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Abstract

A CATEGORICAL APPROACH TO

LATTICE-LIKE STRUCTURES

M.A.Hoefnagel

Department of Mathematical Sciences,
University of Stellenbosch,

Private Bag X1, Matieland 7602, South Africa.

Dissertation: PhD

December 2018

This thesis is a first step in a categorical approach to lattice-like structures.
Its central notion, that of a majority category, relates to the category of lat-
tices, in a similar way as Mal’tsev categories relate to the category of groups.
This notion provides a context in which to establish categorical counter-
parts of various lattice-theoretic results. Surprisingly, many categories of
a geometric nature naturally possess the dual property; namely, they are
comajority categories. We show that several characterizations of varieties
admitting a majority term, extend to characterizations of regular majority
categories. These characterizations then show how majority categories re-
late to other well known notions in the literature, such as arithmetical and
protoarithmetical categories. The most interesting results, from the point of
view of the author, are those that concern decomposition and factorization.
For example, every subobject of a finite product of objects in a regular ma-
jority category is uniquely determined by its two-fold projections – which
can be seen as a certain subobject decomposition property. One of the main
points of the thesis proves that in a regular majority category, every product
of directly-irreducible objects is unique.
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Uittreksel

’N kategoriese benadering tot rooster soos strukture’

(“A categorical approach to
lattice-like structures”)

M.A.Hoefnagel

Department van Wiskundige Wetenskappe,
Universiteit van Stellenbosch,

Privaatsak X1, Matieland 7602, Suid Afrika.

Proefskrif: PhD

Desember 2018

Hierdie proefskrif is ’n eerste stap na ’n kategoriese benadering tot rooster-
soos strukture. Die sentrale begrip daarvan, dié van ’n meerderheidskatego-
rie, het betrekking op die kategorie van roosters, op soortgelyke wyse soos
Mal’tsev-kategorieë betrekking het op die kategorie van groepe. Hierdie
idee bied ’n konteks waarin kategoriese eweknieë van verskillende rooster-
teoretiese resultate gevestig kan word. Baie kategorieë van ’n meetkundige
aard het die dubbele eienskap; naamlik, hulle is (co)meerderheids katego-
rieë. Ons wys dat verskeie karakters van variëteite wat ’n meerderheids-
termyn toelaat, uitbrei na karakterisering van gereelde meerderheidskate-
gorieë. Hierdie karakterisering toon dan aan hoe meerderheidskategorieë
verband hou met ander bekende begrippe in die literatuur, soos Arithme-
tical en protoarithmetical kategorieë. Die mees interessante resultate, uit
die oogpunt van die skrywer, is dié wat ontbinding en faktorisering betref.
Ons wys dat direkte produkte erken ’n sekere unieke faktorisering stelling
soortgelyk aan die universele algebraïese teendeel.
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Introduction

Perhaps one of the most fundamental properties of categories of ’group-
like’ structures, is that they are all Mal’tsev [CLP91]. For varieties, being
Mal’tsev amounts to the existence of a ternary term p(x, y, z), satisfying the
equations:

p(x, x, y) = y = p(y, x, x).

In groups, for example, a Mal’tsev term is given by p(x, y, z) = xy−1z.
Mal’tsev categories provide a suitable framework for extending various re-
sults about Mal’tsev varieties to categories, and Mal’tsev varieties provide
a suitable context in which to establish certain general properties of group-
like structures. Therefore, we may consider Mal’tsev categories as a cate-
gorical approach to group-like structures, in so far as Mal’tsev varieties are
a universal-algebraic approach to group-like structures. Examples include
the categories of groups, rings, R-modules, Heyting algebras, and lesser
known structures such as quasi-groups and loops. An example of a variety
which is not Mal’tsev is the variety Lat of lattices, and in some sense, the
variety of lattices represents an opposite extreme than that which is repre-
sented by groups.

The main objective of this thesis is to initiate a categorical investigation
of notions motivated from the theory of congruence distributive varieties in
universal algebra. This is not the first step, as M.C. Pedicchio’s paper on
arithmetical categories (see [Ped96]) could be considered as the ’first step’,
followed by Bourn’s protoarithmetical categories (see [Bou01] and [Bou05]),
but ours is a first step in a new direction. We begin our investigation with
the category of lattices, which is the primordial example of a congruence
distributive variety. The central notion of this thesis, that of a majority cate-
gory [Hoe18b] (which is the same as a Pixley category in the sense of [Jan04]),

1

Stellenbosch University  https://scholar.sun.ac.za



CONTENTS 2

derives itself from the observation that many algebraic results which hold
for lattices, generalize to any variety admitting a majority term, i.e., a ternary
term m(x, y, z) satisfying the equations:

m(x, x, y) = x,

m(x, y, x) = x,

m(y, x, x) = x.

For example, in the variety of lattices, every sublattice S of a product of lat-
tices L1× L2× · · · × Ln is uniquely determined by its ’two-fold projections’,
i.e., its images in Li × Lj for i, j ∈ {1, 2, ..., n}. This is Bergman’s double pro-
jection theorem for lattices (see [BP75]). From the universal-algebraic point
of view, a variety satisfies Bergman’s theorem for algebras, if and only if it
admits a majority term. Therefore, we begin this ’categorical approach to
lattice-like structures’ by studying the categorical notion associated with a
variety admitting a majority term, namely, majority categories.

The first two chapters of this thesis introduce the necessary categori-
cal background for the rest of the text, and the notion of a majority cate-
gory is precisely defined for the first time in Chapter 2. Their relation to
existing categorical notions, such as protoarithmetical and arithmetical cate-
gories in the sense of [Bou01] and [Ped96] respectively, are considered in
that chapter. It will turn out that every finitely complete Mal’tsev majority
category is necessarily protoarithmetical; however, the converse does not
hold in general. In the context of regular categories, we provide a coun-
terexample showing that not every protoarithmetical category is a majority
category, and for a Barr exact category C [BGO71], we will show that C is
(proto)arithmetical if and only if it is both Mal’tsev and a majority category.
This result generalizes a famous theorem of A. F. Pixley for varieties (see
[Pix63]).

Chapter 3 begins with a categorical exploration of Bergman’s double
projection theorem mentioned above, and we will see that a regular cate-
gory is a majority category if and only if it satisfies the categorical version
of Bergman’s theorem. This will allow us to show that many categories of
a ’geometric’ nature (Top, Ord, Met∞, the dual of a topos, etc.) possess the
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dual comajority property. One may consider an infinite version of Bergman’s
theorem, which states that the a subobject S of a product ∏

i∈I
Ai is uniquely

determined by its images in Ai × Aj for i, j ∈ I, and where I is not neces-
sarily finite. If I is allowed to be countable, then there are no non-trivial
finitary varieties which satisfy this countable version. However, there are
varieties with operations of countable arity which do (such as the variety
of lattices equipped with countable meet and join operations). The most
extreme version of this property is shared by categories of a non-varietal
nature, such as the category CLat of complete lattices, and the dual cate-
gories Ordop, Relop

2 , Grphop amongst others. Interestingly, the dual of the
category of topological spaces Topop only satisfies the finite version. The
chapter concludes with the main characterization theorem of this thesis,
which presents a characterization of regular majority categories. This result
extends the corresponding universal-algebraic results for varieties admit-
ting a majority term, based mainly on the work of A. F. Pixley (see [BP75],
[Pix63] and [Pix79]).

Chapter 4 presents two unique factorization results; one for a certain
class of majority categories, and the other for so called zero-majority cate-
gories. From the point of view of the author, these are among the most
interesting results of the thesis. The first unique factorization result is based
on the corresponding universal-algebraic result (see Chapter 5 in [MMT87]),
and is essentially an application of the results of Chapter 1.4 and Chapter 3.
The second unique factorization result is proved using different techniques
for pointed zero-majority categories with binary coproducts, in a context
weaker than regular categories. It shows that there can be a categorical
foundation to various decomposition results, that does not require the cat-
egory to have an algebraic nature (regularity, exactness, ect). This theorem
applies to for example, the category of topological lattices, which is not regu-
lar.

The last chapter of the thesis proves that under mild conditions, the only
categories C such that C and Cop are majority, are the preorders. The thesis
ends with a brief discussion of other possible future directions, and dis-
cusses the most straightforward generalizations of the notion of a major-
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ity category towards general congruence distributive varieties. However,
a fully-fledged categorical theory of congruence distributive varieties is far
from being complete.

The results of Chapters 3, 4, 6 are essentially those that have already been
written in [Hoe18b] and [Hoe18a], and in some cases the text is a small con-
textual modification of the original text. The results of Chapter 5 are new,
although contain some small portion of the content of [Hoe18a].

Throughout this text we assume that the reader is familiar with some of
the fundamental concepts of universal algebra such as term, identity, vari-
ety, congruence, homomorphism, free algebra, ect. Such concepts are contained
in any standard introduction to the subject such as [Ber12] or [MMT87].
We also assume that the reader is familiar with the basic concepts of cat-
egory theory such as category, functor, natural transformation, limit, colimit,
monomorphism, epimorphism, as presented in [Mac98] or [Bor94a].

Convention

Throughout the remainder of this text we will always be dealing with cat-
egories with finite products. Therefore, by ’a category C’, we mean ’a cate-
gory C with finite products’.
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Chapter 1

Preliminaries

1.1 Basic categorical notions

Definition 1.1. A morphism f : X → Y in a category C is called a strong
epimorphism, if for any commutative diagram of solid arrows

X
f
��

// A
m
��

Y //

??

B

where m is a monomorphism, the dotted arrow exists making the diagram
commute.

We then have some basic properties of strong epimorphisms: for any

two morphisms X
f−→ Y and Y

g−→ Z in a category C:

(i) If g and f are strong epimorphisms, then so is g ◦ f .

(ii) If g ◦ f is a strong epimorphism, then so is g.

Definition 1.2. A morphism f : X → Y in a category C is called a regular
epimorphism, if there exist two morphisms k1, k2 : K → X such that the
diagram

K
k1 //

k2

// X
f
// Y

is a coequalizer in C.

5
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CHAPTER 1. PRELIMINARIES 6

Remarks 1.3. Note that any regular epimorphism is a strong epimorphism,
and that if C is finitely complete, then any strong epimorphism is an epi-
morphism.

Definition 1.4. If f : X → Y is a morphism in a category C, and f = me
where e : X → I is a strong epimorphism and m : I → Y a monomorphism,
then the factorization f = me is called an image factorization of f . If every
morphism in C has an image factorization, then C is said to have image
factorizations.

Remarks 1.5. Note that a category C has image-factorizations if and only if it
admits an (E, M)-factorization system in the sense of [FK72], where E is the
class of all strong epimorphisms and M the class of all monomorphisms.

Subobjects

If m : M→ X and n : N → X are monomorphisms in a category C, then we
write m 6 n if m factors through n, i.e., if there exists φ : M → N such that
nφ = m. This defines a preorder M (X) on the class of all monomorphisms
in C with codomain X. The posetal reflection of M (X) is called the poset of
subobjects of X, and is denoted by Sub(X). Explicitly, a subobject S ∈ Sub(X)

is an equivalence class of monomorphisms with codomain X, where two
monomorphisms n, m ∈ M (X) are equivalent if and only if n 6 m and
m 6 n. If s : S0 → X is a member of S, then we will say that S is the subobject
represented by s in what follows.

Definition 1.6. A category C is said to be well-powered if the class of subob-
jects Sub(X) on any object X forms a set.

In any category C the pullback of a monomorphism along any mor-
phisms is again a monomorphism, which is to say that if the diagram

•
n
��

// •
m
��

•
f
// •

is a pullback diagram in C, and m is a monomorphism, then so is n. Given
that C has pullbacks of monomorphisms along monomorphisms and A, B ∈
Sub(X) are any subobjects represented by a : A0 → X and b : B0 → X

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 1. PRELIMINARIES 7

respectively, then we write A ∩ B for the subobject of X represented by the
diagonal monomorphism in any pullback

A0 ∩ B0

p2
��

p1
//

$$

A0

a
��

B0 b
// X

which is a monomorphism, as it is a composite of monomorphisms.

Remarks 1.7. If f = me and f = m′e′ are two image factorizations (Defini-
tion 1.4) of a morphism f : X → Y in a category C, then m and m′ represent
the same subobject of Y, which is denoted by f (X). Given a subobject A of
X represented by a : A0 → X we will write f (A) for the subobject repre-
sented by the mono part of an image factorization of f a. Also, we will often
refer to f (A) as the image of A under f .

Definition 1.8. Given a subobject A ∈ Sub(X), represented by a : A0 → X,
then for any morphism x with codomain X we write x ∈S A if x factors
through a, and x has domain S.

X

S //

x
??

A0

a

OO

Remarks 1.9. If x factors through one representative of A, then it factors
through all representatives of A.

1.2 Internal relations in categories

A relation between sets is defined as a subset of a cartesian product, in a
category we can define relations as subobjects of a cartesian product.

Definition 1.10. Given objects A1, A2, ..., An in a category C, an n-ary (inter-
nal) relation R is simply a subobject of A1 × A2 × · · · × An.

Remarks 1.11. If C did not have products, then we could still define an n-ary
relation R as above as a jointly monomorphic family (ri : R0 → Ai)i=1,...,n.
But for the purposes of this text, we restrict our attention to the definition
above.
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CHAPTER 1. PRELIMINARIES 8

Given a binary relation R on an object A represented by a monomor-
phism (r1, r2) : R0 → A × A, we can describe what it means for R to be
reflexive/transitive/symmetric using the notation defined in Definition 1.8.

(i) R is reflexive if for any x : S → A we have (x, x) ∈S R. Equivalently, R
is reflexive if in the diagram

A

∆A
��

R0

;;

(r1,r2)
// A× A

the dotted arrow exists making the diagram commute.

(ii) R is symmetric if for any x, y : S → A we have (x, y) ∈S R implies
(y, x) ∈S R, which is to say there exists a morphism φ : R0 → R0 such
that r1φ = r2 and r2φ = r1.

(iii) R is transitive if for any x, y, z : S → A we have (x, y) ∈S R and
(y, z) ∈S R implies (x, z) ∈S R. Equivalently, R is transitive if when we
take any pullback

R0 ×A R0
p2
//

p1
��

R0

r2
��

R0 r1
// A

there exists a morphism m : R0 ×A R0 → R0 such that

r1 ◦m = r1 ◦ p1 and r2 ◦m = r2 ◦ p2.

Definition 1.12. A relation R on an object A is an equivalence relation, if it is
reflexive, transitive and symmetric.

Proposition 1.13. If C is a category with pullbacks, f : X → Y and m : A →
Y any morphisms with m mono, then f factors through m if and only if in the
pullback:

P
p2
//

p1
��

A
m
��

X
f
// Y

p1 is an isomorphism.
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CHAPTER 1. PRELIMINARIES 9

Proof. Suppose that f factors through m via a morphism h : X → A, then
the pair of morphisms (1X, h) induces a morphism k : X → P such that
p1 ◦ k = 1X, so that p1 is a split epimorphism. Since pullbacks of monomor-
phisms are monomorphisms, we have that p1 is also a monomorphism, and
therefore it is an isomorphism. On the other hand if p1 is an isomorphism,
then f factors through m via h = p2p−1

1 .

Corollary 1.14. It follows from the above proposition that if C is a finitely com-
plete category and F : C → D is a functor which preserves finite limits, then
for any equivalence relation E represented by e : E0 → X × X, we have that
F(e) : F(E0) → F(X × X) is a monomorphism, which when composed with the
natural isomorphism F(X × X) ' F(X)× F(X), represents an equivalence rela-
tion on F(X).

Proof. The morphism e is mono if and only if the kernel pair k1, k2 : K → E0

of e has k1 = k2. Since F preserves kernel pairs, it follows that F(e) is a
mono. Then it is easily seen that F preserves all the conditions on e, so that
F(e) represents an equivalence relation.

Example 1.15. Given a monomorphism E0
e−→ X × X in the category Set of

sets, e represents an internal equivalence relation in Set if and only if e(E) is
an ordinary set-theoretic equivalence relation in X.

Example 1.16. Similar to the previous example, given a monomorphism E e−→
X × X in a variety V of algebras, e represents an internal equivalence rela-
tion in V if and only if e(E) is a congruence on X in the universal algebraic
sense.

Definition 1.17. For any morphism f : X → Y, the kernel equivalence relation
Eq( f ) is the subobject of X × X represented by the kernel pair of f , i.e. , it
is represented by (k1, k2) : K → X × X where the following diagram is a
pullback

K
k2 //

k1
��

X
f
��

X
f
// Y

Definition 1.18. An equivalence relation E on an object X is said to be ef-
fective, if there exists f : X → Y such that E = Eq( f ). Such equivalence
relations are also called congruences.
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Example 1.19. In any variety V of algebras, every equivalence relation is
effective.

1.3 Internal categories

The fundamental internal notions, such as internal equivalence relation, in-
ternal preorder, internal monoid and internal group, can all be seen as as-
pects of one internal notion: internal category.

Definition 1.20. An internal category C in a category C is a diagram

C2

p1
//

p2
//

m // C1

d1 //

d2 //
C0

soo

where the square

C2
p2
//

p1
��

C1

d1
��

C1 d2

// C0

is a pullback, and we have the following relations

(i) d1 ◦ s = 1C0 = d2 ◦ s

(ii) m ◦ (1C1 , s ◦ d2) = 1C1 = m ◦ (s ◦ d1, 1C1)

(iii) d1 ◦ p1 = d1 ◦m and d2 ◦ p2 = d2 ◦m

(iv) m ◦ (p1q1, mq2) = m ◦ (mq1, p2q2) where

C3

q1
��

q2
// C2

p1
��

C2 p2
// C1

is a pullback, and (p1q1, mq2), (mq1, p2q2) : C3 → C2 are the mor-
phisms induced by the pullback (C2, p1, p2).

The object C0 is called the ’object of objects’, C1 is called the "object of
arrows", d1, d2 : C1 → C0 the "domain" and "codomain" morphisms respec-
tively. The morphism m is the "composition" of C where C2 represents the

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 1. PRELIMINARIES 11

object of "pairs of composable arrows". The identities (i)− (iv) then encode
the familiar category axioms, where (iv) encodes the fact the composition is
associative.

