-
crepancies between the estimated and true fuel assembly isotopic compositions over the planning
horizon. In this context, “true” refers to the fact that the true operating history is utilised for
calculating isotopic compositions. It does not refer to physically measured isotopic composition.
Accordingly, reload configurations in the multicycle solution may be too inaccurate (e.g. far
from optimal, or even infeasible) during later operational cycles.

Alternatively, the ICFMO problem may be modelled separately from OCFM. In such a seg-
regated modelling approach, it is generally assumed that ICFM has little to no influence on
OCFM [40]. Accordingly, the OCFM optimisation problem is considered first and its solution is
typically translated into fixed input requirements (e.g. in the form of parameters) for the ICFMO
problem to be considered thereafter. The ICFMO problem is not significantly affected in such
a segregated modelling approach because reasonably accurate OCFM decisions that impact on
the problem are still incorporated by means of the aforementioned fixed input requirements.

It is therefore assumed that the ICFMO problem is modelled separately from OCFM, to the
extent that only a set of input requirements obtained during OCFM is necessary for ICFMO.
Furthermore, since OCFM falls outside the scope of this dissertation, the input requirements are

2The insertion patterns of the control rods/blades in a BWR core as a function of the operating cycle exposure
is referred to as a control rod programme [217].

3The United States Nuclear Regulatory Commission defines a reactor scram as “The sudden shutting down
of a nuclear reactor, usually by rapid insertion of control rods, either automatically or manually by the reactor
operator. Also known as a reactor trip.” [220].
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assumed to be readily available and no knowledge is necessary as to the manner in which it was
obtained. In accordance with the partitioning of nuclear fuel management, it is also assumed
that the ICFMO problem is applicable in the context of single-cycle optimisation only.

4.2.2 Fuel assemblies

In principle, more fuel assemblies may be available for the design of a reload configuration than
there are loading positions in a reactor core to fill. In order to reduce the dimensionality of
the optimisation problem, however, it is assumed that the number of fuel assemblies and the
number of loading positions are equal. In accordance with the nuclear fuel management decision
problem partitioning, the specific fuel assemblies that are available have been selected during
the OCFM decision process. These assemblies form part of the fixed set of input requirements
necessary for ICFMO (see §4.2.1). This assumption corresponds, for example, to what occurs in
practice at the SAFARI-1 reactor — a subset of assemblies are selected from a larger available
pool before designing the reload configuration. It is reasonable to assume that reactors other
than SAFARI-1 may also employ it in practice.

All available fuel assemblies are also considered to be distinct from one another. This assumption
reflects reality because each fuel assembly accrues its own burnup history, and associated isotopic
composition with an axial distribution, as it moves through a reactor core along a unique path
during its lifetime.

Finally, given an instance of the ICFMO problem for some operational cycle of a reactor, it is
implicitly assumed that a subset of the available fuel assemblies for the problem instance resides
in the reactor core during the preceding cycle. This assumption is also realistic because it is
based on the typical manner in which a light water reactor core is reloaded.

4.2.3 The reactor type

Since it is assumed that the ICFMO problem is separate from OCFM, decisions related to
the fuel reload configuration design, the burnable absorber placement, and the control rod
programme remain for consideration (see Figure 4.1). The latter decision regarding a control
rod programme is, however, only applicable to a BWR — a reactor type that does not fall within
the research reactor scope of this dissertation. As such, control rod programming is considered
to be a separate problem, not influencing ICFMO, and is excluded from the optimisation model
adopted in this dissertation.

Burnable absorbers are widely used in PWRs, necessitating a decision on their placement across
a reactor core. It is far less common, however, to use such absorbers in research reactors [224].
Given this low prevalence in research reactors and the fact that a PWR is a reactor type that also
falls outside the scope of this dissertation, the decision on burnable absorber placement is not
considered part of the ICFMO problem, and is therefore excluded from the optimisation model
that follows. This assumption does not, however, preclude the usage of burnable absorbers in
a reactor in the ICFMO problem. Since fresh fuel assemblies may contain burnable absorbers,
they may be specified as such within the set of available fuel assemblies selected as part of the
OCFM decision process (see §4.2.1).

4.2.4 Objectives and constraints

Recall from §3.1 that objective functions and constraints associated with the ICFMO problem
are, in general, not available in closed form. It is therefore assumed that objectives and con-
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straints should be expressible as parameters that may be obtained from a reactor core calculation
code system. Furthermore, only neutronic calculations are assumed to be performed by the code
system. Unless specified otherwise, it is assumed here that the parameters are to be calculated
at beginning-of-cycle (BOC) core conditions so as to reduce the computational time required for
an evaluation.

4.2.5 Parallel computing

In accordance with the scope of this dissertation, the OSCAR-4 system is utilised as the reactor
core calculation code system during ICFMO. The OSCAR-4 system does not, however, easily
lend itself to perform different core calculations in a parallel computing environment. This
is primarily due to the inherent directory structure and text-based input/output processing
employed by the system. It is therefore assumed that a parallel-computing solution technique
to the ICFMO problem is not a viable option to pursue in this dissertation.

4.2.6 Computational budget

The computational budget available for solving an instance of the ICFMO problem is directly
related to the point in time at which the problem is considered in practice. There are generally
only two such points in time within the context of research reactors.

First, the problem may be considered during the operational cycle that precedes the one of
the current problem instance. Since it is assumed that a subset of the available fuel assemblies
resides in the core during this preceding cycle, the fuel assembly isotopic compositions to be
used in the problem instance are not known yet. Accordingly, the isotopic compositions have
to be estimated first utilising a code system and assuming the planned operating schedule. An
advantage of this approach is that the computational budget for solving the problem instance
is not severely restricted. A disadvantage, however, is the risk that discrepancies between the
estimated and true fuel assembly isotopic compositions may arise due to deviations from the
planned operating schedule, as mentioned in §4.2.1. A solution to the problem instance may then
potentially be far from optimal, or even infeasible. Under such circumstance, it may be necessary
to resolve the problem, using accurate isotopic compositions, but now within a computational
budget which is very restricted.

Secondly, the problem may be considered immediately after completion of the preceding cycle.
A so-called core-follow calculation is performed first in which the true operating history of
the cycle is captured, and accurate isotopic compositions are determined for the relevant fuel
assemblies to be used in the problem instance. An advantage of this approach is that no isotopic
composition discrepancies (between estimated and true calculations) can occur, and hence that
a solution to the problem instance may be considered accurate. A disadvantage, however, is
that the computational budget for solving the problem instance is now very restricted because
of the limited shutdown period between the two cycles.

For the purposes of this dissertation, it is assumed that a very restricted computational budget
is allowed for solving an instance of the ICFMO problem. For ease of reference, however, it will
be referred to as a limited computational budget throughout this dissertation. This assumption
is conservative since it encompasses the worst-case scenario of the first approach (i.e. resolving
the problem instance) as well as any scenario within the second approach. The reality that
access to high-performance computing facilities for solving an ICFMO problem instance is not
necessarily available is a further motivation for this assumption — a nuclear reactor operator
must often utilise a personal computer.
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4.2.7 Summary of assumptions

The assumptions in this section may be summarised as follows. The ICFMO problem is consid-
ered in this dissertation within the context of research reactors, for a single operational cycle,
and involves the decision making on a fuel reload configuration design for a reactor core. The
number of available fuel assemblies to be used in this design is equal to the number of fixed
loading positions in the core, and is fully determined as part of OCFM. These fuel assemblies
are also considered distinct from one another. Objectives and constraints associated with the
ICFMO problem are expressible as parameters that may be obtained from a code system per-
forming neutronic calculations, and a limited computational budget is allowed for solving a
problem instance.

4.3 The MICFMO model

The assumptions presented in the previous section for the ICFMO problem are naturally also di-
rectly applicable to the multiobjective problem. In this section, those assumptions are employed
to formulate an appropriate model for the MICFMO problem.

Let n be the number of fixed loading positions, labelled 1, . . . , n, in a reactor core. Let n
also be the number of available fuel assemblies, labelled 1, . . . , n. A reload configuration may
then be represented by a permutation decision vector x = [x1, . . . , xn] where xi = j denotes the
assignment of fuel assembly j ∈ {1, . . . , n} to loading position i ∈ {1, . . . , n}. This representation
is depicted in Figure 4.2. By adopting a permutation representation, the decision vector satisfies
the physical requirement that a fuel assembly can only be assigned once and to one position.

n− 1

xn−1

n

i i+ 1i− 1

1 2 · · ·

· · · · · ·

· · ·

Fuel loading positions in the core
and their corresponding labels

xn

xi+1

xi

xi−1

x2

x1

...

...

Decision vector

j j + 1 n− 1 nj − 121 · · · · · ·Available fuel assemblies and
their corresponding labels

xi = j

Figure 4.2: Assignment of fuel assemblies to loading positions.
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Let X be the set of all possible reload configurations (i.e. permutation decision vectors) and sup-
pose, without loss of generality, that all objective functions are to be maximised. Then, the gen-
eral model of the constrained MICFMO problem with q objective functions f1(x), f2(x), . . . , fq(x)
may be formulated as

maximise f(x) = [f1(x), f2(x), . . . , fq(x)],

subject to gi(x) ≤ glim
i , i = 1, . . . , r,

hj(x) = hlim
j , j = 1, . . . , s,

x ∈ X ,





(4.1)

where gi(x) and glim
i for i = 1, . . . , r are the inequality constraint functions and their corre-

sponding (non-zero) limiting values, respectively. Similarly, hj(x) and hlim
j for j = 1, . . . , s are

the equality constraint functions and their corresponding (non-zero) limiting values, respectively.
The vector f(x) of objective function values corresponding to a decision vector x ∈ X is referred
to as the objective vector.

4.4 The OSCAR-4 code system

As already mentioned, the reactor core calculation code system utilised in this dissertation is the
OSCAR-4 system. Although the system is employed as a “black-box” function evaluator during
MICFMO, a brief overview of the system is presented here. The interested reader is referred to
Stander et al. [203] for further details.

Developed in-house at Necsa, the OSCAR system is a state-of-the-art, advanced reactor simula-
tion code providing calculation support to several research reactors across the world [153]. It is
a deterministic core calculation code system, consisting of a two-dimensional transport code, a
three-dimensional nodal4 diffusion core simulator, and several related service codes. The latest
production version of the system, OSCAR-4 (see Figure 4.3), was released in 2009.

Cross-section generation
HEADE: two-dimensional

transport code

Neutron diffusion solver
MGRAC: three-dimensional

nodal diffusion simulator

Service codes

Figure 4.3: The OSCAR-4 code system.

In the two-dimensional transport code, called HEADE, few-group cross-sections are generated
according to a low-order response matrix5 formalism, while collision probability6 methods are
applied in the generation of the response matrices. These cross-sections are then employed
during the solution of the three-dimensional problem.

4In nodal methods, the reactor core is decomposed into “relatively large subregions or node cells in which the
material composition and flux are assumed uniform (or at least treated in an average sense)” [42].

5The general idea behind the response matrix method is that “the solution of a particle transport problem in a
composite (large) domain . . . is constructed from precomputed particular solutions to the local problems associated
with each of the subdomains” [122].

6The collision probability method is a popular numerical solution technique applicable to the integral form of
the transport equation [179].
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Full-core calculations are performed by the three-dimensional nodal diffusion simulator, called
MGRAC, which employs a technique called the multi-group analytic nodal method [225]. This
technique solves an initial-boundary value problem involving the three-dimensional, multi-energy
group, time-independent diffusion equation very efficiently to determine the neutron flux dis-
tribution throughout a reactor core [153]. Finally, isotopic depletion calculations, cross-section
parameterisation, and automated core-follow and reload calculations are performed by the re-
lated service codes.

4.5 The SAFARI-1 nuclear research reactor

The SAFARI-1 reactor, introduced in §1.2.2, is a 20 MW tank-in-pool type materials testing
reactor in South Africa. Photographs of the reactor are presented in Figure 4.4. SAFARI-1 is
primarily utilised for commercial irradiation services, as well as nuclear research, training and
materials testing activities.

(a) (b)

Figure 4.4: The SAFARI-1 nuclear research reactor [146].

The commercial services rendered by SAFARI-1 revolve around the production of radioisotopes
and the neutron transmutation doping of silicon7. Many of the radioisotopes are used for med-
ical diagnostic purposes and the therapeutic treatment of cancer, whereas the silicon doping
is performed to produce silicon semiconductors for use in electronic equipment [145]. In or-
der to render these services, the reactor contains several in-core irradiation positions that are
utilised for radioisotope production — primarily molybdenum-99 (99Mo) — while an ex-core
facility is utilised for silicon transmutation doping. In respect of the nuclear and materials
research conducted at SAFARI-1, neutron scattering, radiography and diffraction experiments
are performed, utilising a number of neutron beam tubes8 located around the core. These ex-
periments find application in, for example, archaeology and palaeontology, civil and mechanical
engineering, and the geosciences.

7Neutron transmutation doping of silicon is the intentional introduction of small quantities of phosphorus in
pure silicon by means of a nuclear reaction between neutrons and silicon nuclides [145].

8A beam tube is essentially an “opening” on the core periphery that may allow a stream of neutrons to escape
from the core into exterior experimental facilities.

Stellenbosch University  https://scholar.sun.ac.za



4.5. The SAFARI-1 nuclear research reactor 51

The SAFARI-1 reactor operates in cycles typically lasting from 21 to 30 days, with 5-day shut-
down periods in between. Usually, between two and four fresh fuel assemblies are loaded into
the core during each cycle; the remaining fuel assemblies are reused from previous cycles. An
individual fuel assembly, as shown in Figure 4.5(a), remains in the core for approximately seven
or eight operational cycles, typically in different positions, before being discharged. The core
itself consists of a 9× 8 lattice, called a grid plate (see Figure 4.5(b)), which houses twenty-six
LEU fuel assemblies, six control rods of fuel-follower type, seven dedicated 99Mo production
rig facilities, two general-purpose isotope production rig (IPR) facilities, as well as other core
components (mostly reflectors) which are not specified here in detail.

(a) A sample of a standard fuel assembly for
SAFARI-1 [146]

(b) Top view of the grid plate in
the SAFARI-1 core [146]

Figure 4.5: A sample of a standard fuel assembly for SAFARI-1 and a top view of the core grid plate.

The core layout of the reactor, depicting all these components, is presented in Figure 4.6. It
corresponds to a top view of the three-dimensional SAFARI-1 model used in the OSCAR-4
system. The locations of the beam tubes and the silicon doping facility are also indicated in
Figure 4.6. These locations are, however, for indentification and tally purposes only — the tubes
and the facility are not explicitly modelled in the OSCAR-4 model of SAFARI-1.
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Figure 4.6: Top view of the core layout of the SAFARI-1 model used in OSCAR-4.
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4.5.1 Objectives for MICFMO of SAFARI-1

A total of eight typical objectives associated with the SAFARI-1 reactor are considered for
MICFMO and are presented next. The translation of these objectives into core parameters that
may be returned by the OSCAR-4 system are also described.

The first objective is the popular maximisation of the operational cycle length of the reactor.
The core parameter adopted as proxy for cycle length is the excess reactivity, ρex, of the core.
In the second objective, the power peaking factor of the reactor, which is a safety-related core
parameter, is to be minimised.

The commercially-driven third and fourth objectives are to maximise the total production of
99Mo and to maximise the utilisation of the silicon transmutation doping facility, respectively.
The 99Mo production objective may be translated to maximising the assembly-averaged power
levels in all the molybdenum rigs (see Figure 4.6) because of a relation between the power
level and the molybdenum yield. The silicon doping objective, on the other hand, may be
translated to maximising the average thermal neutron flux level over the silicon doping facility
(see Figure 4.6). This translation is based on the assumption that a silicon ingot requires a
shorter exposure time when the neutron flux is higher. More ingots can therefore be exposed
over a given period of time, thus improving the utilisation of the doping facility.

Beam line research and experiments are provisioned for in the next two objectives. Although
the neutron scattering, radiography and diffraction facilities are each serviced by its own beam
tube, the proximity of beam tubes 1 and 2 result in these tubes being considered together,
whereas beam tube 5 is considered separately. Accordingly, the fifth and sixth objectives are
to maximise the research capability at beam tubes 1 & 2 and beam tube 5 (see Figure 4.6).
Since the beam line structures are not explicitly modelled in OSCAR-4, the two objectives may
be translated to maximising the average thermal neutron flux over the beam tube faces at the
core periphery. This translation is based on the assumption that more thermal neutrons yield
improved experimental outcomes.

Finally, the seventh and eighth objectives are to maximise the production of other isotopes, i.e.
those produced in the two IPR facilities. The two objectives may be translated to maximising
the maximum axial thermal neutron flux level in the IPR facilities at positions D6 and F6 (see
Figure 4.6), respectively. For this translation, it is assumed that an irradiation sample may be
placed in an IPR at the axial position where the thermal flux is at its peak.

The aforementioned objectives for the SAFARI-1 reactor and the core parameters to which they
are translated are summarised in Table 4.1 for ease of reference. Given the prevalence of thermal
neutron flux in the objectives discussed above, it is mentioned here, for the sake of interest, that
the thermal neutron energy range adopted in the OSCAR-4 model for SAFARI-1 is from 0 to
0.625 eV.

4.5.2 Constraints associated with MICFMO of SAFARI-1

The objectives in the previous section are all subject to a constraint set consisting of several
safety and utilisation requirements for the SAFARI-1 reactor. The specific limiting values of
these requirements are proprietary knowledge and are therefore not divulged here (see §1.4 for
details). The set of inequality constraints is as follows:

• The total 99Mo production must be greater than a specified limit;

• The 99Mo yield for each molybdenum rig must be above a specified limit;
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• The peak axial production capability in each IPR facility must be above a specified limit;

• The core power peaking factor must be below the safety limit;

• The total control bank worth, ρcbw, must be above the safety limit; and

• The shutdown margin, ρsdm, must be above the safety limit.

These constraints are translated to core parameters in the same manner as in the objectives.
Accordingly, 99Mo production/yield in the first two constraints translate to assembly-averaged
power levels in the molybdenum rigs, while the peak axial production capability in an IPR
facility in the third constraint translates to the maximum axial thermal neutron flux level in the
facility. The remaining constraints already correspond to core parameters.

Identifier Goal Original objective Core parameter

S1 Maximise Cycle length Excess reactivity (ρex)
S2 Minimise Power peaking factor Power peaking factor
S3 Maximise Total 99Mo production Assembly-averaged power levels in

all molybdenum rigs
S4 Maximise Utilisation of the silicon Average thermal neutron flux over the

doping facility silicon doping facility
S5 Maximise Research capability at Average thermal neutron flux over the

beam tubes 1 & 2 beam tube faces
S6 Maximise Research capability at Average thermal neutron flux over the

beam tube 5 beam tube face
S7 Maximise Isotope production in the Maximum axial thermal neutron flux in

first IPR facility the IPR facility
S8 Maximise Isotope production in the Maximum axial thermal neutron flux in

second IPR facility the IPR facility

Table 4.1: The objectives for MICFMO of SAFARI-1 and their corresponding core parameters.

4.5.3 The current reload configuration design approach at SAFARI-1

The SAFARI-1 reactor is currently operated according to a reload configuration design approach
based on a combination of several years of operating experience and the well-known highest-mass
to lowest-flux (HMLF) heuristic. This heuristic attempts to flatten the power distribution over
the reactor core by assigning more reactive fuel assemblies (highest-mass) to the less reactive
loading positions (lowest-flux), and vice versa. Generally speaking, this means that fresh fuel
assemblies are loaded in the peripheral positions of the SAFARI-1 core whereas the most-burnt
assemblies are loaded in the central positions.

This design approach typically yields a safe reload configuration for any given operational cycle,
while generally meeting the utilisation requirements of the reactor, especially in terms of 99Mo
production. A disadvantage of the approach, however, is its inflexibility to any change in reactor
utilisation requirements. It is likely also the least favourable approach in terms of cycle length.
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4.6 The HOR nuclear research reactor

The Hoger Onderwijs Reactor (HOR) is a 2 MW open-pool type research reactor located at the
Delft University of Technology in the Netherlands. Photographs of the reactor are presented in
Figure 4.7. The HOR reactor is operated by the Reactor Institute Delft and is primarily utilised
as a source of neutrons and positrons9 in support of the various research activities conducted at
the university. These research activities find application in studies of biotissues, metals, colloids,
polymers and thin layers, and geomaterials [20]. The OSCAR code system is also used to provide
calculation support to the reactor.

(a) (b)

Figure 4.7: The HOR nuclear research reactor [19].

The duration of an operating cycle for HOR may vary, although it generally operates for two or
three cycles per annum. Only one fresh fuel assembly is usually loaded into the core during a
cycle. The reactor core consists of a 6×7 lattice which houses sixteen LEU fuel assemblies, four
intra-assembly control rods, two in-core irradiation rigs, and several beryllium (Be) reflector
assemblies. A number of neutron beam tubes and irradiation facilities also surround the core.

The core layout of the reactor, depicting these components, is presented in Figure 4.8. It
corresponds to a top view of the three-dimensional HOR model used in OSCAR-4. Only the
location of the primary beam tube, designated as R2, is indicated in Figure 4.8. As before, this
location is for identification and tally purposes only — the beam tube is not explicitly modelled
in the OSCAR-4 HOR model. The two in-core irradiation rig facilities are colloquially referred
to as “Small BeBe” and “Big BeBe” in reference to their beryllium composition.

4.6.1 Objectives for MICFMO of HOR

A total of four typical objectives associated with the HOR reactor are considered for MICFMO
and are presented next. As before, the translation of these objectives into core parameters that
may be returned by the OSCAR-4 system are also described.

9A positron is a subatomic particle that has the same mass and magnitude of charge as an electron, but is
positively charged. It is also sometimes called a positive electron and constitutes the antiparticle of an electron [53].
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Figure 4.8: Top view of the core layout of the HOR model used in OSCAR-4.

For the HOR reactor, the first objective is also to maximise its operational cycle length which
may again be translated to maximising the excess reactivity of the core. The second objective is
to maximise the research capability at beam tube R2. Under the assumption that more thermal
neutrons yield improved experimental outcomes, this objective may again be translated to max-
imising the average thermal neutron flux over the beam tube face (since the beam line structure
is not explicitly modelled in OSCAR-4). The third and fourth objectives are to maximise the
utilisation of the Small BeBe and Big BeBe irradiation rigs, respectively. These two objectives
may be translated to maximising the average thermal neutron flux in the respective rigs. It is
also assumed here that more thermal neutrons yield improved experimental outcomes. Finally,
the fifth objective is to minimise the criticality of the reactor when the two most reactive con-
trol rods are fully extracted from the core. This safety-related objective is associated with the
so-called stop margin requirement which is discussed in greater detail later in this section. The
objective may be translated to minimising the effective multiplication factor of the reactor ksm

eff

when the two most reactive control rods are fully extracted from the core.

The aforementioned objectives for the HOR reactor and the core parameters to which they are
translated are summarised in Table 4.2 for ease of reference. As before, the thermal neutron
energy range adopted in OSCAR-4 model for HOR is from 0 to 0.625 eV.

4.6.2 Constraints associated with MICFMO of HOR

The objectives in the previous section are all subject to a safety-related constraint associated
with the HOR reactor. This constraint is referred to as the stop margin constraint and it is a
slightly modified shutdown margin requirement for the reactor. According to this requirement,
the reactor should remain subcritical when the two most reactive control rods are fully extracted
from the core. In the OSCAR-4 system, this constraint is implemented as follows. A reactor core
state is deemed subcritical (i.e. it satisfies the constraint) if its calculated effective multiplication
factor, keff, is less than the estimated keff value of a critical core state by some prescribed safety
margin. The value of this “critical keff” may be different from 1 since any given code system
and model combination will exhibit a computational offset.
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Identifier Goal Original objective Translated core parameter

H1 Maximise Cycle length Excess reactivity (ρex)
H2 Maximise Research capability at beam Average thermal neutron flux

tube R2 over the beam tube face
H3 Maximise Utilisation of the Small BeBe rig Average thermal neutron flux

in the Small BeBe rig
H4 Maximise Utilisation of the Big BeBe rig Average thermal neutron flux

in the Big BeBe rig
H5 Minimise Criticality of the reactor ksm

eff

during stop margin requirement

Table 4.2: The objectives for MICFMO of HOR and their corresponding core parameters.

4.6.3 The current reload configuration design approach at HOR

The HOR reactor is currently operated according to a reload configuration design approach
based on a combination of operating experience and trial-and-error. The design approach aims
to satisfy the stop margin constraint while maximising the cycle length. In this regard, the
heaviest-massed fuel assemblies, in terms of 235U content, are typically assigned to the central
positions in the core so as to increase the excess reactivity. The remaining fuel assemblies are
then distributed approximately symmetrically about row 4 (see Figure 4.8) according to their
235U masses. This is an initial attempt at satisfying the stop margin constraint. Modifications
are then made according to a trial-and-error approach until a satisfactory reload configuration
design is obtained.

4.7 Chapter summary

In this chapter, a general model for the MICFMO problem was presented along with detailed
discussions on the two nuclear research reactors considered in this dissertation as case studies.
In §4.1, the topic of nuclear fuel management was briefly described in order to illustrate the
context of ICFMO within this broader topic. Several necessary problem assumptions were then
presented in §4.2 before the optimisation model adopted in this dissertation for the MICFMO
problem was presented in §4.3.

A short description of the OSCAR-4 code system was given in §4.4 since the objective functions
and constraints in the MICFMO problem have to be calculated by such a system. The SAFARI-1
and HOR reactors were then described in some detail in §4.5 and §4.6, respectively. Typical
objectives and constraints associated with each reactor for the MICFMO problem were specified,
and descriptions of the current reload configuration design approaches employed at the reactors
were presented.
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As mentioned in §1.3, one of the priorities in this dissertation is to address the shortcomings
present in the optimisation methodology within the core calculation code system, OSCAR-4, as
it was inherited by this author. A scalarisation-based methodology for MICFMO is therefore
proposed in this chapter to address those shortcomings. First, the notion of Pareto optimality
and other related concepts are discussed in some detail. This supplies the reader with the nec-
essary background knowledge to better understand the MOO modelling process and solution
techniques discussed in this chapter, and later in the dissertation. The scalarisation approach
adopted in the inherited methodology is described next, followed by an elucidation of the pro-
posed MICFMO methodology. The applicability of this methodology is finally demonstrated
on problems instances within the context of the SAFARI-1 and HOR reactors introduced in
Chapter 4.
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5.1 Introduction

The notion of Pareto optimality in MOO was only touched upon very briefly in the dissertation
thus far. In this section, a more comprehensive discussion on Pareto optimality and other
related concepts are presented. This allows the reader to gain a better understanding of the
MOO modelling approaches and solution techniques employed throughout this dissertation. The
definitions and descriptions presented in this section follow closely those of Miettinen [139].

5.1.1 Multiobjective optimisation preliminaries

In order to present formal definitions of Pareto optimality and its related concepts, consider first
a general model for a multiobjective optimisation problem (MOP) with q ≥ 2 objective functions
f1(x), f2(x), . . . , fq(x). Assume, without loss of generality, that all objective functions are to be
maximised. Then an MOP may be formulated as

maximise [f1(x), f2(x), . . . , fq(x)],

subject to x ∈ S,

}
(5.1)

where x = [x1, . . . , xn] denotes the decision vector and S the feasible region, which is here
assumed to be a subset of the decision space Rn. Let f(x) = [f1(x), f2(x), . . . , fq(x)] denote
the objective vector. For the purpose of brevity, the objective vector may also be denoted by z =
[z1, z2, . . . , zq], where zi = fi(x) for all i = 1, . . . , q. These two notations are used interchangeably
in the discussions that follow. Lastly, the image of the feasible region, Z = {f(x) |x ∈ S }, is
called the feasible objective space and is a subset of the objective space Rq.

Although a single-objective optimisation problem (SOP) may have a single solution (not neces-
sarily unique) that maximises/minimises its objective function, it is reasonable to assume that
no single solution exists that is optimal with respect to every objective function simultaneously
in an MOP [139]. A set of compromise or trade-off solutions may, however, be identified for the
MOP (5.1) by employing a concept known as Pareto dominance. Formally, a decision vector
x∗ ∈ S is said to dominate another decision vector x ∈ S (denoted by x∗ � x) if fi(x

∗) ≥ fi(x)
for all i = 1, . . . , q and fj(x

∗) > fj(x) for at least one j ∈ {1, . . . , q}. Furthermore, an objective
vector z∗ dominates another objective vector z (i.e. z∗ � z) if its corresponding decision vector
x∗ dominates x.

Using this definition of dominance, a decision vector x∗ in some subset Q ⊆ S is said to be
nondominated in Q if there exists no other decision vector x ∈ Q which dominates x∗. Similarly,
an objective vector z∗ is nondominated if its corresponding decision vector is nondominated.
The special case in which the subset Q is, in fact, the entire feasible region S itself corresponds
to a definition of Pareto optimality — a decision vector x∗ ∈ S is Pareto optimal if it is
nondominated in S. Also, an objective vector z∗ is Pareto optimal if its corresponding decision
vector is Pareto optimal. The set containing all the Pareto optimal decision vectors of (5.1)
is called the Pareto set, and is denoted by PS . Similarly, the corresponding set of all Pareto
optimal objective vectors is called the Pareto front, and is denoted by PF .

If the objective functions are bounded over the feasible region, then upper bounds on the Pareto
front give rise to a so-called ideal objective vector, denoted by z? ∈ Rq. The components of this
vector, z?i , are obtained by maximising each of the objective functions individually, subject to
the feasible region S. Sometimes, for theoretical reasons, a vector is needed that is strictly better
than the ideal objective vector. Accordingly, a utopian objective vector, denoted by z?? ∈ Rq, is
defined as an infeasible objective vector whose components are determined by z??i = z?i + ε for
all i = 1, . . . , q, where ε > 0 is a relatively small but computationally significant scalar [139].
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Apart from Pareto optimality, there are also the concepts of weak and proper Pareto optimality.
Formally, a decision vector x∗ ∈ S is weakly Pareto optimal if there does not exist another
decision vector x ∈ S such that fi(x) > fi(x

∗) for all i = 1, . . . , q, i.e. for which all the
components are better than those of x. Furthermore, an objective vector is weakly Pareto
optimal if its corresponding decision vector is weakly Pareto optimal. The idea behind the notion
of proper Pareto optimality is that unbounded trade-offs between objectives are not allowed.
Although several definitions exist for proper Pareto optimality, the one by Geoffrion [67], as
described in [139], is adopted here. A decision vector x∗ ∈ S is properly Pareto optimal (in
the sense of Geoffrion) if it is Pareto optimal and if there is some real number M > 0 such
that, for each i = 1, . . . , q and each x ∈ S satisfying fi(x) > fi(x

∗), there exists at least one
j ∈ {1, . . . , q} such that fj(x

∗) > fj(x) and

fi(x
∗)− fi(x)

fj(x)− fj(x∗)
≤M.

Essentially then, a decision vector is properly Pareto optimal if there exists at least one pair
of objectives for which a finite improvement in one objective is possible only at the expense of
some reasonable deterioration in the other objective [139]. Furthermore, an objective vector is
properly Pareto optimal if its corresponding decision vector is properly Pareto optimal.

These three concepts of optimality are illustrated by means of a graphical example in Figure 5.1.
The example is similar to the one found in [22]. In the figure, the set of weakly Pareto optimal
objective vectors is denoted by a thick black line on the edge of the feasible objective space. The
endpoints of the set of Pareto optimal vectors are denoted by two circles, while the endpoints
of the set of properly Pareto optimal vectors are denoted by short lines.

z1

z2

Z

Figure 5.1: Example of Pareto optimality, weak Pareto optimality and proper Pareto optimality. The
set of weakly Pareto optimal objective vectors is denoted by a thick black line. The endpoints of the set
of Pareto optimal vectors are denoted by two circles, while the endpoints of the set of properly Pareto
optimal vectors are denoted by short lines.

5.1.2 Classification of MOO solution methods

Since Pareto optimal solutions to an MOP are regarded as equally desirable in a mathematical
sense, additional information not contained in the objective functions is typically required in
order to select one solution as the final solution for implementation purposes [139]. This selection
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requires a decision maker, which is understood to be a person who can express preference
relations between different Pareto optimal solutions. Methods for solving MOPs may be classified
according to the role that the decision maker assumes during the solution process. The following
four classes of solution methods have been proposed by Hwang and Masud [87] according to
Miettinen [139], and a short description of each is provided.

• No-preference methods — a decision maker, along with his preference information is not
available, and the task is to find some neutral compromise solution based on reasonable
assumptions.

• A priori methods — a decision maker specifies his preference information, and the task is
to find a Pareto optimal solution that satisfies it as best as possible.

• A posteriori methods — a representation of the set of Pareto optimal solutions is deter-
mined, and then a decision maker chooses his most preferred solution.

• Interactive methods — an iterative solution procedure is developed in which solution infor-
mation and decision maker preferences are exchanged after each iteration, until a solution
is reached that satisfes a decision maker the most.

In the context of the MICFMO problem, it is assumed that a decision maker is available and
so no-preference methods are therefore excluded from consideration. Interactive methods are
also excluded for the sake of simplicity. Accordingly, only a priori and a posteriori methods are
considered in this dissertation.

A popular approach for solving MOPs is by scalarisation. This approach is adopted in both the
a priori and a posteriori classes of methods. In scalarisation, an MOP is converted into a single,
or a family of SOPs [139]. This is usually achieved by aggregating the multiple objectives into
a single scalarising objective function. Once an MOP is scalarised, methods in single-objective
optimisation may be employed to solve the problem.

5.2 The weighting method

Recall from §1.3 that the author inherited a basic working version of an MICFMO decision
support feature in the OSCAR-4 system [182]. In this inherited feature, a problem instance is
solved by means of a scalarisation approach known as the weighting method. This well-known
method is the most popular scalarisation approach adopted in the ICFMO literature [8, 9, 91,
94, 97, 123, 164, 166, 182, 191].

According to the weighting method, each of the q objective functions in an MOP is associated
with a weighting coefficient and the linear weighted sum of these objective functions then form
a single scalarising objective function to be optimised. More formally, an MOP of the form (5.1)
is transformed into a weighting problem

maximise

q∑

i=1

wifi(x),

subject to x ∈ S,





(5.2)

where wi ≥ 0 for all i = 1, . . . , q and generally
∑q

i=1wi = 1 [139]. If all the weighting coefficients
are strictly positive, a solution of (5.2) is Pareto optimal. A serious weakness of the method,
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however, is that it cannot uncover all the Pareto optimal solutions if the optimisation problem
is nonconvex1 [139].

If the weighting method is employed as an a posteriori method, which it is generally intended
for, a set of Pareto optimal solutions can be obtained through repeated solution of (5.2) using
different combinations of strictly positive weighting coefficients [139]. Since none of the above-
mentioned works in the ICFMO literature employ the method in this manner, the MICFMO
problem has not yet been solved in terms of finding a set of Pareto optimal solutions.

The weighting method may also be employed as an a priori method, as is done in the MICFMO
literature and the inherited feature within OSCAR-4. The decision maker has to specify a
weighting vector that represents his preference information, while the scalarising objective func-
tion in (5.2) is considered as the decision maker’s utility function2 [139]. It is often said that the
coefficients reflect to the relative importance of the objective functions. What exactly underlies
this notion, however, is not clear at all [139]. It has also been remarked that the coefficients
“should represent the rate at which the decision maker is willing to trade off values of the objec-
tive function” [139]. It is also known that unexpected results may be obtained when weighting
coefficients are modified, especially when objective functions are correlated, or when their objec-
tive values are not scaled/normalised [139]. Weighting coefficients in such an a priori context are
therefore not easy to interpret or understand. This is also evident based on the values selected
for the weighting coefficients in the ICFMO literature. For example, coefficient values in [8, 91,
123, 182] were arbitrarily selected as 1, while the values in [9, 94, 164, 166] were determined
“empirically” without any mention as to methodology involved.

Although the weighting method is simple to use, it is arguably not an appropriate scalarisation
approach for MOPs. The method’s general inability to obtain all Pareto optimal solutions, the
subsequent risk of generating misleading results in respect of the Pareto set, the misleading
role of weighting coefficients, and the unexpected results from changes in these coefficients all
contribute to the widely accepted recommendation in the operations research community that
a different scalarisation approach should be employed for solving MOPs.

5.3 The proposed scalarisation-based methodology for MICFMO

Given the shortcomings of the weighting method, the MICFMO feature in the OSCAR-4 system
inherited by the author was recognised to be inadequate for rendering advanced MICFMO deci-
sion support to users of the system. As mentioned in §1.3, one of the priorities in this disserta-
tion is therefore to address the shortcomings present in the inherited optimisation methodology.
Accordingly, an alternative scalarisation approach is proposed in this section with a view to re-
place the weighting method. Furthermore, adaptations to the harmony search algorithm, which
is employed as the solution technique in the methodology, are also proposed in aid of rendering
advanced decision support.

1An optimisation problem is nonconvex if any of its objective functions or the feasible region is not convex.
As per the definition presented in [139], a function f : Rn → R is convex if, for all x1,x2 ∈ Rn, it holds that
f(λx1 + (1 − λ)x2) ≤ λf(c1) + (1 − λ)f(x2) for all 0 ≤ λ ≤ 1. Similarly, a set S ∈ Rn is convex if, for all
x1,x2 ∈ S, it holds that λx1 + (1− λ)x2 ∈ S for all 0 ≤ λ ≤ 1.

2A utility function is a function U : Rq → R representing the preferences of a decision maker among the
objective vectors by which a complete ordering in objective space may be achieved [139].

Stellenbosch University  https://scholar.sun.ac.za



62 Chapter 5. A scalarisation-based methodology for MICFMO

5.3.1 An alternative scalarisation approach

The alternative scalarisation approach proposed in this dissertation is based on the method of
weighted metrics and the inclusion of aspiration levels during the solution process. According
to the method of weighted metrics, the weighted distance between some reference point and the
feasible objective space is minimised [139]. An aspiration level is, in turn, defined as an objective
function value that is desirable or would be satisfactory to the decision maker if that value were
to be achieved [139].

In the method of weighted metrics, the Lp-metrics are usually employed for measuring distance
and the ideal objective vector z? is selected as reference point [139]. More formally, an MOP of
the form (5.1) is transformed into the weighted Lp-problem

minimise

(
q∑

i=1

wi|fi(x)− z?i |p
)1/p

,

subject to x ∈ S,





(5.3)

for 1 ≤ p <∞. It is usually assumed that wi ≥ 0 for all i = 1, . . . , q and that
∑q

i=1wi = 1 [139].
In the case where p = ∞, the metric is also known as a Chebyshev metric, thus giving rise to
the weighted Chebyshev problem

minimise max
i=1,...,q

(wi|fi(x)− z?i |) ,

subject to x ∈ S.



 (5.4)

Denominators may be added to (5.3) and (5.4) so as to normalise/scale the terms in the scalar-
ising function, e.g. |fi(x)− z?i |/|z?i |.
In (5.3), the method of weighted metrics exhibits the same weakness as the weighting method for
wi > 0 for all i = 1, . . . , q, namely that it cannot uncover all the Pareto optimal solutions if the
problem is nonconvex. On the other hand, in (5.4), every Pareto optimal solution can be obtained
by some combination of strictly positive weighting coefficients w1, . . . , wq, irrespective of whether
or not the problem is convex [139]. Although this is a very desirable theoretical result, it still has
a weakness — unless a solution is unique, the method may yield weakly Pareto optimal solutions
as well. One of the approaches specified by Miettinen [139] for overcoming this weakness is to
vary the Chebyshev metric by an augmentation term such that weakly Pareto optimal solutions
are avoided. Some Pareto optimal solutions may, however, be impossible to obtain using this
approach and therefore only properly Pareto optimal solutions are of interest [139]. Accordingly,
the problem to consider, now using the utopian objective vector z?? as reference point, is the
augmented weighted Chebyshev problem

minimise max
i=1,...,q

(wi|fi(x)− z??i |) + µ

q∑

j=1

|fj(x)− z??j |,

subject to x ∈ S,





(5.5)

where µ is a “sufficiently small” positive scalar [139]. It is known that a solution to (5.5) is
properly Pareto optimal (if wi > 0 for all i = 1, . . . , q and µ > 0) and any properly Pareto
optimal can be obtained for convex and nonconvex problems [139].

One of the difficulties that may arise in the scalarisation of the MICFMO problem (4.1) to an
augmented weighted Chebyshev problem, is the likely absence of the ideal objective vector. For
many real-world optimisation problems, including the MICFMO problem, the ideal objective
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vector is typically not known. This, in turn, means that the required utopian objective vector
in (5.5) cannot be determined.

Consider also that the method of weighted metrics is intended to be used as an a posteriori
method [139]. A set of properly Pareto optimal solutions can therefore be obtained through
repeated solution of (5.5) by using different (strictly positive) weighting coefficients. This leads
to another difficulty that may arise in the context of MICFMO. Since it has been assumed
in §4.2.6 that only a limited computational budget is allowed for solving an MICFMO problem
instance, it would be impractical from a computational point of view to solve (5.5) repeatedly
using different weighting coefficients.

Taking cognisance of the augmented weighted Chebyshev problem’s desirable theoretical re-
sult and of its associated practical difficulties within the context of MICFMO, the following
scalarisation approach is proposed. The decision maker (or an analyst) has to specify partial
a priori preference information in the form of aspiration levels, denoted by z̄i, for every ob-
jective i ∈ {1, . . . , q}. The vector z̄ = [z̄1, . . . , z̄q] ∈ Rq formed by these levels is referred to
as an aspiration vector. Note that achievement of these levels does not necessarily have to be
feasible. This aspiration vector is then used as reference point within an augmented Chebyshev
metric-based scalarising objective function F̃q(x), given as

F̃q(x) = max
i=1,...,q

∣∣∣∣
fi(x)− z̄i

z̄i

∣∣∣∣
︸ ︷︷ ︸

Chebyshev term

+µ

q∑

j=1

∣∣∣∣
fj(x)− z̄j

z̄j

∣∣∣∣
︸ ︷︷ ︸

augmentation term

, (5.6)

where all symbols have the same meaning as before. The denominators in (5.6) ensure that all
the terms are similarly scaled by order of magnitude.

The idea behind using this scalarising objective function, as is the case in problem (5.5), is to
minimise the Chebyshev distance between the objective vector f(x) and a reference point, now
selected as the aspiration vector z̄. Minimisation of (5.6) therefore improves, at any given time,
the worst deviation between any objective and its aspiration level. Usage of the Chebyshev
metric typically results in solutions that are “well-balanced” with respect to all the objective
functions [205]. If the worst deviation cannot be improved upon anymore for some specific
decision vector, it may still be possible to improve achievements in the other objectives. These
improvements may be realised through the inclusion of the augmentation term in (5.6). The
value of µ should, however, be sufficiently small so as to ensure that the augmentation term
does not negate the Chebyshev term.

Regarding the aspiration vector, known target or goal values (based, for example, on historical
data or expert judgement) may be taken as the aspiration levels. This implies that objectives
need only be improved up to sufficient satisfaction, and not necessarily to optimality. Another
approach would be to take unattainable, but still realistic, values as the aspiration levels. In
doing so, objectives are to be improved as best possible, and not only up to their target values.
It is important to recognise that, for an appropriate choice of aspiration vector, namely z̄ = z??,
(5.6) corresponds to the scalarising objective function in (5.5) with wi = 1 for all i = 1, . . . , q.
As such, the function has the property that its solution (i.e. when minimised) is properly Pareto
optimal irrespective of whether or not the problem is convex. Accordingly, usage of (5.6) ad-
dresses the shortcoming of the weighting method employed in the current MICFMO literature
and within the inherited OSCAR-4 methodology.

Unlike the method of weighted metrics, it is proposed that (5.6) be employed partially within
the context of an a priori method because of the limited computational budget assumed for
MICFMO. This is also the primary motivation for not having weighting coefficients associated
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with any of the objective functions in (5.6) — it would be computationally impractical to
optimise the scalarising function repeatedly using different weighting coefficients. Furthermore,
the misleading role that weighting coefficients may play in an a priori method is circumvented
when using (5.6). The specification of aspiration levels is arguably a more natural, or easily
understandable, manner to convey preferences. In the proposed methodology, however, the
aspiration levels correspond only to partial preferences because it is recognised that the single
solution obtained from minimising (5.6) may not necessarily be to the satisfaction of the decision
maker. Instead, the intention within the methodology is to identify several solutions, preferably
also (properly) Pareto optimal. As such, it is proposed that an archive of nondominated decision
vectors be maintained during the optimisation of (5.6) as and when they are identified. Upon
completion of the solution process, nondominated decision vectors in the vicinity of the final
solution may have been uncovered. It is therefore possible to construct a set of nondominated
solutions for an MOP without repeatedly having to solve an SOP (as would be the case for typical
a posteriori scalarisation). Such a nondominated set may be considered an approximation of
the Pareto set, although it will not necessarily exhibit a good spread over the true Pareto set
due to the usage of a fixed scalarising objective function and the choice of z̄. It will, however,
provide the decision maker with good alternative trade-off solutions to consider.

5.3.2 Constraint handling

By using (5.6) to transform MICFMO problem (4.1) into an SOP, the following optimisation
problem is obtained

minimise F̃q(x) = max
k=1,...,q

∣∣∣∣
fk(x)− z̄k

z̄k

∣∣∣∣+ µ

q∑

`=1

∣∣∣∣
f`(x)− z̄`

z̄`

∣∣∣∣ ,

subject to gi(x) ≤ glim
i , i = 1, . . . , r,

hj(x) = hlim
j , j = 1, . . . , s,

x ∈ X ,





(5.7)

where all symbols have the same meaning as before. In order to solve an optimisation prob-
lem such as (5.7), a suitable constraint handling technique is required for accommodating the
constraints. A popular approach, which is also adopted here, is to consider all decision vectors
during optimisation, but to penalise those that violate any constraint. It is therefore proposed
that an additive penalty function (APF) be employed as constraint handling technique within
the methodology.

According to this APF technique, if a decision vector violates any constraint, a corresponding
penalty value related to the magnitude of that violation is incurred. The total penalty value for
all the constraint violations is then calculated and added to scalarising objective function F̃q(x)
in (5.7) in order to penalise the decision vector for being infeasible. Note that a feasible decision
vector has zero penalty.

Let

G(x) =

r∑

i=1

max

{
0,
gi(x)− glim

i

|glim
i |

}
(5.8)

be the total scaled constraint violation associated with the inequality constraints in problem
(5.7). Similarly, let

H(x) =

s∑

j=1

∣∣∣∣∣
hj(x)− hlim

j

hlim
j

∣∣∣∣∣ (5.9)
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be the total scaled constraint violation associated with the equality constraints in problem (5.7).
The penalty function in the APF technique is then defined as

Pa(x) = γ
(
G(x) +H(x)

)
, (5.10)

where γ is a strictly positive severity factor. The manner in which γ may be determined empir-
ically is discussed later in this section.

All the constraint violations in (5.8) and (5.9) are assumed to be equally important, thereby
eliminating the need to specify additional importance weights for the different constraints. This
is a reasonable assumption if feasible solutions only are of interest. Furthermore, each constraint
violation is scaled in order to obtain values that are similarly scaled by order of magnitude. This
allows for the various constraint violations to be aggregated together in a responsible manner.

The penalty function (5.10) may now be added to F̃q(x) in (5.7) so that the scalarising objective
function for MICFMO becomes

Fq(x) = max
k=1,...,q

∣∣∣∣
fk(x)− z̄k

z̄k

∣∣∣∣+ µ

q∑

`=1

∣∣∣∣
f`(x)− z̄`

z̄`

∣∣∣∣+ Pa(x). (5.11)

The value of the parameter γ in (5.10) may be chosen so that the value of Fq(x) for an infeasible
decision vector is worse than the value of Fq(x) for the majority of feasible decision vectors. By
repeatedly minimising Fq(x) off-line for different values of γ, and evaluating the quality of the
solutions thus obtained, an acceptable value may be settled upon and selected for use during
the actual optimisation.

