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Abstract

In contrast to only a decade ago, it is now easy to collect large text corpora from the Web on

any topic imaginable. However, in order for information processing systems to perform a

useful task, such as answer a user’s queries on the content of the text, the raw text first needs

to be parsed into the appropriate linguistic structures, like parts of speech, named-entities or

semantic entities. Contemporary natural language processing systems rely predominantly

on supervised machine learning techniques for performing this task. However, the supervi-

sion required to train these models are expensive to come by, since human annotators need

to mark up relevant pieces of text with the required labels of interest. Furthermore, ma-

chine learning practitioners need to manually engineer a set of task-specific features which

represents a wasteful duplication of efforts for each new related task.

An alternative approach is to attempt to automatically learn representations from raw

text that are useful for predicting a wide variety of linguistic structures. In this disserta-

tion, we hypothesise that neural word embeddings, i.e. representations that use continuous

values to represent words in a learned vector space of meaning, are a suitable and efficient

approach for learning representations of natural languages that are useful for predicting

various aspects related to their meaning. We show experimental results which support this

hypothesis, and present several contributions which make inducing word representations

faster and applicable for monolingual and various cross-lingual prediction tasks.

The first contribution to this end is SimTree, an efficient algorithm for jointly clustering

words into semantic classes while training a neural network language model with the hi-

erarchical softmax output layer. The second is an efficient subsampling training technique

for speeding up learning while increasing accuracy of word embeddings induced using the

hierarchical softmax. The third is BilBOWA, a bilingual word embedding model that can

efficiently learn to embed words across multiple languages using only a limited sample of

parallel raw text, and unlimited amounts of monolingual raw text. The fourth is Barista, a

bilingual word embedding model that efficiently uses additional semantic information about

how words map into equivalence classes, such as parts of speech or word translations, and

includes this information during the embedding process. In addition, this dissertation pro-

vides an in-depth overview of the different neural language model architectures, and a de-

tailed, tutorial-style overview of the available popular techniques for training these models.
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Chapter 1

Introduction

1.1 Motivation

Language is a complex phenomenon with a non-trivial mapping from words to meaning.

Humans learn how to extract meaning from the words in a sentence from an early age in

a seemingly effortless manner. However, getting machines to parse text into useful lin-

guistic structures representing its meaning (see for instance Fig. 1.1) has been a significant

computational challenge driving research in Artificial Intelligence in general, and Natural

Language Processing (NLP) in particular, over the last several decades.

Early efforts in NLP involved the design of human-curated rules which governed how

linguistic units combine to collectively contribute to the meaning of the text [2]. However,

this approach soon ran into significant problems, as the number of rules required to accu-

rately capture the rich ambiguity and expressiveness of natural languages quickly exploded,

making rule-based approaches only useful in very limited and reduced domains (such as the

SHRDLU blocks world [3]).

In its place, a statistical approach to NLP emerged in the early 1990s which replaced

the human-designed rules with a complex ensemble of machine-derived rules. Each rule is

defined in terms of parameters that are estimated from training data in order to collectively

enable the model to successfully predict the linguistic structures of interest [4, 5]. Over the

last 20 years, this approach has proven very successful. However, there are two serious

Figure 1.1: An example of the types of linguistic structures that we are interested in pre-

dicting in natural language processing.

1



CHAPTER 1. INTRODUCTION 2

drawbacks associated with it:

1. Firstly, most successful statistical methods are trained in a supervised training regime

where we need to have annotated data in the form of text marked up with the specific

labels that we would like the models to predict. Obtaining this level of supervision is

a costly process, and requires human annotators to read and mark up sections of text.

2. Secondly, these techniques generally require the human practitioner to manually en-

gineer a set of discriminative features for representing the natural language data, in

order to serve as inputs for training the models. It is a hard and time-consuming

problem to come up with features that work well for more than one task, but it is

even harder for cross-lingual prediction tasks, i.e. predicting attributes of linguistic

meaning across different languages.

In this dissertation we study a problem that is central to natural language processing:

How can we efficiently learn to represent natural languages in order to accu-

rately predict different aspects of their meaning through computational means?

This formulation captures the two important guiding aspects of the research objectives

that underlie this study:

Firstly, how can one learn representations of natural languages that are not task-dependent,

but can accurately capture underlying important linguistic regularities that are useful for

predicting a variety of linguistic attributes, such as semantic topics, parts-of-speech, etc.?

Secondly, how can one do this efficiently, both in terms of computational resources, but

also in terms of supervised resources? The first consideration (computational efficiency) is

important, since it is much more desirable to have a model that trains in hours as opposed

to a model that requires days or weeks to train. However, the second consideration (effi-

cient reuse of supervised resources) is equally important, as it is extremely desirable that

the learned representations are able to capture useful regularities across different languages,

since this means that we do not need to manually provide supervision for every new lan-

guage. Instead, we can efficiently reuse annotations that we may have for one language and

apply it across a variety of different languages. While the contributions in this dissertation

by no means represent an exhaustive solution to these problems, we make some progress in

this direction by presenting different models that efficiently learn cross-lingual correspon-

dences directly from raw text. The learned representations are shown to preserve enough

linguistic information to enable us to reach state-of-the-art performances on a variety of

important cross-lingual prediction tasks, with minimal supervision required.

The overarching theme of this work is to employ neural network models for the task

of learning representations of natural languages. Over the last few years, neural network
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(a) Male-female. (b) Verb tense. (c) Country-capital.

Figure 1.2: Visualisations of the different linguistic relationships that neural language mod-

els have been found to learn and encode in its embedding space in an unsupervised fashion

from large collections of text [15].

models, under the guise of deep learning, have seen a resurgence in the machine learn-

ing community by significantly improving upon previous state-of-the-art approaches on a

number of important tasks, such as object recognition [6], speech recognition [7], and also

NLP [8–11]. In the case of NLP, the prevailing approach is to use neural network language

models (NLMs) in order to induce unsupervised neural word embeddings, which are then

subsequently applied as features within a predictive model across a range of different tasks.

Neural word embeddings are distributed representations that use continuous values to rep-

resent words in a learned vector space of meaning. A distributed representation of a symbol

is a vector where the meaning of the symbol is distributed across a combination of different

elements in the vector.

NLMs were originally proposed as an alternative for n-gram language models [12].

However, two seminal papers by Collobert and Weston [8, 13] showed that these unsu-

pervised embedding features are directly useful for predicting various different linguistic

attributes, such as syntactic parts-of-speech (POS) like Noun or Verb, named-entities
like Person or Location, and semantic role labels such as Agent or Theme. In fact, it was

discovered that embedding spaces encode a surprising amount of useful “real-world” infor-

mation such as male-female relationships, verb tense, and even country-capital rela-

tionships in terms of specific dimensions (directions) in the embedding space (see Fig 1.2).

Several follow-up work proposed various simplifications to the original model architectures

and more efficient ways for training the models [14] to reduce the time it takes to train these

models if one is only interested in obtaining the learned embedding features.

However, at the outset of this research, word embedding models could only be trained

in one language. Bilingual models soon emerged [16, 17]. However, they were extremely

unwieldy and slow to train and usually required the practitioner to perform an entire word-

alignment step prior to training the embedding models.
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In this dissertation, we develop efficient neural network models for learning distributed

word representations across one or more languages by training directly on raw text. We

exploit the modelling power of neural network language models for learning common dis-

tributed representations for words that are similar in one language, and extend these models

to enable efficient cross-lingual feature learning. We then demonstrate the applicability of

the induced representations by successfully utilising them as features for training statistical

models for a variety of cross-lingual prediction tasks, across several different languages.

The benefits of this approach are that it requires very little manual feature engineering,

and the limited available training data in one language (e.g. English POS data) is automati-

cally transferred to new languages (e.g. French POS labels) via the common, learned feature

space.

1.2 Research Objectives

This dissertation studies the problem of automatically learning to represent natural lan-

guages in order to successfully predict different aspects of their meaning by computational

means. Specifically, we study the problem of automatically learning distributed represen-

tations of words that capture useful linguistic information in one or more languages. By

inducing these representations jointly across different languages, we are furthermore able

to reuse and transfer expensive labeled training data from one language to other languages

where we may not have much, or any, labeled information.

The main hypothesis underlying this research can be stated as:

Neural word embeddings induced from raw text can jointly represent two or

more languages in order to accurately predict different aspects of their meaning

through computational means.

Through the course of this dissertation, we present experimental evidence that strongly

supports this hypothesis.

As an example, consider a source dataset annotated with parts-of-speech (e.g. Verb,

Noun, or Preposition) in a domain consisting of English newswire text. Given a target

dataset in Swedish, our goal is to develop a target model that can predict Swedish parts-of-

speech by utilising only the annotations we have for the English data (which are expensive

to obtain), and any amount of unlabelled English and Swedish text (which is cheap and easy

to obtain).

This problem is very important for contemporary natural language processing systems

for two reasons:

Firstly, training supervised statistical models (currently the most accurate method for

constructing language processing systems) requires obtaining annotated training data. This

process is expensive in terms of human annotator time. Automated methods for adapting



CHAPTER 1. INTRODUCTION 5

models from one domain to another can therefore result in significant savings in terms of

financial cost and annotator time, as well as model training time.

Secondly, contemporary methods require the practitioner to manually engineer a set of

useful discriminative features for predicting the linguistic structures of interest. This often

represents a wasteful duplication of efforts between related tasks. The techniques discussed

in this dissertation learn features that are useful across a wide variety of tasks and languages,

thereby saving on manual feature-engineering effort and annotator time.

1.3 Contributions

At a high level, the contributions in this work all relate to the general objective of learn-

ing to represent natural languages in order to successfully predict different aspects of their

meaning by computational means. Specifically, we contribute to the understanding of this

problem by developing efficient methods for learning distributed representations that cap-

ture the similarities between words across different languages purely from large quantities

of raw text, and using minimal supervision. We demonstrate the versatility of the learned

representations across a range of tasks, namely for predicting the topics of documents in two

languages, predicting labels annotated at the word level that describe the syntactic (POS)

and semantic (supersense) meaning of words and phrases, and as a successful method for

translating words in a source language to a target language by using only the learned repre-

sentations.

The main contributions of this work can be broken up into three categories:

1. Theoretical: We present a thorough introduction to and overview of the field of dis-

tributional methods which encode word meaning as learned distributed vectors, and

with a particular emphasis on neural language models. We present all distributional

methods within a common unsupervised learning framework where the model learns

to compress high-dimensional contextual co-occurrence information into a lower-

dimensional representation for each word in order to retain the most important infor-

mation. We introduce a novel geometrical framework that identifies the connections

between the wide array of word embedding models, by geometrically viewing the

learning process as working to balance forces acting on the learned representations

within the induced vector space of linguistic meaning. We show how popular contem-

porary shallow word2vec-type embedding models fit into this framework, thereby

highlighting the connections between existing distributional methods and the several

recent successful neural word embedding models.

2. Practical: We present the first comprehensive tutorial of the field of neural word

embedding models (§ 2.3 and Chapter 3), with a particular focus on the practical

implementation details of training these models. We furthermore provide efficient
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implementations of all the novel bilingual models considered in this dissertation, and

make our code available as open-source to the research community at large1.

Being a computational and largely empirical field, a significant component of new

research is spent on understanding and reimplementing successful models. In releas-

ing our code, we hope to afford ongoing researchers with a warm-start in using and

extending upon the methods presented in this work.

3. Empirical: We experimentally demonstrate that the representations learned using

the proposed methods are able to significantly improve results on a variety of tasks

and languages (and generally outperform the state of the art), demonstrating the wide

range of their applicability. Namely:

a) language modelling, where we show that the SimTree algorithm can be used to

reduce the perplexity of a binary hierarchical softmax output layer, by efficiently

learning a likelihood-optimal tree structure during training (§ 4.2.2). We show

that the algorithm leads to a reduction of 37 points in perplexity over a random

tree, and 20 over a Huffman tree in a language modelling task.

b) analogical reasoning, where we show that a simple subsampling technique can

be used to improve the quality of word vectors learned using the hierarchical

softmax output layer on a standard analogical reasoning task, while speeding

up training of the vectors at the same time (§ 4.3.4).

c) cross-lingual document topic classification, where the BilBOWA model is shown

to outperform several strong competing baseline methods and other distributed

methods for predicting the topics of German documents using only the learned

representations and the annotated topics of a small training set of English doc-

uments (§ 5.5.2). We furthermore show that the model achieves this increase in

prediction accuracy despite a computational speedup of several orders of mag-

nitude compared to most other bilingual distributed models.

d) cross-lingual part-of-speech tagging, where the Barista model is shown to learn

useful representations for learning to predict the parts-of-speech of Spanish,

German, Danish, Swedish, Dutch, Italian and Portuguese, by training only on

the annotated parts-of-speech of a sample of English text and the learned word

representations (§ 6.5.2.2). We show that our method outperforms off-the-shelf

bilingual embeddings for German and Spanish and two very strong baselines for

the Dutch and German language-pairs. The model is furthermore able to learn

these rich representations by training only on raw Wikipedia text and using a

limited dictionary obtained from Google Translate in roughly half an hour on a

standard desktop machine.
1https:/github.com/gouwsmeister

https:/github.com/gouwsmeister
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e) word-level translation for English-Spanish, where we show that the BilBOWA

model is able to learn fine-grained word-level translations by training only on a

limited sample of sentence-aligned raw text, and unlimited amounts of mono-

lingual raw text (§ 5.5.3). We show that such a raw-text-only approach – i.e.

without resorting to word-level alignments or dictionaries – is able to improve

significantly on the previous state-of-the-art for this task which makes use of

dictionaries for learning the translations.

f) supersense tagging, where embeddings induced using the Barista model is shown

to increase English-Danish cross-lingual supersense tagging accuracy by 10%

absolute (§ 6.5.3).

1.4 Publications

The work in this dissertation primarily relates to the following peer-reviewed articles:

1. Simple task-specific bilingual word embeddings, Stephan Gouws, Anders Søgaard,

North American Chapter of the Association for Computational Linguistics, NAACL

2015.

2. BilBOWA: Fast Bilingual Distributed Representations without Word Alignments

Stephan Gouws, Yoshua Bengio and Greg Corrado, Deep Learning Workshop, NIPS

2014.

3. Learning Structural Correspondences Across Different Linguistic Domains Using

Synchronous Neural Language Models, Stephan Gouws, G-J van Rooyen and Yoshua

Bengio, xLite Workshop on Cross-Lingual Technologies, NIPS 2012.

4. Deep Unsupervised Feature Learning For Natural Language Processing

Stephan Gouws, Student Research Workshop, NAACL-HLT 2012, Montréal, Canada.

5. BilBOWA: Fast Bilingual Distributed Representations without Word Alignments2

Stephan Gouws, Yoshua Bengio and Greg Corrado, ICML 2015.

Furthermore, the following article is currently under review:

6. SimTree: Learning to Predict N labels in O(N log N ) Time using Neural Networks,

Stephan Gouws, Submitted to IEEE Transactions on Neural Networks and Learning

Systems.

2This represents a significant rework of the workshop version of the same article.

http://www.aclweb.org/anthology/N15-1157
http://arxiv.org/abs/1410.2455
http://arxiv.org/abs/1410.2455
http://km.aifb.kit.edu/ws/xlite/xLiTe-Paper-StephanGouws.pdf
http://km.aifb.kit.edu/ws/xlite/xLiTe-Paper-StephanGouws.pdf
http://www.aclweb.org/anthology/N12-2009
http://www.aclweb.org/anthology/N12-2009
http://jmlr.org/proceedings/papers/v37/gouws15.pdf
http://jmlr.org/proceedings/papers/v37/gouws15.pdf
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Parts of Chapter 2 and the entire Chapter 3 is based on a tutorial that I have presented at

Carnegie Mellon University in Dec 2012, Microsoft Research (Israel) in Nov 2013, and at

University of Copenhagen in Nov 20143.

Finally, while not directly related, the following articles played a significant role during

the initial development of the ideas presented in this dissertation:

7. Unsupervised Mining of Lexical Variants from Noisy Text, Stephan Gouws, Dirk

Hovy and Donald Metzler, Unsupervised Methods in NLP Workshop, EMNLP 2011,

Edinburgh, Scotland.

8. Contextual Bearing on Linguistic Variation in Social Media, Stephan Gouws, Don-

ald Metzler, CongXing Cai, Eduard Hovy, Language in Social Media Workshop, ACL

2011, Portland, Oregon, USA.

1.5 Overview

Chapter 2 provides an overview of the background information required for understanding

the work in this dissertation, and acts as an introduction to the notation used throughout.

We introduce the basics of probability theory leading up to expectations and Monte-Carlo

integration, concepts that are used throughout. We introduce the basics of machine learning

and neural networks, with a particular focus on the backpropagation algorithm, as it is

central in this dissertation. We also provide a high-level overview of statistical natural

language processing.

Chapter 3 provides a comprehensive overview of the field of neural language models,

with a particular focus on its application to learning word embedding features. We intro-

duce a novel geometrical framework for providing a geometrical understanding about how

shallow word2vec-type neural word embedding models are trained.

In Chapter 4 we study tree-structured output layers (the hierarchical softmax) in mono-

lingual models, and focus on how they can be used to significantly speed up training, but

we also show how the structure of the tree impacts the quality of the model. Through the

novel theoretical insight gained, we propose an efficient O(N log N ) algorithm, for N the

number of words in the vocabulary, called SimTree. It is an alternating optimization algo-

rithm that jointly learns the tree structure with the model parameters. We present qualitative

and quantitative experimental evidence that the algorithm learns useful semantic clusterings

and show that the learned trees significantly improve the quality of the model in a language

modeling task. We also introduce a simple subsampling technique for improving the quality

of the embedding vectors learned using the hierarchical softmax, and show that the tech-

3See www.stephangouws.com/talks.

http://www.aclweb.org/anthology/W11-2210
http://aclweb.org/anthology/W/W11/W11-0704.pdf
www.stephangouws.com/talks
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nique both speeds up training of the embeddings and improves their quality on a standard

analogical reasoning task.

Chapter 5 introduces BilBOWA, our first bilingual word embedding model. BilBOWA

learns bilingual distributed representations of words using a limited sample of parallel

sentence-aligned text (e.g. Europarl) and unlimited amounts of monolingual text (e.g. Wiki-

pedia). We evaluate the embeddings on a cross-lingual document classification task where

we obtain state-of-the-art results. For this task, BilBOWA furthermore achieves these re-

sults in minutes on a standard desktop machine, compared to days reported by other meth-

ods. We also evaluate the cross-lingual embeddings on a word-translation task and obtain

a large improvement over the previous state-of-the-art. The surprising fact is that this is

achieved by training purely on raw text without resorting to word-alignments or dictionar-

ies, as required by current alternative methods.

Chapter 6 introduces Barista, our second bilingual word embedding model. Barista

is a simple, computationally-efficient wrapper technique for efficiently including external

semantic information in the form of how words map into equivalence classes (e.g. parts

of speech) during the embedding process. We evaluate the model on cross-lingual part-of-

speech tagging, where the goal is to train on English data and then evaluate the model on

seven other languages using primarily the learned embeddings as features. We show that

our method is competitive with very strong baseline methods, and is able to outperform

off-the-shelf bilingual embeddings and several strong baselines on the Dutch and German

languages. We also apply the model to Danish supersense tagging where the embeddings

yield a 10% absolute improvement in prediction accuracy. For all these experiments, the

implementation trains in about half an hour on a standard desktop machine.

Finally, Chapter 7 provides a summary of the work presented in this dissertation, and

offers final thoughts on the insights gained during the course of this research.



Chapter 2

Background

This chapter covers relevant background material on probability theory, machine learning,

neural networks and statistical natural language processing. The goal is primarily to provide

an introduction to the notation that we will be using during the rest of this dissertation, and

secondarily to act as a short refresher on these topics. However, this chapter may safely be

skipped or referred back to only when needed.

2.1 Probabilistic Models

Probability theory provides a formal calculus for reasoning under uncertainty. Several of

the models discussed in this dissertation are trained within a probabilistic framework where

we will appeal to concepts like the “expectation of some function under some distribution”,

or make use of Monte-Carlo averages to approximate expectations.

2.1.1 Probability basics

Random variables X represent outcomes or states that the world, or more specifically our

model of the world, may be in. Random variables are defined in a sample space which is the

space of all the possible outcomes or states that X may take on. This space my be discrete

or continuous or even mixed, but in this dissertation we will only consider discrete spaces.

The probability for an event X to take on the value x is a non-negative number defined in

terms of a function called the probability density function (pdf) in the case of continuous

random variables and probability mass funtion (pmf) in the case of discrete X . In particular,

we will write lower-case p(x) to denote pdfs and upper-case P(x) for pmfs.

All probability distributions sum (integrate) to one. Intuitively, this means that a fixed

quantity of total probability mass is distributed among a predetermined number of possible

outcomes: making one outcome more likely necessarily means that the remaining outcomes

must become less likely. Mathematically, this means that
∑

x P(x) = 1 and
∫
x

p(x)dx = 1.

10
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Depending on the type of X (binary, categorical, or continuous) there are several pop-

ular distributions (pdfs or pmfs) which are parametrised families of distributions telling us

how likely it is to get a certain outcome x under that particular distribution. For binary

variables, the Bernoulli distribution is particularly common. For categorical variables (i.e.

a generalisation from binary to k-ary outcomes) the multinomial or multinoulli distribution

is a popular choice and for general continuous variables the Gaussian or normal distribution

has a long and rich history in engineering and scientific modelling.

The expectation of a function f (x) is the average value that f (x) can be expected to

take on, given that the values x are distributed according to P(x), and in this dissertation

we will write this as

E
x∼P(x)

[
f (x)

]
=

∑
x

P(x) f (x), (2.1.1)

although sometimes we will drop the “x is drawn from P(x)” and simply write it as EP(x)[ f (x)]

or even EP[ f (x)] when the context makes it unambiguous.

Notice that if f (x) = x, then this is simply the mean µ =
∑

x P(x)x, which, for a uni-

form distribution over N events, P(x) = 1/N , simply becomes the well-known arithmetic

average 1/N
∑

x x.

Furthermore if f (x) = (x − µ)2, 2.1.1 becomes the variance σ2 =
∑

x P(x)(x − µ)2, or

in words: variance is the average squared-deviation of x from the mean value. Moments are

expectations of higher orders. The mean is the first moment of P(x), variance the second.

This extends very simply to vector random variables x ∈ Rd , where the mean µ = EP[x]

and the covariance of x is defined as

Σx = E
P

[
(x − µ)(x − µ)>

]
. (2.1.2)

Notice the outer product, since the covariance describes how each component of x varies

with or correlates with every other component, and hence it is an (d × d) matrix for x a

d-dimensional vector. We can extend this notion of covariance from one to two variables as

Σxy = E
P

[
(x − µx )(y − µy )>

]
. (2.1.3)

In words, this measures how one component of x correlates with each component of y.

This is somewhat related to the idea of joint probability P(x, y), which represents the

probability that X = x and Y = y. If we think of all the combinations of discrete outcomes

that X and Y can take on, it is useful to think of this as a two-dimensional probability table

P where each entry Pi j represents the joint probability P(X = xi ,Y = y j ). Since, by

definition, all entries in this table must sum to one
∑

i, j P(xi , y j ) = 1, it means that if we

keep xi fixed and sum over all y j we get the marginal probability of event xi happening

regardless of the outcome of y,
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P(xi ) =
∑
j

P(xi , y j ). (2.1.4)

This process is called marginalisation because when the joint probability is written as a

table, the marginals are found by summing the rows or columns and can then be written

along the “margins” of the table. It is also referred to as the sum-rule of probability theory.

Whereas the joint probability describes two events being true simultaneously, the con-
ditional probability P(y |x) describes the probability of y being true after we have already

observed x being true. We define this as

P(y |x) , P(x, y)/P(x) (2.1.5)

which can be understood as restricting the total (joint) sample space to only those entries

containing x. This definition ensures that
∑

y P(y |x) = 1. Rearranging 2.1.5 yields the

product-rule of probability theory

P(x, y) = P(y |x)P(x). (2.1.6)

which relates conditionals and marginals to the joint distribution.

2.1.2 Entropy and Cross-entropy

Given a distribution P(x), the entropy is a concept from Information Theory [18] that

measures the ambiguity or the uncertainty that is present in P, and is defined as:

H (P(x)) = −
∑
x

P(x) log(P(x)) = −E
P

[
log(P(x))

]
. (2.1.7)

Recall that log(P(x)) is a monotonically-increasing function on the [0,1] interval (where

P(x) is defined) from −∞ for P(x) = 0 to 0 when P(x) = 1. The binary logarithm of

the probability of an outcome quantifies in bits the amount of information that is present

in observing that event, and is inversely related to its probability of occurrence: More fre-

quent events are less surprising, or in information theory parlance, contain fewer bits of

information. Therefore, 2.1.7 measures the average bits of information that are present in a

distribution. Note that it is maximised under a uniform distribution, since, if all events are

equally likely, we would be maximally surprised by observing any event.

Cross-entropy extends this idea to two distributions and in a sense measures the dif-

ference in information between two distributions. Cross-entropy is intimately related to the

Kullback-Leibler (KL) divergence which measures the “distance” between two distributions

P and Q as

K L[P | |Q] =
∑
x

P(x)[log P(x)/Q(x)] = E
P

[
log P(x) − log Q(x)

]
. (2.1.8)
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Figure 2.1: Approximating π by Monte Carlo integration: π can be approximated as the

ratio of the surface area of a circle inscribed in a unit square to the area of the square. We

can approximate this value by drawing points uniformly at random over the area of the

square and evaluating the ratio of points that fall within the circle (picture taken from the

Wikipedia page).

2.1.3 Monte Carlo methods

Monte Carlo techniques are a family of techniques that approximate numerical quantities

by repeatedly drawing random samples [19]. For instance, if we are interested in the value

for EP(x)[ f (x)], we can approximate this value by drawing N samples from P(x), and

averaging the values obtained as 1/N
∑

x∼P(x) f (x).

In this dissertation, we will be interested in approximating expectations by sampling, so

we will illustrate the general idea by using a standard example: approximating the value of

π by sampling. Consider a circle inscribed in a unit square (see Fig. 2.1). We know that the

ratio of the area of the circle to that of the square in any one quadrant is equal to π/4. If we

define P(x1, x2) as the uniform distribution over 0 ≤ x1 ≤ 1 and likewise for x2, then the

value of π can be written as an expectation which we can approximate using Monte Carlo

sampling by drawing N samples and computing the empirical average ratio:

π = 4 ∗ E
P(x1,x2)

[1[(x1, x2) in circle]] (2.1.9)

≈ 4 ∗ 1/N
∑

x1,x2∼P(x1,x2)

1[(x1, x2) in circle]. (2.1.10)

where 1[x] is the indicator function which evaluates to 1 if x is true, and 0 otherwise.
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2.2 Machine Learning

This dissertation provides a comprehensive coverage of neural network language models

which are a particular family of machine learning models for learning from data. In this

section we provide a high-level overview of the aspects of machine learning most related

to the work presented in this dissertation. This is by no means a comprehensive overview.