Example 1.21. An internal category C in Set essentially amounts to the ordi-
nary notion of a small category (i.e. a category where the classes of objects
and arrows form a set).

Definition 1.22. An internal category C as in Definition 1.20 is called an
internal groupoid if there exists an "inverse" morphism σ : C1 → C1 satisfying
the following:

d1 ◦ σ = d2, d2 ◦ σ = d1,

and
m ◦ (1C1 , σ) = s ◦ d1, m ◦ (σ, 1C1) = s ◦ d2.

Example 1.23. Given a topological space X, the fundamental groupoid π1(X)

of X is the groupoid formed by taking the set of objects to be the underlying
set of X, and the set of all homotopy equivalence classes of paths in X (a path
in X is a continuous map [0, 1] → X) to be the set of morphisms of π1(X).
Two paths f , g : [0, 1]→ X are said to be homotopy equivalent (written f ' g)
if there exists a continuous map H : [0, 1]× [0, 1] → X such that H(0, x) =
f (x) and H(1, x) = g(x) and H(x, 0) = H(y, 0) and H(x, 1) = H(y, 1) for
any x, y ∈ [0, 1]. Then the domain of a class [ f ] is given by f (0) and the
codomain by f (1), for any representative f of a morphism [ f ] ∈ π1(X). If
[ f ], [g] are composable morphisms in π(X), then their composite is given by
[g] ◦ [ f ] = [h] where h is the path

h(t) =

 f (2t) t ∈ [0, 1
2 ]

g(2t− 1) t ∈ [1
2 , 1]

.

Given a "base point" x0 ∈ X, the ordinary fundamental group π1(X, x0) is
nothing but the automorphism group Aut(x0) (which is the same as hom(x0, x0))

in π1(X).

Considering an extreme in Definition 1.20, if C0 ' 1 is a terminal object
in C, then C2 ' C1 × C1 and m : C1 × C1 → C1 becomes an internal monoid
multiplication, where the unit s : C0 → C1 satisfies the required conditions.
Therefore, we get the following definitions:

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 1. PRELIMINARIES 12

Definition 1.24. An internal category is called an internal monoid when C0 is
a terminal object.

In a similar way, we can also recover the ordinary notion of an internal
group.

Definition 1.25. An internal groupoid is called an internal group when C0 is
a terminal object.

Example 1.26. Given a monomorphism (r1, r2) : R → C0 × C0, then (r1, r2)

represents a reflexive transitive relation (a preorder) if and only if there exist
s : X → C0 and m : R×C0 R→ R making the diagram

R×X R

p1
//

p2
//

m // R

r1 //

r2 //
C0

soo

an internal category. Conversely, if the internal category C in Definition 1.20
has d1, d2 jointly monomorphic, then the morphism (d1, d2) represents an
internal preorder on C0.

Example 1.27. Similar to the example above, every monomorphism E →
X × X which represents an equivalence relation gives rise to an internal
groupoid, and every internal groupoid where the domain and codomain
morphisms are jointly monomorphic gives rise to an internal equivalence
relation.

Example 1.28. An internal group G in the category Top of topological spaces
is the same as a topological group. Similarly, an internal monoid in the
category Top is given by an ordinary topological monoid.

Example 1.29. A crossed module consists of a pair of groups G and H, an
action of G on H, and a homomorphism σ : H → G which respects the
action. If we denote the action of an element g ∈ G on an element h ∈ H,
by g ? h, then (G, H, σ) being a crossed module amounts to the following
identities:

1 ? h = h, g ? (g′ ? h) = gg′ ? h, g ? (hh′) = (g ? h)(g ? h′),

and
σ(g ? h) = g(σ(h))g−1,

as well as the Peiffer identity:

σ(h) ? h′ = hh′h−1.
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Internal categories in Grp amount to crossed modules as above, for a proof
we refer the reader to [Mac98].

A well known result of B. Jónsson in universal algebra, presents a Mal’tsev-
type characterization of congruence distributive varieties, which is given
below.

Theorem 1 [Jon67]. For a variety of algebras V, the following are equivalent.

1. V is congruence distributive.

2. There exist ternary terms t0, t1, ..., tn, where n > 2, such that the equations

t0(x, y, z) = x, ti(x, y, x) = x, tn(x, y, z) = z

ti(x, x, z) = ti+1(x, x, z), (i even)

ti(x, z, z) = ti+1(x, z, z), (i odd)

hold in V.

In [JP97], the authors remark that every internal groupoid in a congru-
ence distributive variety is an equivalence relation, but actually more is true:

Proposition 1.30. Every internal category in a congruence distributive variety is
a preorder.

Suppose that C is an internal category as in Definition 1.20 in a congru-
ence distributive variety. Then in what follows we will write f : X → Y for
arrows f of C (i.e. elements of C1) where d0( f ) = X and d1( f ) = Y. Also,
if X is an object of C (i.e. and element of C0) then we will write 1X for the
identity s(X) of X. Finally, if f : X → Y and g : Y → Z are any two compos-
able morphisms, then we shall write g ◦ f = m(g, f ) for their composition
in C.

Proof. Suppose that f , g : X → Y are any two parallel arrows in C, and let
t0, t1, ..., tn be the Jónsson terms as in the proposition above. Then for any
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i = 1, 2, ..., n we have

ti( f , g, g) = ti(m( f , 1X), m(1Y, g), m(g, 1X))

= m(ti(( f , 1X), (1Y, g), (g, 1X)))

= m(ti( f , 1Y, g), ti(1X, g, 1X))

= m(ti( f , 1Y, g), ti(1X, f , 1X))

= m(ti(( f , 1X), (1Y, f ), (g, 1X)))

= ti(m( f , 1X), m(1Y, f ), m(g, 1X))

= ti( f , f , g)

And since t1, t2, ...., tn are Jónsson terms we have:

f = t0( f , f , g) = t1( f , f , g) = t1( f , g, g) =

t2( f , g, g) = t2( f , f , g) = t3( f , f , g) = · · ·
· · · = tn( f , g, g) = g

And therefore f = g, so that there are no parallel arrows in C, and hence we
have that C is a transitive relation.

In particular, if V is a variety of algebras which admits a majority term,
then V is congruence distributive by Jónsson’s theorem, so that every in-
ternal category in V is a preorder. Since majority categories (see Defini-
tion 2.4) are seen as the categorical counterparts of varieties admitting a
majority term, and the fact that internal categories in congruence distribu-
tive varieties are preorder, the question of whether internal categories in
majority categories are preorders is natural. It will be shown later that in-
ternal groupoids in majority categories are equivalence relations, but it re-
mains open whether or not internal categories in majority categories are
preorders. However, we conjecture that in every finitely complete majority
category, every internal category is a preorder.
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1.4 Regular categories

Most of the examples of majority categories that are known, are at the same
time regular categories [BGO71], and so the most striking aspects of the the-
ory of majority categories are seen within the regular context.

We have seen that (binary) relations in categories may be defined simply
as subobjects of a product of two objects. It is then straightforward to define
the corresponding notions of reflexive, symmetric, transitive, difunctional
relations, and establish basic properties of them such as, for example, the
fact that every reflexive difunctional relation is an equivalence relation. One
of the most fundamental operations on relations, is that we can compose
them: given two relations R ⊆ X × Y and S ⊆ Y × Z between sets, their
composite R ◦ S is defined as

R ◦ S = {(x, z) | ∃y ∈ Y((x, y) ∈ R ∧ (y, z) ∈ S)}.

Remarks 1.31. The above notion for R ◦ S is not the standard notion — which
agrees with function composition.

Let r1 : R → X and r2 : R → Y be the canonical projections (x, y) 7→ x
and (x, y) 7→ y respectively, and similarly let s1 : S → Y and s2 : S → Z be
the canonical projections. In order to define a categorical counterpart of the
above set-theoretic construction, consider the following diagram:

P
p1

��

p2

��

R
r2

��

r1

��

S
s1

��

s2

��

X Y Z

where (P, p1, p2) is the pullback of r2 along s1, and r1, r2, s1, s2 are the canon-
ical projections. Set theoretically, P is given by

P = {(x, y, z) | (x, y) ∈ R ∧ (y, z) ∈ S}.

Clearly the image of the map P → X × Z defined by (x, y, z) 7−→ (x, z) is
precisely R ◦ S, and therefore the composite of two relations R 6 X×Y and
S 6 Y × Z could be constructed in any category C with finite-limits and
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image factorizations. However, this composition need not be associative
– and the usual composite of set-theoretic relations is. The answer to the
question of when this relation composition is associative is: if and only if C

is a regular category.

Definition 1.32 ([BGO71]). A category C is said to be regular if

(i) C has finite limits, and coequalizers of kernel pairs.

(ii) For any pullback square
•

g
��

// •
f
��

• // •
if f is a regular epimorphism, then so is g.

The category C is said to be weakly regular, if it satisfies (i) and a weakening
of (2): if f is a regular epimorphism, then g is an epimorphism.

Remarks 1.33. Every regular category is weakly regular.

The theorem below is a standard theorem of regular categories, and
the proof below is essentially the same as the proof that can be found in
[Bor94b].

Theorem 1.34. In every weakly regular category, every morphism factors as a
regular epimorphism followed by a monomorphism.

Proof. Suppose that X
f−→ Y is any morphism, and consider the diagram

K

h
��

k1

//

k2 // X
q
��

f
// Y

R
r1
//

r2 // Q

g
??

where K is the kernel pair of f , q the coequalizer of (k1, k2), R is the kernel
pair of g, where q is the coequalizer of (k1, k2) and g is the unique mor-
phism making the triangle commute. We will show that h is an epimor-
phism, which would then imply that r1 = r2 so that g is a monomorphism.
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Consider the diagram below:

K

k1

��

k2

''

h
��

// //

����

• //

����

X
q
����

•

��

// // R

r1
��

r2 // Q
g
��

X q
// // Q g

// Y

Each of the interior squares are pullbacks, which implies that every mor-
phism in the upper left-hand square can be realized as a pullback of q along
some morphism. Therefore, they are all epimorphisms, so that

r1h = k1q = k2q = r2h =⇒ r1 = r2.

Corollary 1.35. In a weakly-regular category every strong epimorphism is a regu-
lar epimorphism.

Proposition 1.36. If C is any category with finite limits and coequalizers of ker-
nel pairs, and F : C → D any functor which preserves pullbacks and regular
epimorphisms, and also reflects epimorphisms, then if D is weakly regular, so is C

Proof. All we need to show is that the pullback of a regular epimorphism in
C is an epimorphism. Therefore, suppose that the diagram

A
g
��

a // X
f
��

Y
b
// Z

is a pullback, where f is a regular epimorphism. By the assumptions on F,
it follows that the diagram

F(A)

F(g)
��

F(a)
// F(X)

F( f )
��

F(Y)
F(b)

// F(Z)

is a pullback in D. Since F( f ) is a regular epimorphism and D is weakly
regular (see Definition 1.32), it follows that F(g) is an epimorphism, which
implies that g is an epimorphism, since F reflects epimorphisms.
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Recall that the category Met∞ of extended metric spaces has as its objects
(X, dX) metric spaces, where the metric dX takes values in the extended real
line R ∪ {∞}. Morphisms in Met∞ are subcontractions, i.e., maps f : X → Y
satisfying:

dY( f (x), f (y)) 6 dX(x, y).

The category Met∞ has all limits and colimits (see [Wei17]), and admits a
forgetful functor Met∞ → Set

Example 1.37. The forgetful functors Top→ Set, Ord→ Set, Met∞ → Set all
preserve finite-limits and regular epimorphisms, and reflect epimorphisms.
Thus, since Set is regular, it follows that Top, Ord, Met∞ are weakly regular
categories.

Example 1.38. A topological lattice L is a lattice equipped with a topology
on the underlying set of L for which the meet and join operations ∧,∨ :
L× L→ L are continuous (see [Str68]). A morphism of topological lattices is
a lattice homomorphism which is continuous with respect to the underlying
topologies. The category Lat(Top) of all topological lattices, admits a forget-
ful functor U : Lat(Top)→ Lat which preserves regular epimorphisms and
finite limits, and also reflects epimorphisms. Since Lat is regular, it follows
that Lat(Top) is weakly-regular.

Theorem 1.39. Let C be a regular category. Given the reasonably commutative
diagram

K

��

k2

//

k1 // X
f
//

q
��

A

T
t2
//

t1 // Y
g

??

where q is a regular epi, (t1, t2) jointly monic, if (K, k1, k2) is the kernel pair of f ,
then (T, t1, t2) is the kernel pair of g.

Proof. Let (E, e1, e2) be the kernel pair of g, then it suffices to show that
(e1, e2) factors through (t1, t2). Consider the diagram below, where p is the
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pull-back of q making the square reasonably commute.

P

h ��

p
�� p1

''

p2

''
E

'' ''

K

��

//// X
f
//

q
��

A

T //// Y
g

??

Then the morphism h exists in the diagram above (since K is the kernel pair
of f ). This gives the following commutative diagram:

P
p
��

// K // T

(t1,t2)
��

E

66

(e1,e2)
// Y×Y

The dotted arrow exists, since p is a regular epimorphism and (t1, t2) is a
monomorphism.

Definition 1.40. A diagram

E0
e1 //

e2
// X q

// X/E

in a category is said to be exact, if (e1, e2) is the kernel pair of q and q is the
coequalizer of E0. A functor F : C → D is said to be exact, if it sends exact
sequences in C to exact sequences in D.

Corollary 1.41. Let (e1, e2) : E→ X2 and ( f1, f2) : F → X2 represent two effec-
tive equivalence relations on X, where E 6 F, and consider the following diagram:

E

����

e1 //

e2
// X

qE
����

qF $$ $$

F/E
l1 //

l2
// X/E // // X/F

qF and qE are the quotients of E and F respectively, and the two parallel arrows in
the bottom row are obtained from taking the mono part of the regular image of F
under qE. Then (l1, l2) is the kernel pair of the dotted arrow.

Proof. This is a straightforward application of Theorem 1.39.
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Proposition 1.42. If f : X → Y and g : A → B are regular epimorphisms
in a regular category C, then the product f × g : X × A → Y × B is a regular
epimorphism.

Proof. Consider the pullback squares

P1

p1
����

// X

f
����

P2

p2
����

// A
g
����

Y× B π1
// Y Y× B π2

// B

And also the pullback square obtained from the above pullbacks

P
p
"" ""

// //

����

P1

p1
��

P2 p2
// Y× B

Then there exists a morphism q : P→ X× A such that ( f × g)q = p, which
implies that f × g is a regular epimorphism since p is a regular epimor-
phism.

Relations in regular categories

Let C be a regular category, and R and S relations represented by (r1, r2) :
R0 � X× Y and (s1, s2) : S0 → Y× Z respectively. Suppose that (P, p1, p2)

is the pullback of s1 along r2:

P
p1

~~

p2

��

R0
r2

  

r1

~~

S0
s1

��

s2

��

X Y Z

The composite R ◦ S is the relation represented by the monomorphism r ◦
s : R0 ◦ S0 � X × Z, which is obtained by taking the regular epi, mono
factorization of (r1p1, s2p2) : P→ X× Z as in the diagram:

P

(r1 p1,s2 p2)

33

e // // R0 ◦ S0
r◦s // X× Z

We have the following lemma for this relation composition.
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Proposition 1.43. If (x, z) : A→ X × Z is any morphism, then (x, z) ∈A R ◦ S
if and only if there exists a regular epimorphism α : Q→ A and a y : Q→ Y such
that (xα, y) ∈Q R and (y, zα) ∈Q S.

Proof. If (x, z) factors though R0 ◦ S0, then the dotted arrow exists making
the diagram

Q
q
��

α // // A
(x,z)

%%

h
��

P

(r1 p1,s2 p2)

33

e // // R0 ◦ S0
r◦s // X× Z

commute. Then we can pull h back along e, to produce α and q in the di-
agram above. Then setting y = qr2p1, we have that α and y satisfy the
required conditions.

For the "only if" part, suppose that (xα, y) ∈Q R and (y, zα) ∈Q S, then it
is easy to see that (xα, zα) ∈Q R ◦ S which gives the diagram below

Q //

α
����

R0 ◦ S0

r◦s
��

A

;;

(x,z)
// X× Z

where the dotted arrow exists, since α is a regular epimorphism, and r ◦ s is
a monomorphism.

Proposition 1.44. Let C be a regular category, and let F1, F2, K be any effective
equivalence relations on any object X in C such that F1 ∩ F2 = K and F1 ◦ F2 = 1.
Then the canonical morphism

X/K → X/F1 × X/F2,

is an isomorphism, where q : X → X/K, q1 : X → X/F1, and q2 : X → X/F2

are the respective coequalizer morphisms.

Proof. Let q1 : X → X/F1 and q2 : X → X/F2 be the quotients of F1 and F2

respectively. Consider the product diagram:

X
π1←− X× X

π2−→ X.
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Then we have that (π1, π2) ∈X×X F1 ◦ F2, so that there exists a regular
epimorphism α : Q → X × X and a morphism f : Q → X such that
(π1α, f ) ∈Q F1 and ( f , π2α) ∈Q F2. This implies that the following diagram
is commutative:

Q

α
��

f
// X

(q1,q2)
��

X× X q1×q2
// X/F1 × X/F2

Note that q1× q2 is a regular epimorphism by Proposition 1.42. This implies
that (q1 × q2)α is a regular epimorphism by Corollary 1.35. Since

(q1 × q2)α = (q1, q2) f ,

we have that (q1, q2) is a regular epimorphism since (q1, q2) f is regular.
Then, since the kernel of (q1× q2) is given by K = F1 ∩ F2, it follows that the
canonical morphism

X/K → X/F1 × X/F2,

is an isomorphism.

1.5 Duals of geometric categories are regular

One of the surprising aspects of the theory of majority categories, is that
there are many examples of ’geometric’ categories whose duals turn out to
be regular majority categories.