Therefore, in the proposed scalarisation-based methodology for MICFMO, the general con-
strained MICFMO problem (4.1) may always be transformed into an SOP, namely

minimise Fq(x),

subject to x ∈ X ,

}
(5.12)

where Fq(x) is defined in (5.11). Accordingly, single-objectove optimisation methods may be
employed to solve (5.12).

It may be observed that the scalarising objective function in (5.11) is not only applicable to
the MICFMO problem, but also to the single-objective ICFMO problem. The penalty function
Pa(x) in (5.10) is already independent of the number of objectives. For q = 1, the max-operator
reduces to the identity operator. Furthermore, the augmentation term simply has a scaling
effect on the objective function value and, as such, has no influence on the optimisation process.
Therefore, if an unattainable aspiration level is selected, then solving (5.12) for q = 1 will yield
an optimal solution.

Another advantage of this scalarisation approach, then, is that SOP and MOP variants of the
ICFMO problem, be they constrained or unconstrained, may be modelled in the exact same
manner, while the same single-objective optimisation method(s) may be utilised for solving any
resulting problem instance. Such flexibility may be especially useful for research reactors that
have to pursue different objectives during different operational cycles.

5.3.3 Harmony search as a solution technique

It was mentioned earlier that a metaheuristic, called harmony search (HS) [64], is employed
as the solution technique in the MICFMO feature within the OSCAR-4 system inherited by
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the author [182]. Apart from its usage in [182], the HS algorithm has also been applied in the
context of ICFMO by Poursalehi et al. [165]. The algorithm was found to yield competitive
results when compared to a Hopfield neural network/SA hybrid method and a GA.

Recall from §3.3.3 that HS is a constructive metaheuristic based on an analogy to an impro-
visation jazz band playing different sounds on their instruments (different values for decision
variables) in order to find a pleasing combination of sound (good objective function values).
In the analogy, a harmony corresponds to a decision vector and new harmonies are said to be
improvised.

The standard HS algorithm consists of the following four steps:

1. Initialise a memory structure, called the harmony memory (HM), with random3 harmonies.

2. Improvise a new harmony on a variable-by-variable basis according to guidelines that
probabilistically consider the HM, local perturbations and pure randomisation.

3. Compare the newly-improvised harmony with the worst harmony contained in the HM,
in terms of objective function value. If the new harmony is better than the worst one,
replace that worst harmony in the HM with the new one.

4. If some pre-determined termination criteria are met, terminate the algorithm; otherwise,
return to the second step.

The size of the HM, denoted by Nhm, is generally problem-dependent and its value may be
determined empirically. The guidelines mentioned in the second step on how to improvise a
new harmony (i.e. decision vector) are described next by means of an example. Consider an
SOP in which objective function f(x) is to be minimised, subject to the constraints xi ∈ Xi
for i = 1, . . . , 4, where x = [x1, x2, x3, x4] is a vector of continuous decision variables, and
Xi = {x | 0 ≤ x ≤ 1, x ∈ R} is the set of allowable values for variable i. Furthermore, suppose
Nhm = 3 and that the HM at the start of some iteration during the algorithm’s execution is
given by

HM =

x1 x2 x3 x4 f(x)

xa 0.12 0.35 0.01 0.16 8.9
xb 0.55 0.45 0.80 0.93 3.2
xc 0.76 0.67 0.43 0.50 6.5

.

In the second step, a new harmony x′ is improvised on a variable-by-variable basis. For each
variable xi, a value is randomly selected, either from the HM, or from its allowable range Xi.
The harmony memory consideration rate (HMCR), denoted by phm, is a parameter that guides
this selection towards values from the HM. Consider, for example, the decision variable x′2. With
probability phm, a value for x′2 is randomly selected from the list {0.35, 0.45, 0.67}. The values in
this list correspond to those appearing in the shaded column x2 of the HM. The list may contain
repeated values and, since each element in the list is equally likely to be selected, any repeated
values will therefore have a greater likelihood of selection. Alternately, with probability 1−phm,
a value for x′2 is randomly selected from X2. According to Yang [240], typical values for the
HMCR range between 0.7 and 0.95.

Whenever a decision variable takes a value from the HM, a process called pitch adjustment
may be performed. In this process, the value of the decision variable is perturbed in order

3In this section, where any reference is made to random selection, it is assumed that a uniform distribution is
employed during selection.
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to generate a slightly different harmony. The probability of performing the pitch adjustment
process is determined by a parameter called the pitch adjustment rate (PAR), and is denoted
by ppar. Values for the PAR, according to Yang [240], typically range between 0.1 and 0.5. So,
consider a decision variable x′i ∈ R whose value has been taken from the HM. With probability
ppar, that value may be perturbed according to x′i,new = x′i,old + bpar · ε, where bpar is the so-
called bandwidth parameter, and ε is a random number in the range [−1, 1]. The bandwith
parameter determines the size of the perturbation. If x′i ∈ Z, then ε is a random number from
the set {−1, 0,+1}. Alternately, if the value of x′i may only be perturbed to another value
within some discrete set of neighbouring values, then the pitch adjustment process randomly
selects one of those neighbouring values. In such a case, the bandwith parameter determines
the number of neighbouring values to consider in this selection. The value of bpar is therefore
problem-dependent.

In Figure 5.2, a flow diagram is presented which illustrates the working of the HS algorithm, as
described above.

Initialise
harmony
memory

Select decision
variable with

no value

Select value for decision
variable, either from
harmony memory, or
from allowable set

If value selected from
memory, perturb
according to pitch
adjustment rate

Decision
variables
remaining?

Update the
harmony memory

new harmony

Best
harmony

Stopping
criteria
met?

NO

YES

NO

YES

Figure 5.2: Flow diagram of the harmony search algorithm.

In order to employ HS in the context of MICFMO, the standard algorithm described above has
to be adapted. First, since a permutation-based decision vector representation is implemented
in the algorithm, the second step of the HS algorithm (in which new harmonies are improvised)
should explicitly preserve the structure of permutations, and do so in an unbiased manner.
Secondly, feasible nondominated decision vectors have to be archived during the execution of
the algorithm so that an approximate Pareto set may be returned upon its termination (as
proposed in §5.3.1). The adapted HS algorithm, which has been entirely re-implemented in the
OSCAR-4 feature, is presented in pseudocode form as Algorithm 5.1.

As part of ensuring that the algorithm preserves the permutation structure of decision vectors
in an unbiased manner, so-called allowable lists have been introduced in line 8 of Algorithm 5.1.
The allowable memory consideration listM contains those fuel assembly labels in the HM that
correspond to selected position i, excluding those labels that have already been selected in other
positions of the partially constructed decision vector x′. Similarly, the allowable random list
R contains all the fuel assembly labels, excluding those labels that have already been selected
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Algorithm 5.1: HS algorithm in the scalarisation-based methodology for MICFMO

Input : An MICFMO problem of the form (5.12), algorithmic stopping criteria, an HM size Nhm,
an HMCR phm, and a PAR ppar.

Output: An approximate Pareto set, P̃S .

Initialise the HM with Nhm randomly generated decision vectors, each corresponding to a random1

permutation of n unique fuel assembly labels
Initialise the feasible nondominated decision vector archive A with the nondominated decision2

vectors in the HM
while algorithmic stopping criteria not met do3

Reset the new decision vector x′4

Reset the pitch adjusting index set V ← ∅5

while new decision vector only partially created do6

Randomly select a new loading position i7

Construct the allowable memory consideration list M, and the allowable random list R8

Generate a random number r ∼ U(0, 1)9

if r ≤ phm then10

Randomly select a fuel assembly label for position x′i from M if M 6= ∅; otherwise,11

select it from R
V ← V ∪ {loading position i}12

else13

Randomly select a fuel assembly label for position x′i from R14

end if15

end while16

Perform the pitch adjustment process using Algorithm 5.217

Evaluate new decision vector x′ with a core simulator and determine Fq(x
′)18

if Fq(x
′) < maximum Fq in HM then19

Replace decision vector in HM having the maximum Fq with new decision vector x′20

end if21

A ← feasible nondominated decision vectors in A ∪ {x′}22

end while23

P̃S ← A24

in other positions of the partially constructed decision vector x′. In the inherited OSCAR-4
feature, an approach similar to these lists was taken for preserving the permutation structure of
decision vectors. It involved the usage of logical flags to indicate whether fuel assemblies were
available or not. The explicit generation of the allowable lists is, however, arguably a simpler
and less error-prone approach to follow. An example of how these lists are generated in the
context of ICFMO is presented next.

Suppose n = 4 and that the HM (of size 4, for example) at the start of some iteration during
the algorithm’s execution is given by

HM =

x1 x2 x3 x4

xa 1 3 2 4
xb 1 2 4 3
xc 2 1 3 4
xd 3 2 4 1

.

Furthermore, suppose that a new decision vector has only been constructed partially as x′ =
[4, x2, x3, 3], and that the new loading position is randomly selected as i = 3 (line 7 of Algo-
rithm 5.1). Then, M = {2, 4, 3, 4} \ {4, 3} = {2}, which corresponds to the labels in the shaded
column x3 of the HM, excluding the labels already selected in the partial solution x′. Similarly,
R = {1, 2, 3, 4} \ {4, 3} = {1, 2}.
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An adapted pitch adjustment process is presented in pseudocode form as Algorithm 5.2. It differs
significantly from the process described in the standard HS algorithm (which was employed
in the inherited OSCAR-4 feature). Essentially, pitch adjustment has been redefined so that
the process now performs pair-wise exchanges between variables in a fully-constructed decision
vector. Therefore, pitch adjustment is no longer performed on a variable-by-variable basis during
the improvisation of a new harmony.

Algorithm 5.2: Adapted pitch adjustment process

Input : A decision vector x′, a pitch adjusting index set V, and a PAR ppar.
Output : Pitch adjusted decision vector x′.

while |V| ≥ 2 do1

Randomly select loading position i ∈ V2

Generate a random number r ∼ U(0, 1)3

if r ≤ ppar then4

Find k+ such that x′k+ = x′i + 15

Find k− such that x′k− = x′i − 16

if k+ or k− found then7

Randomly select loading position k ∈ {k+, k−}8

Exchange the values of x′i and x′k9

end if10

end if11

if k ∈ V then12

V ← V \ {i, k}13

else14

V ← V \ {i}15

end if16

end while17

The indices of those variables that took values during harmony memory consideration are stored
in a pitch adjusting index set V. Once a decision vector has been fully constructed, the pitch
adjustment process is performed. The values of the variables identified in V may then only be
exchanged pair-wise with neighbouring values, as seen in lines 5 and 6 of Algorithm 5.2. This
exchange between neighbouring values only may be interpreted as the selection of a bandwidth
parameter bpar = 1. A qualitative pilot study indicated that this adapted pitch adjustment
process yields, on average, improved results when compared to the standard process — hence
its adoption in the adapted HS algorithm.

Finally, an archive consisting of feasible nondominated decision vectors is updated at the end of
each iteration, thus giving effect to the proposal in §5.3.1. During this update, as specified in
line 22 of Algorithm 5.1, the newly-improvised decision vector is considered for possible inclusion
in the archive. Note that if q = 1 in (5.12), the archive simply contains the best feasible decision
vector found thus far.

5.4 Application of the proposed methodology to SAFARI-1

The scalarisation-based methodology for MICFMO proposed in this dissertation has been im-
plemented by the author within a completely revised version of the MICFMO decision support
feature in the OSCAR-4 system. In order to demonstrate the applicability of the methodology,
this feature is utilised to solve (approximately) three different ICFMO problem instances that
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are based on the SAFARI-1 reactor. For benchmarking purposes, the results thus obtained are
compared to the current reload configuration design approach employed at the reactor.

The first problem instance considered is an SOP variant of the ICFMO problem and is included
here to confirm that the methodology may indeed be applied to both SOP and MOP variants of
the problem, as claimed in §5.3.2. The second and third problem instances, however, are MOP
variants of the ICFMO problem.

In addition, the inherited weighting method has also been utilised to solve the second and third
(MOP) problem instances approximately. A number of arbitrary values for the weighting coeffi-
cients have been selected based on different prioritisations of the objectives so as to demonstrate
their effect on the solutions. Based on the shortcomings of the method described in §5.2 (e.g.
inability to obtain all Pareto optimal solutions, risk of misleading results in respect of the Pareto
set, and unexpected results from changes in coefficients), the aforementioned effect on the solu-
tions should be apparent. The results thus obtained are then placed into context by comparing
them to the nondominated fronts obtained using the the new methodology.

5.4.1 Problem instances for the SAFARI-1 reactor

Since the SAFARI-1 reactor, along with the typical objectives and constraints associated with
it, has already been described in some detail in §4.5, a full problem description is not repeated
here. The three problem instances considered in this section are based on an actual SAFARI-1
operational cycle during the year 2012, which is designated as cycle C1211-1. They consist of
hypothetical scenarios in which the reactor operators have to deviate from their current reload
configuration design approach for the cycle because new safety and utilisation requirements are
supposedly imposed on the reactor.

The actual reload configuration loaded into the core during cycle C1211-1 was designed according
to the approach described in §4.5.3. This configuration will therefore be treated as a basis
for comparison in the problem instances, and will hereafter be referred to as the historical
SAFARI-1 reload configuration (HSRC). Accordingly, the twenty-six fuel assemblies to be used
in the problem instances correspond to those that have been used in the HSRC.

In each of the three problem instances, the entire constraint set specified in §4.5.2 has to be
adhered to. The feasible region in the decision space effected by this constraint set, along with
x ∈ X , is denoted by SS . It is noted, however, that the first three constraints in that set
correspond to newly-imposed requirements for SAFARI-1, resulting in the problem instances
being potentially more difficult to solve. As a result, the HSRC no longer meets all of the new
requirements, specifically that of the third constraint (i.e. peak axial production capability in
the IPR facilities) which is now violated by approximately 9%.

In the first hypothetical scenario for SAFARI-1, the reactor is required to operate during cycle
C1211-1 for an extended period of time beyond the typical cycle length. This scenario therefore
conforms to the pursuit of objective S1 (see Table 4.1), namely the maximisation of the reactor’s
cycle length, using excess reactivity as proxy. Accordingly, the first problem instance is an SOP
in which the goal is to

maximise fS1(x),

subject to x ∈ SS .

}
(5.13)

In the second hypothetical scenario, the reactor is required to enhance its beam line research
and experimental utilisation during the cycle. Of interest, then, are objective S5 and S6 (see
Table 4.1) in which the research capability at beam tubes 1 & 2 and beam tube 5, respectively,
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are to be maximised. The second problem instance, therefore, is a bi-objective MOP in which
the goal is to

maximise [fS5(x), fS6(x)],

subject to x ∈ SS .

}
(5.14)

Finally, in the third hypothetical scenario for SAFARI-1, the reactor has to respond to market
fluctuations by optimising the commercial services that it renders during cycle C1211-1. Ac-
cordingly, the optimisation of objectives S3, S4, S7 and S8 (see Table 4.1) are pursued, namely
the production of 99Mo isotopes, the utilisation of the silicon doping facility, and the production
of isotopes in the IPR facilities. The third problem instance, therefore, is a tetra-objective MOP
in which the goal is to

maximise [fS3(x), fS4(x), fS7(x), fS8(x)],

subject to x ∈ SS .

}
(5.15)

In §4.5, it was mentioned that a typical shutdown and reload period for the SAFARI-1 reactor
lasts five days. It is therefore assumed that an acceptable computational run time for solving
an ICFMO problem instance should not exceed three days.

5.4.2 Experimental design

All the calculations in this demonstration were performed on a personal computer with the
following specifications: An Intel R© CoreTM i5-2500 CPU with 4 GB RAM operating at 3.30 GHz
within a 32-bit operating system. The evaluation of a single reload configuration in OSCAR-4
requires approximately four minutes on such a personal computer, given the objectives and
constraints adopted in the problem instances above. The acceptable computation time of three
days therefore correspond to approximately 1 000 evaluations of objective function Fq(x) in
(5.12).

In accordance with the proposed methodology, aspiration levels have to be specified by a decision
maker for all the objectives. For the SOP instance (5.13), an unattainable aspiration level
is chosen so that, as explained in §5.3.1, an optimal solution may be sought. In (5.14) and
(5.15), however, realistic aspiration levels are chosen for the objectives based on previous SOP
pilot study results and expert judgement. As explained in §1.4, these aspiration levels are
proprietary knowledge and are therefore not divulged here. Algorithm 5.1, implemented within
the OSCAR-4 feature, is then used to solve (approximately) each scalarised problem instance
now having the general form (5.12).

The SAFARI-1 instances were solved multiple times, independently on the same computer,
resulting in ten optimisation runs per problem instance. Different random number generator
seeds were employed in each run since HS is a stochastic algorithm and may therefore yield
different results when executed each time. Descriptive statistics could thus be gathered for an
analysis of the optimisation results. In practice, however, the best overall result or a combination
of several results may be used to render decision support.

Qualitative pilot studies were performed in order to determine reasonable values for the free
parameters in Algorithm 5.1, as well as for the parameters in (5.11). The following values were
settled upon for Algorithm 5.1: Nhm = 15, phm = 0.95 and ppar = 0.25. As motivated above,
a maximum of 1 000 iterations was selected as the stopping criterion for the algorithm. The
parameter values in the scalarising objective function were selected as µ = 0.01 and γ = 2.5.
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For the application of the inherited weighting method to the MICFMO problem instances,
the objectives are scaled according to their aspiration levels. Different weighting coefficients,
corresponding to different prioritisations of the objectives, are then employed during each opti-
misation run. These prioritisations are expressed in terms of importance ratios, e.g. if the first
objective is twice as important as the second objectives, the ratio is 2:1. This example then
has corresponding weights of w1 = 0.67 and w1 = 0.33. Problem instance (5.14) is solved three
times, with the prioritisations 1:1, 1:3 and 3:1, respectively. Similarly, problem instance (5.15)
is solved four times, with prioritisation 1:1:1:1, 1:1:2:2, 1:3:1:1 and 3:1:1:1, respectively.

5.4.3 Numerical results

The optimisation results obtained by following the experimental design discussed in §5.4.2 are
presented in this section. Note that all the values in these results have been scaled according to
the percentage improvement in objective value(s) over that of the HSRC.

Problem instance (5.13): Cycle length

The best feasible solution obtained for problem instance (5.13), across the ten independent
optimisation runs, yielded an improvement of 29.5% in the value of objective S1 (i.e. excess
reactivity) over that of the HSRC. In addition, the average value over the ten runs for the best
improvement was 28.5%, with a relatively small absolute standard deviation of 0.4%. The con-
vergence graph of the average best-found objective value over the optimisation runs is presented
in Figure 5.3, along with the corresponding standard deviation band.
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Figure 5.3: Convergence graph of the average feasible best-found objective value (i.e. excess reactivity)
for problem instance (5.13).

As observed in Figure 5.3, the HS algorithm sharply improves the objective value within the
first quarter of iterations, followed by a more gradual improvement up to the final iteration.
Furthermore, the narrowness of the standard deviation band in the latter half of iterations
confirms that the different optimisation runs yield results of similar quality. This demonstrates
the robustness of the algorithm in the sense that it is fairly insensitive to different starting
conditions.
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In Figure 5.4, the reload configurations of the HSRC and the best-found solution for problem
instance (5.13) are presented in terms of the 235U mass in each fuel assembly. The best-found
configuration seems to mimic a type of in-out loading which is consistent with what one might
expect from a core in which the cycle length is maximised. In contrast, the HSRC configuration
mimics more of an out-in loading which is essentially the opposite of the best-found configuration.
This explains why such significant improvements were already achieved at commencement of
optimisation — the HMCR is poorly designed in terms of cycle length maximisation. The results
of this problem instance, therefore, show that the proposed methodology is able to suggest good
approximate solutions for a problem in which the solutions depart significantly from the current
SAFARI-1 design approach.
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Figure 5.4: The historical SAFARI-1 reload configuration (left) and the configuration of the best-found
solution for problem instance (5.13) (right).

Problem instance (5.14): Research utilisation

The final feasible nondominated fronts obtained by each of the ten optimisation runs for prob-
lem instance (5.14) have been pooled together and they are presented in Figure 5.5, along
with the HSRC and the inherited weighting method results. By further isolating the nondomi-
nated solutions from this pool, an approximate Pareto set may be determined, i.e. the “overall”
nondominated set. The nondominated front corresponding to this approximate Pareto set is
hereafter referred to as an attainment front, which is also presented in Figure 5.5.

It is observed that the attainment front yields an improvement of between 2.5% and 6% in the
value of objective S5 (i.e. beam tubes 1 & 2) over that of the HSRC, at the cost of a deterioration
between of 3% and 12% in the value of objective S6 (i.e. beam tube 5). Although no feasible
solutions were obtained that simultaneously improves upon the HSRC in both objectives, the
reader is reminded that the HSRC violates the third constraint in these problem instances,
i.e. it is infeasible in relation to the approximate Pareto set. The proposed methodology is
therefore able to yield a good set of trade-off solutions which meets all the newly-imposed
constraints. This affords a SAFARI-1 operator with flexibility in his decision making. Since the
true Pareto front is not known for this problem instance, no verdict on the shape or closeness to
optimality of the attainment front can be delivered. The methodology does, however, succeed in
suggesting feasible reload configurations that improve upon the HSRC at some trade-off cost. It
is also observed in Figure 5.5 that the inherited weighting method yields high-quality solutions
that enhance the attainment front. In this instance, the different combinations of weighting
coefficients yielded an even spread of the solutions in objective space, slightly shifted towards
the one extreme of the attainment front obtained.
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Figure 5.5: Nondominated fronts obtained by ten optimisation runs for problem instance (5.14).

In order to demonstrate the effect of the third constraint on the quality of solutions, the attain-
ment front above is compared to a modifed front which has been determined as follows. The
same results yielded by the ten optimisation runs are used. Decision vectors which also violate
the third constraint up to the same level as the HSRC are, however, now also considered. The
attainment and modified fronts are presented in Figure 5.6, along with the HSRC.

−2% 0% +2% +4% +6% +8% +10%

−12%

−10%

−8%

−6%

−4%

−2%

0%

fS5(x): Beam tubes 1 & 2
[% improvement]

f S
6
(x

):
B
ea
m

tu
b
e
5

[%
im

p
ro
ve
m
en
t]

Attainment front

Modified front

HSRC

1
Figure 5.6: Different attainment fronts for problem instance (5.14) depending in constraint limits.

It is observed in Figure 5.6 that much better performance is achievable when the third constraint
has a lower limiting value. It is therefore expected that optimisation of problem instance (5.14)
using such a lower limiting value would yield results even better than those of the modified front.
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Problem instance (5.15): Commercial services

An approximate Pareto set and corresponding attainment front was determined from the results
of all ten optimisation runs for problem instance (5.15) in the same manner as before. This
front is not represented visually because of the four-dimensional nature of the results. Instead,
a so-called payoff table [139] is constructed so as to present an approximation of the available
ranges found in each objective. A pay-off table is constructed by isolating each solution in the
approximate Pareto set which yields the best performance in each objective. The objective
vectors corresponding to these solutions then form the rows of the pay-off table. For problem
instance (5.15), such a pay-off table is presented in Table 5.1. The columns of the table corre-
spond to the different objectives, whereas the bold-faced values represent the best performance
found for each objective.

Objective with Percentage improvement obtained in:
best performance fS3(x) fS4(x) fS7(x) fS8(x)

fS3(x) −2.7% −2.2% 6.1% 10.4%
fS4(x) −6.3% 18.1% −0.2% 14.4%
fS7(x) −4.5% −11.0% 13.0% 14.0%
fS8(x) −6.3% 4.6% 7.6% 19.9%

Table 5.1: Payoff table for problem instance (5.15). The bold-faced entries correspond to the best
performance found for each objective.

It is observed in Table 5.1 that significant improvements may be achieved in objectives S4, S7
and S8 over that of the HSRC. The performance of objective S4 (i.e. silicon doping) exhibits the
largest available range, with values between −11% and 18.1%. The available range in objective
S7 (i.e. first IPR facility) lies between −0.2% and 13%, whereas objective S8 (i.e. second IPR
facility) has an available range between 10.4% and 19.9%. These two results indicate that
moderate improvements in both IPR facility objectives are almost always possible within the
approximate Pareto set.

The best solution found in terms of objective S3 (i.e. 99Mo) yields a performance deterioration
of 2.7% from the HSRC. The range of available values in this objective lies between −6.3%
and −2.7%. Any solution within the approximate Pareto set, therefore, sacrifices performance
in objective S3 with respect to the HSRC. The current reload configuration design approach
at SAFARI-1 is, however, largely geared towards maximisation of objective S3. As a result,
newly-imposed constraints and/or the optimisation of other objectives simultaneously would
likely always deteriorate this objective. The trade-off in the performance of objective S3 may,
however, be acceptable to a decision maker given that its range of available values is much smaller
than the ranges of improvements within objectives S4, S7 and S8. The proposed methodology
was again able to suggest a good set of feasible trade-off solutions in response to a change in the
utilisation requirements of the reactor.

Apart from the pay-off table, the percentage improvement in objective function values corre-
sponding to the best solution found (with respect to Fq) in each of the ten optimisation runs for
problem instance (5.15) are presented in Table 5.2. It is observed that the best solution found
during each run achieves similar objective values, namely improvements of approximately 8%,
6% and 17% in objectives S4, S7 and S8, respectively, at the cost of a deterioration in objective
S3 by approximately 6%. This, again, demonstrates the robustness of the algorithm in the sense
of being fairly insensitive to different starting conditions.
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Run fS3(x) fS4(x) fS7(x) fS8(x) Fq(x)

1 −6.3% 7.9% 5.6% 16.7% 0.15852
2 −6.0% 9.0% 6.2% 17.6% 0.15376
3 −6.0% 8.4% 6.6% 16.8% 0.15394
4 −6.0% 8.4% 6.8% 17.5% 0.15361
5 −6.3% 8.7% 5.5% 17.4% 0.15961
6 −6.3% 8.2% 5.8% 16.8% 0.15759
7 −6.3% 10.2% 6.0% 17.0% 0.15527
8 −6.0% 8.7% 7.1% 16.9% 0.15162
9 −6.3% 9.3% 7.1% 17.8% 0.14646
10 −6.3% 8.3% 5.3% 16.0% 0.16097

Table 5.2: Percentage improvement in objective function values corresponding to the best solution
found (with respect to Fq) in each of the ten optimisation runs for problem instance (5.15). The row of
bold-faced values represents the overall best performance.

The results obtained using the inherited weighting method for solving problem instance (5.15)
are presented in Table 5.3. It is observed that the weighting method yielded a poorly-balanced
solution during optimisation run 1, where the objectives had equal importance, as compared to
the solutions obtained by means of the newly proposed methodology (see Table 5.2). During
optimisation runs 2 and 3, the different weighting coefficients resulted in noticable improvements
in each objective having a higher priority. An improvement over the best solution found by the
proposed methodology for objective S4 was even obtained during the third run. It is observed,
however, that the weighting method yielded a counter-intuitive result during run 4. Although
the priority for objective S3 was three times higher than the other objectives, the percentage
improvement in objective function values corresponding to the solution are virtually the same
as the those of the solution obtained in run 1, where all objectives had equal importance.

Run Importance ratio fS3(x) fS4(x) fS7(x) fS8(x)

1 1:1:1:1 −5.95% 16.48% 2.95% 15.13%
2 1:1:2:2 −5.65% 3.52% 9.58% 17.92%
3 1:3:1:1 −6.25% 19.90% 0.16% 14.33%
4 3:1:1:1 −5.36% 16.98% 1.67% 14.39%

Table 5.3: Percentage improvement in objective function values corresponding to the solutions obtained
using the inherited weighting method for solving problem instance (5.15).

As may be seen in Table 5.2, the overall best performance (with respect to Fq) using the proposed
methodology was obtained during optimisation run 9. In Figure 5.7, the reload configurations
of the HSRC and this overall best solution for problem instance (5.15) are presented in terms of
the 235U mass in each fuel assembly. It is observed that heavier-massed assemblies are assigned
to positions near the IPR facilities (D6 and F6) within the best-found configuration, as opposed
to the HSRC configuration in which they are assigned to peripheral core positions in row B and
column 8. This assignment in the optimised solution, however, still occurs within the confines
of the newly-imposed constraints for the problem instance.
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Figure 5.7: The historical SAFARI-1 reload configuration (left) and the configuration of the overall
best solution, with respect to Fq, for problem instance (5.15) (right).

5.5 Application of the proposed methodology to HOR

This revised version of the MICFMO feature is also utilised to solve (approximately) four dif-
ferent ICFMO problem instances based on the HOR reactor as a further demonstration of the
applicability of the proposed methodology. As before, the results thus obtained are compared
to the current reload configuration design approach employed at the reactor for benchmarking
purposes. Also, the first problem instance is, again, an SOP variant of the ICFMO problem,
with the remaining problem instance being MOP variants.

The inherited weighting method is also utilised to solve (approximately) the three multiobjective
problem instances for the HOR reactor in order to demonstrate the type of results obtainable.
As before, a number of arbitrary values for the weighting coefficients have been selected based
on different prioritisations for the objectives so as to demonstrate their effect on the solutions
(taking cognisance of the shortcomings of the method, as described in §5.2). The results thus
obtained are then finally also placed into context by comparing them to the nondominated fronts
obtained using the the new methodology.

5.5.1 Problem instances for the HOR reactor

Since the HOR reactor, along with typical objectives and constraints associated with it, has
already been described in some detail in §4.6, a full problem description is not repeated here.
As before, the four different problem instances are based on an actual HOR operational cycle
during the year 2015, which is designated as cycle C1501. The problem instances consist of
hypothetical scenarios in which typical objectives associated with the HOR reactor are pursued.

The actual reload configuration loaded into the core during cycle C1501 was designed according
to the approach described in §4.6.3. This configuration will, again, be treated as a basis for
comparison in the problem instances, and will hereafter be referred to as the historical HOR
reload configuration (HHRC). The sixteen fuel assemblies to be used in the problem instances
therefore correspond to those that have been used in the HHRC. In each of the four problem
instances, the stop margin constraint specified in §4.5.2 has to be adhered to. The feasible region
in the decision space effected by this constraint, along with x ∈ X , is denoted by SH .

Since the current reload configuration design approach at HOR is aimed at maximising the
cycle length of the reactor, the first scenario mimics this aim. Accordingly, it corresponds to
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the pursuit of objective H1 (see Table 4.2) in which excess reactivity is used as a proxy for cycle
length. The first problem instance, therefore, is an SOP in which the goal is to

maximise fH1(x),

subject to x ∈ SH .

}
(5.16)

In the second scenario, the reactor is required to enhance its beam line research in conjunction
with cycle length maximisation. The pursuit of objectives H1 and H2 (see Table 4.2) are therefore
of interest, noting that H2 corresponds to the maximisation of the research capability at the
beam tube. As such, the second problem instance is a bi-objective MOP in which the goal is to

maximise [fH1(x), fH2(x)],

subject to x ∈ SH .

}
(5.17)

In the third scenario, the utilisation of the two in-core irradiation rigs at HOR has to be op-
timised. Of interest, therefore, are objective H3 and H4 (see Table 4.2) which correspond to
the Small BeBe and Big BeBe rigs, respectively. Accordingly, the third problem instance is a
bi-objective MOP in which the goal is to

maximise [fH3(x), fH4(x)],

subject to x ∈ SH .

}
(5.18)

Finally, in the fourth scenario for HOR, the reactor is required to enhance its beam line research
as well as its utilisation of the central in-core irradiation rig. This corresponds to the pursuit
of objectives H2 and H3 (see Table 4.2), namely the research capability at the beam tube and
the utilisation of the Small BeBe rig. Therefore, the fourth and final problem instance is a
bi-objective MOP in which the goal is to

maximise [fH2(x), fH3(x)],

subject to x ∈ SH .

}
(5.19)

The typical shutdown and reload period for the HOR reactor may vary from one cycle to the
next, unlike for SAFARI-1. For the sake of simplicity, however, it is also assumed that only
three days of computational run time is available for solving an ICFMO problem instance.

5.5.2 Experimental design

The same personal computer, described in §5.4.2, was used to perform the calculations in this
demonstration. Approximately 1 000 evaluations may again be performed during the three days
of computational run time. As before, an unattainable aspiration level is chosen for the SOP
instance (5.16) so that an optimal solution may be sought. Realistic aspiration levels, based on
previous SOP pilot study results and expert judgement, are chosen for the objectives in problem
instances (5.17)–(5.19). As explained in §1.4, these aspiration levels are proprietary knowledge
and are therefore not divulged here.

Unlike for the SAFARI-1 reactor in §5.4.2, each of the HOR problem instances is solved only once
using Algorithm 5.1 within the revised OSCAR-4 feature. This is motivated by the practical
situation that may arise in which only one computer is available to perform optimisation calcu-
lations within the time allotted. It has been demonstrated in §5.4 that the HS algorithm is fairly
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insensitive to different starting conditions; hence, the versatility of the proposed methodology is
further demonstrated in this section.

The same values selected in §5.4.2 for the free parameters in Algorithm 5.1 are also selected here,
namely Nhm = 15, phm = 0.95 and ppar = 0.25. Furthermore, as motivated above, a maximum
of 1 000 iterations has been selected as the stopping criterion for the algorithm. Finally, the
parameter values in the scalarising objective function are selected as µ = 0.05 and γ = 10 000.

For the application of the inherited weighting to the MICFMO problem instances, the same
procedure described in §5.4.2 is followed here. Each of the instances (5.17)–(5.19) is, however,
solved three times and the different objective prioritisations are 1:1, 1:3 and 3:1, respectively.

5.5.3 Numerical results

The optimisation results obtained by following the experimental design discussed in §5.5.2 are
presented in this section. Again, the values in these results have been scaled according to the
percentage improvement in objective value(s) over that of the HHRC.

Problem instance (5.16): Cycle length

The best feasible solution obtained for problem instance (5.16) yielded an improvement of 3.20%
in the value of objective H1 (i.e. excess reactivity) over that of the HHRC. According to Winkel-
man [231], such an improvement translates to approximately 13 MWd additional duration in
cycle length for the HOR reactor. In Figure 5.8, the reload configurations of the HHRC and the
best-found solution for problem instance (5.16) are presented visually in terms of the 235U mass
in each fuel assembly.
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Figure 5.8: The historical HOR reload configuration (left) and the configuration of the best-found
solution for problem instance (5.16) (right).

It is observed that the two reload configurations are very similar and mimic an in-out loading.
This comes as no surprise given that the current reload configuration design approach at HOR is
already aimed at maximising the cycle length. The results for this problem instance, therefore,
show that by employing the proposed methodology, further improvement is possible for a problem
in which the solutions are very similar to the current HOR design approach.
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Problem instance (5.17): Cycle length and beam line research

The nondominated front obtained for problem instance (5.17) is presented in Figure 5.9(a),
along with the best solution found with respect to Fq, the HHRC and the results obtained using
the inherited weighting method. It is observed that a significant spread of trade-off solutions,
ranging from an improvement of 7.4% in the value of objective H2 over that of the HHRC (at the
cost of a 12.3% deterioration in objective H1), to simultaneous improvements of 2.3% and 1.4%
in the values of objectives H1 and H2, respectively, were obtained by the proposed methodology.

The best solution found is well-balanced within the ranges of available objective values in the
nondominated front, as may be observed in Figure 5.9(a). It improves the value of objective H2
(i.e. beam tube) by 5.3% over that of the HHRC, at the cost of a deterioration in objective H1
(i.e. excess reactivity) by 2.6%. Furthermore, it is observed that the inherited weighting method
yielded solutions near the two extremes of the nondominated front. There is very little difference
between the performances of the solutions obtained by taking a 1:1 and a 3:1 importance ratio.
However, using a 1:3 ratio yielded a solution whose performance “jumped” across the objective
space. This instance, therefore, is an example in which counter-intuitive behaviour is exhibited
when different combinations of weights are specified in the weighting method.
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(b) Best-found reload configuration

Figure 5.9: Results obtained for problem instance (5.17).

In Figure 5.9(b), the reload configuration of the best-found solution for problem instance (5.17)
is presented visually in terms of the 235U mass in each fuel assembly. It is observed that this
configuration is similar to those in Figure 5.8, with the heaviest-massed assemblies assigned
to the central core positions (as one would expect from a configuration that maximises cycle
length). The remaining heavier-massed assemblies are, however, now all assigned to positions
close to the beam tube, resulting in enhanced beam line research capability at the beam facility.

Problem instance (5.18): Irradiation rigs

In Figure 5.10, the nondominated front obtained for problem instance (5.18), the best solution
found with respect to Fq and the HHRC are presented, along with the results obtained using
the inherited weighting method. It is observed that every solution represented in the nondom-
inated front achieved simultaneous improvements in the performance of objectives H3 and H4
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(i.e. Small BeBe and Big BeBe rigs, respectively) over that of the HHRC. Furthermore, the best
solution found is also fairly well-balanced within the nondominated front, attaining simultane-
ous improvements of approximately 5% in each objective. The proposed methodology, therefore,
succeeds in suggesting feasible reload configurations that improve upon the HHRC in both objec-
tives simultaneously. The inherited weighting method also yielded solutions that simultaneously
improved the performance in both objectives. It is observed, however, that those improvements
are clustered near one extreme of the nondominated front. The different weighting coefficients
therefore caused misleading results with respect to the shape/spread of the nondominated front.
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Figure 5.10: Results obtained for problem instance (5.18).

The reload configuration of the best solution found for problem instance (5.18) is presented in
Figure 5.10(b) in terms of the 235U mass in each fuel assembly. It is observed that the heavier-
massed fuel assemblies are assigned to peripheral core positions, with an emphasis near position
2B where the Big BeBe rig is located. It is interesting to note that lighter-massed assemblies
have been assigned to the central positions surrounding the Small BeBe rig, unlike the case for
SAFARI-1, shown in Figure 5.7, where the IPR facilities were surrounded with heavier-massed
assemblies. An analysis performed by Prinsloo [167] revealed that a neutron flux tilt present
in the HHRC due to the beam line facility is flattened to some degree by the suggested reload
configuration in Figure 5.10(b). Although this configuration worsens the fast neutron flux in
the Small BeBe rig, the adjustment to the flux tilt notably imporoves the thermal neutron flux
in that position.

Problem instance (5.19): Beam line research and central irradiation rig

The nondominated front obtained for problem instance (5.19) is presented in Figure 5.11(a),
along with the best-found solution (with respect to Fq), the HHRC and the results obtained using
the inherited weighting method. It is observed that significant improvements in the performance
of objectives H2 and H3 (i.e. beam tube and Small BeBe rig, respectively) over that of the HHRC
may be achieved simultaneously. The best solution found is also fairly well-balanced within the
ranges of available objective function values in the nondominated front, when considering only
those solutions in which simultaneous improvements have been realised. The weighting method,
however, yielded solutions exhibiting the same behaviour as in problem instance (5.17). As
before, a “jump” across the objective space is observed in Figure (5.11a) between the solution
obtained using a 1:3 importance ratio, and the solutions obtained using ratios 1:1 and 3:1.
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Figure 5.11: Results obtained for problem instance (5.19).

In Figure 5.11(b), the reload configuration of the best-found solution for problem instance (5.17)
is presented visually in terms of the 235U mass in each fuel assembly. A more pronounced
assigment of heavier-massed fuel assemblies to positions closest to the beam tube is observed in
Figure 5.11(b), when compared to the configuration in Figure 5.9(b).

5.6 Chapter summary

In this chapter, a scalarisation-based methodology for MICFMO was proposed in order to address
the shortcomings present in the inherited optimisation feature within OSCAR-4. First, in §5.1,
the notion of Pareto optimality and other related concepts were discussed in some detail. By
doing so, the reader was supplied with the necessary background knowledge to gain a better
understanding of the MOO modelling process and solution techniques employed throughout this
dissertation.

The weighting method, which is used in the inherited methodology, was described in §5.2. There-
after, in §5.3, the proposed methodology for MICFMO was described. It entailed descriptions
of an alternative scalarisation approach, a constraint handling technique, and an adapted HS
algorithm. In order to demonstrate the applicability of the proposed methodology, it was used
to solve (approximately) several ICFMO problem instances for the SAFARI-1 and HOR reactors
in §5.4 and §5.5, respectively.

Numerical results indicated that the newly proposed methodology is robust and versatile, and it
may therefore be used as an effective decision support tool for designing reload configurations.
Furthermore, the results obtained using the inherited weighting method revealed that there is
no intuitive connection between the selection of weighting coefficients and the solutions obtained
(which is consistent with the shortcomings of the method pointed out in §5.2). Although lo-
calised improvements in the attainment fronts were obtained using the weighting method, a
good spread across the nondominated front is preferred because it is more informative to a de-
cision maker. The new methodology was able to achieve such good spreads. The uncertainty
associated with the selection of weighting coefficients may therefore be removed when adopting
the new methodology.
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ANNs for the prediction of SAFARI-1
core parameters
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In this chapter, several ANNs are constructed for the prediction of SAFARI-1 core parameters
corresponding to various ICFMO objectives and constraints. The chapter opens with a motiva-
tion of the necessity of these neural networks. Thereafter, general concepts pertaining to ANNs
are presented before moving on to a more comprehensive description of multilayer feedforward
neural networks. Details on the construction of a suite of neural networks for SAFARI-1 are
described next, before the chapter closes with numerical results obtained during the training
and application of the networks, as well as a discussion of these results.

6.1 Introduction

In Chapter 5, a scalarisation-based methodology for MICFMO was proposed in order to address
the shortcomings present in the optimisation feature within OSCAR-4, as it was inherited by
the author. The first priority in this dissertation, as described in §1.3, has therefore been
addressed. Attention may now turn towards the second priority, namely to investigate alternative
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multiobjective computational methods in terms of their suitability in finding sets of high-quality
trade-off solutions to the MICFMO problem.

It is apparent from the results reported in Chapter 5 that solving an MICFMO problem in-
stance, using the OSCAR-4 system for objective and constraint function evaluations, is a com-
putationally expensive task. Any “meaningful” investigation in which a number of multiobjec-
tive computational methods are to be applied multiple times (i.e. for the purpose of obtaining
good solution run statistics) to several MICFMO problem instances would therefore require
an excessive amount of computation time when using OSCAR-4. As mentioned in §3.4, the
computational cost associated with these function evaluations may be reduced by replacing the
core simulator with a computationally cheaper surrogate model. It was also remarked that a
popular and effective approach adopted for this purpose in the literature is to employ ANNs for
the prediction of reactor core parameters corresponding to objectives and constraints in ICFMO
problems.

Given the successful application of ANNs in the ICFMO literature (i.e. the achievement of
sufficiently accurate core parameter predictions at only a fraction of the computation time when
compared to a core simulator [56, 131, 236]) they are also adopted in this dissertation to reduce
the computational cost of objective and constraint function evaluations. The availability of
off-the-shelf ANN software tools, such as the Neural Network Toolbox [215] within the Matlab
software suite [214], is a further motivation for the usage of ANNs in this dissertation. Therefore,
in order to aid in an investigation into appropriate methods for solving the MICFMO problem,
ANN surrogate models are constructed in this chapter for the prediction of SAFARI-1 core
parameters corresponding to objectives and constraints.

6.2 Fundamental notions related to ANNs

ANNs were originally designed in an attempt to find mathematical models for information pro-
cessing in biological systems, with McCulloch and Pitts [132] generally credited for designing
the first neural networks in 1943 [58]. According to the definition proposed by Fausett [58], “an
artificial neural network is an information-processing system that has certain performance char-
acteristics in common with biological neural networks.” There are numerous fields of application
for ANNs, including classification, clustering, function approximation and optimisation [134].

As an information-processing system, an ANN consists of several simple processing units called
artificial neurons. These neurons are connected to one another by means of directed commu-
nication links over which signals may be passed. The specific pattern (or topology) in which
the neurons are connected is called the architecture of the network. Each communication link
is also associated with a weight which typically scales any signal being sent. The process of
determining the weights of an ANN is referred to as training, which is governed by a so-called
training algorithm. Regarding the processing capability of neurons in ANNs — each neuron is
able to receive input signals over a number of communication links, to process an aggregation of
these signals by means of an associated activation function, and then to send an output signal
over the communication links to other neurons. This output signal returned by an activation
function for a given neuron is referred to as the activation of that neuron. A graphical example
of an artificial neuron and its processing capability is presented in Figure 6.1.

An ANN may generally be characterised by three of the aforementioned properties, namely its
architecture, the training algorithm employed and the activation function used [58]. Each of
these characteristic properties are touched upon next.
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Figure 6.1: Example of an artificial neuron and its processing capability.

In terms of the architecture, neurons are often partitioned into subsets, called layers, such that
those in the same layer typically behave in the same manner. This layered “behaviour” generally
refers to the use of the same activation function and the same pattern of communication link
connections. Accordingly, ANNs are often classified as single-layer or multilayer networks [58].
Another classification is based on the flow of signals across the network. In feedforward networks,
signals may only be sent from one node to the next in a forward direction across the network
layers, while in recurrent networks, there are closed tours from a neuron back to itself [58].

The training algorithm, as mentioned above, is used to determine the values of the weights in
an ANN. There are generally two different training paradigms that may be considered, namely
supervised and unsupervised training. In a supervised paradigm, a network is trained by pre-
senting it with a set of known input-output pairs. The weights in the network are then adjusted
by a training algorithm so that the predicted and target (i.e. known) outputs are close to one
another. In an unsupervised paradigm, however, a network is presented with a set of inputs
only. A training algorithm should then adjust the weights such that similar inputs are grouped
together and assigned to the same output [58]. Each iteration of adjusting the network weights,
supervised or unsupervised, using the entire input set is called an epoch.

There are a number of different activation functions that may be employed within an ANN,
each having its own advantages and disadvantages for various applications. Recall that neu-
rons within the same layer usually employ the same activation function, although this is not
a requirement. For input neurons, the identity function is usually employed, i.e. an external
input signal is simply transmitted onwards as is. Typical activation functions employed for the
other neurons include the Heaviside step function, linear functions, sigmoidal functions (e.g. the
logistic function), and Gaussian functions [58]. In multilayer neural networks, it is required that
nonlinear activation functions be employed in at least one of the layers so as to benefit from
the architecture (since the results obtained by transmitted signals through two or more layers
of neurons employing linear activation functions can also be obtained using a single layer) [58].

6.3 Multilayer feedforward neural networks

An important class of ANNs is multilayer feedforward neural networks (MFNNs). As the name
suggests, these networks consist of multiple layers of neurons, while signals are only sent in a
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forward direction over the network. The first layer of neurons in a multilayer network is called
the input layer whereas the last layer is called the output layer. All the layers in between
are referred to as hidden layers. Recall from the previous section that the identity function is
typically employed as activation function within input neurons. Accordingly, in an MFNN, the
input layer simply transmits the external input signal onwards. Neurons within the same layer
are not connected to one another. Each neuron within a particular layer is, however, typically
connected to every neuron in the following layer. An illustration of the general architecture of
an MFNN is presented in Figure 6.2

Hidden layer(s)
Input
layer

Output
layer

Figure 6.2: The general architecture of a multilayer feedforward neural network.

MFNNs have very general approximation properties, hence their popularity and wide-spread
usage [18, 58]. In particular, these networks are considered to be universal function approxima-
tors. Hornik et al. [85] showed that MFNNs are capable of approximating virtually any function
of interest to an arbitrary degree of accuracy, provided that a sufficient number of hidden neu-
rons are available. Due to the powerful property of being universal approximators, MFNNs are
considered as surrogates in this dissertation.

6.3.1 An MFNN with one hidden layer

Although several hidden layers in an MFNN may be beneficial in certain applications, using
only one hidden layer should be sufficient in almost all function approximation applications of
these networks [58]. For the purposes of this dissertation, therefore, MFNNs consisting of one
hidden layer are employed for the prediction of SAFARI-1 core parameters.