For that the reader is directed to [20] or [21]. In the rest of this chapter, we will delve into

more technical detail when we look at neural networks as a particular family of machine

learning models.

2.2.1 Learning from data

Machine learning studies the problem of designing models that can learn from data. One

widely accepted definition defines learning as the process whereby a model improves its

performance with respect to some task, as measured in terms of some performance measure,

by learning from examples from some training set [22]. Let us consider each of these

components in a little more detail.

A model is a function or algorithm which aims to extract important regularities from

training examples which allows it to perform well on the task. Although models can be

non-parametric, meaning some function of the training set which can not be encoded us-

ing a parameter vector θ (for example nearest-neighbour methods), in this dissertation we

will focus only on parametric models, where the model is defined in terms of a vector of

parameters θ. In this setting, each model belongs to a family of models, and each different

θ ‘indexes’ or selects one particular member from that family. The goal of the learning

procedure is therefore to select the θ which leads to the best performance (which we will

describe below).

There are a wide variety of tasks to which a model can be applied, and these are roughly

divided into supervised and unsupervised tasks. In supervised learning the training data

takes the form of a training pair of inputs x ∈ X and outputs y ∈ Y provided by a teacher

or oracle. The goal is for the learner to learn to predict the outputs from the inputs. We refer

to the task as classification when the outputs are discrete identifiers and regression when the

outputs are real-valued numbers. Examples of classification include predicting the label of

an object in a picture or predicting the part of speech of a word in a sentence. An example of

regression is to predict the temperature from inputs such as past temperature or air pressure.

In unsupervised learning the training data is not associated with any labels, i.e. the

learner only observes the inputs x ∈ X. The goal is to automatically discover interesting

structure in the training data by clustering data into different groups or learning the prob-

ability density function on the space of the training data. For example, if we have such a

density model trained on images of faces, it may allow us to query the model about how
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‘likely’ some new input image is to be a face or not.

In this dissertation we will only be concerned with the classification task, however both

in the unsupervised setting, when we train neural language models to predict target words

from context words, as well as in the supervised setting when we train classifiers to predict

the topics, part-of-speech tags, etc., of words and documents.

The goal of training is to find the model that leads to the best performance. We therefore

need an appropriate performance measure for how well the model is doing on the training

data (also called an objective function, loss function or error function). However, in general,

what we really care about is how well the model will generalise to unobserved, future test

data. For this one typically makes use of regularisation techniques, which we will discuss

in § 2.2.2.

The objective function plays a crucial part in training the model. In Chapter 3 we will

go into much detail analysing different objective functions for training neural network lan-

guage models. However in general the three main types of objectives relate to whether we

are training a probabilistic model or non-probabilistic model. For probabilistic models we

will generally minimise the cross-entropy of the model predictions (see § 2.3.2.3). This

corresponds to applying the maximum likelihood learning principle of maximising the pre-

dictions that the model makes on the training data. For non-probabilistic models we will

employ either the squared-error if the goal is to predict real-valued numbers (see § 2.3.2.1),

or alternatively the hinge-loss when the goal is to score the data samples at least some

margin higher than some contrastive set of noise samples (see Sections 2.3.2.2).

2.2.2 Regularisation

A crucial learning component is to prevent the model from overfitting or underfitting the

training data. A model overfits when its performance on the training data is still improving

while its performance on test data is decreasing. This happens when the model memorises

every spurious nuance of the training data (which might not exist in the test data) instead

of extracting the underlying regularities which should also be present in the future test data

in which we are interested. Likewise, a model is underfitting when its performance is still

decreasing on both the training and test set.

One very popular method for training models is called maximum likelihood estima-
tion. The maximum likelihood inductive principle is to select the parameters θ which max-

imise the probability that the model Pθ (x) assigns to the data {x1, x2, · · · } ∈ X , i.e.

θ̂ = arg max
θ
Πxi ∈X Pθ (xi ) (2.2.1)

The problem with this estimator is that it trusts the training data implicitly as being predic-

tive of the future test data. When training data is limited, the model might overfit.
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Figure 2.2: A linear regression model y = wx+b that models the linear relationship between

input variable x (horizontal axis) and output variable y (vertical axis).

One way of preventing overfitting is to use a regulariser. Essentially, a regulariser pe-

nalizes more expressive models to encourage the optimizer to select only simpler models

that can not memorise all the peculiarities of the training data. For example, in the above

example, this may lead to a model that assigns a lower total probability to the training data,

but can be expected to generalise better to unseen test data.

Another common regularisation method employed with neural networks is early stop-

ping, where we monitor the model’s performance on a held-out validation set of data during

training, and stop training once the performance on the validation set starts decreasing. We

will look at this in more detail in § 2.3.3.2. In this dissertation, we employ both regularisa-

tion and early stopping for training the models.

2.3 Neural Networks

Neural networks are powerful machine learning models for learning relationships between

input and output variables. A neural network model is a composition of simpler models.

In order to understand this better, let us consider a linear regression model

y = wx + b, (2.3.1)

that models the linear relationship between an input scalar variable x and an output scalar

variable y ∈ R in terms of the model parameters θ = [w,b] (see Fig. 2.2).

If instead our goal is to predict a binary (Bernoulli) variable y ∈ {0,1}, we can pass the

output y of the linear regression model through a squashing function σ(z) and interpret the

output as a probability

P(y = 1|w, x,b) = σ(wx + b) (2.3.2)

where σ(z) = 1/(1 + exp(−z)) maps all values on the real line to the [0,1] interval. This is

known as logistic regression. Logistic regression is a linear, probabilistic, binary classifier.
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(a) The network.

(b) A visual illustration of the matrix-vector multiplica-
tion W>x.

Figure 2.3: A linear neural network that maps vector inputs x to vector outputs y via a linear

(affine) transformation y = W>x + b, i.e. y j =
∑

i wi j xi + bj .

Figure 2.4: An illustration of a single neuron.

This is also known as a neuron, where we refer to the weighted input as the activation, the

sigmoid as the activation function and the right-hand side as the output of the neuron. See

Fig. 2.4 for an illustration.

We can easily extend this model to map m-dimensional vector inputs x to n-dimensional

vector outputs y by replacing the scalar w with a (m × n)-dimensional matrix W,
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Figure 2.5: Two layers of a neural network.

a︸︷︷︸
(n×1) ‘activation’

= W>︸︷︷︸
(n×m)

x︸︷︷︸
(m×1)

+ b︸︷︷︸
(n×1)

(2.3.3)

y︸︷︷︸
(n×1) ‘output’

= g(a)︸︷︷︸
element-wise

(2.3.4)

where we have introduced the notion of activations being passed through a linear activation

function g(a) = a. This represents a linear neural network (see Fig. 2.3). Note that

any cascade of linear functions f (g(x)) can always be compiled down into a single linear

function h(x). Therefore, if we wish to increase the capacity of the model, the final step is to

replace the linear activation function with a squashing function (non-linearity) to transform

the linear model into a non-linear model so that we can compose simpler models into more

complex models. We achieve this by applying a nonlinear function g(a) (e.g. the sigmoid

from before) element-wise to the outputs (activations) of the linear neural network. This is

a single hidden-layer neural network. By repeating this process, we introduce more layers

and hence more depth, which increases the capacity of the model.

A neural network is therefore a composition of nonlinear functions f (g(· · · (x) · · · )).

An “L-layer neural network” is a composition of L − 1 functions applied to an input

vector x. Each layer j recursively transforms an mi-dimensional input vector xi into an

n j -dimensional output vector y j , by taking the matrix-vector product with an (n j ,mi )-

dimensional matrix Wi j to yield the activation a j , adding a bias bj and applying a non-

linear activation function y j = gj (a j ) element-wise to the individual activation values. See

the illustration in Fig. 2.5.
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2.3.1 Inference: Forward propagation

A neural network computes its predicted outputs from the given inputs in a process called

forward propagation, or fprop for short. For a feedforward network defined as y =

g( f (· · · (x) · · · )), fprop simply corresponds to visiting each layer of the network in turn

and computing the activations on that layer from the activations of its input variables, start-

ing with the input layer. In Python code this can be implemented as shown in Listing 1.

Listing 1 Python code implementing the fprop algorithm for a feedforward neural network.
def fprop(biases, weights, input):

y = input # initialise

acts = [] # activations

ys = [y] # layer-wise outputs

for W,b in zip(weights, biases):

a = dot(W.T, y) + b

y = sigmoid(a)

ys.append(y)

acts.append(a)

return (acts, ys) #ys[-1] contains the network output prediction

2.3.2 Loss functions

Fprop on input x gets us a prediction ŷ. In supervised training, we are presented with input-

output training pairs (xi , y∗i ). So what we really want is to predict the true target y∗. The loss
function L measures the discrepancy between the network prediction and the true target.

2.3.2.1 Squared-error

As the name implies, squared-error measures the error as the squared difference between

the network prediction ŷ and the true label y∗ ∈ R, i.e.

L(y∗, ŷ) =
1
2

(y∗ − ŷ)2, (2.3.5)

where the coefficient of 1
2 is added for mathematical convenience for computing the deriva-

tive. Squared-error is used when the goal is to predict real-valued targets, i.e. for regression

problems.

2.3.2.2 Hinge-loss

The hinge-loss is used for so-called maximum-margin approaches to classification (as

opposed to, for instance, maximum likelihood). The hinge loss between a prediction and a
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Figure 2.6: Illustration of the hinge loss and the log loss, compared to the (non-

differentiable) zero-one loss function. Note that f (xi ) = ŷi , the prediction of the model

for input xi .

target is 0 when the prediction is correct, and increases linearly with the prediction ŷ ∈ R

when it is incorrect if the goal is to predict y∗ ∈ {−1,+1}:

L(y∗, ŷ) = max(0,1 − y∗ · ŷ) (2.3.6)

The name “hinge loss” refers to the geometrical shape of the linearly increasing function,

which somewhat resembles a door on a hinge (see Fig. 2.6).

In this dissertation we will consider a particular noise-contrastive hinge loss in § 3.4.3.4,

where the goal is to maximise the margin or difference ( ŷ − ˆ̃y) between the prediction for

the correct label ŷ and the prediction for a stochastically-selected noisy label ˆ̃y:

L(y∗, ŷ, ˆ̃y) = max(0,1 − ( ŷ − ˆ̃y)) (2.3.7)

= max(0,1 − ŷ︸︷︷︸
Maximise

+ ˆ̃y︸︷︷︸
Minimise

) (2.3.8)

where we have highlighted that maximising this margin implies maximising the prediction

for the true label and minimising the prediction for the noisy label.

2.3.2.3 Cross-entropy

Cross-entropy loss (also called log-loss or logistic loss) is a theoretically well-motivated

loss function for training models with probabilistic outputs, although it can be motivated

for different reasons. It is defined as maximising the logarithm of the probability assigned
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by the model to the correct labels, or alternatively, minimising the negative log-likelihood

(NLL) of the probability that the model assigns to the correct labels (see Fig. 2.6 for an

illustration). If the goal is to predict a binary label y∗ ∈ {0,1} (i.e. binary classification),

this can be written as

L(y∗, ŷ) = −y∗ log ŷ − (1 − y∗) log(1 − ŷ) (2.3.9)

where ŷ = Pθ (y∗ = 1|x). Note that the two coefficients follow from the fact that P(y =

1|x) + P(y = 0|x) = 1. We can generalise this idea to multi-label classification if we write

the output labels as a binary one hot vector y∗ ∈ {0,1}k . Then

L(y∗, ŷ) =

k∑
i=1

−y∗i︸︷︷︸
labels

log ŷi︸︷︷︸
predictions

. (2.3.10)

where we see that for k = 2 (binary classification) 2.3.10 reduces to 2.3.9.

More importantly, 2.3.10 reveals the source of the name cross-entropy: Recall from

§ 2.1.2 that for a distribution P and Q, the cross-entropy is defined as H (P,Q) = EP
[
− log Q

]
.

Furthermore, notice that when we minimise 2.3.10 over the training distribution P(x, y),

the sum over the label-weighted log-probabilities can be written as an expectation over the

training label distribution, and hence we can view the cross-entropy loss as minimising the

cross-entropy between the model and the data distribution.

Indeed, one can furthermore easily show that cross-entropy is equal to the Kullback-

Leibler divergence (a distance metric over distributions) between P and Q, plus an additive

constant (the entropy of P): H (P,Q) = H (P) + DKL (P | |Q). Therefore, the cross-entropy

loss minimises the Kullback-Leibler divergence between the model distribution P and the

data generating distribution Q. In other words, it is making the model distribution more

similar to the data distribution, which is exactly the goal of training.

2.3.3 Training: Gradient-based training

The loss function quantifies the model’s current progress during training. In order to re-

duce the loss function when training neural networks, the most common method is to use

gradient-based optimisation where at each training step t, we update each model parameter

θ by taking a step along the negative direction of the gradient of the loss function L with

respect to θ, i.e. − ∂L∂θ . We therefore need to be able to calculate the derivative (gradient)

of the loss function with respect to every model parameter. For that we will use the Back-

prop algorithm (see § 2.3.5). Once we have the gradient, the most widely used method for

training neural networks is stochastic gradient descent, where at time t we select a random

training pair x (t ), y(t ), and for each parameter θ we apply the following update rule
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Figure 2.7: Illustration of learning as descending down an error surface by adjusting the

model weights.

θ (t+1) ← θ (t ) − α
∂L

∂θ︸︷︷︸
,δθ

(x (t ), y(t )) (2.3.11)

where α is called the learning rate, and where we are making it clear that the gradient

is a function that is evaluated at the specific training example. Note that the gradient of

the output with respect to parameter θ will later be defined as δθ when we discuss the

backpropagation algorithm.

We can therefore view learning as optimisation of a loss or error function. This can

be visualised for the squared-error as descending down a quadratic error bowl, as shown in

Fig. 2.7. At each time step we compute the stochastic estimation of the gradient and then

take a small step down the surface of the error bowl by making a small adjustment to the

model weights in the direction of the negative gradient (delta).

2.3.3.1 Automatic learning rate selection

In general, setting the learning rate α for neural networks during training can be a black

art. Recently, at least two methods were proposed for automatically tuning the learning rate

during training, namely Adagrad [23] and Adadelta [24].
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We make use of the Adagrad technique. Adagrad adjusts the per-parameter learning

rate at time t for parameter θi inversely proportional to the squared gradients of θi up to

time t. I.e. for each parameter θi we maintain a separate variable gi , and adjust the learning

rate as follows during training:

g(t )
i = g(t−1)

i +

(
∂L

∂θi

)2

(2.3.12)

α(t )
θi

= αt0/

√
g(t )
i (2.3.13)

where αt0 is a global learning rate that is set at the start of training, usually to 1. Notice that

this has the effect of decreasing the learning rate for parameters that are frequently updated,

and increasing the learning rate for infrequently updated parameters (relative to the other

parameters). Computationally, it slows down learning since there is extra bookkeeping work

to be done. However, it often tends to speed up the learning process (by bringing the cost

function down faster), presumably due to this self-regulating effect.

2.3.3.2 Early stopping with patience

In order to avoid overfitting the training set, we may furthermore employ a standard tech-

nique called early stopping [25]. Early stopping is a type of regularisation which prevents

the network from finding a solution which will not generalise well, by regularly testing the

current state of the network parameters on a held-out validation set, and terminating learn-

ing once the performance on the validation set starts to deteriorate, since this is generally a

good indication that the network is starting to overfit.

However, neural networks may represent highly nonlinear objective functions with mul-

tiple local minima, and what may appear to be overfitting might simply be a plateau in the

error landscape. Training with patience helps in this case by not stopping training the mo-

ment the network’s validation error starts to increase, but to continue training for a limited

budget of extra time (“patience”) with the hope of reaching a better solution, and returning

the last best state of the network parameters in the case where such an improvement is not

found.

2.3.4 Training: Computational flow graphs

This section considers how one can represent mathematical expressions as graph structures.

This is a useful model for thinking about both the inference process (fprop, § 2.3.1) and the

training (backpropagation, § 2.3.5) process of neural networks.

Given a mathematical expression defined in terms of computations performed on vari-

ables, one can represent it as a directed acyclic graph where each node in the graph rep-

resents the result of an intermediate step of the computation, and each edge in the graph
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(a) A computational flow graph representing the arbi-
trary function y = g(a) = g( f (x)).

(b) A computational flow graph where the output vari-
able y is a function of more than one variable.

Figure 2.8: A visual illustration of computational flow graphs where nodes represent the

results of a computation and edges represent dependencies between computations.

represents a computational dependency. For example, consider the expression y = x2. One

could think of this as a graph with an input node x and an output node y, where there exists

an edge (dependency) between the two. Likewise, for some arbitrary function z = g( f (x)),

one could imagine a graph with three nodes, x, a, and y, where a stores the intermediate

result a = f (x) and y = g(a).

To highlight the connection with neural networks, one could think of x as the input, a

as the activation and y as the output of some neuron (see Fig. 2.8a). But for now, let us

consider how this formalism allows us to think about how a change in one variable affects

a change in its dependent variables, by considering the derivatives ∂y
∂a and ∂y

∂x .

Since y = g(a), a change of ∆a would result in a change of ∂y
∂a∆a in y. Likewise, a

change of ∆x would result in a change of ∂a
∂x∆x in a. We can combine these two derivatives

with the help of the chain rule of differentiation to derive how a change in x would affect y

as follows

∆y =
∂y

∂a
∂a
∂x
∆x. (2.3.14)

If we furthermore introduce more dependents for y, note that the value that y takes on

simply becomes the sum over the intermediate paths connecting the dependent variables to

y, i.e. y =
∑n

i=1 g(ai ) =
∑n

i=1 g( f i (x)). Likewise, the derivative simply decomposes as the

sum over all the n intermediate paths in the graph as well (see Fig. 2.8 for an illustration

where n = 2):
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∆y =

n∑
i=1

∂y

∂ai

∂ai

∂x
∆x (2.3.15)

It should be clear at this point that making a prediction in a neural network (inference, or

forward propagation, § 2.3.1) corresponds to computing the values of all the dependent

variables in a flow graph representation of the network, starting from the inputs. Likewise,

training a neural network (backpropagation, § 2.3.5) corresponds to computing the deriva-

tives of dependent variables in a flow graph. This is precisely how the popular Python

package Theano implements neural networks [26].

2.3.5 Training: Backpropagation derivation

Backpropagation [27,28] (and see [22] for an algorithmic overview) is an efficient algorithm

for computing the gradients of the loss function with respect to every model parameter θi
by proceeding in the reverse direction of the fprop process, and efficiently reusing parts of

the gradients along the way.

Backpropagation is used for training all the models presented in this dissertation, so we

will discuss the algorithm in detail. We start by considering only two connected units in two

consecutive layers of a network, and then generalise the result to a feedforward network of

arbitrary depth.

Consider a logistic neuron y = g(wx + b). The computations performed by this neuron

corresponds directly to the flow graph illustrated in Fig. 2.8a, where we have shown that,

by the chain rule, the derivative of y with respect to the weight w connecting x and a, can

be expressed as

∂y

∂w
=
∂y

∂a
∂a
∂w

(2.3.16)

= δa
∂a
∂w

. (2.3.17)

where we have defined the error delta on layer l, δl , ∂y
∂al

. In other words, δl is the

fraction of the total output error for which the node at layer l was responsible, before the

application of its activation function g. In general, we will use δθ to represent the derivative

of the output error with respect to layer or parameter θ.

With that in mind, let us now scale up from one neuron and consider how the gradients

flow through a series of two connected neurons in two consecutive layers of a feedforward

neural network (see Figure 2.9). In particular, let us consider the error delta at layer i:
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Figure 2.9: Two neurons possibly as part of a larger network. Neuron j takes as input the

output of the neuron below y j = g(w j i yi + bj ).

δi ,
∂out
∂ai

B Definition (2.3.18)

=
∂out
∂a j

∂a j

∂ai
B Chain rule (2.3.19)

= δ j
∂w j i yi + bj

∂ai
B Definition (2.3.20)

= δ j
∂

∂ai

(
w j ig(ai )

)
(2.3.21)

= δ jw j ig
′(ai ) (2.3.22)

We are therefore able to derive a delta recurrence equation which relates the total error

contribution (delta) from the output layer that reaches layer i in terms of the local error delta

on the layer j above. This is what will allow us to come up with an efficient algorithm for

computing the derivatives of the output loss with respect to all lower weights.

Notice that in order to compute the gradients for some training sample (x, y), we require

the activations ai for all nodes in the network. Therefore, the backprop algorithm proceeds

by running fprop on the input data x to obtain the node activations a which it stores, and

then computes the output loss to obtain the output error delta which it then propagates

backwards through the network by the repeated application of the delta rule.

The backprop delta recurrence is intialised at the output layer for δout = ∂L
∂out , i.e. as the

derivative of the loss function with respect to the output layer. For the squared-error loss

(§ 2.3.2.1) it is easy to show that δout = ∂
∂ŷ

1
2 (y∗ − ŷ)2 = ±(y∗ − ŷ), or in words: (true -

predicted)1. For the cross-entropy loss (§ 2.3.2.3) it takes a bit of work, but as we will show

in § 4.1.3, the output delta is indeed also (true - predicted).

The backpropagation algorithm (see § 2.3.6 for the implementation) is therefore able

to compute the gradients on all model weights with one forward pass and one backwards

pass through the network, for a runtime of O(n) for n weights. This is a great improvement

1The sign depends on the order of the subtraction, but is irrelevant in terms of the squared error.
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over the naive computation of the gradients which considers all exponential combinations

of paths from input to output nodes, and runs in O(nL−1) for L layers.

2.3.6 Training: Backpropagation algorithm

The Python code shown in Listing 2 is a direct implementation of the backwards application

of the delta-rule derived in 2.3.18. The function takes as input the activations of the different

layers of the network, obtained by running the fprop() function presented in § 2.3.1.

Listing 2 Python code implementing the back-propagation algorithm for a feedforward

neural network.
def backprop(target, acts, ys, weights):

y = ys[-1]

delta = (target - y) # intialise delta

grads = []

num_layers = len(weights)

for i in xrange(num_layers - 1, -1):

Wgrad = dot(delta, ys(i-1).T) # outer product

bgrad = delta

grads.append((Wgrad, bgrad))

# update for next iteration, elem-wise multiplication

delta = dot(delta, weights[i].T) * dsigmoid(acts(i-1))

grads.reverse()

return grads

2.3.7 Unsupervised models

Supervised models learn to predict a label y from an input x. Unsupervised models only re-

ceive the inputs x, and attempt to automatically discover the structure of the input space for

instance by clustering. In the context of neural networks, two of the most popular methods

for unsupervised learning are the probabilistic restricted Boltzmann machine (see for in-

stance Hinton [29]), and the non-probabilistic autoencoder and its variants (see for instance

Vincent [30]). We will not focus on the RBM in this dissertation, but the unsupervised

principles behind autoencoders have close ties to the unsupervised distributional methods

for learning word representations, so we will mention the model in broad strokes here.

An autoencoder learns an encoding transformation h = σ(Wx) of its input x into a

hidden representation h, along with a decoding transformation x̃ = Vh, such that the recon-

struction error L = | |x − x̃ | |22 between the original x and the reconstruction x̃ is minimised.

In the process, the model learns a new representation for the inputs (in terms of the

activations on the hidden layer). One can show that this new representation space spans
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Figure 2.10: An example of the types of linguistic structures that we are interested in pre-

dicting in natural language processing.

the main directions of variation in the original data. Due to the squared-error, there is

also a close relationship to matrix-decomposition methods like principal components anal-

ysis (§ 2.4.2.2). However, in autoencoders the induced transformation is not necessarily

orthonormal, as in matrix-decomposition methods.

2.4 Statistical Natural Language Processing

2.4.1 Overview

In natural language processing (NLP) systems the goal is to build a computational system

that can map raw input strings of text to output linguistic structures that encode the meaning

of the text [5]. For example, as illustrated in Fig. 2.10, given the input text

Stanford awarded the highly acclaimed Mr Smith with an award,

the goal might be to label words with their parts of speech (POS), e.g. nouns NN* and verbs

VB*, or to extract the dependency relationships between words shown as arrows from head

words to their dependents, or to extract the semantic components of the sentence (who does

what to whom).

Most modern approaches model this as a machine learning problem where we try to

predict a set of labels y ∈ Y (e.g. a POS tag) that each input x ∈ X (e.g. a word) can belong

to. To do this, one defines a model that can learn how inputs relate to labels. Generally

speaking, jointly modelling inputs and labels is referred to as generative modelling, since

these models can map both inputs to labels and labels to inputs allowing the model to

generate or “hallucinate” new data, from where the name. On the other hand, discriminative

models learn a conditional mapping from inputs to labels that can assign a real-valued score

or probability to the different labels y that a given input x might belong to. I.e. it can

discriminate between the different labels, from where the name. Given such a trained model,

and a new input x, the prediction problem then reduces to solving the “decoding or argmax

problem” of finding the best label ŷ for a given input x, e.g. ŷ = arg maxy Pθ (y |x) for a

probabilistic model.
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x ∈ X the cat sits on the mat
r (x) r (x1) r (x2) r (x3) r (x4) r (x5) r (x6)
y ∈ Y B-NP I-NP B-VP O B-NP I-NP

NE Tags [the cat]_NP [sits]_VP [on]_O [the mat]_NP

Table 2.1: Example NLP syntactic chunking task for the sentence “the cat sits on the mat”.

X represents the words in the input space, Y represents labels in the output space. r (x) is a

feature representation for the input text x and the bottom row represents the output named

entity tags in a more standard form.

In this dissertation we only focus on discriminative models where Pθ (y |x) is parame-

terised in terms of a feature representation r (x)2 which captures the salient, discriminative

aspects of the input domain X with respect to the labels y. In this class of models, most of

the novelty in new approaches relate to how the feature functions r (x) are defined.

As a concrete example, consider the task of syntactic chunking, also called “shallow

parsing” [31]: Given an input string, e.g.

“the cat sits on the mat”,

the chunking problem consists of labelling segments of a sentence with syntactic con-

stituents such as noun or verb phrases (NPs or VPs). Each word is assigned one unique tag,

often encoded using the BIO encoding3. We represent the input text as a sequence of words

xi ∈ x, and each word’s corresponding label is represented by yi ∈ y (see Table 2.1). Given

a feature-generating function r (xi ) and a set of labelled training pairs (xi , yi ) ∈ X × Y,

the task then reduces to learning a suitable mapping sθ : r (X) → Y by tuning the model

parameters θ until the model is successful at predicting the training labels.

The task of coming up with good feature generating functions r (x) is referred to as fea-

ture engineering and typical feature functions for this task would produce an output vector

where individual components of the vector is set to 0 or to 1 depending on the presence of

certain binary indicators. Examples for this task include for example “does the word contain

a capital letter”, “is the word contained in a gazetteer”, etc. This approach works well, but

it is labour-intensive and generally hard to come up with features that can generalise well

across many different tasks. Therefore these feature functions are often only useful for one

specific task. This problem is compounded even more when the goal is to come up with

features that can capture important aspects related to the task across different languages,

i.e. cross-lingual prediction.