The category Reln has as its objects pairs (UX, RX) where UX is a set,
and RX a n-ary relation on UX. A morphism f : X → Y in Reln is a map
f : UX → UY which satisfies

(x1, x2, ..., xn) ∈ RX =⇒ ( f (x1), f (x2), ..., f (xn)) ∈ RY,

for any x1, x2, ..., xn ∈ UX. A morphism m : A → X is a regular monomor-
phism if and only if it is a mono and satisfies

( f (x1), f (x2), ..., f (xn)) ∈ RX =⇒ (x1, x2, ..., xn) ∈ RA,

for any x1, x2, ..., xn ∈ UA. The limit/colimit of a diagram D in Reln has as
its underlying set, the set-theoretic limit/colimit of the underlying diagram
in Set, equipped with the largest/smallest relation making the canonical
projections/inclusions morphisms in Reln.
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Proposition 1.45. Relop
n is a well-powered (co)complete regular category.

Proof. Consider the following pushout diagram in Relop:

A

b
��

a // X

b′
��

Y
a′
// Y +A X

where a is a regular monomorphism. Then a′ is a monomorphism since
pushouts of monomorphisms along any morphism in Set are monomor-
phisms. Now, suppose that y1, y2, ..., yn ∈ Y are any elements. Then the
construction of the pushout gives only two possibilities that would yield

(a′(y1), a′(y2), ..., a′(yn)) ∈ RY+AX.

One of these possibilities is that (y1, y2, ..., yn) ∈ RY. The other possibility is
that there exist x1, x2, ..., xn ∈ A ⊆ X such that (a(x1), a(x2), ..., a(xn)) ∈ RX.
This would imply that (x1, x2, ..., xn) ∈ RA since a is assumed to be a regular
monomorphism, and since a′ is a monomorphism (injective), we must have
that b(xi) = yi for i = 1, 2, ..., n since the diagram above commutes. Since b
is a morphism in Reln, it immediately follows that (y1, ..., yn) ∈ RY. Thus,
in all of the two cases considered, we have the implication:

(a′(y1), a′(y2), ..., a′(yn)) ∈ RY+AX =⇒ (y1, y2, ..., yn) ∈ RY,

so that a′ is a regular monomorphism.

Recall that the category Met∞ of extended metric spaces consists of metric
spaces (X, dX) where the metric dX could take ∞ as a value. A morphism f :
X → Y in Met∞ is a set theoretic map satisfying dY( f (x), f (y)) 6 dX(x, y),
such maps are usually called subcontractions. It was shown in [Wei17] that
Metop

∞ is a regular category, which we state below without a proof.

Proposition 1.46. Metop
∞ is a well-powered (co)complete regular category.

As was shown in [BP95], Topop is a quasi-variety. Thus, it immediately
follows that Topop is a regular category, however, we will give a direct proof
below.

Proposition 1.47. Topop is a well-powered (co)complete regular category.
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Recall that an injective continuous map f : X → Y between topological
spaces is an embedding if and only if for every open set U ⊆ X, there exists
an open set V ⊆ Y such that U = f−1(V).

Proof. Consider the pushout diagram

A

b
��

a // X

b′
��

Y
a′
// Y +A X

where a is a regular monomorphism. Suppose that V ⊂ Y is any open set.
Since a is an embedding of spaces, there exists U ⊆ X such that b−1(V) =

a−1(U). The set V + U is open in Y + X, and the image [V + U] of V + U in
Y +A X under the canonical quotient map, is an open set in Y +A X. Then,
set-theoretically we have that a′−1([V + U]) = V, so that a′ is a regular
monomorphism.
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The notion of a majority category

2.1 Definition of a majority category

Let V be a Mal’tsev variety, with p the corresponding Mal’tsev term. If
R ⊆ X × Y is any subalgebra of a product of algebras X and Y, then R is
difunctional, i.e., it satisfies:

(x, v) ∈ R and (u, v) ∈ R and (u, y) ∈ R =⇒ (x, y) ∈ R. (∗)

Indeed, applying p to the elements on the left, we get

p((x, v), (u, v), (u, y)) = (p(x, u, u), p(v, v, y)) = (x, y),

which implies that (x, y) ∈ R. Moreover, this property of internal relations
characterizes Mal’tsev varieties among all varieties over a given signature:

Theorem 2.1. The following are equivalent for a variety V of algebras.

1. V is a Mal’tsev variety

2. Every homomorphic binary relation in V is difunctional.

The condition (∗) above is a condition on internal relations in a category,
and can therefore be reformulated for an abstract category. This leads to the
following definition which can be found in [CPP91]:

Definition 2.2. A finitely complete category C is Mal’tsev when every inter-
nal relation R in C is difunctional, i.e., satisfies

(x, v) ∈S R and (u, v) ∈S R and (u, y) ∈S R =⇒ (x, y) ∈S R. (∗)

25
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Remarks 2.3. Note that the original definition of a Mal’tsev category is one
which is Barr exact, and where the composite of two equivalence relations
on the same object is again an equivalence relation (see [CLP91]).

The notion above provides a context in which to establish categorical
counterparts of theorems for Mal’tsev varieties. For example, in a Mal’tsev
category it is easy to see that every reflexive internal relation is an inter-
nal equivalence relation. Clearly the Mal’tsev term equations determine a
matrix:

N =

(
x u u x
v v y y

)
,

which captures the equations defining the Mal’tsev term. Just as the Mal’tsev
term determines an elementary matrix of terms, so do the majority term
equations, and the resulting matrix is given by:

M =

 x x x′ x
y y′ y y
z′ z z z

 .

This leads to the following definition:

Definition 2.4 ([Hoe18b]). A ternary relation R between objects X, Y, Z in C

is said to be majority-selecting if its satisfies

(x, y, z′) ∈S R and (x, y′, z) ∈S R and (x′, y, z) ∈S R =⇒ (x, y, z) ∈S R.

Then C is said to be a majority category if every internal relation in C is
majority-selecting. In other words, every internal relation R in C is strictly
M-closed in the sense of [Jan06].

There is nothing particularly special about the Mal’tsev term nor the ma-
jority term, other than the fact that the equations for them take the form of
a matrix M as given above. Therefore, the above technique generalizes to
varieties which admit an n-ary term p satsifying some "elementary equa-
tions", which take the form of an elementary matrix as above. This has been
fully elaborated in [Jan06], where the author establishes general properties
of categories defined by such a matrix condition.
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2.2 Algebraic examples of majority categories

Example 2.5. A variety of algebras V is a majority category if and only if
it admits a majority term, i.e., a ternary term m(x, y, z) satisfying the equa-
tions:

m(x, x, y) = x,

m(x, y, x) = x,

m(y, x, x) = x.

For a proof of this statement, we refer the reader to [Jan06].

Example 2.6. The only subvarieties of monoids which are majority categories
are trivial.

Proof. The free algebra FV(x) over one element {x} is some monoid quo-
tient of N - the free monoid over one element. Therefore any ternary poly-
nomial p(x, y, z) in FV(x) has the form

p(x, y, z) = ax + by + cz,

for some natural numbers a, b, c ∈N. Therefore,

x = p(x, x, x) = p(x, 0, 0) + p(0, x, 0) + p(0, 0, x) = 0,

if p is a majority term. This would imply that FV(x) has one element, and
therefore every algebra of V has at most one element.

Example 2.7. A subvariety V of the variety of rings is a majority category if
and only if V satisfies the equation xn = x for some n > 2. In particular, the
category BoRg of Boolean rings is a majority category.

Proof. It was shown in [MW70] that for any variety of rings admitting a
majority term, there exists n ∈ N with n > 2 such that xn = x. Now if V is
a variety of rings where V |= xn = x for some n > 2, then the polynomial

p(x, y, z) = x− (x− y)(x− z)n−1,

is a majority term for V.
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Example 2.8. The category NReg of von Neumann regular rings (see [Neu36])
is the class of all rings R such that for any a ∈ R there exists x ∈ R such that
a = axa. The category NReg is a majority category.

Proof. Suppose that A, B, C are rings and that R is a subring of A × B × C
which is a von Neumann regular ring. Let a = (a, b, c′), b = (a, b′, c), c =

(a′, b, c) be any elements of R. Then since R is von Neumann regular, there
exists x = (x1, x2, x3) ∈ R such that

(a− b)x(a− b) = (a− b).

Then it is easy to see that

a− (a− b)x(a− c) = (a, b, c),

so that (a, b, c) ∈ R

Example 2.9. The category HLat of Heyting semi-lattices, also known as im-
plicative semi-lattices (see [Nem65]) is a majority category.

Proof. This is a consequence of Pixley’s theorem (see [Pix63]), since HLat
has both distributive and permutable congruences (see [Nem65]).

Example 2.10. The above arguments can all be repeated for internal-structures
of the previous kind, so that the category NReg(Top) of topological von
Neumann regular rings, Lat(Top) of topological lattices, HLat(Top) of topo-
logical Heyting semi-lattices, are all majority categories.

2.3 Relation to antilinear and protoarithmetical
categories

The notion of an arithmetical category was first introduced by M. C. Pedic-
chio in [Ped96], as a Barr exact Mal’tsev category (see Definition 2.2) with
coequalizers, whose lattice of equivalence relations on each object is dis-
tributive. It was proved there that in an arithmetical category, every in-
ternal groupoid is an equivalence relation. Moreover, this property char-
acterizes arithmetical categories among Barr exact Mal’tsev categories with
coequalizers. In [Bou01], the author introduces the notion of a protoarith-
metical category, which is the same as a finitely complete Mal’tsev category
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in which every internal groupoid is an equivalence relation. In the Barr
exact context, protoarithmetical categories are characterized as congruence
distributive Mal’tsev categories (Mal’tsev categories whose lattice of equiv-
alence relations on each object is a distributive lattice). Thus, in [Bou01], an
arithmetical category is simply a Barr exact Mal’tsev category which is con-
gruence distributive (dropping coequalizers from the original definition),
which is what we will mean by arithmetical category. This section shows
that in the Barr exact context, arithmetical categories are precisely Mal’tsev
majority categories.

Remarks 2.11. Pedicchio’s orginial proof of the fact that among all Barr exact
Mal’tsev categories with coequalizers, those that are arithmetical are pre-
cisely those in which every internal groupoid is an equivalence relation, re-
quired a certain commutator defined for Barr exact Mal’tsev categories with
coequalizers (see [Ped95]). By working with connectors (see [BG02]) between
equivalence relations instead, Bourn was able to obtain several characteri-
zations of Mal’tsev categories in which every internal groupoid is an equiv-
alence relation in the left exact context.

Definition 2.12. A protoarithmetical category is a finitely complete Mal’tsev
category in which every internal groupoid is an equivalence relation.

Remarks 2.13. The orginal definition of a protoarithmetical category, which is
equivalent to Definition 2.12, is that of a finitely complete category C where
the category of points PtI(C) above any object I is unital [Bou96], and such
that every internal group in PtI(C) is trivial (see [Bou01]).

One of the main results of [Bou01] is the following theorem, which links
the original notion of an arithmetical category to the notion of a protoarith-
metical category.

Theorem 2.14 ([Bou01]). A Barr exact category C is protoarithmetical if and only
if it is Mal’tsev and congruence distributive (i.e. it is arithmetical).

The next theorem has been proved in [Hoe18b] with no limit assump-
tions whatsoever. It can actually be proved for categories more general than
majority categories, and will be revisited in Chapter 6.

Theorem 2.15. Every internal groupoid in a majority category C is an equivalence
relation.
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Proof. Suppose that the diagram

G2
m // G1

σ

��
d1
%%

d0

99
G0soo

is an internal groupoid (see Definition 1.22) in a majority category C, then
we show that d0 and d1 are jointly monomorphic. Let p1 : G2 → G1 and
p2 : G2 → G1 be the canonical pullback projections. Then let R be the rela-
tion represented by the monomorphism (p1, p2, m). Suppose that f , g : S→
G1 are morphisms with d1 f = d1g and d0 f = d0g, then ( f , σ f , sd1 f ) ∈S

R and (g, σg, sd1g) ∈S R and ( f , σg, m( f , σg)) ∈S R which implies that
( f , σg, sd1g) ∈S R by Definition 2.4. This implies that m( f , σg) = sd1g,
which implies that f = g.

Corollary 2.16. Every finitely complete Mal’tsev majority category is protoarith-
metical.

Definition 2.17 ([Bou02]). Let C be a pointed category with binary products,
and let f : X → Z and g : Y → Z be morphisms in C. A morphism
φ : X×Y → Z making the diagram

X

f
##

ιX // X×Y
φ
��

Y
ιYoo

g
{{

Z

commute, is called a cooperator for f and g. If g = 1Z in the diagram above,
then f is said to be central when such a φ exists.

Definition 2.18 ([Bou02]). A unital category C is said to be antilinear if the
only central morphisms are the null morphisms.

Proposition 2.19. Let C be a pointed finitely complete majority category, and let
f : X → Z and g : Y → Z be morphisms in C. If f and g admit a cooperator, then
the square

ker( f )× ker(g)
p1
��

p2
// Y

g
��

X
f

// Z

is a pullback, where p1 and p2 are the canonical product projections composed with
the canonical inclusions.
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Corollary 2.20. If C is a pointed finitely complete majority category, then f : X →
Y is central if and only if f = 0.

Proof. By Definition 2.17, f being central, it cooperates with the identity on
Y, so that by Proposition 2.19 the pullback of 1Y along f is given by ker( f )×
ker(1Y) ' ker( f ). This implies that the identity on 1X is the kernel of f , so
that f = 0.

In particular, this gives that every unital majority category is antilinear
in the sense of Definition 2.18, as the next corollary shows.

Corollary 2.21. A unital majority category is necessarily antilinear in the sense of
Definition 2.18.

Proof of Proposition 2.19. Suppose that φ is a cooperator between f and g,
then it suffices to show that for any commutative square

A
α
��

β
// Y

g
��

X
f
// Z

we have gβ = 0 = f α. Consider the ternary relation R represented by
r : R0 → X×Y× Z - which is defined by the equalizer:

R0
r // X×Y× Z

π3
//

φ(π1,π2)
// Z.

Then since we have φ(α, 0) = f α and φ(0, β) = gβ, by the universal prop-
erty of the equalizer it follows that (α, 0, f α) : A→ X×Y×Z and (0, β, gβ) :
A→ X×Y× Z and (0, 0, 0) : A→ X×Y× Z all have:

(α, 0, f α) ∈A R and (0, β, gβ) ∈A R and (0, 0, 0) ∈A R.

Since f α = gβ, we have that (0, 0, f α) ∈A R, which implies that f α = 0 =

gβ.
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Mal’tsev + Majority = Arithmetical

In any regular Mal’tsev category C, the join of two equivalence relations
C1 and C2 on an object X is given by their composite C1 ◦ C2 (see [CLP91]).
Therefore, a regular Mal’tsev category C is congruence distributive if and
only if for any three equivalence relations α, β, γ on X we have

α ∩ (β ◦ γ) = (α ∩ β) ◦ (α ∩ γ).

In Theorem 3.27 we will see that regular majority categories are character-
ized as those regular categories for which the above equation holds for the
lattice of equivalence relations on any object. Then the following theorem is
a straightforward corollary of Theorem 3.27:

Theorem 2.22. If C is a regular Mal’tsev category such that the lattice of equiva-
lence relations on each object is a distributive lattice, then C is a majority category.

Corollary 2.23. For a Barr exact category C the following are equivalent:

(1) C is arithmetical (i.e. Mal’tsev and congruence distributive);

(2) C is Mal’tsev and a majority category.

Proof. (1)⇒ (2) is immediate by Theorem 2.22. For (2)⇒ (1) suppose that
C is a Mal’tsev majority category, then by Corollary 2.16 we have that C is
protoarithmetical, and thus C is arithmetical by Theorem 2.14.

The above corollary motivates the question of whether protoarithmetical
categories are, in general, the same as Mal’tsev majority categories. Or if
there are naturally weaker conditions (than Barr exactness) under which
“Mal’tsev + majority = arithmetical”. In what follows, we will show that
even regular protoarithmetical categories need not be majority categories.

Majority objects

The notion of a majority object below is the exact analogue of the notion of a
Mal’tsev object in the sense of [Wei17]. The general results of majority objects,
which are given below, derive them self from the corresponding general
results of Mal’tsev objects.
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Definition 2.24 (Majority object). An object S in a category C is said to be a
majority object if for any ternary relation R in C, we have

(x, y, z′) ∈S R and (x, y′, z) ∈S R and (x′, y, z) ∈S R =⇒ (x, y, z) ∈S R.

The full subcategory of majority objects in a category is denoted by Maj(C).

The following proposition is the analogue of Proposition 2.3 in [Wei17].

Proposition 2.25. Let C be a category with binary products, binary coproducts
and image factorizations, then the following are equivalent for C.

(i) C is a majority category;

(ii) For any object S in C, there exists a morphism f : S→ R making the diagram

3S
e

""

M=


ι1 ι1 ι2

ι1 ι2 ι1

ι2 ι1 ι1


��

R}}

r}}

(2S)3 S
(ι1,ι1,ι1)
oo

f
^^

commute, where M = re is an image factorization.

Proof. Composing e with each of the canonical inclusions S → 3S, and
applying the fact that S is a majority object, we have (i) implies (ii). We
show (ii) implies (i): let C be a category with image factorizations and bi-
nary products and binary coproducts. Let A, B, C be any objects in C and
r′ : R′ � A× B× C any monomorphism. Suppose that a, a′ ∈ hom(S, A),
b, b′ ∈ hom(S, B), c, c′ ∈ hom(S, C) and f1, f2, f3 ∈ hom(S, R′) are such that

R′

r′
��

R′

r′
��

R′

r′
��

S

f3
99

(a,b,c′)
// A× B× C S

f2
99

(a,b′,c)
// A× B× C S

f1
99

(a′,b,c)
// A× B× C
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commute. This implies that the dotted arrow f exists, making the diagram

3S

M

��

f

""


a b c′

a b′ c
a′ b c



��

e
��

R

r
��

R′

r′

%%

(2S)3 a
a′

×
 b

b′

×
 c

c′


// A× B× C

commute. By assumption, we have that (ι1, ι1, ι1) : S → (2S)3 factors
through R (α in the diagram below), and also by the fact that M = re is
an image-factorization, there exists β : R→ R′ making the diagram

3S
f

""


a b c′

a b′ c
a′ b c



��

e
��

R
β
//

r
��

R′

r′

%%

S

α

88

(ι1,ι1,ι1)
// (2S)3 a

a′

×
 b

b′

×
 c

c′


// A× B× C

commute. Then r′(βα) is a factorization of (a, b, c) through R′. Thus, S is a
majority object.