Consider an MFNN with one hidden layer which employs the identity function as activation

function in the input layer. Let w
(1)
ji denote a weight in the first layer of the network, associated

with the communication link from input neuron i to hidden neuron j, while w
(1)
j0 denotes the

so-called bias for hidden unit j. Similarly, let w
(2)
kj denote a weight in the second layer, associated

with the communication link from hidden neuron j to output neuron k, while w
(2)
k0 denotes the

bias for output neuron k. Suppose there are ` inputs to the network a1, . . . , a`. Since the identity
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function is employed in the input layer, it is not specifically denoted. Therefore, the activation
of input neuron i simply corresponds to ai for i = 1, . . . , `. Let the activation function employed
in the hidden layer be denoted by z(1)(·), with bj denoting the activation of hidden neuron j
for j = 1, . . . ,m. Similarly, let z(2)(·) denote the activation function employed in the output
layer, with ck denoting the activation of hidden neuron k for k = 1, . . . , n. An illustration of
the MFNN with one hidden layer, using the aforementioned notation, is presented in Figure 6.3.

Note that the bias w
(1)
j0 may be represented as a weight from an additional input a0 which is

permanently set to unity (and likewise for w
(2)
k0 with an extra hidden neuron b0 = 1) [17].
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Figure 6.3: A multilayer feedforward neural network with one hidden layer.

Following the discussion in Bishop [17], an analytical expression for the function represented by
the MFNN in Figure 6.3 may be written as follows. First, the net input to hidden neuron j,

denoted by η
(1)
j , is determined by forming a weighted linear combination of the input activations,

and adding a bias, such that

η
(1)
j =

∑̀

i=1

w
(1)
ji ai + w

(1)
j0 ,

=
∑̀

i=0

w
(1)
ji ai. (6.1)

Next, the activation of hidden neuron j is obtained by processing the net input (6.1) using the
activation function z(1) associated with the hidden layer. Therefore

bj = z(1)

(
η

(1)
j

)
. (6.2)
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Similarly, by forming a weighted linear combination of the hidden activations, and adding a bias,

the net input to output neuron k, denoted by η
(2)
k , is given as

η
(2)
k =

m∑

j=1

w
(2)
kj bj + w

(2)
k0 ,

=
m∑

j=0

w
(2)
kj bj . (6.3)

Accordingly, the activation of output neuron k is then obtained by applying the activation
function z(2) associated with the output layer to process the net input (6.3), such that

ck = z(2)

(
η

(2)
k

)
. (6.4)

Now, by combining (6.1)–(6.4), an analytical expression is obtained for the function represented
by the MFNN in Figure 6.3, namely

ck = z(2)




m∑

j=0

w
(2)
kj z(1)

(∑̀

i=0

w
(1)
ji ai

)
 . (6.5)

An MFNN such as the one in Figure 6.3 is therefore simply a nonlinear function controlled
by adjustable weighting parameters [17]. The manner in which values for these weights are
determined is touched upon next.

6.3.2 The backpropagation training algorithm

The training paradigm adopted within the context of MFNNs for function approximation is that
of supervised training. Accordingly, a training set of known input-output pairs is utilised during
the adjustment of the network weights. The popular backpropagation training algorithm is often
employed for training MFNNs, and it is essentially a gradient-based optimisation technique for
minimising some appropriate error function [17, 58]. Within the algorithm, a method known as
backpropagation of errors is utilised for determining the derivatives of the error function with
respect to the network weights. These derivatives are required in the gradient descent method
employed in the training algorithm to minimise the error function. In Appendix A, a derivation
of the backpropagation of errors method is presented within the context of the MFNN shown in
Figure 6.3. How the derivatives are employed in the gradient descent method is also revealed in
the appendix.

There are three phases involved during backpropagation training of neural networks, namely [58]:

1. The forward propagation of an input training vector;

2. The calculation and backpropagation of the associated error; and

3. The adjustment of the network weights.

During the forward propagation phase, an input training vector is presented to and transmitted
over the network. The activations of all the hidden and output neurons are then calculated. Note
that the output neuron activations form the response of the network for the given input training
vector. During the second phase, the network response is compared to the target value using
an appropriate error function. So-called errors associated with the output neurons, denoted
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by δk, are then calculated and propagated backwards over the network in order to calculate
corresponding errors associated with the hidden neurons, denoted by δj (see Appendix A for
details). Then, during the third phase, all the network weights are adjusted simultaneously
based on these δ-values and the neuron activations. There are, in general, two choices for when
to update the weights: (1) after each input training vector has been presented to the network,
which is referred to as online learning, or (2) after all the input vectors in the training set have
been presented to the network, which is referred to as batch learning.

According to Fausett [58], an activation function for a backpropagation MFNN should be contin-
uous, differentiable and monotonically non-decreasing. In addition, adopting a function whose
derivative is easy to compute is very desirable from a computational efficiency point of view.
Typically, a sigmoidal function (which satisfies these criteria) is chosen as the activation function
for the hidden layer.

Several variations on the standard backpropagation training algorithm have been developed.
These variations include, for example, heuristic modifications to the gradient descent method,
and the adoption of techniques based on conjugate gradients and quasi-Newton methods to
minimise the error function [17]. A particular variation, called the Levenberg-Marquardt back-
propagation algorithm, is regarded as one of the most efficient training algorithms for MFNNs [12,
70, 241]. The algorithm is applicable in cases where a sum-of-squares error function is adopted,
and is generally recommended as a first-choice algorithm for training small- and medium-sized
networks [12, 241].

6.4 The architecture and training of MFNNs

The ability of an ANN to respond correctly to the input vectors used during training is known
as memorisation. Its ability to respond reasonably well to new (unseen) input vectors that are
similar to, but different from, the training vectors, on the other hand, is known as generalisation.
Within the context of MFNNs for function approximation, the aim, in general, is to train the
network so that a balance is achieved between the two competing abilities of memorisation and
generalisation [58]. Training that favours memorisation is also known as overfitting and should
generally be avoided.

It is convenient to draw an analogy between ANN training and polynomial curve fitting in
order to illustrate the notion generalisation. A neural network model that is too simple or
too complicated will exhibit poor generalisation, analogous to a polynomial constructed during
curve fitting with too small or to large a degree, which will yield poor predictions for new data
points [17]. This notion of poor generalisation is illustrated graphically in Figure 6.4.
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Too complicated model
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Figure 6.4: Example of poor generalisation.
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Several techniques have been developed that may assist in obtaining good generalisation for a
neural network, examples of which include early stopping, regularisation, training with noise
and cross-validation [17]. Essentially, these techniques all aim to control the complexity of
the network model in one way or another. The technique of regularisation is adopted in this
dissertation and it attempts to control model complexity by adding a penalty term to the
network’s error function. This is done to encourage smoother network mappings [17], i.e. to
avoid the behaviour observed in the case of the “Too complicated model” in Figure 6.4. The
penalty term is usually related to the size of the network weights and, when the weights are kept
small, the network mapping is typically smooth [59].

The nature of the training data is also an important factor to consider in terms of the generali-
sation of a network. Input training vectors have to form a representative subset of the region of
vectors to which one wishes to generalise [211].

A critical aspect that arises during the construction of an MFNN with one hidden layer is the
required number of hidden neurons. According to Svozil et al. [211], this number of neurons
depends on the size of the training set, the amount of noise present in the training vectors,
the complexity of the function being approximated, and the technique employed to obtain good
generalisation. It is clear, then, that the required number of hidden neurons is very problem-
dependent and essentially has to be determined empirically. In general, however, networks of
smaller size are preferred over larger networks because the latter may be able to memorise the
training data (i.e. overfitting) which leads to poor generalisation [134].

6.5 Constructing MFNNs for SAFARI-1

The Neural Network Toolbox [215] within the Matlab software suite [214] was utilised as an
off-the-shelf software tool for constructing the MFNNs in this dissertation. The core parameters
corresponding to the typical objectives and constraints for the SAFARI-1 reactor described in
§4.5 are considered here for neural network modelling purposes and are listed in Table 6.1. In
this section, the steps that were followed during construction of the associated neural networks
in the Toolbox are presented.

Symbol Reactor core parameter

φB12 Average thermal neutron flux over the faces of beam tubes 1 and 2
φB5 Average thermal neutron flux over the face of beam tube 5
φSi Average thermal neutron flux over the silicon doping facility
φI1 Maximum axial thermal neutron flux in the first IPR facility
φI2 Maximum axial thermal neutron flux in the second IPR facility
ψtot

Mo Assembly-averaged power levels in all molybdenum rigs
ψmin

Mo Assembly-averaged power level in the molybdenum rig with the minimum power
ρcbw Control bank worth
ρsdm Shutdown margin
ρex Excess reactivity
ψppf Power peaking factor

Table 6.1: SAFARI-1 core parameters considered for ANN modelling.

Stellenbosch University  https://scholar.sun.ac.za



6.5. Constructing MFNNs for SAFARI-1 91

6.5.1 The training data

In order to train MFNNs for the prediction of SAFARI-1 core parameters, the same operational
cycle for the reactor considered in §5.4.1 (i.e. cycle C1211-1) is considered here. The training
data comprise a set of 20 000 fuel reload configurations along with their respective core param-
eter values returned by the OSCAR-4 system. The manner in which these data were selected
is described below. This set has been randomly partitioned into a training set of 17 000 con-
figurations, and a test set of 3 000 configurations for each network, as described below. The
training set, therefore, only constitutes approximately 4.2× 10−21% of the decision space for an
MICFMO problem instance based on the SAFARI-1 reactor.

In previous studies conducted by the author, numerous reload configurations for cycle C1211-1
were evaluated as part of solving ICFMO problem instances. These instances involved dif-
ferent combinations of the core parameters corresponding to the typical SAFARI-1 objectives
and constraints. From this collection of evaluated reload configurations, a subset containing
approximately 5 000 configurations that achieved the largest and smallest values for each core
parameter listed in Table 6.1 has been selected for inclusion in the training set. By including
these configurations, an attempt is made to cover the extremes of the core parameter space in
which predictions are to be made.

Apart from the above, new reload configurations for cycle C1211-1 were generated randomly,
evaluated using the OSCAR-4 system, and added to the training set until it reached a size of
20 000. These configurations correspond to random permutations of the twenty-six fuel assem-
blies loaded into the core and have been generated according to the Fisher-Yates shuffle1. By
including these configurations in the training set, an attempt is made to achieve diversity in
both the reload configuration space and core parameter space.

6.5.2 The network architecture

Eleven MFNNs were constructed — one for predicting each core parameter listed in Table 6.1.
Accordingly, each network contains only one output neuron. Although a single network could
have been constructed for predicting all eleven parameters simultaneously, preliminary testing
indicated that unacceptably large prediction errors would be incurred. In each network, twenty-
six input neurons are employed and they correspond to the fixed fuel loading positions in the
SAFARI-1 reactor core. Furthermore, the inputs to the networks were chosen as the 235U
mass of a fuel assembly assigned to a specific loading position in a reload configuration. As
already motivated in §6.3.1, MFNNs consisting of one hidden layer are employed. The number
of hidden neurons within each network was determined empirically. The specific procedure that
was followed to determine these numbers, however, is described in a later section.

In each network, the activation functions suggested by the Toolbox were adopted. For neurons
in the hidden layer, this corresponds to a hyperbolic tangent sigmoidal function whereas, for
the output neuron, it corresponds to a linear function. The values of the network inputs and
responses were also normalised to the range [−1, 1] during preprocessing performed by the Tool-
box. This normalisation was performed to improve the efficiency with which the networks are
trained [12].

1The Fisher-Yates shuffle is an algorithm which produces an unbiased permutation, i.e. every permutation is
equally likely [21].
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6.5.3 Training of the neural networks

A number of different training algorithms are available for use in the Toolbox. Although the
Levenberg-Marquardt backpropagation algorithm is generally recommended as a first-choice
algorithm for training MFNNs due to its efficiency (see §6.3.2), more emphasis is placed in this
dissertation on obtaining good generalisation in the networks, as opposed to the speed of training
them. This is due to the intended purpose of using these networks to predict core parameters
corresponding to hundreds of thousands of reload configurations during MICFMO comparative
studies. As a result, the Bayesian regularisation backpropagation algorithm within the Toolbox
was chosen as the training algorithm to employ. In a Bayesian learning framework, the weights
in a neural network are considered to be random variables and their probability density functions
may be updated according to Bayes’ rule [127].

Recall that a penalty term is added to the network error function in regularisation techniques.
Therefore, the function asopted to minimise during training has the form Ẽ = βE+αEw, where
E is the original network error function, Ew is the penalty term, and α and β are importance
parameters, also referred to as regularisation coefficients. Typically, E corresponds to the sum
of squared errors, whereas Ew is usually the sum of squares of the network weights. One of
the difficulties with regularisation, however, is the selection of appropriate values for α and β.
By extending the Bayesian framework to include regularisation, these importance parameters
may also be optimised during training by application of Bayes’ rule. Foresee and Hagan [59]
demonstrated that networks trained using Bayesian regularisation typically exhibit excellent
generalisation.

One of the features of the Bayesian regularisation algorithm is that it provides a factor called
the effective number of parameters, denoted here by ξ, which may be regarded as a measure
of how many network weights are effectively used in reducing the error function. This factor
ξ may be utilised as an aid to decide whether an MFNN consists of an appropriate number of
hidden neurons [59]. If, for example, the value of ξ is very close to the total number of weights
in the network upon termination of the training process, it generally indicates that more hidden
neurons should be added to the network. According to Foresee and Hagan [59], the algorithm
will still yield comparable values for ξ, E and Ew when too many hidden neurons are added to a
network. As such, overfitting of a network that is too large may be avoided when the Bayesian
regularisation algorithm is employed.

The number of hidden neurons within each network was determined empirically. In the empirical
study, the total number of hidden neurons within a network was incrementally increased from
200 up to a satisfactory number (in increments of 50). The starting value of 200 was selected
based on preliminary calculations using one network only, and by considering the literature as a
guideline (the number varies between 110 and 400 [56, 99, 131, 140]). In each case, the network
was trained using the default stopping criteria provided in the Toolbox. Upon termination of the
training algorithm, the results were inspected so as to ascertain whether the process had, in fact,
converged. The process was deemed to have converged if the network error function value over
the training and test sets, and the effective number of parameters ξ, remain relatively constant
over several epochs [12]. The mean squared error (MSE) function is employed during training.
If the process did not converge, the number of epochs was increased and the training continued.
Otherwise, when the algorithm did converge, it was verified that the value of ξ was not too close
to the total number of weights in the network, and that the absolute relative prediction errors
for the training and test sets were acceptable. The number of hidden neurons in the network
was increased and the training algorithm restarted if either of the verifications failed.
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6.6 Training results

Following the approach described in the previous section, eleven MFNNs were constructed for the
prediction of the SAFARI-1 core parameters listed in Table 6.1. All calculations were performed
on a personal computer with the following specifications: An Intel R© CoreTM i7-2720QM CPU
with 8 GB of RAM operating at 2.20 GHz within a 64-bit operating system. The computation
time required for training each of the final networks varied between six and thirty-seven hours,
depending on the number of hidden neurons in the network and the number of epochs required
for convergence.

Arguably the most important result to report concerns the computational efficiency of the net-
works. By using the MFNNs instead of the OSCAR-4 system, the computation time required
for the evaluation of a single reload configuration for the SAFARI-1 reactor may be reduced by
four orders of magnitude.

A summary of the performance of the trained networks in respect of their prediction errors
is presented in Table 6.2. This table contains the average and maximum absolute relative
prediction errors of the networks in respect of the training and test sets.

Training set Test set
Network Average Maximum Average Maximum

φB12 0.07 % 0.35 % 0.13 % 0.75 %
φB5 0.06 % 0.38 % 0.12 % 0.73 %
φSi 0.07 % 0.37 % 0.13 % 0.61 %
φI1 0.09 % 0.52 % 0.14 % 0.92 %
φI2 0.09 % 0.44 % 0.12 % 0.95 %
ψtot

Mo 0.19 % 0.93 % 0.20 % 0.90 %
ψmin

Mo 0.75 % 2.96 % 0.82 % 3.61 %
ρcbw 0.03 % 0.20 % 0.07 % 0.33 %
ρsdm 0.12 % 0.67 % 0.24 % 1.28 %
ρex 0.09 % 0.60 % 0.18 % 0.97 %
ψppf 0.80 % 5.52 % 1.62 % 8.71 %

Table 6.2: Average and maximum absolute relative prediction errors on the training and test sets.

It is observed in Table 6.2 that high-quality predictions are, on average, produced by the net-
works. An average error of less than 1% on the training set is produced by all eleven networks,
while ten of them also produce an average error of less than 1% on the test set. Furthermore,
the maximum errors for the five networks that predict neutron flux levels, i.e. those denoted
by φ, are all less than 1% on the training and tests sets. The comparatively large maximum
errors obtained by the ψppf network (approximately 5% and 8% on the training and test sets,
respectively) are still deemed to be of an acceptable accuracy for use in MICFMO calculations
when compared to an error of 14% found in the literature [131]. It is possible that the network
inputs (i.e. the 235U mass in a fuel assembly) are insufficient for the purpose of training this
network because axial disparities within an assembly, which affect the three-dimensional power
peaking calculation in the OSCAR-4 system, are not taken into consideration. An investigation
into this phenomenon is, however, left for future studies.

Several of the graphical results produced during the training of the networks are also presented.
For the purpose of improved readability, however, only a subset of the results are presented in
this section. The subset includes convergence graphs for the φB5 and ψmin

Mo networks, as well
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as prediction quality graphs for the φB5, ψmin
Mo and ψppf networks. These networks all have 200

hidden neurons in their architecture. The remaining results may be found in Appendix B. Note
that the MSE values within the graphs have been scaled relative to the minimum value obtained.
Similarly, the network prediction and target values have been scaled so as to correspond to the
[−1, 1] range employed during training (see §6.5.2).

In Figure 6.5, the convergence graphs of the training process for network φB5 are presented. It
is observed in Figure 6.5(a) that the scaled MSE of the training and tests sets remain fairly
constant for several hundred epochs, as is also the case in Figure 6.5(b) for the effective number
of parameters ξ. The network was therefore deemed to have converged. Initially, however, this
network did not achieve convergence after a default stopping criterion of 1 000 epochs had been
reached. Accordingly, the number of epochs was increased before resuming the training.
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Figure 6.5: Convergence results for the φB5 neural network.

The convergence graphs of the training process for network ψmin
Mo are presented in Figure 6.6.

This network, unlike the previous example, converged after 767 epochs according to the default
stopping criteria of the Toolbox. Although ξ ≈ 1 080 is much smaller than the total number
of weights in the network, namely 5 601, due to the properties of the Bayesian regularisation
algorithm (as described in §6.5.3), overfitting would have been avoided.
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Figure 6.6: Convergence results for the ψmin
Mo neural network.
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Graphical results pertaining to the networks’ predictive capabilities are presented in Figure 6.7.
A scatter graph of the 20 000 target values in the combined training and test sets versus their
predicted values is presented for each network φB5, ψmin

Mo and ψppf. The straight line in each
graph, labelled “Y=Target” in the legend, corresponds to the theoretical case in which perfect
predictions are achieved.
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Figure 6.7: Prediction quality results for the φB5, ψ
min
Mo and ψppf neural networks.

In Figure 6.7(a), it is observed for the φB5 network that an exceptionally good fit is achieved of
the network predictions to their target values. A more peculiar graph is found in Figure 6.7(b)
for the ψmin

Mo . This peculiarity may be attributed to round-off effects in the OSCAR-4 results,
making the target values discrete. It is observed, however, that the network is still able to achieve
good predictions to these discrete targets. Finally, in Figure 6.7(c), the results are presented for
the ψppf network. The predictions for this network are distributed wider about the target line, as
may be seen in the graph, when compared to those of the φB5 and ψmin

Mo networks. Nevertheless,
the quality of predictions are still acceptable, and there are no outliers to be concerned about.

6.7 Application of the networks on cycle C1211-1

The results presented in the previous section demonstrate that MFNNs have the ability to
predict SAFARI-1 core parameters (with acceptable accuracy) much quicker than when using
explicit core simulator calculations, e.g. using the OSCAR-4 system.
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Given that the test set employed in the previous section contained only 3 000 reload configura-
tions, it would be advantageous to further verify the accuracy and generalisation of the networks
on a larger set of new (unseen) reload configurations for cycle C1211-1. Therefore, a verification
set consisting of 30 000 random (according to a uniform distribution) reload configurations eval-
uated by the OSCAR-4 system was created for this purpose. This verification set was presented
to the neural networks in order to predict the respective SAFARI-1 core parameters.

A summary of the prediction results for the verification set is presented in Table 6.3. This
table contains, as before, the average and maximum absolute relative prediction errors of the
networks. It is observed that the quality of the predictions for the verification set is of the same
order of magnitude to that of the test set in Table 6.2. Ten of the eleven networks produce
an average error of less than 1%, while all the flux networks also produce a maximum error of
less than 1%. The maximum error produced by the ψppf network has, however, worsened when
compared to the test set. Fortunately, it remains at an acceptable level given the 14% error
found in the literature [131].

Verification set
Network Average Maximum

φB12 0.13 % 0.88 %
φB5 0.13 % 0.82 %
φSi 0.13 % 0.80 %
φI1 0.14 % 0.88 %
φI2 0.12 % 0.71 %
ψtot

Mo 0.20 % 0.96 %
ψmin

Mo 0.85 % 3.60 %
ρcbw 0.07 % 0.41 %
ρsdm 0.25 % 1.73 %
ρex 0.19 % 1.24 %
ψppf 1.67 % 10.59 %

Table 6.3: Average and maximum absolute relative prediction errors on the verification set.

The application of the MFNNs on the verification set therefore reinforced the conclusion that
these networks exhibit good generalisation in the context of cycle C1211-1, and have the ability
to predict SAFARI-1 core parameters with an acceptable accuracy. As a result, the networks
are sufficient for the purpose of reducing the computational cost of function evaluations in an
investigation of appropriate methods for solving the MICFMO problem.

6.8 Application of the networks to other operational cycles

One of the reasons for using the 235U mass of a fuel assembly as network input is to enable the
networks to predict SAFARI-1 core parameters for a different operational cycle than C1211-1 on
which they were trained. Such different predictions are possible because the 235U mass in the fuel
assemblies loaded into the SAFARI-1 core during different cycles are typically destributed in a
fairly similar manner. This may be observed in Figure 6.8, which consists of a graph illustrating
the averages and standard deviations of the 235U masses loaded into the SAFARI-1 reactor over
a period of five years.
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Figure 6.8: The 235U mass distribution in assemblies loaded into the SAFARI-1 reactor over a period
of five years.

In order to test the extended predictive capability of the networks, two other operational cycles
were selected from the SAFARI-1 reactor history which exhibit relatively different fuel distribu-
tions than the original cycle (i.e. they were selected to represent extreme test cases). These two
cycles are designated as C1003-1 and C1401-2. A test set of 4 500 random reload configurations
was created (according to the Fisher-Yates shuffle) for each of the two cycles, and subsequently
evaluated using the OSCAR-4 system. These test sets were then presented to the neural net-
works in order to predict the respective SAFARI-1 core parameters. The average and maximum
absolute relative prediction errors produced by the networks are presented in Table 6.4.

Cycle C1003-1 Cycle C1401-2
Network Average Maximum Average Maximum

φB12 1.84 % 7.11 % 2.58 % 9.01 %
φB5 2.18 % 9.47 % 4.91 % 17.62 %
φSi 9.52 % 15.37 % 5.50 % 11.81 %
φI1 2.61 % 7.24 % 5.78 % 10.89 %
φI2 4.17 % 8.27 % 5.00 % 8.40 %
ψtot

Mo 0.31 % 1.50 % 3.62 % 4.76 %
ψmin

Mo 3.55 % 8.05 % 7.47 % 12.91 %
ρcbw 3.25 % 8.64 % 2.86 % 9.45 %
ρsdm 2.87 % 16.17 % 12.48 % 24.87 %
ρex 2.00 % 6.68 % 16.71 % 22.68 %
ψppf 5.09 % 20.04 % 4.47 % 19.61 %

Table 6.4: Average and maximum absolute relative prediction errors on the test sets for operational
cycles C1003-1 and C1401-2 of the SAFARI-1 reactor.

It may be observed in Table 6.4 that the neural networks yield predictions of unacceptable quality
for cycles C1003-1 and C1401-2. The maximum and average prediction errors for these two
cycles are worse than those of cycle C1211-1 by approximately an entire order of magnitude. As
a result, these neural networks should not be employed for predicting SAFARI-1 core parameters
for operational cycles other than C1211-1 on which it was trained. If neural networks are sought
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in which sufficient generalisation is achieved so as to predict parameters for an arbitrary cycle
of the SAFARI-1 reactor, a more extensive training set is required. Such a set would have to
contain reload configurations that incorporate the full range of typical 235U mass distributions,
as shown in Figure 6.8.

6.9 Chapter summary

In this chapter, several ANNs were constructed for the prediction of SAFARI-1 core parameters
corresponding to MICFMO objectives and constraints. The motivation for the construction of
these neural networks, namely to aid in the investigation of different computational methods for
solving the MICFMO problem, was presented in §6.1. Next, an introduction to some general
concepts pertaining to ANNs was presented in §6.2.

A specific class of neural networks, namely MFNNs, was reviewed in §6.3. In particular, a
description of an MFNN with one hidden layer was presented in §6.3.1, while an overview of
the backpropagation training algorithm, often employed for training such networks, was given
in §6.3.2. Several important notions pertaining to the architecture and training of MFNNs were
elucidated in §6.4 before details in respect of the construction of the SAFARI-1 neural networks
were presented in §6.5.

In §6.6, the results obtained during the training of the neural networks in respect of a specific
SAFARI-1 operational cycle were presented. It was found that the MFNNs have the ability to
predict SAFARI-1 core parameters much quicker (and with an acceptable accuracy) than when
using the OSCAR-4 system (typically by four orders of magnitude). Additional verification
of the networks was performed in §6.7, followed by application tests in §6.8 to ascertain their
prediction capabilities in the contexts of other operational cycles. The latter tests indicated that
the networks should only be used to predict core parameters for the cycle they were trained on.
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CHAPTER 7

Multiobjective metaheuristics for solving
the MICFMO problem
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As mentioned in §1.3, one of the priorities in this dissertation is to investigate different mul-
tiobjective computational methods in terms of their suitability in respect of finding sets of
high-quality trade-off solutions to the MICFMO problem. In this chapter, several multiobjec-
tive metaheuristics, employed in a comparative study later in this dissertation, are discussed.
Two different constraint handling techniques for MOO are also described. The chapter then
closes with a discussion on the performance assessment of MOO solution techniques.
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7.1 Introduction

In Chapters 3 and 5, it was pointed out that a very limited amount of literature is available
on MICFMO. In particular, the appropriateness of several modern, Pareto-based multiobjective
optimisation algorithms (MOAs) for solving the MICFMO problem is not known, especially in
terms of their comparative performance. Here, MOAs refer to a posteriori methods designed to
find an (approximate) set of Pareto optimal solutions to an MOP instance and therefore include
multiobjective metaheuristics.

7.1.1 The comparative studies

Persuant to the second priority in this dissertation, as mentioned in §1.3, a total of eight mod-
ern state-of-the-art multiobjective metaheuristics are investigated within a comparative study
to ascertain which of these MOAs is the most suitable in the context of constrained MICFMO.
The metaheuristics considered in this comparative study consist of two evolutionary algorithms,
namely the nondominated sorting genetic algorithm II (NSGA-II) [34] and the strength Pareto
evolutionary algorithm 2 (SPEA2) [248]; two swarm intelligence algorithms, namely optimised
multiobjective particle swarm optimisation (OMOPSO) [174] and Pareto ant colony optimisation
(P-ACO) [38]; two local search algorithms, namely archived multiobjective simulated annealing
(AMOSA) [10] and multiobjective variable neighbourhood search (MOVNS) [65]; a probabilis-
tic model-based algorithm called the multiobjective optimisation using cross-entropy method
(MOOCEM) [15]; and finally, a multiobjective harmony search (MOHS) algorithm [196]. These
MOAs have been sourced from different classes of metaheuristics in an attempt to represent the
diversity of algorithms available in the literature. The general working of each metaheuristic
is described in this chapter, along with the problem-specific modifications that the author had
to make during their implementation for the purpose of solving constrained MICFMO problem
instances. The solution representation (also known as the encoding scheme) adopted in each
of the metaheuristics is that of a permutation-based encoding. This was a natural choice given
that a reload configuration may easily be represented as a permutation decision vector, as was
illustrated in §4.3.

Another area of research in which very little literature is available involves constraint handling
techniques within the context of MOO [116]. A new constraint handling technique for MOO,
based on a multiplicative penalty function, is proposed in this dissertation. Its effectiveness is
also investigated (in the context of MICFMO) by comparing it to the well-known constrained-
domination technique from the literature, originally proposed by Deb et al. [34]. Descriptions
of each constraint handling technique is therefore presented in this chapter. Both constraint
handling techniques are implemented in each of the metaheuristics discussed in this chapter,
except for the P-ACO algorithm and the MOOCEM. In the case of the latter two metaheuristics,
only the multiplicative penalty function technique is implemented, because the constrained-
domination technique is not appropriate (for reasons that will be explained later).

Recall from §3.3.4 that multiobjective metaheuristics are approximate solution techniques. The
nondominated set of solutions yielded by each of the aforementioned metaheuristics is therefore
referred to as an approximate Pareto set and is denoted by P̃S . Very often, the true Pareto
set for a real-world optimisation problem instance such as an MICFMO problem instance is not
available. No claim is therefore made in respect of closeness to optimality when referring to any
approximation in this dissertation.
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7.1.2 The Pareto rank of a solution

Multiobjective metaheuristics often employ a quantity known as the nondominated rank (as
mentioned in §3.3.4) in order to distinguish between the quality of two or more solutions. This
quantity is also known as the Pareto rank of a solution, and is denoted here by ρ. Due to the fact
that this quantity features prominently in the metaheuristics discussed in this chapter, a more
comprehensive description of Pareto ranks is presented in this section than was given in §3.3.4.

Apart from its Pareto front, there may exist several nondominated sub-fronts for an MOP
instance into which objective vectors (and their corresponding decision vectors) may be classified.
Each lower front is dominated by the one above it (in a maximisation paradigm). A vector may
then be assigned a front depth which is related to the number of the front to which it belongs.
This front depth is the nondominated rank, or Pareto rank, of the decision and objective vectors.
Without loss of generality, the numbering of Pareto rank in this dissertation starts at zero, i.e.
a vector in the Pareto front (or the first nondominated front) is assigned a Pareto rank ρ = 0.

In order to illustrate these concepts graphically, consider an MOP instance of the form (5.1)
with two objectives. The objective vectors z = [z1, z2] corresponding to the decision vectors in
the feasible region may be depicted as points in a Cartesian plane, as illustrated in Figure 7.1.
The Pareto front and nondominated sub-fronts are shown in Figure 7.1, along with an example
of Pareto rank assignment to the vectors.

z1

z2
Pareto front

Second front

Third front

Lower fronts

ρ = 0

ρ = 1ρ = 2

Figure 7.1: Example of nondominated fronts and Pareto rank assignment.

7.2 Constraint handling

The two constraint handling techniques for MOO mentioned above are described in this section.
The first technique may be found in the literature, whereas the second technique is newly
proposed in this dissertation.
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Consider an MOP having the general form of the constrained MICFMO problem (4.1) with q
objective functions. As before, let

G(x) =

r∑

i=1

max

{
0,
gi(x)− glim

i

|glim
i |

}

be the total scaled constraint violation associated with the inequality constraints in (4.1). Sim-
ilarly, let

H(x) =
s∑

j=1

∣∣∣∣∣
hj(x)− hlim

j

hlim
j

∣∣∣∣∣

be the total scaled constraint violation associated with the equality constraints in (4.1).

7.2.1 The constrained-domination principle

Deb et al. [34] proposed a constraint handling technique for MOO based on their so-called
constrained-domination principle (CDP). The definition of traditional domination between two
solutions x and y is essentially modified according to this principle. Now, a solution x is said
to “constrained-dominate” a solution y if any of the following conditions hold:

1. Solution x is feasible and solution y is infeasible,

2. Solutions x and y are both infeasible, but solution x exhibits a smaller overall constraint
violation, or

3. Solutions x and y are both feasible, and x dominates y.

In the constraint handling technique, this CDP may be employed during a comparison between
two solutions instead of traditional domination. This principle may also be employed during the
sorting of solutions into different nondominated fronts, i.e. nondominated sorting. An infeasible
solution with a larger overall constraint violation than another solution is therefore sorted as a
member of the next nondominated front [34]. In this dissertation, the overall constraint violation
to employ in the CDP technique is calculated as G(x) +H(x).

This constraint handling technique is hereafter referred to as the CDP technique. One of its
major advantages is the fact that no free parameters are employed. Accordingly, it is a problem-
independent technique that does not require any parameter tuning.

7.2.2 The proposed multiplicative penalty function

The CDP technique cannot necessarily be adopted within any multiobjective metaheuristic. It
is, for example, not suitable for the P-ACO algorithm and the MOOCEM. This prompted the
development of a new constraint handling technique by the author, based on a multiplicative
penalty function (MPF). In the proposed MPF technique, if a solution violates any constraint,
a corresponding penalty value related to the magnitude of that violation is incurred. Then, an
exponential function, taking the total constraint violation as argument, is used to calculate a
scalar penalty value. The objective vector is finally penalised by multiplication by this scalar
value.

The reader is reminded that all the objective functions in (4.1) are assumed, without loss of gen-
erality, to be maximised because an objective function may be transformed from a minimisation
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paradigm to a maximisation paradigm by taking its negative value. It is further assumed here
that, originally, all the objective functions are positive. In order to apply the MPF technique, it
is now necessary to make a distinction between objectives that are intended for maximisation or
minimisation. Let f (+) denote an objective function originally intended for maximisation, which
therefore remains unaffected. Similarly, let f (−) denote an objective function, originally intended
for minimisation, after it has been multiplied by −1 so as to transform it from a minimisation
paradigm to a maximisation paradigm. If there are u unaffected objective functions and v trans-

formed ones, then the objective vector may be written as f(x) = [f
(+)
1 , . . . , f

(+)
u , f

(−)
u+1, . . . , f

(−)
u+v],

with u+ v = q.

The exponential penalty function Pm(x) employed in the MPF technique is also partitioned

into a case for maximisation objectives, P
(+)
m , and a case for minimisation objectives, P

(−)
m . The

function is defined as

Pm(x) =




P

(+)
m = 2− exp

(
γ
(
G(x) +H(x)

))
, for f (+),

P
(−)
m = exp

(
γ
(
G(x) +H(x)

))
, for f (−),

(7.1)

where γ is a strictly positive severity factor, as before.

A penalised objective vector fP is then determined by multiplying the components of the objec-
tive vector in (4.1) by their corresponding penalty function values, that is fP (x) = Pm(x)f(x).
This effectively transforms a constrained MOP into an unconstrained optimisation problem
whose objective vector is now given by

fP (x) =
[
P (+)
m (x)

[
f

(+)
1 (x), . . . , f (+)

u (x)
]
, P (−)

m (x)
[
f

(−)
u+1(x), . . . , f

(−)
u+v(x)

]]
. (7.2)

An advantage of the MPF constraint handling technique is that all q objectives functions are
penalised using a single scalar value, irrespective of their orders of magnitude. Traditional
domination may then be applied within any solution method using the penalised objective
vector fP (x). Furthermore, only one free parameter has to be tuned within the technique.

7.3 Multiobjective evolutionary algorithms

Two prominent multiobjective evolutionary algorithms (MOEAs), namely the NSGA-II [34] and
the SPEA2 [248] are described in this section. Although both algorithms have been in existence
for more than a decade now, they are still regarded as state-of-the-art MOAs due to their
excellent performance and wide-spread usage in the literature [45, 246]. This motivated their
inclusion in the comparative study for solving MICFMO problem instances.

Numerous metaheuristics have been developed within the class of MOEAs and the reader is
referred to Coello Coello et al. [29] for a good introductory text. MOEAs are mostly population-
based metaheuristics with a generic algorithmic structure, functioning as follows:

1. Initialisation: Generate an initial population of solutions and evaluate their fitness.

2. Selection for reproduction: Create a mating pool of solutions for reproduction by selecting
them from the current population. The fitness level of each parent solution represents its
desirability of being selected, and is typically based on Pareto dominance concepts.

3. Reproduction: Apply variation operators (e.g. crossover and mutation) to the mating pool
in order to generate a new population of offspring solutions, and evaluate their fitness.
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4. Selection for replacement : Update the current population by selecting solutions from both
the previous population and the offspring population. As before, the fitness level of each
solution represents its desirability of being selected. MOEAs may also employ a secondary
population, referred to as an archive, of nondominated solutions which may further influ-
ence the selection for replacement.

5. Stopping criteria: If the stopping criteria have been satisfied, terminate the algorithm and
return the current population (or archive); otherwise, return to Step 2.

Both the NSGA-II and the SPEA2 follow this generic structure of MOEAs. In addition, solutions
in both algorithms are selected for reproduction according to a technique known as deterministic
binary tournament selection. According to this technique, two solutions are randomly1 chosen
from the population, and the one with the best fitness is then selected for reproduction. This
tournament selection is repeated as many times as required [41].

Finally, since there are several dedicated permutation-based variation operators available in the
evolutionary computation literature [213], a number of these are compared within the context
of constrained MICFMO in order to indentify a suitable choice for implementation within the
NSGA-II and the SPEA2. Three crossover operators are considered for comparison, namely the
partially matched/mapped crossover (PMX), the position-based crossover (POS) and the cycle
crossover (CX) operators [113], whereas two mutation operators are also considered, namely the
swap and scramble operators [198]. A description of each operator may be found in Appendix C.

7.3.1 The NSGA-II

The NSGA-II was developed in 2002 by Deb et al. [34] as an improvement upon its predecessor,
the NSGA [201]. Criticism against the NSGA involved the computational complexity of its
nondominated sorting algorithm, its lack of elitism, and its need for a fitness sharing parameter,
all of which have been addressed in the NSGA-II [34]. The generic structure of an MOEA is
followed by the NSGA-II, but its fitness assignment and selection procedures distinguish it from
other MOEAs.

Each solution in a population is assigned two attributes that constitute its fitness, namely a
Pareto rank and a crowding distance. In order to determine the Pareto rank for each solution
a in a population P, a nondominated sorting procedure may be applied to P. Deb et al. [34]
developed the fast nondominated sorting algorithm (FNSA), which is used in NSGA-II, for this
purpose. The algorithm has an improved computational complexity of O(qN2) compared to its
predecessor’s computational complexity of O(qN3), where q is the number of objectives and N
is the population size.

According to the first stage of the FNSA, the domination count na for each solution a ∈ P
is determined (i.e. the number of solutions that dominate solution a), along with the set Sa
containing all the solutions that are dominated by solution a. By definition, solutions in the first
nondominated front have a domination count of zero, and are therefore assigned a Pareto rank of
zero. Furthermore, those solutions for which na = 0 are then placed in a separate set F1. During
the second stage of the FNSA, each solution a in F1 is visited, and for each solution b in the
corresponding set Sa, the domination count nb is decreased by one. This decrement effectively
discounts the contribution of solution a to the domination count of solution b. Subsequently,
solutions that are part of the second nondominated front will now have a domination count of

1Unless specifically stated otherwise, where any reference is made in this chapter to random selection, it is
assumed that a uniform distribution is employed during selection.
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zero. Those solutions are then assigned a Pareto rank of one and placed in a separate set F2.
This procedure is repeated until all the fronts have been identified with the solutions ranked
correspondingly. A pseudo-code listing of the FNSA, with minor adjustments in respect of how
it appeared in [34], is presented in Algorithm 7.1. In terms of fitness, solutions in the population
associated with a lower Pareto rank are preferred.

Algorithm 7.1: Fast nondominated sorting algorithm (FNSA) [34]

Input : A population of solutions P.
Output: A partitioning of the input-population into n successive nondominated fronts F1, . . . ,Fn,

with each solution x assigned a Pareto rank ρx.

F1 ← ∅1

for each a ∈ P do2

Sa ← ∅3

na ← 04

for each b ∈ P do5

if a � b then // If a dominates b6

Sa ← Sa ∪ {b} // Add b to set of solutions dominated by a7

else if b � a then8

na ← na + 1 // Increment the domination counter of a9

end if10

end for11

if na = 0 then // a belongs to the first front12

ρa ← 013

F1 ← F1 ∪ {a}14

end if15

end for16

i← 1 // Initialise the front counter17

while Fi 6= ∅ do18

Q ← ∅ // Store the solutions of the next front19

for each a ∈ Fi do20

for each b ∈ Sa do21

nb ← nb − 122

if nb = 0 then // b belongs to the next front23

ρb ← i24

Q ← Q∪ {b}25

end if26

end for27

end for28

i← i+ 129

Fi ← Q30

end while31

The crowding distance associated with a solution is a measure of the density of solutions sur-
rounding it within the same nondominated front. In order to calculate the crowding distances, a
nondominated population I has to be sorted in ascending order of magnitude for each objective
function k ∈ {1, . . . , q}. Let I[i]dist denote the crowding distance of the i-th solution in the
sorted population. Furthermore, let ` = |I|, where | · | denotes the cardinality of a set. The
solutions at the two endpoints of the population are assigned a crowding distance of infinity,
i.e. I[1]dist = I[`]dist = ∞. The crowding distance of each intermediate solution i, however,
is increased by the distance between the function values in the k-th objective of its two neigh-
bouring solutions i− 1 and i+ 1, normalised by the current range of objective k. Accordingly,
crowding distance is accumulated over the q objectives. A pseudo-code listing of the crowding
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distance assignment algorithm, similar to how it appeared in [34], is presented in Algorithm 7.2.
The function value of objective k, corresponding to the i-th solution in I is denoted by I[i].fk
in Algorithm 7.2. In terms of fitness, solutions within the same nondominated front associated
with a larger crowding distance are preferred. Such solutions are in a less “crowded” region of
the objective space and retaining them, therefore, promotes the preservation of diversity [34].

Algorithm 7.2: Crowding distance assignment algorithm [34]

Input : A population of nondominated solutions I.
Output : The crowding distance associated with each solution, I[1]dist, . . . , I[`]dist.

`← |I| // Number of solutions in I1

for each i ∈ I do2

I[i]dist ← 0 // Initialise crowding distance3

end for4

for each objective k ∈ {1, . . . , q} do5

I ← sort(I, k) // Sort population using value of objective k6

I[1]dist ←∞ // So that endpoints are always selected7

I[`]dist ←∞8

for i← 2 to (`− 1) do // For all intermediate solutions9

I[i]dist ← I[i]dist + (I[i+ 1].fk − I[i− 1].fk)/(fmax
k − fmin

k )10

end for11

end for12

Given that each solution a is assigned a Pareto rank ρa and a crowding distance adist, two
solutions may be compared according to the so-called crowded comparison operator (denoted
by �cc). According to this operator, if two solutions a and b have differing Pareto ranks, the
solution with the lower rank is preferred (more fit for selection). Otherwise, where two solutions
have equal rank, the solution with the greater crowding distance is preferred. Mathematically,
the operator is described as

a �cc b if

{
ρa < ρb, or

ρa = ρb and adist > bdist.

By using the crowded comparison operator within NSGA-II, the selection process of the algo-
rithm favours the exploration of diverse solutions [34].

The full NSGA-II may now be described, and a pseudo-code listing thereof is presented in Algo-
rithm 7.3. The NSGA-II starts by randomly generating an initial parent population P0 of size N .
This population is then ranked and sorted using the FNSA. Initially, each solution is assigned a
fitness equal to its Pareto rank only. An offspring populationQ0 of size N is then generated using
a deterministic binary tournament selection procedure (assuming minimisation of fitness, since
lower Pareto ranks are preferred), along with the relevant crossover and mutation operators. At
this point, the generation counter t is set to zero, and the following procedure is iterated until
the relevant stopping criterion has been met (e.g. a maximum number of generations reached):

1. Create a combined population Rt ← Pt ∪Qt from the parent and offspring populations.

2. Rank and sort population Rt into nondominated fronts F1, . . . ,Fn using the FNSA, and
calculate the crowding distance of each solution.

3. Create the next population Pt+1 by including all solutions from the first front F1, then all
solutions from the second front F2, and so forth, until the inclusion of all solutions from
the next front would result in a population size greater than N . In order to limit the size
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of Pt+1 to N , the solutions in this next front are sorted in decreasing order of crowding
distance. Solutions from this sorted front are then included one-by-one until |Pt+1| = N .

4. Create a mating pool of solutions by using a deterministic binary tournament selection
procedure based on the crowded comparison operator (�cc).

5. Generate the next offspring population Qt+1 using solutions from the mating pool, along
with the relevant crossover and mutation operators.

6. Increment the value of the generation counter t← t+ 1.

Algorithm 7.3: Nondominated sorting genetic algorithm II (NSGA-II) [34]

Input : An MOP (possibly constrained), a population size N , a maximum number of generations
tmax, a crossover probability pc, and a mutation probability pm.

Output: An approximate Pareto set, P̃S .

Randomly generate an initial population P0 of size N1

Rank and sort P0 using the FNSA in Algorithm 7.12

Assign a fitness value to each solution in P0 equal to its Pareto rank3

Create a mating pool of solutions from P0 by means of deterministic binary tournament selection4

(assuming minimisation of fitness)
Generate an offspring population Q0 of size N using the mating pool, a crossover operator (with5

pc) and a mutation operator (with pm)
t← 06

while t < tmax do7

Rt ← Pt ∪Qt8

Partition Rt into nondominated fronts F1,F2, . . . using the FNSA in Algorithm 7.19

Pt+1 ← ∅10

i← 111

while |Pt+1| < N do12

if |Pt+1|+ |Fi| ≤ N then13

Pt+1 ← Pt+1 ∪ Fi14

i← i+ 115

else16

Calculate the crowding distance for each solution in Fi using Algorithm 7.217

Sort Fi in decreasing order of crowding distance18

Pt+1 ← Pt+1 ∪ {the first N − |Pt+1| solutions in Fi}19

end if20

end while21

Calculate the crowding distance for each solution in Pt+1 using Algorithm 7.222

Create a mating pool of solutions from Pt+1 by means of deterministic binary tournament23

crowded comparison selection
Generate an offspring population Qt+1 of size N using the mating pool, a crossover operator24

(with pc) and a mutation operator (with pm)
t← t+ 125

end while26

P̃S ← Ptmax
27

7.3.2 The SPEA2

The SPEA2 was developed in 2001 by Zitzler et al. [248], also as an improvement upon its
predecessor, the SPEA [249, 250]. The proposed improvements consist of a new fitness assign-
ment strategy, a density estimation technique, and a new archive truncation technique, since
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the algorithm employs an archive of nondominated solutions. Fitness values are assigned at
each generation to solutions in both the current population and the archive before selection
occurs. This new fitness assignment is based on domination principles and a density estimation
technique in order to promote diversity.

Consider the population Pt, of size N , at a given iteration t during execution of the SPEA2,
along with the archive At of size N . Let Qt ← Pt ∪ At be the combined set of the population
and the archive. The first step in calculating the fitness of each solution a ∈ Qt is to determine
its associated strength value S(a). The strength of a solution represents the total number of
solutions that it dominates, and is calculated as S(a) =

∣∣{b | b ∈ Qt, a � b}
∣∣. Consider next

the set of all solutions b ∈ Qt that dominate solution a, and denote it by Da. The so-called raw
fitness of solution a is then calculated as R(a) =

∑
b∈Da

S(b). Note that this raw fitness is to
be minimised, and any nondominated solution has a raw fitness of zero.

Since different solutions may have identical raw fitness values, density information is incorpo-
rated as a distinguishing factor. For each solution a, the distance (in objective space) to every
other solution b ∈ Q is determined, and the list of distances is then sorted in increasing order
of magnitude. The distance to the k-th nearest neighbour of solution a, denoted by σka, then
corresponds to the k-th value in the list of distances and represents the density information
to use. The Euclidean distance has been selected here as distance measure. Typically, the

value of k is selected as the square root of the sample size, thus k =
√
N +N . The density

of solution a is then calculated as D(a) = 1/(σka + 2) and added to the raw fitness. Note that
0 < D(a) < 1 [248]. Finally, the fitness of solution a is given by F (a) = R(a) +D(a).