In this dissertation, our goal is to automatically and efficiently learn distributed rep-

resentations of natural language that can generalise across a variety of NLP tasks and

2This is usually denoted as φ(x), but for consistency in this dissertation we will refer to the feature repre-
sentation of object x as r (x) to emphasize that it is a function, or simply rw to refer to result of applying r to
x.

3E.g. B-NP means “begin NP”, I-NP means “inside NP”, and O means other/outside.
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languages. There is a rich history of distributional methods that can be used for learning

useful representations, and in the next sections we will discuss the most well-known meth-

ods, namely Brown clustering and latent semantic analysis. However, in the rest of this

dissertation, we will approach this problem by building upon advances in the field of neural

language models, which will be discussed in detail in Chapter 3.

2.4.2 Representation Learning in NLP

In representation learning for NLP, the goal is to learn how to represent the input text in

order to be successful at predicting the output labels. This means that during training,

we are not not only learning the weights θ of the classifier Pθ (y |r (x)) to produce better

predictions, but we are also learning how the inputs are represented to the model, i.e. we

are also learning r (x).

If we had unlimited labelled training data (x, y pairs), one could learn the representa-

tions end-to-end to improve prediction of the labels. However, due to the cost of obtaining

labelled data, unlabelled data is often much more easily obtainable. Therefore the rep-

resentation learning step is usually performed in an unsupervised setting (using raw text

documents).

Distributional representation learning methods in NLP can be seen as learning to encode

as a feature vector how words or phrases in one or more languages relate to each other, in

order to learn soft equivalence classes which allow one to generalise. E.g. if word wi in

class cj has certain (latent) properties or we know its annotated label, then one can assume

that word wk in the same class cj shares similar properties. This allows one to transfer the

supervised information one has available for wi to w j .

2.4.2.1 Brown clustering

Brown clustering was introduced as a technique for clustering words into hard equivalence

classes in order to combat data sparsity when training a language model [32]. Learning the

conditional language modelling probabilities P(wi |w j ) requires estimating a table of O(V 2)

probabilities from the data for V words in the vocabulary (worst-case, although many of

these will be unobserved). When data is limited, some of the rare transitions may not be

observed and hence assigned a zero probability under the maximum likelihood inductive

principle. However, if words are assigned to C classes, then one can rewrite this probability

as

P(wi |w j ) = P(C(wi ) |C(w j ))P(wi |C(wi )) (2.4.1)

where C(wi ) denotes the class that word wi belongs to. Note that now we only need to es-

timate the O(C2) conditional class-transition probabilities and the O(VC) word-emission
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Figure 2.11: A graphical illustration of a class-based, bigram language model (note the

similarity to a hidden Markov model) [33].

probabilities. This possibly represents a great reduction if the number of classes C is much

less than the number of words V . The algorithm starts by assigning each word to its own

class. It then iteratively and hierarchically merges two classes in order to maximise the total

log-likelihood assigned by the class-based bigram language model (2.4.1) to the training

data. E.g. “saw” and “knife” might be merged into the same class since they often occur in

the same contexts. The total runtime of the algorithm is O(VC2).

Since we do not know the actual word to class assignments and due to its bigram nature,

this model can be thought of as a hidden Markov model (see Fig. 2.11). The output of the

algorithm is a binary clustering over the vocabulary with the words as the leaf nodes. Each

internal node is considered a cluster that contains the words in that subtree. The “features”

for each word are the concatenated binary codes consisting of the left (0) /right (1) traversal

down the tree, starting from the root.

Brown features have been successfully used in many applications, including named en-

tity recognition (NER) [33–35], probabilistic context-free grammar (PCFG) parsing [36],

dependency parsing [37,38], and semantic dependency parsing [39], and was more recently

compared to neural word embedding features (what we will be focusing on in this disserta-

tion) by Turian et al. [9].

2.4.2.2 Spectral methods

Another important class of representation learning algorithms make use of so-called spec-

tral techniques, better known as matrix-decomposition techniques, and specifically, singu-

lar value decomposition (SVD). Latent semantic analysis (LSA) [1] was the first method

to popularise this approach. LSA takes a (D × V )-dimensional document-term-matrix
of (document, word)-observations, and applies singular value decomposition to yield a re-

duced (D × k)-dimensional matrix, where each row represents a lower-dimensional vector-

representation which characterises the ‘concepts’ or topics that are present in the document.

Intuitively, this works because SVD finds the directions of maximum variance (change)

in the space of words, and then learns a linear projection which projects words that tend

to co-occur frequently onto the same components (principal vectors) in the reduced dimen-

sional space. This process tends to capture the topical similarity between words, since
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words that co-occur tend to share meaning.

More technically, SVD is an efficient linear algebra technique for decomposing an (m×

n)-dimensional matrix A as the product of three lower-rank matrices (i.e. it produces a low-

rank approximation of the matrix): the left and right singular vectors U and V , and the

covariance matrix Σ, i.e.:

A︸︷︷︸
(m×n)

SVD
= U︸︷︷︸

(m×k )

Σ︸︷︷︸
(k×k )

V>︸︷︷︸
(k×n)

(2.4.2)

=

k∑
i=1

σi︸︷︷︸
scalar

ui︸︷︷︸
(m×1)

(vi )>︸︷︷︸
(1×n)︸        ︷︷        ︸

(m×n)

(2.4.3)

When LSA is applied to a (document, term)-matrix, it produces compact representa-

tions of the documents (which can be used for information retrieval). However, when it

is applied to a (term, document) matrix, it accomplishes the inverse: it produces compact

vector representations of words, based on how words tend to co-occur in documents.

Furthermore, one is free to change the definition of the context from more global (doc-

uments) to more local (windows of surrounding text). Word representations derived in this

way are referred to as eigen-words [40, 41], since the words are represented by the projec-

tions of their contextual co-occurrence patterns onto the reduced set of principal eigenvec-

tors of variation.



Chapter 3

Neural Word Embedding Models

This chapter introduces neural language models (NLMs), the main modelling workhorse

employed in this dissertation for representation learning. Throughout, we provide a detailed

overview of the different NLM architectures as well as a detailed, tutorial-style overview of

all the popular techniques for training these models. We furthermore introduce a novel geo-

metrical framework for understanding the training of word embedding models, particularly

from a representation learning point of view. This ties together different training methods

and highlights the connections between these models and other distributional methods for

learning word representations, such as latent semantic analysis (§ 2.4.2.2).

This chapter is based on a tutorial that I have presented at Carnegie Mellon University

in Dec 2012, Microsoft Research (Israel) in Nov 2013, and at University of Copenhagen in

Nov 20141.

3.1 Introduction

The goal of language modelling is to learn a model that can accurately capture the statistical

structure of a natural language, by modelling the language as a sequence of words. If such

a model is accurate, it would enable one to make predictions about which words are more

likely to occur in certain contexts. In particular, we are interested in predicting what target

word, that we will denote by wt , is most likely to follow a given sequence of previous

context words, that we will denote by h (for ‘history’). See for example Fig. 3.5, where the

goal is to predict the target word “mat” from the previous context words “the cat sits on

the”.

The most popular models for this task are called n-gram language models [42]. An

n-gram model models the probability distribution over the target word given the (n − 1)

previous words. Therefore a uni-gram model (n = 1) represents the unconditional probabil-

ities (0 previous words), a bi-gram model (n = 2) considers one previous word, etc. n-gram

1See www.stephangouws.com/talks.
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models are in essence tables of discrete conditional probabilities P(wt |h) estimated from

data by counting the number of times we have observed wt in the (n − 1)-length context h.

Despite its unquestionable success and pervasiveness, there are several issues with this

approach, most notably that it suffers from the curse of dimensionality [43], where the

possible number of parameters in this model (conditional probabilities) grows exponentially

in the number of words V in the vocabulary and the context-length n − 1, i.e. as O(V n−1).

This creates an issue of data-sparsity, where word-context combinations that were never

observed in the training set are assigned a probability mass of 0. An active area of research

has been to design smoothing techniques (regularisers, § 2.2.2) to redistribute probability

mass in these models in order to generalise beyond the observed training data [42].

Neural language models (NLMs) are an alternative to n-gram models. An NLM learns

a distributed feature representation (a vector, discussed below) for each word in the vocab-

ulary, and then uses a neural network function to map the combined features of the context

words to predict the next word in the sequence of training words. A distributed representa-

tion [44] of a symbol is a tuple or vector where the meaning of the symbol is represented

by (distributed across) a combination of different features in the vector. In the discrete bi-

nary case, it therefore optimally corresponds to a binary encoding and an N-dimensional

encoding can represent 2N different distinct symbols. There is parameter sharing in that

many symbols can share (be represented by) combinations of the same components of the

representation. This stands in stark contrast to a local representation of a symbol, also

called a one-hot representation (as is used in for instance n-gram models), where only one

dimension is active (‘on’) corresponding to the index of the symbol in an N-dimensional

vocabulary. An N-dimensional local representation can therefore represent only N different

symbols.

NLMs have two very attractive properties, compared to n-gram models:

1. Firstly, they overcome the curse of dimensionality by not associating an individual

parameter with each possible combination of word-context pairs2, but instead NLMs

share parameters between inputs. This has the very desirable effect that the number

of parameters grows only linearly with the context-length, i.e. as O(V + (n− 1)), and

not exponentially as with n-grams.

2. Secondly, the smooth nature of the functions learned by neural networks introduces

an implicit regularising effect, in that similar inputs get mapped to similar outputs.

This has the effect that an NLM can naturally generalise to word combinations it has

never observed together by leveraging what it has learned from similar words in the

training data.

2In n-gram models this is the conditional probability.
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(a) Male-female. (b) Verb tense. (c) Country-capital.

Figure 3.1: Visualisations of the different linguistic relationships that neural language mod-

els have been found to learn and encode in its embedding space in an unsupervised manner

from large collections of text [15].

In an NLM, discrete input word identifiers are mapped into a learned, distributed vector

space of meaning by assigning with each word a learned, real-valued feature-vector re-

ferred to as the word’s embedding. The name stems from the fact that the high-dimensional

discrete (local) symbols are embedded into a low-dimensional vector space. Neural net-

works tend to map nearby inputs to nearby outputs. Therefore, in order for the network

to accurately predict similar words in the same contexts, e.g. the cat {sits, runs, purrs}, it

will update the representations for similar words to be close (similar) in the induced vector

space. We will discuss this concept in much more detail in the rest of this chapter. Different

directions in this space correspond to different learned, latent properties that the network

uses to represent the properties related to the meanings of words.

It has been shown that NLMs are particularly good at extracting relationships between

words purely from their distributional information [15]. Fig. 3.1 shows that the models

can learn to encode male-female relationships, syntactic information about words and even

seeming semantic information such as the country-capital relationship (“Berlin” is to

“Germany” as what is to “France”?). Since these relationships capture useful general prop-

erties about language, they have been found to be very useful as features for a classifier for

predicting other aspects of language, like part-of-speech tags [8], named-entities [9], etc.

Since the introduction of the original neural probabilistic language model (NPLM, Sec-

tion 3.3.1), several other model architectures and training methods have been proposed. For

representation learning, we are primarily interested in learning the word embedding fea-

tures. The rest of this chapter will discuss in detail the different model architectures and

training methods that exist for efficiently learning word embeddings. In order to understand

how these models relate to one another, it is useful to break up the modelling process into

three different stages (see Fig. 3.2):
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Figure 3.2: A flow-diagram illustrating the three important components of the most popular

neural word embedding models: input context words, the network function fθ (h) that maps

input words to predict output words wt , and the loss function L used to train the model.

1. Firstly, how the context words h are selected for a target word wt (window of previous

words, surrounding window of words or unbounded history),

2. secondly, how the network fθ (h) maps the context word representations to predict

wt , and finally,

3. what objective or loss function L(wt , fθ (h)) we use to train the model.

In this chapter we review the most important NLM architectures in terms of the above

three considerations. In the next sections we will discuss the similarities and differences of

NLMs to other distributional methods for learning representations of natural language, in

particular latent semantic analysis (LSA, § 2.4.2.2), by viewing all these techniques along

the same considerations introduced above. Since we are ultimately interested in learning the

word embeddings, we will furthermore analyse the properties and training dynamics of the

different loss functions in the case of the most popular word embedding models to obtain a

better geometrical understanding of how these models are trained (§ 3.5).

3.2 Distributional Representation Learning Methods

Distributional semantics defines the relationships between linguistic units (words, phrases,

sentences) based on how frequently they appear together in large corpora, i.e. based on their

distributional properties. The underlying idea is based on the Distributional Hypothesis [45]

which can be summarised as “linguistic items with similar distributions have similar mean-

ings”. In other words, the Distributional Hypothesis claims that there exists a relationship

f : W ×C → M between the co-occurrence statistics C and the meanings M of some words

W .
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Figure 3.3: Distributional methods for learning semantics (linguistic meaning).

In essence, distributional methods represent an unsupervised family of techniques that

compress or summarise a word’s co-occurrence statistics (how frequently we see some word

in the context of other words) into a representation which captures useful properties of the

word’s meaning (see Fig. 3.3). Viewed in this way, it is useful to think of these techniques

as optimising an unsupervised reconstruction objective function (§ 2.3.7) that aims to cap-

ture most of the ‘interesting’ information that is present in the contexts in which a word is

observed, by squeezing the high-dimensional contextual information C through an informa-

tion bottleneck [46] into a low-dimensional representation R, from which it has sufficient

information left to reconstruct the original. The training objective can be stated as

min
R
L( f −1( f (C; R)),C) (3.2.1)

In this formulation, a ‘good’ representation R is one which causes the least corruption dur-

ing the reconstruction step.

One well-known technique of this type is Latent Semantic Analysis (LSA, § 2.4.2.2 [1]).

LSA applies principal components analysis [47] or singular value decomposition to the

word-context co-occurrence matrix C to decompose it into three matrices, the left and right

singular values U ∈ RV×r and V> ∈ Rr×n and the diagonal matrix Σ ∈ Rr×r (with the

r eigen-values on the diagonal) which together minimise reconstruction error with respect

to the original C (see Fig. 3.4). The singular vectors in U represent the directions of most

variation of the contexts in which each word appears (starting with the highest variance

component at column 1) and each row-vector U[i, :] represents the projection of the high-

dimensional co-occurrence data for each word i onto these principal directions of variation.

By reducing the number of components r , one obtains a more compact representation or

‘embedding’ for each word, at the expense of introducing more error in the reconstruction

of C.



CHAPTER 3. NEURAL WORD EMBEDDING MODELS 38

Figure 3.4: Latent semantic analysis [1].

It can be shown that LSA learns an affine function for mapping a word’s high-dimensional

contextual information into a lower-dimensional space which minimises a squared-error re-

construction cost between the original and the reconstructed data [48]. In terms of 3.2.1,

LSA therefore assumes that f is a linear (affine) function parameterised by matrix W , and

L() is the squared-error.

The key insight from this discussion is that word embeddings are projections which

compress the high-dimensional contextual information in which a word appears into a

low-dimensional subspace. To goal is to minimise an expected error function in the low-

dimensional space under the training distribution (co-occurrence statistics). This is easily

seen for the above case with LSA, where the projection f is affine and the error is the

squared-error. NLMs generalise this by allowing a nonlinear projection (computed by the

neural network), an arbitrary error function, and using an iterative, stochastic optimisation

scheme.

In the rest of this chapter we will look in more detail at the various popular loss functions

for training NLMs. We will then discuss the similarities between different loss functions

when the goal is purely to train high-quality word embeddings.

3.3 A Review of Neural Language Models

In this section we look at the most popular neural language models, namely the original neu-

ral probabilistic language model (NPLM), the log-bilinear language model (LBL) which is

simple yet effective, hierarchical class-based models which speed up training by cluster-

ing the vocabulary, models based on recurrent neural networks which can consider longer

context-sizes, and noise-contrastive models for learning word representations which speed

up training by using efficient training objectives.
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3.3.1 Neural probabilistic language model (NPLM)

The first successful neural language model was introduced by Bengio et al. in a NIPS pa-

per in 2001 [49], and expanded in a subsequent JMLR article [12]. Its most important

property was to project each input word into a low-dimensional Euclidian space, and to

use a neural network to calculate the conditional language modelling probabilities in this

low-dimensional space. The NPLM architecture is visualised in Fig. 3.5.

As with all NLMs, word embeddings correspond to row-vectors that are stacked into a

(V × K )-dimensional embeddings matrix, which we will represent with R, and each input

word id is projected onto its embedding vector. The goal is to update these embedding

vectors using end-to-end gradient-based training, therefore we require that the projection

step be differentiable. This can be accomplished by representing each word w using a V -

length one-hot vector zw , i.e. a vector with zeros everywhere except at the index position for

w. One can then perform the projection step as a (sparse) dot product rw = R>zw , where

rw denotes the embedding for word w. This projection step is performed for all context

words and the resulting embeddings are concatenated to form the activations on the input

layer.

The rest of the architecture is a standard feed-forward one-hidden layer neural network

with a tanh-nonlinearity on the hidden layer and a softmax output layer:

Pθ (wt |h = {w1, · · · ,wn }) =
exp( fθ (h)>qwt + bwt )∑

j exp( fθ (h)>qj + bj )
(3.3.1)

where bj is a bias weight which represents the prior unigram probability of observing word

w j , fθ (h) represents the network’s hidden-layer representation for the context words h, and

qw = Q[w, :] is the learned output embedding for word w, which may or may not be the

same as the input embedding rw = R[w, :]. One reason for this might be to allow the models

to learn that the probability of the same word occurring twice P(wi |wi ) is very low (small

dot product), which it cannot do when input and output words use the same vectors [50].

One variant of the model also included linear skip-connections directly from the input

layer to the output layer. The authors trained this model by maximising its log-likelihood

on a training set using the backpropagation algorithm to compute the updates on the model

parameters, but also on the actual word embedding vectors, thereby jointly training model

parameters and word representations.

3.3.2 Log-bilinear language model (LBL)

The log-bilinear language model (LBL) was introduced by [51], and made two simplifi-

cations to the original NPLM. First, they dropped the nonlinearity on the hidden layer.

Second, there are no skip-connections (since the connections from input to output layer are

already linear). Although the model was originally motivated and defined as an energy-

based model [52] with a bilinear energy function, it is indeed simpler to interpret it as a
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Figure 3.5: Schematic of the original neural probabilistic language model [12], which used

a feedforward neural network to predict the probability of the next target word from its

preceding context words. R and Q are the so-called input and output embeddings. fθ (h)

maps the input words to the hidden layer representation. Finally, note that the target word

is not part of the input, but is in fact the label that the network needs to predict.

simple feed-forward neural network with a linear hidden layer and a softmax output. In this

formulation, the activations on the hidden layer constitute the network’s predicted embed-

ding of the target word from the context words

fθ (h = {w1, · · · ,wn }) =

n∑
i=1

Cirwi (3.3.2)

where Ci is a learned (K × K )-dimensional matrix for the word at the i-th context-position.

The model then predicts the output distribution by comparing the predicted vector fθ (h)

with the learned embedding vectors of all the words in the vocabulary using the softmax

function (3.3.1). Despite its simplicity, this model has been shown to outperform the NPLM

in terms of perplexity on several datasets [51]. This is quite an unexpected result given that

the model is linear, compared to the nonlinear NPLM. We will look at this in more detail in

§ 3.4.2.

3.3.3 Hierarchical (class-based) models

Both the NPLM and the LBL models use a softmax output layer to compute the multinomial

output distribution over all words. A significant computational problem with the vanilla

softmax output function is that it is very expensive to compute both in the forward phase

(fprop) and the backwards phase (backprop).
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In order to address the high computational cost, [53] introduced the hierarchical softmax

(HS) function. We will look at the HS in more detail in Chapter 4, but for now we simply

note that this approach takes inspiration from work on class-based language models [32].

In short, class-based models make use of the sum-rule of probability (§ 2.1.1) which states

that one can decompose the calculation of the probability P(w |h) (3.3.1) in terms of a

marginalisation over a new variable c

P(wt |h) =
∑
i

P(wt |h,ci )P(ci |h) (3.3.3)

where ci can be interpreted as “class i”, and the equation in general as: certain groups of

words (classes) appear more frequently in certain contexts, and we can leverage this fact to

compute the probability of a particular word to appear in a particular context.

This can result in significant computational savings if we restrict the number of classes

that a word can belong to. However it is not trivial to find a good way to partition words

into classes, and it also depends if the main goal is to speed up the evaluation of 3.3.3, or

improve the perplexity of the model (§ 4.1.5).

In [53] the authors used the WordNet [54] lexical resource to derive the class structure,

but this did not work very well. [55] presented and evaluated several different data-driven

clustering approaches which produce random, balanced and what they called ‘adaptive’

class structures. The authors report good results using the adaptive method, which essen-

tially clusters pre-trained embeddings in an offline setting into trees prior to training. In

§ 4.2 we will develop an efficient algorithm which performs this clustering in an online

setting, jointly during training.

Another popular approach is to group words based on their frequency counts. For a one-

level class structure (n-ary tree) this amounts to grouping words based on bins of constant

probability mass [56, 57]. For a multi-level (binary tree) class structure this amounts to

constructing a Huffman tree over the vocabulary [58]. We will look at the binary HS in

more depth in Chapter 4.

3.3.4 Recurrent models

Language has dependencies which may span across several words. One advantage of the

NLMs introduced so far, over n-gram models, is that the number of parameters at the input

layer only increases linearly with the context-size. This makes it easier statistically to scale

to larger context-sizes since less data is required to estimate the parameters, which in turn

helps with modelling long-range dependencies. However, feedforward neural networks

have no internal memory and a feedforward NLM can therefore only ‘see’ the n − 1 words

in the current window that it is considering for predicting the next word.

Instead of increasing the context-size to enable models to view all possible long-range

dependencies during prediction, a more elegant approach is to endow the network with
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Figure 3.6: Noise-contrastive models attempt to score an observed target word higher than

a stochastic sample of k noise words. The scoring function can be non-probabilistic, e.g.

Collobert and Weston [8] or probabilistic, e.g. CBOW or skipgram [58, 65].

an internal memory so that it can remember important contextual information over arbitrary

time-steps. Recurrent neural networks (RNNs) were exclusively designed with this property

in mind. An RNN achieves this by using the state of the network at the previous time-

step as an additional input for making its prediction at the current time-step. In theory,

this allows a network to propagate information across arbitrary time-steps. However, in

practice it turns out to be difficult to train RNNs, in part due to the vanishing and exploding

gradient problem [59]. Some advances have been made over the last few years which

improves training [60, 61], but it remains a difficult problem to solve. Despite its successes

in character and word-based language modelling [62–64], recurrent models have not proven

more useful than feedforward models when the goal is to learn high-quality word features,

and therefore we will not focus on recurrent models in this dissertation.

3.3.5 Unnormalised, noise-contrastive NLMs

In this section we look at models where the objective is to be able to successfully predict if

a word makes sense in a certain context (i.e. if it is part of the data distribution) or not (i.e.

if it is noise). We will look at two models, one non-probabilistic and the other probabilistic,

but both approaches can be visualised as illustrated in Fig. 3.6.

3.3.5.1 Noise-contrastive rank loss

Up to this point we have considered different probabilistic neural language models. How-

ever, in two of the seminal papers that paved the way for neural networks to be used for

learning features for NLP tasks, the authors trained a non-probabilistic, noise-contrastive
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Figure 3.7: CBOW Figure 3.8: Skip-gram.

language model [8, 13]. The objective is to be able to score windows of valid text higher

than windows of corrupt text. Specifically, for each training update, the observed n-gram

context h consisting of a sequence of n − 1 words is used as a positive example. A corrupt,

negative example is then created by randomly replacing a word at some fixed position in

the observed window with a random word drawn from the vocabulary. The network is then

trained to output a real-valued score for the positive example that is higher than the score

for the negative example, with some real-valued margin m. This loss will be discussed in

more detail in § 3.4.3.4.

Due to its computational efficiency, the authors were able to train this model over all

Wikipedia text (±600 million words at the time). They were then able to show that the

learned word embeddings can be used for several low- and mid-level NLP tasks, like part-

of-speech tagging, word chunking and semantic role labelling. This was the first work to

exploit the learned embeddings as features for predicting word-level labels, and in a sense

revived the application of neural network models in natural language processing.

3.3.5.2 CBOW and Skip-gram

Mikolov [14, 58] introduced the continuous bag-of-words (CBOW) model (see Fig. 3.7)

which further simplifies the LBL (and hence NPLM) in two important ways. First, it com-

pletely ignores word-order at the input layer, and computes the context-vector by simply

summing over the embeddings of the words in the input window. Second, they use a sim-

plified version of noise-contrastive estimation (§ 3.4.3.3), which they call negative sampling

(§ 3.4.3.5), to train the model.
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They also introduce the skip-gram model (see Fig. 3.8), which can be seen as the ‘in-

verse’ of the CBOW: instead of trying to predict the target word from the context-words,

they now try to predict each context-word from the target word. This turns out to be a very

good model for feature learning.

Due to the simplicity of the models and efficient training algorithms, they are able to

scale training to datasets of more than 1 billion words, with a vocabulary of nearly 700

thousand words, by training on a single desktop machine in only a few hours. They are able

to show strong results on the analogical reasoning dataset [15], which measures several

syntactic and semantic properties captured by the word embedding features. They find that

the CBOW model trains faster, as expected, but the skip-gram model learns better features

in general. We will offer some conjecture into why this might be the case in § 3.6.

3.4 Discussion of NLMs

In section we analyse the different neural word embedding models in terms of the three

considerations introduced in § 3.1 and displayed in Fig. 3.2:

1. how the model defines context,

2. how the model predicts target words from context words, and

3. how the model is trained.

3.4.1 How context h is defined

For language modelling, where the goal is to predict the next word in a sequence of words,

the notion of context is well-defined as the words preceding a given target word in the

sentence (looking at future words to predict the next word would be considered cheating).

However, for feature learning we are free to define context in any way we please, and

indeed, different models have different definitions of context. Window-based methods define

context as a window of words directly preceding [12, 13, 51, 55] or surrounding [8, 14] the

target work. Recurrent models define context as all words in the sentence preceding the

target word [62]. Some researchers have also started experimenting with syntactically-

derived contexts [66].

In general, the definition of context plays a very important role in the type of information

that is present in the training data for the models to compress into embeddings. Traditionally

in distributional methods it is known that using a wider contextual window around target

words causes the models to learn more semantic (topical) information, while using a smaller

window tends to preserve more syntactical information. However, as shown by Levy et

al. [66] one need not be restricted only to the words in a window around the target word,

and indeed there may well be a better definition of context which may allow the models to
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Figure 3.9: Nonlinear neural language models can model when two words are both absent

(0,0), both present (1,1), or when one is present and the other is not (0,1) or (1,0). Here we

illustrate the idea using the words new and york which have different meanings based on

whether they appear alone or together.

learn features more relevant for the specific task at hand. Specifically, in this dissertation we

will introduce the Barista model (Chapter 6) where we train models on bilingual contexts

to learn cross-lingual features.