The theorem below is the analogue of Proposition 2.1 in [Wei17].

Proposition 2.26. Given any category C, the full subcategory Maj(C) of majority
objects in C is closed under colimits and regular quotients in C.

Proof. Suppose that D : I → C is any functor where I is a small category,
and for any i ∈ I0 we have D(i) a majority object. Suppose that C is a colimit
object of the diagram D, and suppose that R is any internal relation in C

between objects X, Y and Z with morphisms x, x′ : C → X, y, y′ : C → Y
and z, z′ : C → X, such that:

(x, y, z′) ∈C R and (x, y′, z) ∈C R and (x′, y, z) ∈C R.
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Then for each object i ∈ I0, we compose with the canonical inclusions ιi :
D(i)→ C to get

(xιi, yιi, z′ιi) ∈D(i) R and (xιi, y′ιi, zιi) ∈D(i) R and (x′ιi, yιi, zιi) ∈D(i) R.

And since D(i) is a majority object, it follows that(xιi, yιi, zιi) ∈D(i) R. Thus,
since C is a colimit, the relevant factorization exists, so that (x, y, z) ∈C R. If
S→ Q is a regular epimorphism, then by using the diagonal fill in property
(see Definition 1.1) of regular epimorphisms, it is easy to see that if S is a
majority object, then so is Q.

The corresponding proposition for Mal’tsev objects is given by Corol-
lary 2.1 in [Wei17], the proof is essentially the same as the one found there.

Proposition 2.27. Let C be a well-powered regular category admitting coproducts,
then Maj(C) is a coreflective subcategory of C.

Proof. If D is a full subcategory of C which is closed under regular quotients
and coproducts, then D is coreflective. If X is any object in C, then let M
be a set of subobjects of X which lie in D and let tM be the coproduct of
their domains. Then the coreflection of X in D is given by the mono part
of the regular epi-mono factorization of the canonical morphism tM →
X. Therefore, by Proposition 2.26, Maj(C) is a coreflective subcategory of
C.

Again, we have an analogue of Corollary 2.5 in [Wei17].

Proposition 2.28. Consider the following conditions on a regular category C with
binary coproducts.

(i) Every morphism in Maj(C) which is a regular epimorphism in C, is also a
regular epimorphism in Maj(C).

(ii) Every jointly monomorphic triple of morphisms r1 : R→ X and r2 : R→ Y
and r3 : R→ Z in Maj(C) is also jointly monomorphic in C.

(iii) Maj(C) is the largest full subcategory of C which is a majority category and
closed under binary coproducts and regular quotients in C.

Then (i) =⇒ (ii) =⇒ (iii).
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Proof. Suppose that r1, r2, r3 are the jointly monomorphic tripple in Mal(C)

as in (ii), and consider regular epi-mono factorization the morphism r =

(r1, r2, r3) : R→ X×Y× Z in C:

R
r

++

e
// // S m

// X×Y× Z

Then since Maj(C) is closed under regular quotients (Proposition 2.26), the
morphisms e, π1m, π2m, π3m are all morphisms in Maj(C). By (i), e is a
regular epimorphism in Maj(C). But since we have

(π1m)e = r1, (π2m)e = r2, (π3m)e = r3,

which is to say the family π1me, π2me, π3me is jointly monomorphic, it fol-
lows that e is a monomorphism, and therefore an isomorphism. For (ii) =⇒
(iii) suppose that D ⊆ C is a full-subcategory, which is majority and closed
under binary coproducts and regular quotients in C. For any object S in D,
it follows that the diagram in (ii) of Proposition 2.25, both R and 3S an 2S
are objects of D. The morphisms r1, r2, r3 : R → 2S where r = (r1, r2, r3) :
R → (2S)3 in the diagram of (ii) in Proposition 2.25, are jointly monomor-
phic in C, and therefore they are jointly monomorphic in D. This implies
that the internal relation defined by r1, r2, r3 being majority selecting gives
the existence of a morphism f : S → R which gives the required factoriza-
tion so that S is a majority object, i.e., that D ⊆ Maj(C). Finally, it is easy
to see that if C satisfies (ii) that Maj(C) is a majority category (since every
ternary relation in Maj(C) is a ternary relation in C under the assumption
of (ii)).

Using the results of majority objects above, we are able to construct a
regular protoarithmetical (Definition 2.12) category which is not a majority
category.

A counterexample

Recall that the category of ternary relations Rel3 has as its objects pairs X =

(UX, RX) where UX is a set and RX is a ternary relation on UX. A morphism
f : X → Y in Rel3 is a function f : UX → UY for which (x, y, z) ∈ RX =⇒
( f (x), f (y), f (z)) ∈ RY. The limit/colimit of a diagram D in Rel3 has as its
underlying set UL the set-theoretic limit/colimit of the underlying diagram
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in Set, equipped with the largest/smallest relation making the canonical
projections/inclusions homomorphisms. A morphism m : A → X in Rel3

is a regular monomorphism if and only if m is relation-reflecting, which is
to say m satisfies

(m(x), m(y), m(z)) ∈ RX =⇒ (x, y, z) ∈ RA,

for any x, y, z ∈ UA. We have seen in Proposition 1.45 that Relop
3 is a regular

category. We state below as a lemma:

Lemma 2.29. The category Relop
3 is a complete and cocomplete regular category.

Remarks 2.30. For any morphism f : X → Y in Rel3 denote f (X) for the
subrelation of Y restricted to the set-theoretic image of f . Then the coimage
factorization of f is given by f = me where e : X → f (X) is the canonical
projection, and m : f (X)→ Y is the canonical inclusion.

As mentioned above, the notion of a majority object in a category C de-
rives itself from the notion of a Mal’tsev object, which is defined below.

Definition 2.31 ([Wei17]). Let S be an object in a category C, then S is a
Mal’tsev object in C if for any binary relation r : R → X × Y, the induced
relation on sets

hom(S, R)� hom(S, X)× hom(S, Y),

is difunctional.

Remarks 2.32 ([Wei17]). A topological space S is a Mal’tsev object in Topop

if and only if the map f : R → S defined by f (x, x, y) = y = f (y, x, x) is
continuous, where R is the subspace of S3 generated by

{(x, x, y), (y, x, x) | x, y ∈ S}.

This happens if and only if the space S is an R1-space, which is to say S
satisfies the separation axiom: for any x, y ∈ S if there exists an open U
such that x ∈ U and y /∈ U, then there exists V and W open, such that x ∈ V
and y ∈ W, and V ∩W = ∅. Furthermore, a metric space S is a Mal’tsev
object in Metop if and only if it is an ultra-metric space.

In what follows we will be concerned with Mal’tsev objects in Relop
3 .
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Lemma 2.33. Let S be any object in Rel3, and let M = (UM, RM) be the subrela-
tion of S× S× S defined by

UM = {(x, x, y) | x, y ∈ US} ∪ {(y, x, x) | x, y ∈ US},

and where RM is the restriction of RS3 to UM. Then S is a Mal’tsev object in Relop
3

if and only if the map f : UM → US defined by

f (x, x, y) = y = f (y, x, x),

preserves the relation structure (is a morphism in Rel3).

Sketch. By Proposition 2.3 in [Wei17], an object S in Relop
3 is a Mal’tsev object

if and only if there exists f : M→ S making the diagram

S3

M

m
aa

f

��

2S2

π2 π2 π1

π1 π2 π2


OO

e
==

π1

π1


// S

in Rel3 commute, where me is an image-factorization of the vertical mor-
phism. Now by Remark 2.30, M can be taken to be the set-theoretic image
of the vertical morphism, together with the restriction of RS3 . Then

UM = {(x, x, y) | x, y ∈ US} ∪ {(y, x, x) | x, y ∈ US},

and if f exists it must be defined by

f (x, x, y) = y = f (y, x, x).

As mentioned earlier, the full subcategory of majority objects Maj(C)

is the analogue of the full subcategory of Mal’tsev objects in a category C,
which is denoted by Mal(C), and has the following properties similar to
those properties of Maj(C) (see [Wei17]):
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(i) Mal(C) is closed under colimits and regular quotients in C. So that in
particular if C is cocomplete, then so is Mal(C).

(ii) If C is a regular well-powered category admitting coproducts, then
Mal(C) is a coreflective subcategory of C.

(iii) If C is a regular category with binary coproducts, such that every mor-
phism in Mal(C), which is a regular epimorphism in C is a regular
epimorphism in Mal(C), then Mal(C) is the largest full subcategory of
C which is Mal’tsev, and closed under binary coproducts and regular
quotients in C.

These properties are the analogues of the properties we have already seen
for majority objects. By Lemma 2.29 and (ii) above, Mal(Relop

3 ) is a coreflec-
tive subcategory of Relop

3 . Explicitly, this coreflection r : Relop
3 → Mal(Relop

3 )

acts on objects as follows: if X is an object of Relop
3 , then define Ur(X) = UX,

and define Rr(X) as the smallest ternary relation R on UX such that RX ⊆ R
and (UX, R) is a Mal’tsev object in Relop

3 . Then, it can be checked that r(X)

is indeed a Mal’tsev object in Relop
3 . If f : X → Y is a morphism in Relop

3
then we define r( f ) = f . To summarize, we have the following lemma:

Lemma 2.34. The functor r : Relop
3 → Mal(Relop

3 ) is right adjoint to the in-
clusion functor ι : Mal(Relop

3 ) → Relop
3 , and for any object X in Relop

3 we have
Ur(X) = UX.

The above lemma implies that Mal(Relop
3 ) has limits, and that the limit

of any diagram D in Mal(Relop
3 ) has the same underlying set as the cor-

responding limit of D in Relop
3 —which itself has the same underlying set

as the corresponding limit in Setop. This is to say that the forgetful func-
tor U : Mal(Relop

3 ) → Setop preserves limits. Since every discrete rela-
tion (X is discrete if RX = UX × UX × UX) is an object of Mal(Relop

3 ), it
will follow that a morphism in Mal(Relop

3 ) is a monomorphism if and only
if it is a monomorphism in Relop

3 . This implies that the forgetful functor
Mal(Relop

3 )→ Setop reflects monos. Thus, we have the following lemma:

Lemma 2.35. The forgetful functor U : Mal(Relop
3 ) → Setop preserves limits

and reflects monos.

Proposition 2.36. The category Mal(Relop
3 ) is a complete and cocomplete regular

protoarithmetical category.
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Proof. Again, since Mal(Relop
3 ) contains all discrete relations, it will fol-

low that every morphism in Mal(Relop
3 ) which is a regular epimorphism

in Relop
3 is also a regular epimorphism in Mal(Relop

3 ). Moreover, since
Mal(Relop

3 ) is coreflective, it follows that a morphism in Mal(Relop
3 ) is a

regular epi if and only if it is a regular epi in Relop
3 . Therefore, since Relop

3 is
regular, so is Mal(Relop

3 ). Also, by (iii) above, it follows that Mal(Relop
3 ) is

a Mal’tsev category, and by (i) it is cocomplete. By Lemma 2.34, Mal(Relop
3 )

inherits its completeness from Relop
3 . Next, we show that any internal groupoid

in Mal(Relop
3 ) is an equivalence relation. Suppose that G is an internal

groupoid in Mal(Relop
3 ), where G1 is the object of arrows and d0, d1 : G1 →

G0 the domain and codomain morphisms respectively. By Lemma 2.35, the
forgetful functor U : Mal(Relop

3 ) → Setop preserves limits, so that UG is an
internal groupoid in Setop — which is a majority category. Thus, U(d0, d1)

is a monomorphism by Theorem 2.15, and thus, (d0, d1) is a monomorphism
since U reflects monos.

As an easy application of Proposition 2.25 to Relop
3 , we have the follow-

ing lemma:

Lemma 2.37. A ternary relation S is a majority object in Relop
3 if and only if the

map f : UN → US defined by f (x, x, y) = f (x, y, x) = f (y, x, x) = x is a
morphism in Rel3 where

UN = {(x, x, y) | x, y ∈ US} ∪ {(x, y, x) | x, y ∈ US} ∪ {(y, x, x) | x, y ∈ US},

and RN is the restriction of RS3 to UN.

Proposition 2.38. Mal(Relop
3 ) is not a majority category.

Proof. Since Mal(Relop
3 ) is closed under binary products and regular quo-

tients in Relop
3 , if Mal(Relop

3 ) were a majority category, then we would have
Mal(Relop

3 ) ⊆ Maj(Relop
3 ) by Proposition 2.28. Thus to show that Mal(Relop

3 )

is not a majority category, it suffices to produce a Mal’tsev object S which
is not a majority object. Consider the ternary relation S where US = {0, 1}
and

RS = {(1, 1, 0), (0, 1, 1), (0, 0, 0)}.

Then it is routine to verify that S satisfies the conditions of Lemma 2.33, and
is thus an object of Mal(Relop

3 ). If the f in the statement of Lemma 2.37
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above were a morphism in Rel3, then we would have

((1, 0, 0), (1, 1, 0), (0, 1, 0)) ∈ RS3 =⇒ ( f (1, 0, 0), f (1, 1, 0), f (0, 1, 0)) ∈ RS.

But this would immediately imply that (0, 1, 0) ∈ RS so that Mal(Relop
3 ) can

not be a majority category.

It was shown in [Bou01], that regular protoarithmetical categories are
characterized by a weak form of congruence distributivity:

Theorem 2.39 ([Bou01]). A regular Mal’tsev category C is protoarithmetical if
and only if for any three equivalence relations R, S, T on any object X

R ∩ S = 0 and R ∩ T = 0 =⇒ R ∩ (S ∨ T) = 0.

Clearly any Mal’tsev category whose lattice of equivalence relations is
distributive satisfies the above property. The categories NReg(Top) and
BoRg(Top) are both examples of regular protoarithmetical categories, as
they satisfy the weak congruence distributivity mentioned above. Now, in
[Bou05] the author remarks that ’it is far less clear, at this point, if they are fully
congruence distributive or not’, but theorem 3.27 clarifies the situation, since
both NReg(Top) and BoRg(Top) are regular Mal’tsev majority categories,
and hence they are fully congruence distributive. The general question of
whether or not weak congruence distributivity is the same as full congru-
ence distributivity for regular categories (or even cocomplete pre-exact cat-
egories), is fully answered by the counterexample Mal(Relop

3 ) above. Since
for a regular Mal’tsev category C, being fully congruence distributive is
equivalent to being a majority category (see Theorem 3.27).
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Chapter 3

Characterizations of majority
categories

The main theorem of this chapter is the characterization Theorem 3.27, which
extends the universal algebraic results of [BP75] and [Pix63] to regular cate-
gories.

3.1 Subobject decompositions

If S and T are any sublattices of a finite product of lattices A1 × A2 × · · · ×
An, such that πi,j(S) = πi,j(T) where A1 × · · · × An

πi,j−→ Ai × Aj are the
canonical two-fold projections, then S = T. This is the so called Bergman’s
double projection theorem which is mentioned in [BP75]. Clearly the statement
of Bergman’s theorem admits a categorical reformulation, when there is a
suitable notion of image factorization. Recall a category C is said to have im-
age factorizations if every morphism f : X → Y in C factors as f = me where
m is a monomorphism and e a strong epimorphism (see Definition 1.4). The
factorization f = me is then called an image factorization, which is unique
up to unique isomorphism.

Recall that given a morphism f : X → Y and a subobject N represented
by n : N0 → X, then the subobject of Y represented by the mono part of the
image factorization of n f is called the image of N under f , and is denoted
by f (N).

Definition 3.1. Let C be a category with image factorizations and let I be a

42
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set, and let J ⊆ I be any subset. Suppose that (Ai)i∈I is a family of objects
in C, such that both products ∏

i∈I
Ai and ∏

j∈J
Aj exist. Then for any subobject

S of ∏
i∈I

Ai, the image of S under the canonical map

∏
i∈I

Ai
πJ−→∏

j∈J
Aj,

is called the J-image of S in ∏
j∈J

Aj and is denoted by SJ .

With the notion J-image above, we are in a position to categorically in-
vestigate Bergman’s double projection theorem.

Definition 3.2. Let C be a category with image factorizations, and let I be
a set and J = (Ij)j∈J a family of subsets of I. Then the product ∏

i∈I
Ai is

said to have J -fold subobject decompositions if it satisfies the following
property: for any two subobjects S, T of ∏

i∈I
Ai, if SIj = TIj for any j ∈ J, then

S = T. In other words, we say that every subobject of ∏
i∈I

Ai is uniquely

determined by its J -fold images.

Proposition 3.3. Let C be a complete category with image-factorizations, let I be
a set and J = (Ij)j∈J a family of subsets of I. The following are equivalent for a
family (Ai)i∈I of objects in C.

(i) ∏
i∈I

Ai has J -fold subobject decompositions.

(ii) For any monomorphism s : S→ ∏
i∈I

Ai, the diagram

S

s

��

(eIj )j∈I
// ∏
j∈J

SIj

∏
j∈J

sIj
��

∏
i∈I

Ai
(πIj )j∈J

// ∏
j∈J

( ∏
k∈Ij

Ak)

is a pullback, where

S
eIj−→ SIj

sIj−→ ∏
k∈Ij

Ak,

is an image factorization of πIj s.
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Proof. For (i) =⇒ (ii): let s : S → ∏
i∈I

Ai be any monomorphism, and

consider the diagram below where the square is a pullback:

S

s

��

(eIj )j∈I

''

φ

  

P α //

p

��

∏
j∈J

SIj

∏
j∈J

sIj=β

��

∏
i∈I

Ai
(πIj )j∈J

// ∏
j∈J

( ∏
k∈Ij

Ak)

By construction, the outer rectangle commutes, so that the dotted arrow φ

exists. We claim that the subobject represented by p has the same two fold
images as the subobject represented by s. Let j ∈ J be any element then
since (πjα)φ = eIj is a strong epimorphism, it follows that πjα is a strong
epimorphism. Then the factorization sIj(πjα) = πIj p is an image factoriza-
tion, therefore the Ij-image of the subobject represented by p in ∏

i∈I
Ai is SIj .