According to the new archive truncation technique within the SPEA2, the number of solutions
in the archive is kept constant during execution of the algorithm and the technique prevents
extremal solutions (i.e. boundary solutions) from being removed [248]. The technique works as
follows. First, all the nondominated solutions in Qt, i.e. those solutions with F (a) < 1, are
copied into the new archive At+1. If |At+1| = N , then the selection for replacement is complete.
Otherwise, one of two cases may be experienced. In the first case, if |At+1| < N , the archive is
simply filled with the best N − |At+1| dominated solutions (according to fitness) remaining in
Qt. In the second case, however, if |At+1| > N , then a truncation procedure is applied which
iteratively eliminates solutions from the archive until |At+1| = N . During each elimination
iteration, the solution with the smallest Euclidean distance to another solution (in objective
space) is selected for removal. In the event that some solutions have equal distances, the tie is
broken by considering the second smallest distance (and the third, and the fourth, etc.). Since
any boundary solution will always have some k-th distance that is larger than the k-th distance
of another solution closest to it, this technique guarantees that extremal solutions will not be
removed.

The full SPEA2 may now be described. The algorithm starts by randomly generating an initial
population P0 of size N , and initialising an empty archive A0 ← ∅. The generation counter t
is set to zero, and the following procedure is then iterated until the relevant stopping criterion
has been met (e.g. a maximum number of generations reached):

1. Create a combined set of solutions Qt ← Pt ∪ At from the population and the archive.

2. Assign a fitness to each solution in Qt by calculating the strength, raw fitness and density
values of the solutions.

3. Create the next archive At+1 by transferring the nondominated solutions in Qt to the
archive. If |At+1| < N , then fill At+1 with the best solutions remaining in Qt. Otherwise, if
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|At+1| > N , eliminate solutions from the archive using the truncation procedure described
above.

4. Create a mating pool of solutions from At+1 by using deterministic binary tournament
selection according to fitness.

5. Generate the next population Pt+1 using solutions from the mating pool, along with the
relevant crossover and mutation operators.

6. Increment the value of the generation counter t← t+ 1.

A pseudo-code listing of the SPEA2 is presented in Algorithm 7.4. Note that this pseudo-code
listing differs slightly from the original algorithm presented in [248] — the test for algorithmic
termination has been moved and now occurs after the creation of the next population (as is the
case for the NSGA-II), as opposed to before creation.

Algorithm 7.4: Strength Pareto evolutionary algorithm 2 (SPEA2) [248]

Input : An MOP (possibly constrained), a population size N , an archive size N , a maximum
number of generations tmax, a crossover probability pc, and a mutation probability pm.

Output: An approximate Pareto set, P̃S .

Randomly generate an initial population P0 of size N1

Initialise an empty archive A0 ← ∅2

t← 03

while t < tmax do4

Qt ← Pt ∪ At5

Calculate the strength value S(a), the raw fitness R(a) and the density D(a) for each solution6

a ∈ Qt
Determine the fitness of each solution a ∈ Qt according to F (a) = R(a) +D(a)7

Copy all the nondominated solutions in Qt (i.e. those for which F (a) < 1) to the next archive8

At+1

if |At+1| < N then9

Sort the solutions in Qt according fitness in increasing order of magnitude10

Fill At+1 with the first N − |At+1| solutions for which F (a) ≥ 111

else if |At+1| > N then12

Iteratively eliminate solutions from At+1 by means of the nearest neighbour truncation13

procedure until |At+1| = N
end if14

Create a mating pool of solutions from At+1 by using deterministic binary tournament15

selection according to fitness
Generate the next population Pt+1 of size N using the mating pool, a crossover operator16

(with pc) and a mutation operator (with pm)
t← t+ 117

end while18

P̃S ← Atmax19

7.4 Multiobjective swarm intelligence algorithms

Several different metaheuristics reside within the class of swarm intelligence algorithms, with
PSO and ACO arguably the most established approaches. In this dissertation, a multiobjective
variant of each approach is employed as part of the comparative study for solving constrained
MICFMO problem instances.
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7.4.1 The OMOPSO algorithm

In an experimental comparison between six state-of-the-art multiobjective PSO algorithms, it
was found that the OMOPSO algorithm, developed by Reyes Sierra and Coello Coello [174], per-
formed the best in the context of several benchmark problems [44]. This experimental outcome
motivated the selection of the OMOPSO algorithm for use in this dissertation.

In the algorithm, a regular swarm of particles is employed together with a so-called leader
swarm, consisting of nondominated solutions only, as well as an archive employing the concept
of ε-dominance2. Mutation operators are also borrowed from the evolutionary computation
literature and applied within the OMOPSO algorithm. Once the positions of the particles in
the regular swarm have been updated using the flight operators, the swarm is partitioned into
three subsets. The particles in the first subset remain as is. Different mutation operators are,
however, applied to the particles in the second and third subsets.

A key feature of the OMOPSO algorithm is that different global best positions are selected for
the particles during every iteration. The solutions in the leader swarm are each associated with
a crowding distance, as defined in the NSGA-II, in order to differentiate between the quality of
different solutions. A deterministic binary tournament selection procedure based on crowding
distance is then performed during each iteration in order to select a global best position for each
particle.

Recall from §3.3.3 the working of a basic single-objective PSO algorithm. Each particle is
associated with a position and a velocity. Let xti denote the position of particle i during iteration
t and, similarly, let vti denote its velocity. The flight operator updating the position of a particle
is given by

xt+1
i = xti + vt+1

i . (7.3)

Assuming a fully-connected network topology, let xpb,i denote the personal best position of
particle i and let xgb denote the global best position of the swarm. Then, using the same
notation as in [174], the flight operator updating the velocity is given by

vt+1
i = Wvti + C1r1

(
xpb,i − xti

)
+ C2r2

(
xgb − xti

)
, (7.4)

where W is the inertia weight, C1 and C2 are learning factors, and r1, r2 ∈ [0, 1] are random
numbers.

The full working of the OMOPSO algorithm may now be described, and a pseudo-code listing
thereof is presented in Algorithm 7.5. The OMOPSO algorithm starts by randomly generating
an initial regular swarm R consisting of N particles. Set the personal best position for each
particle i as xpb,i ← x0

i . The nondominated solutions inR are then identified and copied into the
leader swarm L0, of maximum size N , and the crowding distance associated with each solution
is calculated using Algorithm 7.2. The ε-archive Aε0 is determined next using the solutions in the
leader swarm. At this point, the iteration counter t is set to zero, and the following procedure is
iterated until the relevant stopping criterion has been met (e.g. a maximum number of iterations
reached):

1. For each particle i ∈ R, select a global best position xgb from the leader swarm Lt according
to deterministic binary tournament selection based on crowding distance. Update the
velocity and position of particle i according to (7.4) and (7.3), respectively.

2A decision vector x1 is said to ε-dominate another decision vector x2 if (1+ε)fi(x1) ≥ fi(x2) for all i = 1, . . . , q
(in a maximisation problem).
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2. Partition R into three subsets and apply different mutation operators to the particles in
the second and third subsets, respectively.

3. For each particle i ∈ R, update its personal best position according to the following
procedure: if xt+1

i dominates xpb,i or if xt+1
i and xpb,i are nondominated with respect to

each other, then set xpb,i ← xt+1
i .

4. Determine the new leader swarm Lt+1 by identifying the nondominated solutions in Lt∪R,
and then calculate the corresponding crowding distance for each solution using Algo-
rithm 7.2. If |Lt+1| > N , then eliminate the worst solutions according to crowding distance
until |Lt+1| = N .

5. Update the ε-archive Aεt+1.

6. Increment the value of the iteration counter t← t+ 1.

Since the OMOPSO algorithm was originally proposed for solving continuous optimisation prob-
lems, its flight operators may have to be modified in order to be applicable to the MICFMO

Algorithm 7.5: Optimised multiobjective particle swarm optimisation (OMOPSO) [174]

Input : An MOP (possibly constrained), a swarm size N , a maximum number of iterations tmax, a
mutation probability pm, and an ε-value.

Output: An approximate Pareto set, P̃S .

Randomly generate an initial regular swarm R consisting of N particles1

Set the personal best position for each particle i as xpb,i ← x0
i2

Identify the nondominated solutions in R and copy them into the initial leader swarm L03

Calculate the crowding distance for each solution in L0 using Algorithm 7.24

Determine the initial ε-archive Aε0 using the solutions in L05

t← 06

while t < tmax do7

for each particle i ∈ R do8

Select xgb from Lt according to deterministic binary tournament selection based on9

crowding distance
Apply the velocity flight operator (7.4) to obtain vt+1

i10

Apply the position flight operator (7.3) to obtain xt+1
i11

end for12

Partition R into three subsets of equal size Q1,Q2 and Q313

Apply different mutation operators to Q2 and Q3 (both with pm)14

for each particle i ∈ R do15

if xt+1
i � xpb,i or xt+1

i ,xpb,i nondominated then16

xpb,i ← xt+1
i17

end if18

end for19

Identify the nondominated solutions in Lt ∪R and copy them to Lt+120

Calculate the crowding distance for each solution in Lt+1 using Algorithm 7.221

if |Lt+1| > N then22

Sort Lt+1 in decreasing order according to crowding distance23

Eliminate the last |Lt+1| −N solutions from Lt+124

end if25

Update Aεt+1 using Lt+1 ∪ Aεt26

t← t+ 127

end while28

P̃S ← Aεtmax
29
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problem. Two permutation-based approaches available in the literature are compared within
the context of constrained MICFMO in order to find a suitable choice for implementation within
the OMOPSO algorithm. The first approach is a method known as random keys [13]. In the
second approach, proposed by Hu et al. [86], the position flight operator is redefined using a
probabilistic interpretation of the velocity. A description of each approach may be found in
Appendix C.

In this dissertation, two modifications have made to the OMOPSO algorithm. First, the regular
swarm is only partitioned into two subsets (instead of three) and the swap mutation operator is
applied to the second subset. As before, the first subset does not undergo mutation. Secondly, as
was the case in the experimental comparison in [44], it decided not to employ ε-archive. Instead,
the algorithm yields the final leader swarm as an approximate Pareto set.

7.4.2 The P-ACO algorithm

The P-ACO algorithm was developed by Doerner et al. [38] and it recently featured in a tax-
onomy of representative multiobjective ACO algorithms available in the literature [4] — hence
its usage in this dissertation. In the algorithm, a single colony of ants and an archive of non-
dominated solutions are employed. A separate pheromone matrix is adopted for each objective,
while a single heuristic information matrix is utilised. The transition rule within the P-ACO
algorithm is based on that of the ant colony system (ACS) [41], along with a random aggregation
of the pheromone matrices. Finally, pheromone updates are performed locally whenever an ant
has traversed an edge, and globally after all the ants have completed their paths.

Assume that an MOP may be represented as a problem in which an optimal path along a
complete graph is sought. In this context, the P-ACO algorithm then works as follows. A
seperate pheromone matrix τ k = [τkij ] is initialised for each objective k = 1, . . . , q. Furthermore,
the archive of nondominated solutionA0 is intialised as an empty set. Then, during each iteration
of the algorithm, N ants traverse the graph, each constructing a complete path. Given a single
heuristic information matrix η = [ηij ], an ant at a vertex i will move to vertex j according to
the transition rule

j =

{
arg maxj∈Ni

{(∑q
k=1wk τ

k
ij

)α
(ηij)

β
}
, if r ≤ r0,

ĵ, otherwise,
(7.5)

where Ni is the set of neighbouring vertices of vertex i that have not been visited yet by the
ant, wk is a random weighting coefficient for objective k, and α and β are bias parameters.
Furthermore, r is a random number in the range [0, 1) and r0 is a free parameter representing
the probability that the next vertex should be selected as the one with the highest aggregate value
of pheromone and heuristic information [38]. The vertex ĵ in (7.5) is selected with probability

pij =





(
∑q
k=1 wk τ

k
ij)

α
(ηij)

β∑
`∈Ni((

∑q
k=1 wk τ

k
i`)

α
(ηi`)

β)
, if j ∈ Ni,

0, otherwise.
(7.6)

As mentioned earlier, a local pheromone update is performed whenever an ant traverses an edge
in the graph. Suppose that an edge (i, j) has been traversed. Then each pheromone matrix is
(locally) updated according to

τkij = (1− %)τkij + %τ0, (7.7)

where τ0 is the initial pheromone level, and % is the evaporation rate.
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A global pheromone update is, however, only performed once all the ants have completed their
path constructions. Only the best and second-best solutions obtained by the ants (in respect of
each objective) are utilised during this update. Let skb and sksb denote the paths corresponding
to the best and second-best solutions, respectively. The pheromone matrix for each objective k
is then (globally) updated according to

τkij = (1− %)τkij + %∆τkij , (7.8)

where ∆τkij is related to skb and sksb, and may be calculated as

∆τkij =





10, if (i, j) ∈ skb,
5, if (i, j) ∈ sksb,
0, otherwise.

(7.9)

Finally, at the end of each iteration t, the archive At is updated. The algorithm terminates when
the relevant stopping criterion has been met (e.g. a maximum number of iterations reached). A
pseudo-code listing of the P-ACO algorithm is presented in Algorithm 7.6.

Algorithm 7.6: Pareto ant colony optimisation (P-ACO) [38].

Input : An MOP (possibly constrained), the number of ants N , a maximum number of iterations
tmax, bias parameters α and β, a selection probability r0 , the evaporation rate %, an initial
pheromone level τ0, and a heuristic information matrix η.

Output: An approximate Pareto set, P̃S .

Initialise a pheromone matrix τ k for each objective k = 1, . . . , q using τ01

Set A0 ← ∅2

t← 03

while t < tmax do4

for each ant i ∈ {1, . . . , N} do5

Randomly select a starting vertex6

while tour incomplete do7

Select the next vertex according to the transition rules in (7.5) and (7.6)8

Perform a local pheromone update according to (7.7)9

end while10

end for11

for each objective k ∈ {1, . . . , q} do12

Identify the best and second-best solutions in respect of objective k13

Perform a global pheromone update according to (7.8) and (7.9)14

end for15

Identify the nondominated solutions in At ∪ {ants} and copy them to At+116

t← t+ 117

end while18

P̃S ← Atmax
19

In order to apply the P-ACO algorithm to the MICFMO problem, a corresponding ant model
is required, while the heuristic information matrix has to be specified as well. An ant model
similar to the one described in §3.3.3 is adopted for the MICFMO problem. In this model,
vertices in the graph correspond to the fuel assemblies whereas the edges now depend on the
loading positions. An ordered mapping is employed to assign a fuel assembly selected by an
ant traversing the graph to a specific loading position, thereby ensuring that a complete path
translates into a valid reload configuration. An edge, therefore, represents the possibility of a
fuel assembly being selected and assigned to a specific loading position. As such, the transition
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rules, pheromone updates and heuristic information are now applicable to assignments of fuel
assemblies to loading positions.

Since a single heuristic information matrix cannot cater simultaneously to multiple objectives in
the MICFMO problem, safety-related constraint information is rather opted for in this disserta-
tion. Recall that the well-known HMLF fuel management strategy attempts to flatten the power
distribution over a reactor core and, in doing so, typically yields a safe reload configuration. This
strategy served as inspiration for constructing the heuristic information matrix for a reactor.
The construction procedure is as follows. First, a normalised thermal neutron flux profile in the
fuel loading positions of the reactor under consideration is calculated using a core simulator.
This may be achieved by using a core loaded with fresh fuel assemblies only in order to obtain a
typical flux profile. An n×1 column vector u is formed in which ui corresponds to the normalised
flux value for fuel loading position i ∈ {1, . . . , n}, where n is the number of positions. Next, the
235U mass distribution in the m fuel assemblies is normalised and an m×1 column vector v is
formed in which vj corresponds to the normalised mass value for fuel assembly j ∈ {1, . . . ,m}.
Finally, the outer product of u and v is calculated to form an n×m matrix and the reciprocal of
every matrix element is taken. Once this matrix is normalised again, it corresponds to a heuris-
tic information matrix in which larger values represent preferred assignments of fuel assemblies
to loading positions.

It is noted that the P-ACO algorithm does not utilise Pareto dominance per se during its
execution. Accordingly, the CDP technique is not an appropriate constraint handling technique
to employ in this algorithm. Only the MPF technique is therefore considered within the P-ACO
algorithm.

7.5 Multiobjective local search algorithms

Although multiobjective local search metaheuristics are less popular in the MOA literature
than their population-based counterparts, they are still widely-employed [46, 118, 209]. In this
dissertation, multiobjective variants of the SA algorithm and a variable neighbourhood search
algorithm from this class are employed as part of the comparative study for solving MICFMO
problem instances.

7.5.1 The AMOSA algorithm

The AMOSA algorithm was developed by Bandyopadhyay et al. [10] and is one of the latest
multiobjective simulated annealing methods available in the literature. In the algorithm, an
archive of nondominated solutions is employed whose size is controlled by means of a clustering
technique. The AMOSA algorithm also incorporates a quantity referred to as the amount of
domination during the calculation of the acceptance probability of a new solution.

Newly-identified nondominated solutions are included in the archive on a continual basis during
the execution of the algorithm. The archive has two size limits, namely a hard limit NHL

and a soft limit NSL, with NSL > NHL. Once the number of nondominated solutions in the
archive reaches NSL, the well-known single-link (or nearest-neighbour) clustering technique [89]
is applied in order to reduce the number of solutions down to NHL again. During single-link
clustering, each element in some set is initially considered as a cluster. Then, the distance
between the clusters are calculated and the two clusters closest to each other are merged into a
single new cluster. Accordingly, the number of clusters is reduced by one. Within the context of
MOO, distances are measured in objective space and the Euclidean distance has been employed
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here (as was the case in the SPEA2). This process is then repeated until the required number
of clusters have been obtained. In the AMOSA algorithm, upon conclusion of the clustering
process, a representative solution is identified within each cluster for retention in the archive,
while the remaining solutions are discarded. This representative solution corresponds to the
solution within a cluster whose average distance to the other solutions in that cluster is the
smallest.

As mentioned earlier, the AMOSA algorithm incorporates a quantity called the amount of
domination during the calculation of acceptance probabilities. Given two solutions x and y, the
amount of domination is defined as

∆Dx,y =

q∏

k=1
fk(x)6=fk(y)

|fk(x)− fk(y)|
Rk

, (7.10)

where q is the number of objectives, and Rk is the range of objective function k. This range
may be approximated by using the solutions present in the archive, along with the current and
new solutions.

The working of the AMOSA algorithm may now be described, and a pseudo-code listing thereof
is presented in Algorithm 7.7. A random initialisation procedure is performed in order to
fill the archive A with at least one nondominated solution. A current solution xc is then
randomly selected from the archive, and the temperature T is initialised. The current solution
is perturbed according to some predefined neighbourhood move operator and a modified solution
xm is obtained. The “domination status” of xm is determined with respect to xc and all the
solutions in A. Depending on this status, different cases may arise:

Case 1 : If xc � xm, then the subset Q, consisting of the solutions in A that dominate xm,
has to be determined. An average amount of domination is then calculated as

∆D1
avg =

1

|Q|+ 1



|Q|∑

j=1

∆Dxj ,xm + ∆Dxc,xm


 , (7.11)

which is used to determine the probability of xm being accepted as the new current solu-
tion. This probability is calculated as

pC1 =
1

1 + exp(∆D1
avgT )

. (7.12)

Case 2 : If xc and xm are nondominated with respect to each other, then xm is accepted as
the new current solution with certainty when it is also nondominated with respect to every
solution in A, or when it dominates at least one solution in A. Otherwise, the subset Q is
identified again and a different average amount of domination is calculated as

∆D2
avg =

1

|Q|



|Q|∑

j=1

∆Dxj ,xm


 . (7.13)

The probability of xm now being accepted as the new current solution is

pC2 =
1

1 + exp(∆D2
avgT )

. (7.14)
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Case 3 : If xm � xc, then xm is accepted as the new current solution with certainty when it
is also nondominated with respect to every solution in A, or when it dominates at least
one solution in A. Otherwise, the subset Q is identified again and a so-called minimum
amount of domination is calculated as

∆Dmin = min
j=1,...,|Q|

{
∆Dxm,xj

}
. (7.15)

Now, the solution in the archive corresponding to this minimum amount of domination is
accepted as the new current solution with probability

pC3 =
1

1 + exp(−∆Dmin)
, (7.16)

whereas the probability of accepting xm as the new current solution is 1− pC3.

The well-known geometric cooling schedule is adopted in the AMOSA algorithm for managing
the decrease in temperature T . According to this schedule, a temperature reduction is calculated
as Tnew = ϕTold, where ϕ is the cooling rate.

In order to apply the AMOSA algorithm to the MICFMO problem, a perturbation method (i.e.
a neighourhood move operator) has to be specified. The swap and scramble mutation operators
may be borrowed from the evolutionary computation literature and adopted as neighbourhood
move operators. These two operators are compared in the context of constrained MICFMO in
order to determine which is the most suitable choice. Finally, in this dissertation, the stopping
criterion of the AMOSA algorithm has been modified — instead of using a fixed minimum
temperature, a fixed number of iterations is adopted so as to control explicitly the duration of
the algorithm’s execution.

7.5.2 The MOVNS algorithm

The MOVNS algorithm was developed by Geiger [65] and it is a fairly simple multiobjective
metaheuristic. Recall that the neighbourhood of a solution consists of several solutions that are
“close” to it and may be generated by applying a neighbourhood move operator to the solution
in question. In the MOVNS algorithm, a predefined set of neighbourhood move operatorsM is
employed, along with an archive of nondominated solutions. During each iteration of the algo-
rithm, the neighbourhood of a solution in the archive is explored whose neighbourhood has not
yet been generated by one of the operators. The selection of the solution and its corresponding
neighbourhood is determined randomly until all the solutions in the archive have been explored
in full. A pseudo-code listing of the MOVNS algorithm is presented in Algorithm 7.8.

The algorithm starts by generating a random initial solution and assigning it to the archive
A0. Each neighbourhood of this solution, Ni(x), that may be generated by the application of
a neighbourhood move operator i ∈ M, is marked as “unexplored.” The iteration counter t is
then set to zero, and the following procedure is iterated until the relevant stopping criterion has
been met:

1. Randomly select a solution x ∈ At whose neighbourhood Ni(x), for at least one i ∈ M,
has not yet been explored.

2. Identify the neighbourhood move operators in M corresponding to all unexplored neigh-
bourhoods of x, and randomly select one operator, say j.

3. Generate the unexplored neighbourhood Nj(x).
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Algorithm 7.7: Archived multiobjective simulated annealing (AMOSA) [10].

Input : An MOP (possibly constrained), a maximum and a minimum temperature Tmax and Tmin,
limits for the archive size NHL and NSL, a cooling rate ϕ, and the number of iterations to
perform during each temperature step imax.

Output: An approximate Pareto set, P̃S .

Populate the archive A according to a random initialisation procedure1

Set the temperature T ← Tmax2

Randomly select the current solution xc from the archive A3

while T > Tmin do4

for i← 1 to imax do5

Perturb xc to obtain xm6

if xc � xm then7

Determine the subset Q consisting of the solutions in A that dominate xm8

Calculate ∆D1
avg using (7.11)9

Accept xc ← xm with probability (7.12)10

else if xc,xm nondominated then11

if any xj ∈ A � xm then12

Determine the subset Q consisting of the solutions in A that dominate xm13

Calculate ∆D2
avg using (7.13)14

Accept xc ← xm with probability (7.14)15

else if xm,A nondominated then16

xc ← xm, and A ← A∪ {xm}17

if |A| > NSL then18

Perform single-link clustering on A to reduce its size to NHL19

end if20

else if xm � any xj ∈ A then21

xc ← xm, and A ← A∪ {xm}, and remove any dominated solutions from A22

end if23

else if xm � xc then24

if any xj ∈ A � xm then25

Determine the subset Q consisting of the solutions in A that dominate xm26

Calculate ∆Dmin using (7.15) and identify the corresponding solution xk27

Accept xc ← xk with probability (7.16); otherwise xc ← xm28

else if xm,A nondominated then29

xc ← xm, and A ← A∪ {xm}30

if xc ∈ A then31

A ← A \ {xc}32

else if |A| > NSL then33

Perform single-link clustering on A to reduce its size to NHL34

end if35

else if xm � any xj ∈ A then36

xc ← xm, and A ← A∪ {xm}, and remove any dominated solutions from A37

end if38

end if39

end for40

T = ϕT41

end while42

if |A| > NSL then43

Perform single-link clustering on A to reduce its size to NHL44

end if45

P̃S ← A46
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4. Determine the next archive At+1 by identifying the nondominated solutions in At∪Nj(x).

5. If x is present in the next archive, mark its neighbourhood Nj(x) as “explored.”

6. Increment the value of the iteration counter t← t+ 1.

Liang and Chuang [117] proposed three variants of the MOVNS algorithm, which they refer
to as basic, perturbation and perturbation + base solution. These variants involve different
approaches toward selecting a solution from the archive for exploration, as well as the marking
of neighbourhoods.

Basic variant: The only difference between the original algorithm and this variant is that the
variant does not terminate when all neighbourhoods have been explored. Instead, all the
neighourhoods are reset to “unexplored” so that every solution and neighbourhood are
eligible for selection again.

Perturbation variant: In this variant, when all neighbourhoods have been explored, the so-
lution selected during the previous iteration is perturbed so as to create a new solution
whose neighbourhoods may be generated.

Perturbation + base solution variant: During the execution of this variant, a new solution
is randomly selected from a subset of solutions in the archive. The subset consists of those
solutions corresponding to extremal points in the nondominated front, as well as a single
other solution selected from the archive at random. In addition, when all neighbourhoods
have been explored in this variant, the solution selected during the previous iteration is
perturbed, as before, so as to create a new solution.

These three variants of the MOVNS algorithm are compared within the context of constrained
MICFMO in order to determine which is the most suitable choice. Finally, in order to apply the
MOVNS algorithm (and its variants) to the MICFMO problem, a set of neighbourhood move
operators have to be defined. In this dissertation, the swap and scramble mutation operators are

Algorithm 7.8: Multiobjective variable neighbourhood search (MOVNS) [65].

Input : An MOP (possibly constrained), and a set of neighbourhood move operators M.

Output : An approximate Pareto set, P̃S .

Generate a random initial solution x1

A0 ← {x}2

Mark all neighbourhoods Ni(x) for i ∈M as “unexplored”3

t← 04

while any Ni(x) unexplored for i ∈M do5

Randomly select x ∈ At whose neighbourhood Ni(x), for at least one i ∈M, has not yet been6

explored
Identify the neighbourhood move operators in M corresponding to all unexplored7

neighbourhoods of x, and randomly select one operator, say j
Generate the neighbourhood Nj(x)8

At+1 ← nondominated solutions in At ∪Nj(x)9

if x ∈ At+1 then10

Mark neighbourhood Nj(x) as “explored”11

end if12

t← t+ 113

end while14

P̃S ← A15
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borrowed from the evolutionary computation literature so as to constitute the set of neighbour-
hood move operators for the MOVNS algorithm. Furthermore, only a fixed number of solutions
from the entire neighbourhood of a solution are generated (randomly) for exploration during
each iteration in order to control explicitly the duration of the algorithm’s execution.

7.6 A multiobjective probabilistic model-based algorithm:
MOOCEM

The cross-entropy method (CEM) for optimisation, originally developed by Rubinstein [177],
is based on an adaptive algorithm for estimating rare event probabilities and involves variance
reduction by means of importance sampling [176]. A multiobjective extension of the CEM,
called the MOOCEM, was recently proposed by Bekker and Aldrich [15]. The MOOCEM was
specifically designed for reducing the number of function evaluations required in computation-
ally expensive simulation-based MOPs and is therefore a natural choice for application to the
MICFMO problem.

In the MOOCEM, solutions are generated by sampling a parameterised probability distribution
(i.e. a probability model). An archive containing the best solutions (according to Pareto rank)
is also employed in the algorithm. Based on the quality of solutions obtained, the current prob-
ability distribution is then re-estimated according to a problem-specific updating rule. During
re-estimation, the Kullback-Leibler divergence3 is employed as a measure of “distance” between
two distributions, to be minimised. A sequence of probability distributions is therefore created
during execution of the method until it converges to a distribution whose probability mass is
concentrated in the vicinity of Pareto optimal solutions. In order to apply the MOOCEM to an
MOP, an appropriate family of probability distributions has to be specified, as well as a proce-
dure for generating the samples. Furthermore, an appropriate updating rule has to be derived
in order to estimate the next probability distribution in the sequence, based on minimisation of
the cross-entropy between two distributions.

The MOOCEM, as presented in [15], was primarily designed for solving continuous and integer
optimisation problems. Combinatorial optimisation problems are, however, not well suited to the
aforementioned MOOCEM formulation as it stands. This is reflected in the work by Bekker [14]
in which markedly different algorithmic formulations are provided for the vehicle routing prob-
lem with soft time windows (VRPSTW) and the buffer allocation problem (BAP). Since the
MICFMO is also a combinatorial optimisation problem, a generic version of the MOOCEM for
combinatorial optimisation is presented here which is based on the algorithmic formulations for
the VRPSTW and BAP presented in [14].

At the start of the MOOCEM, an empty archive A (also known as the elite set) is initialised.
A probability distribution p(·;v), parameterised by a vector v, is also specified, along with an
initial parameter vector v0. The iteration counter t is the set to 1, and the following procedure
is repeated until the relevant stopping criterion has been met:

1. Populate the so-called working matrix, Wt, with N solutions sampled according to the
probability distribution p(·;vt−1).

2. Create a combined set of solutions Rt ← Wt ∪ A from the working matrix and elite set.
Then, calculate the Pareto rank ρ of each solution in Rt.

3The Kullback-Leibler divergence between two probability distributions a and b is defined as the expectation
of the logarithmic difference between the distributions, taken using the probabilities from a. It may be written

mathematically as DKL(a, b) = Ea
(

ln a(X)
b(X)

)
=
∫
a(x) ln a(x) dx−

∫
a(x) ln b(x) dx [15].
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3. Clear the elite set and copy all solutions in Rt whose Pareto rank does not exceed a
pre-specified threshold value ρE , into the new elite set A.

4. Using the solutions in Rt, solve for v in the so-called stochastic program

maximise
v

1

|Rt|

|Rt|∑

k=1

I{ρk≤ρE} ln p(xk;v) (7.17)

and denote its solution by v̂t. The indicator function I{ρk≤ρE} in (7.17) is defined as

I{ρk≤ρE} =

{
1 if ρk ≤ ρE ,
0 otherwise.

(7.18)

In many cases, an analytic solution to (7.17) may be obtained in closed form, allowing v̂t
to be calculated using a fixed mathematical expression (updating rule).

5. Calculate the new parameter vector vt by smoothing v̂t according to

vt = ωv̂t + (1− ω)vt−1, (7.19)

where ω is a smoothing parameter.

6. Increment the value of the iteration counter t← t+ 1.

A pseudo-code listing of the MOOCEM is presented in Algorithm 7.9. Note that an extension to
the basic procedure described above is presented in the pseudo-code. The extension corresponds
to the VRPSTW algorithmic formulation in [14] and it contains an inner and an outer iteration
loop, in which different values for the Pareto rank threshold are adopted in each loop.

In order to apply the MOOCEM to the MICFMO problem, a parameterised probability dis-
tribution has to be specified and the stochastic program (7.17) has to be solved in order to
obtain/derive an updating rule for the parameter vector. Furthermore, a procedure for sam-
pling a solution from the probability distribution has to be specified.

So, for the MICFMO problem, the chosen probability distribution is fully parameterised by an
n × n probability matrix P = [pij ], where n is the number of fuel assemblies and the number
of loading positions in a reactor core. The entry pij corresponds to the probability of assigning
fuel assembly j to loading position i in solution x = [x1, . . . , xn]. The corresponding updating
rule is given by

pij =

∑|Rt|
k=1 I{ρk≤ρE}I{x∈Xij}∑|Rt|

k=1 I{ρk≤ρE}
, (7.20)

where Xij is the set of all reload configurations x ∈ X for which xi = j, and where I{x∈Xij} is
the indicator function defined as

I{x∈Xij} =

{
1 if x ∈ Xij ,
0 otherwise.

The detailed derivation of updating rule (7.20) for the MICFMO problem may be found in
Appendix C.

Finally, a pseudo-code listing of the procedure for sampling a permutation solution to the
MICFMO problem from the probability matrix P is presented in Algorithm 7.10.
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Algorithm 7.9: Multiobjective optimisation using cross-entropy method (MOOCEM) for
combinatorial optimisation problems [15].

Input : An MOP (possibly constrained), the sample size N , a parameterised probability
distribution p(·;v), a smoothing parameter ω, and a maximum number of outer and inner
loop iterations `max and tmax.

Output: An approximate Pareto set, P̃S .

Set A ← ∅1

`← 02

while ` < `max do3

Initialise v04

t← 15

Set ρE = 26

while t ≤ tmax do7

Populate Wt with N solutions that are sampled according to p(·;vt−1)8

Rt ←Wt ∪ A9

Calculate the Pareto rank ρk for each solution xk ∈ Rt10

Set A ← ∅ and copy to A the solutions in Rt for which ρk ≤ ρE11

Determine v̂t by solving the stochastic program (7.17)12

Calculate vt by smoothing v̂t according to (7.19)13

t← t+ 114

end while15

Set ρE = 116

Trim the elite set A according to the new ρE17

`← `+ 118

end while19

Set ρE = 020

Trim the elite set A according to the new ρE21

P̃S ← A22

Algorithm 7.10: Generation of random permutation solutions in the MOOCEM.

Input : The number of fuel assemblies and loading positions n in an MICFMO problem instance,
and a probability matrix P .

Output: A random permutation solution x = [x1, . . . , xn] sampled using P .

Generate a uniformly random permutation [π1, . . . , πn] of the set of positions {1, . . . , n}1

Set P (1) ← P2

a← 13

while a ≤ n do4

Sample xπa according to the distribution formed by the πa-th row of P (a), namely5

[pπa1, . . . , pπan] /* fuel assembly xπa
is assigned to position πa */

P (a+1) ← P (a)6

Set the xπa
-th column of P (a+1) to 0 and renormalise each row so that it sums up to 17

a← a+ 18

end while9

Since the MOOCEM employs an explicit Pareto rank threshold during its execution, the CDP
constraint handling technique is not entirely suitable because it assigns different ranks to different
infeasible solutions. If ρE = 2, for example, then using the CDP technique may often lead to
the situation where only three solutions constitute the elite set. This may be detrimental to the
updating of probability matrix P . Accordingly, only the MPF technique is considered within
the MOOCEM.
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7.7 A multiobjective harmony search algorithm: MOHS

The MOHS algorithm, as a multiobjective extension of the HS algorithm, was proposed by
Sivasubramani and Swarup [196] and is largely based on the NSGA-II. During each iteration
of the MOHS algorithm, a set of solutions is generated according to the same improvisation
procedure employed in the single-objective algorithm (see §5.3.3). The new set of solutions is
then combined with the current harmony memory before the FNSA in Algorithm 7.1 is applied
to partition the set of solutions into different nondominated fronts. Solutions are then assigned
their corresponding Pareto rank. Furthermore, each solution is also assigned a crowding distance
using Algorithm 7.2. Then, the same truncating procedure used in the NSGA-II is employed to
retain the best solutions into the next harmony memory.

The working of the MOHS algorithm may now described, and a pseudo-code listing thereof is
presented in Algorithm 7.11. The algorithm starts by randomly generating an initial harmony
memory P0 of size N . The iteration counter t is set to zero, and the following procedure is
iterated until the relevant stopping criterion has been met (e.g. a maximum number of iterations
reached):

1. Improvise a set of new solutions Qt of size N using harmony memory consideration, pitch
adjustment and randomisation procedures.

2. Create a combined set of solutions Rt ← Pt ∪ Qt from the harmony memory and the set
of new solutions.

3. Rank and sort Rt into nondominated fronts F1, . . . ,Fn using the FNSA, and calculate the
crowding distance for each solution.

4. Create the next harmony memory Pt+1 by including all solutions from the first front F1,
then all solutions from the second front F2, and so forth, until the inclusion of all solutions
from the next front would result in a harmony memory whose size is greater than N . In
order to limit the size of Pt+1 to N , sort the solutions in this next front in decreasing
order of crowding distance. Include solutions from this sorted front one-by-one in Pt+1

until |Pt+1| = N .

5. Increment the value of the iteration counter t← t+ 1.

In order to apply the MOHS algorithm to the MICFMO problem, improvisation procedures
within the context of the permutation-based encoding scheme have to be specified. Since the
single-objective HS algorithm in §5.3.3 has already been adapted for application to permutation-
based ICFMO problems, the same improvisation procedures implemented in Algorithm 5.1 are
adopted in the MOHS algorithm.

7.8 Performance assessment of MOAs

Recall that the aim of MOO is to find an (approximate) set of Pareto optimal solutions for
a given MOP instance. The quality performance of an MOA is, however, usually assessed in
objective space, i.e. in terms of the (approximate) Pareto front obtained by the algorithm. Each
of the multiobjective metaheuristics described in this chapter yields an approximate Pareto set as
output along with its corresponding approximate Pareto front. In the absence of a true Pareto
front, the performance assessment for these MOAs necessarily has to involve a comparative

Stellenbosch University  https://scholar.sun.ac.za



7.8. Performance assessment of MOAs 123

Algorithm 7.11: Multiobjective harmony search (MOHS) [196].

Input : An MOP (possibly constrained), a harmony memory size N , an HMCR phm, a PAR ppar,
and a maximum number of iterations tmax.

Output: An approximate Pareto set, P̃S .

Randomly generate an initial harmony memory P0 of size N1

t← 02

while t < tmax do3

Generate a set of new solutions Qt of size N using improvisation procedures4

Rt ← Pt ∪Qt5

Partition Rt into nondominated fronts F1,F2, . . . using the FNSA in Algorithm 7.16

Pt+1 ← ∅7

i← 18

while |Pt+1| < N do9

if |Pt+1|+ |Fi| ≤ N then10

Pt+1 ← Pt+1 ∪ Fi11

i← i+ 112

else13

Calculate the crowding distance for each solution in Fi using Algorithm 7.214

Sort Fi in decreasing order of crowding distance15

Pt+1 ← Pt+1 ∪ {the first N − |Pt+1| solutions in Fi}16

end if17

end while18

t← t+ 119

end while20

P̃S ← Ptmax
21

analysis between the approximate Pareto fronts returned by each algorithm, relative to one
another. For the sake of brevity, an approximate Pareto front is hereafter simply referred to as
an approximation front.

A number of performance indicators that assign a scalar value to an approximation front as a
measure of its quality have been proposed in the MOO literature [22, 29, 105, 106, 251]. It is
generally recommended that the indicators adopted should have the property of monotonicity
(or Pareto compliance) [22, 29]. This property means that, whenever an approximation front
A is preferred over another front B with respect to weak Pareto dominance, the indicator value
for A should not be worse than the value for B [106]. Two recommended indicators that fulfil
this desirable property of monotonicity is the unary hypervolume indicator and the unary R2
indicator which are described in this section.

7.8.1 The hypervolume indicator

The hypervolume indicator (denoted by IHV) was proposed by Zitzler and Thiele [250], and
it essentially measures the portion of objective space dominated by an approximation front,
relative to a specified reference point. This reference point, however, has to be dominated by the
entire approximation front. Larger values of hypervolume correspond to preferred approximation
fronts. An example of the concept of hypervolume for a bi-objective approximation front is
presented graphically in Figure 7.2. In the figure, the surface area shaded in gray corresponds
to the value of the hypervolume indicator for the associated approximation front, relative to the
reference point.
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f1

f2

reference point

approximation front

portion of dominated
objective space

Figure 7.2: Example of the concept of hypervolume for a bi-objective approximation front. The surface
area shaded in gray corresponds to the value of the hypervolume indicator for this approximation front,
relative to the reference point.

In this dissertation, a variant of the hypervolume indicator is adopted as one of the performance
measures. This variation is called the unary hypervolume difference to reference and is denoted
by IHVD. It is calculated simply as the difference between the hypervolume of some fixed
reference approximation front R and the approximation front A under consideration. Therefore,
IHVD(R,A) = IHV(R) − IHV(A). Smaller values of the indicator now correspond to preferred
approximation fronts.

Several different algorithms have been proposed in the literature for calculating hypervolume [229].
The hypervolume by slicing objectives algorithm, proposed by While et al. [230], is adopted here
to calculate hypervolumes exactly.

7.8.2 The R2 indicator

The R2 indicator, denoted by IR2, forms part of the R indicator family proposed by Hansen
and Jaszkiewicz [72]. These indicators essentially compare approximation fronts on the basis of
a set of utility functions. Suppose that a decision maker’s preferences are specified in terms of a
utility function Uw, parameterised by the vector w over some set of parameters W. The unary
R2 indicator is then defined as

IR2(R,A) =

∑
w∈W U∗(w,R)− U∗(w,A)

|W| ,

where R is some fixed reference approximation front and A is the approximation front under
consideration. Furthermore, U∗ is the maximum value obtained by the utility function Uw with
parameter vector w over an approximation set, say B. Therefore, U∗(w,B) = maxz∈B Uw(z).

In [22, 72], it is recommended that the choice of utility function should be based on the weighted
Lp-metrics and, in particular, the augmented weighted Chebyshev metric is suggested. There-
fore, the R2 indicator, in which the chosen utility function is given by

Uw(z) = −


 max
i=1,...,q

(wi|zi − z??i |) + µ

q∑

j=1

|zj − z??j |


 ,
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is adopted as the other performance measure in this dissertation. The parameter vector w then
consists of the weighting coefficients associated with each of the q objectives. A sufficiently
large number of “uniformly dispersed” normalised weight vectors should be contained in the
set W [22, 72]. The approach proposed in [72] is adopted here to generate the set of weight
vectors in which each weighting coefficient takes on one of the values in { `k , ` = 0, . . . , k}, where
k is a parameter defining the number of weight levels. If, for example, there are three objec-
tives and k = 3, then W = {[0, 0, 1], [0, 1/3, 2/3], [0, 2/3, 1/3], [0, 1, 0], [1/3, 0, 2/3], [1/3, 1/3, 1/3],
[1/3, 2/3, 0], [2/3, 0, 1/3], [2/3, 1/3, 0], [1, 0, 0]}, as shown in [72].

7.9 Chapter summary

Several modern state-of-the-art multiobjective metaheuristics were discussed in §7.3–§7.7. These
metaheuristics are two evolutionary algorithms (namely NSGA-II and SPEA2), two swarm in-
telligence algorithms (namely OMOPSO and P-ACO), two local search algorithms (namely
AMOSA and MOVNS), a probabilistic model-based algorithm (called MOOCEM), and an al-
ternative algorithm (MOHS). These MOAs were deliberately sourced from different classes of
metaheuristics in an attempt to encompass the diversity of algorithms available in the litera-
ture. Two constraint handling techniques for MOO were also described in §7.2, namely the CDP
technique and the newly-proposed MPF technique.

Finally, in §7.8, the topic of performance assessment for MOAs was discussed. In particular,
two recommended performance indicators from the literature (namely the hypervolume and R2
indicators) were described in some detail.
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In this chapter, the constraint handling techniques and multiobjective metaheuristics of Chap-
ter 7 are applied to a test suite of constrained MICFMO problem instances, and the results
thus obtained are compared in terms of solution quality (given a fixed algorithmic computation
budget). In accordance with second priority in this dissertation (as mentioned in §1.3), these
comparisons serve the purpose of identifying which computational methods are most suitable in
the context of constrained MICFMO. It has been advocated in the literature that structured and
statistically sound procedures should be employed when comparing the efficacies of metaheuris-
tics [11, 22, 36, 172]. Accordingly, an extensive nonparametric statistical analysis is conducted
in this chapter in the context of the results obtained.

8.1 A test suite for constrained MICFMO

Due to the absence of standard benchmark problem instances for MICFMO in the literature, a
test suite of sixteen constrained MICFMO problem instances, based on the SAFARI-1 reactor,
was created for the comparative study in this dissertation. Since the SAFARI-1 reactor is utilised
for multiple purposes, as discussed in §4.5, several objectives may be pursued simultaneously
in a realistic setting during MICFMO for the reactor. This makes for a diversity of objective
space landscapes in the test suite generated. Little attention has been afforded in the literature
to the study of different objective space landscapes, as evidenced by the discussions in §3.2.1.
Similarly, a comprehensive and realistic constraint set may also be imposed for each instance in
the test suite.

127
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A large decision space for each MICFMO problem instance is also obtained by basing it on
the SAFARI-1 reactor, because fuel assemblies are considered to be distinct from one another.
As explained in §4.2.2, this is due to the fact that each fuel assembly accrues its own burnup
history and associated isotopic composition (which also has an axial distribution), as it moves
through an asymmetric reactor core along a unique path over various reactor operational cycles
during its lifetime. Therefore, the decision space for an MICFMO problem instance based on
the SAFARI-1 reactor cannot be reduced by considering fuel regions or batches (which is often
done in the context of power reactors).

The typical objectives associated with the SAFARI-1 reactor, as listed in Table 4.1, were adopted
in various combinations to form the test suite. For the sake of simplicity, a new objective
(denoted by S9) is defined here as the sum of objectives S7 and S8. This objective is therefore
the maximisation of the combined production of other isotopes in the two IPR facilities in
SAFARI-1. Objectives S1–S6, together with compound objective S9, constitute the objectives
considered during the construction of the test suite. In respect of constraints, the safety and
utilisation requirements specified in §4.5.2 for the SAFARI-1 reactor constitute the constraint
set imposed on all the problem instances in the test suite, as was the case in §5.4.1. The specific
limiting values of the constraints have, however, been relaxed so that a reload configuration
designed according to the current SAFARI-1 approach (described in §4.5.3) may be included in
the feasible region of decision space. As mentioned before, these limiting values are proprietary
knowledge and are therefore not divulged here (see §1.4).

By considering the aforementioned objectives in various combinations (along with the constraint
set), a test suite of sixteen constrained MICFO problem instances, partitioned into three classes,
was constructed for the comparative study in this dissertation. Class 1 contains six bi-objective
problem instances, class 2 contains six tri-objective problem instances and class 3 contains
four tetra-objective problem instances. These problem instances are considered for the specific
SAFARI-1 operational cycle, C1211-1, for which the ANNs in Chapter 6 were constructed.
Accordingly, the twenty-six fuel assemblies to be used in the problem instances correspond to
those that were actually loaded into the SAFARI-1 core during that cycle. The objective function
combinations of the problem instances are presented in Table 8.1.

8.2 Experimental design

The eight MOAs described in Chapter 7 are investigated here within a comparative study aimed
at determining their ability to conduct constrained MICFMO on the aforementioned test suite
of MICFMO problem instances. The MOAs were implemented within the Matlab software
suite [214] so that objective and constraint function evaluations may be performed using the
ANNs constructed in Chapter 6. The same personal computer, described in §6.6, was used to
perform all the calculations in this comparative study.

8.2.1 General considerations

Recall from §5.4.1 that a typical shutdown and reload period for the SAFARI-1 reactor lasts
five days, and that three days of computation time during those periods are available for op-
timisation. As mentioned, this corresponds to approximately 1 000 reload configurations that
may be evaluated by the OSCAR-4 system. Although many more reload configurations may be
evaluated in that time using the ANNs, a maximum limit (i.e. stopping criterion) of 1 050 eval-
uations is imposed for each metaheuristic in the comparative study. Accordingly, the practical
limitation of MICFMO for the SAFARI-1 reactor is adhered to.
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Problem Objectives
S1 S2 S3 S4 S5 S6 S9

C
la

ss
1

P1.1 X X
P1.2 X X
P1.3 X X
P1.4 X X
P1.5 X X
P1.6 X X

C
la

ss
2

P2.1 X X X
P2.2 X X X
P2.3 X X X
P2.4 X X X
P2.5 X X X
P2.6 X X X

C
la

ss
3

P3.1 X X X X
P3.2 X X X X
P3.3 X X X X
P3.4 X X X X

Table 8.1: The MICFMO test suite based on the SAFARI-1 reactor. Each test problem instance
is denoted by “P#.#” in which the first number represents the class to which it belongs, and the
second number is an enumeration over the problem instances in that class. The objective function
labels correspond to those labels listed in Table 4.1.