3.4.2 The structure of fθ (h)

The network architecture defines how the model maps the observed context words into a

compressed representation fθ (h) which it then uses to make a prediction about the target

word. This function can be linear (CBOW, skipgram, LBL, HLBL), nonlinear (NPLM,

RNN) or even probabilistic (using e.g. RBMs [67]).

The nature of this function has a strong bearing on the capacity of the model in terms of

its ability to model language. For instance, a linear function can only detect linear relation-

ships between its input words, whereas a nonlinear function can detect nonlinear relation-

ships. Theoretically, this means that a nonlinear model can exploit XOR-like relationships

such as ‘new’ and ‘york’ is present versus only ‘new’ is present or only ‘york’ is present,

which a linear model cannot do, as illustrated in Fig. 3.9. However, as was shown for the

log-bilinear model (§ 3.3.2), evidently this capability does not give the nonlinear NPLM

much of an advantage over the linear LBL in terms of the model perplexity. There may be

different reasons for this though (although this is pure conjecture): It might be related to

training, since training the nonlinear NPLM is much harder than the linear LBL, and the
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results for the NPLM precedes a lot of recent research advances in training deeper, nonlin-

ear models. It might also simply be that in high-dimensional spaces the linear LBL model

might still be able to find a suitable representation for representing the data which does not

require a nonlinear function.

For feature learning, however, the most popular models are the CBOW and Skip-gram

which simply consider the averaged bag of words representation for an input window, i.e.

fθ (h) = 1/N
∑

i rwi for the N context words wi ∈ h.

3.4.3 The loss function L(wt ,h)

So far we have looked at how the model selects context words from the training data and

how the network maps context words into a vector representation fθ (h). In this section

we consider the final crucial component that makes up NLMs, namely how the model is

trained. There are many different techniques for training NLMs, and a lot of research has

focused on speeding up training by using more scalable training techniques, while retaining

the quality of the learned representations.

The first neural probabilistic language model (§ 3.3.1) took 3 weeks to train on 12 mil-

lion words with a vocabulary size of only 17 thousand words, and by parallelising training

over 40 machines [12]. Contemporary neural word embedding models can be trained over

1 billion words (100 times larger) of Wikipedia text, using a vocabulary size of 1 million

words (50 times larger) on a single desktop machine (roughly 40 times less computational

power, if we ignore the effect of increasing computational capacity) in one or two hours

(roughly (3 · 7 · 24)/1h ≈ 500 time speedup, for a total of roughly 100 · 50 · 40 · 500 = 108

time speedup. Part of this considerable increase in speed is due to Moore’s law and sim-

ply training on faster machines. However the largest factor is due to simpler architectures

(without losing the quality of the induced embeddings) and improved training techniques,

which we will examine in this section.

As with all neural networks, NLMs are trained by computing the training delta at the

output layer, and then making use of the backpropagation algorithm (see § 2.3.5) to assign

credit layer-by-layer backwards in the network to derive the gradients of the loss function

with respect to the model parameters θ. Therefore, in the following sections we will show

the mathematical derivations of the gradients of each loss function with respect to the output

layer, required to initialise the backprop algorithm. Furthermore, since most of the training

advances obtain their efficiency by only manipulating a subset of the output weights, we

will also show how this would translate into code for computing the gradients with respect

to the penultimate layer, which can then be backpropagated in deeper models using the

standard backprop algorithm.
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3.4.3.1 Maximum likelihood

The original formulation of the NPLM defined the output layer as computing the conditional

probability of the target word given the context, P(wt |h), using the softmax function (i.e.

as an energy-based model, [52]). The softmax computes the posterior probability of wt

given h, P(wt |h), using scores (inversely related to the energy function) computed in terms

of the word embeddings:

P(wt |h) =
exp(sθ (wt ,h))∑

w′∈V exp(sθ (w′,h))
(3.4.1)

where sθ (w,h) is a score function which measures the “compatibility” between a word w in

some context h, both represented as vectors in RK for some feature dimension K (typically

50-1000). Scores are exponentiated to ensure that they are positive, and divided by the sum

of (context-dependent) scores for the entire vocabulary to ensure that all probabilities sum

to one.

In order to train this model, the standard approach is to maximise the log-likelihood of

the data under this model by using a gradient-based optimisation method, of which stochas-

tic gradient ascent is almost exclusively used3. Therefore, to train some parameter θ of this

model, we require the gradients of the log-likelihood with respect to θ:

∂

∂θ
log P(wt |h) =

∂

∂θ


����log exp(sθ (wt ,h)) − log

∑
w′∈V

exp(sθ (w′,h))


=
∂

∂θ
sθ (wt ,h)︸         ︷︷         ︸

target word

−
∂

∂θ
log

∑
w′∈V

exp(sθ (w′,h))︸                             ︷︷                             ︸
all words

(3.4.2)

Computing the gradients of the first term is generally straightforward when the score func-

tion is for instance a dot product. For the second, the log that inconveniently precedes the

sum (known as a log-sum-exp) complicates the calculation of the derivative, but it can be

approached using two inverse identities to rewrite the second term into a more convenient

form:

3Alternatively, one may minimise the negative log-likelihood using stochastic gradient descent.
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∂

∂θ
log

∑
w′∈V

exp(sθ (w′,h))

=
1∑

w′∈V exp(sθ (w′,h))︸                       ︷︷                       ︸
constant Zθ (h)

∑
w′∈V

∂

∂θ
exp(sθ (w′,h))︸                 ︷︷                 ︸

∇P

B ∇ log P = 1/P∇P

= 1/Zθ (h)
∑
w′∈V

exp(sθ (w′,h))︸            ︷︷            ︸
P

∂

∂θ
����log exp(sθ (wt ,h))︸                      ︷︷                      ︸

∇ log P

B ∇P = P∇ log P

=
∑
w′∈V

exp(sθ (w′,h))/Zθ (h)
∂

∂θ
sθ (w′,h)

=
∑
w′∈V

Pθ (w′ |h)
∂

∂θ
sθ (w′,h) (3.4.3)

By substituting this into 3.4.2, we get the final expression for the maximum likelihood

gradients as

∂

∂θ
log P(wt |h) =

∂

∂θ
sθ (wt ,h) −

∑
w′∈V

Pθ (w′ |h)
∂

∂θ
sθ (w′,h) (3.4.4)

Note that the contribution from the target word to the total gradient can be obtained by

setting w′ = wt to obtain (1 − Pθ (wt |h)) ∂
∂θ sθ (wt ,h). Likewise, the contribution from each

non-target word only derives from the second term: −Pθ (w′ |h) ∂
∂θ sθ (w′,h). This is also

simply the cross-entropy error with label 1 for the target word and 0 for every other word.

This can be implemented in Python pseudo-code as illustrated in Listing 3.

Listing 3 Maximum likelihood training using the softmax function.
def compute_ml_delta(wt, h):

hidden, output = fprop(h) # fprop(wt,h) == P(wt | h)

err = 1. - output[wt] # err >= 0

Qgrad = hidden

delta = err * Q[wt,:] # compute delta before update

Update(Q[wt,:], err * Qgrad) # Q is ‘output embeddings’

for wneg in vocabulary:

err = 0. - output[wneg] # err <= 0

delta += err * Q[wneg,:]

Update(Q[wneg, :], err * Qgrad)

return delta
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3.4.3.2 Stochastic maximum likelihood

In the case of the full softmax, from 3.4.2 and 3.4.3, we can write the second term of the

gradient of the log-likelihood as an expectation over the model distribution Pθ (w |h):

∂

∂θ
log Pθ (wt |h) =

∂

∂θ
sθ (wt ,h) −

∑
w′∈V

Pθ (w′ |h)
∂

∂θ
sθ (w′,h) (3.4.5)

=
∂

∂θ
sθ (wt ,h) − E

w′∼Pθ (w′ |h)

[
∂

∂θ
sθ (w′,h)

]
(3.4.6)

In other words, if we can easily sample from the model distribution, then we can approx-

imate this gradient using Monte Carlo integration (see § 2.1.3). Unfortunately, sampling

from Pθ (w |h) requires one to compute the entire forward pass to compute all output acti-

vations, which requires O(V ) computations and therefore results in no savings at all over

just doing regular maximum-likelihood learning. However, one may rewrite an expectation

with respect to a distribution P in terms of an expectation with respect to Q,

E
x∼P(x)

[
f (x)

]
=

∑
x

P(x) f (x)

=
∑
x

Q(x)(P(x)/Q(x)) f (x)

= E
x∼Q(x)

[
γ(x) f (x)

]
(3.4.7)

where γ(x) = P(x)/Q(x) are known as the ‘importance weights’. This means that in order

to approximate an average according to a distribution P, one can sample according to a

distribution Q and reweight by P. This is useful in the case where it is hard to sample

from P but where evaluating P(x) is cheap. Unfortunately, that is also not the case, since

evaluating P in our case is expensive. It turns out there is another trick one could employ

in the case where computing the normalised P(x) = p̃(x)/Z is hard, but computing the

unnormalised p̃(x) is easy:

E
x∼P(x)

[
f (x)

]
≈ 1/Γ

i=k∑
xi∼Q(x)

w(xi ) f (xi ) (3.4.8)

where now, γ(x) = p̃(x)/Q(x) and Γ =
∑k

i=1 γ(xi ). This is a biased estimator of 3.4.7, but

one can show that it converges to the true value as k → ∞. By substituting this expression

into 3.4.5, we can obtain a Biased Importance Sampling Estimator of the gradient of the

log-likelihood [56, 68]:
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∂

∂θ
log Pθ (wt |h) =

∂

∂θ
sθ (wt ,h) − E

w′∼Pθ (w′ |h)

∂

∂θ
sθ (w′,h) (3.4.9)

≈
∂

∂θ
sθ (wt ,h) − 1/Γ

k∑
wi∼Q(w)

γ(wi )
∂

∂θ
sθ (wi ,h)

for some proposal distribution Q(w). What this means in practice is that to obtain the

gradient at time step t, given a context-target training pair, one first computes the (analytical)

first term. One then samples k words from the proposal distribution Q, and computes the

weights γ(wi ) = sθ (wi ,h)/Q(wi ) to weight the contribution of the gradients computed over

the sample, and finally sum up all the weights to normalise the weights to sum to 1. This

would yield the gradient for computing one update to the model parameters, as shown by

the Python pseudocode in Listing 4.

Listing 4 Stochastic maximum likelihood training using Biased Importance Sampling.
def compute_bis_delta(wt,h):

hidden = get_hidden(h) # compute fθ (h)
Z = score(wt, h) # normalisation constant

neg_words = []

for i in xrange(k):

wneg = sample_from_proposal()

weight = score(wneg,h) # unnormalised

Z += weight

neg_words.append((wneg, weight))

err = 1.0 - score(wt, h)/Z

Qgrad = hidden

delta = err * Q[wt,:]

Update(Q[wt,:], err * Qgrad)

for (wneg, weight) in neg_words:

err = 0. - weight / Z

delta += err * Q[wneg,:]

Update(Q[wneg,:], err * Qgrad)

return delta

Ideally, the proposal distribution Q should minimize

Q∗ = arg min
Q

E
P(x)

[P(x)/Q(x)] =

∫
X

P(x)2

Q(x)
dx. (3.4.10)

This would yield the minimum-variance estimator. However, this integral is typically hard

to solve in practice and a good substitute is to use the empirical unigram distribution [56].
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Unfortunately, this gradient estimator suffers from high variance during training [56].

Noise-contrastive estimation (discussed in § 3.4.3.3) starts out as a very different formula-

tion, but ends up doing a very similar thing to BIS, without the variance issues.

3.4.3.3 Noise-contrastive estimation (NCE)

Noise-contrastive estimation (NCE) was originally proposed by Gutmann and Hyvärinen

as an alternative to maximum-likelihood learning, and can be understood as “learning by

comparison” [69,70]. Some of these ideas can also be related to work in the whole-sentence

language modeling literature [71]. In NCE, the objective is to frame learning as a model’s

ability to discriminate (or compare or classify) between the actual data and some known

noise distribution. The idea being, if a model can successfully tell if a sample comes from

the data distribution or from some noise distribution it must necessarily have learned prop-

erties of the data in the form of a statistical model. If the noise distribution is sufficiently

non-trivial, then the properties that the model must have learned about the data will become

progressively more fine-grained.

Although NCE was originally introduced for learning marginal density models p(x), it

was subsequently successfully applied as a particularly efficient method for training condi-

tional, discrete neural probabilistic language models that model P(w |h) by Mnih [65]. The

paper by Gutmann and Hyvärinen and the paper by Mnih and Teh use different notation, and

it is not immediately obvious how their formulations are related, so in this section we will

start from the intuition, which leads to the original formulation by Gutmann & Hyvärin-

nen [69], and then do the full derivation to arrive at the formulation used by Mnih [65]. We

start by writing down the original noise-contrastive estimation objective, which posits that a

good model should be able to classify data from noise, in other words we want to maximise

LNCE(θ) = E
w+,h∼Pd

[
log(σ(∆sθ (w+,h)))

]
+ E

w−∼Pn

log(1 − σ(∆sθ (w−,h))), (3.4.11)

where we can see that we are doing logistic regression on a (delta) score computed from the

observed (positive) words drawn from the data distribution Pd (w), versus scores computed

from noise (negative) words w− coming from a noise distribution Pn (w). The delta score

function is defined as the log-odds of the sample under the model distribution and the noise

distribution, i.e.

∆sθ (w,h) = log
Pθ (w |h)
Pn (w)

(3.4.12)

= log Pθ (w |h) − log Pn (w) (3.4.13)

= log p̃θ (w |h) + ch − log Pn (w) (3.4.14)

where we have written the score in terms of the unnormalised distribution p̃θ (w |h) and its

context-dependent normalisation constant ch = log Zθ (h). Note, however, that computing
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ch requires evaluating the full expensive output layer, so one of the key tricks of applying

NCE to train NLMs, is that in [65] the authors set Zθ (h) = 1, i.e. ch = 0, and report that it

does not negatively affect the training in any noticeable way. We therefore follow suit and

drop the constant in the following derivation.

One can now also see that an alternative interpretation to the objective is that we are

trying to maximise the log-odds assigned by the model to data coming from the data distri-

bution, and maximise inverse log-odds (therefore minimise log-odds) assigned by the model

to data from the noise distribution.

At this point, by treating the two classifiers as independent logistic regression models,

we have all that we need to compute the gradients of the cross-entropy with respect to the

model parameters, and hence to train a model using NCE. This is indeed the simplest way to

implement NCE in practice, and what we will use in Listing 5. However, to understand how

this objective function is related to maximum likelihood, we need to derive the gradients.

We will therefore do the full derivation to fill in the missing details presumably due to space

constraints in their paper, to arrive at the NCE equations presented by Mnih and Teh [65].

We start by noting that given the sigmoid function σ(z) = 1/(1 + e−z ), we have that

1 − σ(z) = σ(−z), so we can therefore write the objective as

LNCE(θ) = E
w+,h∼Pd

[
log(σ(∆sθ (w+,h)))

]
+ E

w−∼Pn

logσ(−∆sθ (w−,h))) (3.4.15)

We assume, by design, that noise samples are k times more frequent than data samples

since we will be sampling k times more noise than data. Therefore the delta scores are

∆sθ (w,h) = log p̃θ (w |h)
kPn (w) and we will also multiply the second expectation with k below.

From this point on we will also write the model distribution p̃θ (w |h) as Ph
θ (w) to save space.

Using the definition of the sigmoid function shown above, we can rewrite the sigmoid-delta-

scores for the positive term in 3.4.15 as

σ(∆sθ (w+,h)) =
1

1 + exp−∆sθ (w+,h)
(3.4.16)

=
1

1 + kPn (w+)/Ph
θ (w+)

(3.4.17)

=
Ph
θ (w+)

Ph
θ (w+) + kPn (w+)

(3.4.18)

and likewise for the negative term

σ(−∆sθ (w−,h)) =
kPn (w−)

Ph
θ (w−) + kPn (w−)

(3.4.19)

Now we can substitute this into 3.4.15, to obtain

LNCE(θ) = E
w+,h∼Pd


log *

,

Ph
θ (w+)

Ph
θ (w+) + kPn (w+)

+
-


+ k E

w−∼Pn


log *

,

kPn (w−)
Ph
θ (w−) + kPn (w−)

+
-


.

(3.4.20)
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This is the objective as it is presented in Mnih [65]. We train the model by maximising

the log-likelihoods under both distributions. To do this, we are interested in deriving the

equations for the gradients with respect to a model parameter θ, therefore

∂LNCE

∂θ
=

∂

∂θ
E

w+,h∼Pd


log Ph

θ (w+) − log

Ph
θ (w+) + kPn (w+)︸    ︷︷    ︸

constant





+
∂

∂θ
k E
w−∼Pn


log kPn (w−)︸         ︷︷         ︸

constant

− log

Ph
θ (w−) + kPn (w−)︸    ︷︷    ︸

constant




(3.4.21)

Due to the linearity of the expectation, we can take the derivatives inside the expectations.

Next, we can use the fact that ∂ log f (x)
∂x = 1/ f (x) ∂ f (x)

∂x , and noting that the derivatives with

respect to the constant noise probabilities go to zero:

= E
w+,h∼Pd



∂

∂θ
log Ph

θ (w+) −
1

Ph
θ (w+) + kPn (w+)



∂

∂θ
Ph
θ (w+)︸       ︷︷       ︸
∇P

+0





+ k E
w−∼Pn



0 −
1

Ph
θ (w−) + kPn (w−)



∂

∂θ
Ph
θ (w−)︸       ︷︷       ︸
∇P

+0





(3.4.22)

We can then use the fact that ∇P = P∇ log P to rewrite this as

= E
w+,h∼Pd



∂

∂θ
log Ph

θ (w+) −
Ph
θ (w+)

Ph
θ (w+) + kPn (w+)

∂

∂θ
log Ph

θ (w+)


− k E
w−∼Pn



Ph
θ (w−)

Ph
θ (w−) + kPn (w−)

[
∂

∂θ
log Ph

θ (w−)
]

(3.4.23)

By collecting the common ∂
∂θ log Ph

θ (w+) terms in the first expectation

= E
w+,h∼Pd


*
,
1 −

Ph
θ (w+)

Ph
θ (w+) + kPn (w+)

+
-

∂

∂θ
log Ph

θ (w+)


− k E
w−∼Pn



Ph
θ (w−)

Ph
θ (w−) + kPn (w−)

[
∂

∂θ
log Ph

θ (w−)
]

(3.4.24)
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and then rewriting 1 − P
P+N as N

P+N we arrive at the final formulation

∂LNCE

∂θ
= E

w+,h∼Pd



kPn (w+)
Ph
θ (w+) + kPn (w+)︸                    ︷︷                    ︸

α(w+)

∂

∂θ
log Ph

θ (w+)



− k E
w−∼Pn



Ph
θ (w−)

Ph
θ (w−) + kPn (w−)︸                    ︷︷                    ︸

β (w−)

[
∂

∂θ
log Ph

θ (w−)
]



(3.4.25)

This is the expression for the gradient as it is presented by Mnih [65]. To simplify the

expression, we can write this more compactly by defining the weights on the positive and

negative gradients to be α and β respectively

∂LNCE

∂θ
= E

w+,h∼Pd

[
α(w+)

∂

∂θ
log Ph

θ (w+)
]
− k E

w−,h∼Pn

[
β(w−)

∂

∂θ
log Ph

θ (w−)
]

(3.4.26)

In practice, at each training step, given an observed w+,h, we sample k negative words w−

from the noise distribution, and then compute the gradient as

∂LNCE

∂θ
= α(w+)

∂

∂θ
log Ph

θ (w+) − k
∑

w−∼Pn

β(w−)
∂

∂θ
log Ph

θ (w−). (3.4.27)

The speedup over maximum-likelihood results since we only need to compute these terms

for the (k + 1) words instead of for all V words. Furthermore, by explicitly writing the

expectations in 3.4.25 as weighted sums and collecting like terms, we can also write this

expression as follows:

∂LNCE

∂θ
=

∑
w

α(w)
(
Pd (w) − Ph

θ (w)
) ∂
∂θ

log Ph
θ (w), (3.4.28)

which, as k → ∞ and hence α(w) → 1, becomes the maximum-likelihood gradient (3.4.4)

since the second term drops away:

∂LNCE

∂θ
→

∑
w

(
Pd (w) − Ph

θ (w)
) ∂
∂θ

log Ph
θ (w) (3.4.29)

= E
Pd

[
∂

∂θ
log Pθ (w)

]

︸                  ︷︷                  ︸
ML gradient

− E
Ph
θ

[
∂

∂θ
log Ph

θ (w)
]

︸                  ︷︷                  ︸
0

(3.4.30)

We therefore arrive at the result that a completely different objective (classifying data from

noise), which turns out to be much easier to optimise (as we will discuss below), leads
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to performing the same updates on the model parameters (in the limit) as the original

maximum-likelihood objective.

However, to implement NCE, we find that it is simpler to understand it simply as doing

logistic regression on the delta-scores as defined by 3.4.11. This can be implemented as the

Python pseudo-code illustrated in Listing 5. Note that in this formulation, err is equal to α

for positive words, and β for negative words.

Listing 5 Training with noise-contrastive estimation, implemented as doing logistic regres-

sion on the delta scores log(Pmodel/Pnoise).
def compute_nce_delta(wt,h):

hidden = get_hidden(h)

Qgrad = hidden

delta = zeros(hidden_dim) # zero vector

for i in xrange(k + 1):

if i == 0:

label = 1 # target word

w = wt

else:

label = 0 # noise word

w = sample(Pnoise_pdf)

pn_w = Pnoise_pdf[w] # numerical probability

predict = score(w, hidden, pn_w) # compute sigm(log P_m(w) - log P_n(w))

err = (label - predict) # cross-entropy error

delta += err * Q[w,:] # backprop

Update(Q[w,:], err * Qgrad) # classifier weights

return delta

Due to the similarity of the expression for the NCE gradients to 3.4.9, one might wonder

about the relative merits of each method. In practice, the w(wi ) weights in the importance

sampling objective can have a high variance, and this is related to how “different” the model

distribution P and the proposal distribution Q are. When we sample a value with a small

probability under Q but a large probability under P, the weight w = P(w)/Q(w) can become

very large. In the opposite case it can become very small. This high variance makes learning

very unstable using BIS (since it can propose big, noisy adjustments to the parameters). One

way to overcome this is to sample more and more words, but this makes the method more

expensive. On the other hand, notice that the NCE weights α and β as we defined them,

are bounded between 0 and 1. This tends to make learning much more stable, and indeed

enables training to progress (albeit slower) even when using a sample size of k = 1.
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3.4.3.4 Noise-contrastive rank-loss

In the non-probabilistic ranking language model proposed by Collobert & Weston [13],

the objective is to use a single hidden-layer neural network sθ (x) to score valid, observed

sequences of words x, higher than a corrupted sequence x̃ with some margin m, i.e. the goal

is to minimise

Lrank =
∑
x∈D

∑
w′∈V

max{0,m − sθ (x) + sw
′

θ ( x̃)} (3.4.31)

Here we denote by sw
′

θ ( x̃) the real-valued score output by the neural network for the corrupt

sequence formed from x by replacing a fixed word w (e.g. middle or last) in the sequence

by word w′ (with w′ ∼ Pn (w) and w′ , w).

This is not very efficient for the same reasons that the vanilla softmax is not efficient,

since this objective considers all possible words at each training step. The authors therefore

proposed a stochastic rank loss where at each update they sample one negative word w− ∼

Pn (w) with Pn (w) the unigram distribution, and minimise

LCW = E
w−∼Pn (w)



∑
x∈D

max{0,m − sθ (x) + sw
−

θ ( x̃)}


(3.4.32)

This formulation scales extremely well, and indeed allowed the authors to train one of the

largest scale neural language models (at the time), over all the text of Wikipedia (600 million

words at the time) on standard commodity hardware.

To understand how this objective function works, consider the updates it proposes dur-

ing training by deriving the gradients of the loss with respect to the model parameters θ.

Notice that 3.4.32 is just the standard hinge loss (§ 2.3.2.2):

g(x) = max{0,m − f (x)}, (3.4.33)

with f (x) = sθ (x) − sw
−

θ ( x̃), i.e. LCW = g( f (x)). We can therefore use the chain rule of

differentiation to derive

∂

∂θ
LCW =

∂g

∂ f
∂ f
∂θ

(3.4.34)

=




∂
∂θ (m − f (x)) if (m − f (x)) > 0,

0 otherwise
(3.4.35)

=




∂
∂θ sw

−

θ ( x̃) − ∂
∂θ sθ (x) if sθ (x) − sw

−

θ ( x̃) < m,

0 otherwise.
(3.4.36)

Therefore we see that training proceeds (i.e. gradients are non-zero) while the scoring net-

work scores the valid windows, containing the observed target words, less than a margin of

m higher than windows containing the corrupt targets.
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Figure 3.10: An illustration of the scoring network used by Collobert & Weston [8] to score

observed windows of text against corrupt windows of text (by replacing the blue target word

with a sampled noise word).

3.4.3.5 Noise-contrastive cross-entropy (“Negative sampling”)

Mnih and Teh [65] introduced noise-contrastive estimation (NCE) as an efficient way of

training NLMs (see § 3.4.3.3). NCE can be shown to approximately maximise the log-

probability of the softmax (as we have shown by showing that the NCE gradient tends to

the softmax gradient as the number of noise samples k is increased). While this is a useful

property for training language models, this is not a requirement if the goal is simply to

learn high-quality word embedding features. Mikolov [14] introduced a simplified version

of NCE called negative sampling which can be considered a probabilistic version of the

noise-contrastive rank loss discussed in § 3.4.3.4.

In negative sampling, the goal is for the model to assign a higher probability to observed

samples of (wt ,h) training pairs, compared to draws from a noise distribution Pn (w), i.e.

we want to maximise Pmodel(data) + (1−Pmodel(noise)). Note that both distributions are the

same (model) distribution. If a model succeeds in maximising this objective, it means that

it is simultaneously assigning high probability mass to the observed data and low mass to

the noise data, which means that it must necessarily have learned interesting aspects about

the data distribution.

Specifically, the model distributions are implemented as logistic regression classifiers,

and the goal is to maximise
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LNEG(θ) = E
wt ,h∼Pdata

[
logσ(∆sθ (wt ,h))

]
+

k∑
i=1

E
w−∼Pn

[
1 − σ(∆sθ (w−,h))

]
(3.4.37)

= E
wt ,h∼Pdata

[
logσ(∆sθ (wt ,h))

]
+

k∑
i=1

E
w−∼Pn

[
σ(−∆sθ (w−,h))

]
(3.4.38)

= E
wt ,h∼Pdata

[
logσ(q(wt )> fθ (h)))

]
+

k∑
i=1

E
w−∼Pn

[
σ(−q(w−)> fθ (h)))

]
]

(3.4.39)

where we are writing the objective in terms of the ∆sθ (wt ,h) score to show the similarity

with NCE, although now it is defined as the dot product of the output embeddings Q with

the context vector fθ (h).