Therefore, the subobjects represented by s and p are the same, so that φ is an
isomorphism, which implies that the outer rectangle is a pullback. Finally,
(ii) =⇒ (i) follows from the universal property of pullback.

Definition 3.4. For any set I and any natural number k ∈ N, we shall say
that ∏

i∈I
Ai has k-fold subobject decompositions of size I if it has J -fold

decompositions, where J is the set of all subsets of I of size k. If I is a
countable set, then we say that ∏

i∈I
Ai has countable k-fold subobject decom-

positions. If C is a category with image-factorizations which has products
indexed by I, and every such product has k-fold subobject decompositions,
then we shall say that C has k-fold subobject decompositions of size I. If C

has k-fold subject decompositions of any size, then we shall simply say that
C has k-fold subobject decompositions. We will also say that C has count-
able k-fold subobject decompositions, if every countable product in C has
countable k-fold subobject decompositions.

Remarks 3.5. If C has k-fold subobject decompositions, it has countable k-
fold subobject decompositions. And if C has countable k-fold subobject de-
compositions, then C has finite k-fold subobject decompositions.
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Remarks 3.6. It has been shown in [BP75] that a finitary variety V has fi-
nite k-fold subobject decompositions if and only if V admits a k-ary near-
unanimity term, i.e., a k-ary term p satisfying:

p(x, x, ..., x, y) = x,

p(x, x, ..., y, x) = x,
...

p(y, x, ..., x, x) = x.

So that in particular, any variety V with finite two-fold subobject decompo-
sitions admits a majority term.

The link between majority categories and subobject decompositions can
be seen from the following theorem.

Theorem 3.7. Let C be a category with finite limits and image factorizations. If C

has finite 2-fold subobject decompositions, then C is a majority category.

Proof. Suppose that R is any subobject of A× B×C represented by (r1, r2, r3) :
R0 → A × B × C. Let r1,2 : R1,2 → A × B and r1,3 : R1,3 → A × C
and r2,3 : R2,3 → B × C be the monomorphisms formed from taking the
mono part of the image-factorization (r1, r2, r3) composed with the canoni-

cal projections A× B× C
(π1,π2)−−−−→ A× B and A× B× C

(π1,π3)−−−−→ A× C and

A× B× C
(π2,π3)−−−−→ B× C, respectively. Consider the pullback square below:

P0 //

p=(p1,p2,p3)
��

R1,2 × R1,3 × R2,3

r1,2×r1,3×r2,3
��

A× B× C
((π1,π2),(π1,π3),(π2,π3))

// (A× B)× (A× C)× (B× C)

It is easily seen that P is majority selecting in the sense of Definition 2.4, and
therefore by Proposition 3.3 we have P = R so that R is majority selecting.

Given any relation R on a product X×Y, we can consider the image of R
under the canonical projections (X × Y)2 → X2 and (X × Y)2 → Y2 which
give two relations R1 on X and R2 on Y, respectively. Conversely, given R1
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and R2 represented by r1 : R0 → X × X and r2 : R′0 → Y × Y respectively,
then the composite morphism

R0 × R′0
r1×r2−−−→ (X× X)× (Y×Y)

φ−→ (X×Y)2,

is a mono (where φ is the canonical ’transpose’ isomorphism), which rep-
resents a relation R1 ×T R2 on (X × Y). Note, that we always have R 6
R1 ×T R2.

Definition 3.8. A category C with image factorizations is said to have di-
rectly decomposable reflexive relations, if for any reflexive relation R on a prod-
uct X×Y in C, we have R1 ×T R2 = R.

Example 3.9. The category Ring of unitary rings has directly decomposable
reflexive relations, and the category Grp does not. To see this, suppose that
R 6 (X × Y)2 is a reflexive internal relation of unitary rings. Now suppose
that ((x, y), (a, b)) ∈ R1×T R2, then by definition, there exists x′, a′, y′, b′ ∈ R
such that

((x, y′), (a, b′)) ∈ R and ((x′, y), (a′, b)) ∈ R.

Since R is reflexive we have that

((x, y′), (a, b′)) · ((1, 0), (1, 0)) = ((x, 0), (a, 0)) ∈ R and

((x′, y), (a′, b)) · ((0, 1), (0, 1)) = ((0, y), (0, b)) ∈ R =⇒
((x, 0), (a, 0)) + ((0, y), (0, b)) = ((x, y), (a, b)) ∈ R.

Therefore Ring has directly decomposable reflexive relations. To see that
Grp does not, consider the group Z/2Z×Z/2Z. If R is the reflexive re-
lation generated by the element ((1, 0), (0, 1)), then it is easy to see that
((1, 1), (0, 1)) ∈ R1 ×T R2, but ((1, 1), (0, 1)) /∈ R, so that Grp does not have
directly decomposable reflexive relations.

Proposition 3.10. Let C be any category with image-factorizations, and two-fold
subobject decompositions. Then C has directly decomposable reflexive relations.

Proof. For any reflexive relation R on a product X × Y, its easy to see that
both R and R1 ×T R2 have the same two fold subobject decompositions,
when viewed as subobjects of X×Y× X×Y.
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In Theorem 3.27, we will see that any regular majority category has fi-
nite 2-fold subobject decompositions. This is then the categorical analogue
of the lattice-theoretic double-projection theorem of Bergman [BP75]. This
motivates the investigation of general (possibly infinite) subobject decom-
positions. As we will see in the next section, there are no finitary varieties
which have countable finite-subobject decompositions, however, there are
infinitary varieties which do.

3.2 Infinite subobject decompositions

Proposition 3.11. The only finitary varieties of algebras V which have countable
2-fold subobject decompositions are trivial, i.e., each algebra in V has at most 1
element.

Proof. Suppose that V is a finitary variety which has countable 2-fold sub-
object decompositions. Consider the set theoretic maps:

fn : N→ {1, 2, . . . , n}, x 7−→

x x 6 n

n x > n
.

Let F = FV(N) and Fn = FV({1, 2, . . . , n}), then each fn induces a homo-
morphism fn : F → Fn via the free algebra in V. Now let f be the induced
homomorphism into the product of the F′i s

F
f

//

fn
&&

∏
n∈N

Fn

πn

��

Fn

Then f is a monomorphism. Let Fi,j be the two-fold image of F in Fi × Fj,
and fi,j : Fi,j → Fi × Fj the canonical inclusion. Let gn : F1 → Fn be the
homomorphism sending 1 to n, and let g = ∏

n∈N

gn. Now, for any i, j ∈ N

we have that (i, j) ∈ Fi,j since if i 6 j then fi(j) = i and f j(j) = j. Consider
the homomorphism gi,j : F1 → Fi,j sending 1 to (i, j), this gives the following
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commutative diagram:

F1

g

��

((gi,j)i,j∈N)
// ∏
i,j∈N

Fi,j

∏
i,j∈N

fi,j

��

∏
n∈N

Fn
((πi,πj))i,j∈N

// ∏
i,j∈N

Fi × Fj

Thus by Proposition 3.3, the square

F

f

��

// ∏
i,j∈N

Fi,j

∏
i,j∈N

fi,j

��

∏
n∈N

Fn
((πi,πj))i,j∈N

// ∏
i,j∈N

Fi × Fj

is a pullback, where the top arrow is the canonical morphism into the prod-
uct. Therefore, there exists a morphism F1 → F, making the relevant tri-
angle commute. This amounts to the existence of an element x ∈ F such
that fn(x) = n for any n ∈ N. Since x is an element of F it follows that
x = t(a1, a2, ...., ak) where t is a k-ary term, and a1, a2, ..., ak ∈ N. Now, let
m = max{a1, a2, ..., ak}, then it follows that

m = fm(t(a1, a2, ...., ak) = t( fm(a1), fm(a2), ...., fm(ak)) = t(a1, a2, ...., ak),

but also we have

m+ 1 = fm+1(t(a1, a2, ...., ak) = t( fm+1(a1), fm+1(a2), ...., fm+1(ak)) = t(a1, a2, ...., ak).

So that in Fm+1 |= m = m + 1. This implies that every algebra in V has at
most one element.

In the above proof it is crucial that V be finitary, as the finiteness of t
allows us to select the maximum of a1, a2, ..., ak. As the proposition below
shows, there are varieties which have operations of countable arity which
have countable 2-fold subobject decompositions. In what follows, we will
see that there can be infinitary varieties with 2-fold subobject decomposi-
tions of infinite size.

Recall that if I is an arbitrary set, then an I-complete lattice L is one
in which any family (xi)i∈I has a meet and join. And a homomorphism
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f : L → M of I-complete lattices is a function which preserves joins and
meets of families indexed by I. ln what follows we shall denote the category
of I-complete lattices by LatI .

Proposition 3.12. The category LatI of I-complete lattices has arbitrary 2-fold
subobject decompositions of size I.

Proof. Suppose that S ⊆ ∏
i∈I

Li = L is any I-complete sublattice of a product

of I-complete lattices, and suppose that πk : ∏
i∈I

Li → Lk are the canoni-

cal product projections. Then it suffices to show that S has the following
property (*): for any x ∈ L, if for any i, j ∈ I there exists s ∈ S such that
πi(x) = πi(s) and πj(x) = πj(s), then x ∈ S. To that end, suppose that
x ∈ L satisfies (*). Now let si,j ∈ S be elements of S with πi(si,j) = xi and
πj(si,j) = xj. Define the elements sj of S as sj =

∧
i∈I

si,j. Then for any i, j ∈ I

we have πi(sj) 6 πi(si) = xi, since

sj =
∧
i∈I

si,j 6 si,j =⇒ πi(sj) 6 πi(si,j) = xi = πi(si).

This implies that
x =

∨
i∈I

si,

so that x ∈ S.

Proposition 3.13. If I, J are infinite sets and |I| < |J|, then LatI does not have
2-fold subobject decompositions of size J.

Proof. Consider the subset S of ∏
j∈J

2 consisting of all elements s ∈ ∏
j∈J

2 such

that
|{j ∈ J | πj(s) = 1}| 6 |I|.

Now suppose that (si)i∈I is a collection of elements of S and let s =
∨
i∈I

si.

Then it is easy to see that

{j ∈ J | πj(s) = 1} =
⋃
i∈I

{j ∈ J | πj(si) = 1}.

But then since I is infinite, it follows that |I × I| = |I|. Therefore we have:

|{j ∈ J | πj(s) = 1}| = |
⋃
i∈I

{j ∈ J | πj(si) = 1}| 6 |
⊔
i∈I

I| = |I × I| = |I|,
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so that s ∈ S. Thus, S is a sub I-complete lattice of ∏
j∈J

2. Moreover, S has the

same 2-fold projections as ∏
j∈J

2, but is not equal to ∏
j∈J

2. As, for example, the

top element of ∏
j∈J

2 is not contained in S.

3.3 Geometric examples of majority categories

Surprisingly, the dual subobject decomposition property is one which is
shared by many categories of a geometric nature, and thus many categories
of a geometric nature will turn out to be majority categories. For example,
in what follows we will show that Setop, Topop, Relop, (G − Set)op are ma-
jority categories by showing that they satisfy the conditions of Theorem 3.7.
Therefore, in each of these categories we will show that if r :

⊔
i∈I

Xi → R and

t :
⊔
i∈I

Xi → T are any two epimorphisms with the same two-fold coimages,

then r ' s as epimorphisms. This amounts to showing that if for any i, j ∈ I
we have the following commutative diagram of solid arrows

Ri,j

φi,j

��

ri,j
// R

φ

��

Xi t Xj //

αi,j
<<

βi,j
""

⊔
i∈I

Xi

r

??

t

��

Ti,j ti,j
// T

Figure 31

where φi,j are isomorphisms, ri,jαi,j and ti,jβi,j are the canonical coimage
factorizations, then the dotted arrow φ exists, is an isomorphism, and makes
the diagram commute. We will refer to this diagram in what follows, and
since we will always be dealing with categories whose objects have under-
lying sets and functions, we will assume without loss of generality that the
X′is above have disjoint underlying sets.

Proposition 3.14. The category Setop has general 2-fold subobject decompositions.
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Proof. We define the φ as follows: if x ∈ R, then select an element y ∈
r−1(x) and set φ(x) = t(y). To see that this is well-defined, suppose that
y, y′ ∈ r−1(x) then there exists i, j ∈ I such that y ∈ Xi and y′ ∈ Xj. Now,
αi,j(y) = αi,j(y′) since ri,j is a monomorphism, and therefore φi,jαi,j(y) =

βi,j(y) = βi,j(y′) = φi,jαi,j(y′) so that ti,j(y) = ti,j(y′) which implies t(y) =

t(y′).

Proposition 3.15. The dual category Ordop of ordered sets has general 2-fold sub-
object decompositions.

Proof. It suffices to show that the set-theoretic φ in Example 3.14 is relation
preserving. Suppose that a 6 b in R. Then there exists x ∈ Xi and y ∈ Xj

such that r(x) = a and r(y) = b, hence a, b ∈ Ri,j. Since ri,j is a regular
monomorphism, we have ri,j(a) 6 ri,j(b) =⇒ a 6 b in Ri,j. It follows that
φ(a) 6 φ(b) since φi,j(a) 6 φi,j(b).

Proposition 3.16. If C is complete and has 2-fold subobject decompositions, then
so does CD for any category D. Similarly, if Cop has two-fold subobject decomposi-
tions, then so does (CD)op. Thus, for example, the category (G− Set)op of G-sets
has two-fold subobject decompositions.

Proof. Since CD inherits (co)limits and (co)image factorizations from C point-
wise, if C satisfies the conditions of Proposition 3.3 (ii), then so will CD.

Perhaps, it is natural to expect that the dual category Topop of topolog-
ical spaces and continuous maps has two-fold subobject decompositions,
given the geometric nature of the previous examples. However, as the next
example shows, Topop does not even have countable 2-fold subobject de-
compositions, however, we will see that Topop has finite two-fold subobject
decompositions.

Counterexample 1. Consider Q together with the subspace topology induced
by R. Define the continuous maps fa : Q → Q2 by fa(x) = (a, x). The
induced continuous map f in the diagram

⊔
a∈Q

Q
f

// Q2

Q

ιa

OO

fa

88
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is an epimorphism. Moreover, f has the same two-fold co-images as the
identity on

⊔
a∈Q

Q, so that if Topop had two-fold coimages, then we would

have
⊔

a∈Q

Q ' Q×Q — which is a contradiction.

Example 3.17. Topop has finite two-fold subobject decompositions.

Proof. We will show that φ in the above Figure 31 is a homeomorphism,
provided that I is finite. We show that φ preserves open sets: let U ⊆ R be
any open set in R, then for any i, j we have that Ri,j ∩U is open in Ri,j, which
implies that φi,j(U ∩ Ri,j) is open in Ti,j since each φi,j is a homeomorphism.
Therefore, there exists an open set Vi,j ⊆ T such that φi,j(Ri,j ∩U) = Ti,j ∩
Vi,j, and hence we have:

Ti,j ∩ φ(U) = φ(Ri,j ∩U) = φi,j(Ri,j ∩U) = Ti,j ∩Vi,j.

Let Vi =
⋂
j∈I

Vi,j and Ti = Ti,i. Then we have

⋂
j∈J

(Ti,j ∩ φ(U)) =
⋂
j∈J

(Ti,j ∩Vi,j) =⇒ Ti ∩ φ(U) = Ti ∩Vi,

then we will show that
⋃
i∈I

Vi = φ(U). For the direction φ(U) ⊆ ⋃
i∈I

Vi: let

x ∈ φ(U) then there exists j ∈ I such that x ∈ Tj, so that

x ∈ φ(U) ∩ Tj =⇒ x ∈ Tj ∩Vj =⇒ x ∈
⋃
i∈I

Vi.

For the reverse inclusion
⋃
i∈I

Vi ⊆ φ(U): suppose that x ∈ Vi for some i ∈ I.

Then there exists j ∈ I such that x ∈ Ti,j and therefore,

x ∈ Ti,j ∩Vi =⇒ x ∈ Ti,j ∩Vi,j =⇒ x ∈ Ti,j ∩ φ(U) =⇒ x ∈ φ(U).

The reverse argument can then be applied to φ−1, so that φ is a homeomor-
phism.

3.4 The Pairwise Chinese Remainder Theorem in
a category

The so called Pairwise Chinese Remainder Theorem for varieties of universal
algebras (see [BP75]) presents itself as a Mal’tsev condition equivalent to
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the existence of a majority term. This particular theorem can be suitably
reformulated for regular categories, which is the subject of this section.

Let C be a regular category and X an object of C. If θ is an equivalence
relation on X and a, b : S → X morphisms in C, then we will write a ≡ b
mod θ if (a, b) ∈S θ in what follows. Given an object X of a category C,
morphisms a1, a2, ..., am : S → X and equivalence relations θ1, θ2, ..., θm, we
will be concerned with solving the system of congruence equations:

x ≡a1 mod θ1,

x ≡a2 mod θ2,
... (∗)

x ≡am mod θm.

Definition 3.18. An approximate solution to the system above consists of a
morphism a : Q → X (the approximate solution), together with a regular
epimorphism α : Q → S (the approximation of a), such that for any i ∈
{1, 2, ..., m} we have

a ≡ aiα mod θi.

If such an a : Q→ X and α : Q→ S exist, then the above system is said to be
approximately solvable. The above system (∗) is said to be approximately
pairwise solvable, if for any i, j ∈ {1, 2, ..., m} the system

x ≡ai mod θi,

x ≡aj mod θj

is approximately solvable.

Remarks 3.19. The above notion is similar to the notion of an approximate
operation in the sense of [BJ08], in how it compares with the ordinary notion
of solution of a system of equations.