Each of the MOAs considered in the comparative study is a stochastic algorithm, meaning
that different approximation fronts are returned by an algorithm if it is applied multiple times
to the same problem instance. In order to obtain a representative indication of the average
performance and variability of these MOAs, fifty optimisation runs of each metaheuristic (and
its two constraint handling technique variants, where applicable) were executed in respect of each
problem instance in the test suite described in §8.1. The outcome of each run is an approximation
front corresponding to feasible solutions only. An attempt was also made to reduce variability
due to initial conditions and random processes employed in the MOAs. Therefore, a fixed set
of fifty different random number generator seeds was employed for each problem instance, along
with a fixed set of random initial solutions sampled according to a uniform distribution. As
a result, so-called matched samples (i.e. matched results) were obtained within each problem
instance across the different MOAs.

In order to facilitate comparisons, the objective function values obtained for objective S2 — the
only minimisation objective — were linearly transformed so that they correspond to values in
a maximisation paradigm. Thereafter, all the objective function values in the approximation
fronts were scaled to the range (0, 1), using the maximum and minimum values attained for each
objective, so that the results are of approximately the same magnitude.

Finally, a qualitative pilot study was performed in order to determine a suitable value for the
severity factor in the MPF constraint handling technique. It was found that a value of γ = 3
is suitable for the problem instances in the test suite, irrespective of the metaheuristic in which
the technique is employed.
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8.2.2 Performance indicator considerations

According to the definitions of the IHVD and IR2 indicators described in §7.8, a reference ap-
proximation front is required for a given problem instance in order to calculate the indicator
values corresponding to an obtained approximation front. For each problem instance in the test
suite, the approximation fronts yielded by all the optimisation runs, for all the MOAs, were
pooled together. A reference approximation front associated with that problem instance was
then determined by identifying the combined nondominated front from this pool.

The reference points required in the calculation of IHVD were selected as [0, 0], [0, 0, 0] and
[0, 0, 0, 0] for the problem instances in classes 1, 2 and 3, respectively. Similarly, the utopian
objective vectors required in the calculation of IR2 were selected as [1.01, 1.01], [1.01, 1.01, 1.01]
and [1.01, 1.01, 1.01, 1.01] for the problem instances in classes 1, 2 and 3, respectively.

As mentioned in §7.8.2, sets of “uniformly dispersed” weight vectors required in the calculation
of IR2 were generated according to the approach proposed in [72]. The number of weight levels
for the problem instances in class 1 was selected as k = 499, and a normalised weight vector set
of size 500 was thus created. Similarly, for the problem instances in classes 2 and 3, normalised
weight vector sets of sizes 741 and 969 were created, taking k = 37 and k = 16, respectively.

8.2.3 Individual metaheuristic considerations

Several qualitative pilot studies (i.e. parameter sensitivity analyses) were performed in order to
determine reasonable values for the various tuning parameters present in each metaheuristic. A
parameter was varied within its recommended range (typically specified in the source publication
of the metaheuristic) at coarse intervals. Appropriate values were then determined such that
reasonably good-quality solutions were obtained by the MOAs across the different problem
instances within the test suite. In order to facilitate fair comparisons between the MOAs, an
emphasis was also placed on adopting comparable population sizes. The outcomes of these pilot
studies are summarised below and, although they do not necessarily represent optimal selections
for each metaheuristic-problem instance pair, the parameter values were found to be relatively
robust across the different problem instances.

For both MOEAs, namely the NSGA-II and the SPEA2, the population size was selected as
N = 30, the crossover probability as pc = 0.9, and the mutation probability as pm = 1/n,
where n denotes the length of the solution vector. Furthermore, the archive size in the SPEA2
was selected as N = 30. In a separate comparative pilot study, it was found that the PMX
crossover operator generally outperformed the POS and CX operators, while the scramble mu-
tation operator yielded more promising results than the swap operator. Accordingly, the PMX
and scramble operators were implemented within the NSGA-II and the SPEA2.

In the OMOPSO algorithm, the swarm size (which is also the maximum number of leaders) was
selected as N = 30 and the mutation probability as pm = 1/n. During a separate comparative
pilot study, it was found that more promising results were obtained using the permutation-based
approach proposed by Hu et al. [86] than by the method of random keys. As such, the former
approach was implemented within the OMOPSO algorithm.

The number of ants employed in the P-ACO algorithm was selected as N = 30, while the bias
parameters were selected as α = 1.75 and β = 0.75, the selection probability as r0 = 0.8, the
evaporation rate as % = 0.2, and the initial pheromone level as τ0 = 1.

For the AMOSA algorithm, hard and soft limits for the archive size were selected as NHL = 30
and NSL = 45, respectively. Furthermore, the cooling rate was selected as ϕ = 0.85, the initial
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temperature as Tmax = 100, and the number of iterations performed during each temperature
step as imax = 15. It was also found that the scramble neighbourhood move operator generally
outperformed the swap operator during a separate comparative pilot study. Accordingly, the
scramble operator was implemented within the AMOSA algorithm.

In the MOVNS algorithm, the number of neighbouring solutions generated and explored during
each iteration was selected as 15. Also, the perturbation variant of the algorithm was imple-
mented after it was found to be the most promising of the three variants proposed by Liang and
Chuang [117] during a separate comparative pilot study.

For the MOOCEM, the sample size was selected as N = 30 and the smoothing parameter as
ω = 0.8. Furthermore, the ranking threshold was fixed at ρE = 0 throughout the method so
that nondominated solutions only should be considered in the elite set. This, in turn, means
that the outer loop in Algorithm 7.9 is no longer required (as was the case for the BAP in [14]).

The harmony memory size in the MOHS algorithm was selected as N = 30, the HMCR as
phm = 0.9, and the PAR as ppar = 0.25.

Finally, wherever the scramble operator was implemented in a metaheuristic, the size of the
subset of vector components permuted was selected as 4, and the set does not necessarily have
to contain contiguous components.

8.3 Statistical analysis

Two types of analyses are typically performed in comparative studies between metaheuristics,
namely single-problem and multi-problem analyses [36]. In a single-problem analysis, results
obtained over several execution runs of metaheuristics on a particular optimisation problem
instance are considered, whereas a result per metaheuristic/problem instance pair is considered
in a multi-problem analysis [36]. In this dissertation, the outcomes of both these types of
analyses are presented for the constrained MICFMO comparative study in order to demonstrate
the inferences that may be drawn from each.

As suggested in [22, 36], a hypothesis testing approach from the field of inferential statistics is
adopted in this dissertation in order to analyse the results. The null hypothesis, denoted by H0,
is typically a statement of no effect (or no difference in solution quality) and is assumed to be
true. The alternative hypothesis, denoted by H1, on the other hand, corresponds to the presence
of an effect (or difference) [36]. A statistical test is then applied using samples of data, also
referred to as observations, in order to determine whether the assumed H0 should be rejected in
favour of H1, or not. Rejection of H0 is determined by a parameter called the significance level,
denoted here by α̃. The statistical test may yield a so-called p-value representing the probability
of obtaining an effect at least as extreme as that obtained in the data samples, assuming that
H0 is true [36]. Accordingly, if the p-value is smaller than α̃, then H0 is rejected in favour of H1

at a significance level of α̃.

Numerous statistical procedures are available in the literature and selecting an appropriate
test depends on the experiment performed and the properties of the data. In the context of
metaheuristic comparisons, it is generally recommended that nonparametric tests (also known
as distribution-free tests) be employed because these procedures do not make any assumptions
about the underlying distribution of the data [36, 82, 106]. In this chapter, the nonparametric
Wilcoxon signed rank test [82] is employed for the constraint handling technique comparison,
while the nonparametric Friedman test with the Nemenyi post hoc procedure is employed for the
metaheuristic solution comparison [80, 82].
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The Wilcoxon signed rank test may be used to compare two matched samples (i.e. pairs of
data points) to assess whether there is a significant difference between the sample medians.
In the procedure, two samples are converted into a single sample by taking the difference
between each data point pair. The null hypothesis, then, is that this sample has a median
of zero, while the two-tailed alternative hypothesis is that the median is not zero [82].

The Friedman test may be used to compare a set of two or more matched samples and is
an example of an omnibus test. The null hypothesis H0 is that all the medians of the
samples are equal, while the alternative hypothesis H1 is that the medians are not all equal.
Rejection of H0 in favour of H1 therefore implies that at least two sample medians are
significantly different [36]. The procedure is based on a transformation of the data points
into so-called Friedman ranks. These ranks are determined by ordering the data points
separately, within each matching, from least to greatest and then assigning corresponding
rank values [82].

The Nemenyi post hoc procedure may follow a Friedman test if its null hypothesis was
rejected. The rejection of the omnibus test only reveals that a significant difference ex-
ists between at least two of the samples — an appropriate post hoc multiple-comparisons
procedure has to be performed to isolate the individual differences between pairs of sam-
ples. The Nemenyi procedure does so by performing two-tailed pairwise significance tests
between all pairs of samples (using the Friedman ranks), correcting for the multiple infer-
ences it makes [80, 82]. These corrections are very important, because they ensure that the
experiment-wide significance level of α̃ is adhered to. The Nemenyi procedure is regarded
as a conservative post hoc procedure due to the manner in which it controls the Type I
error1 at level α̃ under the overall null hypothesis [80].

The nonparametric tests mentioned above were performed utilising the Statistics and Machine
Learning Toolbox [216] within the Matlab software suite [214], and a significance level of α̃ = 0.05
was adopted for all the cases presented in this chapter.

8.4 Numerical results

The comparative study results obtained by following the experimental design discussed in §8.2
are analysed in two stages. During the first stage, each of the six MOAs in which both constraint
handling techniques have been implemented is considered separately. The aim of this stage is to
ascertain whether the newly-proposed MPF technique performs better or worse (or the same)
than the existing CDP technique. The best-performing variants of these six MOAs are then
carried forward into the second stage of analysis for use together with the two remaining MOAs.
During the second stage, all eight MOAs are then considered in order to determine their ability
to conduct constrained MICFMO and gauge their comparative performances.

8.4.1 Constraint handling technique comparison

Consider the two constraint handling technique variants of the NSGA-II. A single-problem
analysis is performed first, followed by a multi-problem analysis within each problem class.

1A Type I error is the incorrect rejection of the true null hypothesis, and it is colloquially referred to as a false
positive [80].
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Single-problem analysis

In the single-problem analysis, there are two samples of data for each problem instance in the test
suite — matched pairs of indicator values corresponding to the fifty optimisation runs, obtained
by the MPF and CDP variants. As mentioned in §8.3, the two samples are converted into a
single sample for use within the Wilcoxon signed rank test by taking the difference between
each data point pair. Let ∆IHVD denote the converted sample of IHVD values and, similarly, let
∆IR2 denote the converted sample of IR2 values. Negative values in these converted samples
correspond to superior performance by the MPF technique, whereas positive values correspond
to superior performance by the CDP technique.

Box plots, also known as box-whisker plots, are often employed during exploratory data analyses
and provide a comprehensive view of the central tendency and spread of data samples. In general,
the usage of box plots are more informative than the usage of averages and standard deviations
of samples [110]. The converted ∆IHVD and ∆IR2 samples obtained for each test problem using
the NSGA-II are presented in the form of box plots in Figure 8.1. The average value of each
sample is also included in the graphs as a black diamond point.

Note that the box plots in Figure 8.1 should not be compared explicitly to one another —
the aim is rather to investigate whether each converted sample is symmetrically distributed
about a median of zero, or not (so as to determine whether one constraint handling technique
outperforms the other for a given problem instance). It may be observed in Figure 8.1 that the
samples are, in fact, generally well-distributed about zero. As such, it indicates that the MPF
and CDP techniques yield results of similar quality in respect of the IHVD and IR2 performance
indicators. There are, however, hints of the MPF technique outperforming the CDP technique
(with respect to both indicators) for some of the problem instances in class 1 (e.g. P1.3 and
P1.4) and in class 2 (e.g. P2.1 and P2.6).

The next step is to determine whether there are statistically significant differences between
the MPF and CDP techniques. The two-tailed Wilcoxon signed rank test is therefore applied
to the samples obtained for each test problem instance. The resulting p-values are presented
in Table 8.2. Bold-faced entries in the table represent a statistically significant difference (for
α̃ = 0.05). If a significant difference is detected, the box plots in Figure 8.1 may be referred to
in order to pronounce which constraint handling technique outperformed the other.

Sample Wilcoxon signed rank test p-values

P1.1 P1.2 P1.3 P1.4 P1.5 P1.6
∆IHVD 0.0849 0.7102 0.0733 0.0733 0.2994 0.0604
∆IR2 0.0688 0.6675 0.0254 0.1080 0.2994 0.0452

P2.1 P2.2 P2.3 P2.4 P2.5 P2.6
∆IHVD 0.0578 0.0659 0.4780 0.3667 0.8281 0.0020
∆IR2 0.0126 0.6887 0.6958 0.7684 0.5921 0.0020

P3.1 P3.2 P3.3 P3.4
∆IHVD 0.3719 0.3566 0.7102 0.9730
∆IR2 0.4258 0.9193 0.3876 0.9040

Table 8.2: Single-problem analysis results for comparing constraint handling techniques within the
NSGA-II. The table contains the p-values obtained by two-tailed Wilcoxon signed rank tests applied
to the ∆IHVD and ∆IR2 samples for each problem instance. Bold-faced entries represent a statistically
significant difference (for α̃ = 0.05).
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Figure 8.1: Box plots of the converted ∆IHVD samples (on the left-hand side) and ∆IR2 samples (on
the right-hand side) obtained for each problem instance in the test suite during the constraint handling
technique comparison within the NSGA-II.

For the majority of problem instances, as may be seen in Table 8.2, there is no statistically
significant difference between the MPF and CDP constraint handling techniques (with respect
to both IHVD and IR2). In the five instances where significant differences do, however, occur, it
is found that the MPF technique outperforms the CDP technique. It may therefore be inferred
that, based on a single-problem comparative analysis, the newly-proposed MPF constraint han-
dling technique is a competitive alternative to the existing CDP technique, within the context
of the NSGA-II applied to constrained MICFMO problem instances.

Multi-problem analysis

Next, a multi-problem analysis is performed, within each class of problem instances, in respect
of the results obtained by the two variants of the NSGA-II. For this analysis, an average indi-
cator value, calculated over the fifty optimisation runs, is determined for each problem instance
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(and each constraint handling technique variant). Accordingly, average indicator values per vari-
ant/problem instance pair constitute the samples. As before, the two samples are converted into
a single sample by taking their difference. Let ∆IHVD denote the converted sample of average
IHVD values and, similarly, let ∆IR2 denote the converted sample of average IR2 values. Due
to the small ∆IHVD and ∆IR2 sample sizes, it is not appropriate to present the samples in the
form of box plots. Instead, these converted samples are presented in tabular form in Table 8.3.
Note that their values correspond to the diamond points in Figure 8.1.

Problem Samples

∆IHVD ∆IR2
C

la
ss

1

P1.1 −0.0144 −0.0103
P1.2 −0.0045 −0.0030
P1.3 −0.0104 −0.0065
P1.4 −0.0249 −0.0123
P1.5 −0.0134 −0.0061
P1.6 −0.0103 −0.0056

C
la

ss
2

P2.1 −0.0094 −0.0067
P2.2 0.0038 0.0005
P2.3 0.0015 −0.0003
P2.4 0.0022 0.0005
P2.5 −0.0038 −0.0025
P2.6 −0.0214 −0.0076

C
la

ss
3

P3.1 0.0022 0.0017
P3.2 0.0026 0.0000
P3.3 −0.0013 −0.0014
P3.4 −0.0013 −0.0005

Table 8.3: The converted samples of average indicator values, ∆IHVD and ∆IR2, obtained for each
problem instance class using the NSGA-II.

It may be observed in Table 8.3 that all the average values in the samples for problem instance
class 1 are negative, which suggests that the MPF technique outperforms the CDP technique
with respect to both IHVD and IR2. The mix of positive and negative average values in the
samples for classes 2 and 3, however, suggest that there is little difference between the two
constraint handling techniques there.

The next step is to determine whether there is a statistically significant difference between the
MPF and CDP techniques within a multi-problem setting. The two-tailed Wilcoxon signed rank
test is therefore applied to the average samples obtained for each class of problem instances.
The resulting p-values are presented in Table 8.4 and, as before, bold-faced entries represent a
statistically significant difference (for α̃ = 0.05).

Although the sample size is small (only six observations), the multi-problem analysis shows that
there is a statistically significant difference between the MPF and CDP constraint handling
techniques within problem instance class 1. Referring back to the sample values in Table 8.3,
it is found that the MPF technique outperforms the CDP technique in that class (with respect
to both IHVD and IR2). In problem classes 2 and 3, however, no significant differences are
detected. Therefore, as was the case in the single-problem analysis, it may also be inferred,
based on a multi-problem analysis, that the newly-proposed MPF constraint handling technique
is a competitive alternative to the existing CDP technique, within the context of the NSGA-II
applied to constrained MICFMO problem instances.
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Sample Wilcoxon signed rank test p-values

Class 1 Class 2 Class 3

∆IHVD 0.03125 0.4375 0.625

∆IR2 0.03125 0.3125 0.875

Table 8.4: Multi-problem analysis results for comparing constraint handling techniques within the
NSGA-II. The table contains the p-values obtained by two-tailed Wilcoxon signed rank tests applied
to the ∆IHVD and ∆IR2 samples for each problem class. Bold-faced entries represent a statistically
significant difference (for α̃ = 0.05).

The remaining metaheuristics

The aforementioned single-problem and multi-problem analyses for comparing constraint han-
dling techniques were performed not only for the NSGA-II, but also for the SPEA2 and the
OMOPSO, AMOSA, MOVNS and MOHS algorithms. For the purpose of improved readability,
however, only a summary of the findings of those analyses are presented in this section. The
full results may be found in Appendix D.

SPEA2: Very similar results to those for the NSGA-II are obtained in the single-problem
analysis for the SPEA2. Statistically significant differences are detected in four instances.
Referring to the associated box plots for the SPEA2, it is found that the MPF technique
outperforms the CDP technique in three of those instances. In the multi-problem analysis,
a significant difference between the constraint handling techniques is detected only for
problem instance class 1. The sample values in the associated table indicate that the MPF
technique outperforms the CDP technique in that class.

OMOPSO: A statistically significant difference is detected for one instance in the single-
problem analysis for the OMOPSO algorithm, and it is in favour of the MPF technique.
A multi-problem analysis, however, does not reveal any significant differences between the
constraint handling techniques in any of the three problem classes.

AMOSA: Very interesting results are obtained during the single-problem analysis for the
AMOSA algorithm. Highly significant differences between the constraint handling tech-
niques are detected in all the instances within class 1, where most of the p-values are less
than 0.0005. According to the associated box plots, the MPF technique outperforms the
CDP technique in all of those instances. The AMOSA algorithm, therefore, strongly bene-
fits from the MPF technique with respect to both IHVD and IR2 when solving bi-objective
problem instances within the context of constrained MICFMO. Statistically significant
differences are also detected in five additional instances (i.e. in classes 2 and 3) of which
four are in favour of the MPF technique. Unsurprisingly, a multi-problem analysis for
the AMOSA algorithm reveals a significant difference between the two constraint handling
techniques in problem instance class 1, with the sample values in the associated table indi-
cating that it is the MPF technique which outperforms the CDP technique. No significant
differences are detected in the remaining two problem classes.

MOVNS: In five instances, significant differences are detected during a single-problem analysis
for the MOVNS algorithm. Based on the associated box plots, the MPF technique outper-
forms the CDP technique in four of those instances. The multi-problem analysis does not
detect any statistically significant differences in any of the three problem instance classes.
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MOHS: Finally, in a single-problem analysis for the MOHS algorithm, significant differences
are detected in seven instances. Six of those are in favour of the MPF technique, according
to the associated box plots. A multi-problem analysis, however, does not detect any
statistically significant differences in any of the three problem instance classes.

Conclusion

The newly-proposed MPF constraint handling technique is therefore not only a competitive al-
ternative to the existing CDP technique within the NSGA-II, but also within the SPEA2 as well
as the OMOPSO, AMOSA, MOVNS and MOHS algorithms. This inference is supported by
both single-problem and multi-problem analyses within the context of constrained MICFMO.
The analyses further indicate that the MPF technique performs particularly well in bi-objective
problem instances, especially within the AMOSA algorithm where the MPF technique signifi-
cantly outperforms the CDP technique.

Based on the outcome of this first stage of the comparative study, the MPF technique is selected
within all six metaheuristics for solving problem instances in class 1 and class 2 of the test
suite. The CDP technique is, however, selected within all six metaheuristics for solving problem
instances in class 3. Accordingly, these selected variants are carried forward into the second
stage of the comparative analysis.

8.4.2 Multiobjective metaheuristic solution comparison

The selected variants of the NSGA-II, the SPEA2, and the OMOPSO, AMOSA, MOVNS and
MOHS algorithms, carried over from the first stage of the comparative study, are now considered
in conjunction with the P-ACO algorithm and the MOOCEM within the second stage of the
comparative analysis. These eight metaheuristics are compared in this section, first according
to a single-problem analysis and then based on a multi-problem analysis.

Single-problem analysis

In the single-problem analysis, there are eight samples of data for each problem instance in
the test suite — matched indicator values corresponding to the fifty optimisation runs for each
metaheuristic. These samples, obtained for the problem instances in classes 1, 2 and 3, are
presented in the form of box plots in Figures 8.2, 8.3 and 8.4, respectively. The average value
of each sample has been included, as before, as black diamond points in the graphs. This time,
however, the aim is to compare the box plots with one another within each graph. A visual
exploratory analysis may thus be performed in respect of each problem instance, with respect
to both the IHVD and IR2 indicators.

It is observed in Figures 8.2–8.4 that the OMOPSO algorithm performs poorly (with respect
to both indicators) across all three classes of problem instances. The algorithm’s performance
is, however, particularly poor in the context of the problem instances within class 1, whereas
the other seven metaheuristics perform fairly similarly in respect of those instances, as may
be seen in Figure 8.2. Although the two local search metaheuristics, namely the AMOSA and
the MOVNS algorithm, perform well for the bi-objective problem instances in class 1, they do
not appear to scale well to the problem instances in classes 2 and 3, in which more than two
objectives are present, as may be seen in Figures 8.3 and 8.4. This behaviour is apparent for
both the IHVD and IR2 indicators.
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Figure 8.2: Box plots of the IHVD samples (on the left-hand side) and IR2 samples (on the right-hand
side) obtained by all eight metaheuristics for each problem instance in class 1.
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Figure 8.3: Box plots of the IHVD samples (on the left-hand side) and IR2 samples (on the right-hand
side) obtained by all eight metaheuristics for each problem instance in class 2.
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Figure 8.4: Box plots of the IHVD samples (on the left-hand side) and IR2 samples (on the right-hand
side) obtained by all eight metaheuristics for each problem instance in class 3.

The MOHS algorithm appears, in general, to be the most robust of the metaheuristics in terms
of sample variability (i.e. it is fairly insensitive to different starting conditions) although its
performance is only average in the majority of instances. The NSGA-II, the P-ACO algorithm
and the MOOCEM, on the other hand, appear to perform consistently well across the problem
instances in all three classes with respect to both indicators. The SPEA2 also performs well
in most cases, although it seems to suffer sporadically from poor performance — in problem
instances P2.3, P3.1 and P3.3, for example, as may be seen in Figures 8.3 and 8.4.

The next step is to determine whether there is a statistically significant difference between the
metaheuristics in this single-problem analysis. The Friedman test is therefore applied to the
samples obtained for each test problem instance. Recall that the test only detects whether a
significant difference exists between at least two samples. Accordingly, if such a difference has
been detected, the Nemenyi post hoc procedure is applied in order to identify the individual
differences between pairs of samples. Since there are eight metaheuristics in this study, the
Nemenyi procedure performs

(
8
2

)
= 28 pairwise significance tests.
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Due to the multitude of tests that have to be carried out, the details of the single-problem
analysis are not presented here. Instead, only a summary of the findings is presented in order
to improve the readability of the main text. The reader is referred to Appendix D for the
unabridged statistical results.

The Friedman test detects a statistically significant difference (for α̃ = 0.05) for every problem
instance in the test suite with respect to both indicators. The p-values are, in fact, numerically
zero in each test. This outcome does not come as a surprise, given the poor performance observed
for the OMOPSO algorithm during the visual exploratory analysis. Following application of the
Nemenyi post hoc procedure, it is found that the OMOPSO algorithm is significantly different
from (i.e. worse than) every other metaheuristic across all the problem instances in class 1,
with respect to both indicators. Furthermore, the OMOPSO, AMOSA and MOVNS algorithms
are also significantly different from (i.e. worse than) every other metaheuristic in the majority
of problem instances within class 2 and class 3, again with respect to both the IHVD and IR2

indicators. A number of other statistically significant differences are also detected during the
post hoc analyses, but these are scattered throughout the results which make any meaningful
inferences difficult. As such, these detections are not mentioned individually in this section.

Multi-problem analysis

A multi-problem analysis, within each class of problem instances, is performed next. As before,
an average indicator value, calculated over the fifty optimisation runs, is determined for each
metaheuristic/problem instance pair. The average indicator values for IHVD and IR2 correspond
to the black diamond points in Figures 8.2–8.4.

Suppose the metaheuristics are ranked according to the average indicator values, for each prob-
lem instance. The average values may then be replaced by integers (i.e. Friedman ranks) from
1 through to 8, where 1 corresponds to the best average value and 8 to the worst. Thereafter,
an average rank Ravg may be calculated for every metaheuristic over each class of problem
instances. These average ranks may then be utilised to compare how well the different meta-
heuristics performs in a multi-problem context. This intuitive approach of comparison actually
corresponds, in part, to the Friedman test — the average ranks described above are employed
in the Friedman test and the Nemenyi post hoc procedure. These ranks are returned to again
later in this section.

In order to determine whether there is a statistically significant difference between the meta-
heuristics in a multi-problem analysis, the Friedman test is applied to the average indicator
value samples for each class of problem instances. The resulting p-values are presented in Ta-
ble 8.5 and, as before, bold-faced entries correspond to the detection of a significant difference
(for α̃ = 0.05).

Sample Friedman test p-values

Class 1 Class 2 Class 3
IHVD 8.122×10−4 9.451×10−6 9.008×10−3

IR2 2.836×10−3 7.249×10−6 1.139×10−3

Table 8.5: Multi-problem analysis results for comparing the metaheuristics. The table contains the
p-values obtained by Friedman tests applied to the average indicator value samples for each problem
instance class. Bold-faced entries represent a statistically significant difference (for α̃ = 0.05).
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Although the sample sizes are small, the Friedman test is able to detect a statistically significant
difference between the metaheuristics in all three problem instance classes, for both indicators.
As was the case in the single-problem analysis, this outcome does not come as a surprise,
given the poor performance of the OMOPSO algorithm observed during the visual exploratory
analysis.

Since statistically significant differences are detected in the Friedman tests, the Nemenyi post hoc
procedure is applied to the samples. The full set of statistical results (i.e. the p-values obtained
from the pairwise significance tests performed during the Nemenyi procedure) may be found
in Appendix D. In order to assist in the interpretation of those results, the outcomes of the
post hoc analyses are presented in tabular form along with the average ranks Ravg, as described
above. As such, the metaheuristics are ranked according to their average rank values, within
each problem instance class (for both IHVD and IR2). These rank results for class 1, class 2 and
class 3 are presented in Tables 8.6, 8.7 and 8.8, respectively. If the Nemenyi procedure detects
a significant difference between two metaheuristics, the detection is indicated in the table with
matching alphabetic letters next to the corresponding metaheuristics in the column labelled
“S.Diff”.

IHVD post hoc results IR2 post hoc results
Ravg Metaheuristic S.Diff Ravg Metaheuristic S.Diff

2.5 MOVNS a 2.167 P-ACO a
2.5 MOOCEM b 3.333 MOVNS b
3.333 NSGA-II c 3.667 NSGA-II c
3.833 SPEA2 — 3.667 MOOCEM d
4.5 P-ACO — 4.667 SPEA2 —
5.5 MOHS — 5 AMOSA —
5.833 AMOSA — 5.5 MOHS —
8 OMOPSO abc 8 OMOPSO abcd

Table 8.6: Multi-problem analysis results for the post hoc procedure applied to problem instance class 1.
Metaheuristics are ranked according to their average rank values. Significant differences between any two
metaheuristics are denoted by matching alphabetic letters in the column labelled “S.Diff”.

In Table 8.6, it may be observed that the OMOPSO algorithm is significantly different from
the MOVNS algorithm, the MOOCEM, and the NSGA-II with respect to both performance
indicators for problem instance class 1, and also from the P-ACO algorithm with respect to IR2.
By referring to the average ranks, it is clear that the OMOPSO algorithm is the worst-performing
metaheuristic in class 1 (with respect to both indicators) and this is consistent with the finding
of the single-problem analysis. Furthermore, the MOVNS algorithm and the MOOCEM are
jointly the best-performing metaheuristics with respect to IHVD, while the P-ACO algorithm
performs the best with respect to IR2. Interestingly, it is noted that, for the P-ACO algorithm,
the rankings are quite different between the two indicators. Accordingly, this demonstrates that
the selection of performance indicator may influence the choice of multiobjective metaheuristic
to employ. The MOVNS algorithm and the NSGA-II, however, seem to yield consistently good
results across both indicators in problem instance class 1.

According to the rankings in Table 8.7, the worst-performing metaheuristics in problem in-
stance class 2 are the MOVNS, AMOSA and OMOPSO algorithms, which is consistent with the
single-problem analysis finding. The post hoc analysis detects that the OMOPSO algorithm is
significantly different from the MOOCEM, the NSGA-II and the SPEA2 with respect to both
performance indicators, and also from the P-ACO algorithm with respect to the IR2 indica-
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IHVD post hoc results IR2 post hoc results
Ravg Metaheuristic S.Diff Ravg Metaheuristic S.Diff

1.5 MOOCEM ade 1.667 NSGA-II aef
2.833 NSGA-II bf 2.333 P-ACO bg
3 SPEA2 c 3.167 MOOCEM c
3.833 P-ACO — 3.333 SPEA2 d
3.833 MOHS — 4.5 MOHS —
6 MOVNS d 6.167 MOVNS e
7.167 AMOSA ef 7 AMOSA fg
7.833 OMOPSO abc 7.833 OMOPSO abcd

Table 8.7: Multi-problem analysis results for the post hoc procedure applied to problem instance class 2.
Metaheuristics are ranked according to their average rank values. Significant differences between any two
metaheuristics are denoted by matching alphabetic letters in the column labelled “S.Diff”.

tor. It may also be observed that the P-ACO algorithm again performs well with respect to
IR2, but less so with respect to IHVD. Finally, the MOOCEM and the NSGA-II are the two
best-performing metaheuristics for IHVD and IR2, respectively, over problem instance class 2.

In Table 8.8, it may be observed that no statistically significant differences are detected between
any pair of metaheuristics with respect to IHVD, although the Friedman test yields a significant
p-value. This outcome may be attributed to the conservatism present in the Nemenyi procedure
and the fact that so many metaheuristics are compared in the post hoc analysis. With respect to
IR2, however, it is found that the P-ACO algorithm is significantly different from the MOVNS,
AMOSA and OMOPSO algorithms. Furthermore, the NSGA-II is also significantly different
from the OMOPSO algorithm. According to the rankings in Table 8.8, the worst-performing
metaheuristics in problem instance class 3 are the MOVNS, AMOSA and OMOPSO algorithms,
which is also consistent with the finding of the single-problem analysis. The P-ACO algorithm
is observed to be the best-performing metaheuristic in problem instance class 3 with respect to
both performance indicators. Unlike before, however, the rankings of the NSGA-II are quite
different for the two indicators. It is also noted that the MOHS algorithm seems to perform
better on class 3 problem instances (in which four objectives are present) than on class 1 and
class 2 problem instances (having fewer than four objectives).

IHVD post hoc results IR2 post hoc results
Ravg Metaheuristic S.Diff Ravg Metaheuristic S.Diff

2 P-ACO — 1 P-ACO acd
3 MOOCEM — 2 NSGA-II b
3.25 MOHS — 3.75 MOOCEM —
3.5 SPEA2 — 4.25 MOHS —
3.75 NSGA-II — 4.5 SPEA2 —
6.5 MOVNS — 6.25 MOVNS c
7 OMOPSO — 7 AMOSA d
7 AMOSA — 7.25 OMOPSO ab

Table 8.8: Multi-problem analysis results for the post hoc procedure applied to problem instance class 3.
Metaheuristics are ranked according to their average rank values. Significant differences between any two
metaheuristics are denoted by matching alphabetic letters in the column labelled “S.Diff”.
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Conclusion

The single-problem and multi-problem statistical analyses conducted in this section suggest that
the OMOPSO algorithm may be discarded from future research in the context of constrained
MICFMO. Similarly, the two local search MOAs, namely the AMOSA and MOVNS algorithms,
may also be discarded for problem instances in which three or more objectives are present. The
MOVNS algorithm, however, performs very well when solving bi-objective problem instances.
Due to the average performance of the SPEA2 and the MOHS algorithm in the majority of
instances, these two MOAs may likely also be eliminated from consideration, although the MOHS
algorithm seems to be the most robust metaheuristic in terms of sample variability. Finally, the
NSGA-II, the P-ACO algorithm and the MOOCEM are generally the best-performing MOAs
with respect to both the IHVD and IR2 indicators, across the problem instances in all three
classes. As such, these MOAs may form an integral part of any future research in the context
of constrained MICFMO, along with the bi-objective MOVNS algorithm.

8.5 Chapter summary

In this chapter, the results obtained from a comparative study in which two constraint handling
techniques and eight multiobjective metaheuristics were compared relative to one another, were
presented. A test suite of constrained MICFMO problem instances, based on the SAFARI-1
reactor, was constructed in §8.1 for this study due to the absence of standard benchmark problem
instances for MICFMO in the literature. These problem instances were considered for the specific
SAFARI-1 operational cycle, C1211-1, for which the ANNs in Chapter 6 were constructed.

In §8.2, the experimental design that was followed during the comparative study was presented.
A description of the nonparametric statistical analysis conducted on the numerical results was
presented thereafter in §8.3. The difference between single-problem and multi-problem analyses
was also explained as both approaches were followed in this chapter.

Finally, the numerical results of the comparative study were presented in §8.4. The results
from the constraint handling technique comparison in §8.4.1 revealed that the newly-proposed
MPF technique is a competitive alternative to the existing CDP technique within the context of
constrained MICFMO. The metaheuristic comparison in §8.4.2, on the other hand, indicated that
the NSGA-II, the P-ACO algorithm and the MOOCEM are generally the best-performing MOAs
with respect to both the IHVD and IR2 performance indicators across the problem instances in
the test suite. In addition, it was found that the MOVNS algorithm performs particularly well
in the context of the bi-objective problem instances.
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A multiobjective hyperheuristic for MICFMO
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In this chapter, a multiobjective hyperheuristic, called the AMALGAM method, is investigated
in terms of its ability to conduct constrained MICFMO by incorporating the findings of Chapter 8
into the method. The aim of the investigation is to raise the level of generality at which MICFMO
may be performed, and potentially improve the quality of optimisation results. The working
of the AMALGAM method is described first, before several variants thereof are applied to the
test suite of constrained MICFMO problem instances constructed in §8.1. The results thus
obtained, along with a subset of results from Chapter 8, are compared in terms of solution
quality (given a fixed algorithmic computation budget). As before, an extensive nonparametric
statistical analysis is conducted in the context of the results obtained.

9.1 Introduction

The results obtained during the metaheuristic comparative study described in Chapter 8 revealed
that no single MOA was able to consistently outperform the other algorithms with respect to
all, or most of, the problem instances in the MICFMO test suite of §8.1 (and with respect to
both performance indicators). This outcome is in line with the so-called No Free Lunch (NFL)
theorem for optimisation, which essentially states that an optimisation algorithm that performs
particularly well on one set of objective functions, will also perform correspondingly poorly on
all other objective functions [233]. The NFL theorem therefore implies that a metaheuristic
which performs well on some set of benchmark problems is not guaranteed to perform well in
the context of a new (i.e. different) optimisation problem.

145
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Because a diversity of objective functions (and combinations thereof) were adopted in the con-
strained MICFMO test suite of §8.1, the inferences drawn during the comparative study between
different MOAs in Chapter 8 are relatively general in the context of MICFMO applied to the
SAFARI-1 reactor. It is therefore expected, although not guaranteed (because of the NFL
theorem), that the NSGA-II, the P-ACO algorithm and the MOOCEM should be able to solve
various MICFMO problem instances with good effect and, similarly, that the MOVNS algorithm
should perform well in respect of bi-objective instances. To the best knowledge of the author,
no other study has been published in which the general applicability of an MICFMO solution
technique has been tested to such an extent as was done in Chapter 8.

In an attempt to further improve upon the level of generality at which MICFMO may be
performed, the focus in this dissertation now turns towards a relatively new and promising field
of research, namely hyperheuristic solution techniques [23]. Although there is also no universally
accepted definition of what a hyperheuristic is, it may generally be thought of as a “heuristic
which chooses heuristics” [26]. A key feature of a hyperheuristic is therefore that it operates on a
space of heuristics by managing the selection of which low-level heuristic (from a given set) should
be applied at any given time. Apart from raising the level of general applicability, hyperheuristics
have also been shown to achieve improved performance in optimisation studies [23].

Although the overwhelming majority of hyperheuristics available in the literature have been
designed in the context of single-objective optimisation, a few multiobjective hyperheuristics
have also been proposed to date [23, 125]. In this dissertation, the AMALGAM method1,
recently proposed by Vrugt and Robinson [226], is investigated for application to constrained
MICFMO.

9.2 A multiobjective hyperheuristic: AMALGAM

The AMALGAM method is an evolutionary-based multiobjective hyperheuristic which combines
two concepts, namely simultaneous multi-algorithm search and self-adaptive offspring creation,
for the solution of MOPs [226]. In the method, k sub-algorithms are employed simultaneously,
each creating a number of offspring solutions proportional to the success of the sub-algorithm
during the previous generation. Another important aspect of the method is that of global
information sharing — each sub-algorithm has access to the entire population in order to create
its share of the offspring.

The concept of self-adaptive offspring creation in the AMALGAM method is designed to favour
sub-algorithms exhibiting the highest reproductive success [226]. Suppose Sit+1 is the number
of solutions created by sub-algorithm i as a contribution to parent population Pt+1 during
generation t+ 1. Furthermore, let N i

t+1 be the number of offspring solutions that sub-algorithm
i ∈ {1, . . . , k} should create during generation t+1. The reproductive success of sub-algorithm i
is then measured as the ratio of the number of successful offspring solutions to the total number
of offspring solutions it created, that is Sit+1/N

i
t . In order to reward the “best” sub-algorithms

based on their reproductive success, the number of offspring solutions that sub-algorithm i
should generate during the next generation is calculated as approximately

N i
t+1 =

N
(
Sit+1

N i
t

)

∑k
i=1

(
Sit+1

N i
t

) , (9.1)

where N is the total number of solutions in the population. The reproductive success of a sub-
algorithm is therefore scaled according to the combined success of all the sub-algorithms. It is

1AMALGAM is an acronym for a multi-algorithm, genetically adaptive multiobjective.
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recommended that a minimum value for N i
t be enforced so as to avoid deactivating any of the

sub-algorithms [226].

Finally, the AMALGAM method borrows largely from the NSGA-II and utilises its fitness
assignment procedure (i.e. Pareto rank and crowding distance assignment), the FNSA for par-
titioning a set of solutions into different nondominated fronts, and its elitest selection procedure
for determining the next population.

The full AMALGAM method may now be described, and a pseudo-code listing therof is presented
in Algorithm 9.1. The method starts by randomly generating an initial parent population P0

of size N . This population is then sorted and ranked according the FNSA in Algorithm 7.1.
An offspring population Q0 of size N is generated next using the simultaneous multi-algorithm
search concept. Accordingly, each sub-algorithm i, having access to the entire parent population,
creates N i

0 = N/k offspring solutions. At this point, the generation counter t is set to zero, and
the following procedure is iterated until the relevant stopping criterion has been met (e.g. a
maximum number of generations reached):

1. Create a combined population Rt ← Pt ∪Qt from the parent and offspring populations.

2. Rank and sort population Rt into nondominated fronts F1, . . . ,Fn using the FNSA, and
calculate the crowding distance of each solution using Algorithm 7.2.

3. Create the next population Pt+1 by including all solutions from the first front F1, then all
solutions from the second front F2, and so forth, until the inclusion of all solutions from
the next front would result in a population size greater than N . In order to limit the size
of Pt+1 to N , the solutions in this next front are sorted in decreasing order of crowding
distance. Solutions from this sorted front are then included one-by-one in this order until
|Pt+1| = N .

4. Determine the number of successful solutions created by each sub-algorithm, Sit+1, and
calculate the new number of offspring solutions that each sub-algorithm should generate,
N i
t+1, according to equation (9.1).

5. Use each sub-algorithm i to generate N i
t+1 new offspring solutions, thus creating the next

offspring population Qt+1 of size N .

6. Increment the value of the generation counter t← t+ 1.

In the implementation of the AMALGAM method by Vrugt and Robinson [226], the initial parent
population was generated using Latin hypercube sampling [133] and the minimum value of N i

t

was set to 5. Furthermore, the authors employed four sub-algorithms, namely the NSGA-II,
a PSO algorithm, an adaptive Metropolis search algorithm, and differential evolution. Their
choice of sub-algorithms was motivated by the outcome of numerical experiments [226].

9.3 The AMALGAM method for constrained MICFMO

Based on the outcome of the comparative studies performed in Chapter 8, it was decided that
the NSGA-II, the P-ACO algorithm, the MOOCEM and the MOVNS algorithm, all employing
the MPF constraint handling technique, should be considered for inclusion as sub-algorithms in
the AMALGAM method for solving the constrained MICFMO problem.

A number of modifications to the original AMALGAM formulation is necessary to incorporate
the aforementioned sub-algorithms into the method. Apart from the NSGA-II, which may be
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Algorithm 9.1: The AMALGAM method [226]

Input : An MOP (possibly constrained), a population size N , a maximum number of generations
tmax, and a set of k sub-algorithms.

Output: An approximate Pareto set, P̃S .

Randomly generate an initial population P0 of size N1

Rank and sort P0 using the FNSA in Algorithm 7.12

Set N i
0 ← N/k3

Use each sub-algorithm i ∈ {1, . . . , k} to generate N i
0 new offspring solutions, and create offspring4

population Q0 of size N
t← 05

while t < tmax do6

Rt ← Pt ∪Qt7

Partition Rt into nondominated fronts F1,F2, . . . using the FNSA in Algorithm 7.18

Pt+1 ← ∅9

i← 110

while |Pt+1| < N do11

if |Pt+1|+ |Fi| ≤ N then12

Pt+1 ← Pt+1 ∪ Fi13

i← i+ 114

else15

Calculate the crowding distance for each solution in Fi using Algorithm 7.216

Sort Fi in decreasing order of crowding distance17

Pt+1 ← Pt+1 ∪ {the first N − |Pt+1| solutions in Fi}18

end if19

end while20

Calculate the crowding distance for each solution in Pt+1 using Algorithm 7.221

Determine, for each i ∈ {1, . . . , k}, the number of successful solutions, Sit+1, contributed by22

sub-algorithm i to Pt+1

Calculate N i
t+1 according to (9.1) for each i ∈ {1, . . . , k}23

Use each sub-algorithm i ∈ {1, . . . , k} to generate N i
t+1 new offspring solutions, and create24

offspring population Qt+1 of size N
t← t+ 125

end while26

P̃S ← Ptmax
27

employed within the AMALGAM method as is, the remaining sub-algorithms require supple-
mentary information other than the current population in which a solution’s fitness is determined
by its Pareto rank and crowding distance.

In order to employ the P-ACO algorithm, for instance, its pheromone matrix is introduced into
the AMALGAM method. Whenever an offspring solution is created using the P-ACO sub-
algorithm, a local pheromone update is performed. The global pheromone update is, however,
performed using the entire offspring population so as to facilitate global information sharing.
Similarly, an elite set and corresponding probability matrix is introduced into the AMALGAM
method so as to employ the MOOCEM as a sub-algorithm. The entire offspring population
is considered for possible inclusion in the elite set during each generation, before updating the
probability matrix. Finally, in order to employ the MOVNS algorithm, a nondominated archive
is introduced into the AMALGAM method. This archive corresponds to the aforementioned
elite set if the ranking threshold of the latter is set to zero. As before, the entire offspring
population is considered for possible inclusion in the nondominated archive, before (possibly)
marking the neighbourhood of a solution as “explored.”
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Introduction of the elite set and nondominated archive increases the complexity of the AMAL-
GAM method, while also necessitating additional computer memory during the algorithmic
execution. It is, however, envisaged that the improved generality and/or performance of the
method is an acceptable trade-off for these complicating factors.

The AMALGAM method for constrained MICFMO, as described above, was also implemented
within the Matlab software suite [214] so that objective and constraint function evaluations may
be performed using the ANNs constructed in Chapter 6. In this implementation, the minimum
value of N i

t was set to 4 and the population size was selected as N = 30. As already mentioned,
the MPF technique was employed across the board as constraint handling technique and the
same severity factor adopted before was employed here. Finally, the same tuning parameter
values adopted in §8.2.3 for each individual metaheuristic were also selected for use in the sub-
algorithms within the AMALGAM method.

The following subscript notation is adopted in this chapter to distinguish between AMALGAM
variants in which different combinations of the sub-algorithms are implemented. The subscript
‘n’ denotes the NSGA-II, ‘p’ denotes the P-ACO algorithm, ‘m’ denotes the MOOCEM, and
‘v’ denotes the MOVNS algorithm. Accordingly, AMALGAMnpmv denotes the variant of the
AMALGAM method in which all four aforementioned sub-algorithms are implemented.

A pilot study involving the AMALGAMnpmv method was performed in order to test the basic
behaviour of the sub-algorithms. In this pilot study, the AMALGAMnpmv method was applied
to solve each problem instance in the MICFMO test suite of §8.1. As before, a stopping criterion
of 1 050 evaluations was imposed and fifty optimisation runs were executed in respect of each

problem instance. Graphs containing the average number S
i
t (over the fifty optimisation runs)

of successful offspring solutions contributed by sub-algorithm i per generation t are presented in
Figure 9.1 for each problem instance within class 1. The corresponding graphs for each problem
instance in class 2 and class 3 are presented in Figures 9.2 and 9.3, respectively.

It may be observed in Figures 9.1–9.3 that, out of the four sub-algorithms, the NSGA-II and the
P-ACO algorithm clearly contribute the highest number of offspring solutions (on average over
the fifty optimisation runs) to the new parent population per generation. Based on this obser-
vation, the following four variants of the AMALGAM method are selected for a more compre-
hensive investigation: AMALGAMnpmv, AMALGAMnpm, AMALGAMnp and AMALGAMnpv.
These variants correspond to the case in which the NSGA-II and the P-ACO algorithm are
always employed as sub-algorithms in the AMALGAM method, together with all possible com-
binations of using the MOOCEM and the MOVNS algorithm.

9.4 Experimental design

The aforementioned promising variants of the AMALGAM method are investigated in a com-
parative study aimed at determining their ability to conduct constrained MICFMO on the test
suite of MICFMO problem instances created in §8.1.

9.4.1 The two stages of comparison

The comparative study consists of two stages. During the first stage, the four variants of the
AMALGAM method were applied to solve each problem instance in the MICFMO test suite. A
stopping criterion of 1 050 evaluations was, again, imposed (so that the practical limitation of
MICFMO for the SAFARI-1 reactor is adhered to) and fifty optimisation runs were executed in
respect of each problem instance. As before, the outcome of each run is an approximation front
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1Figure 9.1: The average number S
i

t of successful offspring solutions contributed by sub-algorithm i in
the AMALGAMnpmv method per generation t when solving the problem instances in class 1 of §8.1.

corresponding to feasible solutions only. The same fixed set of fifty different random number
generator seeds utilised in §8.2 was employed here for each problem instance, along with the
same fixed set of random initial solutions. Accordingly, matched samples were obtained. The
different variants of the AMALGAM method were then compared to one another with an aim
to identify which is the most suitable in the context of constrained MICFMO.