This objective is clearly very related to the NCE objective (3.4.11), with the only dif-

ference in how the scoring function ∆sθ (w,h) is defined. In NCE, we make use of the

numerical noise-probabilities, whereas this is dropped in negative sampling.

3.5 A Geometrical Perspective on Word Embedding Models

In this dissertation we are primarily interested in NLMs as unsupervised distributional mod-

els for learning features about words. In order to understand how different NLMs relate to

each other in terms of the features that they learn about words, it is useful to consider how

they are trained. In this section, we will highlight the commonalities between the differ-

ent popular training techniques by geometrically considering their training dynamics. This

analysis applies directly to the most popular log-linear bag-of-words word2vec-type mod-

els that we are most interested in for their feature-learning capabilities, but also acts as

useful geometrical intuition about the training dynamics of nonlinear NLMs.

We start by noting that word embedding vectors trace out a geometrical surface (infor-

mally, a “manifold”) in the learned embedding vector-space. For all popular loss functions

that we have discussed in this chapter and that are trained using SGD on a per-example

basis, one may interpret the loss function as assigning a cost to the current geometrical

structure of the manifold with respect to a new observed training pair.

Furthermore, all loss functions that we have introduced contrast the score of the ob-

served word to scores that the model assigns to a selection of unobserved (contrastive)

words. If we let positive words w+ ∼ P correspond to the distribution of observed target

words, and negative words w− ∼ N to the distribution of contrastive words that were not

observed, then we can write the gradient of the loss at the output (the output delta) as the

contributions resulting from the positive and negative words as

δout = E
w+∼P

[
δout(w+)

]
+ E

w−∼N

[
δout(w−)

]
, (3.5.1)
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where we represent with δout(w+/−) the (scalar) contribution resulting from word w+/− to

the derivative of the loss with respect to the output4. The different training methods that we

looked at particularly differ in how they compute the output deltas, and how they select the

negative wordsN . However, for a simple BOW word2vec-type model, the gradients on the

learned word representations rwh
= R[wh,:], ∀wh ∈ h can be decomposed (after application

of the delta-rule) as

∇rwh
L(wt ,h) = E

w+∼P


δout(w+)︸    ︷︷    ︸

>0

qw+


+ E

w−∼N


δout(w−)︸    ︷︷    ︸

<0

qw−


. (3.5.2)

Notice that these two terms represent directions along which we will update the input word

representations rh that we are trying to learn. Since the delta weights at the outputs are

positive scalar values for positive words and negative scalar values for negative words, this

implies that context words are pulled towards the positive words, and pushed away from the

negative words.

Geometrically, this interaction can be visualised as points in a vector-space connected

by pulling and pushing forces that act on the word vectors as shown in Fig. 3.11. The goal

of the optimisation procedure during training is to move the word embedding point-vectors

around in the negative direction of the gradient of the loss in order to find an equilibrium

geometrical configuration (the embedding manifold) that minimises the expected cost of

the loss function under the training distribution EP(wt ,h)[L(wt ,h)]. In the process, the

gradient tends to zero (i.e. training converges) as the representations for the target-words

w+ ∼ P are balanced with and become more similar to the representations of their observed

context-words wh ∈ h, and vice versa, and the negative words w− ∼ N keep this process

from collapsing to trivial solutions (such as assigning the same vector to all words). There-

fore, during training, the initial spherical manifold spanned by the word embeddings5, as

illustrated in Fig. 3.11, will be contorted according to the frequency of observing the context

words wh with the positive and negative words, resulting in a rich geometrical encoding of

the distributional statistics of the training data.

For nonlinear models, such as the NPLM, this geometrical interpretation should be

viewed more as an intuition, since due to the nonlinearities the push-pull forces do not

correspond to Euclidian distances anymore, but act along curves in a nonlinearly contorted

space.

4For all loss functions we looked at, the functional form of the deltas on positive and negative words are
the same but of opposite signs. For instance, one can show that the log-likelihood of the softmax Pθ (wt |h) =

exp(sθ (wt ,h))/
∑

j exp(sθ (w j ,h)) results after a bit of algebra in δout(w+/−) = ± ∂
∂θ sθ (w+/−,h), etc.

5When we initialise word embeddings by sampling from an isotropical Gaussian distribution.
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Figure 3.11: The gradients on the word embeddings when training shallow word embedding

models can be interpreted as pushing and pulling forces acting on the input word embed-

ding point-vectors rh and on the output word embeddings qw (shown here as r (h)/q(w)

for readability). The average force magnitudes δ(w) over a training set are proportional

to the frequency of observing the word-pairs together during training. The goal of train-

ing is to balance these forces, in order to reach an equilibrium geometrical configuration,

representing a rich geometrical encoding of the distributional statistics in the training data.

3.6 Why Do Similar Words Have Similar Embeddings?

We are now in a position to better understand the training dynamics of neural language

models, and particularly how these dynamics produce informative embedding features for

words. To start, consider the training data displayed in Fig. 3.12 showing hypothetical

sentences from a training set that share the same context words. This data illustrates the

Distributional Hypothesis, which states that words that are related occur in similar contexts

(see § 3.2).

For the popular training objectives, we have seen that the gradients of the objective

functions can be interpreted as exerting push-pull forces on the word embedding point-

vectors. Conversely, all popular objective functions can be shown to be proportional to the

distance between the target word embeddings and the context-vector fθ (h) computed by

the network, i.e. L(wt ,h) ∝ dist(rwt , fθ (h)). In order to minimize this function over the
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Figure 3.12: An example of several training fragments from a training corpus that share the

same context words (in red) with different target words (in blue curves).

training data, we therefore require that

L ∝
∑

(wt ,h)∈D

dist(rwt , fθ (h))

∝
∑
h

∑
wt |h

dist(rwt , fθ (h))

is minimised, where we have simply rewritten the sum over the training data to be the sum

over the data, ordered by context. Therefore, for the same context h, we want to minimize

the distance of all word vectors rwt that frequently co-occur with that context, to the same

fixed point Ewt ,h∼Pd
[ fθ (h)]. By the distributional hypothesis, these words are all related,

hence related words cluster together.

An alternative interpretation is that the dynamics of the learning process force distri-

butionally similar words into the same regions of the embedding space, so that the same

mapping fθ (h) maps a fixed context h close to or assigns a high score to all target words

wt observed in the training distribution. I.e. in the above example, in order for the network

to assign a high score to France, Denmark, . . . given the same fixed context, it necessarily

implies that the learned vector representations for qFrance and qDenmark etc. need to be close.

Through this process of nudging word embeddings a little bit towards each word’s embed-

ding that it co-occurs with, the vectors end up representing a rich amount of distributional

information geometrically in terms of the distances between the word embeddings in the

embedded space.

This might also explain why the (inverted) skipgram architecture is empirically found

to learn better features than other models when we train over more data [58]. In context-

to-target models (e.g. CBOW), the updates for each context word is obtained by smoothing

over all context words (by computing the delta as the difference between the target word and

the smoothed context vector). This discards a lot of distributional information. However, in

the skip-gram, each target word is explicitly updated towards each context-word vector.

The smoothing might help when we are training with small datasets, but it also reduces

the information in the training data by acting as a regulariser. However, as the amount of

data increases there is an implicit smoothing effect, and skipgram-type models can evidently
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benefit from the richer information that exists by considering each (wt ,wh ) training-pair

individually (where wh is a context-word).

3.7 Conclusion

This chapter provided an in-depth overview of all popular neural network language models

and the methods for training them. NLMs were shown to compress high-dimensional co-

occurrence observations of words and the contexts they appear in, into a low-dimensional

space where distance between the compressed representations (embeddings) is proportional

to the frequency of observing these input and output units together in the training data. How

context-words are selected has a big impact on the types of co-occurence relationships that

the model encodes. The loss function has a big impact on the speed with which a model can

be trained. This chapter provided a detailed look at these different components.

Furthermore, the training dynamics of word embedding models were discussed in terms

of a novel geometrical framework which enables one to understand these models as learn-

ing useful features about words by balancing pushing and pulling forces acting on the word

point-vectors during training, in order to match the observed distributional statistics of nat-

ural language in the training data.



Chapter 4

Improved Learning with
Hierarchical Output Layers

In the standard neural language model (NLM), the goal is to predict the next word w given

its context h according to the softmax (Gibbs) distribution (see § 3.3.1)

P(w |h) = exp(sθ (w,h))/Zθ (h). (4.0.1)

Training and testing scales badly due to the standard output softmax layer requiring a

context-dependent normalisation constant Zθ (h) =
∑

w′∈V exp sθ (w′,h), sometimes called

the partition function, which depends on the current model parameters θ (t ) (and hence can-

not simply be computed once during training and stored), and therefore needs to sum over

the entire vocabulary during each training step and each testing step.

This chapter provides an in-depth discussion of a more scalable version of the softmax,

called the hierarchical softmax [53]. Based on the theoretical insight gained, we propose

two methods for improving training of NLMs using the hierarchical softmax.

The hierarchical softmax borrows an idea from class-based language models [42] (§ 2.4.2.1),

and partitions words into classes. Instead of summing over the entire vocababulary at each

training step, we can then rewrite P(w |h) as a sum over the much smaller individual classes.

Here an important consideration is how to partition the vocabulary into a class structure, and

for that the main contribution of the first part of this chapter is that we propose and evaluate

an efficient O(N log N ) algorithm called SimTree (§ 4.2), which constucts a tree structure

in order to maximise the expected model likelihood (to a local maximum). The algorithm

is fast to run in practice and our evaluations show that the model learns useful semantic

clusterings, and that the tree structure leads to a large improvement in the perplexity that

the model achieves in a language modelling task.

In the second part of this chapter, we hypothesise that training gradients in a tree-

structured output layer get progressively more noisy towards the root. Based on this hy-

pothesis we propose a simple technique for improved feature-learning called subsampled

63
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hierarchical softmax (§ 4.3). The idea is to discard nodes in the tree during training with a

probability inversely proportional to their depth in the tree (i.e. deeper nodes are more likely

to be retained). Through experimental analysis we verify the hypothesis and show that this

technique both speeds up training and leads to higher quality word embeddings.

The work in the first part of this chapter has been submitted to the IEEE Transactions

on Neural Networks and Learning Systems.

4.1 Hierarchical Softmax (HS)

The hierarchical version of the softmax was introduced by Morin and Bengio [53]. In that

work, the authors proposed to structure the tree according to the WordNet lexical resource,

however it was not found to work very well. Mnih and Hinton [55] evaluated several data-

driven clustering techniques for learning the tree structure, and showed that the structure of

the tree has a big impact on the model quality. However, their approach involved disjointly

pretraining word embeddings, running a clustering algorithm on the pretrained embeddings,

and then retraining the model. In follow-up work Mnih and Teh [72] learn a tree level-by-

level using a heuristic lookahead, however they still use a three-step bootstrapping process

as opposed to fully online as in our case. Several other non-neural network based studies

have also looked at using tree-based classifiers with perhaps the most similar to our work

being the recently proposed LOM-tree method [73]. This was developed roughly in parallel

to our work, but appears to be a very competitive alternative to our method. In future work

we will compare the two methods head-to-head.

In this section, we introduce an online algorithm for jointly training the model parame-

ters and learning the tree structure. We first present a detailed novel theoretical analysis of

the most popular type of HS which uses a binary tree. Based on the analysis, we develop

a clustering criterion for optimising tree structure for model likelihood, and integrate this

within the SimTree algorithm. Finally, we present qualitatitve and quantitative evaluations

of the proposed algorithm.

4.1.1 Coarse-to-fine elimination of words for speed savings

Due to the sum in the partition function, the softmax (4.0.1) can be seen as computing

the probability of a target word by comparing it to (normalising by) the probability mass

assigned to all potential alternatives. The softmax function over V words, therefore, indis-

criminately considers all V words as possible next words when evaluating P(w |h). Yet,

language has sequential structure (which is exactly what we are trying to model), and cer-

tain words are certainly more likely in certain contexts, while others are less likely or even

almost certainly improbable. One could obtain significant computational savings by only

considering groups of the most likely words in certain contexts.
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Figure 4.1: Graphical model illustrating the probabilistic dependencies between context h,

class ci and target word wi variables when we represent P(wt |h) as a marginalisation over

latent class variables ci in a class-based language model.

More generally, in order to compute the probability P(w |h), in the general case one

needs to normalise over all w ∈ V alternatives. However, one can make use of the general

sum rule of probability (§ 2.1.1) to write

P(w |h) =
∑
i

P(w,ci |h) =
∑
i

P(w |ci ,h)P(ci |h). (4.1.1)

In other words, we write the conditional distribution in terms of a marginalisation over a

latent (unobserved) class variable ci which depends on the context h.

If P(w |ci ,h) > 0 for all i (i.e. each word can potentially belong to all classes), then we

do not save any computations (since the marginalisation still sums over all V words, albeit

one class at a time). However, if we know or decide that words can belong to only K classes,

and if the M total classes are roughly balanced with V/M words per class, then we can

disregard all classes cj for which P(cj |h) = 0, which reduces the calculations to O(K M)

for roughly O(V K/M) speedup over computing the full softmax. The “sweet spot” occurs

when words belong only to K = 1 class and total classes M =
√

V which yields O(
√

V )

speedup. Visually, this can be interpreted as structuring the vocabulary into a two-layer tree,

and calculating P(w |h) by traversing a path from the root to class node ci ∈ c(h), summing

(normalising) over only the subset of words in each class ci (see Fig. 4.1). By furthermore

grouping classes into meta-classes and introducing depth (visually one could think of this

in the form of a multi-layer tree) one could push down the computational cost to O(logb V )

for b classes at each level of a balanced binary tree (see Fig. 4.2).

The hierarchical softmax exploits this property by breaking up the calculation of the

full softmax objective P(w |h) into a tree structure to speed up its evaluation. Additionally,

by structuring the calculations into a tree structure we can also aim to make the prediction

problem somewhat easier by ordering the computations along a path that progressively con-
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Figure 4.2: Illustration of the hierarchical softmax output layer. Note that the layer can be

visualised as an inverted tree structure rooted at the penultimate layer, where the goal is to

predict the intermediate left or right branching steps on the path from the root to a target

word wt .

siders more (semantically) fine-grained groups of words in a coarse-to-fine (easy to hard)

hierarchy of predictions.

In this work, we consider the most popular case, where the tree is binary, i.e. b = 2, with

V − 1 nodes (classes) defined over V words. For a balanced binary tree, this implies that

at each branching step down the tree we are eliminating on average half of the (remaining)

words that the model needs to consider, which yields a computational time logarithmic in

the number of words in the vocabulary on average, or an exponential speed-up compared to

evaluating the full softmax objective. For example, a vocabulary of V = 104 words can be

processed using only 14 evaluations, V = 105 requires 17 and for V = 106 only 20.

4.1.2 The HS objective

The hierarchical softmax defines the language modelling objective

P(next word = w | previous words = h)

in terms of a sequence of predictions over groups of words. Each prediction considers a

smaller set of words, and models the probability that w is contained in that class of words.

As was mentioned in the previous section, it is useful to think of this process as traversing

a tree, where the root node considers all words, and each child node considers some finer-

grained partitioning of the vocabulary.

In the case of a binary tree, each node can be seen as a binary classifier that pre-

dicts whether the target word is contained in its left (label=0) or right (label=1) subtree.
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Each word w (leaf node in the tree) can therefore be represented by a unique bit vec-

tor L(w) = {l1, l2, · · · , l |L(w) | } representing the concatenated sequence of left-right (0/1)

branching decisions required to reach w from the root node.

Given these definitions, we define the binary Hierarchical Softmax objective as fol-

lows

P(w |h) =

|L(w) |−1∏
i=1

P(li |h). (4.1.2)

where i = 1 is the root node. In this formulation, P(li |h) represents a branching decision

made at the i-th level of the tree about whether w is contained in the left (P(li = 0|h)) or

right (P(li = 1|h)) subtree. This choice is arbitrary, as exchanging labels merely implies

mirroring the tree structure.

Since P(li = 0|h) + P(li = 1|h) = 1, it is easy to show that P(w |h) defines a properly

normalised probability distribution over all words using the following informal argument

by structural induction over the tree, and referring to the example tree below:
Node 0
ρ0 = 1

Leaf w3

P(w3) = ρ0P(l0 = 1)

Node 1
ρ1 = ρ0P(l0 = 0)

Leaf w2

P(w2) = ρ1P(l1 = 1)

Leaf w1

P(w1) = ρ1P(l1 = 0)

Consider the base case where we have a tree with only one root node and two leaf

nodes. Since branching decisions at each node must sum to one, it is easy to see that the

probabilities at the leaf nodes sum to one (by definition). By applying this logic recursively,

dividing at each node i in the tree the remaining probability mass ρi received from its

parent node j according to the branching probabilities P(l j ), it is relatively straightforward

to show that indeed the sum of all the residual leaf node probabilities must sum to one, i.e.∑
wi ∈V p(wi |h) = 1 and hence 4.1.2 defines a properly normalised probability distribution

over all words.

4.1.3 Training the hierarchical softmax

For the binary HS, the most common choice is to parametrise the right-branching probabil-

ity as:

P(li = 1|h) = σ(q>i rh + bi ) (4.1.3)
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where σ(z) = 1/(1 + e−z ) is the logistic function and rh = fθ (h) is the network representa-

tion for the context words h. This can be interpreted as performing logistic regression on the

left/right-branching label, using a learned feature vector qi 1 and bias weight bi for an inter-

nal node i of the tree. Note that the left-branching probability P(li = 0|h) = 1−P(li = 1|h).

Since P(li = 0|h)+P(li = 1|h) = 1, we can use the fact that 1−σ(z) = 1−1/(1+exp(−z)) =

σ(−z) to rewrite both probabilities compactly as

P(li |h) = σ(±[q>i rh + bi]) (4.1.4)

where we write a positive sign for right-branching labels (P(li = 1|h)), and a minus sign

for left-branching labels.

Node embeddings qi and word embeddings r j are then jointly updated during training

to maximise total model likelihood over a training set (given a tree structure). However, it is

important to keep in mind that the tree structure and model parameters influence each other

in terms of the model likelihood we are trying to maximise (and hence the probabilities we

are trying to compute). We will consider this interaction in more detail in the following

sections, but for now we will derive the training update equations assuming a given tree

structure defined by L(w).

As with all neural networks, training consists of two phases (see Fig. 4.3): Given a

word-context training pair (wt ,h) ,

• all activations are forward-propagated through the network and through the relevant

nodes on the path L(wt ) to the observed target word wt (fprop), then

• the error gradients are computed at the output and the deltas are back-propagated

along the same path, updating parameters as we go (bprop)).

We treat each node on the path as a logistic regression classifier, and compute its cross-

entropy error with respect to the (given) correct path L(wt ) (i.e. predictions on a path reduce

to a sequence of independent binary classifications).

Specifically, we train the model by maximising the log-likelihood L (not to be confused

with the path L(w)) on a dataset using stochastic gradient ascent, where at training step t,

1Due to the dot product, qi is necessarily of the same dimensionality as the word embeddings, r j . Although
it is possible to define an arbitrary scoring function other than the dot product, this is the only one used in the
literature.
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Figure 4.3: The binary hierarchical softmax predicts P(wt |h) as the product of the indi-

vidual classifier probabilities on the path L(wt ). The training delta on the hidden layer

is computed by summing the individual deltas backwards along the same path (shown in

dashed green).

given an observed word wt in context h, from 4.1.2:

L(wt ,h) = log P(wt |h) (4.1.5)

= log
L(wt )−1∏

i=1

P(li |h) (4.1.6)

=

L(wt )−1∑
i=1

log P(li |h) (4.1.7)

=

L(wt )−1∑
i=1

logσ(±zi ) (4.1.8)

where we have defined zi = q>i rh + bi for the rest of this discussion.

In order to do gradient-based training, we take the partial derivative of L for each clas-

sifier on the path i ∈ L(wt ) with respect to the output layer z, where we see that the gradient

decomposes over the path as ∂L
∂z , δout =

∑L(wt )−1
i=1 δout(zi ), where the contribution from

each classifier on the path can be expressed as

δout(zi ) ,
∂L(wt ,h)

∂zi

=
∂

∂zi
logσ(±zi ) B

∂

∂z
log f (z) =

1
f (z)

f ′(z)

=
����σ(±zi )
����σ(±zi )

(1 − σ(±zi ))
∂

∂zi
(±zi ) B

∂

∂z
σ( f (z)) = σ( f (z))(1 − σ( f (z)))

∂ f (z)
∂z

= (1 − σ(±zi ))
∂

∂zi
(±zi ) (4.1.9)
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Notice that the gradient is defined for ±zi . Therefore, for positive (right-branching) labels

it becomes (1 − σ(zi )))(+1) and for negative (left branching) labels recall that σ(−zi ) =

1 − σ(zi ), and therefore the gradient becomes (1 − (1 − σ(zi )))(−1) = 0 − σ(zi ), which is

just the cross-entropy error (§ 2.3.2.3).

For the node parameters qi , we can substitute this error into the backprop delta-rule to

obtain the deltas on the classifier weights qi as

δqi = (1 − σ(±zi ))︸          ︷︷          ︸
scalar error

· rh︸︷︷︸
direction

B zi = q>i rh + bi

where again rh = fθ (h) are the activations on the penultimate layer.

Since we pass error gradients up the tree (Fig. 4.3), we see that during stochastic gradi-

ent descent training each node i on the path to the target word wt will receive the following

updates (η is the learning rate):

q(T )
i ← q(T−1)

i + ηδqi (wt ,h) (4.1.10)

and over all training cases wt ,h ∈ D, we can summarise the delta for a node i as the

contributions resulting from all its children nodes wt ∈ child(i) that appeared as targets

during training

δqi =
∑

wt ,h∈D

(1 − σ(±zi )) · rh , s.t . wt ∈ child(i) (4.1.11)

where

In order for the HS to assign a high likelihood to an observed word wt according to 4.1.2,

we require that the individual P(li |h) classifiers along the given path L(wt ) assign a high

probability to each branching decision, to ensure that the product of these probabilities will

also be high. Since each P(li |h) ∝ q>i rh , to ensure a high likelihood we require that the

dot product of the node feature vectors qi with rh be large (positive or negative). This is

indeed shown by qi’s update equation (4.1.10), which indicates that qi’s are updated in the

directions of the context-vectors in which their children leaf nodes (target words) appear,

i.e. to be more similar to the context vectors, in turn yielding a larger dot product.

Without loss of generality, let us consider a bigram model P(wt |w j ), i.e. where rh =

fθ (h) = r j . Now, it is easy to see that a large dot product q>i r j requires that the qi on the

path to wt be “close” to the embedding for the context word r j . In order to ensure that for

some context word w j , P(wt |w j ) is high, we therefore require qi in the path L(wt ) to have

a large dot product with all context-words with which wt is likely to co-occur in the training

set (i.e. qi will be updated to be similar to their embeddings).



CHAPTER 4. IMPROVED LEARNING WITH HIERARCHICAL OUTPUT LAYERS 71

Therefore: qi converges to the weighted centroid (average) of the context-vectors in

which its children leaf or target-words appear. The weights in this weighted average are

defined by the frequencies of observing each child word (leaf node) during training.

Our main insight here is that, given a binary HS tree structure, in order to maximise

likelihood under a training distribution P(w,h), the optimal values that each node feature

vector qi can obtain after training can be stated in terms of a difference of expectations, that

we will call the Hierarchical Softmax Equilibrium condition:

qi
optimal

= E
wt ,h∼P(w,h)

[
1[wt ∈ right-child(i)] · rh − 1[wt ∈ left-child(i)] · rh

]
. (4.1.13)

This equation follows from the updates defined in 4.1.10 in order to minimise predicted

scores (dot products) for words in a node’s left branch and maximise scores for words in

its right branch. The expectation arises since each respective update is made by sampling a

(wt ,h) training pair from the training distribution.

Intuitively, this means that in order to best predict large positive scores (right branching

decisions) for words in its right branch, and large negative scores (left branching decisions)

for words in its left branch, qi should compromise between (geometrically: move towards

and away from) the observed context-vectors of the two branches, proportionally to how

frequently words in each branch is observed in the training data.

4.1.5 Optimal tree structure: Speed vs likelihood

A balanced b-ary tree provides on average an O(logb V ) path length |L(w) | per word,

which, assuming uniform word frequency, means the expected empirical cost of travers-

ing the tree will be
∑V

i P(wi ) |L(wi ) | = 1/V
∑V

i O(logb V ) = O(logb V ).

To speed up evaluation, one wants to minimise the expected empirical cost of traversing

the tree. Since word frequency is highly non-uniform, one may achieve this by structuring

the tree such that more frequent words have a shorter path length. In information theory this

principle of encoding more frequent symbols using a shorter code is called Huffman Cod-

ing [74], and the tree corresponding to this principle is called a Huffman tree. Indeed, it is

the speed-optimal way of structuring the tree (i.e. it minimises expected empirical traversal

cost, EP(w,h)
[
|L(w) |

]
), but for reasons we will discuss below, this is not the likelihood-

optimal way of structuring the tree. The likelihood-optimal tree structure aims to maximise

expected model likelihood L with respect to L(w) (where model parameters θ are consid-
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ered fixed), i.e maxL(w) L(θ,L(w)) for

L(θ,L(w)) = E
(wt ,h)∼Pempirical (w,h)

[PHS (wt |h)]

= E
(wt ,h)∼Pempirical (w,h)



L(wt )−1∏
i=1

P(li |h)


(4.1.14)

=
∑

(wt ,h)∼Pempirical (w,h)

P(wt ,h)
L(wt )−1∏

i=1

P(li |h)

Let us now consider how the tree structure impacts the ability of the model to achieve

high conditional likelihoods (and hence low perplexities). Note that the qi parameters are

shared between words. This creates a dependency between tree structure L(w) and node

parameters qi with respect to expected model likelihood, as can be seen from 4.1.14.

Intuitively, to construct a likelihood-optimal tree, we want words which are roughly

equally likely in the same contexts to be in the same branch of the tree, since this makes

it easier for the classifiers at each node to predict the next words. This can be seen since,

during prediction, each branching decision eliminates one subset of the vocabulary, and

ideally we want to be able to eliminate the least likely words at each step down the tree (i.e.

move towards sub-groups of higher conditional likelihood). This implies that words should

cluster in the tree in order to balance their empirical conditional likelihood in the data. The

structure of the optimal tree should therefore be strongly influenced by the empirical distri-

bution P(w,h). We will refer to this as the likelihood-optimal principle for constructing

an HS tree.