Definition 3.20 (PCRT). Let X be an object of a regular category C, then
X is said to satisfy the Pairwise Chinese Remainder Theorem, if for any
morphisms a1, a2, ..., am : S → X, and any effective equivalence relations
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θ1, θ2, ..., θm, if the system

x ≡a1 mod θ1,

x ≡a2 mod θ2,
...

x ≡am mod θm

is approximately pairwise solvable, then it is approximately solvable. If
every object of C satisfies the PCRT, then we say that C satisfies the PCRT,
or that the PCRT holds in C.

Lemma 3.21. If α′i : Qi → A and β′i : Qi → B are regular epimorphisms making
the diagram

Qi
β′i //

α′i
��

B

bi
��

A ai
// Ci

commute, then there exist regular epimorphisms α : Q → A and βi : Q → B
making the diagram

Q
βi
//

α
��

B

bi
��

A ai
// Ci

commute for any i ∈ {1, 2, ..., n}

Proof. Simply consider the limit of the diagram:

Qi
α′i−→ A

where i ranges from 1 to n. This produces a family of regular epimorphisms
pi : Q→ Qi making the diagram

Q
pi
��

α

��

Qi
α′i

// A

commute, where α is any composite α′i pi where i ∈ {1, 2, ..., n}. Then defin-
ing βi = β′i pi, it follows that α and βi satisfy the required properties.
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The next theorem is the categorical generalization of the Pairwise Chi-
nese Remainder Theorem for varieties of algebras (see [BP75]).

Lemma 3.22. Let C be a regular category, then (i) =⇒ (ii) where:

(i) The PCRT holds in C.

(ii) C has 2-fold subobject decompositions.

Proof. Suppose that C1, C2, ...., Cr are any objects in C, and let A, B be any
subobjects of C = C1 × C2 × · · · × Cr, with representatives a : A0 → C and
b : B0 → C, and which have the same 2-fold images. Let πi(a) = ai and
πi(b) = bi, then we will show that A 6 B. Consider the regular-epi mono
factorizations of the morphisms (ai, aj) and (bi, bj) below:

A0
α′i,j−→R

(ri,rj)−−−→ Ci × Cj,

B0
β′i,j−→T

(ti,tj)−−−→ Ci × Cj.

Since A and B have the same two-fold images, there exists an isomorphism
φ : R → T such that (ti, tj)φ = (ri, rj). Now, we can pullback φα′i,j along
β′i,j, and get two regular epimorphisms α′′i,j : Qi,j → A0 and β′′i,j : Qi,j → B0

making the diagram

Qi,j
β′′i,j

// //

α′′i,j
����

B0

(bi,bj)
��

A0
(ai,aj)

// Ci × Cj

commute. Then by Lemma 3.21, there exist regular epimorphisms α : Q →
A0 and βi,j : Q→ B0 such that the diagram

Q
βi,j

// //

α
����

B0

(bi,bj)
��

A0
(ai,aj)

// Ci × Cj

commutes for any i, j ∈ {1, 2, ..., r}. Now define βi = βi,i, and let θi be the
kernel equivalence relation on B defined by bi. Then we have that

βi,j ≡ βi mod θi and βi,j ≡ β j mod θj,
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so that the system

x ≡ βi mod θi (for i = 1, 2, ..., r.)

is pairwise approximately solvable (the approximation in each case is the
identity on Q). Therefore, by (i) there exists a regular epimorphism α′ :
Q′ → Q and a morphism β : Q′ → B0 such that

β ≡ βiα
′ mod θi (for i = 1, 2, ..., r.)

This implies that

biβiα
′ = biβ =⇒ aiαα′ = πibβ =⇒ πi(aαα′) = πi(bβ),

for any i ∈ {1, 2, ..., n}, and therefore, aαα′ = bβ. Therefore the diagram of
solid arrows

Q′

αα′
����

β
// B0

b
��

A0 a
//

>>

C

commutes, and the dotted arrow exists since αα′ is a regular epimorphism
and b is a monomorphism.

Lemma 3.23. Let C be a majority category with finite products, and R 6 A1 ×
A2 × · · · × An any n-ary relation with n > 3. If

(x, a2, a3, ..., an) ∈S R and (a1, y, a2, a3, ..., an) ∈S R and (a1, a2, z, ..., an) ∈S R,

then
(a1, a2, a3, ..., an) ∈S R.

Proof. Follows trivially from the fact that R is a ternary relation between
A1, A2 and A3 × · · · × An, which must be majority-selecting.

Lemma 3.24. If C is a regular majority category, then the Pairwise Chinese Re-
mainder Theorem holds for C.

Consider the system of congruences from Definition 3.20:

x ≡a1 mod θ1,

x ≡a2 mod θ2,
... (∗)

x ≡am mod θm.
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In the proof below, we will show that in any regular majority category C,
if any system of congruences of length m is approximately solvable as soon
as it is pairwise approximately solvable, then any system of length m + 1
is approximately solvable as soon as it is pairwise approximately solvable.
The result will then follow by induction, since in any regular category C,
any system of length 2 is approximately solvable if and only if it is pairwise
approximately solvable.

Proof. Suppose that m > 2 is any natural number, and suppose that any sys-
tem of congruences in C of length m is approximately solvable as soon as it
is pairwise approximately solvable. Let X be any object in C, a1, a2, ..., am+1 :
S → X any morphisms, and θ1, θ2, ..., θm+1 any effective equivalence rela-
tions of the morphisms f1 : X → X1, f2 : X → X2, ..., fm+1 : X → Xm+1

respectively. Suppose that the system

x ≡a1 mod θ1,

x ≡a2 mod θ2, (∗)
...

x ≡am+1 mod θm+1,

is pairwise approximately solvable. By assumption, the three systems ob-
tained from removing the first, second and third rows from (∗) are approx-
imately pairwise solvable and therefore they are approximately solvable.
Let α1 : Q1 → S together with x′1 : Q1 → X, α2 : Q2 → S together with
x′2 : Q2 → X and α3 : Q3 → S together with x′3 : Q3 → X be the ap-
proximate solutions of (∗) after removing the first, second and third rows
respectively. Consider the limit of the diagram:

Qi
αi−→ S (i = 1, 2, 3)

which gives an object Q together with three regular epimorphisms p1, p2, p3

making the diagram
Q

pi
��

α

��

Qi αi
// S

commute, where α is any composite αi pi. Define xi = x′i pi for i = 1, 2, 3, then
we have that α together with x1, α together with x2, and α together with x3,
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are approximate solutions of the (∗) after removing the first, second and
third row respectively. Now, let e : X → R0 and r : R0 → X1 × X2 × · · · ×
Xm+1 be the regular epi and mono part of the regular image factorization of
( f1, f2, ..., fm+1) : X → X1 × X2 × · · · × Xm+1, and let R be the (m + 1)-ary
relation represented by r. Then we have

( f1x1, f2a2α, f3a3α, ..., fm+1am+1α) ∈QR and,

( f1a1α, f2x2, f3a3α, ..., fm+1am+1α) ∈QR and,

( f1a1α, f2a2α, f3x3, ..., fm+1am+1α) ∈QR,

which by Lemma 3.23, implies that ( f1a1α, f2a2α, ..., fm+1am+1α) ∈Q R. There-
fore, there exists g : Q→ R0 making the square

Q
g
��

α // // // S

( f1a1, f2a2,..., fm+1am+1)
��

h

vvR0 r
// X1 × X2 × · · · × Xm+1

commute. The morphism h exists because α is a regular epimorphism. Fi-
nally, by pulling back h along e, we get the commutative diagram:

Q′

a′
��

α′ // // S

h
��

( f1a1, f2a2,..., fm+1am+1)

((

X e
// // R0 r

// X1 × X2 × · · · × Xm+1

where a′ is an approximate solution of the system (∗) with approximation
α′.

3.5 The characterization theorem

It is well known in universal algebra that varieties admitting a majority term
admit several characterizations, as can be seen from the work of A .F. Pixley
in [Pix63], [BP75] and [Pix79]. The lemmas preceding this section were put
in place, in order to establish the categorical counterparts of these universal
algebraic results. The main theorem of this section is Theorem 3.27.

Lemma 3.25. Let C be a regular majority category. Then for any three reflexive
relations A, B, C on any object X in C we have:

(A ◦ B) ∩ (A ◦ C) 6 A ◦ (B ∩ C).
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Proof. Let a = (a1, a2) : A0 → X × X, b = (b1, b2) : B0 → X × X and
c = (c1, c2) : C0 → X × X represent the three reflexive relations A, B, C
respectively. Consider the quaternary relation R 6 X4 represented by r,
which is formed from the following pullback:

R0

r
��

p2
// A0 × B0 × C0

a×b×c
��

X4
(π2,π1),(π1,π3),(π1,π4)

// (X× X)× (X× X)× (X× X).

Set theoretically, R is the relation defined by:

R = {(x, y, z, w) ∈ X4 | (y, x) ∈ A ∧ (x, z) ∈ B ∧ (x, w) ∈ C}.

Consider the image factorization er′ of (π2, π3, π4)r in the diagram below

R0
r //

e
��

X4

(π2,π3,π4)
��

R′0 r′
// X3

Now, let (x, y) : S → X × X be such that (x, y) ∈S (A ◦ B) ∩ (A ◦ C) then
there exist regular epis α1 : Q1 → S and α2 : Q2 → S as well as morphisms
z1 : Q1 → X and z2 : Q2 → X such that (xα1, z1) ∈Q1 A and (z1, yα1) ∈Q1 B,
together with (xα2, z2) ∈Q2 A and (z2, yα2) ∈Q2 C. We may assume that
α1 = α = α2, since if not, we could pullback α1 along α2. Then note that we
have that

(z1, xα, yα, z1) ∈Q R and (yα, yα, yα, yα) ∈Q R and (z2, xα, z2, yα) ∈Q R,

which implies that

(xα, yα, z1) ∈Q R′ and (yα, yα, yα) ∈Q R′ and (xα, z2, yα) ∈Q R′,

and since R′ is majority selecting, it follows that (xα, yα, yα) ∈Q R′. Thus,
there exists φ : Q→ R′0 such that r′φ = (x, y, y)α. Now, take the pullback of
e along φ, to obtain the diagram below:

Q′ z //

α′

��

R0

e
��

r

��

Q

α
��

φ
// R′0

r′
��

X4

(π2,π3,π4)~~

S
(x,y,y)

// X3
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Then, if we let p = π1rz, it follows that rz = (p, xαα′, yαα′, yαα′). Now by
construction of R, it follows that (xαα′, p) ∈Q′ A and (p, yαα′) ∈Q′ B ∩ C, so
that

(xαα′, yαα′) ∈Q′ A ◦ (B ∩ C) =⇒ (x, y) ∈S A ◦ (B ∩ C).

Lemma 3.26. Let C be a regular category such that for any three effective equiva-
lence relations α, β, γ on an object X, we have

α ∩ (β ◦ γ) = (α ∩ β) ◦ (α ∩ γ),

then C is a majority category.

Proof. Consider the ternary relation R represented by the monomorphism
(r1, r2, r3) : R0 → X×Y× Z, we will show that it is majority selecting in the
sense of Definition 2.4. Let

x, x′ : S→ X, y, y′ : S→ Y, z, z′ : S→ Z,

and a, b, c : S→ R0 be any morphisms in C such that the diagrams:

R0

��

R0

��

R0

��

S

a
99

(x,y,z′)
// X×Y× Z S

b
99

(x,y′,z)
// X×Y× Z S

c
99

(x′,y,z)
// X×Y× Z

commute. Consider the kernel congruences α, β, γ on R formed from taking
the kernel pairs of r1, r2, r3 respectively. Then (a, c) ∈S β ∩ (α ◦ γ) =⇒
(a, c) ∈S (β∩ α) ◦ (β∩γ), so that there exists a regular epimorphism e : Q→
S and a morphism b : Q → R such that (ae, b) ∈Q (β ∩ α) and (b, ce) ∈Q

(β ∩ γ). This implies that xe = r1b and ye = r2b and ze = r3b, and therefore
we have the commutative diagram:

Q b //

e
��

R
(rA,rB,rC)
��

S
(x,y,z)

//

f
99

X×Y× Z

where f exists, since e is a regular epimorphism.

We are now ready to prove the main theorem of this chapter.
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Theorem 3.27. The following are equivalent for a regular category C:

(i) The Pairwise Chinese Remainder Theorem holds for C.

(ii) C has finite 2-fold subobject decompositions.

(iii) C is a majority category.

(iv) For any three reflexive relations A, B, C on an object X in C we have

(A ◦ B) ∩ (A ◦ C) 6 A ◦ (B ∩ C).

(v) For any three reflexive relations A, B, C on an object X in C we have

A ∩ (B ◦ C) 6 (A ∩ B) ◦ (A ∩ C).

(vi) For any equivalence relations α, β, γ on an object X in C we have

α ∩ (β ◦ γ) = (α ∩ β) ◦ (α ∩ γ).

(vii) For any effective equivalence relations α, β, γ on an object X in C we have

α ∩ (β ◦ γ) = (α ∩ β) ◦ (α ∩ γ).

We have the chain of implications (i) =⇒ (ii) =⇒ (iii) =⇒ (iv)
by Lemma 3.22, Theorem 3.7 and Lemma 3.25, respectively. We also have
(vii) =⇒ (iii) =⇒ (i) by Lemma 3.26 and Lemma 3.24, respectively.
Trivially, we have (v) =⇒ (vi) =⇒ (vii). Thus, to prove the theorem
above, it suffices to show (iv) =⇒ (v).

Proof. Note that if C satisfies (iv), then for any three reflexive relations
A, B, C on an object X in C we have

(B ◦ A) ∩ (C ◦ A) 6 (B ∩ C) ◦ A.

This is because we may take the double opposite of the left-hand side:

(B ◦ A) ∩ (C ◦ A) = (((B ◦ A) ∩ (C ◦ A))op)op

= ((B ◦ A)op ∩ (C ◦ A)op)op

= ((A ◦ B) ∩ (A ◦ C))op 6 (A ◦ (B ∩ C))op = (B ∩ C) ◦ A
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Now, for (iv) =⇒ (v) we have the following:

(A ∩ B) ◦ (A ∩ C) > ((A ∩ B) ◦ A) ∩ ((A ∩ B) ◦ C)

> ((A ∩ B) ◦ A) ∩ (A ◦ C) ∩ (B ◦ C)

> A ∩ (B ◦ C)

by repeated application of (iv).

Definition 3.28. Let X be an object in a category C, then a factor congru-
ence K on X is a congruence relation represented by the kernel equivalence
relation of π1 where

A X
π2 //

π1oo B

is a binary product diagram. The factor congruence K′ obtained as the ker-
nel equivalence of π2 is the complement of K, and more over, K ◦ K′ = 1.
The sub-poset of all factor congruences of an object X is denoted by F(X).

Remarks 3.29. By Proposition 1.44, the pair of congruences K, K′ are a pair of
factor congruences if and only if K ◦ K′ = 1 and K ∩ K′ = 0.

The notion of a factor permutable variety was introduced in [Gum83],
which has a straightforward generalization given below.

Definition 3.30 ([Gra04]). A regular category C is said to be factor per-
mutable if for any factor congruence F and any congruence E on an object
X we have

F ◦ E = E ◦ F.

Corollary 3.31. Every regular majority category is factor permutable.

Proof. Just note that E ◦ F and F ◦ E as subobjects of X×Y×X×Y have the
same two-fold projections. Therefore, by Theorem 3.27 (ii), we must have

E ◦ F = F ◦ E.

Given a morphism f : X → Y in a category C with image factorizations,
and a subobject S 6 X× X, we will write f (S) for the subobject ( f × f )(S),
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and similarly we write f−1(S) for ( f × f )−1(S). If C is regular, then we
have:

f−1 f (S) = K ◦ S ◦ K,

where K is the kernel equivalence relation on X associated to f . Bourn
showed in [Bou05], that a regular Mal’tsev category is congruence distribu-
tive if and only if for any regular epimorphism f : X → Y and any equiva-
lence relations α, β ∈ Eq(X), we have f (α ∩ β) = f (α) ∩ f (β) (this holds, in
fact, for Goursat categories). The proof of this fact essentially reduces to the
proposition below.

Proposition 3.32. Let C be a regular category, then the following are equivalent.

(i) For any regular epimorphism f : X → Y, and any reflexive relations R, S ∈
Eq(X) we have f (R ∩ S) = f (R) ∩ f (S).

(ii) For any three reflexive relations R, S, T on any object X in C, we have

(T ◦ R ◦ T) ∩ (T ◦ S ◦ T) = (T ◦ R ∩ S ◦ T).

The proof below is essentially that which can be found in [Bou05], how-
ever we include a sketch for completeness.

Sketch. For (i) =⇒ (ii): suppose that (r1, r2) : R0 → X × X and (s1, s2) :
S0 → X × X and (t1, t2) : T0 → X × X are represent R, S, T respectively.
Note that t2(t−1

1 (R)) = T ◦ R ◦ T and t2(t−1
1 (R)) = T ◦ S ◦ T, so that we

have:

(T ◦ R ◦ T) ∩ (T ◦ S ◦ T) = t2(t−1
1 (R)) ∩ t2(t−1

1 (S))

= t2(t−1
1 (R) ∩ t−1

1 (RS))

= t2(t−1
1 (R ∩ S))

= T ◦ (R ∩ S) ◦ T
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For (ii) =⇒ (i): suppose that f : X → Y is any regular epimorphism, then
we have that

f (R ∩ S) = f ( f−1 f (R ∩ S))

= f (K ◦ (R ∩ S) ◦ K)

= f ((K ◦ R ◦ K) ∩ (K ◦ S ◦ K))

= f ( f−1 f (R) ∩ f−1 f (S))

= f f−1( f (R) ∩ f (S))

= f (R) ∩ f (S)

Corollary 3.33. For any regular epimorphism f : X → Y in a regular majority
category C, and any reflexive relations R, S on X we have

f (R ∩ S) = f (R) ∩ f (S)

Proof. We show that any regular majority category C satisfies (ii) of Propo-
sition 3.32: suppose that R, S, T are reflexive relations on an object X in C.
Then we always have:

T ◦ (R ∩ S) ◦ T 6 (T ◦ R ◦ T) ∩ (T ◦ S ◦ T).