During the second stage of the study, the results obtained by this preferred variant of the
AMALGAM method were compared to the results obtained in Chapter 8 by its corresponding
sub-algorithms, i.e. when they were employed individually to solve the problem instances in the
MICFMO test suite. Since the same random number generator seeds and initial solutions were
adopted in all cases, matched samples were obtained within each problem instance. The aim in
this stage is to determine whether the AMALGAM method is able to outperform its constituant
sub-algorithms in order to pronounce on whether there is a benefit in using the AMALGAM
method instead of the individual MOAs.

All the objective function values in the approximation fronts were scaled, as before, to the range
(0, 1) using the maximum and minimum values attained for each objective.
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t of successful offspring solutions contributed by sub-algorithm i in
the AMALGAMnpmv method per generation t when solving the problem instances in class 2 of §8.1.

9.4.2 Performance indicator considerations

Reference approximation fronts required during the calculation of the IHVD and IR2 indicators
(described in §7.8) were determined here in the same manner as in §8.2. For each problem
instance, the approximation fronts yielded by all the optimisation runs, for all four variants of
the AMALGAM method, together with those yielded separately by the NSGA-II, the P-ACO
algorithm, the MOOCEM and the MOVNS algorithm from Chapter 8, were pooled together.
A reference approximation front associated with that problem instance was then determined by
identifying the combined nondominated front from this pool.

The reference points and utopian objective vectors selected in §8.2.2 were also adopted in the
comparative study, along with the same sets of uniformly dispersed weight vectors required in
the calculation of IR2.
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t of successful offspring solutions contributed by sub-algorithm i in
the AMALGAMnpmv method per generation t when solving the problem instances in class 3 of §8.1.

9.4.3 Statistical analysis considerations

A nonparametric statistical analysis is conducted in this chapter in the context of the results
obtained. Both a single-problem analysis and multi-problem analysis are, again, considered
here. The Friedman test with the Nemenyi post hoc procedure is employed for the comparison
between different hyperheuristic variants during the first stage.

Along with Friedman test, a different post hoc multiple-comparisons procedure is, however,
employed for the comparison between the hyperheuristic and its corresponding sub-algorithms
during the second stage. Since the aim is to compare each sub-algorithm only to the hyper-
heuristic (and not to one another), an appropriate post hoc procedure to employ is the Nemenyi,
Wilcoxon-Wilcox, Miller (NWWM) procedure [82]. If there are k sub-algorithms within the se-
lected AMALGAM method variant, then k one-tailed pairwise significance tests are performed
in the NWWM procedure — one for each sub-algorithm/AMALGAM pair of samples. This
procedure also utilises the Friedman ranks and corrects for the multiple inferences it makes.

The Statistics and Machine Learning Toolbox [216] within the Matlab software suite [214] is
utilised to apply the Friedman test and Nemenyi procedure. The NWWM procedure, however,
is applied utilising NSM3 package [190] within the programming language R [169]. Note that a
significance level of α̃ = 0.05 was adopted for all the cases presented in this chapter.

9.5 Numerical results

The comparative study results obtained by following the experimental design discussed in §9.4
are presented in this section. As before, all the calculations were performed using the same
personal computer described in §6.6.
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9.5.1 First stage results: AMALGAM variants

During this first stage of comparison, the AMALGAMnpmv, AMALGAMnpm, AMALGAMnp

and AMALGAMnpv variants are compared relative to one another. A single-problem analysis is
performed first, followed by a multi-problem analysis within each problem instance class.

Single-problem analysis

In the single-problem analysis, there are four samples of data for each problem instance in the test
suite — matched indicator values corresponding to the fifty optimisation runs for each variant of
the AMALGAM method. These samples, obtained for the problem instances in classes 1, 2 and
3, are presented in the form of box plots in Figures 9.4, 9.5 and 9.6, respectively. The average
value of each sample is included, as before, as black diamond points in the graphs. The aim
is to compare the box plots with one another within each graph. A visual exploratory analysis
may thus be performed in respect of each problem instance, with respect to both the IHVD and
IR2 performance indicators.

It is observed in Figures 9.4–9.6 that all four variants of the AMALGAM method perform fairly
similarly (with respect to both indicators) across the problem instances in all three classes of
the test suite. This behaviour also appears to be true in respect of the robustness (in terms of
sample variability) of the different AMALGAM method variants. Due the similarities present
in these results, limited additional insight may be gained by conducting a visual exploratory
analysis.

The next step is to determine whether there is a statistically significant difference between
the variants of the AMALGAM method in this single-problem analysis. The Friedman test
is therefore applied to the samples obtained for each test problem instance. If a significant
difference has been detected, the Nemenyi post hoc procedure is applied in order to identify the
individual differences between pairs of samples. Since there are four variants in this study, the
Nemenyi procedure performs

(
4
2

)
= 6 pairwise significance tests.

The Friedman test detects a statistically significant difference (for α̃ = 0.05) for six problem
instances in the test suite with respect to both indicators. A significant difference is also detected
for two additional problem instances: P2.3 with respect to IHVD, and P3.4 with respect to IR2.
The corresponding p-values obtained by the Friedman test are presented in Table 9.1.

Sample Friedman test p-values

P1.1 P1.2 P1.3 P1.4 P1.5 P1.6
IHVD 0.2359 0.1638 0.0788 0.5351 0.0118 0.0814
IR2 0.6468 0.1968 0.3843 0.6254 0.0087 0.0709

P2.1 P2.2 P2.3 P2.4 P2.5 P2.6
IHVD 0.3110 0.0001 0.0352 0.5543 0.0124 0.2091
IR2 0.2244 0.0010 0.1777 0.5943 0.0016 0.0672

P3.1 P3.2 P3.3 P3.4
IHVD 0.0415 0.0173 0.0025 0.2407
IR2 0.0007 0.0001 0.0005 0.0034

Table 9.1: Single-problem analysis results for comparing the four variants of the AMALGAM method.
The table contains the p-values obtained by Friedman tests applied to the IHVD and IR2 samples for each
problem instance. Bold-faced entries represent a statistically significant difference (for α̃ = 0.05).
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Figure 9.4: Box plots of the IHVD samples (on the left-hand side) and IR2 samples (on the right-hand
side) obtained by all four hyperheuristic variants for each problem instance in class 1 of §8.1.
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Figure 9.5: Box plots of the IHVD samples (on the left-hand side) and IR2 samples (on the right-hand
side) obtained by all four hyperheuristic variants for each problem instance in class 2 of §8.1.
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Figure 9.6: Box plots of the IHVD samples (on the left-hand side) and IR2 samples (on the right-hand
side) obtained by all four hyperheuristic variants for each problem instance in class 3 of §8.1.

The detailed results of the Nemenyi post hoc procedure, applied to the relevant problem instances
identified in Table 9.1, may be found in Appendix E. In the majority of instances in which a
statistically significant difference is detected during the post hoc procedure, the AMALGAMnpm

method is involved. These differences are, however, scattered throughout the results (as was the
case in §8.4.2), which make any meaningful inferences difficult. As such, these detections are
not mentioned individually in this section.

Multi-problem analysis

A multi-problem analysis, within each class of problem instances, is performed next. As before,
an average indicator value, calculated over the fifty optimisation runs, is determined for each
AMALGAM method variant/problem instance pair. The average indicator values for IHVD and
IR2 correspond to the black diamond points in Figures 9.4–9.6.
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In order to determine whether there is a statistically significant difference between the four
variants of the AMALGAM method in the multi-problem analysis, the Friedman test is applied
to the average indicator value samples for each class of problem instances. The resulting p-values
are presented in Table 9.2 and, as before, bold-faced entries correspond to the detection of a
significant difference (for α̃ = 0.05).

Sample Friedman test p-values

Class 1 Class 2 Class 3
IHVD 0.2615 0.0141 0.2123
IR2 0.2165 0.0010 0.0194

Table 9.2: Multi-problem analysis results for comparing the four variants of the AMALGAM method.
The table contains the p-values obtained by Friedman tests applied to the average indicator value samples
for each problem instance class. Bold-faced entries represent a statistically significant difference (for
α̃ = 0.05).

The Friedman test is able to detect a statistically significant difference between the AMALGAM
method variants in problem instance class 2 for both indicators, and in class 3 for the IR2

indicator. The detailed results obtained from the pairwise significance tests performed during
the subsequent application of the Nemenyi post hoc procedure may be found in Appendix E.

The same strategy adopted in §8.4.2, which involves the calculation of average Friedman ranks
Ravg, is followed in this section in order to assist in the interpretation of the multi-problem
analysis results. The variants of the AMALGAM method are therefore ranked according to
their average rank values, within each problem instance class (for both IHVD and IR2). These
rank results for class 1, class 2 and class 3 are presented in Tables 9.3, 9.4 and 9.5, respectively.
Where applicable, if the Nemenyi procedure detects a significant difference between two variants,
the detection is indicated in the table with matching alphabetic letters next to the corresponding
variants in the column labelled “S.Diff”.

According to the rankings in Table 9.3, the AMALGAMnpm method is the best-performing
hyperheuristic variant in problem instance class 1 with respect to both performance indicators,
while the AMALGAMnpmv method performs the worst. It may also be observed that the different
variants have identical rankings with respect to both IHVD and IR2. The performances of the
AMALGAM variants are therefore very consistent across the indicators for this problem instance
class. Since the Friedman test does not detect a statistically significant difference between the
variants of the AMALGAM method for problem instance class 1, the Nemenyi post hoc procedure
is not applied — hence there are no entries in the column labelled “S.Diff” within Table 9.3.

IHVD indicator results IR2 indicator results
Ravg Hyperheuristic S.Diff Ravg Hyperheuristic S.Diff

1.833 AMALGAMnpm — 1.833 AMALGAMnpm —
2.167 AMALGAMnp — 2.167 AMALGAMnp —
2.833 AMALGAMnpv — 2.833 AMALGAMnpv —
3.167 AMALGAMnpmv — 3.167 AMALGAMnpmv —

Table 9.3: Multi-problem analysis results involving average Friedman ranks for problem instance class 1.
The variants of the AMALGAM method are ranked according to their average rank values. Significant
differences between any two variants are denoted by matching alphabetic letters in the column labelled
“S.Diff”.
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IHVD indicator results IR2 indicator results
Ravg Hyperheuristic S.Diff Ravg Hyperheuristic S.Diff

1.333 AMALGAMnpm a 1.5 AMALGAMnpm a
2.167 AMALGAMnpmv — 1.5 AMALGAMnp b
2.833 AMALGAMnp — 3 AMALGAMnpmv —
3.667 AMALGAMnpv a 4 AMALGAMnpv ab

Table 9.4: Multi-problem analysis results involving average Friedman ranks for problem instance class 2.
The variants of the AMALGAM method are ranked according to their average rank values. Significant
differences between any two variants are denoted by matching alphabetic letters in the column labelled
“S.Diff”.

In Table 9.4, it may be observed that the AMALGAMnpm and AMALGAMnp methods are
jointly the best-performing hyperheuristic variants in class 2 with respect to IR2, and they are
significantly different from the AMALGAMnpv method (which is the worst-performing vari-
ant with respect to both performance indicators). Similarly, the AMALGAMnpm method is
the best-performing variant with respect to IHVD, and also significantly different from the
AMALGAMnpv.

IHVD indicator results IR2 indicator results
Ravg Hyperheuristic S.Diff Ravg Hyperheuristic S.Diff

1.5 AMALGAMnpm — 1.25 AMALGAMnp —
2.25 AMALGAMnp — 1.75 AMALGAMnpm —
3 AMALGAMnpv — 3.5 AMALGAMnpmv —
3.25 AMALGAMnpmv — 3.5 AMALGAMnpv —

Table 9.5: Multi-problem analysis results involving average Friedman ranks for problem instance class 3.
The variants of the AMALGAM method are ranked according to their average rank values. Significant
differences between any two variants are denoted by matching alphabetic letters in the column labelled
“S.Diff”.

In Table 9.5, it may be observed that no statistically significant differences are detected between
any pair of hyperheuristic variants with respect to IR2, although the Friedman test yields a
significant p-value. This outcome is similar to what was observed in Table 8.8, and may be
attributed to the conservatism present in the Nemenyi procedure. According to the rankings
in Table 9.5, the AMALGAMnpm method is the best-performing variant with respect to IHVD,
while the AMALGAMnp method performs the best with respect to IR2.

Conclusion

Although the single-problem analysis conducted in this section indicates that there is little to
choose between the four variants of the AMALGAM method, the corresponding multi-problem
analysis reveals that the AMALGAMnpm method is consistently the best-performing hyper-
heuristic variant with respect to both IHVD and IR2, across all three problem instance classes.
Only for class 3, and with respect to IR2, does this variant not rank at the top — it is, however,
ranked second. As such, the AMALGAMnpm method is selected as the preferred hyperheuristic
variant in the context of constrained MICFMO, and is carried forward into the second stage of
the comparative study.
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9.5.2 Second stage results: AMALGAM sub-algorithms

The preferred AMALGAMnpm method, carried over from the first stage of the comparative
study, is now compared against the NSGA-II, the P-ACO algorithm and the MOOCEM within
the second stage of the comparative study. These three MOAs constitute the sub-algorithms
of the AMALGAMnpm method. A single-problem analysis is performed first, followed by a
multi-problem analysis within each problem instance class.

Single-problem analysis

In the single-problem analysis, there are four samples of data for each problem instance in
the test suite — matched indicator values corresponding to the fifty optimisation runs for the
AMALGAMnpm method, and its three constituent sub-algorithms (whose values were taken
from Chapter 8). These samples, obtained for the problem instances in class 1, class 2 and
class 3, are presented in the form of box plots in Figures 9.7, 9.8 and 9.9, respectively. The
average value of each sample is included, as before, as black diamond points in the graphs. A
visual exploratory analysis may be performed in respect of each problem instance, with respect
to both the IHVD and IR2 indicators, by comparing the box plots of the sub-algorithms against
that of the AMALGAMnpm method within each graph.

It is observed in Figures 9.7–9.9 that the AMALGAMnpm method performs well compared to
its sub-algorithms (with respect to both performance indicators) across the problem instances
in all three classes of the test suite. The method therefore seems to scale well as the number of
objectives in a problem instance increases. Furthermore, the robustness of the AMALGAMnpm

method (in terms of sample variability) appears to be similar to that of its sub-algorithms.

Problem instance P1.5 appears to be the only instance in which the AMALGAMnpm method
is outperformed (with respect to both indicators) by one of its sub-algorithms — the P-ACO
algorithm — as may be seen in Figure 9.7. Furthermore, in Figure 9.8, it is observed that the
performance of the MOOCEM is of similar quality to that of the AMALGAMnpm method in
the context of class 2 problem instances, especially with respect to IHVD.

The next step is to determine whether there is a statistically significant difference between the
AMALGAMnpm method and the corresponding individual sub-algorithms in this single-problem
analysis. The Friedman test is therefore applied to the samples obtained for each test problem
instance. As explained in §9.4.3, the aim here is to compare each separate sub-algorithm to
the AMALGAMnpm method (and not to one another). Therefore, if a statistically significant
difference has been detected by the Friedman test, the NWWM post hoc procedure is applied
in order to identify which sub-algorithm differs from the AMALGAMnpm method. Since there
are three sub-algorithms within this preferred variant of the AMALGAM method, the NWWM
procedure performs three one-tailed pairwise significance tests. Due to the one-tailed nature of
these tests, if a statistically significant difference is detected by the post hoc procedure, it may
be inferred that the AMALGAMnpm method performs significantly better than the associated
sub-algorithm.

The Friedman test detects a statistically significant difference (for α̃ = 0.05) for every problem
instance in the test suite with respect to both indicators. The corresponding p-values are pre-
sented in Table 9.6. This outcome does not come as a surprise, given the good performance
observed for the AMALGAMnpm method during the visual exploratory analysis.
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Figure 9.7: Box plots of the IHVD samples (on the left-hand side) and IR2 samples (on the right-hand
side) obtained by the hyperheuristic and corresponding sub-algorithm metaheuristics for each problem
instance in class 1 of §8.1.
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Figure 9.8: Box plots of the IHVD samples (on the left-hand side) and IR2 samples (on the right-hand
side) obtained by the hyperheuristic and corresponding sub-algorithm metaheuristics for each problem
instance in class 2 of §8.1.
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Figure 9.9: Box plots of the IHVD samples (on the left-hand side) and IR2 samples (on the right-hand
side) obtained by the hyperheuristic and corresponding sub-algorithm metaheuristics for each problem
instance in class 3 of §8.1.

The NWWM post hoc procedure is therefore applied to all the problem instances. The detailed
statistical results obtained from the corresponding pairwise significance tests may be found in
Appendix E. Only a summary of the findings is presented here in order to improve the readability
of the main text.

Recall that there are sixteen problem instances in the MICFMO test suite. It is found that the
AMALGAMnpm method performs significantly better than the NSGA-II in fourteen problem
instances with respect to IHVD, and in another fourteen instances with respect to IR2. Simi-
larly, the method performs significantly better than the P-ACO algorithm in thirteen problem
instances with respect to IHVD, and in another ten instances with respect to IR2. Finally, it is
also found that the AMALGAMnpm method performs significantly better than the MOOCEM
in eight problem instances with respect to IHVD, and in another fourteen instances with respect
to IR2.
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Sample Friedman test p-values

P1.1 P1.2 P1.3 P1.4 P1.5 P1.6

IHVD 2.869×10−6 5.064×10−6 2.448×10−14 9.798×10−6 4.260×10−7 1.219×10−11

IR2 1.280×10−8 2.586×10−5 1.961×10−10 3.110×10−5 3.297×10−7 2.600×10−9

P2.1 P2.2 P2.3 P2.4 P2.5 P2.6

IHVD 1.065×10−2 3.190×10−8 9.749×10−4 5.463×10−3 3.846×10−8 2.268×10−4

IR2 8.528×10−6 3.116×10−8 1.891×10−2 1.482×10−3 1.032×10−6 2.274×10−6

P3.1 P3.2 P3.3 P3.4

IHVD 7.014×10−4 7.897×10−7 8.724×10−3 8.412×10−4

IR2 3.136×10−9 2.530×10−11 5.532×10−5 1.146×10−6

Table 9.6: Single-problem analysis results for comparing the AMALGAMnpm method against its con-
stituent sub-algorithms. The table contains the p-values obtained by Friedman tests applied to the
IHVD and IR2 samples for each problem instance. Bold-faced entries represent a statistically significant
difference (for α̃ = 0.05).

Multi-problem analysis

A multi-problem analysis, within each class of problem instances, is performed next. As before,
an average indicator value, calculated over the fifty optimisation runs, is determined for each
MOA/problem instance pair. The different MOAs are the AMALGAMnpm method and its three
constituent sub-algorithms (whose values were taken from Chapter 8). The average indicator
values for IHVD and IR2 correspond to the black diamond points in Figures 9.7–9.9.

In order to determine whether there is a significant difference between the AMALGAMnpm

method and the corresponding sub-algorithms in this multi-problem analysis, the Friedman
test is applied to the average indicator value samples for each class of problem instances. The
resulting p-values are presented in Table 9.7 and, as before, bold-faced entries correspond to the
detection of a statistically significant difference (for α̃ = 0.05).

Sample Friedman test p-values

Class 1 Class 2 Class 3
IHVD 0.0141 0.0032 0.0112
IR2 0.0141 0.0038 0.0074

Table 9.7: Multi-problem analysis results for comparing the AMALGAMnpm method against its con-
stituent sub-algorithms. The table contains the p-values obtained by Friedman tests applied to the aver-
age indicator value samples for each problem instance class. Bold-faced entries represent a statistically
significant difference (for α̃ = 0.05).

Although the sample sizes are small, the Friedman test is able to detect a statistically signif-
icant difference for every problem instance class with respect to both indicators. Accordingly,
the NWWM post hoc procedure is applied to all three problem instance classes and the corre-
sponding p-values obtained from the pairwise significance tests performed during the procedure
are presented in Table 9.8.

It may be observed that the AMALGAMnpm method performs significantly better than the
NSGA-II in all three problem instance classes with respect to IHVD, and also in classes 1 and 3
with respect to IR2. The method is also found to perform significantly better than the P-ACO
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algorithm in problem instance class 2 with respect to both performance indicators, as well as
in class 1 with respect to IHVD. Finally, it is observed in Table 9.8 that the AMALGAMnpm

method performs significantly better than the MOOCEM in all three problem instance classes
with respect to IR2.

Problem NWWM procedure p-values
NSGA-II P-ACO MOOCEM

Class 1
IHVD 0.0085 0.0034 0.1650
IR2 0.0114 0.1741 0.0041

Class 2
IHVD 0.0111 0.0005 0.3346
IR2 0.0726 0.0244 0.0002

Class 3
IHVD 0.0003 0.2523 0.0924
IR2 0.0484 0.3481 0.0001

Table 9.8: Multi-problem analysis results for comparing the AMALGAMnpm method against its con-
stituent sub-algorithms. The table contains the p-values obtained by the NWWM post hoc procedure in
which three pairwise significance tests are performed for each problem instance class. Bold-faced entries
represent a statistically significant difference (for α̃ = 0.05).

Conclusion

Recall from the conclusion in §8.4.2 that the NSGA-II, the P-ACO algorithm and the MOOCEM
are generally the best-performing MOAs in the metaheuristic comparative study with respect
to both the IHVD and IR2 indicators, across the problem instances in all three classes. In
this second stage of the comparative study, it has been shown that the AMALGAMnpm method
significantly outperforms these three MOAs in the majority of instances within the MICFMO test
suite — an inference supported by both single-problem and multi-problem statistical analyses.
The hyperheuristic achieves the dual goal of raising the level of generality at which MICFMO
may be performed and of yielding improved optimisation performance. The AMALGAMnpm

method may therefore be recommended as a state-of-the-art MOA for solving (approximately)
the constrained MICFMO problem.

9.6 Chapter summary

In this chapter, the AMALGAM method was investigated in terms of its ability to conduct
constrained MICFMO in the context of the test suite of problem instances defined in §8.1.
The general working of the method was discussed first in §9.2, after which modifications to
the original formulation of the method made in this dissertation were described in §9.3. Four
variants of the AMALGAM method, depending on the configuration of its sub-algorithms, were
also identified for comprehensive investigation.

The experimental design followed during the two-stage comparative study conducted in this
chapter was presented in §9.4. During the first stage, the promising variants of the AMALGAM
method were compared to one another in order to select a preferred variant. Then, during the
second stage, that preferred variant was compared against its constituent sub-algorithms (whose
results were taken from Chapter 8), in order to determine whether it is beneficial to use the
AMALGAM method instead of the individual MOAs. The numerical results of this comparative
study were presented in §9.5.
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The results from the first stage of the study in §9.5.1 revealed that the AMALGAMnpm method,
whose sub-algorithms are the NSGA-II, the P-ACO algorithm and the MOOCEM, may be se-
lected as the preferred hyperheuristic variant. In the second stage of the comparative study
in §9.5.2, it was inferred that the AMALGAMnpm method significantly outperforms the three
individual sub-algorithms in the majority of instances within the MICFMO test suite. The hy-
perheuristic therefore achieved the dual goal of raising the level of generality at which MICFMO
may be performed and of yielding improved optimisation performance.
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Based on the recommendation in Chapter 9, the preferred AMALGAMnpm method was imple-
mented by the author within a new MICFMO decision support feature in the OSCAR-4 system.
In this chapter, the practical applicability of the hyperheuristic is demonstrated by utilising
this feature to solve (approximately) a number of realistic case study problem instances, in the
contexts of both the SAFARI-1 and HOR reactors.

10.1 Introduction

In the comparative studies performed in Chapters 8 and 9, the performance of each MOA was
determined relative to that of the other MOAs (as mentioned in §7.8), because of the absence of
the true Pareto front for a given problem instance. Accordingly, the studies did not necessarily
reveal whether the solutions obtained by the MOAs are of an acceptable quality for practical
usage. Furthermore, the testing was performed using surrogate models for the evaluation of
objective and constraint functions instead of an accurate reactor core simulator.

As mentioned above, the AMALGAMnpm method was implemented in the OSCAR-4 system
by the author. Unlike in §9.3, however, all nondominated solutions within the elite set are
returned by the method in this implementation, instead of only the final population. In order to
demonstrate the practical relevance of this new MICFMO capability, it was used to solve three
realistic case study problem instances based on the SAFARI-1 reactor, as well as three instances
based on the HOR reactor. These reactors were described in Chapter 4.

167
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All the calculations in this chapter were performed on a personal computer with the following
specifications: An Intel R© XeonTM E5-2630 CPU with 64 GB RAM operating at 2.60 GHz within
a 64-bit operating system. As before, the stopping criterion for the hyperheuristic was set to
a maximum of 1 050 evaluations. Furthermore, all tuning parameters in the AMALGAMnpm

method were set to the same values adopted in §9.3. Each problem instance was solved five
times (based on the availability of computational resources), using a different random number
generator seed during each optimisation run. An attainment front for each problem instance
was then isolated from the pool of nondominated fronts obtained by the five runs.

These attainment fronts were compared to the actual reload configurations loaded into the cores
of the SAFARI-1 and HOR reactors during the operational cycles considered in each problem
instance. As before, these configurations are referred to as the historical SAFARI-1 reload
configuration (HSRC) and the historical HOR reload configuration (HHRC), respectively. Note
that the HSRC and HHRC were designed according to the current approach followed at each
reactor, as described in §4.5.3 and §4.6.3, respectively.

10.2 The SAFARI-1 reactor case study

The three case study problem instances considered in this section are based on the first opera-
tional cycle for the SAFARI-1 reactor during the year 2016, which is designated as cycle C1601-1.
Each instance corresponds to a realistic scenario that may be pursued at the reactor. The entire
constraint set specified in §4.5.2 has to be adhered to in each problem instance. Furthermore,
as was the case in §8.1, the specific limiting values of the third constraint (i.e. the peak axial
production capability in the IPR facilities) have been relaxed so that the HSRC may be included
in the feasible region SS . Finally, the objective function labels adopted in the specification of
the problem instances below correspond to those labels listed in Table 4.1.

10.2.1 The problem instances under consideration

In the first case study problem instance, maximisation of the cycle length of the SAFARI-1
reactor and minimisation of its core power peaking factor, are of interest. It therefore conforms
to the pursuit of objectives S1 and S2, respectively. Recall that an objective function may be
transformed from a minimisation paradigm to a maximisation paradigm by taking its negative
value. Accordingly, the first problem instance is a bi-objective MOP in which the goal is to

maximise [fS1(x),−fS2(x)],

subject to x ∈ SS .

}
(10.1)

The second case study problem instance is similar to (5.14) in which the research utilisation of
the SAFARI-1 reactor is to be enhanced. Now, however, the cycle length of the reactor is to be
maximised in conjunction with the maximisation of the research capability at beam tubes 1 & 2
and at beam tube 5. Accordingly, the optimisation of objectives S1, S5 and S6 is pursued. The
second problem instance, therefore, is a tri-objective MOP in which the goal is to

maximise [fS1(x), fS5(x), fS6(x)],

subject to x ∈ SS .

}
(10.2)

Finally, the third case study problem instance corresponds exactly to (5.15) in which the commer-
cial services rendered by the SAFARI-1 reactor are to be optimised, except that cycle C1601-1
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is considered now. Accordingly, the optimisation of objectives S3, S4, S7 and S8 are pursued,
namely maximisation of the production of 99Mo isotopes, the utilisation of the silicon doping
facility, and the production of isotopes in the two IPR facilities. The third problem instance,
therefore, is a tetra-objective MOP in which the goal is to

maximise [fS3(x), fS4(x), fS7(x), fS8(x)],

subject to x ∈ SS .

}
(10.3)

10.2.2 Numerical results achieved

The attainment fronts obtained by following the experimental design discussed in §10.1 are
presented graphically in Figures 10.2–10.4 for each of the three problem instances described
above, along with the HSRC. Note that all the values in these results have been scaled according
to the percentage improvement in objective function value over that of the HSRC. Furthermore,
the reload configuration of the HSRC is presented in Figure 10.1(a) in terms of the 235U mass in
each fuel assembly. For each problem instance, an example of a reload configuration that features
in the respective attainment fronts is also presented in Figure 10.1. These configurations are
discussed later in this section.
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(d) Problem instance (10.3)

Figure 10.1: Examples of reload configurations for the SAFARI-1 case study.
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Problem instance (10.1)

In Figure 10.2, the attainment front obtained for problem instance (10.1) is partitioned into a
set of objective vectors in which a simultaneous improvement in both objectives is achievable
(depicted in green), and a corresponding set in which an improvement in one objective only
is achievable at the cost of a deterioration in the other objective (depicted in blue). It may
be observed that a number of solutions yielding a simultaneous improvement in the values of
objectives S1 and S2 (i.e. excess reactivity and power peaking factor, respectively) over that
of the HSRC were obtained by the hyperheuristic. It is also observed that the attainment
front yields an improvement of up to 27.4% in the value of objective S1, at the cost of a 5.0%
deterioration in the value of objective S2.
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Figure 10.2: Attainment front obtained by five optimisation runs for problem instance (10.1).

Consider, for example, the reload configuration of the solution which yields a simultaneous
improvement of 17.7% and 6.5% in the values of objectives S1 and S2, respectively. This con-
figuration is presented in Figure 10.1(b) in terms of the 235U mass in each fuel assembly. It is
observed that the configuration differs largely from that of the HSRC, shown in Figure 10.1(a).
The heaviest-massed assemblies are no longer assigned to the core periphery, thus affecting the
significant improvement in excess reactivity. Furthermore, the improvement in power peaking
factor is affected by the checkerboard-type assignment of heavier-massed and lighter-massed
assemblies throughout the core now, especially in the positions of row B in which the peak value
was attained for the HSRC.

Problem instance (10.2)

The three-dimensional attainment front obtained for problem instance (10.2) is presented in
Figure 10.3. In addition, two-dimensional projections of the front onto the respective planes
corresponding to each pair of objectives, are also provided in the figure. As before, the attain-
ment front is partitioned into a set of objective vectors in which a simultaneous improvement
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Figure 10.3: Attainment front obtained by five optimisation runs for problem instance (10.2).

in all three objectives is achievable (depicted in green), and a set in which an improvement in
at most two objectives is only achievable at the cost of a deterioration in some other objective
(depicted in blue).

In Figure 10.3, it may be observed that the majority of solutions obtained by the hyperheuristic
achieve a significant simultaneous improvement in the values of objectives S1 and S5 (i.e. excess
reactivity and beam tubes 1 & 2, respectively) over that of the HSRC, at the cost of a moderate
deterioration in the value of objective S6 (i.e. beam tube 5). Four solutions do, however, achieve
a simultaneous improvement in all three objectives.

Consider, for example, the solution in which a simultaneous improvement of 14.4%, 4.8% and
2.0% in the values of objectives S1, S5 and S6, respectively, over that of the HSRC is achieved.
Its corresponding reload configuration is presented in Figure 10.1(c). It is observed that the
heaviest-massed assemblies are assigned to row B in the core, whose positions are close to the
beam tubes. This is very similar to the HSRC, shown in Figure 10.1(a); hence only moderate
improvements in the values of objectives S5 and S6 are achieved. Very few heavier-massed
assemblies are, however, assigned to the unreflected positions in row H, thus leading to lower
neutron leakage from the core and the significant improvement in the value of objective S1.
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Problem instance (10.3)

In Figure 10.4, the four-dimensional attainment front obtained for problem instance (10.3) is
presented in the form of six two-dimensional projections onto the respective planes corresponding
to each pair of objectives. Usage of these projections is an alternative to the use of a payoff table
(see Chapter 5) for considering the results of a tetra-objective optimisation problem. Unlike in
the previous two problem instances, no solutions were obtained for (10.3) in which a simultaneous
improvement in all four objectives could be achieved.

It may be observed in Figure 10.4(a) that the HSRC actually forms part of the attainment
front, since it is nondominated in terms of objectives S3 and S4 (i.e. total 99Mo production and
silicon doping, respectively). A slight improvement of 0.3% in the value of objective S3 may be
achieved over that of the HSRC, at the significant cost of a 13.8% deterioration in the value of
objective S4. Conversely, an improvement of up to 9.2% may be achieved in objective S4, at
the cost of a 3.6% deterioration in objective S3. It is observed in Figures 10.4(a)–10.4(c) that
objective vectors in which objective S3 is present have spacings that correspond to vertical lines.
This peculiar behaviour may be attributed to round-off effects in the OSCAR-4 results, causing
those objective function values to be discrete.

In Figures 10.4(b) and 10.4(c), it may be observed that significant improvements in the perfor-
mance of objectives S7 and S8 (i.e. the first and second IPR facilities, respectively) are readily
achievable over that of the HSRC, at the cost of a moderate deterioration in the performance
of objective S3. As mentioned in §4.5.3 and §5.4.3, the current SAFARI-1 reload configuration
design approach is largely geared towards maximisation of objective S3, while keeping the con-
figuration within its safety limits. As such, the simultaneous optimisation of objective S3 with
additional objectives would likely always deteriorate its performance.

Finally, in Figures 10.4(d)–10.4(f), it is observed that the attainment front yields numerous
simultaneous improvements in the performance of objectives S4, S7 and S8. In particular, these
results indicate that moderate improvements in both IPR facility objectives are almost always
possible within the attainment front.

Consider, for example, the solution which yields a 4.4% deterioration in the value of objective S3
and simultaneous improvements of 5.5%, 2.0% and 11.5% in the values of objectives S4, S7 and
S8, respectively. Its reload configuration is presented in Figure 10.1(d) in terms of the 235U mass
in each fuel assembly. As was the case in Figure 5.7, it is observed that heavier-massed assemblies
are assigned to positions near the IPR facilities (D6 and F6) within this configuration, resulting
in the improved performance of objectives S7 and S8. In addition, heavier-massed assemblies
are also assigned to positions G4 and G6, unlike in the HSRC, shown in Figure 10.1(a). These
assignments are likely the cause for the improvement in the value of objective S4.

10.3 The HOR reactor case study

The three case study problem instances considered in this section are based on the first opera-
tional cycle for the HOR reactor during the year 2015, which is designated as cycle C1501. Each
instance corresponds to a realistic scenario that may be pursued at the HOR reactor. The stop
margin constraint specified in §4.5.2 has to be adhered to in each problem instance. Also, the
objective function labels in the specification of the instances below correspond to those labels
listed in Table 4.2, while the feasible region in the decision space is again denoted by SH .
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Figure 10.4: Attainment front projections extracted from five optimisation runs for problem instance
(10.3). Each subgraph depicts a two-dimensional projection of the front onto the plane corresponding to
a pair of objectives.
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10.3.1 The problem instances under consideration

In the first case study problem instance for the HOR reactor, its operational cycle length is to
be maximised and the criticality of the reactor during the stop margin requirement (i.e. the
parameter ksm

eff ) is to be minimised. It therefore conforms to the pursuit of objectives H1 and
H5, respectively. As before, an objective function may be transformed from a minimisation
paradigm to a maximisation paradigm by taking its negative value. The first problem instance
is a bi-objective MOP in which the goal is to

maximise [fH1(x),−fH5(x)],

subject to x ∈ SH .

}
(10.4)

In the second case study problem instance, the HOR reactor is required to enhance its beam
line research, as well as the utilisation of the two in-core irradiation rigs (i.e. the Small BeBe
and Big BeBe rigs). Of interest, then, is the pursuit of objectives H2, H3 and H4 which, inci-
dentally, combines the objectives considered in (5.18) and (5.19) into a single problem instance.
Accordingly, the second problem instance is a tri-objective MOP in which the goal is to

maximise [fH2(x), fH3(x), fH4(x)],

subject to x ∈ SH .

}
(10.5)

Finally, in the third case study problem instance, the cycle length of the HOR reactor is to
be maximised in conjunction with the three flux-related objectives pursued in the previous
problem instance. Incidentally, this corresponds to the combination of (5.17) and (5.18) into a
single problem instance. As such, the third problem instance is a tetra-objective MOP in which
the goal is to

maximise [fH1(x), fH2(x), fH3(x), fH4(x)],

subject to x ∈ SH .

}
(10.6)

10.3.2 Numerical results achieved

The attainment fronts obtained by following the experimental design discussed in §10.1 are
presented in Figures 10.6–10.8 for each of the three problem instances described above, along
with the HHRC. Note that all the values in these results have been scaled according to the
percentage improvement in objective function value over that of the HHRC. Furthermore, the
reload configuration of the HHRC is presented in Figure 10.5(a) in terms of the 235U mass
in each fuel assembly. As before, an example of a reload configuration that features in the
attainment front of each problem instance is also presented in Figure 10.5. These configurations
are discussed later in this section.

Problem instance (10.4)

In Figure 10.6, the attainment front obtained for problem instance (10.4) is again partitioned into
a set of objective vectors in which a simultaneous improvement in both objectives are achievable
(depicted in green), and a corresponding set in which an improvement in one objective is only
achievable at the cost of a deterioration in the other objective (depicted in blue). It may be
observed that only a few solutions yield a simultaneous improvement in the values of objectives
H1 and H5 (i.e. excess reactivity and ksm

eff , respectively) over that of the HHRC, although the
percentage value of these improvements are relatively small.

Stellenbosch University  https://scholar.sun.ac.za



10.3. The HOR reactor case study 175

A B C D E F

7

6

5

4

3

2

1
300

230

155

Mass [g]

1

(a) HHRC

A B C D E F

7

6

5

4

3

2

1
300

230

155

Mass [g]

1

(b) Problem instance (10.4)

A B C D E F

7

6

5

4

3

2

1
300

230

155

Mass [g]

1

(c) Problem instance (10.5)
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Figure 10.5: Examples of reload configurations for the HOR case study.

As discussed in §4.6.3, the current HOR reload configuration design approach aims to maximise
the operational cycle length (i.e. objective H1), while satisfying the stop margin constraint. It
is therefore not surprising to observe in Figure 10.6 that the value of objective H1 deteriorates
significantly (up to 43.7%) as the value of objective H5 improves (up to 2%). The simultaneous
optimisation of objective H1 with an additional objective would likely always deteriorate its
performance. For this problem instance, it is important to mention that the 2% improvement
in the value of objective H5 may be a misleading quantity — this improvement corresponds to
approximately 2 000 pcm1 of reactivity, which is quite significant.

The solution which yields a 1.7% improvement in the value of objective H5 over that of the
HHRC, at the cost of a 19.9% deterioration in the value of objective H1 is considered as an
example. Its corresponding reload configuration is presented in Figure 10.5(b) in terms of the
235U mass in each fuel assembly. It is observed that heaviest-massed assemblies are assigned
to the unreflected positions in column F of the core, unlike the HHRC, which is shown in
Figure 10.5(a), whose heaviest-massed assemblies are assigned to the central core positions.

1Derived from the Italian “per cento mille”, meaning per hundred thousands, pcm is a unit of reactivity defined
as %∆k/k, where k is the neutron multiplication factor [152].
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Figure 10.6: Attainment front obtained by five optimisation runs for problem instance (10.4).

Problem instance (10.5)

The three-dimensional attainment front obtained for problem instance (10.5) is presented in
Figure 10.7. In addition, two-dimensional projections of the front onto the respective planes
corresponding to each pair of objectives, are also illustrated. As before, the attainment front
is partitioned into a set of objective vectors in which a simultaneous improvement in all three
objectives is achievable (depicted in green), and a set in which an improvement in at most two
objectives is only achievable at the cost of a deterioration in some other objective (depicted in
blue).

In Figure 10.7, it may be observed that numerous solutions obtained by the hyperheuristic are
able to achieve a simultaneous improvement in the values of all three objectives over that of
the HHRC. Furthermore, an improvement in the value of objective H3 (i.e. Small BeBe rig) is
always achievable within the attainment front. It is also observed that a significant spread of
trade-off solutions were obtained by the hyperheuristic in respect of objectives H2 and H4 (i.e.
beam tube and Big BeBe rig, respectively). The range of objective H2 lies between −10.8% and
10.7%, whereas objective H4 ranges between −8.2% and 13.5%.

Consider, for example, the reload configuration of the solution in which a simultaneous improve-
ment of 4.3%, 3.2% and 3.7% is achieved in the values of objectives H2, H3 and H4, respectively,
over that of the HHRC. This configuration is presented in Figure 10.5(c) in terms of the 235U
mass in each fuel assembly. It is observed that the heavier-massed assemblies are all assigned to
positions near the beam tube and two irradiation rigs (located in positions 2B and 4D), hence
the improvements in each of the three corresponding objectives.

Problem instance (10.6)

In Figure 10.8, the four-dimensional attainment front obtained for problem instance (10.6) is
presented in the form of six two-dimensional projections onto the respective planes corresponding
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Figure 10.7: Attainment front obtained by five optimisation runs for problem instance (10.5).

to each pair of objectives. Unlike in the previous two problem instances, no solutions were
obtained for (10.6) in which a simultaneous improvement in all four objectives could be achieved.

As was the case in problem instance (10.4), it may be observed in Figures 10.8(a)–10.8(c) that
improvements in the values of objectives H2, H3 and H4 (i.e. beam tube, Small BeBe and
Big BeBe rigs, respectively) over that of the HHRC are achievable at the cost of a significant
deterioration in the value of objective H1 (i.e. excess reactivity). It is also observed in Fig-
ures 10.8(d)–10.8(f) that the performance achievable in objectives H2, H3 and H4 corresponds
closely to what was found in Figure 10.7. The reason for this behaviour is simple — these three
objectives were also pursued in problem instance (10.5).

The solution in which improvements of 8.3% and 1.2% are achieved in the values of objectives
H2 and H3, respectively, over that of the HHRC, at the cost of a 14.9% and 7.6% deterioration in
the values of objectives H1 and H4, respectively, is considered as an example. Its corresponding
reload configuration is presented in Figure 10.5(d). It is observed that heavier-massed assemblies
are assigned to positions near the beam tube and the Small BeBe rig (position 4D), in pursuit
of objectives H2 and H3, respectively. Unlike the case in Figure 10.5(c), only lighter-massed
assemblies surround the Big BeBe rig (position 2B), hence the deterioration in objective H4.
Off course, all these assignments occur to the detriment of objective H1.

Stellenbosch University  https://scholar.sun.ac.za



178 Chapter 10. Case studies

−40% −30% −20% −10% 0%

−15%

−10%

−5%

0%

+5%

+10%

fH1(x): Excess reactivity [% improvement]

f H
2
(x

):
B
ea
m

tu
b
e
[%

im
p
ro
v
em

en
t]

Attainment front
HHRC

1
(a) Excess reactivity and beam tube

−40% −30% −20% −10% 0%

−1%

0%

+1%

+2%

+3%

+4%

+5%

fH1(x): Excess reactivity [% improvement]

f H
3
(x

):
S
m
al
l
B
eB

e
[%

im
p
ro
ve
m
en
t]

Attainment front
HHRC

1
(b) Excess reactivity and Small BeBe rig

−40% −30% −20% −10% 0%

−15%

−10%

−5%

0%

+5%

+10%

+15%

fH1(x): Excess reactivity [% improvement]

f H
4
(x

):
B
ig

B
eB

e
[%

im
p
ro
ve
m
en
t]

Attainment front
HHRC

1
(c) Excess reactivity and Big BeBe rig

−10% −5% 0% +5% +10%

−1%

0%

+1%

+2%

+3%

+4%

+5%

fH2(x): Beam tube [% improvement]

f H
3
(x

):
S
m
al
l
B
eB

e
[%

im
p
ro
ve
m
en
t]

Attainment front
HHRC

1
(d) Beam tube and Small BeBe rig

−10% −5% 0% +5% +10%

−10%

−5%

0%

+5%

+10%

+15%

fH2(x): Beam tube [% improvement]

f H
4
(x

):
B
ig

B
eB

e
[%

im
p
ro
ve
m
en
t]

Attainment front
HHRC

1
(e) Beam tube and Big BeBe rig

−1% 0% +1% +2% +3% +4% +5%

−15%

−10%

−5%

0%

+5%

+10%

+15%

fH3(x): Small BeBe [% improvement]

f H
4
(x

):
B
ig

B
eB

e
[%

im
p
ro
ve
m
en
t]

Attainment front
HHRC

1
(f) Small BeBe and Big BeBe rig

Figure 10.8: Attainment front projections extracted from five optimisation runs for problem instance
(10.6). Each subgraph depicts a two-dimensional projection of the front onto the plane corresponding to
a pair of objectives.
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10.4 Conclusion

Based on the results presented above, it may be concluded that the AMALGAMnpm method, as
implemented within a new MICFMO decision support feature in the OSCAR-4 system, does, in
fact, find solutions to the constrained MICFMO problem that are of adequate quality for practi-
cal usage. Numerous simultaneous improvements in the values of several objectives over that of
the HSRC and HHRC were obtained. Furthermore, the good spread of solutions obtained in the
attainment fronts affords decision makers at the SAFARI-1 and HOR reactors with improved
flexibility in their choice of reload configuration design. Accordingly, the method may be used
as an effective decision support tool for designing reload configurations.

10.5 Chapter summary

In this chapter, a new MICFMO decision support feature in the OSCAR-4 system was used to
solve (approximately) several realistic case study problem instances for the SAFARI-1 and HOR
research reactors in §10.2 and §10.3, respectively. The numerical results obtained indicated that
the AMALGAMnpm method, on which this OSCAR-4 feature is based, is able to find high-quality
solutions to instances of the constrained MICFMO problem that are suitable for practical usage.
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CHAPTER 11

A decision support system framework
for MICFM
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A conceptual framework for an optimisation-based personal decision support system, dedicated
to multiobjective in-core fuel management, is proposed in this chapter. Each constituent compo-
nent of the system is discussed in some detail, after which a listing of suggestions for populating
some of these components is presented.

11.1 Introduction

As already reported in this dissertation, the author implemented the scalarisation-based method-
ology proposed in Chapter 5 and the multiobjective hyperheuristic investigated in Chapter 9
in the OSCAR-4 code system, thereby enabling the system to render decision support for mul-
tiobjective in-core fuel management (MICFM). A reactor simulation code has therefore been
extended with an MICFM decision support feature. It may, however, be argued that a fully-
fledged computerised decision support system (DSS) for MICFM, in which a reactor simulation
code forms but one part of the greater system, should be aimed for instead.

Recall from Chapter 3 that ICFM has been studied for several decades, and the majority of that
research involved power reactors within the context of single-objective optimisation. During that
time, a number of computerised tools have been developed, both in academia and industry, that
may be regarded as DSSs [1, 147, 223]. An example of a prominent knowledge-based DSS (also
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known as an expert system) for ICFM is the system emanating from the FUELCON project
(which was discussed in §3.3.1). Metaheuristics are also widely employed in optimisation-based
DSSs for solving the ICFMO problem. Examples of systems in which the SA algorithm is em-
ployed are the ROSA software package [223], the FORMOSA suite of codes [129, 142], and the
XIMAGE/SIMAN graphical fuel management and loading pattern optimisation suite [235]. Sim-
ilarly, the CIGARO system [35], the GARCO package [1] and the INSIGHT software tool [239]
are examples of DSSs in which a GA is adopted as metaheuristic solution technique.

Apart from the FORMOSA suite, the aforementioned tools provide decision support only in the
context of single-objective ICFM. In the case of the FORMOSA suite, the MICFMO problem
is solved in terms of identifying a nondominated set of reload configurations, which is also the
case in this dissertation. A decision maker should then ultimately select only one of these reload
configurations according to his subjective preferences. It is, however, not necessarily obvious
how to select this preferred reload configuration. Additional support may therefore be required
to aid a decision maker in his choice. In multiple criteria decision analysis (MCDA), a finite
set of predetermined alternatives is available and the aim is to identify a preferred alternative
by incorporating the specific preferences of a decision maker during the identification process.
It is therefore crucial that some level of MCDA support be rendered during MICFM so that
a final reload configuration may be settled upon by a decision maker. To the best knowledge
of the author, however, no research is available in the literature involving the development or
application of MCDA techniques to MICFM.