Equally important, as we have shown, during training qi converges to the expected

centroid of its children’s context vectors, but as 4.1.10 and 4.1.13 show, with a non-optimal

tree, for a common context h, qi will be updated towards rh for observed wt ,h in its right

branch, but at the same time away from rh for observed wt ,h appearing in its left branch.

This is clearly sub-optimal and will negatively impact the convergence of the qi parameters

during training.

Therefore, in order for the HS equilibrium (4.1.13) to converge, it needs to work in

conjunction with a tree structure conforming to the likelihood-optimal principle. How-

ever, since tree structure L(w) is unknown, this suggests a alternating-optimisation-type

algorithm for learning a likelihood-optimal tree structure jointly with the word and node

embeddings, which we present and evaluate in the next section.

4.2 SimTree: An iterative, O(N log N ) algorithm for learning a
likelihood-optimal tree structure during training

As the HS Equilibrium (4.1.13) suggests, in the likelihood-optimal setting, we seek a tree

structure that recursively partitions the vocabulary according to P(w |h) such that words that
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Figure 4.4: For a binary HS using logistic regression classifiers, the decision boundary for

predicting left- or right-branching labels lies at q>rh + bi = 0.

are conditionally more likely given some h should appear in a node’s right branch (this in-

creases the individual P(li |h) and hence the total product of probabilities for P(w |h)), and

likewise words that are conditionally less likely should appear in its left branch. Further-

more, in the binary formulation, 4.1.4, note that the decision boundary of the left/right deci-

sion for a target-word context pair wt ,h under the sigmoid function lies at z = q>i rh+bi = 0.

See Fig. 4.4.

Therefore, for a current estimate of each node’s feature vector qi , we can define a recur-

sive likelihood-optimal clustering criterion based on the sign of z:

∀qi we want



q>i h̃ j + bi ≤ 0 ∀ w j ∈ left-child(i)

q>i h̃k + bi > 0 ∀ wk ∈ right-child(i).
(4.2.1)

where h̃ j = Ew j ,h j∼P(w,h)[h j ] is the empirical average context vector in which word w j is

observed (to make the distinction clear). We recursively divide up the words that a root node

is responsible for predicting based on the sign of the score that the current node parameters

would have assigned these words. We therefore want to cluster words such that the signs

of their predicted scores are balanced between the branches, as illustrated in Fig. 4.5. This

is an iterative procedure, however we will show that one iteration can be performed in

O(N log N ) average time for N nodes by taking inspiration from the top-down quicksort

algorithm [75].

The computational problem clearly lies in reliably estimating h̃, since considering all the

(exponentially many) possible contexts makes this an intractible task in general. However,

we can make two approximations:
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Figure 4.5: An illustration of how the SimTree algorithm partitions words to balance the

expected conditional likelihoods in the two subtrees. The red signs refer to the sign of the

expected score of word wi with the feature vector for node q0, indicating that the result of

the clustering is that words in each branch have the same sign.

• As an approximation, we can view the current state of the target-word embeddings

during training as summarising the information of its context-vectors, since each out-

put embedding converges to the centroid of its context-vectors (4.1.10), and by clus-

tering with qi instead of h̃i should provide a proxy for clustering the vocabulary ac-

cording to P(w |h). This would roughly correspond to an online version of the offline

algorithm proposed by [55].

• As a better approximation, but at the expense of using extra space proportional to

O(V K ) for K-dimensional embeddings, we can store a running average of the context-

vectors observed for each target word and recluster based on this. Given a (V × K )

matrix H initialised to 0’s after each reclustering, for each observed (wt ,h) pair at

time step T during training, we update

H[wt ,:] = (TH[wt ,:] + fθ (h))/(1 + T ), (4.2.2)

where fθ (h) is the activations on the hidden layer for the input context words in the

context h2. This ensures at each step T that H[wt ,:] = E(wt ,h)∼Pd (w,h)[ fθ (h)]. How-

ever, in practice, since the network parameters are updated during training, an expo-
2Note that for a stream of T digits {st }Tt=0, computing the arithmetic average at time T , aT = 1/T

∑T
i=0 si

naively requires O(T ) storage. However, aT can be computed incrementally using only O(1) extra storage as
aT = (TaT−1 + sT )/(T + 1).
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nential average works better since it favours a more recent state of the parameters,

i.e

H[wt ,:] = (0.9H[wt ,:] + 0.1 fθ (h)). (4.2.3)

Furthermore, when we change the tree structure during training, we also change the

target words that a tree node is responsible for predicting. This means that the old q’s may

no longer be useful, but will receive big gradients as training resumes3 to move towards

the new expected centroid of the context-vectors of the new subset of words for which it is

responsible.

After changing tree structure, a reasonable approach would be to initialise new q’s to

be the centroids of their new children embeddings (corresponding to a k-means type max-

imisation step). However, a better approach would be to collect counts during training of

P(w,h) and after reclustering, use these to weight the contribution from each target word’s

observed context-vectors. If we keep and update H, then this simply corresponds to:

qi =
1
Z



∑
j ∈right-child(i)

n j h̃ j −
∑

k ∈left-child(i)

nk h̃k


, (4.2.4)

where Z =
∑

i ni is the normalisation constant required to make the subsets of weights in

the two branches sum to 1. In other words, initialise qi according to an approximation of

the HS Equilibrium (4.1.13). This is an approximation since we are using the empirical

data distribution observed over T time steps to approximate the true data distribution.

The algorithm for SimTree, shown in Algorithm 1, incorporates these ideas within an

alternating-maximisation framework to construct an approximate likelihood-optimal tree by

alternating between an training-step (training model parameters given a fixed tree structure,

and a reclustering step (reclustering the tree according to 4.2.1) to change tree structure

to maximise expected likelihood given the current parameters. Node parameters are then

re-initialised based on 4.2.4 before training is resumed.

Listing 6 Quicksort algorithm.
def quicksort(arr, i, j):

if i < j:

mid = partition(arr, i, j) # inplace

quicksort(arr, i, mid - 1)

quicksort(arr, mid, j)

An efficient top-down algorithm is employed similar to quicksort for the partitioning

step. Recall that quicksort is a divide-and-conquer inplace sorting algorithm with a simple

recursive definition, shown in Listing 6. Note that partition(arr, i, j) is an efficient

3Since it will be making bad predictions causing the error scalar weights to be high in 4.1.9.
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O(N ) subroutine which returns the index mid, which maintains the loop invariant such

that for all i < mid, arr[i] < arr[mid], and for all j ≥ mid, arr[j] ≥ arr[mid].

We exploit this idea, but add two new ideas:

1. during each recursive call we construct and link in a new branch of the total tree that

looks at a subset of the vocabulary, starting from the root node which partitions all

words; and

2. we replace the condition in the loop invariant to balance the signs of the array entries

(scores) for words to the left and right of mid. See Listing 7.

Listing 7 An implementation of the modified partition step which balances the signs of

scores to the left and right of mid.
def partition(scores, left, right):

if left >= right: return right

else:

i = left;

j = right;

while (i < j):

while (i < j) and scores[i] < 0: i += 1

while (j > i) and scores[j] >= 0: j -= 1

if (i < j): SwapVocab(i - 1, j + 1)

if (i == left or j == right): # balanced subtrees when scores are tied

mid = left + (right - left + 1)/2

else:

mid = i

return mid

Putting it all together, SimTree works as follows:

Learn Parameters:: Clear H. Keep tree structure fixed (starting from random) and train

word and node embeddings on a subset of the data for T steps. Update H for each observed

context vector according to 4.2.3, and keep counts nwt for the number of times wt has been

observed.

Restructure Tree:: Keep parameters fixed and restructure the tree using 4.2.1 as clus-

tering criterion:

1. The algorithm performs a top-down clustering of the vocabulary, starting at the root

node (parentId=0) and considering the entire vocabulary (left=0, right=V − 1).

2. All nodes are initialised randomly. Let i be the current parentId, starting at the root

node i = 0, and incremented as new nodes are recursively created in the tree. Given
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the current estimate of qi , it then computes a (right - left)-length array (scores)

of the z-values estimated for each target word, i.e. the dot product of each target

word’s expected context-vectors (in H) with qi , plus the bias.

3. scores is passed to PartitionSimTree() which computes the partitioning bound-

ary mid by shuffling the vocabulary and their respective embeddings such that for

all left ≤ i < mid, and all mid ≤ j < right, scores[i] < scores[mid] and

scores[ j] ≥ scores[mid].

4. Next, qi is re-initialised according to the approximate HS Equilibrium (4.2.4).

5. The algorithm then recursively continues down each subtree, linking each new sub-

tree root into the current parent node.

The high-level algorithm is given in Algorithm 1, and the details of the clustering sub-

routine is given in Listing 8. The output is a V -length array of pointers to nodes for each

word containing its path down the tree, and its bit vector of codes L(w) which become the

training labels for the node classifiers during training the HS.

Algorithm 1 SimTree training algorithm for jointly learning word and node embeddings

and the tree structure for the HS.
1: function SimTree

2: while Not converged do
3: Learn θ: . Fix tree, learn model parameters

4: for {(wt ,h)}T
t=1 do

5: θ (t ) ← θ (t−1) +
∂L(wt ,h)

∂θ . Train on subset of dataset.

6: nwt += 1

7: H[wt ,:] ← (0.1rh + 0.9H[wt ,:]) . Running exponential average.

8: end for
9: Recluster L(w): . Fix parameters, learn tree

10: cluster_tree()

11: Reset nwt and H
12: end while
13: end function

4.2.1 Qualitative experiments

4.2.1.1 Reduced dataset

As a qualitative tool for inspecting the types of clusterings that the SimTree algorithm can

learn, we created a toy dataset from the 12 million word AP News dataset [68] by removing
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Listing 8 Top-down algorithm for constructing a binary HS tree in data structure V by

recursively partitioning the vocabulary according to a word’s score with its parent node,

computed using compute_scores().
def cluster_tree(node, parent, path, code, pos, left, right):

if node == None:

node = Node()

if left >= right:

V[right] = node

node.id = right

node.code = code[:]

node.path = path + [right]

else:

compute_scores(scores, left, right, parent)

mid = partition(scores, left, right)

initialise_q(parent, left, mid, right)

node.id = parent

path[pos] = parent

code[pos] = 0 # traverse left

node.left = cluster_tree(node.left, parent, path, code, pos+1, left, mid-1)

code[pos] = 1 # traverse right

node.right = cluster_tree(node.right, parent, path, code, pos+1, mid, right)

return node

all words that appear fewer than 2500 times in the dataset. This yields a vocabulary of only

489 words (the original vocabulary is 17,964).

We ran the SimTree algorithm for one training epoch on the toy data by filtering out

training data that do not contain at least one word from the reduced vocabulary, with all

other words replaced by the unknown (UNK) symbol. The SimTree algorithm was invoked

once every 1/8-th of the total training word. Four invocations were found to be enough to

reach convergence and running for more iterations did not change much. The learning rate

was set to 0.1, and linearly decreased in the number of training cases.

4.2.1.2 Trees learned

As a qualitative evaluation of the types of clusterings that SimTree can learn, one can visu-

alise the trees to see which words the model clusters closer together. The resulting tree over

the 489 words is still somewhat unwieldy for display purposes, so we filtered out the paths

for a carefully chosen selection of words, namely proper names washington & new_york,

counting words two, three, five, million, billion, modals could, would, must, will, and days

of the week wednesday, friday, monday. The reduced trees were then visualised using

graphviz into tree diagrams. Internal nodes represent the internal identifier of the node (0
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Figure 4.6: A random tree structure.

Cluster Code prefix Words

1 000000 a, ”, the, of, #n
2 0000011 to, said, on, for, in, about, COLON, PERIOD
3 000010101 will, would, could, one, three, #an, at_least, also, after
4 00001011010010 president, election, military, association, political, saying, make, trying
5 000010110100110 countries, china, american, are, both, only

Table 4.1: Word clusters learned by training the SimTree algorithm on the reduced vocabu-

lary AP News dataset.

through V − 2). Note that nodes on the paths to the visualised words which are not relevant

are not shown.

For comparison, we generated a random tree structure for the same words (Fig. 4.6).

As expected, there is no structure to the clustering and the tree is roughly balanced. For

comparison, we also generated a Huffman tree structure, based on the unigram probabilities

of the words P(w) (Fig. 4.7). The most distinctive property of a Huffman tree is that more

frequent words cluster near the root. The visualisation for the SimTree is displayed in

Fig. 4.8. The tree does not optimise tree structure for word frequency, and we see that the

tree appears more balanced than the Huffman tree, with related words from the reduced set

of words mostly clustering together as we would expect.

4.2.1.3 Codes learned

Another way of inspecting the learned clusters is to cluster the binary codes learned for

words by prefix. A few of these clusters are displayed in Table 4.1. It is interesting to see

that the model learns to cluster determiners together (cluster 1), prepositions and punctua-

tion symbols (cluster 2), modals and counting words (cluster 3), words related to politics

(cluster 4) and words related to geography (cluster 5).
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Figure 4.7: A Huffman (Shannon-Fano) tree structure.

Figure 4.8: The tree structure learned by the SimTree algorithm.
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4.2.2 Language modelling experiments

SimTree is motivated for improving model likelihood and hence perplexity (§ 4.2). In this

section we compare the training and test perplexities obtained in a language modelling task

by using SimTree compared to using a Huffman tree structure and a random tree baseline.

Note that the goal of this section is not to train a state of the art language model. Instead,

the goal is to evaluate, all things being equal, whether using the proposed SimTree algorithm

at the output layer leads to an improved model in terms of the perplexity of the model on

the training and testing data. For this we trained a bag-of-words language model (i.e. a

CBOW model architecture), and compute and report the model perplexity on the training

and test set. Perplexity is defined as the inverse geometric average of the log-likelihoods

that a model assigns to a dataset D, i.e. ppx = b−
1
|D |

∑
i∈D logb P(wi |hi ). Therefore, a model

that assigns a higher probability to the observed data has a lower perplexity.

For these experiments we trained over the full AP News dataset using the full vocabu-

lary. The AP News dataset is split into a fixed training set of 12 million words and fixed 1

million words for validation and testing respectively. The total vocabulary size is 17,964.

Input and output embeddings of 40 dimensions were used and trained using an initial learn-

ing rate of 0.1, linearly discounted with training. The initial number of training epochs is

set to 3. Validation and test perplexity is computed once per epoch. If performance on

validation increases, the total number of training epochs is increased by one (i.e. we train

using early stopping with patience, § 2.3.3.2). Using this strategy, most algorithms finished

training around 18 − 20 epochs over the training data. The SimTree algorithm was used to

recluster the tree every 1/8-th of the total words in one full iteration over the data, for a total

of 4 times (i.e. reclustering is performed during the first half of the first iteration over the

data). One reclustering step over the 17k vocabulary is almost instantaneous, so one could

certainly recluster multiple times, however we found multiple reclustering to offer no extra

improvement in the final likelihood.

The language modelling results are displayed in Fig. 4.9. There are several interesting

observations. First, we notice that the training perplexities do not seem to differ very much

with the different tree structures as all three reach a final training perplexity of around 260.

However, the test perplexities show a marked difference, with the random tree achieving

a final test perplexity of 400.22, the Huffman tree 383.19 and the SimTree 363.27. This

represents a reduction of 36.95 in perplexity over the random tree (9.2%), and 19.92 over

the Huffman tree (5.1%).

Moreover, the SimTree algorithm shows a much faster convergence rate during training,

with the SimTree algorithm reaching its best test perplexity after 251 million examples vs

294 million for the Huffman and Random tree, i.e. for a reduction of 14.6% in training

examples. Note that we presented all training data in exactly the same sequence to all

models during all runs.
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(a) Training perplexity. (b) Test perplexity.

Figure 4.9: Perplexities (lower is better) obtained on the full AP News dataset using a

CBOW model architecture trained using a random tree (top curve), a Huffman tree (middle

curve) and using the proposed SimTree algorithm (bottom curve).

4.3 Subsampled Hierarchical Softmax

In the previous section we looked at a technique for improving the model perplexity by

restructuring the tree in an online data-driven manner. However, for feature learning, we

are interested in learning high-quality word vectors as quickly as possible. For this, SimTree

is not a good idea as it does not optimise tree structure for speed and can be a lot slower

to train than for instance using a Huffman tree structure. Therefore, in this section we will

look at a simple technique for both speeding up and improving the quality of the learned

word vectors trained using the Huffman tree.

4.3.1 Motivation and definition

As shown in § 4.1.3, for each (wt ,h) training-pair, the gradient-update for the binary hi-

erarchical softmax decomposes over individual classifier predictions along the path L(wt ).

Furthermore, the contribution to the gradient from each classifier is equal to its embedding

vector qi scaled by the scalar cross-entropy error of that classifier.

The higher a node appears in the tree, the more words it is responsible for predicting

and therefore the more gradients it contributes to, with the root involved in predicting the

first step in the path for all words. Furthermore, the higher a node is in the tree, the more

“general” and less fine-grained the distinctions it needs to classify between the two groups

of words it is responsible for.

We can therefore view the total information in the gradient that reaches the hidden layer

as a sum of progressively more general (noisy) information as we move up the tree, with an

emphasis on the contribution of the higher nodes since they appear more frequently in all

word paths. The basic idea for the subsampled hierarchical softmax is to discard gradient
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information inversely proportional to a node’s depth in the tree in order to throw away more

of the noise in the upper gradients, and retain more of the finer-grained information in the

lower gradients. Specifically, whereas the standard gradient of the HS on the hidden layer

can be written as
∑L(wt )−1

i=1
∂

∂θ
log P(li |h)︸            ︷︷            ︸
δθ (i)

(see 4.1.5), we now modify this as follows:

∂LSSHS

∂θ
,

L(wt )−1∑
i=1

[[r ∼ U < Pss (i)]]δθ (i), (4.3.1)

where r is sampled uniformly at random, Pss (i) is the probability of sub-sampling (dis-

carding) the gradient contribution from the node at depth i on the path L(wt ), and [[x]] is

defined as 1 if x is true and 0 if x is false.

Note that this technique is related to the technique of subsampling at the word level, as

used by [14]. However, it is motivated for a different reason, and as we will show in the

experiments, it works complementary to that technique.

4.3.2 Subsampling distribution

The definition of the subsampling distribution Pss (i) is clearly important. For this we exper-

imented with two options. We used the empirical distribution updated dynamically during

training as Pss (i) = ni/N where ni is the number of times node i has been accessed up

to that point during training, and N is the total number of nodes that have been accessed

so far during training. In other words, this distribution is normalised over the entire tree.

However, we found better results using a simple, fixed, exponentially-decaying distribution

in the path length. The distribution is defined in terms of the maximum path length L in the

tree: Pss (i) = βi/L/Z , where Z is the normaliser for this distribution. This is both simpler

to implement and was found to give better results. We experimented with different values

for β and found β = 0.005 to work well.

4.3.3 Effect of the tree structure

Higher nodes in the tree have to learn to classify between larger groups of words. If these

groups are selected to match the distributional statistics of the data, then the classification

problem would be easy. However, if these groups of words are selected at random, then by

definition predicting class membership becomes harder, which would cause the error deltas

to have higher variance and the updates to the word embeddings to be noisier.

We therefore hypothesise that this technique will have a bigger effect on random tree

structures than on data-driven tree structures, and we will evaluate this hypothesis experi-

mentally in the next section.
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4.3.4 Experiments

We trained the CBOW model architecture with a context-size of 10 words with and without

the subsampled hierarchical softmax using the above exponentially-decaying distribution

with 100-dimensional embeddings on the full English Wikipedia (obtained from [76], 1.7

billion words as of Nov 2014). For evaluating the quality of the learned embeddings we used

the standard analogical reasoning dataset and evaluation tool from the word2vec package

[14]. The results are displayed in Table 4.2.

First, the results show that the proposed subsampling method provides a speedup during

training of 14% for a random tree and 17% for a Huffman tree. This is to be expected, since

we are not performing any computations for the dropped nodes.

Second, for the Huffman tree, the results show that using only HS subsampling leads to

a substantial 27% increase in accuracy over not using HS subsampling, but not as much as

using only subsampling at the word level (51%).

Third, when combining HS subsampling with subsampling at the word level, we get

a significant improvement of 65.69% over the baseline with no subsampling, and 9.7%

relative improvement over the state-of-the-art baseline that uses the hierarchical softmax

with subsampling only at the word level. This improvement in accuracy comes in spite of a

reduction in training time of 17%.

Finally, we observe that the technique has a larger net effect for a random tree (34.4%)

than for a Huffman tree (27%). A Huffman tree is constructed according to the empirical

distribution of the words P(w). This validates the hypothesis that the proposed technique

will have a larger effect for random trees versus for trees constructed in a data-driven man-

ner.

Interestingly, this technique does not help when training with the skip-gram architec-

ture. However, using this technique improves the accuracy using the CBOW architecture to

be comparable to the accuracy obtained with the skipgram architecture (the best skipgram

result with the HS is 42.2), despite the fact that training the skipgram architecture is roughly

O(|h|) more expensive (for |h| the number of context words) than training the CBOW.

4.4 Conclusion

This chapter provided an in-depth look at hierarchical output layers, and in particular the

binary hierarchical softmax. Through detailed analytical analysis we discussed the compu-

tational speedups that methods like Huffman trees can give. We also looked at how the tree

structure impacts the ability of the model to model the data well. For this we proposed a

novel, fast, iterative EM-type algorithm for jointly learning tree structure with the model pa-

rameters. We presented experimental evidence that SimTree can learn interesting semantic
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Tree Word SS HS SS Time (m) Total Acc Syntactic Semantic

Random No No 32 9.92 11.15 8.91
Random No Yes 25 (-22%) 13.33 (+34.4%) 15.97 11.16
Random Yes No 14 23.94 (+141.33%) 35.36 14.51
Random Yes Yes 12 (-14%) 26.43 (+166.43%) 40.11 15.15

Huffman No No 22 24.95 16.21 32.16
Huffman No Yes 17 (-23%) 31.68 (+27%) 22.53 39.23
Huffman Yes No 12 37.70 (+51.10) 35.98 39.13
Huffman Yes Yes 10 (-17%) 41.34 (+65.69%) 42.02 40.74

Table 4.2: Results on the analogical reasoning dataset of [15] using 100-dimensional em-

beddings induced using the CBOW architecture and trained with the hierarchical softmax

with and without word-level subsampling (Word SS) and the proposed subsampled hierar-

chical softmax technique (HS SS). (+x%) indicates x percent improvement over the baseline

of not using any subsampling technique.

clusterings, and also yield significant improvements in the model perplexity on a language

modelling task.

This chapter also looked at a simple technique for speeding up training and improving

the accuracy of learning word embeddings using the hierarchical softmax by stochastically

discarding contributions to the gradient from nodes higher up in the tree. This was shown

to lead to a roughly 10% improvement in the quality of the learned representations while at

the same time reducing training time by 17%.



Chapter 5

BilBOWA: Bilingual Bag-of-Words
without Alignments

This chapter introduces BilBOWA (Bilingual Bag-of-Words without Alignments), a sim-

ple and computationally-efficient model for learning bilingual distributed representations

of words which can scale to large monolingual datasets and does not require word-aligned

parallel training data. Instead it trains directly on monolingual data and extracts a bilin-

gual signal from a smaller set of raw-text sentence-aligned data. This is achieved using a

novel sampled bag-of-words cross-lingual objective, which is used to regularise two noise-

contrastive language models for efficient cross-lingual feature learning. We show that bilin-

gual embeddings learned using the proposed model outperform state-of-the-art methods on

a cross-lingual document classification task as well as a lexical translation task.

The code can be found at https://github.com/gouwsmeister/bilbowa. A pre-

liminary version of the work in this chapter was presented at the NIPS 2014 Deep Learning

Workshop and an expanded version of the work was presented at the International Confer-

ence of Machine Learning (ICML 2015).

5.1 Introduction

Raw text data is freely available in many languages, yet labeled data – e.g. text marked

up with parts-of-speech or named-entities – is expensive and mostly available for English.

Although several techniques exist that can learn to map hand-crafted features from one

domain to another [77–79], it is in general non-trivial to come up with good features which

generalise well across tasks, and even harder across different languages. It is therefore very

desirable to have unsupervised techniques which can learn useful syntactic and semantic

features that are invariant to the tasks or languages that we are interested in.

As we have seen so far during this dissertation, unsupervised distributed representa-

tions of words capture important syntactic and semantic information about languages and

86
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Figure 5.1: Monolingual embeddings (a & b) have been shown to capture syntactic and

semantic features such as noun gender (shown in blue) and verb tense (shown in red). The

goal of crosslingual embeddings shown in (c) is to capture these relationships across two or

more languages.

these techniques have been succesfully applied to a wide range of tasks [8, 9], across many

different languages [76]. Traditionally, inducing these representations involved training a

neural network language model (§ 3.3.1) which was slow to train. However, contemporary

word embedding models are much faster in comparison, and can scale to train on billions of

words per day on a single desktop machine [58,65,80]. In all these models, words are rep-

resented by learned, real-valued feature vectors referred to as word embeddings and trained

from large amounts of raw text. These models have the property that similar embedding

vectors are learned for similar words during training. Additionally, the vectors capture rich

linguistic relationships such as male-female relationships or verb tenses, as illustrated in

Figure 5.1 (a) and (b). These two properties improve generalisation when the embedding

vectors are used as features on word- and sentence-level prediction tasks.

A related goal is to induce distributed representations over different language-pairs in

order to serve as an effective way of learning linguistic regularities which generalise across

languages, in that words with similar distributional syntactic and semantic properties in both

languages are represented using similar vectorial representations (i.e. embed nearby in the

embedded space, as shown in Figure 5.1 (c)). This is especially useful for transferring lim-

ited label information from high-resource to low-resource languages, and has been demon-

strated to be effective for document classification [16], outperforming a strong machine-

translation baseline; as well as named-entity recognition and machine translation [81, 82].

Since these techniques are fundamentally data-driven techniques, the quality of the

learned representations improves as the size of the training data increases [58,80]. However,

as we will discuss in more detail in §5.2, there are two significant drawbacks associated with

current bilingual embedding methods: they are either very slow to train or they can only ex-

ploit parallel training data. The former limits the large-scale application of these techniques,
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while the latter severely limits the amount of available training data, and furthermore intro-

duces a big domain bias into the learning process, since parallel data is typically only easily

available for certain narrow domains (such as parliamentary discussions).