For the reverse inequality, we have

T ◦ (R ∩ S) ◦ T > ((T ◦ R) ∩ (T ◦ S)) ◦ T

> (T ◦ R ◦ T) ∩ (T ◦ S ◦ T)

Majority categories are Gumm categories

The shifting property was first introduced for varieties in [Gum83], and its
categorical formulation is the following definition.

Definition 3.34 (Shifting property [BG04]). Let C be a category with finite
limits, X an object of C, and α, β, γ congruences on X and a, b, c, d : S →
X any morphisms in C. Then C is said to satisfy the shifting property if
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whenever α ∩ β 6 γ, then if (a, b), (d, c) ∈S β, (a, c), (b, d) ∈S α and (b, d) ∈
γ,

b
α

β

γ
d

β

a
γ

α c

then (a, c) ∈S α.

Categories satisfying the shifting property are called Gumm categories,
after H.P. Gumm – the author of [Gum83]. A variety is a Gumm category
if and only if it is congruence modular, however, for general categories
the shifting property is strictly weaker than congruence modularity (see
[Jan16]). Regular majority categories satisfy a stronger property, which is
obtained by dropping the requirement that (b, d) ∈S α.

Theorem 3.35 (Strong Shifting). Let C be a regular majority category, X an
object of C, α, β, γ congruences on X, and a, b, c, d : S→ X any morphisms. Then,
if (a, b), (d, c) ∈S β, (a, c), (b, d) ∈S α and (b, d) ∈ γ,

b
β

γ
d

β

a
γ

α c

then (a, c) ∈S γ.

Proof.

(a, c) ∈S α ∩ (β ◦ γ ◦ β) = (α ∩ β) ◦ (α ∩ γ) ◦ (α ∩ β) 6 γ.

Theorem 3.36. If C is a regular category satisfying the strong shifting property as
above, then C is factor permutable.

Proof. Suppose that C a regular category satisfying the strong shifting prop-
erty, and that

X X×Y
π2 //

π1oo Y
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is a product diagram in C. Suppose that θ = Eq(π1) and that θ′ = Eq(π2),
and that γ is any congruence on X × Y. Suppose that a, d : S → X are
morphisms in C, with (a, d) ∈S γ ◦ θ. Then, there exists a regular epimor-
phism e : T → S and a morphism b : T → X such that (ae, b) ∈T γ and
(b, de) ∈T θ. Since θ ◦ θ′ = 1, there exists a regular epi e : T′ → T and a
morphism c : T′ → X such that (aee′, c) ∈T′ θ′ and (c, dee′) ∈T′ θ. Therefore,
since C satisfies the strong shifting property, it follows that (aee′, c) ∈T′ γ.

be′

θ

γ
dee′

θ

aee′

γ

θ′ c

Therefore, (aee′, dee′) ∈T′ θ ◦ γ, which implies (a, d) ∈S θ ◦ γ.

This gives another way to see that every regular majority category is
factor permutable in the sense of Definition 3.30.

Corollary 3.37. Every regular majority category is factor permutable.
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Chapter 4

Unique factorization

In this chapter, we prove two uniqueness of direct-decomposition theorems.
The first is essentially an application of Theorem 3.27, which has been mo-
tivated by the corresponding universal algebraic result (see Chapter 5 in
[MMT87]). The second Theorem (Theorem 4.32) is one of the main results of
the thesis, which presents a uniqueness of factorization result which is much
more general than the first, provided that the base category is pointed and
has binary coproducts. It shows that there can be a categorical foundation
to various decomposition theorems, that do not require the base category to
be very algebraic.

4.1 Pre-exact categories

Throughout this section, we fix a (finitely) complete regular category C.
Given a (finite) family (Ei)i∈I of effective equivalence relations on an ob-
ject X in C, with representatives

E′i //
// X

fi
// Ai,

the kernel equivalence relation of the induced morphism

E //
// X

f
//∏i Ai,

represents the meet
∧

i Ei in the semi-lattice Ef(X) of effective equivalence
relations on X. The notion of a pre-exact category is a weakening of the
notion of a Barr exact category [BGO71], which includes duals of geometric
categories such as Topop and Relop

n .

67
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Definition 4.1. A (finitely) complete category C is said to be pre-exact if it is
regular, has coequalizers of equivalence relations, and for any (finite) family
of equivalence relations represented by (E′i)i∈I on any object X, the canoni-
cal morphism ∧

i∈I

E′i →
∧
i∈I

E′i ,

is an epimorphism, where E′i denotes the kernel pair of the coequalizer of
E′i .

Remarks 4.2. The morphism in the definition above is always a monomor-
phism, and therefore a pre-exact category C is exact if and only if it is a
regular epimorphism. Thus in particular, every exact category is pre-exact.

Some of the details in the proof below are left out, as the argument below
is straightforward .

Proposition 4.3. Let C and D be (complete) regular categories which have co-
equalizers of equivalence relations. Also, let F : C → D be a functor which
preserves limits and coequalizers of equivalence relations, and also reflects epimor-
phisms. Then, if D is pre-exact, then so is C.

Proof. Suppose that (Ei
ei−→ X2)i∈I is a family of monomorphisms which

represent equivalence relations on X and let X
qi−→ Xi be a coequalizer of the

Ei. Then, we are required to show that in the diagram,

∧
i∈I

Ei

��
��∧

i∈I
Ei

σ

OO

//
// X

(qi)i∈I

// ∏
i∈I

Xi

the vertical arrow is an epimorphism. Now, we have that F(
∧
i∈I

Ei) '
∧
i∈I

F(Ei)

since
∧
i∈I

Ei is constructed as a certain limit, and F preserves limits. We also

have that F(Ei) ' F(Ei) since F preserves coequalizers (and also kernel
pairs). Now since Ei is an equivalence relation, and F preserves limits, it
follows that each F(Ei) → F(X × X) is also an equivalence relation. There-
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fore, we have the following diagram in D:

F(
∧
i∈I

Ei)
∼ //

∧
i∈I

F(Ei)

""
""

F(
∧
i∈I

Ei)

F(σ)

OO

∼ //
∧
i∈I

F(Ei)

OO

//
// F(X)

(F(qi))i∈I

// ∏
i∈I

F(Xi)

Finally, since D is a pre-exact category, the right-hand vertical morphism is
an epimorphism, which implies that F(σ) is an epimorphism, so that σ is an
epimorphism.

Proposition 4.4. Let C be a pre-exact category. For any family of equivalence
relations (Ei)i∈I on any object X represented by the family of monomorphisms
(E′i → X2)i∈I in C, we have ∧

i∈I

Ei =
∧
i∈I

Ei.

Proof. There is a canonical triangle in the preorder of monomorphisms into
X× X: ∧

i∈I
E′i //

∧
i∈I

E′i

∧
i∈I

E′i

OO >>

Since C is pre-exact, it follows by definition that the diagonal morphism is
an epimorphism, which implies that the horizontal morphism above is an
epimorphism. ∧

i∈I
Ei

��

��

��

X∧
i∈I

Ei

f

��

X

?? ??

�� ��∧
i∈I

Ei

??
??

X∧
i∈I

Ei

g

MM

Since the upper parallel pair of morphisms factor through the bottom par-
allel pair, it follows that the dotted arrow g exists in the diagram above. The
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morphism f exists since the vertical solid arrow is an epimorphism. These
morphisms f and g are inverse isomorphisms, and therefore∧

i∈I

Ei =
∧
i∈I

Ei.

Example 4.5. The categories Topop, Relop, Ordop, Metop
∞ all admit forgetful

functors to Setop. These forgetful functors preserve limits, colimits and re-
flect epimorphisms. Since they are regular, it follows from Proposition 4.3
that they are all pre-exact.

4.2 Direct decomposition in pre-exact majority
categories

Definition 4.6. An object X in a category C with a terminal object is said
to be non-trivial if the terminal map tX : X → 1 is a regular epimorphism
which is not an isomorphism.

Throughout this section we will be working with a complete pre-exact
(see Definition 4.1) majority category C, where the class of non-trivial ob-
jects in C is closed under products.

Definition 4.7. An object X in a regular category C is said to be directly
irreducible if it is non-trivial and satisfies the following property: for any
isomorphism φ : X → A × B, either π1φ or π2φ is an isomorphism. The
object X is said to be strongly directly irreducible if and only if X is non-trivial,
and X ' A× B implies A ' 1 or B ' 1.

Remarks 4.8. Every strongly directly irreducible object is directly irreducible.

Example 4.9. A topological space/ordered set/graph S is strongly irreducible
in Topop/Ordop/Grphop if and only if S is connected in the usual sense.

Example 4.10. If S is a G− Set, then S is strongly irreducible in (G− Set)op

if and only if S is transitive (has at most one orbit). To see this, suppose
that S is strongly directly irreducible in (G − Set)op, and let x ∈ S be any
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element. Note that orb(x) and also S− orb(x) are both G-sets together with
the restricted action of S. We have a canonical isomorphism:

orb(x) t (S− orb(x)) ' S,

and since S is assumed to be strongly directly irreducible in (G − Set)op,
and orb(x) 6= ∅, it follows that S− orb(x) = ∅, so that S is transitive. The
converse statement is left to the reader.

Lemma 4.11. Suppose that A is a directly irreducible object in C, and let X =

A× B where B is any object in C. Then the factor congruence K represented by the
kernel pair of the projection π1 : X → A is maximal in F(X).

Proof. Suppose that F ∈ F(X) has complement F′ and K 6 F. Then by
Corollary 3.31, it follows that K permutes with F′ so that K ◦ F′ is an equiv-
alence relation on X. Moreover, the join K ∨ F′ in Ef(X) is given by K ◦ F′,
which is the effective closure of K ◦ F′. Then we have

F ◦ (K ◦ F′) > F ◦ F′ = 1 =⇒ F ◦ (K ◦ F′) = 1.

And since C is a pre-exact majority category, it follows that:

F ∩ (K ∨ F′) = F ∩ K ◦ F′ = F ∩ (K ◦ F′) = F ∩ K ◦ F ∩ F′ = K,

by Theorem 4.4 and Theorem 3.27. Thus by Proposition 1.44, the canonical
morphism

X/K σ−→ X/F× X/(K ∨ F′),

is an isomorphism. Since X/K ' A - which is directly irreducible, it follows
that either of the morphisms π1σ or π2σ is an isomorphism. If π2σ were an
isomorphism, then K∨ F′ = K which would imply that F′ = 0 and therefore
F = 1. On the other hand, if π1σ is an isomorphism, then K = F. Therefore,
K is a maximal in F(X).

Throughout the remainder of this section, we fix a (finitely) complete
pre-exact majority category C. Let (Xi)i∈I be a (finite) family of directly
irreducible objects in C, and denote X = ∏

i∈I
Xi. In what follows, Ki is the

kernel congruence of the projection πi : X → Xi.

Lemma 4.12. For any object X in C the poset of factor congruences F(X) on X
forms a complete boolean lattice.
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Proof. Suppose that F, K are any two factor congruences with complements
F′ and K′ respectively. Then we claim that F ∩ K is also a factor congruence,
with complement F′ ◦ K′ - the effective closure of F′ ◦ K′. Applying both
Corollary 3.31 and Theorem 3.27 we have that:

(F ∩ K) ∩ (F′ ◦ K′) = (F ∩ K) ∩ (F′ ◦ K′) = F ∩ K ∩ F′ ◦ F ∩ K ∩ K′ = 0.

And also we have

F ∩ K ◦ (F′ ◦ K′) > F ∩ K ◦ (F′ ◦ K′),

= (F ◦ F′ ◦ K′) ∩ (K ◦ F′ ◦ K′) = 1,

so that F ∩ K ◦ (F′ ◦ K′) = 1. This shows that F ∩ K is a factor congruence,
whose complement is given by F′ ◦ K′. Thus, F(X) is a complemented lat-
tice, which is distributive since

F∩ (K∨T) = F∩ (K ◦ T) = F ∩ (K ◦ T) = (F ∩ K) ◦ (F ∩ T) = (F∩K)∨ (F∩T).

Thus F(X) is a Boolean lattice, and it also easily seen to be complete (which
is left to the reader).

Lemma 4.13. Any (small) complete Boolean lattice is infinitely distributive, which
is to say satisfies

b ∨
∧
i∈J

ai =
∧
i∈J

(b ∨ ai),

where J is any set.

Proof. The inequality b∨ ∧
i∈J

ai 6
∧
i∈J

(b∨ ai) is trivial, therefore we will show

the reverse. Let b′ be the complement of b, then for any i ∈ J we have:

ai = ai ∨ (b ∧ b′) = (ai ∨ b) ∧ (ai ∨ b′) > (ai ∨ b) ∧ b′.

This implies ∧
i∈J

ai >
∧
i∈J

(ai ∨ b) ∧ b′ = (
∧
i∈J

(ai ∨ b)) ∧ b′,

so that

b ∨
∧
i∈J

ai > b ∨ (
∧
i∈J

(ai ∨ b) ∧ b′) = (b ∨
∧
i∈J

(ai ∨ b)) ∧ (b ∨ b′) =
∧
i∈J

(ai ∨ b).
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Lemma 4.14. If F ∈ F(X) is a maximal factor congruence, then F = Ki for some
unique i ∈ I.

Proof. Suppose that F 6= Ki for any i ∈ I, then by Lemma 4.11, since each Ki

is a maximal factor congruence, we have that F ∨ Ki = 1 for any i ∈ I. By
Lemma 4.12, F(X) is a (small) complete Boolean lattice, and is thus infinitely
distributive by Lemma 4.13. Therefore we have

F = F ∨ (
∧
i∈I

Ki) =
∧
i∈I

(F ∨ Ki) = 1,

which is a contradiction, so that F = Ki for some i ∈ I. For uniqueness,
suppose that Ki and Kj are represented by K′i and K′j, and have Ki = Kj.
Suppose that (T, t1, t2) in

T
t1 //

t2
// Xi // 1,

is a kernel pair of the terminal morphisms Xi → 1. Then we have that the
diagram

(∏
k 6=i

Xk)× T
id×t1 //

id×t2

// X πj
// Xj

commutes, so that ((id, t1), (id, t2)) factors through Kj, and hence through
Ki. This implies that t1 = t2, which implies that the terminal map Xi → 1 is a
mono, which is a contradiction since Xi is directly irreducible, and therefore
non-trivial.

Lemma 4.15. The product projections πi : ∏
i∈I

Xi → Xi are regular epimorphisms.

Proof. Since the class of non-trivial objects in C is closed under products,
the terminal map ∏k 6=i Xk → 1 is a regular epimorphism. The projection
πi : ∏

i∈I
Xi → Xi may be obtained as the pullback of ∏k 6=i Xk → 1 along

Xi → 1, and since C is regular it must be a regular epimorphism.

∏
i∈I

Xi

πi

��

// ∏
k 6=i

Xk

��

Xi // 1.
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Suppose that C is a (finitely) complete pre-exact category, such that the
class of non-trivial objects is stable under products. Let (Xi)i∈I and (Yj)j∈J

be two families of directly irreducible objects in C, and let

X = ∏
i∈I

Xi
f
// ∏
j∈J

Yj = Y,

be any isomorphism in C.

Definition 4.16. If there exists a bijection σ : I → J and a family of isomor-
phisms ( fi : Xi → Yσ(i))i∈I such that the diagram

∏
i∈I

Xi

πi
��

f
// ∏
j∈J

Yj

π′
σ(i)
��

Xi fi

// Yσ(i)

commutes, then we shall say that C has strong refinements.

Remarks 4.17. Note that in the universal algebraic setting, a variety has strong
refinements if and only if it has strict refinements in the sense of [MMT87].

Theorem 4.18. Every pre-exact majority category C has strong refinements.

Proof. Suppose that Ki is the kernel equivalence relation of πi and Lj is the
kernel equivalence of π′j. Then for any i, we have that Ki is a maximal fac-
tor congruence by Lemma 4.11, and thus the image f (Ki) of Ki under f
is a maximal factor congruence on Y. Thus, by Lemma 4.14 we have that
f (Ki) = Lσi for some unique σi ∈ J. Since the πi is a regular epimorphism,
it is the coequalizer of Ki, and hence there exists a morphism fi : Xi → Yσi .

Ki //

����

f (Ki) = Lσ(i)

����

∏
i∈I

Xi

πi
��

f
// ∏
j∈J

Yj

π′
σ(i)
��

Xi fi

// Yσ(i)

By applying the whole argument above to the inverse isomorphism of f ,
it will follow that the map i 7→ σi is a bijection, and the morphisms fi are
isomorphisms.
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Remarks 4.19. The above theorem recaptures the familiar lattice-theoretic
fact that a direct product of directly irreducible lattices is unique in the sense
above. Interestingly, the theorem applies to the categories Topop, Ordop, Metop

∞

and (G − Set)op to reproduce the fact that a coproduct of connected topo-
logical spaces/ordered sets/metric spaces is unique up to a permutation of
the connected components. Furthermore, a connected coproduct of transi-
tive G-sets is also unique up to a permutation of its transitive components.

Corollary 4.20. If C is any (co)complete topos, then Cop has strong refinements.

Remarks 4.21. Note that the category Lat(Top) of topological lattices is a
majority category, but it is not regular so that we may not apply the above
theorem to it. However, the main theorem of the next section gets around
this problem.

Remarks 4.22. The results of this section can be done more generally, by dis-
cussing refinement properties for general (regular) categories. This is based
on the paper [CJT64], and is not presented here.

4.3 Direct decompositions in zero-majority
categories

The proof in the previous section was possible because the notion of a pre-
exact category was sufficiently algebraic, so that we could borrow ideas
from its universal algebraic counterpart. This section proves the same result
for pointed categories, in a much weaker context than pre-exact categories,
or majority categories, provided the base category has binary coproducts
and is pointed.

Definition 4.23. Let C be a pointed category with finite products, then C

said to be zero-majority if any ternary relation R in C satisfies

(x, y, z) ∈S R and (x, y′, 0) ∈S R and (x′, y, 0) ∈S R =⇒ (x, y, 0) ∈S R.

Example 4.24. Any pointed majority category is necessarily zero-majority.