Finally, it is noted that the aforementioned tools have all been designed for application to
power reactors. MICFM decision support should, however, also include capabilities for research
reactors since decision makers at these reactors encounter many of the MICFM challenges that
those at power reactors are also faced with (and sometimes even more).

A generic optimisation-based DSS framework for MICFM is therefore proposed in this chapter in
an attempt to address the shortcomings within existing DSS tools for ICFM, as identified above.
This conceptual framework is intended to serve as a high-level formalisation of a computerised
DSS tool which may assist decision makers at nuclear reactors in single-cycle MICFM reload
configuration design. In principle, the framework is applicable in the context of any conventional
light water power or research reactor.

11.2 Background

According to Shim et al. [193], a DSS is a “computer technology solution that can be used
to support complex decision making and problem solving.” It should be capable of identifying
candidate decision alternatives, as well as determining their consequences, before providing
recommendations once those consequences have been evaluated [162]. Any DSS exhibiting these
capabilities supports the decision making model popularised by Herbert Simon in which three
phases, namely intelligence, design and choice, characterise the model [162, 193, 200].

In the classical design for a DSS proposed by Sprague [200], three major components constitute
the system, namely a data subsystem, a model subsystem, and a user interface. A diagrammatic
representation of the components of this DSS design is given in Figure 11.1. In the data sub-
system, sophisticated database management techniques are utilised for accessing external and
internal data. Different modelling functions may be found in the model subsystem that are
employed for constructing an appropriate decision making model. Finally, the user interface en-
ables a user to interact with the DSS, allowing him/her to analyse and choose between different
decision alternatives.
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Figure 11.1: The classical design of a DSS, as proposed by Sprague [200].

An appreciable amount of research has been conducted over the years in respect of each com-
ponent of this classical DSS design [193]. Today, there are numerous different types of DSSs
available in the literature that have evolved from the early designs. A history of these develop-
ments, as well as a listing of several different DSS types, may be found in [7, 193].

According to Arnott and Pervan [7], a personal DSS is a small-scale system in which the aim is
to support one decision task, and it is typically developed for a single user (or a small number of
independent users). Such a DSS type is therefore appropriate in the context of MICFM, because
the single decision task is that of choosing which reload configuration to load into a reactor core,
while the user of the system is typically a nuclear reactor operator or engineer.

As evidenced by the discussion in Chapter 3, the intricacies of MICFM may be captured, to a
large extent, within an optimisation model. Accordingly, by Alter’s taxonomy of DSSs in [7], it
then follows that a model-orientated personal DSS for MICFM, based on an optimisation model,
would be a suitable type of DSS to pursue. The system may also be referred to as an intelligent
DSS if so-called artificial intelligence techniques (which includes metaheuristics) are adopted to
solve the associated optimisation model [7].

11.3 The proposed optimisation-based DSS framework

In this section, a conceptual framework is presented for a generic optimisation-based personal
DSS for MICFM. The framework is novel in the sense that, to the best knowledge of the author,
no other framework proposals of similar scope of application exist in the ICFM literature. The
DSS in this framework comprises six major components, namely a database management system
(DBMS), a problem generator (PG), an optimisation engine (OE), a function evaluator (FE),
an optional auxiliary optimisation system (AOS), and a human machine interface (HMI). A
diagrammatic representation of the proposed DSS is presented in Figure 11.2. Dashed lines in
the diagram indicate that the component or connection is optional.

The HMI component facilitates all interactions between a user and the DSS, which makes it
one of the most critical components in the system. An internal collection of general and/or
problem-specific information is maintained in the DBMS component, while it also retrieves any
required input data from external sources. In the PG component, a specific MICFMO prob-
lem instance is generated, along with its associated optimisation model, by utilising input and
modelling information sourced from the DBMS and/or through the HMI. Next, the OE compo-
nent employs an MOO solver to identify a nondominated set of reload configurations (possibly
Pareto optimal) by solving the relevant optimisation model. Thereafter, MCDA support (also
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Figure 11.2: A high-level diagrammatic representation of the proposed optimisation-based personal
DSS for MICFM.

within the OE component) is rendered to the user in order to facilitate the selection of one fuel
reload configuration only. Any candidate reload configuration is evaluated by employing the FE
component. Finally, the optional AOS component contains any supporting features that may
enhance the efficiency or effectiveness of optimisation in the DSS.

It is intended that the components in the proposed DSS framework be modular in their design.
The robustness and general applicability of the DSS should be improved by this modularity
since it allows for components to be extended, replaced or even removed entirely with relative
ease. This may also be true for sub-components in the system.

In the sections that follow, an overview of each DSS component is presented diagrammatically,
and this is followed by a detailed discussion on its function in each case. As before, optional
sub-components are indicated by dashed lines in all the diagrams.

11.3.1 The database management system (DBMS)

A diagrammatic representation of the DBMS component is presented in Figure 11.3. The
component contains an internal collection of general and/or problem-specific information and
knowledge, as well as data management routines for access, modification and retrieval purposes.
Any external data required to conduct MICFM, such as the number of fresh fuel assemblies to
consider, what the planned operational cycle length should be, and so forth, are also retrieved
by the DBMS. The primary source of external data is the OCFM decision process, which was
briefly described in Chapter 4.
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Figure 11.3: The database management system (DBMS) component of the DSS in Figure 11.2.

The fuel assembly inventory is generally the most important part of the DBMS. In this inventory,
the physical properties of every fuel assembly that has previously formed part, or will form part
of future, ICFM decisions for a reactor, are tracked (assuming the assembly is not depleted).
As explained in Chapter 2, the isotopic composition of any fuel assembly loaded into a reactor
core has to be known because of the particular contribution it makes to the neutron flux.

An optimisation model base is also contained in the DBMS and, as mentioned in §11.2, it should
consist of various modelling functions that may be employed to generate an MICFMO problem
instance (and its associated optimisation model). In accordance with the existing DSSs discussed
in §11.1, known objectives, constraints and decision variables within the context of MICFMO
should be available for the DSS user to choose from. If, however, some model elements do not
form part of the current model base, they may be added by a user through the HMI.

Since a vast amount of experience has been accumulated by field experts charged with designing
reload configurations over the years, their knowledge may aid in solving an MICFMO problem
instance (e.g. as is the case with an expert system). In order to include such invaluable experience
in the DSS, it may be captured within a knowledge base as part of the DBMS and subsequently
revised when necessary by using the HMI. Typically, a knowledge base takes the form of a set
of heuristic rules [147]. Historical reload configurations, known to have performed well for a
given problem instance, may similarly be included in a library of configurations kept within the
DBMS. Such configurations may be employed, for example, as starting points during the search
for new configurations in the OE component.

11.3.2 The problem generator (PG)

The PG component is presented in Figure 11.4 and its function is to generate a specific MICFMO
problem instance for consideration. As such, a problem instance sub-component comprises the
objectives, constraints and decision variables selected by the user, obtained either from the
model base in the DBMS component, or directly from new user input through the HMI. Data
required for the specific problem instance in respect of the fuel assemblies are also to be found in
the PG component. Only a subset of the fuel assemblies tracked in the DBMS is considered for
data extraction. It should correspond to those assemblies selected for potential reloading in the
reactor core (e.g. determined as part of the OCFM decision process), for the operational cycle
under consideration. The relevant data necessary to perform optimisation may, for example,
consist of the axial burnup distribution of each fuel assembly, or its total 235U mass, etc.
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Figure 11.4: The problem generator (PG) component of the DSS in Figure 11.2.

Finally, in order to construct an optimisation model associated with the particular MICFMO
problem instance, a model translator sub-component is employed. This sub-component is respon-
sible for representing the optimisation model in a suitable format for use in the OE component of
the DSS, i.e. to enable the application of an MOO solver. Examples thereof include the solution
encoding of a reload configuration (binary, integer, permutation, etc.), closed form expressions
for objective and constraint functions in terms of the decision variables, or place-holders for
function calls to a reactor core simulator, and so forth.

11.3.3 The optimisation engine (OE)

At the heart of the proposed optimisation-based personal DSS lies its OE component, which is
presented diagrammatically in Figure 11.5. An MOO solver sub-component renders the primary
level of MICFM decision support and it is utilised for solving the optimisation model associated
with the specific problem instance received from the PG component. The MOO solver may
employ an exact or approximate solution technique, depending on the available computational
budget and the optimisation model adopted. A suitable constraint handling technique may also
be required. Given the implications of the NFL theorem for optimisation, as discussed in §9.1,
multiple approximate solution techniques should be available for the user to choose from.

Multiobjective optimisation solver

Multiple criteria
decision analysis engine

OE

Set of trade-off
reload

configurations

Recommended
reload configuration

Figure 11.5: The optimisation engine (OE) component of the DSS in Figure 11.2.
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Once the MOO solver concludes its optimisation run(s), a nondominated set of reload configura-
tions (possibly Pareto optimal) is obtained and forwarded to an MCDA engine sub-component.
At this point, the MCDA engine renders the secondary level of MICFM decision support. It is
utilised to refine the nondominated set by incorporating subjective decision maker preferences,
possibly in an interactive manner, until a final reload configuration may be recommended. It is
this recommendation which is ultimately the result returned by the DSS. Given the subjective
nature of human preference, a variety of MCDA techniques should ideally be available for the
user to choose from. Some form of data fusion process may even be adopted to aggregate the
outcomes of different techniques.

11.3.4 The function evaluator (FE)

An overview of the FE component is presented in Figure 11.6. This component is employed
to evaluate the objective and constraint functions of any reload configuration obtained during
the execution of processes in the OE component. A high-fidelity reactor core simulator sub-
component is central to the FE, because it is required, at the very least, to validate the function
values associated with a candidate reload configuration. The purpose of this validation is two-
fold. First, it ensures that a candidate configuration meets all the safety-related regulatory
requirements necessary to be considered for actual loading into a reactor core. Secondly, it
yields highly accurate objective function values, allowing the user to consider the performance
of different reload configurations in the most informed manner. The reactor core simulator
should therefore be applied to the nondominated set of reload configurations forwarded from
the MOO solver to the MCDA engine. By doing so, any invalid reload configuration may be
eliminated from further contention before application of the MCDA engine.

FE

Reactor core simulator

Surrogate calculation model

Simplified analytical model

Figure 11.6: The function evaluator (FE) component of the DSS in Figure 11.2.

During the solution of the MICFMO model in the OE component, objective and constraint
function evaluations may be performed using the same reactor core simulator described above,
although such usage may be computationally too expensive. In order to improve the efficiency
of the DSS, a computationally cheaper surrogate calculation model sub-component may be
employed within the FE for these function evaluations (e.g. ANNs). Depending on which opti-
misation model is adopted, function evaluations may also be performed according to a simplified
analytical model sub-component.

11.3.5 The auxiliary optimisation system (AOS)

The optional AOS component of the DSS is presented in Figure 11.7. It contains a number of
sub-components that may enhance the efficiency or effectiveness of optimisation in the DSS. In
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the solver enhancement features sub-component, a surrogate calculation model screening feature
may be adopted within a hybrid function evaluation approach. According to such an approach,
the surrogate calculation model from the FE component is employed as a screening tool to
pre-evaluate reload configurations quickly. Thereafter, only those configurations that passed the
screening process are evaluated by the reactor core simulator, thus saving valuable computation
time. The work of Yamamoto [236] motivated the inclusion of this screening feature in the AOS.
Another enhancement feature, popularly employed in the ICFMO literature [1, 131, 136, 204],
may be to utilise the knowledge base within the DBMS during application of the MOO solver.
By doing so, certain regions in the decision space of the MICFMO problem are precluded during
optimisation so that the search may be focussed in regions known to be promising. Furthermore,
as already alluded to in §11.3.1, historical reload configurations kept in the DBMS may be utilised
for seeding an MOA with good solutions so as to enhance its search.

Surrogate calculation
model screening

Knowledge base
application

Reload configuration
seeding

Automated parameter
tuning subsystem

Ideal objective vector
preprocessor

AOS

Solver enhancement features

Self-learning
update subsystem

Figure 11.7: The auxiliary optimisation system (AOS) component of the DSS in Figure 11.2.

Given that many candidate reload configurations are evaluated during optimisation within the
OE component, this feedback information may be exploited in a self-learning update subsystem.
The idea behind such a subsystem is that it should be capable of revising the surrogate calcula-
tion model and/or the knowledge base kept within the DBMS in an automated fashion. Future
calculations may then benefit from previous calculations using the enhanced features. Inclusion
of this subsystem in the DSS was inspired by the work in [148].

In the majority of MOAs available in the literature, specific tuning parameter values have
to be selected by the user prior to optimisation (e.g. as experienced with the metaheuristics
described in Chapter 7). Since the quality of the optimisation results may depend on these
values, an automated parameter tuning subsystem may be included in the AOS component so
as to remove the burden of manual parameter tuning from the user. Although tuning methods
have been proposed in the literature within the context of single-objective optimisation [47, 141],
it is more difficult to find similar approaches involving MOO [228].

Finally, in many MCDA techniques, as well as certain scalarisation approaches for MOO, knowl-
edge of the ideal or utopian objective vector (or an approximation thereof) is required [139].
Usually, these vectors are not known for practical MOP instances, as is the case for MICFMO.
Accordingly, inclusion of an ideal objective vector preprocessor sub-component in the AOS may
prove useful to the MCDA engine. A single-objective optimisation solver within the preprocessor
may then be employed to calculate the ideal objective vector (or an approximation therof) for
a given MICFMO problem instance.
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11.3.6 The human machine interface (HMI)

Recall that all interactions between a user and the DSS are facilitated by the HMI compo-
nent. The design and usage of the HMI should be easy to understand by both technical and
non-technical users (e.g. analysts and managers) and ideally take the form of a fully interactive
graphical computer interface. Any user of the DSS should be convinced that his preferences
have been suitably captured by the recommended reload configuration. It is therefore crucial
that the results obtained by the MOO solver (so as to gain an understanding of what perfor-
mances are possible) and the MCDA engine be presented to the user in an appropriate and
user-friendly manner through the HMI. Furthermore, once the DSS has recommended a final
reload configuration, all the pertinent information in respect of that configuration should be
displayed in the HMI for detailed scrutiny by a user. Finally, two contrasting design objectives
have to be balanced in the HMI. Since humans have limited processing capacities [162], an infor-
mation overload should be avoided. On the other hand, excessive automation is also detrimental
because it may weaken the understanding and interpretation of results by the user.

11.4 Suggestions for populating components of the DSS

Recall from §1.4 that populating the components of the proposed DSS, as well as its subsequent
implementation on a personal computer, does not fall within the scope of this dissertation. A
number of techniques and approaches may, however, be suggested for populating some of these
components. These suggestions may be considered as a potential starting point in future work
to demonstrate the functionality of the system.

Given the outcomes of the extensive investigation performed in this dissertation into the ability of
several different MOAs to conduct constrained MICFMO, it is suggested that the AMALGAM
method be adopted in the MOO solver sub-component of the OE. Similarly, the augmented
Chebyshev scalarising function, defined in (5.11), may be considered for application in the
MCDA engine for identifying a preferred reload configuration. It has also been demonstrated
that MFNNs are well-suited to take on the role of a surrogate calculation model in the FE
component of the DSS. The OSCAR-4 system may, of course, be adopted as the reactor core
simulator, while its related service codes may be employed for the purpose of tracking the fuel
assembly inventory in the DBMS.

Suggestions not based on the research conducted in this disseration are as follows. The screening
approach proposed by Yamamoto [236] may be adopted as part of the solver enhancement
features in the AOS component. Similarly, the extensive knowledge base developed within the
FUELCON expert system may be utilised in the DBMS and applied within the AOS as an
enhancement feature. Finally, the model developed by Quist et al. [168] may be adopted as a
simplified analytical model in the FE.

11.5 Chapter summary

In this chapter, a conceptual framework was proposed for an optimisation-based personal DSS in
the context of MICFM. A motivation for the proposal was provided in §11.1. Thereafter, some
basic background information concerning DSSs was provided in §11.2 in order to familiarise the
reader with the relevant concepts.

In §11.3, the proposed DSS framework was presented. This framework consists of six major com-
ponents, namely a database management system, a problem generator, an optimisation engine,
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a function evaluator, an optional auxiliary optimisation system, and a human machine interface.
Each of these components were discussed in some detail in §11.3.1–§11.3.6, respectively. This
framework may serve as the basis for developing a computerised tool dedicated to aid nuclear
reactor operators or engineers in designing suitable reload configurations.

Finally, several suggestions for populating some of the components of the DSS were presented
in §11.4. These suggestions may be implemented in future work to demonstrate the functioning
of the system.
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The dissertation closes with a summary of the work contained therein, an appraisal of the
contributions of the dissertation, and suggestions for related future work.

12.1 Dissertation summary

The dissertation opened in Chapter 1 with a brief history of nuclear fission and the development
of nuclear reactors. An informal description of the ICFMO problem was presented in the second
section of the chapter. It also included a brief discussion of the problem within the context of
the SAFARI-1 research reactor in South Africa. This led to the introduction of the MICFMO
problem, which was the topic considered in this dissertation. In the next section, two priori-
ties for the dissertation were identified, namely: (1) that shortcomings present in the existing
optimisation methodology within the reactor core calculation code system, OSCAR-4, should
be addressed; and, (2) that the suitability of alternative multiobjective computational methods
should be investigated in the context of the MICFMO problem. The chapter closed with an
outline of the scope and objectives to be pursued in the dissertation, as well as a brief description
of the organisation of the material contained therein.

Fundamental concepts and terminology found in the literature on nuclear reactor analysis and
theory were introduced in Chapter 2 (in fulfilment of Dissertation Objective I of §1.4). This
included a description of the most important nuclear reactions, and a more detailed discussion
on nuclear fission and its chain reaction. A brief overview of the basic components of a nuclear
reactor core was also presented. Furthermore, the process of neutron transport (along with its
diffusion approximation) was discussed. The chapter closed with a description of the primary
neutronic aspects of interest within nuclear reactor analysis, as well as a discussion on the
necessity of reactor core calculation code systems.

A comprehensive literature survey on the ICFMO problem was presented in Chapter 3. It
contained an overview of the most popular objective functions and constraints adopted in model
formulations for the ICFMO problem (in partial fulfilment of Dissertation Objective II of §1.4),
as well as a discussion on typical solution techniques that have previously been employed in
the literature to solve the problem (also in partial fulfilment of Dissertation Objective II). The
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chapter closed with a brief discussion on different approaches considered in the literature for
reducing the computational burden associated with ICFMO (in final fulfilment of Dissertation
Objective II of §1.4).

In Chapter 4, the topic of ICFMO was placed in its proper context within the broader scope
of nuclear fuel management. Several necessary problem assumptions were presented before the
optimisation model adopted in this dissertation for the MICFMO problem was formulated (in
fulfilment of Dissertation Objective III of §1.4). Thereafter, the reactor core calculation code
system utilised in this dissertation, namely the OSCAR-4 system, was briefly described. The
chapter then closed with descriptions of two nuclear research reactors considered as case studies
in this dissertation, namely the SAFARI-1 and HOR reactors. This included the specification of
typical MICFMO objectives and constraints associated with each reactor, as well as descriptions
of the current reload configuration design approaches employed at the reactors.

Chapter 5 opened with a detailed discussion on the notion of Pareto optimality and other related
concepts. In the next section, the widely-employed weighting method (utilised in the existing
OSCAR-4 optimisation feature) was described and its shortcomings were pointed out. There-
after, in accordance with the first priority in this dissertation, a scalarisation-based methodology
for MICFMO was proposed in order to address the shortcomings present in the existing method-
ology (in partial fulfilment of Dissertation Objective IV of §1.4). The components of the new
methodology, namely an augmented Chebyshev metric-based scalarising objective function, an
additive penalty function constraint handling technique and an adapted HS algorithm, were de-
scribed in some detail. The proposed methodology was furthermore implemented by the author
within a completely revised version of the MICFMO decision support feature in the OSCAR-4
system (in partial fulfilment of Dissertation Objective IV of §1.4). This feature was used to
solve several ICFMO problem instances for the SAFARI-1 and HOR reactors. The results thus
obtained were compared to reload configurations that were designed according to the current
reload approach followed at each reactor (in final fulfilment of Dissertation Objective IV of §1.4).
Numerical results indicated that the newly proposed methodology is robust and versatile, and
that it may be used as an effective decision support tool for designing reload configurations.

Several ANNs were constructed in Chapter 6 as surrogate models for the prediction of SAFARI-1
core parameters corresponding to MICFMO objectives and constraints (in fulfilment of Disserta-
tion Objective V of §1.4). The chapter opened with a motivation of the necessity of these neural
networks, namely to aid in the investigation of different computational methods for solving the
MICFMO problem. General concepts pertaining to ANNs were presented in the next section,
and this was followed by a more detailed description of MFNNs, as well as important notions
pertaining to the architecture and training thereof. Details on the construction of a suite of
neural networks for the SAFARI-1 reactor were described next, before the chapter closed with
a presentation of the results obtained during the training and application of the networks. It
was found that the MFNNs have the ability to predict SAFARI-1 core parameters much quicker
(and with an acceptable accuracy) than when using the OSCAR-4 system (typically by four
orders of magnitude). This finding was made within the context of a single operational cycle of
the SAFARI-1 reactor, using a fixed set of fuel assemblies as network input.

In Chapter 7, several multiobjective metaheuristics considered for application in the context of
MICFMO were discussed (in support of the fulfilment of Dissertation Objective VII of §1.4).
These metaheuristics include two evolutionary algorithms (NSGA-II and SPEA2), two swarm
intelligence algorithms (OMOPSO and P-ACO), two local search algorithms (AMOSA and
MOVNS), a probabilistic model-based algorithm (MOOCEM), and a multiobjective version of
the HS algorithm (MOHS). Each metaheuristic was described in some detail, and a pseudo-code
listing thereof was provided. These MOAs were deliberately sourced from different classes of
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metaheuristics in an attempt to encompass the diversity of algorithms available in the literature.
A new constraint handling technique for MOO, referred to as the MPF technique, was proposed
in this chapter (in partial fulfilment of Dissertation Objective VIII of §1.4), while a description
of the existing CDP technique was also presented. The observation that the CDP technique
cannot necessarily be adopted within any MOA served as motivation for the proposal of the
MPF technique. The chapter closed with a discussion on the topic of performance assessment
for MOAs.

Some of the main results of this dissertation were presented in Chapter 8, where the constraint
handling techniques and multiobjective metaheuristics of Chapter 7 were applied to a test suite
of constrained MICFMO problem instances. The results thus obtained were compared in terms
of solution quality (given a fixed computation budget). These comparisons served the purpose
of identifying which computational methods are most suitable in the context of constrained
MICFMO, in accordance with second priority in this dissertation. The chapter opened with
the creation of the aforementioned test suite (in fulfilment of Dissertation Objective VI of §1.4)
which consisted of sixteen constrained MICFMO problem instances based on the SAFARI-1 re-
actor. The construction of this test suite was motivated by the absence of standard benchmark
problem instances for MICFMO in the literature. The experimental design followed during the
comparative study was presented in the next section, after which a description of the nonpara-
metric statistical analysis conducted on the numerical results was presented. In fulfilment of
Dissertation Objective VII, and in final fulfilment of Dissertation Objective VIII of §1.4, the
chapter closed with a presentation of the numerical results of the comparative study. It was
found that the newly-proposed MPF technique is a competitive alternative to the existing CDP
technique within the context of constrained MICFMO. The metaheuristic comparison, on the
other hand, indicated that the NSGA-II, the P-ACO algorithm and the MOOCEM are gener-
ally the best-performing MOAs across the problem instances in the context of the test suite.
In addition, it was found that the MOVNS algorithm also performs well in the context of the
bi-objective problem instances.

In Chapter 9, a multiobjective hyperheuristic, called the AMALGAM method, was investigated
in terms of its ability to conduct effective constrained MICFMO in the context of the test suite
of problem instances established in Chapter 8 (in fulfilment of Dissertation Objective IX of §1.4).
The aim of the investigation was to improve upon the level of generality at which MICFMO
may be performed, in further support of the second priority in this dissertation. The chapter
opened with a discussion on the general working of the AMALGAM method, after which the
findings of Chapter 8 were incorporated into the method. The necessary modifications made in
this dissertation to the original formulation of the method were also described. Four variants of
the AMALGAM method (depending on the combination of sub-algorithms implemented) were
then identified for comprehensive investigation in a two-stage comparative study. During the
first stage, the promising variants of the AMALGAM method were compared to one another in
order to select a preferred variant. Then, during the second stage, that preferred variant was
compared against its constituent sub-algorithms (whose results were taken from Chapter 8),
in order to determine whether it is beneficial to use the AMALGAM method instead of the
individual MOAs. As before, an extensive nonparametric statistical analysis was conducted in
the context of the results obtained. It was found that the AMALGAMnpm method, whose sub-
algorithms are the NSGA-II, the P-ACO algorithm and the MOOCEM, is the preferred variant
of the hyperheuristic. Furthermore, it was inferred that this variant of the method significantly
outperforms the three individual sub-algorithms (with a significance level of α̃ = 0.05) in the
majority of instances within the MICFMO test suite. The hyperheuristic therefore achieved the
dual goal of raising the level of generality at which MICFMO may be performed and of yielding
improved optimisation performance.
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Based on the recommendation in Chapter 9, the preferred AMALGAMnpm method was imple-
mented by the author within a new MICFMO decision support feature in the OSCAR-4 system
(in partial fulfilment of Dissertation Objective X of §1.4). In Chapter 10, this new feature was
applied to carry out several MICFMO case studies in the context of the SAFARI-1 and HOR re-
actors (in final fulfilment of Dissertation Objective X of §1.4). Six problem instances were solved
using this feature in order to demonstrate the practical applicability of the AMALGAMnpm

method. Numerical results indicated that the method is able to find good-quality solutions to
constrained MICFMO problem instances that are suitable for practical usage. The new feature
may therefore be used as an effective decision support tool for designing reload configurations.

Finally, in Chapter 11, a conceptual framework was proposed for an optimisation-based per-
sonal DSS, dedicated to MICFM (in fulfilment of Dissertation Objective XI of §1.4). The chap-
ter opened with a motivation for the proposal, along with some basic background information
concerning DSSs. Thereafter, the DSS framework was presented and each of its constituent com-
ponents was discussed in some detail. Several suggestions were also put forward for populating
the various generic components of the system.

12.2 Appraisal of dissertation contributions

The main contributions of this dissertation are sixfold. The first contribution centres around
the proposal of the scalarisation-based methodology for constrained MICFMO in §5.3, its im-
plementation in the OSCAR-4 system and its application to several problem instances based
on the SAFARI-1 and HOR research reactors in §5.4 and §5.5, respectively. The theory which
underlies the augmented Chebyshev-based scalarising objective function in the methodology en-
sures that the shortcomings of the widely-employed weighting method (as identified in §5.2) are
addressed. The arbitrariness of weighting coefficient selection is also avoided by adopting a more
natural approach in which aspiration levels have to be specified. The APF constraint handling
technique ensures that the methodology may be applied to both constrained and unconstrained
problem instances, while the adapted HS algorithm is an adequate solution technique. It was
also shown that both single- and multiobjective problem instances may be modelled and solved
using the methodology, thus enhancing its flexibility. Feedback received from users utilising this
MICFMO feature in the OSCAR-4 system has been positive thus far, although the usage of the
feature has not progressed beyond scoping analyses. This work has been published in [183, 187,
189].

The second contribution of this dissertation is the MFNNs constructed as surrogate models for
the prediction of various SAFARI-1 core parameters in §6.5. It constitutes the first application
of ANN modelling to the SAFARI-1 reactor and the results obtained were very promising. It
was found that the MFNNs have the ability to predict SAFARI-1 core parameters much quicker
(and with acceptable accuracy) than when using the OSCAR-4 system (typically by four orders
of magnitude). To the best knowledge of the author, the content of Chapter 6 also constitutes
the most comprehensive demonstration to date of the capability of ANNs to predict nuclear
reactor core parameters, in the sense that all of the following parameters have been modelled
successfully: thermal neutron flux in various locations across the core (in the context of both
average and maximum values over a region), power levels in certain locations across the core
(in the context of both total and minimum values over a region), the power peaking factor,
the shutdown margin, the excess reactivity and the control bank worth. This work has been
published in [186].

The third contribution consists of two parts, namely the development of a new multiplicative
penalty function constraint handling technique for MOO in §7.2.2, and the first application of the
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MOOCEM to the MICFMO problem. These two sub-contributions are closely linked since the
MPF technique was developed initially for application within the MOOCEM. The mechanism
of the MPF technique is simple — instead of adding different penalty values to incommensurate
objectives (as is typically done in the literature), a single value is used to penalise all the
objectives simultaneously (by multiplication). Traditional domination may then be applied
within any MOA using the penalised objective vector. Furthermore, only one free parameter
has to be tuned within the technique. As mentioned, the MPF technique was applied within
the MOOCEM, which led to the first application of the method to the constrained MICFMO
problem. A rigorous derivation of the problem-specific updating rule in the MOOCEM, so as
to apply the method in the context of MICFMO, was also performed. This work has been
published in [188].

The fourth contribution of this dissertation revolves around the work contained in Chapter 8,
namely the comparative study between the newly-proposed MPF techique and the existing CDP
technique within the context of constrained MICFMO (in §8.4.1), and the extensive multiob-
jective metaheuristic comparative study involving eight different MOAs for solving constrained
MICFMO problem instances (in §8.4.2). A test suite of various MICFMO problem instances
based on the SAFARI-1 reactor was established specifically for these comparisons. In addition,
these studies constitute the first application of the SPEA2, and the OMOPSO, P-ACO, AMOSA,
MOVNS and MOHS algoritms to the MICFMO problem. The comparisons were performed in a
structured and statistically sound manner which involved the application of nonparametric sta-
tistical procedures, within the context of both a single-problem and a multi-problem analysis.
As such, it supports the ongoing drive in the literature towards more structured experimen-
tal studies. To the best knowledge of the author, the content of §8.4.2 constitutes the largest
single study of its kind, comparing (for the first time) eight modern state-of-the-art multiobjec-
tive metaheuristics in the context of constrained MICFMO on the largest number of problem
instances, utilising two MOO performance indicators. In addition, the number of objectives
considered in each of these MICFMO instances was also varied between two, three, and four ob-
jectives, in order to gauge the scalability of the metaheuristics. It was found that the NSGA-II,
the P-ACO algorithm and the MOOCEM are generally the best-performing MOAs with re-
spect to both the IHVD and IR2 performance indicators across the problem instances in the test
suite. Furthermore, it was found that the MOVNS algorithm also performs well in the context
of the bi-objective problem instances. Finally, it was also found that the MPF technique is a
competitive alternative to the CDP technique, with neither approach being able to consistently
outperform the other. This work has been published in [184].

The fifth contribution centres around the investigation, implementation and application of the
AMALGAM method to constrained MICFMO in Chapters 9 and 10. This work constitutes
the first application of a multiobjective hyperheuristic (i.e. the AMALGAM method) to the
MICFMO problem. The investigation into the suitability of the method, also following a struc-
tured and statistically sound procedure, may be viewed as an extension of the metaheuristic
comparative study. Whereas no single multiobjective metaheuristic was able to consistently
outperform the other algorithms in the comparative study of §8.4.2, it was found that the
AMALGAMnpm method, whose sub-algorithms are the NSGA-II, the P-ACO algorithm and
the MOOCEM, significantly outperforms its three individual sub-algorithms in the majority of
instances within the MICFMO test suite. The hyperheuristic therefore raises the level of gener-
ality at which MICFMO may be performed and it is capable of yielding improved optimisation
performance. This variant of the AMALGAM method was also implemented in the OSCAR-4
system, although it has not been released yet to users of the system. In respect of several
MICFMO case studies that were conducted based on the SAFARI-1 and HOR reactors, using
this capability of the OSCAR-4 system, it was found that good-quality solutions to the con-
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strained MICFMO problem are obtained, which are suitable for practical usage. The intention
is to submit this work for possible future publication.

Finally, the sixth contribution of the dissertation was the design of a conceptual framework for
an optimisation-based personal DSS, dedicated to MICFM in Chapter 11. This framework was
informed by existing approaches within the literature and by requirements further identified by
the author. The framework is novel in the sense that, to the best knowledge of the author, no
other framework proposals of a similar scope of application exist in the ICFM literature. Several
suggestions were also put forward for populating the various generic components of the system.
This work has been accepted for publication [185].

12.3 Suggestions for future work

In fulfilment of Dissertation Objective XII of §1.4, a number of suggestions are made in this
section with respect to possible future work related to the contents of this dissertation.

Suggestion 12.1: Apply the scalarisation-based methodology and the AMALGAMnpm method
to MICFMO problem instances involving power reactors.

The scalarisation-based methodology and the AMALGAMnpm method, as implemented within
the OSCAR-4 system, are capable of solving (approximately) any MICFMO problem instance
conforming to the model in (4.1) presented in §4.3. Following the work conducted in this
dissertation in respect of research reactor application, a natural next step would be to apply
the aforementioned two approaches for solving MICFMO problem instances involving power
reactors. The model in (4.1) may also be extended so that fuel assembly rotations and burnable
absorber placement are incorporated in the optimisation problem, thus enhancing the realism
for power reactor applications. Such model changes would necessitate algorithmic modifications
to these MOO approaches, and may therefore also be pursued in future work.

Suggestion 12.2: Consider the investigation of alternative metaheuristics for application to
constrained MICFMO.

Although a diverse mix of multiobjective metaheuristics were considered in this dissertation,
the realm of MOAs is vast. Several alternative MOAs may therefore be investigated for use in
MICFMO. The following examples constitute a small subset of additional metaheuristics, based
on different design paradigms, that may be pursued: the Pareto efficient global optimization
(ParEGO) algorithm [104], the multiobjective evolutionary algorithm based on decomposition
(MOEA/D) [244], the archive-based hybrid scatter search (AbYSS) algorithm [144], the multiob-
jective Tchebycheff-based genetic algorithm (MOTGA) [3], the R2 indicator-based evolutionary
algorithm (R2-IBEA) [160], and the probabilistic model-based multiobjective evolutionary algo-
rithm (MMEA) [247]. Similarly, there surely exist other single-objective metaheuristics which
may obtain better solutions than the adapted HS algorithm currently utilised in the scalarisation-
based methodology for MICFMO. Alternative metaheuristics such as SA, tabu search, GAs,
differential evolution, ACO, PSO, estimation of distribution algorithms, and many more [41,
213] may therefore also be investigated.

Suggestion 12.3: Consider further investigation of the AMALGAM method.

As pointed out by Raad [170], the generic version of the AMALGAM method is not without its
shortcomings. First, the selection for replacement of solutions, from one generation to the next,
is currently performed according to the strategy of the NSGA-II. Adopting a different strategy
may, however, lead to improved results. In [171], for example, a variant of the AMALGAM
method in which the SPEA2 selection strategy is adopted yielded superior results in the context
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of water distribution systems design. Secondly, the offspring partitioning/reward scheme of (9.1)
does not explicitly take the quality of fitness improvement into account. A sub-algorithm yielding
few successful offspring solutions of superior quality may therefore be rewarded insufficiently
within the existing AMALGAM scheme, compared to a sub-algorithm yielding many successful
offspring solutions of inferior quality. It is proposed that indicator-based selection strategies and
reward schemes may be investigated to alleviate this problem. The contribution of a successful
offspring solution to the hypervolume of the population may, for example, be incorporated into
the reward scheme, while a similar approach may be used in the selection strategy (as was
done in [48]). Another example may be to incorporate the R2 indicator into the selection
strategy/reward scheme, taking inspiration from the work in [160].

Suggestion 12.4: Extend the investigation of the multiobjective metaheuristics to a scenario
in which a greater computational budget is allowed, or a measure of convergence is adopted as
algorithmic stopping criterion.

In the comparative studies conducted in this dissertation, a fixed computational budget of
approximately 1 000 evaluations was adopted as the stopping criterion for each MOA. This
scope delimitation was motivated in §4.2.6 and is in line with the current practical limitation of
MICFMO for the SAFARI-1 reactor. The inferences drawn from these studies are, however, not
necessarily valid for instances in which a larger computational budget is allowed. Some MOAs
may yield poor results during their initial stages but ultimately outperform other algorithms
given sufficient time. A natural next step would therefore be to investigate the performance
of each MOA when the computational budget is relaxed, for example, to 10 000 evaluations.
Another option may be to adopt some measure of convergence as the algorithmic stopping
criterion (e.g. no change in the population for ten consecutive generations) instead of a fixed
computational budget. Examples of scenarios in which such a relaxed computational budget
is allowed may be when offline optimisation calculations are sought, instead of cycle-to-cycle
online calculations, or when a reactor experiences a prolonged shutdown period before the next
operational cycle.

Suggestion 12.5: Resolve the permutation sampling discrepancy in the MOOCEM.

As pointed out in §C.3 during the derivation of the MICFMO updating rule of the MOOCEM,
the algorithm for generating permutation solutions is simply employed as a heuristic to speed
up the solution generation process during optimisation. Accordingly, solutions generated by
Algorithm 7.10 do not follow the exact same probability distribution as those generated according
to the sampling procedure used earlier in the derivation (in which the decision variables were
assumed to be independent). This discrepancy is not limited to the MICFMO problem, and has
also been encountered in, for example, the travelling salesman problem [30] and the BAP [2].
A direction for future work may therefore be to design a permutation sampling algorithm in
which the probability distribution is followed more closely. Another direction may be to derive
an updating rule according to a probability distribution in which the decision variables are
assumed to be dependent.

Suggestion 12.6: Establish a database of MICFMO benchmark problem instances and associated
MOO results.

A significant difficulty associated with an algorithmic comparative study in the context of
MICFMO, such as the one conducted in this dissertation, is the lack of readily available data for
the validation of optimisation results. As mentioned in §8.1, no standard benchmark problem
instances for MICFMO exist in the literature. It is therefore suggested that the ICFM research
community establish an online repository of MICFMO benchmarks that may be used by future
researchers to enhance the quality of experimental studies conducted. This would also necessi-
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tate the usage of a single (freely-available) deterministic reactor core calculation code system,
or a corresponding deterministic surrogate model for each nuclear reactor considered, in order
to ensure that function evaluations are performed consistently. Such a benchmark repository
may also double as a database of MOO results obtained for each problem instance.

Suggestion 12.7: Consider incorporating heuristic information into the MOAs.

Apart from adopting a permutation encoding within each MOA, and the heuristic information
matrix forming part of the P-ACO algorithm, no a priori knowledge in respect of the MICFMO
problem was incorporated into any of the metaheuristics considered in this dissertation. It is,
however, well established in the literature that inclusion of problem-specific information into a
solution technique may accelerate and/or improve the quality of solutions obtained for a given
instance. The generality of the solution technique may, however, be adversely affected by such
an inclusion of knowledge (as per the NFL theorem). Inclusion of heuristic information into the
MOAs may therefore be investigated, although special care would have to be taken in order to
avoid a significant loss of generality. It is likely, however, that the MOVNS algorithm will be an
exception to this phenomenon. Several neighbourhood move operators may be designed based
on different heuristics. These operators may then be employed in conjunction with swap and
scramble operators, thus potentially improving the generality of the algorithm.

Suggestion 12.8: Consider enhancing the generalisation of the MFNNs in order to utilise them
in the context of multicycle ICFMO.

It was demonstrated in Chapter 6 that the predictive cabilities of the MFNNs constructed in
this dissertation are restricted to the operational cycle on which the networks were trained. In
other words, the networks exhibit insufficient generalisation for applicability to other operational
cycles. A next step would be to reconstruct the networks (by employing a larger and more diverse
training set which may consist of different or additional input parameters, and possibly different
architectures) and attempt to achieve sufficient generalisation so that predictions of acceptable
accuracy may be realised for an arbitrary operational cycle. Such neural networks may then be
employed to aid investigations within the context of multicycle MICFMO which, ordinarily, is
computationally much more expensive than single-cycle optimisation.

Suggestion 12.9: Consider the implementation of the proposed optimisation-based personal
DSS in a computerised tool.

The proposed optimisation-based personal DSS, dedicated to MICFMO, may be implemented
as a computerised tool in order to demonstrate its functionality. A number of techniques and
approaches were suggested in §11.4 for populating some of the generic DSS components. Those
suggestions may be used as a starting point in the development of such a concept demonstrator.

Suggestion 12.10: Consider the investigation of MCDA techniques in the context of MICFMO.

As highlighted in §11.1, a decision maker should ultimately choose only one reload configuration
from a nondominated set of configurations returned by an MOA, according to his subjective
preferences. Since it is not necessarily obvious how to choose this preferred reload configuration,
some level of MCDA support should form a crucial component in MICFM. To the best knowledge
of the author, no research on the development or application of MCDA techniques to MICFM
is available in the literature. As such, future work on the subject is highly encouraged.
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R, 2013, Hyper-heuristics: A survey of the state of the art , Journal of the Operational
Research Society, 64, pp. 1695–1724.

[24] Burke EK & Kendall G (Eds), 2005, Search methodologies: Introductory tutorials in
optimization and decision support techniques, Springer, New York (NY).

[25] Caldas GHF & Schirru R, 2008, Parameterless evolutionary algorithm applied to the
nuclear reload problem, Annals of Nuclear Energy, 35, pp. 583–590.

[26] Chakhlevitch K & Cowling P, 2008, Hyperheuristics: Recent developments, pp. 3–29
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[68] Glover F & Sörensen K, 2015, Metaheuristics, Scholarpedia, 10(4), pp. 6532.

[69] Goldberg DE, 1989, Genetic algorithms in search, optimization and machine learning ,
Addison-Wesley, Boston (MA).

[70] Hagan MT & Menhaj MB, 1994, Training feedforward networks with the Marquardt
algorithm, IEEE Transactions on Neural Networks, 5(6), pp. 898–993.

[71] Hamasaki M & Takeda T, 1986, Application of depletion perturbation theory to fuel
loading optimization, Journal of Nuclear Science and Technology, 23(1), pp. 1–10.

[72] Hansen MP & Jaszkiewicz A, 1998, Evaluating the quality of approximations to
the non-dominated set , (Unpublished) Technical Report IMM-REP-1998-7, Institute of
Mathematical Modelling, Technical University of Denmark.
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[199] Sörensen K & Glover F, 2013, Metaheuristics, pp. 960–970 in Gass SI & Fu M
(Eds), Encyclopedia of operations research and management science, Springer, New York
(NY).

[200] Sprague RH, 1980, A framework for the development of decision support systems, MIS
Quarterly, 4(4), pp. 1–26.

[201] Srinivas N & Deb K, 1994, Multiobjective optimization using nondominated sorting in
genetic algorithms, Evolutionary Computation, 2(3), pp. 221–248.

[202] Stacey WM, 2001, Nuclear reactor physics, John Wiley & Sons, Inc., New York (NY).

[203] Stander G, Prinsloo RH, Müller E & Tomašević DI, 2008, OSCAR-4 code system
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[211] Svozil D, Kvasnička V & Posṕıchal J, 1997, Introduction to multi-layer feed-forward
neural networks, Chemometrics and Intelligent Laboratory Systems, 39, pp. 43–62.

[212] Tahara Y, Hamamoto K, Takase M & Suzuki K, 1991, Computer aided system
for generating fuel shuffling configurations based on knowledge engineering , Journal of
Nuclear Science and Technology, 28(5), pp. 399–408.

[213] Talbi E, 2009, Metaheuristics: From design to implementation, John Wiley & Sons, Inc.,
Hoboken (NJ).

[214] The MathWorks Inc., 2014, MATLAB Release 2014a, 2015a and 2016a, Natick (MA),
url: http://www.mathworks.com/products/matlab/.

[215] The MathWorks Inc., 2014, Neural Network Toolbox Release 2014a, Natick (MA),
url: http://www.mathworks.com/products/neural-network/.

[216] The MathWorks Inc., 2015, Statistics and Machine Learning Toolbox Release 2015a,
Natick (MA), url: http://www.mathworks.com/products/statistics/.

[217] Turinsky PJ, 2010, Core isotopic depletion and fuel management , pp. 1241–1312 in
Cacuci DG (Ed), Handbook of nuclear engineering , Springer, New York (NY).

[218] Turinsky PJ, 2005, Nuclear fuel management optimization: A work in progress, Nuclear
Technology, 151, pp. 3–8.

[219] Turinsky PJ & Parks GT, 1999, Advances in nuclear fuel management for light water
reactors, pp. 137–165 in Lewins J & Becker M (Eds), Advances in nuclear science
and technology, Volume 26 , Springer, New York (NY).

[220] United States Nuclear Regulatory Commission, 2016, Scram, [Online], [Cited
June 12th, 2016], Available from http://www.nrc .gov/reading- rm/basic-
ref/glossary/scram.html.

[221] Urli NB, 1978, Optimization theory and fuel and absorber management problems of light-
water reactors, (Unpublished) Technical Report IAEA-R-1706-F, International Atomic
Energy Agency, Vienna.

[222] van Geemert R, Quist AJ, Hoogenboom JE & Gibcus HPM, 1998, Research
reactor in-core fuel management optimization by application of multiple cyclic interchange
algorithms, Nuclear Engineering and Design, 186, pp. 369–377.

[223] Verhagen FCM, van der Schaar M, de Kruijf WJM, van de Wetering TFH
& Jones RD, 1997, ROSA, a utility tool for loading pattern optimization, Proceedings of
the Topical Meeting on the Advances in Nuclear Fuel Management II (ANFM II), Myrtle
Beach (SC).

[224] Villarino EA, 2002, Usage of burnable poison on research reactors, Proceedings of the
2002 International Nuclear Atlantic Conference, Rio de Janeiro, Available on CD-ROM.

Stellenbosch University  https://scholar.sun.ac.za



212 REFERENCES

[225] Vogel DL & Weiss ZJ, 1992, A general, multigroup formulation of the analytic nodal
method , Proceedings of the 1992 International Topical Meeting on Advances in Reactor
Physics, Charleston (SC), pp. 497–508.

[226] Vrugt JA & Robinson BA, 2007, Improved evolutionary optimisation from geneti-
cally adaptive multimethod search, Proceedings of the National Academy of Sciences, 3,
pp. 708–711.

[227] Wall I & Fenech H, 1965, The application of dynamic programming to fuel manage-
ment optimization, Nuclear Science and Engineering, 22, pp. 285–297.

[228] Wessing S & Naujoks B, 2010, Sequential parameter optimization for multi-objective
problems, Proceedings of the IEEE Congress on Evolutionary Computation, Barcelona,
pp. 1–8.

[229] While L, Bradstreet L & Barone L, 2012, A fast way of calculating exact hyper-
volumes, IEEE Transactions on Evolutionary Computation, 16(1), pp. 86–95.

[230] While L, Hingston P, Barone L & Huband S, 2006, A faster algorithm for cal-
culating hypervolume, IEEE Transactions on Evolutionary Computation, 10(1), pp. 29–
38.

[231] Winkelman AJM, 2015, Employee at Reactor Institute Delft, [Personal Communica-
tion], Contactable at A.J.M.Winkelman@tudelft.nl.

[232] Winston WL, 2004, Operations research: Applications and algorithms, 4th Edition,
Brooks/Cole, Canada.

[233] Wolpert DH & Macready WG, 1997, No free lunch theorems for optimization, IEEE
Transactions on Evolutionary Computation, 1(1), pp. 67–82.

[234] World Nuclear Association, 2015, Safety of plants, [Online], [Cited November 3rd,
2015], Available from http://www.world- nuclear.org/info/Safety- and-
Security/Safety-of-Plants/.

[235] XIMAGE/SIMAN-PWR — Nuclear Fuel Analysis Software, 2016, Studsvik Scandpower,
Inc., Waltham (MA).

[236] Yamamoto A, 2003, Application of neural network for loading pattern screening of in-
core optimization calculations, Nuclear Technology, 144, pp. 63–75.

[237] Yamamoto A & Hashimoto H, 2000, Application of temperature parallel simulated
annealing to loading pattern optimizations of pressurized water reactors, Nuclear Science
and Engineering, 136, pp. 247–257.

[238] Yamamoto A & Hashimoto H, 2002, Application of the distributed genetic algorithm
for in-core fuel optimization problems under parallel computational environment , Journal
of Nuclear Science and Technology, 39(12), pp. 1281–1288.