This chapter introduces BilBOWA (Bilingual Bag-of-Words without Word Alignments),

a simple, scalable architecture for inducing bilingual word embeddings with a trivial ex-

tension to multilingual embeddings. The model is able to leverage essentially unlimited

amounts of monolingual raw text. It furthermore does not require any word-level align-

ments, but instead extracts a bilingual signal directly from a limited sample of sentence-

aligned, raw-text parallel data (e.g. Europarl) which it uses to align embeddings as they are

learned over monolingual training data. Our contributions are the following:

• We introduce a novel, computationally-efficient sampled cross-lingual objective (“BilBOWA-

loss”) which is employed to align monolingual embeddings as they are being trained

in an online setting. The monolingual models can scale to large-scale training sets,

thereby avoiding training bias, and the BilBOWA-loss only considers sampled bag-

of-words sentence-aligned data at each training step, which scales extremely well and

also avoids the need for estimating word-alignments (§5.3.2);

• we experimentally evaluate the induced cross-lingual embeddings on a document-

classification (§5.5.2) and lexical translation task (§5.5.3), where the method outper-

forms current state-of-the-art methods, with training time reduced to minutes or hours

compared to several days for prior approaches;

• finally, we make available our efficient C-implementation to hopefully stimulate fur-

ther research on cross-lingual distributed feature learning1.

5.2 Learning Cross-lingual Word Embeddings

Monolingual word embedding algorithms [58, 80] learn useful features about words from

raw text (e.g. Fig 5.1 (a) & (b)). These algorithms are trained over large datasets to be able

to predict words from the contexts in which they appear. Their working can intuitively be

understood as mapping each word to a learned vector in an embedded space, and updating

these vectors in an attempt to simultaneously minimise the distance from a word’s vector

to the vectors of the words with which it frequently co-occurs (§ 3.6). The result of this

optimisation process yields a rich geometrical encoding of the distributional properties of

natural language, where words with similar distributional properties cluster together. Due

to their general nature, these features work well for several NLP prediction tasks [8, 9].

In the cross-lingual setup, the goal is to learn features which generalise well across dif-

ferent tasks and different languages. The goal is therefore to learn features (embeddings) for
1https://github.com/gouwsmeister/bilbowa

https://github.com/gouwsmeister/bilbowa
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Figure 5.2: An illustration of an offline alignment method for learning bilingual word em-

beddings. Embeddings are trained separately on two languages and afterwards a projection

is learned that projects the embeddings of English words onto the embeddings of their

French translation-pairs.

each word such that similar words in each language are assigned similar embeddings (the

monolingual objectives), but additionally we also want similar words across languages to

have similar representations (the cross-lingual objective). The latter property allows one

to use the learned embeddings as features for training a discriminative classifier to predict

labels in one language where we have labelled data (e.g. topics, parts-of-speech, or named-

entities), and then directly transfer the classifier to a language for which we do not have

much labelled data. From an optimisation perspective, there are several approaches to how

one can optimise these two objectives (our classification):

Offline Alignment: The simplest approach is to optimise each monolingual objective

separately (i.e. train embeddings on each language separately using any of the several avail-

able off-the-shelve toolkits), and then enforce the cross-lingual constraints as a separate,

disjoint, ‘alignment’ step. The alignment step consists of learning a transformation for pro-

jecting the embeddings of words onto the embeddings of their translation pairs, obtained

from a dictionary, as illustrated in Fig. 5.2. This was shown to be a viable approach by [82]
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who learned a linear projection from one embedding space to the other. It was extended

by [83], who simultanteously projected source and target language embeddings into a joint

space using canonical correlation analysis. The advantage of this approach is that it is very

fast to learn the embedding alignments. The main drawback of this approach is that it is

not clear that a single transformation (whether linear or nonlinear) can capture the relation-

ships between all words in the source and target languages, and our improved results on the

translation task seem to point to the contrary (§5.5.3). Furthermore, an accurate dictionary

is required for the language-pair and the method considers only one translation per word,

which ignores the rich multi-sense polysemy of natural languages.

Parallel-only: Alternatively, one may leverage purely sentence-aligned parallel data

and train a model to learn similar representations for the aligned sentences. This is the

approach followed by the Bilingual Compositional Vector Models (BiCVM [84]) and the

Bilingual Auto-Encoder (BAE, [85]). The advantage of this approach is that it can be fast

when using an efficient noise-contrastive training criterion like that of the BiCVM. The

main drawbacks of this method are that it can only train on limited parallel data, which is

expensive to obtain and not necessarily written in the same style or register as the domain

where the features might be applied (i.e. there is a strong domain bias).

Jointly-trained Models: Another approach is to jointly optimise the monolingual ob-

jectives L(·), with the cross-lingual objective enforced as a cross-lingual regulariser (see

Figure 5.3 for a schematic). To do this, we define a cross-lingual regularisation term Ω(·),

and use it to constrain monolingual models as they are jointly being trained over the context

h and target word wt training pairs in the dataset D, e.g.

LJOINT = min
θe,θ f

∑
l ∈{e, f }

∑
wt ,h∈Dl

Ll (wt ,h; θl )︸          ︷︷          ︸
feature learning

+λΩ(θe , θ f )︸     ︷︷     ︸
alignment

. (5.2.1)

This formulation captures the intuition that we want to learn representations which

model their individual languages well (the first term) while the Ω(·) regulariser encourages

representations to be similar for words that are related across the languages. Conceptually,

this regulariser consists of minimizing a distance function between the vector representa-

tions ri learned for words wi in the two domains, weighted by how similar they are, i.e.

Ω(Re ,R f ) =
∑

wi ∈V e

∑
w j ∈V f

sim(wi ,w j ) · distance(rei ,r
f
j ). (5.2.2)

where we use R to denote learned embedding representations, and ri to denote the embed-

ding learned for word wi . In other words, when this weighted sum (and hence its contri-

bution to the total objective) is low, one can be sure that words across languages that are

similar (i.e. high sim(wi ,w j )) will be embedded nearby each other.

This approach was shown to be useful by [16]. Crucially, the advantages of this formu-

lation are that it enables one to train on any available monolingual data, which is both more
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Figure 5.3: Schematic of the proposed BilBOWA model architecture for inducing bilingual

word embeddings. Two monolingual skipgram models are jointly trained while enforcing

a sampled L2-loss which aligns the embeddings such that translation-pairs are assigned

similar embeddings in the two languages.

abundant and less biased than the parallel-only approach, since one can train on data which

resembles the data one will be applying the learned features to. The disadvantage is that

the original model of Klementiev et al. is extremely slow to train. The training complexity

stems both from how the authors implement their monolingual and cross-lingual objectives.

For the monolingual objective, they train a standard neural language model for which the

complexity of the output softmax layer grows with the output vocabulary size. Therefore, in

order to evaluate the model the authors had to reduce the output vocabulary to only the 3000

most frequent words. The second reason for the slow training time is that the cross-lingual

objective considers the interactions between all pairs of words between the source and tar-

get vocabulary at each training step, which scales as the product of the two vocabularies.

In this work, we address these two issues individually.

5.3 The BilBOWA Model

As discussed in §5.2, the primary challenges with existing bilingual embedding models are

their computational complexity (due to an expensive softmax or an expensive regularisation

term, or both), but most importantly, the strong domain bias that is introduced by models

that train only on parallel data such as Europarl.

The BilBOWA model is designed to overcome these issues in order to enable computationally-

efficient cross-lingual distributed feature learning over large amounts of monolingual text.

A schematic overview of the model is shown in Figure 5.3. The two main aspects (discussed

in the following sections) are

1. Firstly, similar to [81], we leverage advances in monolingual feature learning algo-

rithms by replacing the softmax objective with a more efficient noise-contrastive ob-
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jective (§5.3.1), allowing monolingual training updates to scale independently of the

vocabulary size.

2. Secondly, we introduce a novel computationally-efficient cross-lingual loss which

only considers sampled, bag-of-words sentence-aligned data for the cross-lingual ob-

jective (§5.3.2). This avoids the need for estimating word alignments, but moreover,

the computation of the regularisation term reduces to only the words in the observed

sample (compared to considering the O(V 2) worst-case possible interactions at each

training step in the naive case).

5.3.1 Learning Monolingual Features: The L term

Since we do not care about language modelling, but more about feature learning, an alterna-

tive to the softmax is to use a noise-contrastive approach to score valid, observed combi-

nations of words against randomly sampled, unlikely combinations of words (see § 3.3.5).

This idea was introduced by Collobert and Weston [8] where they optimised a margin be-

tween the observed score and the noise scores. In their formulation, scores were computed

on sequences of words, but in [82] this idea was taken one step further and successfully ap-

plied to bag-of-word representations of contexts in their continuous bag-of-words (CBOW)

and skipgram models trained using the negative sampling training objective (a simplified

version of noise-contrastive estimation [65], refer to § 3.4.3.5). Any of these objectives

would yield comparable speedup and could be used in our architecture. In this work we

opted for the skipgram model trained using negative sampling since it has been shown to

learn high-quality monolingual features.

5.3.2 Learning Cross-lingual Features: The BilBOWA-loss (Ω term)

Besides learning how words in one language relate to each other, it is equally important for

the representations to capture how words between the two languages relate to each other,

which we enforce using the Ω term in equation 5.2.1. In the general bilingual setting, word

similarities can be expressed as a matrix A where ai j encodes the translation “score” of

word i in one language with word j in the other. In the rest of our discussion we will

refer specifically to English and French, and denote all English-specific parameters using e

superscript, and all French-specific parameters with f superscript.

If the K-dimensional word embedding row-vectors ri are stacked to form a (V,K )-

dimensional matrix R, then we can express what we will refer to as the exact cross-lingual
objective as follows:

ΩA(Re ,R f ) =
∑
i

∑
j

ai j | |rei − r f
j | |

2 (5.3.1)

= (Re − R f )>A(Re − R f ). (5.3.2)
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Figure 5.4: Using global word-alignments for aligning cross-lingual embeddings (equation

5.3.1) is costly and scales as the product of the two vocabulary sizes. In contrast, the

BilBOWA-loss (equation 5.3.5) approximates the global loss by averaging over implicit

local co-occurrence statistics in a limited sample of parallel sentence-pairs.

where subscript A indicates that the alignments are fixed (given). A captures the relation-

ships between all V e words in English with respect to all V f words in French, and is indeed

also the source of the two main challenges in this formulation, namely:

1. how to derive or learn which words to pair as translation pairs (i.e. deriving/learning

A);

2. how to efficiently evaluate Ω(·) during training, since naively evaluating it scales as

the product of the two vocabulary sizes O(|V e | · |V f |) at each training step.

The cross-lingual objective therefore penalises the Euclidian distance between words in

the two embedding spaces (Re and R f ) proportional to their alignment frequency. Previous

work approached this step by performing a word-alignment step prior to training to learn the

alignment matrix A. However, performing word alignment requires running Giza++ [86]

or FastAlign [87] software and training HMM word-alignment models. This is both com-

putationally costly and also noisy. We would like to learn the translation correspondences

without utilizing word alignments. In order to do that, we directly exploit the parallel

training data. The main contribution of this work is to approximate the costly Ω(·) term,

defined in equation 5.3.1 in terms of the global word-alignment statistics, using cheaply-

obtained local word co-occurrence statistics obtained from raw-text parallel sentence-pairs

(i.e. without running a word-alignment step). The main concept is illustrated schematically

in Figure 5.4, and discussed in more detail below.
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Figure 5.5: A uniform word alignment model assigns equal probability to each word in

the English side (left to right) being aligned with each word in the French side (down),

visualised here as a uniformly tinted alignment distribution over all word-pairs.

As a first step, notice that since the alignment weights can be normalised to sum to

one, we can interpret the alignment weights as a distribution and write equation 5.3.1 as

an expectation over the distribution of English and French word-alignment probabilities

ai j = P(we
i ,w

f
j ),

ΩA(Re ,R f ) = E
(i, j )∼P(we,w f )

[
| |rei − r f

j | |
2

]
(5.3.3)

Since the parallel data is paired at the sentence level, we know that translation pairs for

the en sentence occur in the fr sentence, but we do not know where. We therefore need

a word-alignment model. A naive assumption is to assume that each observed en word

can potentially be aligned with each observed fr word (i.e. to assume a uniform word-
alignment model as illustrated in Fig. 5.5) for each word in the observed sentence pairs.

Under this assumption, one can then approximate equation 5.3.3 by sampling S m-length

English and n-length French sentence-pairs (se , s f ) from the parallel training data:

ΩA(Re ,R f ) ≈
1
S

∑
(se,s f )∈S

1
mn

∑
wi ∈se

∑
w j ∈s f

| |rei − r f
j | |

2 (5.3.4)

It is important to note that the lengths of the sampled English and French parallel sentences

m and n need not be equal, and more importantly m � |V e | and n � |V f |. Furthermore,

notice that under a uniform alignment model, at each training step, each word in the sampled

English sentence se will be updated towards all words in the French sentence s f . We can

precompute this by simply updating each English word towards the mean French bag-of-

words sentence-vector. Specifically, we implement equation 5.3.4 by sampling only one

parallel sentence-pair per training step (i.e. S = 1), and at each training step t we optimise

the following sampled, approximate cross-lingual objective:

Ω
(t )
A (Re ,R f ) , | |

1
m

m∑
wi ∈se

rei −
1
n

n∑
w j ∈s f

r f
j | |

2 (5.3.5)
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where s∗ denotes the English or French sampled sentence-pair drawn from the parallel cor-

pus. In other words, the BilBOWA-loss minimises a sampled L2-loss between the mean bag-

of-words sentence-vectors of the parallel corpus. On its own, this objective is degenerate

since all embeddings would converge to the trivial solution (by collapsing all embeddings

to the same value), but coupled as a regulariser with the monolingual losses, we find that

it works very well in practice. By sampling training sentences from the parallel document

distribution, this objective efficiently approximates equation 5.3.1 (the more two words are

observed together in a parallel sentence-pair, the stronger the embeddings for the two words

will be pushed together, i.e. proportional to ai j ), without having to actually compute the

word alignment weights ai j .

5.3.3 Parallel subsampling for better results

Equation 5.3.5 is an approximation of equation 5.3.1. As illustrated in Figure 5.4, we are

really interested in estimating the global word-alignment statistics for a word-pair, i.e. ai j .

However, by sampling words at the sentence-level, the local alignment statistics are skewed

by the words’ unigram frequencies of occurrence in a given sentence (i.e. regardless of

alignment). Since language has a very strong Zipfian distribution we therefore find in prac-

tice that equation 5.3.5 over-regularises the frequent words. A simple solution to this is to

subsample (discard) words from the parallel sentences proportional to their unigram proba-

bilities of occurrence. In other words, we discard each word from the parallel sentences with

a probability that depends on its unigram frequency of occurrence. This heavily discards

frequent words and effectively flattens the unigram distribution to a uniform distribution.

This idea is closely related to the monolingual subsampling employed in the word2vec-

type models, although it is motivated for a different reason in the cross-lingual setting.

In practice we find this useful for learning finer-grained cross-lingual embeddings for

the frequent words. To better illustrate the effect this has on training, we jointly visualised

comparable. the top-25 most frequent words in English and German using the t-SNE algo-

rithm [88]. This is illustrated in Figure 5.6. We show in red the embeddings trained without

subsampling and in blue the embeddings for the same words trained using parallel subsam-

pling. As the visualisation shows, without subsampling frequent words are over-regularised

and cluster near the origin. This effect is largely reduced by the proposed subsampling

scheme.

5.4 Implementation and Training Details

We implemented our model in C by building on the popular open-source word2vec toolkit2.

The implementation launches a monolingual skipgram model as a separate thread for each

2https://code.google.com/p/word2vec/

https://code.google.com/p/word2vec/
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Figure 5.6: A joint t-SNE visualisation of the same 25 most frequent English and German

words trained without (red, left) and with parallel subsampling (blue, right), illustrating

the effect that occurs without parallel subsampling, as frequent words are over-regularised

towards the origin.

language, as well as a cross-lingual thread. All threads access the shared embedding pa-

rameters asynchronously. For training the model, we make use of online asynchronous

stochastic gradient descent (ASGD), where at time step t, parameter θ is updated as

θ (t ) = θ (t−1) − η
∂LJOINT

∂θ
(5.4.1)

Our initial implementation synchronised updates between threads, but we found that sim-

ply clipping individual updates to [−0.1,0.1] per thread was sufficient to ensure training

stability and considerably improved training speed. This is consistent with a recent trend

towards asynchronous SGD (e.g.˜ []hogwild2011). For monolingual training data, we use

the freely available, pre-tokenised Wikipedia datasets [76]. For cross-lingual training we

use the freely-available Europarl v7 corpus [89]. Unlike the approach of [16] however, we

do not need to perform a word-alignment step first. Instead our implementation trains di-

rectly on the raw parallel text files obtained after applying the standard preprocessing scripts

that come with the data to tokenise, recase and remove all empty sentence-pairs. Embedding

matrices were initialised by drawing from a zero mean, unit-variance gaussian distribution.

The skipgram negative sampling objectives (a simplified form of noise-contrastive estima-

tion, § 3.4.3.5) require us to sample k noise words per training pair from the unigram P(w)

en and fr distributions, and we set k = 15 which has been shown to give good results.

Doing each training update therefore occurs asynchronously across the threads. Mono-

lingual threads each select a context-target (h,wt )-pair for each language and sample k

noise words according to their unigram noise distributions. The cross-lingual thread sam-

ples a random pair of parallel sentences from the parallel data. Finally, each thread makes

an update to all parameters asynchronously according to equation 5.4.1, for which gradients

are easy to compute due to the square-loss of the BilBOWA-loss and the log-linear nature

of the skipgram models. The learning rate was set to 0.1, with linear decay.
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5.5 Experiments

In this section we present experiments which evaluate the utility of the induced represen-

tations. We evaluate the embeddings in a cross-lingual document classification task which

tests semantic transfer of information across languages, as well as a word-level translation

task which tests fine-grained lexical transfer.

5.5.1 Qualitative results

Two popular ways of inspecting the learned embeddings is by looking at the nearest neigh-

bours of words in the embedded space, and by projecting the embeddings down to 2-

dimensions and plotting them. In this section, we will use these two methods to look at

the relationships our model learns versus another purely bag-of-words method.

One appealing aspect of our model is that we can change the context-size of the mono-

lingual models to learn more syntactic or more semantic features. This makes the repre-

sentations leared using our model applicable for both topical prediction tasks, as we will

demonstrate in the cross-lingual document topic task we will evaluate on later, as well as

for fine-grained word-level prediction tasks, as we will show later with the lexical trans-

lation task. To show this, we induced embeddings on the English-German Europarl data

used both as monolingual and bilingual data, in the way used by the sentence-level bag-of-

words approaches of Chandar et al. [85] and Hermann et al. [84]. We then generated the

nearest neighbours for the words January, president and said, which are shown in Table 5.1

along with the nearest neighbours reported by Chandar et al., taken from their paper. We

have furthermore highlighted the English neighbours which we consider (subjectively) to

be less similar to the English head words. As this analysis shows, at least for the exam-

ples that are reported for their method, the nearest neighbours generated by our method

are less “topically-related” and show finer-grained semantic relatedness. Nonetheless, as

we will see in the quantitative evaluations, this actually seems to be an advantage for the

sentence-level bag-of-words methods in the cross-lingual document classification task.

5.5.2 Cross-lingual Document Classification

We use an exact replication of the cross-lingual document classification (CLDC) setup

introduced by Klementiev et al. [16] to evaluate their cross-lingual embeddings. The CLDC

task setup is as follows: The goal is to classify documents in a target language using only

labelled documents in a source language. Specifically, we train an averaged perceptron

classifier on the labelled training data in the source language and then attempt to apply the

classifier as-is to the target data (known as “direct transfer”). Documents are represented as

the tf-idf-weighted sum of the embedding vectors of the words that appear in the documents.
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january president said

january januar president präsident said gesagt
march märz i präsidentin told sagte

october oktober mr präsidenten say sehr
july juli presidents herr believe heute

december dezember thank ich saying sagen
1999 jahres president-in-office ratspräsident wish heutigen
june juni report danken shall letzte

month 1999 voted danken again hier
year jahr colleagues bericht agree sagten

september jahresende ladies kollegen very will

January Januar president Führing said gesagt
July Juni politician gewählte say sagte
June 1 election Mitglied repeat sagten

December Juli leader libyschen just bemerkt
March Jahres parliament nominiert saying vorhin
May Dezember Libyan durfte heard soeben
April 31 headed slowenischen here worauf

November März representative besaß earlier angedeutet
October 30 re-election Präsidenten explained sagen
February April king Wahl did wiederhole

Table 5.1: Nearest neighbours for the purely bag-of-words autoencoder approach of Chan-

dar et al. [85] shown above the double lines, versus our approach shown below the double

lines, to the head words shown in bold at the top. In the nearest neighbours, we have ital-

icised the words which are semantically less related to the query words. Notice that the

bag-of-words approach generates more topical clusters, whereas our approach generates

more syntactic clusters.

Similar to Klementiev, we induce cross-lingual embeddings for the English-German

language pair, and use the induced representations to classify a subset of the English and

German sections of the Reuters RCV1/RCV2 multilingual corpora [90] as pertaining to

one of four categories: CCAT (Corporate/Industrial), ECAT (Economics), GCAT (Govern-

ment/Social), and MCAT (Markets).

For the classification experiments, 15,000 documents (for each language) were ran-

domly selected from the RCV1/2 corpus, with one third (5,000) used as the test set and the

remainder divided into training sets of sizes between 100 and 10,000, and a separate, held-

out validation set of 1,000 documents used during the development of our models. Since

our setup exactly mirrors Klementiev et al, we use the same baselines, namely: the majority

class baseline, glossed (replacing words in the target document by their most frequently
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Method en→ de de→ en Training Time (min)
Majority Baseline 46.8 46.8 -

Glossed Baseline 65.1 68.6 -

MT Baseline 68.1 67.4 -

Klementiev et al. 77.6 71.1 14,400

Bilingual Auto-encoders (BAEs) 91.8 72.8 4,800

BiCVM 83.7 71.4 15

BilBOWA (this work) 86.5 75 6

Table 5.2: Classification accuracy and training times for the proposed BilBOWA method

compared to Klementiev et al. [16], Bilingual Auto-encoders [85], and the BiCVM

model [84], on an exact replica of the Reuters cross-lingual document classification task.

These methods were all used to induce 40-dimensional embeddings using the same training

data. Baseline results are from Klementiev.

aligned words in the source language), and a stronger MT baseline (translating target docu-

ments into the source language using an SMT system).

Results are summarised in Table 5.2. In order to make all results comparable, results

for all methods reported here were obtained using the same embedding dimensionality of

40 and the same training data. We use the first 500K lines of the English-German Europarl

data both as monolingual and parallel training data. We use a vocabulary size of 46,678

for English and 47,903 for German. Since our method is motivated as a faster version of

the model proposed by Klementiev et al., we note that we significantly improve upon their

results, while training in 6 minutes versus the original 10 days (14,400 minutes). This yields

a total factor 2,400 speedup. This demonstrates that the BilBOWA-loss (equation 5.3.5) is

both a computationally-efficient and an accurate approximation of the full cross-lingual

objective implemented by Klementiev (equation 5.3.1).

Next, we compare our method to the current state-of-the-art bilingual embedding meth-

ods. The current state-of-the-art on this task is 91.8 (en2de) and 72.8 (de2en) reported

using the Bilingual Auto-encoder (BAE) model by [85]. Hermann et al. [84] report 83.7

and 71.4 with the BiCVM model. As shown, our model outperforms the BiCVM on both

tasks, and outperforms BAEs on German to English to yield a current state-of-the-art result

on that task of 75%. The runtime of our method also compares very favorably to other

methods. Note that even though the BiCVM method should in principle be as fast or faster

than our method, its reported training time here is slightly higher since it was trained for

more iterations over the data.
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Method En→Sp P@1 Sp→En P@1 En→Sp P@5 Sp→En P@5
Edit Distance 13 18 24 27

Word Co-occurrence 30 19 20 30

Mikolov et al., 2013 33 35 51 52

BilBOWA (This work) 39 (+6) 44 (+9) 51 55 (+3)

Table 5.3: Results for the translation task measured as word translation accuracy (out of 100,

higher is better) evaluated on the top-1 and top-5 words as ranked by the method. Cross-

lingual embeddings are induced and distance in the embedded space are used to select word

translation pairs. +x indicates improvement in absolute precision over the previous state-

of-the-art on this task [82].

5.5.3 WMT11 Word Translation

We also evaluated the induced cross-lingual embeddings on the word translation task used

by Mikolov et al. [82] using the publicly-available WMT11 data3. In this cross-lingual

word-translation task4, the authors extracted the 6,000 most frequent words from the WMT11

English-Spanish data, and then used the online Google Translate service to derive dictio-

naries by translating these source words into the target language (individually for English

and Spanish). Since their method requires translation-pairs for training, they used the first

5,000 most frequent words to learn the “translation matrix”, and then evaluated their method

on the remaining 1,000 words used as a test set. To translate a source word, one finds its k

nearest neighbours in the target language embedding space, and then evaluate the translation

precision P@k as the fraction of target translations that are within the top-k words returned

using the specific method. Our method does not require translation-pairs for training, so we

simply test on the same 1,000 test-pairs.

We use as baselines the same two methods described in [82]. Edit Distance ranks words

based on their edit-distance. Word Co-occurrence is based on distributional similarity: For

each word w, one first constructs a word co-occurrence vector which counts the words with

which w co-occurs within a 10-word window in the corpus. The word-count vectors are

then mapped from the source to the target language using the dictionary. Finally, for each

test word, the word with the most similar vector in the target language is selected as its

translation.

The results on the English-Spanish translation tasks are summarised in Table 5.3. We in-

duced 40-dimensional embeddings using the English and Spanish Wikipedias and Europarl

as parallel data. Our model improves on both the baselines and on Mikolov et al.’s method

on both tasks and gives a noticeable improvement in accuracy for the P@1 prediction. For

3http://www.statmt.org/wmt11/
4For other work on word-selection tasks, see for instance the SemEval 2013 Tasks 10 and 11 and SemEval

2014 Task 10.

http://www.statmt.org/wmt11/
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the English to Spanish translation, we improve absolute word translation accuracy by 6

percent. For the Spanish to English task, we improve absolute word translation accuracy

by 9 percent. This indicates that our model is able to learn fine-grained translation equiva-

lences from the monolingual data by using only the raw-text, sentence-aligned parallel data,

despite the lack of word-level alignments or training dictionaries.

5.6 Related work

Klementiev et al. [16] was one of the first papers to explore the idea of cross-lingual fea-

ture learning using neural language models. The crux of their approach is to model this

as a multi-task prediction problem, where predicting a word in each language is consid-

ered one task, and then they introduce interactions between the different tasks based on the

alignment-frequency of words obtained from bilingual, word-aligned data. They achieve

this by training a separate NLM for each language, and then adding a regularisation term

which penalises large distances between the embeddings of translation pairs, as shown in

5.3.1. As we have mentioned in this chapter, this approach suffers severe computational

problems due to the expensive softmax denominator and due to the regularisation term

considering the interactions between all words in the two languages. Although intuitively,

the translation pairs that a word correspond to is only a fraction of the total vocabulary,

in practice these interaction statistics are obtained from noisy word alignments and hence

evaluating this term is still expensive (O(V1V2) worst-case).