The below example is a consequence of the more general results of [Jan06].
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Example 4.25. A pointed variety of algebras V is zero-majority if and only if
it admits a ternary term m(x, y, z) satisfying the equations:

m(x, x, z) = x,

m(x, y, x) = x,

m(x, 0, 0) = 0.

Example 4.26. The category Imp of implication algebras was introduced in
[Abb67], as a variety of algebras with a single binary operation satisfying:

(x · y) · x = x

(x · y) · y = y · (x · x)
(x · y) · z = y · (x · z)

It can be shown that every non-empty implication algebra A admits a con-
stant 1 which is given by x · x for any x ∈ A, and satisfies x · 1 = 1 and
1 · x = x. This is why implication algebras are assumed to be non-empty,
and therefore the category Imp is a pointed category. In what follows, we
will write xy for x · y. Set

m(x, y, z) = (y(zx))x,

then

m(x, x, z) = (x(zx))x = x

m(x, y, x) = (y(xx))x = 1x = x

m(x, 1, 1) = (1(1x))x = (1x)x = xx = 1

which implies that Imp is a zero-majority category by Example 4.25. This
provides an example of a zero-majority category, which is not a majority
category.

Remarks 4.27. Any finitary variety of algebras admitting a majority term is
necessarily congruence distributive (see [Jon67]). But zero-majority finitary
varieties are not even congruence modular, necessarily. To see this, suppose
that X = {0, 1, 2, 3} and that mX is defined by

mX(x, y, z) =


x x = z

y x = y

0 otherwise
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Then the subsets L, M, N of X× X defined by:

L = {(0, 0), (1, 1), (2, 2), (3, 3), (3, 0), (0, 3)}
M = {(0, 0), (1, 0), (0, 1), (1, 1), (2, 2), (3, 3)}
N = {(0, 0), (1, 0), (0, 1), (1, 1), (2, 2), (3, 3), (1, 2), (2, 1), (0, 2), (2, 0)}

are congruences, and moreover we have that they give us the pentagon

1

N L

M

0

in the congruence lattice of X. So that X is not congruence modular.

In what follows, we will make use of a weakened version of the approxi-
mate operations of Z. Janelidze and D. Bourn (see [BJ08]). It what follows, we
will be working with categories that have binary coproducts. Given three
morphisms x, y, z : S → A the induced morphism will be denoted by a
vector with square brackets:

3S
[x,y,z]−−−→ A.

Definition 4.28. Let C be a pointed category with binary coproducts. An
approximate zero-majority co-operation on an object S, is a pair of mor-
phisms: mS : DS → 3S (the approximate co-operation), and an epimor-
phism αS : DS → S (the approximation of ms), with the property that for
any morphisms x, y : S→ A we have

[x, x, y]ms = xαS, [x, y, x]ms = xαS, [x, 0, 0]ms = 0,

where 0 is a zero-morphism from DS to A.

Recall the definition of a weakly regular category from Definition 1.32:

Definition 4.29. We call a category C weakly-regular if it is finitely com-
plete, has coequalizers of kernel pairs, and the pullback of a regular epi-
morphism is again an epimorphism.
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We have already seen that in every weakly regular category, every mor-
phism factors as a regular epimorphism followed by a monomorphism.

Theorem 4.30. Let C be a weakly-regular zero-majority category with binary
coproducts, then every object X in C admits an approximate zero-majority co-
operation.

Sketch. Consider the pullback diagram below:

A
p

//

α

��

3X
ι1 ι1 ι2

ι1 ι2 0
ι2 ι1 0


��

X
(ι1,ι1,0)

// (2X)3

Let 3X e−→ R r−→ (2X)3 be an epi-mono factorization of the right-hand verti-
cal morphism. Then we have that (ι1, ι1, ι2) factors though R, and (ι1, ι2, 0)
factors though R, and (ι2, ι1, 0) factors though R, which implies that (ι1, ι1, 0)
factors though R (via h). Therefore, the diagram

A
p
//

α
��

3X
e
��

X
h
// R

is a pullback, so that α is an epimorphism. And by construction, p is an
approximate zero-majority co-operation.

For the remainder of this section, we fix a complete weakly regular, zero-
majority category C with binary coproducts. Let (Xi)i∈I and (Yj)j∈J be a
family of directly irreducible objects in C, and let

X = ∏
i∈I

Xi
f
// ∏
j∈J

Yj = Y

be any isomorphism. Consider the regular epi-mono factorization mi,jei,j of
πj f ιi in the diagram below:

Xi

ei,j   

ιi // X
f
// Y

πj
��

Yi,j mi,j
// Yj
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In what follows, we will denote ∏ Yi,j = S and each yj : S → Yj for mi,jπ
′
j,

where π′j : S → Yi,j are the canonical product projections. Then y = (yj)j∈I

is a monomorphism, as it is a product of monomorphisms. If we denote S
for the subobject represented by y, and Xi for the subobject of Y represented
by f ιi. Then we have Xi 6 S, and in what follows we will show that the
reverse inequality S 6 Xi also holds.

Lemma 4.31. The morphism f−1y factors through ιi.

Proof. Suppose that x = (xi)i∈I : S → X is the morphism with f x = y, and
fix q ∈ J. Since the pullback of a regular epimorphism is an epimorphism,
there exists an epimorphism α : Q → S and a morphism x′ : Q → X such
that πq f x′ = yqα, and x′ factors through Xi

ιi−→ X (which implies that x′k = 0
if k 6= i). Let y′ = f x′ and let y′′ = (y′′j )j∈J : Q→ Y be the morphism defined
by y′′j = 0 for j 6= q, and y′′q = yqα, and let x′′ : Q → X be the morphism
with f x′′ = y′′.

Now, let mQ : AQ → Q be an approximate zero-majority co-operation
with approximation αQ : AQ → Q (see Definition 4.28). Then we have

[y′′, 0, y′]mQ = y′′αQ,

since for j ∈ J we have:

πj[y′′, 0, y′]mQ = [y′′j , 0, y′j]mQ =

0 = [0, 0, y′j]mQ j 6= q

y′′q αQ = [yqα, 0, yqα]mQ j = q
.

This implies that

f−1[y′′, 0, y′]mQ = f−1y′′αQ =⇒ [x′′, 0, x′]mQ = x′′αQ,

so that if k 6= i, then we have

πk[x′′, 0, x′]mQ = πkx′′αQ =⇒ [x′′k , 0, x′k]mQ = πkx′′αQ =⇒ 0 = πkx′′αQ,

which implies that x′′αQ factors through Xi
ιi−→ X, and hence so does x′′

(since α is an epimorphism, and ιi a split mono). Now, let x∗ : S → X be
the morphism that factors through Xi

ιi−→ X with πi(x∗) = xi. Then we have
that

πk[xα, x′′, x∗α]mQ =

0 = [xkα, x′′k , x∗k α]mQ k 6= i

xkααQ = [xkα, x′′k , x∗k α]mQ k = i
,
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which shows that
[xα, x′′, x∗α]mQ = x∗ααQ.

Now consider the following argument:

f [xα, x′′, x∗α]mQ = f x∗ααQ =⇒
[yα, y′′, y∗α]mQ = y∗ααQ =⇒

πq[yα, y′′, y∗α]mQ = πqy∗ααQ =⇒
[yqα, y′′q , y∗qα]mQ = y∗qααQ =⇒

[yqα, yqα, y∗qα]mQ = y∗qααQ =⇒

yqααQ = y∗qααQ =⇒

yq = y∗q .

Finally, since the q above is arbitrary, and x∗ is fixed once y is fixed, it follows
that f (x∗) = y = f (x) =⇒ x = x∗, which completes the proof.

Theorem 4.32. Let C be a weakly regular, zero-majority category with binary co-
products, then C has strong refinements.

In the proof below, we will be working with the diagram in Defini-
tion 4.16.

Proof. By Lemma 4.31, it follows that the canonical morphism

Xi →∏
j∈J

Yi,j,

is an isomorphism. Since Xi is strongly-directly irreducible, there exists a
unique σi ∈ J such that the canonical projection

∏
j∈J

Yi,j
πσi−→ Yi,σi ,

is an isomorphism. Thus the morphism fi = πσi f ιi is a monomorphism.

∏
i∈I

Xi

πi
��

f
// ∏
j∈J

Yj

π′
σ(i)
��

Xi

ιi

>>

fi

// Yσ(i)

ι′σi

aa
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Consider the morphism g = πi f−1ι′σi
, then we have

fig = fiπi f−1ι′σi
= fi = πσi f ιiπi f−1ι′σi

= 1Yσi
,

which implies that fi is a split epimorphism, and therefore an isomorphism.
Since g = πi f−1ι′σi

= f−1, it follows that the assignment i 7−→ σi is a bijec-
tion.

The above result applies to the categories Lat∗(Top) of pointed topolog-
ical lattices, or Imp(Top) of topological implication algebras, and gives us
the above uniqueness of direct-decomposition results. Also, the category
NReg(Top) of topological von Neumann regular rings, which is regular,
admits the above the above direct deccomposition results as a special case,
as it is regular and pointed.
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Chapter 5

Comajority excludes Majority

In Section 3.3 we saw that many categories of a geometric nature, such
as topological spaces, metric spaces, any topos, etc., form comajority cat-
egories. This raises the question of whether there are categories which are
simultaneously majority and comajority. This section proves that the only
finitely complete categories C with binary coproducts, such that C and Cop

are majority categories are the preorders having finite meets and joins. This
result is similar to the result that if a category C is such that both C and Cop

are distributive categories, then C is a preorder.

In what follows, by a majority algebra we mean a set X equipped with a
majority operation pX : X3 → X. A homomorphism of majority algebras f :
(X, pX) → (Y, pY) is a function f : X → Y satisfying pY( f (x), f (y), f (z)) =
f (pX(x, y, z)). A majority algebra is said to be commutative if the majority
operation is a homomorphism.

Lemma 5.1. Let C be a finitely complete majority category and A any object in C,
then the morphisms

A3 (π1,π1,π3)
// A3 A3(π1,π2,π2)

oo

A3

(π3,π2,π3)

OO

are jointly strongly epimorphic.

Proof. Suppose r is a monomorphism, such that each of the morphisms

82
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above factor through R:

R

r
��

R

r
��

R

r
��

A3

m1
==

(π1,π1,π3)
// A3 A3

m2
==

(π1,π2,π2)
// A3 A3

m3
==

(π3,π2,π3)
// A3

Then there exists m : A3 → R making the diagram

R

��

A3

m
==

(π1,π2,π3)
// A3

commute, so that r is a split epimorphism, and hence an isomorphism.

Lemma 5.2. Let C be a finitely complete majority category with binary coproducts.
If C and Cop are majority categories, then every hom-set can be equipped with a
commutative majority operation.

Proof. Let A be any object of C, then by Lemma 5.1 the morphism

3A3

MA=


π1 π1 π3

π1 π2 π2

π3 π2 π3


// A3

is an epimorphism. In particular, A3 together with MA is a ternary core-
lation on A3 (a ternary relation in Cop). Composing MA with each of the
projections πi : A3 → A, we have the following commutative diagrams:

3A3


3

π1

π1

π3

""

MA // // A3

π1
��

3A3


3

π1

π2

π2

""

MA // // A3

π2
����

3A3


3

π3

π2

π3

""

MA // // A3

π3
��

A A A

Since C is a comajority category, there exists a morphism pA : A3 → A
making the diagram

3A3 MA // //


π1

π2

π3


''

A3

pA
��

A
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commute. Thus we have constructed an internal majority operation pA on
A, for each object A in C. Next, to see that every morphism in C is a ho-
momorphism with respect to the internal majority operation constructed
above, let f : A → B be any morphism in C, then the commutativity of the
diagram below follows from the commutativity of the top and outer rectan-
gles, and the fact that MA is an epimorphism.

3A3

MA����

3 f 3
// 3B3

MB
����

A3

pA
��

f 3
// B3

pB
��

A
f

// B

The commutativity of the bottom square is precisely the statement that f is
a homomorphism with respect to the internal majority operations pA and
pB. Therefore, for any objects S and A the composite

hom(S, A)3 ' hom(S, A3)
hom(S,pA)−−−−−−→ hom(S, A),

is a commutative majority operation.

Lemma 5.3. Let (X, pX) be a commutative majority algebra, then X has at most
one element.

Proof. Let x, y ∈ X be any two elements, then

x = pX(x, x, y)

= pX(pX(x, x, y), pX(x, y, x), pX(y, y, y))

= pX(pX3((x, x, y), (x, y, y), (y, x, y)))

= pX(pX(x, x, y), pX(x, y, y), pX(y, x, y))

= pX(x, y, y) = y

As an immediate corollary of Lemma 5.2 and Lemma 5.3, we have:

Theorem 5.4. If C has finite limits and binary coproducts, and C and Cop are
majority categories, then C is a preorder.
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Remarks 5.5. It is possible to prove the theorem above under different limit
and colimit assumptions, but it is impossible without at least some limit
and colimit assumptions. This is because the category consisting of just two
parallel arrows is both majority and comajority.

Remarks 5.6. The proof above depends on the fact that the morphisms in the
statement of Lemma 5.1 are epimorphic. In a unital category, they are jointly
strongly epimorphic. Therefore, by the proof above we may also conclude
that a unital category C with binary coproducts such that C is comajority is
equivalent to the terminal category 1.

5.1 Future directions

As mentioned in the introduction, majority categories provide a categorical
way to analyze and relate properties of the category of lattices, at various
levels of generality. If we allow our base category to be regular, we can
similarly study congruence distributivity categorically:

Definition 5.7. A CD(n) category C, where n > 1, is a regular category such
that for any reflexive relations R, S, T on an object X in C, we have:

R ∩ (S ◦ T) 6 (R ∩ S) ◦n (R ∩ T)

where A ◦0 B = A and (A ◦n+1 B) = (A ◦n B) ◦ B if n is even, and (A ◦n+1

B) = (A ◦n B) ◦ A if n is odd for any relations A, B on the same object.

Then a variety is CD(n) if and only if it admits n-Jonsson terms (see 1).
CD(n) categories automatically satisfy the strong shifting principle (see 3.35)
and are therefore factor permutable, which implies that the lattice of factor
relations on any object in a CD(n) category is a Boolean algebra. If the base
category of a CD(n) category is pre-exact, then we can deduce a similar
unique factorization result as for majority categories (see Chapter 4).

In universal algebra, a k-ary near unanimity term is a k-ary term p(x1, ..., xk)

satisfying the equations

p(x, x, ..., x, y) = x,

p(x, x, ..., y, x) = x,
...

p(y, x, ..., x, x) = x.
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Clearly, the above system of equations determines a matrix condition in the
sense of [Jan06] (see Section 2).

Mk =


x1 x1 · · · x1 y1 x1

x2 x2 · · · y2 x2 x2
...

...
...

yk xk · · · xk xk xk


Definition 5.8. Let k > 3, then a category C with Mk-closed relations is
called a k-unanimous category.

Remarks 5.9. A majority category is nothing but a 3-unanimous category.

For the proof of the theorem below, we refer the reader to [Mit78].

Theorem 5.10. If V is a variety which is k-unanimous, then V is congruence
distributive.

It is currently unknown, whether or not regular k-unanimous categories
are CD(n), as is the case for varieties.

Corollary 5.11. If V is a Mal’tsev variety which is k-unanimity, then V admits a
majority term, which is to say that V is 3-unanimity.

(Mal’tsev) + (k-unanimity) =⇒ (Majority).

Theorem 5.12. Let C be a k-unanimous category, then every internal groupoid in
C is an equivalence relation.

We give a set-theoretic sketch of the proof of the above theorem.

Proof. Suppose that G is an internal groupoid in a k-unanimous category,
with G1 the object of arrows. Consider the k-ary relation R on G1 defined by

( f1, f2, ...., fk) ∈ R iff f1 ◦ f2 ◦ · · · ◦ fk−1 = fk.
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Now, suppose that f , g are any parallel arrows in G, then we have

( f g−1, 1, 1, ...., f g−1) ∈ R,

(1, f g−1, 1, ...., f g−1) ∈ R,

(1, 1, f g−1, ...., f g−1) ∈ R,
...

(1, 1, 1, ...., f g−1, f g−1) ∈ R,

(1, 1, 1, ...., 1, 1) ∈ R =⇒
(1, 1, 1, ...., 1, f g−1) ∈ R.

So that
1 = 1 ◦ 1 ◦ · · · ◦ 1 = f g−1 =⇒ f = g.

Thus we have the following corollary due to Theorem 2.14:

Corollary 5.13. If C is a Barr exact Mal’tsev category, then C is majority category
if and only if C is k-unanimous for some k > 3.

This above condition shows that there are some matrix conditions which
can be derived from each other, provided that the base category is Barr ex-
act. However, it is not true that the above condition holds when the base
category is regular, as for example the category Mal(Relop

3 ) is a regular
Mal’tsev 4-unanimous category which is not a majority category.

Varieties that admit a majority term are the simplest possible congruence
distributive varieties. And thus majority categories are the simplest possible
categorical counterpart of congruence distributive varieties. However, it
remains open whether we can develop a satisfactory categorical algebra of
general congruence distributive varieties. The next simplest approach to
doing this would be to study k-unanimous categories in general, as these
are frequently occurring examples of congruence distributive varieties. In
this direction, we can make the following conjecture:

Conjecture 1. The only finitely complete and cocomplete categories where C and
Cop are k-majority, are the preorders, where k > 3.
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Even for varieties the question above is still interesting, and remains
open.

Conjecture 2. The only varieties V such that V and Vop are k-majority, are triv-
ial, i.e. , every algebra in V has at most one element.

Varieties admitting a near-unanimity term also have a characterization
in terms of congruences (see [Pix79]). This characterization could conceiv-
ably be extended to regular categories, where it might be possible to show
that regular k-unanimous categories are factor permutable. With this in
mind, it would be interesting to know whether or not exact k-unanimous
categories have strong refinements or not. This question is straightforward
for varieties, but not for regular k-unanimous categories, since there are reg-
ular Mal’tsev categories which are 4-unanimous, which are not even con-
gruence distributive, such as the category Mal(Relop

3 ) from Chapter 2.
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