[239] Yamamoto A, Noda H, Ito N & Maruyama T, 1997, INSIGHT: An integrated
scoping analysis tool for in-core fuel management of PWR, Journal of Nuclear Science
and Technology, 34(8), pp. 847–855.

[240] Yang XS, 2009, Harmony search as a metaheuristic algorithm, pp. 1–14 in Geem
ZW (Ed), Music-inspired harmony search algorithm: Theory and applications, Springer,
Berlin.

[241] Yu H & Wilamowski BM, 2011, Levenberg-Marquardt training , pp. 12-1–12-15 in Wil-
amowski BM & Irwin JD (Eds), The industrial electronics handbook , CRC Press, Boca
Raton (FL).

Stellenbosch University  https://scholar.sun.ac.za



REFERENCES 213

[242] Zameer A, Mirza SM & Mirza NM, 2014, Core loading pattern optimization of a typ-
ical two-loop 300 MWe PWR using simulated annealing (PWR), novel crossover genetic
algorithms (GA and hybrid GA(SA) schemes), Annals of Nuclear Energy, 65, pp. 122–
131.

[243] Zavaljevski N, 1990, A model for fuel shuffling and burnable absorbers optimization in
low leakage PWRs, Annals of Nuclear Energy, 17(4), pp. 217–220.

[244] Zhang Q & Li H, 2007, MOEA/D: A multiobjective evolutionary algorithm based on
decomposition, IEEE Transactions on Evolutionary Computation, 11(6), pp. 712–731.

[245] Zhao J, Knight B, Nissan E & Soper A, 1998, FuelGen: A genetic algorithm-based
system for fuel loading pattern design in nuclear power reactors, Expert Systems With
Applications, 14, pp. 461–470.

[246] Zhou A, Qu B, Li H, Zhao S, Suganthan PN & Zhang Q, 2011, Multiobjective
evolutionary algorithms: A survey of the state of the art , Swarm and Evolutionary Com-
putation, 1, pp. 32–49.

[247] Zhou A, Zhang Q & Jin Y, 2009, Approximating the set of Pareto-optimal solutions in
both the decision and objective spaces by an estimation of distribution algorithm, IEEE
Transactions on Evolutionary Computation, 13(5), pp. 1167–1189.

[248] Zitzler E, Laumanns M & Thiele L, 2001, SPEA2: Improving the strength Pareto
evolutionary algorithm, (Unpublished) Technical Report 103, Computer Engineering and
Networks Laboratory (TIK), Swiss Federal Institute of Technology (ETH), Zurich.

[249] Zitzler E & Thiele L, 1998, An evolutionary algorithm for multiobjective optimiza-
tion: The strength Pareto approach, (Unpublished) Technical Report 43, Computer En-
gineering and Communication Networks Laboratory (TIK), Swiss Federal Institute of
Technology (ETH), Zurich.

[250] Zitzler E & Thiele L, 1999, Multiobjective evolutionary algorithms: A comparative
case study and the strength Pareto approach, IEEE Transactions on Evolutionary Com-
putation, 3(4), pp. 257–271.

[251] Zitzler E, Thiele L, Laumanns M, Fonseca CM & de Fonseca VG, 2003, Per-
formance assessment of multiobjective optimizers: An analysis and review , IEEE Trans-
actions on Evolutionary Computation, 7(2), pp. 117–132.

Stellenbosch University  https://scholar.sun.ac.za



214 REFERENCES

Stellenbosch University  https://scholar.sun.ac.za



APPENDIX A

The backpropagation training algorithm

This appendix contains details concerning the backpropagation training algorithm for neural
networks. In particular, a derivation of the backpropagation of errors method is presented within
the context of a MFNN with one hidden layer, as illustrated in Figure 6.3. This derivation is
a modified reproduction of the general derivation presented in [17]. Furthermore, the gradient-
based optimisation technique employed in the training algorithm is also elaborated upon. This
appendix should be read in conjunction with Chapter 6, with a particular emphasis on §6.3.1,
as the terminologies and notations employed in this appendix were introduced there.

Suitable values for network weights are determined in the backpropagation training algorithm
by minimising an appropriate error function, denoted by E. Suppose that individual errors Eo

may be defined separately for each input vector o ∈ {1, . . . , N} in the training set, and that
E may be expressed as a summation over all these individual errors, where N is the number
of vectors in the set. Assume also that Eo is expressible as a differentiable function of the
network outputs, that is Eo = Eo(c1, . . . , cn). The goal is to obtain a procedure (i.e. the
backpropagation of errors method) according to which the derivatives of the error function E
may be evaluated with respect to the network weights so as to use them in a gradient-based
optimisation technique. Since E =

∑N
o=1E

o, these derivatives may be expressed as summations
over the set of input training vectors of the derivatives for each vector separately. Accordingly,
only one input training vector has to be considered at a time.

A.1 The backpropagation of errors method

Suppose that input training vector o has been presented to the MFNN and transmitted over the
network. The activations of all the hidden and output neurons have therefore been calculated
using (6.1)–(6.4). This process is typically referred to as forward propagation because it may be
regarded as information flow in a forward direction over the network.

Consider the derivative of Eo with respect to some weight w
(2)
kj in the second layer. Although the

activations of the neurons depend on vector o, the superscript o is omitted from the respective

notations here so as to avoid clutter. It is noted that Eo depends on w
(2)
kj only through the net

input η
(2)
k to output neuron k. Applying the chain rule for differentiation then yields

∂Eo

∂w
(2)
kj

=
∂Eo

∂η
(2)
k

∂η
(2)
k

∂w
(2)
kj

. (A.1)
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A useful notation introduced at this point is

δ
(2)
k =

∂Eo

∂η
(2)
k

, (A.2)

with the δ’s typically being referred to as errors. Next, by using (6.3), the derivative of η
(2)
k

with respect to the network weight evaluates to

∂η
(2)
k

∂w
(2)
kj

= bj . (A.3)

Substituting (A.2) and (A.3) into (A.1) yields

∂Eo

∂w
(2)
kj

= δ
(2)
k bj . (A.4)

Therefore, in order to evaluate the derivative of Eo with respect to a weight in the second layer

of the MFNN, only the value of δ
(2)
k has to be calculated for each output neuron before applying

(A.4). When the chain rule is applied once more to (A.2) in conjunction with the definition of
ck in (6.4), it is found that

δ
(2)
k =

∂Eo

∂ck

∂ck

∂η
(2)
k

=
∂Eo

∂ck

∂

∂η
(2)
k

(
z(2)

(
η

(2)
k

))

= z′(2)

(
η

(2)
k

) ∂Eo
∂ck

. (A.5)

Consider next the derivative of Eo with respect to some weight w
(1)
ji in the first layer of the

MFNN. Application of the chain rule, using (6.1) and adopting the δ-notation introduced above,
yields

∂Eo

∂w
(1)
ji

=
∂Eo

∂η
(1)
j

∂η
(1)
j

∂w
(1)
ji

= δ
(1)
j ai. (A.6)

It is observed that (A.6) has the same general form as (A.4). Similarly, then, in order to evaluate
the derivative of Eo with respect to a weight in the first layer of the MFNN, only the value of

δ
(1)
j has to be calculated for each hidden neuron before applying (A.6).

The error function Eo may be considered as a function of all the activations η
(2)
k which received

input from hidden neuron j. In this case, k = 1, . . . , n such that Eo = Eo
(
η

(2)
1 , . . . , η

(2)
n

)
.

Accordingly,

δ
(1)
j =

∂Eo(η
(2)
1 , . . . , η

(2)
n )

∂η
(1)
j

. (A.7)
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Applying the chain rule to (A.7) twice and substituting (A.2) into the expression yields

δ
(1)
j =

∂Eo

∂η
(2)
1

∂η
(2)
1

∂η
(1)
j

+ · · ·+ ∂Eo

∂η
(2)
n

∂η
(2)
n

∂η
(1)
j

=

n∑

k=1

∂Eo

∂η
(2)
k

∂η
(2)
k

∂η
(1)
j

=

n∑

k=1

δ
(2)
k

∂η
(2)
k

∂bj

∂bj

∂η
(1)
j

. (A.8)

The final expression for δ
(1)
j may now be obtained using (6.3) and the definition of bj in (6.2) to

evaluate (A.8), thus yielding

δ
(1)
j = z′(1)

(
η

(1)
j

) n∑

k=1

w
(2)
kj δ

(2)
k . (A.9)

This so-called backpropagation formula generalises to MFNNs with any number of hidden layers
— the value of δ for some specific hidden neuron may be obtained by propagating the δ-values
backwards over the network from neurons in succeeding layers [17].

In summary, the backpropagation of errors method for evaluating the derivatives of Eo with
respect to the network weights in an MFNN with one hidden layer is as follows:

1. Present input training vector o ∈ {1, . . . , N} to the network and forward propagate over
the network using (6.1)–(6.4) to calculate all the activations in the neurons.

2. Evaluate δ
(2)
k for each output neuron using (A.5).

3. Backpropagate the δ
(2)
k -values over the network and evaluate δ

(1)
j for each hidden neuron

using (A.9).

4. Calculate the derivatives of the error Eo using (A.4) and (A.6).

Since it has been assumed that E =
∑N

o=1E
o, the derivative of the total error E with respect to

the network weights may be obtained by repeating the aforementioned four steps for each input
vector in the training set, after which

∂E

∂wrs
=

N∑

o=1

∂Eo

∂wrs
(A.10)

may be calculated.

A.2 The gradient-based optimisation technique

In order to complete the description of the backpropagation training algorithm, a method for
updating the weights based on these error function derivatives has to be specified. Although
different gradient-based optimisation techniques may be considered [17], the simplest is to employ
the gradient descent method for minimisation. According to this method, a decision vector x is
iteratively updated according to

xnew = xold − κ∇Ψ(xold), (A.11)
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where Ψ(x) is the function to be minimised, and κ is a step size. The method is based on the
observation that a differentiable function Ψ(x) decreases the “fastest” about a point u if one
moves in the direction of the negative gradient of Ψ at point u, thus in the direction −∇Ψ(u).
Applying (A.11) in the context of MFNN training yields a rule for adjusting the network weights
such that the error function is minimised.

The rule, then, for adjusting the MFNN weights in the second layer within an online learning
paradigm is given by

w
(2)
kj = w

(2)
kj − ε

∂Eo

∂w
(2)
kj

(A.12)

= w
(2)
kj − εδ

(2)
k bj . (A.13)

Similarly, the rule for adjusting the weights in the first layer within an online learning paradigm
is given by

w
(1)
ji = w

(1)
ji − ε

∂Eo

∂w
(1)
ji

(A.14)

= w
(1)
ji − εδ

(1)
j ai. (A.15)

During batch learning, the derivative of error E should be used in (A.12) and (A.14) instead of
the derivative of Eo only. This, in turn, will mean that a summation over the input vectors in
the training set has to be employed in (A.13) and (A.15), as shown in [17].
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APPENDIX B

Graphical results obtained during
neural network training

This appendix contains the graphical results obtained during the training of the MFNNs de-
scribed in Chapter 6, but which were not presented in §6.6 so as to enhance the flow of exposition
in the main text. The notation employed in this appendix conforms to the definitions presented
in Table 6.1 for each neural network.

In Figures B.1–B.9, the convergence graphs of the training process for networks φB12, φSi, φI1,
φI2, ψtot

Mo, ρcbw, ρsdm, ρex and ρppf, respectively, are presented. Similarly, the graphical results
pertaining to the predictive capabilities of networks φB12, φSi, φI1, φI2, ψtot

Mo, ρcbw, ρsdm and ρex

are presented in Figure B.10. For each network, a scatter graph of the 20 000 target values in
the combined training and test sets versus their predicted values is presented in the figure. The
straight line in each graph, labelled “Y=Target” in the legend, corresponds to the theoretical
case in which perfect predictions are achieved.

0 500 1 000 1 500 2 000

100

101

102

103

104

Epochs

S
ca
le
d
M
S
E

Training

Test

1

(a) Scaled MSE of the training and test sets

0 500 1 000 1 500 2 000
0

2 000

4 000

6 000

Epochs

ξ

1

(b) The effective number of parameters

Figure B.1: Convergence results for the φB12 neural network.
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Figure B.2: Convergence results for the φSi neural network.
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Figure B.3: Convergence results for the φI1 neural network.
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Figure B.4: Convergence results for the φI2 neural network.
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Upon inspection of Figures B.3(b) and B.4(b), it appears that the φI1 and φI2 networks, respec-
tively, have not converged. Their corresponding scaled MSE values in Figures B.3(a) and B.4(a),
however, remain fairly constant for several epochs. Since both networks produced very good
predictions, with maximum and average absolute relative errors of less than 1% for the training
and test sets (see Table 6.2), additional training was deemed unnecessary.

In Figure B.5, it is observed that network ψtot
Mo converges after 981 epochs according to the

default stopping criteria of the Toolbox. This is similar to what occured during the training of
the ψmin

Mo network, as shown in Figure 6.6.
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Figure B.5: Convergence results for the ψtot
Mo neural network.
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Figure B.6: Convergence results for the ρcbw neural network.
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Figure B.7: Convergence results for the ρsdm neural network.
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Figure B.8: Convergence results for the ρex neural network.
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Figure B.9: Convergence results for the ψppf neural network.
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(a) The φB12 neural network
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(b) The φSi neural network
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(c) The φI1 neural network
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(d) The φI2 neural network
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(e) The ψtot
Mo neural network
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(f) The ρcbw neural network
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(g) The ρsdm neural network
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(h) The ρex neural network

Figure B.10: Prediction quality results for the φB12, φSi, φI1, φI2, ψ
tot
Mo, ρcbw, ρsdm and ρex neural

networks.
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APPENDIX C

Additional information on multiobjective
metaheuristics

This appendix contains additional information on the multiobjective metaheuristics employed
for solving the MICFMO problem described in Chapter 7. The content of the appendix was
not presented in that chapter so as to enhance the exposition of the main text. The notation
employed in this appendix conforms to the definitions presented in Chapter 7. Finally, unless
specifically stated otherwise, where any reference is made to random selection, it is assumed
that a uniform distribution is employed during selection.

C.1 Permutation-based MOEA variation operators

In this section, each of the permutation-based variation operators introduced in §7.3, namely the
PMX, POS and CX crossover operators, as well as the swap and scramble mutation operators,
is described and illustrated by means of an example. Note that the crossover operator examples
have been reproduced from Larrañaga et al. [113].

The PMX operator

According to the PMX operator, two cut points are selected at random along the parent solu-
tions. Consider, for example, the following two parent solutions, with cut points that have been
selected between the third and fourth components, as well as between the sixth and seventh
components:

Parent 1: [1 2 3 | 4 5 6 | 7 8],
Parent 2: [3 7 5 | 1 6 8 | 2 4].

In order to create offspring solutions, the substring of components between the two cutpoints in
the first parent is copied into the second offspring, and likewise for the second parent and first
offspring:

Offspring 1: [∗ ∗ ∗ | 1 6 8 | ∗ ∗],
Offspring 2: [∗ ∗ ∗ | 4 5 6 | ∗ ∗].

225
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These substrings are called mapping sections because, in this example, they define the mappings
4↔ 1, 5↔ 6 and 6↔ 8. The remaining components in each offspring i ∈ {1, 2} are now filled
by copying the components of the i-th parent into it. Whenever a value is already present in
the offspring, however, the mappings are employed to replace them.

In the example, then, the first component in offspring 1 would have taken a value of 1 because
it is copied from the first parent. Since the value 1 is already present in the fourth component
of offspring 1, however, the mapping 4 ↔ 1 is employed to replace it. Therefore, the first
component in offspring 1 now takes a value of 4. The second, third and seventh components
of offspring 1 may take the values directly from the first parent. The last component, however,
would have taken a value of 8, but it already appears in the sixth component of the offspring.
Using the mappings 5 ↔ 6 and 6 ↔ 8, the component now takes a value of 5. Following the
same procedure, offspring 2 may also be filled. The new offspring solutions are then

Offspring 1: [4 2 3 | 1 6 8 | 7 5],
Offspring 2: [3 7 8 | 4 5 6 | 2 1].

The POS operator

According to the POS operator, a subset of components in the parent solutions is selected at
random. Consider, for example, the following two parents in which the second, third and sixth
components have been selected randomly:

↓ ↓ ↓
Parent 1: [1 2 3 4 5 6 7 8],
Parent 2: [2 4 6 8 7 5 3 1].

In order to create offspring solutions, the subset of components in the first parent is copied into
the second offspring, while the subset in the second parent is copied into the first offspring:

Offspring 1: [∗ 4 6 ∗ ∗ 5 ∗ ∗],
Offspring 2: [∗ 2 3 ∗ ∗ 6 ∗ ∗].

The remaining components in each offspring i ∈ {1, 2} are now filled from left to right by adding
the missing values of the i-th parent in the same order that they appear in the parent. Therefore,
the new offspring solutions are

Offspring 1: [1 4 6 2 3 5 7 8],
Offspring 2: [4 2 3 8 7 6 5 1].

The CX operator

In the CX operator, so-called cycles are identified from the parents and their values are copied
to the offspring. The procedure to create a cycle from parent 1, for example, is as follows:

1. Start the cycle with the first component of parent 1;

2. Observe which value is in the corresponding component in parent 2;
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3. Go to the component in parent 1 having this observed value and append it to the cycle;

4. Repeat steps 2 and 3 until the first component in the cycle is reached again.

This cycle from the first parent is then copied into offspring 1. The next cycle is identified
from the second parent, now excluding the components used in the previous cycle, and copied
into offspring 1 as before. This alternating cycle identification is continued until the offspring is
fully constructed. Similarly, offspring 2 may be constructed by repeating the above-mentioned
procedure, but starting from parent 2. A graphical example of the CX operator is presented in
Figure C.1.

Parent 1:

Parent 2:

1 2 3 4 5 6 7 8

2 4 6 8 7 5 3 1

Offspring 1:

Offspring 2:

1 2 4 8

2 4 8 1

First cycle

Parent 1:

Parent 2:

3 5 6 7

6 7 5 3

Offspring 1:

Offspring 2:

1 2 4 8

2 4 8 1

Second cycle

3 5 6 7

6 7 5 3

Figure C.1: Example of the cycle crossover operator.

The swap mutation operator

According to the swap operator, two components in a solution are selected at random, and their
corresponding values are simply exchanged to form a new solution. In the example, the third
and seventh components have been selected for this binary exchange:

[1 2 3 4 5 6 7 8] =⇒ [1 2 7 4 5 6 3 8].

The scramble mutation operator

In the scramble operator, a subset of components in the solution is selected at random. Then,
the values in those components are randomly permuted (i.e. rearranged) to form a new solution.
The subset does not have to be contiguous. In the following example, four components have
been selected and rearranged:

[1 2 3 4 5 6 7 8] =⇒ [1 3 8 2 5 6 7 4].
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C.2 Permutation-based approaches within PSO algorithms

In this section, the two permutation-based approaches introduced in §7.4.1 for modifying the
OMOPSO algorithm are described. These approaches allow the algorithm to be applicable to
the MICFMO problem.

The method of random keys

According to the method of random keys [13], a solution (or in this case, the position of a
particle) is encoded by random numbers, and these values are then used as sort keys to decode
the real-valued vector into a permutation.

As an example, consider a particle whose position has been encoded as xti = [0.43, 0.86, 0.23, 0.79,
0.61]. Sorting the values in increasing order of magnitude, and noting their original indices, yields
the decoded permutation vector x = [3, 1, 5, 4, 2], as illustrated in Figure C.2.

[0.43, 0.86, 0.23, 0.79, 0.61]xt
i =

1 2 3 4 5

[0.23, 0.43, 0.61, 0.79, 0.86]xt
i =

1 23 45indices: indices:

sort the values

Figure C.2: Example of the random keys method.

By employing the method of random keys, the flight operators in OMOPSO may be applied,
unaltered, to the encoded particle positions. Accordingly, the position of a particle may then be
decoded into a solution for use in the remaining parts of the algorithm.

The approach proposed by Hu et al. [86]

In the approach proposed by Hu et al. [86], the position associated with a particle is explicitly
represented as a permutation, while the position flight operator is redefined using a probabilistic
interpretation of the velocity.

According to the approach, the velocity flight operator remains the same, although the velocity
vector components are now limited to absolute values. In the redefined position flight operator,
the value in each velocity component is normalised to the range [0,1] by dividing it by the
maximum value attained in the vector. Each of these values then represents the probability
with which a binary exchange should occur in the corresponding component of the particle’s
position. If an exchange is required, the affected component takes the value of the corresponding
component in the global best position. This process is illustrated by means of an example in
Figure C.3.

A shortcoming of this approach is that a particle having the same position as the global best
position would never change. Accordingly, the swap mutation operator, borrowed from the
evolutionary computation literature, is applied to a particle whenever this is the case [86].

C.3 Derivation of the MICFMO updating rule in the MOOCEM

In order to apply the MOOCEM to the MICFMO problem, a parameterised probability dis-
tribution has to be specified and the stochastic program (7.17) has to be solved in order to
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2 9 0.8 12 5.5
∣∣vt+1

i

∣∣ =
normalise

0.167 0.75 0.067 1.0 0.458

1 2 3 4 5xgb =

5 3 1 2 4xt
i =

exchange

5 2 1 3 4xt
i + vt+1

i =

Figure C.3: Example of the permutation-based position flight operator proposed by Hu et al. [86].

obtain/derive an updating rule for the parameter vector. In this section, a derivation of this
updating rule for MICFMO (shown in (7.20)) is presented. This derivation is very similar to
those for the TSP in [30] and the BAP in [2].

Consider the unconstrained version of the MICFMO problem (4.1), given by

maximise f(x) = [f1(x), f2(x), . . . , fq(x)],

x ∈ X ,

}
(C.1)

where X , as before, denotes the set of all valid reload configurations (i.e. permutations decision
vectors of length n). Accordingly, the cardinality of the decision space is |X | = n!.

The first step in the derivation is to relate (C.1) to an equivalent optimisation problem. Let X̃
be the set of decision vectors corresponding to reload configurations in which the permutation
requirement of X has been relaxed (i.e. the same fuel assembly may be assigned to multiple
loading positions). The cardinality of the set is therefore |X̃ | = nn. It is important to note that
X ⊂ X̃ . Define, also, the objective function f̃k(x) on X̃ for k = 1, . . . , q as

f̃k(x) =

{
fk(x) if x ∈ X ,
−∞ otherwise,

and let f̃(x) denote the corresponding objective vector [f̃1(x), . . . , f̃q(x)]. The MICFMO prob-
lem (C.1) is therefore equivalent to the optimisation problem

maximise f̃(x),

subject to x ∈ X .

}
(C.2)

A simple procedure for generating a random decision vector x = [x1, . . . , xn] ∈ X̃ is to sample
each xi independently according to a fixed distribution pi = [pi1, . . . , pin] for i = 1, . . . , n, where
the component pij corresponds to the probability of assigning fuel assembly j ∈ {1, . . . , n} into
loading position i. These distributions pi may be combined into an n × n probability matrix
P = [pij ], with pij > 0 and

n∑

j=1

pij = 1, for i = 1, . . . , n. (C.3)
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Let X̃ij be the set of all reload configurations x ∈ X̃ for which xi = j, and define the indicator
function

I{x∈X̃ij} =

{
1 if x ∈ X̃ij ,
0 otherwise.

The probability mass function p(·;P ) of x ∈ X̃ , parameterised by the matrix P , is then given
by

p(x;P ) =
n∏

i=1

n∏

j=1

(pij)
I{x∈X̃ij} . (C.4)

In order to update the parameter matrix P for the equivalent optimisation problem (C.2), the
stochastic program (7.17) has to be solved, where the Pareto ranks in the indicator function
(7.18) are now determined according to the objective vector f̃(x) instead of f(x). Furthermore,
(7.18) has to be solved under the additional constraint set (C.3). Since the stochastic program
is a maximisation problem with equality constraints, the method of Lagrange multipliers may
be employed to solve it. Let λ1, . . . , λn denote the Lagrange multipliers for the n equality
constraints in (C.3). The Lagrangian function is given by

L(P , λ1, . . . , λn) =
1

|Rt|

|Rt|∑

k=1

I{ρk≤ρE} ln p(xk;P ) +
n∑

i=1

λi




n∑

j=1

pij − 1


 . (C.5)

The natural logarithm of p(xk;P ) required in (C.5) is given by

ln p(xk;P ) = ln




n∏

i=1

n∏

j=1

(pij)
I{x∈X̃ij}




=

n∑

i=1

n∑

j=1

ln(pij)
I{x∈X̃ij}

=

n∑

i=1

n∑

j=1

I{x∈X̃ij} ln pij . (C.6)

Substituting (C.6) into (C.5) yields

L(P , λ1, . . . , λn) =
1

|Rt|

|Rt|∑

k=1

I{ρk≤ρE}




n∑

i=1

n∑

j=1

I{x∈X̃ij} ln pij


+

n∑

i=1

λi




n∑

j=1

pij − 1


 . (C.7)

Next, by differentiating L in (C.7) with respect to an arbitrary pij , and setting the result equal
to zero, it is found that

∂L
∂pij

=
1

|Rt|

|Rt|∑

k=1

I{ρk≤ρE}




n∑

i=1

n∑

j=1

I{x∈X̃ij}
∂

∂pij
ln pij


+

n∑

i=1

λi




n∑

j=1

∂

∂pij
pij − 0




=
1

|Rt|

|Rt|∑

k=1

I{ρk≤ρE}

(
I{x∈X̃ij}

1

pij

)
+ λi

= 0,
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and therefore

1

|Rt|

|Rt|∑

k=1

I{ρk≤ρE}I{x∈X̃ij} = −λipij . (C.8)

Summing over all possible j = 1, . . . , n in (C.8) yields

1

|Rt|

|Rt|∑

k=1

I{ρk≤ρE}

n∑

j=1

I{x∈X̃ij} = −λi
n∑

j=1

pij . (C.9)

and by substituting (C.3) into (C.9), it follows, after simplification, that

1

|Rt|

|Rt|∑

k=1

I{ρk≤ρE} = −λi. (C.10)

Finally, by substituting (C.10) into (C.8), the updating rule

pij =

∑|Rt|
k=1 I{ρk≤ρE}I{x∈X̃ij}∑|Rt|

k=1 I{ρk≤ρE}
(C.11)

is obtained. The interpretation of this updating rule is as follows. In order to update the
probability pij , count the number of decision vectors in which fuel assembly j is assigned to
loading position i, within the set of those decision vectors whose Pareto ranks do not exceed ρE ,
and divide it by the total number of decision vectors whose Pareto ranks are at most ρE .

The generation of solutions and the parameter updating for the equivalent problem (C.2) may
now be performed as follows. For each decision variable xi, sample its value independently
from the i-th row of the probability matrix P until a full solution is generated. Once a set of
solutions has been generated and combined with the elite set, apply the updating rule (C.11) to
this combined set in order determine the new probabilities in P .

The majority of solutions generated in the aforementioned manner would, however, not be
useful in the context of the MICFMO problem, because their components would not form a
permutation (i.e. a valid reload configuration). Accordingly, their objective function values
f̃ would be −∞. The generation of such undesirable solutions may, however, be avoided by
employing an alternative generation procedure in which permutations are created explicitly.
This may be achieved by employing Algorithm 7.10 to generate solutions.

It should, however, be noted that the solutions generated by Algorithm 7.10 do not follow the
exact same probability distribution as those generated according to the independent, variable-
by-variable sampling procedure. The algorithm is simply employed as a heuristic to speed
up the solution generation process during optimisation [108]. It is, however, assumed that
Algorithm 7.10 generates solutions according to p(·;P ). As such, the updating rule (C.11) is
unaffected by the algorithm and, since only permutations are generated, the solutions correspond
to valid reload configurations, i.e. x ∈ X . The updating rule for the probability pij then becomes

pij =

∑|Rt|
k=1 I{ρk≤ρE}I{x∈Xij}∑|Rt|

k=1 I{ρk≤ρE}
, (C.12)

where Xij is the set of all reload configurations x ∈ X for which xi = j, and I{x∈Xij} is the
corresponding indicator function.
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APPENDIX D

Additional MICFMO experimental results

This appendix contains additional results obtained during the comparative studies described in
Chapter 8 between two constraint handling techniques and eight multiobjective metaheuristics,
but which were not presented in §8.4 so as to enhance the exposition of the main text.

D.1 Constraint handling technique comparison

In Figures D.1–D.5, box plots are presented for the converted ∆IHVD and ∆IR2 samples, obtained
for each problem instance in the test suite of §8.1, using the SPEA2 and the OMOPSO, AMOSA,
MOVNS and MOHS algorithms, respectively. The average values of the samples are also included
in the graphs as black diamond points. Negative values in these converted samples correspond
to superior performance by the MPF technique, whereas positive values correspond to superior
performance by the CDP technique.

The two-tailed Wilcoxon signed rank test was applied to the samples obtained for each test
problem instance (i.e. in the context of a single-problem analysis) in order to determine whether
there are statistically significant differences between the MPF and CDP constraint handling
techniques. The resulting p-values are presented in Tables D.1–D.5 for the SPEA2 and the
OMOPSO, AMOSA, MOVNS and MOHS algorithms, respectively. Bold-faced entries in a table
represent a statistically significant difference (for α̃ = 0.05). If a significant difference is detected,
the box plots in Figures D.1–D.5 may be referred to in order to pronounce on which constraint
handling technique outperformed the other.

A multi-problem analysis, within each class of problem instances, was also conducted using the
results obtained by each metaheuristic. In these analyses, an average indicator value per meta-
heuristic variant/problem instance pair constitutes the samples. The converted average indicator
value samples, ∆IHVD and ∆IR2, obtained by the SPEA2 and the OMOPSO, AMOSA, MOVNS
and MOHS algorithms within each problem instance class, are presented in Table D.6. The
sample values correspond to the diamond points in Figures D.1–D.5. The two-tailed Wilcoxon
signed rank test was applied to the average samples obtained for each class of problem instances.
The resulting p-values are presented in Table D.7 and, as before, bold-faced entries represent a
statistically significant difference (for α̃ = 0.05).

233
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Figure D.1: Box plots of the converted ∆IHVD samples (on the left-hand side) and ∆IR2 samples (on
the right-hand side) obtained for each problem instance in the test suite during the constraint handling
technique comparison within the SPEA2.
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Figure D.2: Box plots of the converted ∆IHVD samples (on the left-hand side) and ∆IR2 samples (on
the right-hand side) obtained for each problem instance in the test suite during the constraint handling
technique comparison within the OMOPSO algorithm.
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Figure D.3: Box plots of the converted ∆IHVD samples (on the left-hand side) and ∆IR2 samples (on
the right-hand side) obtained for each problem instance in the test suite during the constraint handling
technique comparison within the AMOSA algorithm.
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Figure D.4: Box plots of the converted ∆IHVD samples (on the left-hand side) and ∆IR2 samples (on
the right-hand side) obtained for each problem instance in the test suite during the constraint handling
technique comparison within the MOVNS algorithm.
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Figure D.5: Box plots of the converted ∆IHVD samples (on the left-hand side) and ∆IR2 samples (on
the right-hand side) obtained for each problem instance in the test suite during the constraint handling
technique comparison within the MOHS algorithm.
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Sample Wilcoxon signed rank test p-values

P1.1 P1.2 P1.3 P1.4 P1.5 P1.6
∆IHVD 0.2649 0.3131 0.0248 0.1167 0.0518 0.5988
∆IR2 0.1410 0.3667 0.0375 0.1689 0.0581 0.4840

P2.1 P2.2 P2.3 P2.4 P2.5 P2.6
∆IHVD 0.6958 0.1812 0.0192 0.4202 0.7684 0.1059
∆IR2 0.7391 0.6887 0.0849 0.3131 0.4314 0.1167

P3.1 P3.2 P3.3 P3.4
∆IHVD 0.0765 0.0422 0.3566 0.2608
∆IR2 0.2370 0.2043 0.2949 0.6887

Table D.1: Single-problem analysis results for comparing constraint handling techniques within the
SPEA2. The table contains the p-values obtained by two-tailed Wilcoxon signed rank tests applied to
the ∆IHVD and ∆IR2 samples for each problem instance. Bold-faced entries represent a statistically
significant difference (for α̃ = 0.05).

Sample Wilcoxon signed rank test p-values

P1.1 P1.2 P1.3 P1.4 P1.5 P1.6
∆IHVD 0.1284 0.1463 0.7907 0.2567 0.9564 0.0718
∆IR2 0.1059 0.2220 0.9193 0.2447 0.9643 0.1384

P2.1 P2.2 P2.3 P2.4 P2.5 P2.6
∆IHVD 0.9346 0.1145 0.2043 0.1630 0.5921 0.3368
∆IR2 0.7246 0.1975 0.7174 0.0325 0.6191 0.2043

P3.1 P3.2 P3.3 P3.4
∆IHVD 0.4037 0.4147 0.8583 0.0645
∆IR2 0.2732 0.5399 0.1844 0.1123

Table D.2: Single-problem analysis results for comparing constraint handling techniques within the
OMOPSO algorithm. The table contains the p-values obtained by two-tailed Wilcoxon signed rank
tests applied to the ∆IHVD and ∆IR2 samples for each problem instance. Bold-faced entries represent a
statistically significant difference (for α̃ = 0.05).

Sample Wilcoxon signed rank test p-values

P1.1 P1.2 P1.3 P1.4 P1.5 P1.6
∆IHVD 0.0003 0 0 0.0004 0.0047 0
∆IR2 0.0002 0 0 0.0001 0.0066 0

P2.1 P2.2 P2.3 P2.4 P2.5 P2.6
∆IHVD 0.5463 0.6535 0.4901 0.2184 0.0072 0.0441
∆IR2 0.011 0.7611 0.3876 0.7981 0.0003 0.0506

P3.1 P3.2 P3.3 P3.4
∆IHVD 0.0940 0.8205 0.0254 0.4147
∆IR2 0.6605 0.1490 0.3417 0.7318

Table D.3: Single-problem analysis results for comparing constraint handling techniques within the
AMOSA algorithm. The table contains the p-values obtained by two-tailed Wilcoxon signed rank tests
applied to the ∆IHVD and ∆IR2 samples for each problem instance. Bold-faced entries represent a
statistically significant difference (for α̃ = 0.05).
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Sample Wilcoxon signed rank test p-values

P1.1 P1.2 P1.3 P1.4 P1.5 P1.6
∆IHVD 0.0679 0.1630 0.1660 0.7174 0.2732 0.8281
∆IR2 0.1725 0.2257 0.2818 0.8507 0.3224 0.9423

P2.1 P2.2 P2.3 P2.4 P2.5 P2.6
∆IHVD 0.6958 0.8583 0.0317 0.5592 0.0431 0.0302
∆IR2 0.5399 0.7391 0.5272 0.8130 0.0375 0.0236

P3.1 P3.2 P3.3 P3.4
∆IHVD 0.9116 0.2257 0.4428 0.5921
∆IR2 0.6397 0.9961 0.1145 0.3667

Table D.4: Single-problem analysis results for comparing constraint handling techniques within the
MOVNS algorithm. The table contains the p-values obtained by two-tailed Wilcoxon signed rank tests
applied to the ∆IHVD and ∆IR2 samples for each problem instance. Bold-faced entries represent a
statistically significant difference (for α̃ = 0.05).

Sample Wilcoxon signed rank test p-values

P1.1 P1.2 P1.3 P1.4 P1.5 P1.6
∆IHVD 0.4314 0.0054 0.4602 0.0085 0.0160 0.0529
∆IR2 0.3417 0.0074 0.9961 0.0203 0.0173 0.1545

P2.1 P2.2 P2.3 P2.4 P2.5 P2.6
∆IHVD 0.4962 0.0959 0.3929 0.0366 0.1018 0.8658
∆IR2 0.0959 0.4720 0.1781 0.1909 0.0940 0.9730

P3.1 P3.2 P3.3 P3.4
∆IHVD 0.4544 0.5023 0.1436 0.9654
∆IR2 0.5463 0.9961 0.6466 0.8056

Table D.5: Single-problem analysis results for comparing constraint handling techniques within the
MOHS algorithm. The table contains the p-values obtained by two-tailed Wilcoxon signed rank tests
applied to the ∆IHVD and ∆IR2 samples for each problem instance. Bold-faced entries represent a
statistically significant difference (for α̃ = 0.05).
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Metaheuristic Sample Wilcoxon signed rank test p-values

Class 1 Class 2 Class 3

SPEA2
∆IHVD 0.03125 0.21875 1

∆IR2 0.03125 0.21875 0.875

OMOPSO
∆IHVD 0.6875 0.4375 0.375

∆IR2 0.5625 0.3125 0.125

AMOSA
∆IHVD 0.03125 0.5625 0.25

∆IR2 0.03125 0.09375 1

MOVNS
∆IHVD 0.5625 0.4375 0.875

∆IR2 0.5625 0.09375 0.25

MOHS
∆IHVD 0.09375 0.6875 0.125

∆IR2 0.21875 0.4375 0.875

Table D.7: Multi-problem analysis results for comparing the constraint handling techniques within
the SPEA2 and the OMOPSO, AMOSA, MOVNS and MOHS algorithms. The table contains the p-
values obtained by two-tailed Wilcoxon signed rank tests applied to the ∆IHVD and ∆IR2 samples for
each problem instance class and corresponding metaheuristic. Bold-faced entries represent a statistically
significant difference (for α̃ = 0.05).
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D.2 Multiobjective metaheuristic solution comparison

In the single-problem analysis of the metaheuristic comparison, conducted in §8.4.2, the Fried-
man test detected a statistically significant difference (for α̃ = 0.05) for every problem instance
in the test suite with respect to both indicators. Accordingly, the Nemenyi post hoc procedure
was applied to the results in order to identify the individual differences between pairs of samples
(i.e. metaheuristics). Since there are eight metaheuristics in the comparative study, the Nemenyi
procedure involved

(
8
2

)
= 28 pairwise significance tests. The resulting p-values obtained for each

of these pairwise tests are presented in Tables D.8–D.10 for all the problem instances in class 1,
class 2 and class 3, respectively. As before, bold-faced entries represent a statistically significant
difference (for α̃ = 0.05). If a significant difference is detected, the box plots in Figures 8.2–8.4
may be consulted in order to pronounce on which metaheuristics outperformed the others.

The Friedman test also detected a statistically significant difference (for α̃ = 0.05) between
the metaheuristics in all three problem instance classes, for both indicators, during the multi-
problem analysis conducted in §8.4.2. The Nemenyi post hoc procedure was therefore applied,
again, to the average indicator value samples for each class of problem instances. The resulting
p-values obtained for each of the pairwise significance tests are presented in Table D.11 for the
three problem instance classes, with bold-faced entries representing a significant difference (for
α̃ = 0.05).
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Metaheuristic pairs P3.1 P3.2 P3.3 P3.4
IHVD IR2 IHVD IR2 IHVD IR2 IHVD IR2

NSGA-II SPEA2 0 0 0.5945 0.9960 0.0356 0 0.7793 1
NSGA-II OMOPSO 0 0 0 0 0 0 0 0
NSGA-II P-ACO 0.9823 1 1 0.9473 0.5662 0.9473 0.8807 0.5945
NSGA-II AMOSA 0 0 0 0 0 0 0 0
NSGA-II MOVNS 0 0 0 0 0.0019 0 0.0001 0
NSGA-II MOOCEM 1 0.2787 1 0.7044 0.6504 1 0.9987 0.9943
NSGA-II MOHS 0.9960 0.3245 1 0.0908 0.5945 1 0.9997 0.9646
SPEA2 OMOPSO 1 0.9248 0 0 0.0002 0.0031 0 0
SPEA2 P-ACO 0 0 0.5945 0.5662 0 0 1 0.7793
SPEA2 AMOSA 0.6504 0.9646 0 0 0.1371 0.1662 0 0
SPEA2 MOVNS 1 0.8021 0 0 0.9923 0.9981 0 0
SPEA2 MOOCEM 0 0 0.4815 0.9823 0 0 0.9823 0.9646
SPEA2 MOHS 0 0 0.5945 0.4266 0 0 0.9646 0.8807

OMOPSO P-ACO 0 0 0 0 0 0 0 0
OMOPSO AMOSA 0.5095 0.3011 0.9715 0.9987 0.6226 0.9115 0.0515 0.2176
OMOPSO MOVNS 1 1 0.9896 0.9972 0.0068 0.0314 0.0031 0.0404
OMOPSO MOOCEM 0 0 0 0 0 0 0 0
OMOPSO MOHS 0 0 0 0 0 0 0 0

P-ACO AMOSA 0 0 0 0 0 0 0 0
P-ACO MOVNS 0 0 0 0 0 0 0 0
P-ACO MOOCEM 0.9565 0.1511 1 0.0908 1 0.9923 0.996 0.1511
P-ACO MOHS 1 0.1822 1 0.0019 1 0.9565 0.9896 0.0728
AMOSA MOVNS 0.3999 0.1662 1 1 0.5945 0.5378 0.9923 0.9981
AMOSA MOOCEM 0 0 0 0 0 0 0 0
AMOSA MOHS 0 0 0 0 0 0 0 0
MOVNS MOOCEM 0 0 0 0 0 0 0 0
MOVNS MOHS 0 0 0 0 0 0 0 0

MOOCEM MOHS 0.9863 1 1 0.9473 1 1 1 1

Table D.10: Single-problem analysis results for comparing the metaheuristics in respect of class 3
problem instances. The table contains the p-values obtained by the Nemenyi post hoc procedure in
which 28 pairwise significance tests are performed for each problem instance in class 3. Bold-faced entries
represent a statistically significant difference (for α̃ = 0.05).
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Metaheuristic pairs Class 1 Class 2 Class 3
IHVD IR2 IHVD IR2 IHVD IR2

NSGA-II SPEA2 1 0.9968 1 0.9382 1 0.8370
NSGA-II OMOPSO 0.0217 0.0453 0.0097 0.0003 0.5673 0.05
NSGA-II P-ACO 0.9918 0.9647 0.9968 0.9998 0.9731 0.9991
NSGA-II AMOSA 0.6421 0.9818 0.0453 0.0040 0.5673 0.0752
NSGA-II MOVNS 0.9990 1 0.3281 0.0316 0.7579 0.2157
NSGA-II MOOCEM 0.9990 1 0.9818 0.9647 0.9999 0.9731
NSGA-II MOHS 0.7902 0.9006 0.9968 0.4794 1 0.8996
SPEA2 OMOPSO 0.0638 0.2628 0.0146 0.0316 0.4676 0.7579
SPEA2 P-ACO 0.9998 0.6421 0.9990 0.9968 0.9890 0.4676
SPEA2 AMOSA 0.8511 1 0.0638 0.1584 0.4676 0.8370
SPEA2 MOVNS 0.9818 0.9818 0.4009 0.4794 0.6661 0.9731
SPEA2 MOOCEM 0.9818 0.9968 0.9647 1 1 0.9999
SPEA2 MOHS 0.9382 0.9990 0.9990 0.9918 1 1

OMOPSO P-ACO 0.2062 0.0010 0.0880 0.0026 0.0752 0.0074
OMOPSO AMOSA 0.7902 0.4009 0.9998 0.9990 1 1
OMOPSO MOVNS 0.0026 0.0217 0.9006 0.9382 1 0.9991
OMOPSO MOOCEM 0.0026 0.0453 0.0002 0.0217 0.2882 0.4676
OMOPSO MOHS 0.6421 0.6421 0.0880 0.2628 0.3731 0.6661

P-ACO AMOSA 0.9818 0.4794 0.2628 0.0217 0.0752 0.0125
P-ACO MOVNS 0.8511 0.9918 0.7902 0.1193 0.1564 0.05
P-ACO MOOCEM 0.8511 0.9647 0.7196 0.9990 0.9991 0.7579
P-ACO MOHS 0.9968 0.2628 1 0.7902 0.9964 0.5673
AMOSA MOVNS 0.2628 0.9382 0.9918 0.9990 1 0.9999
AMOSA MOOCEM 0.2628 0.9818 0.0016 0.1193 0.2882 0.5673
AMOSA MOHS 1 1 0.2628 0.6421 0.3731 0.7579
MOVNS MOOCEM 1 1 0.0316 0.4009 0.4676 0.8370
MOVNS MOHS 0.4009 0.7902 0.7902 0.9382 0.5673 0.9444

MOOCEM MOHS 0.4009 0.9006 0.7196 0.9818 1 1

Table D.11: Multi-problem analysis results for comparing the metaheuristics for each problem instance
class. The table contains the p-values obtained by the Nemenyi post hoc procedure in which 28 pairwise
significance tests are performed for each problem instance class. Bold-faced entries represent a statistically
significant difference (for α̃ = 0.05).
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APPENDIX E

Additional hyperheuristic
experimental results

This appendix contains additional results obtained during the comparative studies described in
Chapter 9 between four variants of the AMALGAM method, and between one of those variants
and its constituent sub-algorithms, but which were not presented in §9.5 so as to enhance the
exposition of the main text.

In the single-problem analysis for comparing the four variants of the AMALGAM method,
conducted in §9.5.1, the Friedman test detected a statistically significant difference (for α̃ = 0.05)
for several problem instances in the test suite with respect to both indicators. Accordingly, the
Nemenyi post hoc procedure was applied to the relevant results in order to identify the individual
differences between pairs of samples (i.e. hyperheuristic variants). Since there are four variants
in the comparative study, the Nemenyi procedure involved

(
4
2

)
= 6 pairwise significance tests.

The resulting p-values obtained for each of these pairwise tests are presented in Table E.1 for
the relevant problem instances. As before, bold-faced entries represent statistically significant
differences (for α̃ = 0.05). If a significant difference is detected, the box plots in Figures 9.4–9.6
may be consulted in order to pronounce on which variant outperformed the others.

The Friedman test also detected a statistically significant difference (for α̃ = 0.05) between the
four variants of the AMALGAM method in problem instance class 2 (for both indicators) and
for problem instance class 3 (for IR2) during the multi-problem analysis conducted in §9.5.1.
The Nemenyi post hoc procedure was therefore applied, again, to the average indicator value
samples for the relevant class of problem instances. The resulting p-values obtained for each
of the pairwise significance tests are presented in Table E.2 for the relevant problem instance
classes, with bold-faced entries representing significant differences (for α̃ = 0.05).

Finally, in the single-problem analysis for comparing the AMALGAMnpm method against its
constituent sub-algorithms, conducted in §9.5.2, the Friedman test detected a statistically sig-
nificant difference (for α̃ = 0.05) for every problem instance in the test suite with respect to
both indicators. Accordingly, the NWWM post hoc procedure was applied to the results in
order to identify which sub-algorithm differs from the AMALGAMnpm method. Since there
are three sub-algorithms within AMALGAMnpm method, the NWWM procedure involved three
one-tailed pairwise significance tests. The resulting p-values obtained for each of these pairwise
tests are presented in Table E.3 for all the problem instances in the three classes. As before,
bold-faced entries represent statistically significant differences (for α̃ = 0.05). Since the pairwise
significance tests are one-tailed, if a significant difference is detected, it may be inferred that the
AMALGAMnpm method performs significantly better than the associated sub-algorithm.
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Hyperheuristic pairs Class 1 Class 2 Class 3
IHVD IR2 IHVD IR2 IHVD IR2

AMALGAMnpmv AMALGAMnpm — — 0.6784 0.1833 — 0.2208
AMALGAMnpmv AMALGAMnp — — 0.8078 0.1833 — 0.0655
AMALGAMnpmv AMALGAMnpv — — 0.1833 0.5363 — 1
AMALGAMnpm AMALGAMnp — — 0.1833 1 — 0.9472
AMALGAMnpm AMALGAMnpv — — 0.0095 0.0044 — 0.2208
AMALGAMnp AMALGAMnpv — — 0.6784 0.0044 — 0.0655

Table E.2: Multi-problem analysis results for comparing the four variants of the AMALGAM method
in respect of all problem instance classes. The table contains the p-values obtained by the Nemenyi post
hoc procedure in which six pairwise significance tests are performed for each problem instance class.
Bold-faced entries represent statistically significant differences (for α̃ = 0.05).
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