In a publication that appeared roughly at the same time, we also considered jointly

trained NLMs for learning similar features for translation pairs [17]. In that work, we anal-

ysed the embeddings learned by jointly training two NLMs with constraints on some “pivot

pairs” (translation pairs). We studied the mean distance between embeddings for all known

translation pairs, given an L2-loss (5.3.1) applied to only a subset of the translation pairs.

The surprising result was that embeddings started to converge to similar representations

when constraining even only 10% of the translation pairs, without affecting the negative

log-likelihood of the individual models on a held-out validation set. This suggested that

constraining a few pivot pairs during training might be enough to learn rich cross-lingual

features.

Zou et al. [81] learn English-Chinese bilingual word embeddings for machine transla-

tion and cross-lingual prediction. They propose to replace the expensive softmax of the

Klementiev et al. model, with a more efficient margin-loss. They propose a “Translation

Equivalence” objective which is equivalent to balancing an English-Chinese version of

5.3.1 with a Chinese-English version. They show an improvement of half a BLEU point

in a translation task, but marginal improvement in a named-entity recognition task. How-

ever, despite the faster language modelling objective, their approach still scales badly due
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to the expensive cross-lingual objective. They report training times of roughly 17 days.

Hermann et al. [84] learn multilingual semantic representations by training purely on

sentence-aligned parallel data. They compute a vector representation for each sentence

(bag-of-words unigrams and bigrams) and then optimise a noise-contrastive margin between

observed sentence pairs and noise sentence pairs. They show good results on cross-lingual

document classification and across a number of language pairs. However this approach

suffers firstly from limited available parallel data, and second from the biased nature of the

parallel data that is available.

Chandar et al. [85] propose a bilingual auto-encoder model which attempts to recon-

struct English bag-of-words sentence vectors from their French sentence vectors, and vice

versa. They apply the learned representations to the CLDC task and achieve state-of-the-art

results. Their approach suffers from the same limited training data as Hermann et al., but

furthermore their purely sentence-level bag-of-words approach precludes the application of

the learned features for any word-level tagging task.

Kočisky et al. [91] integrate a log-bilinear language model into the FastAlign [87]

reparametrised version of the IBM version 2 model. Their model aims to jointly learn a

word aligment model (as part of FastAlign) and word embeddings (as part of the LBL).

Their model is primarily a word alignment model parametrised in terms of the learned dis-

tributed representations. As a side-evaluation, they apply their model to the CLDC task

where they show strong results. However, training a full word-alignment model might be

overkill if the goal is simply to obtain the cross-lingual embeddings.

5.7 Discussion

The BilBOWA model as introduced in this chapter utilises a sampled L2 bag of words

cross-lingual loss. From a scientific point of view, we showed that this loss efficiently ap-

proximates the expensive full crosslingual loss, translating into a significant speedup during

training. From an engineering point of view, we showed that the asynchronous implemen-

tation can speed up training, and that parallel subsampling improves the accuracy of the

learned features. For the former, we found that getting asynchronous training to work re-

quired clipping the updates, especially as the dimensionality of the embeddings gets larger.

This had a big impact on the model training speed, and no noticeable impact on the quality

of the learned embeddings. Parallel subsampling speeds up training and at the same time

makes it more accurate for the frequent words. It therefore turns out to be really important

both in the monolingual and parallel setting. We have motivated the reason for the crosslin-

gual setting as helping to uncover a better approximation of the global alignment statistics

from the observed local, sentence-level co-occurrences.

Despite the speedup, from a user perspective, the model is still much slower to use than
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offline methods like translation matrix [82] or multilingual CCA [83, 92]. However, as we

show on the translation task, BilBOWA can learn much finer-grained cross-lingual relation-

ships than these methods. BilBOWA is also slightly slower than purely parallel methods

like BiCVM and BAEs, but it has the advantage that it can train over much larger monolin-

gual datasets. If the goal is to learn high-quality general purpose bilingual embeddings, it

should always be beneficial to leverage more training data, and hence a hybrid model like

BilBOWA might be a better choice than a parallel-only technique.

5.8 Conclusion

In this chapter we introduced BilBOWA, a computationally-efficient model for inducing

bilingual distributed word representations directly from raw text without requiring word-

alignments or dictionaries. Instead, the model directly utilises a limited amount of paral-

lel data to learn bilingual word representations. BilBOWA combines advances in training

monolingual word embeddings with a particularly efficient novel sampled cross-lingual ob-

jective. The result is that the required computations per training step scales only with the

number of words in the sentences, thereby enabling efficient large-scale cross-lingual train-

ing. We evaluated BilBOWA on English-German cross-lingual document classification and

achieved state-of-the-art results while reducing training time to only a few minutes, rather

than several days as for most previous approaches. We also evaluated on an English-Spanish

word-translation task where we improve upon the previous state of the art in relative word

translation error rate.



Chapter 6

Barista: Simple, Task-specific
Bilingual Embeddings

This chapter introduces Barista (“Bilingual Adaptive Reshuffling with Individual Stochastic

Alternatives”), a simple and computationally efficient training technique for learning task-

specific bilingual word embeddings using monolingual word-embedding algorithms. The

method incorporates additional semantic information in the form of how words map into

equivalence classes during the embedding process.

In this chapter we make use of cross-lingual part-of-speech classes extracted from the

crowd-sourced Wiktionary, translation classes obtained using the online Google Translate

system, as well as semantic supersense classes extracted from the WordNet lexical resource.

The model has the advantage that it is orthogonal to the choice of embedding algorithm,

does not require parallel data, and can be adapted to specific tasks by redefining the equiva-

lence classes. We analyze the learned embeddings and show that the model incorporates the

information during training by trading off learning the standard syntactic linguistic regular-

ities that word embedding models have become known for learning, with learning to cluster

according to the semantic classes. We demonstrate the utility of the approach by applying

these learned embedding features to the tasks of cross-lingual part-of-speech tagging over

seven language pairs, as well as cross-lingual supersense tagging.

All code can be found at https://github.com/gouwsmeister/barista. The work

in this chapter was presented at the North American Chapter of the Association for Com-

putational Linguistics (NAACL 2015).

6.1 Introduction

Standard neural language models are unsupervised models that train purely on raw text

by learning word features that enable the model to predict the next word in a sequence of

words. In the process, the model learns to cluster words into soft equivalence classes (words

104
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that show similar statistical behaviour), in that words that cluster together in the embedding

space are words that have a high conditional likelihood of appearing in the same contexts in

the training data. While there is still some controversy whether such methods are superior to

older methods, there is no doubt that continuous word representations can potentially solve

some of the data sparsity problems inherent in NLP, due to its high-dimensional discrete

prediction problems.

However, for some tasks we might already know the equivalence classes relevant to the

prediction task at hand, and would like the models to make use of this additional informa-

tion during training, to hopefully learn richer, task-specific representations. For example,

it is easy to extract generalized parts of speech (POS) classes [93] from crowd-sourced an-

notations on Wiktionary1 [94]. If one knows which words in English maps to which POS

classes, and likewise, which words in French maps to which POS classes, one might like

to leverage this additional information during training to learn richer, POS-specific repre-

sentations. Likewise, albeit at a much finer level of granularity, if one knows which words

in two languages are translation pairs (translation equivalence classes), one might like to

incorporate this side information to learn fine-grained bilingual representations.

It has furthermore been shown that weakly supervised embeddings algorithms can lead

to large improvements for tasks like sentiment analysis [95]. This notion of weak supervi-

sion guiding the learning of word representations is relevant to the work presented in this

chapter, and the Barista model is designed to efficiently utilize additional semantic infor-

mation about how words in its training vocabulary map into equivalence classes. The model

uses a very simple way of reshuffling the training data to learn rich, semi-supervised, task-
specific bilingual embeddings over large amounts of raw text, using only a limited amount

of extra class information.

6.2 The Barista Model

We exploit the feature learning property of NLMs to learn similar representations for words

from the same semantic class during training. Crucially, our approach only assumes a small

seed of equivalences, but no parallel data. It then uses these to stochastically reshuffle or

corrupt the source and target corpora. Specifically, as shown in Algorithm 2, we begin by

shuffling the concatenation of the two corpora, D = Den ∪ D f r (for example English and

French data). We then pass over this data. For each word w in each sentence of D, if the

word is in the intial seed, we replace it by a random draw from its equivalence class with

probability 0.5. In other words, half of the seed words w are replaced by words w′ where

C(w) = C(w′) (belong to the same class). For example, using translation equivalence

classes, the text build the house could be reshuffled into construire the house or build la

1https://www.wiktionary.org/

https://www.wiktionary.org/
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maison, or some other combination of English and French words with the English word

order. With POS equivalence classes, any of the words in build the house can be replaced

with words with overlapping syntactic categories, e.g. build the voiture.

In other words, we require of the model to be able to accurately predict any word from

the observed target word’s class, given the same context. This has two attractive properties:

Firstly, it forces the model to learn similar embeddings for words from the same class. And

secondly, it is very fast to implement, and indeed our implementation runs roughly at the

same speed as training an off-the-shelf word2vec model.

Algorithm 2 Barista training algorithm. The Reshuffle function stochastically replaces a

word w with words from the class of words that w belongs to. We will evaluate the effect

of replacing words from the context vs words in target positions in Section 6.5.2.1.
1: function Barista

2: D ← Shuffle(Den ∪ D f r )

3: for (wt ,h) ∈ D do
4: w̃t , h̃ ← Reshuffle(wt ,h)

5: TrainStep(w̃t , h̃)

6: end for
7: end function

6.3 Implementation Details

We implemented the proposed method by extending the popular word2vec package. Our

implementation can be found at https://github.com/gouwsmeister/barista.

The code works by reading in equivalence class information prior to training. The code

lazily allocates a word2class structure mapping words to their classes, and its inverse,

a class2word structure mapping classes to their associated member words. Memory al-

location is efficiently amortized by starting with an array structure of size one, and lazily

reallocating to double its size once it fills up. Given a new word during training, it can be

efficiently corrupted by mapping to its class and then mapping the class to the array con-

taining its member words. By sampling from this array (which can be done in O(1) if we

know its total size), the word can be corrupted in a very efficient way, as shown below using

Python pseudo code.

def reshuffle(word):

C = word2class[word]

idx = randint() % words_per_class(C)

return class2word[C][idx]

https://github.com/gouwsmeister/barista
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6.4 Obtaining Equivalence Classes

In this work we explored three different types of equivalence classes: POS, word transla-

tions, and WordNet “supersense” tags. Das and Petrov distilled the 45 part-of-speech tags

from the Penn Treebank into 12 generalized classes, such as VERB, NOUN, etc. Wiktionary is

an online, crowd-sourced dictionary where users annotate words with parts of speech. This

represents a rich, freely available resource which has been mined in prior work to derive

freely-downloadable dictionaries of words and their parts of speech2. We use these derived

dictionaries for extracting bilingual POS equivalence classes.

For word translations we made use of the online Google Translate (GT) system. goslate3

is a very convenient Python package for accessing the GT system. It automatically supports

batching large translation tasks to avoid exceeding the GT fair usage policy, among other

things. We made use of this to translate a vocabulary file extracted from the training data

into a bilingual dictionary of words and their translations. This can then be converted into

the equivalence class format expected by our implementation, by simply assigning a unique

integer identifier to each ‘class’ of translation pairs. Word-level translation is not a trivial

task, and there are definitely some noise in the translations. However, as we will show in

the evaluations, the models were able to learn fine-grained bilingual embeddings despite the

noise.

6.5 Experiments

In this section we present qualitative and quantitative evaluations of the proposed Barista

model. In the experiments we balance the source and target training corpora by subsampling

from the bigger corpus. The vocabularies for all models were kept unrestricted, and usually

resulted in around 1 million words per language pair. We train with a window of 4 words

on either side of the target words, using linear discounting of the initial learning rate of 0.1.

These parameters were set on the Spanish POS data.

6.5.1 Qualitative Evaluation

We first present a qualitative evaluation of English-German bilingual embeddings learned

from the smaller Europarl corpus (roughly 50M words per language). Note that while this

is parallel data, we do not exploit its parallel nature.

2https://code.google.com/p/wikily-supervised-pos-tagger/downloads/list
3https://pypi.python.org/pypi/goslate

https://code.google.com/p/wikily-supervised-pos-tagger/downloads/list
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Figure 6.1: t-SNE visualization of Barista bilingual embeddings induced using POS

classes, where we have annotated the induced clusters to highlight that the induced em-

beddings cluster quite distinctively by POS tag.

6.5.1.1 POS classes

POS classes were derived from Wiktionary as explained in Section 6.4. We train a CBOW

model architecture by perturbing both the contexts and the targets. The model finished

training in less than a minute on a Macbook pro.

The resulting embeddings were visualized using the t-SNE technique [88], and is shown

in Fig 6.1. It is evident from the visualizations that the model learns to cluster words very

distinctively by their POS tag. However, crucially, words from the same class in both lan-

guages cluster together. Word embedding models with short context windows typically

cluster roughly by POS classes. However, in this case, we see the same effect for bilingual

embeddings, i.e. words from both languages with the same POS tag cluster together. Indi-

vidual words do not appear to retain the fine-grained relationships one normally observes

in word embeddings (where similar words cluster closer together). This is to be expected,

since with only 12 classes for thousands of words, we are smoothing over quite a lot of

distributional information during training.

6.5.1.2 Translation classes

Next, we induced English-German bilingual embeddings on Europarl using translations

obtained from Google Translate as described in Section 6.4. We derived a dictionary of the
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(a) Determiners.
(b) Prepositions.

(c) Modals.

(d) Verbs.

Figure 6.2: t-SNE visualizations of English-German bilingual embeddings induced using

the Barista model trained with translation classes derived from Google Translate. English

words are appended with ‘_e’ and German words with ‘_f’ (for foreign). The visualizations

show how the model learns very fine-grained syntactical cross-lingual relationships.

top 20 thousand most frequent words in English, translated into German. The model again

finished training in less than a minute .

The embeddings are visualized using the t-SNE algorithm and are shown in Fig 6.2.

The visualizations show that the models are able to extract very fine-grained cross-lingual

relationships, and some clusters still seem to correspond to parts of speech. We show exam-

ples of determiners from both languages clustering together, as well as prepositions, modals

and verbs.

6.5.2 Cross-lingual part-of-speech tagging

Next, we evaluated the embeddings in the context of unsupervised cross-lingual part-of-

speech tagging [96]. The goal is to train a tagger, in our case a structured perceptron [97],

on labeled English data, and then evaluate the model on predicting parts of speech tags

in another target language. We use data from Spanish, German, Danish, Swedish, Italian,
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σ Accuracy

0.001 81.8

0.01 82.4
0.1 79.7

1.0 69.9

Table 6.1: The effect of the σ scaling parameter on the cross-lingual POS prediction task

using a held out selection of English-Spanish data.

Dutch and Portuguese. Since some tagging schemes differ, training and testing data, which

are the same as used by Das and Petrov [96], were converted to use the same 12 universal

parts of speech proposed by Petrov et al. [93].

All results in this section were obtained by training bilingual embedding models on

the publicly-available, pre-tokenized versions of Wikipedia [76], and then using the trained

embeddings as features in an efficient publicly available implementation of the structured

perception4. We use ortographic features as well as the embedding vector of the target word.

In addition, we use type constraints from Wiktionary to prune the search lattice during

decoding [98]. This type of prediction model is referred to as “weakly supervised” [94].

6.5.2.1 Hyperparameters and different perturbation schemes

When using embedding vectors as features for training discriminative models like the struc-

tured perceptron or CRFs, along with other binary features (e.g. capitalization), one needs to

be careful to scale the individual embedding components to balance the contributions from

the different feature types. This was first observed by Turian et al. [9]. We use the same

scheme whereby embeddings are first whitened by dividing by their standard deviation, and

then scaled by some hyperparameter σ, where σ is tuned on a held out validation set.

For setting hyperparameters, we chose the English-Spanish language pair5. It turns out

that the selection of σ has a very noticeable effect on the final prediction performance on

the POS task. The results are displayed in Table 6.1, where in our experiments, different

values of σ can cause results to vary between 81.8 and 69.9. We chose σ = 0.01 for the

rest of the experiments.

The reshuffling can be applied to training any type of monolingual word embedding

model, and we considered the CBOW and skipgram models, since they have been shown to

learn high quality word embeddings fast. It can furthermore be applied to corrupt different

parts of the input: one could potentially corrupt target words only, context words only, or all

4https://github.com/coastalcph/rungsted/tree/pydecode
5It is standard in cross-lingual methods to tune on one language pair and then report results over all pairs

using the chosen hyperparameters.

https://github.com/coastalcph/rungsted/tree/pydecode
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Model Architecture Target-only Context+Target

CBOW 81.9 82.6
Skipgram 81.7 82.0

Table 6.2: Effect of model architecture and where the perturbation is applied on the accuracy

of the induced embeddings on the English-Spanish cross-lingual POS tagging task.

Language Baseline Random Klmtv POS-50 POS-300 Tr-50 Tr-300 DP B-K

Spanish 80.6 81.8 79.8 82.4 81 81.6 82.6 84.2 80.2
German 80.4 82.7 82.8 81.8 84.1 82.6 84.8 82.8 81.3
Danish 63 68.9 - 68.9 72.4 71.8 78.4 83.2 69.1
Swedish 71.6 73.7 - 75 76 75.4 77.5 80.5 70.1
Italian 80.1 81.3 - 82.1 80.9 82.1 80.7 86.8 68.1
Dutch 74.5 77.2 - 78.3 77.4 78.7 80.3 79.5 65.1
Portuguese 76.9 78.1 - 77.3 76.1 80.6 80.5 87.9 78.4

Avg 75.3 77.7 - 78 78.3 79 80.7 83.6 73.2

Table 6.3: Results on the cross-lingual POS-tagging task. Klmtv uses the bilingual em-

beddings from Klementiev [16], DP is the approach by Das and Petrov [96], POS-X refer

to X-dimensional Barista embeddings trained with part-of-speech equivalence classes, and

likewise Tr-X is X-dimensional Barista embeddings trained using translation classes.

words in the training data. We evaluated the effect of these two choices on the cross-lingual

POS-tagging problem for the English to Spanish prediction task. The results are shown in

Table 6.2, which shows that the CBOW architecture gave the best results on the held out set

when we reshuffle both targets and contexts. This is the setting that was used for the rest of

the experiments.

6.5.2.2 Results

Our baseline method is a type-constrained structured perceptron with only ortographic fea-

tures, which are expected to transfer across languages. We also experiment with using

random embeddings, as well as off-the-shelf bilingual embeddings provided by Klemen-

tiev [16] (Klmtv), available online6. POS-X refer to X-dimensional Barista embeddings

trained with part-of-speech equivalence classes, and Tr-X are X-dimensional Barista em-

beddings trained with translation classes obtained from Google Translate. As an upper

bound, we compare to the results reported by Das and Petrov (DP), since their method

requires more additional insample unlabeled data as well as parallel bilingual data. Our re-

sults are displayed in Table 6.3. All results were obtained by running our implementation of

6http://people.mmci.uni-saarland.de/~aklement/data/distrib.

http://people.mmci.uni-saarland.de/~aklement/data/distrib
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the Barista model on a standard Macbook Pro, and inducing embeddings and training the

tagger for one language-pair took between 15 and 45 minutes for 50 and 300-dimensional

embeddings respectively.

We notice that training with random embeddings improves over the baseline, implying

that the random features are acting as a regularizer, which enables the baseline system to

generalize better. This might seem strange, but can be understood as follows: The regular-

ized objective of the averaged perceptron is to minimize LOSS + NORM. Let M1 be the

baseline model, and M2 baseline plus random features. In theory, LOSSM1 = LOSSM2 , but

NORMM1 < NORMM2 (simply because the norm increases with many random features).

This forces LOSSM1 < LOSSM2 , since the new weight is on random features, not original

features, and loss increases (subject to noise injection). A greater loss is likely to lead to

underfitting and hence have a regularizing effect. Also, we note that the bilingual embed-

dings provided by Klementiev for the English-Spanish and English-German tasks actually

degrades performance for Spanish and only shows a very slight gain for German.

Overall, two observations can be made: First, training the Barista model with POS

classes improves over the random baseline, but training with translation classes gives even

better performance. For both approaches, using more embedding features improves the

performance (although increasing the dimensionality to 500 did not improve results, pre-

sumably since there was not enough training data or due to lack of regularization on the

embeddings during training).

The best model trained with translation classes with 300-dimensional embeddings is

able to improve over the unsupervised Berg-Kirkpatrick (B-K) baseline for every language-

pair, and over the Das and Petrov results for the English-German and English-Dutch lan-

guage pairs.

6.5.3 Cross-lingual super sense tagging

Finally, we also used the Barista-embeddings for English-Danish (with parameters still

set on Spanish POS) on another task, namely super sense tagging [99]. We train a sys-

tem on a mixture of 1000 randomly sampled sentences from English SemCor7 and 320 la-

beled Danish sentences. We compare using 300-dimensional bilingual embeddings trained

with equivalence classes from English and Danish WordNets (WN-300), to embeddings

trained using translation equivalence classes (Tr-300). We use a most-frequent-sense base-

line (MFS), as well as structured perceptron model trained only with ortographic features.

The evaluation metric is a weighted average over F1-scores for the 41 semantic classes.

Results are shown in Table 6.4. Note that Barista embeddings induced using the WordNet

knowledge base is superior to using translation equivalences, but both embeddings are supe-

rior to both our baselines. In fact, using the Barista embeddings lead to a 21% improvement

7http://web.eecs.umich.edu/~mihalcea/downloads.html#semcor

http://web.eecs.umich.edu/~mihalcea/downloads.html##semcor
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Baselines Barista

MFS bl Tr-300 WN-300

blogs 49.1 46.7 50.5 61.9
forum 44.5 41.2 45.0 53.9
magazine 46.5 45.2 50.4 51.5
newswire 48.4 45.4 52.7 60.9
reviews 48.4 44.9 50.4 55.8
speech 51.1 48.4 51.5 58.4
Avg 48.1 45.4 50.5 58.3

Table 6.4: Cross-language super sense tagging

in accuracy. The Danish training (newswire only) and test data (six different domains) – is

made publicly available with the Barista code.

6.6 Conclusion

This chapter introduced Barista, a very simple and computationally efficient data corruption

technique for learning task-specific bilingual word embeddings using monolingual word-

embedding algorithms. Barista leverages additional semantic information about how words

map into equivalence classes during the training of word embedding models. We evaluated

using part-of-speech classes derived from the crowd-sourced Wiktionary, translation classes

obtained using the online Google Translate system and supersense semantic categories ex-

tracted from WordNet. We presented qualitative results showing that the proposed technique

efficiently trades off learning normal distributional relationships with learning to cluster the

induced embeddings by their class. Coarse POS classes preserve POS information but tend

to lose a lot of fine-grained syntactic information. Translation classes enable the models

to efficiently learn to cluster translation-pairs across languages. We presented results on

cross-lingual part-of-speech tagging over seven languages and showed that the proposed

method achieves strong results overall, and is able to outperform off-the-shelf bilingual em-

beddings as well as two strong baseline methods on the English-German and English-Dutch

language pairs. We presented results on a cross-lingual English-Danish supersense tagging

tasks, where Barista embeddings induced using WordNet classes leads to a 21.2% overall

relative improvement in prediction accuracy. The method is highly scalable and we make

our implementation available at https://www.github.com/gouwsmeister/barista.

https://www.github.com/gouwsmeister/barista


Chapter 7

Conclusion

In the following sections we provide a short synopsis of the work in this dissertation as well

as a summary of the main research findings.

7.1 Synopsis

This dissertation studies the problem of automatically learning to represent one or more nat-

ural languages from raw text data in order to successfully predict different aspects of their

meaning by computational means. Chapter 3 provides an in-depth overview of neural lan-

guage models (NLMs), with a particular emphasis on NLMs for learning word embeddings.

It also presents a novel geometrical perspective for understanding how word embedding

models are trained, by viewing the gradients of the objective function as exerting push-

pull forces on the learned embedding point-vectors during training. Chapter 4 introduces

SimTree, an efficient O(V log V ) algorithm for jointly learning a likelihood-optimal tree

structure during training of an NLM with a hierarchical softmax output layer. Section 4.3

introduces a simple subsampling training technique for improving both the speed and

the quality of embeddings induced using the hierarchical softmax. Chapter 5 introduces

BilBOWA, an efficient bilingual word embedding model which learns representations for

words across two or more languages by only making use of a limited sample of parallel raw

text, and unlimited amounts of monolingual raw text. Finally, Chapter 6 introduces Barista,
a semi-supervised bilingual word embedding model which can make use of additional se-

mantic information in the form of word equivalence classes during the embedding process.

Throughout, this dissertation presents qualitative evaluations of the embeddings induced us-

ing the different methods through visualisations and inspection of nearest neighbours in the

learned space, as well as quantitative experiments on the monolingual word analogical rea-

soning task, and cross-lingual document classification, part-of-speech tagging, supersense

tagging and word translation.

114
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7.2 Summary of Findings

This dissertation investigated the primary hypothesis that neural word embeddings induced

from raw text can jointly represent two or more languages in order to accurately predict

different aspects of their meaning through computational means. Through the course of

the dissertation, we evaluated this hypothesis by proposing and evaluating different word

embedding models on a variety of tasks and languages.

A Geometrical View of Word Embedding Models We started with a careful review of

the state-of-the art in monolingual word embedding algorithms in Chapter 3. We identified

the key components of current monolingual word embedding models: a) how the model

selects context words, b) how the network maps context words to predict target words, and

c) how it is trained.

Word embeddings define a geometrical manifold structure in the induced embedding

space. By studying the most popular loss functions for training word embedding models,

we introduced a common geometrical framework for understanding how word embedding

models operate during training that directly applies to shallow word2vec-type models and

provides a useful intuitive insight into the working of nonlinear NLMs (§ 3.5): The loss

function can be understood as assigning a cost to the geometrical structure of the manifold

spanned by the learned embeddings with respect to a new training pair. The loss function

can further be decomposed into positive pulling forces acting on the learned word embed-

dings that are balanced with negative pushing forces. The goal of training is to find an

equilibrium geometrical configuration that minimises the total expected cost of the mani-

fold structure under the data generating distribution.

The result of training is that the distances from a word’s learned embedding vector to

the vectors learned for other words are proportional to the frequency with which they are

observed together in the training data. This represents a rich geometrical encoding of the

co-occurrence statistics of natural languages. The Distributional Hypothesis (§ 3.2) states

that a word’s meaning is reflected in its co-occurrence statistics, and in this work we relied

on an extension of this notion to more than one language by jointly training bilingual word

representations. The bilingual experimental results we will be summarising below suggest

that these models indeed succeed in extracting useful information from the distributional

statistics that are useful not only for predicting linguistic attributes in one language, but

also across different languages.

Learning Tree Structures for Hierarchical Output Layers The hierarchical softmax

speeds up training of NLMs by grouping words into classes, and structuring the calculation

of P(w |h) according to the class tree structure. Different trees trade off prediction accuracy

and training speed. To optimise for prediction speed, the optimal tree structure corresponds

to the Huffman encoding, where each word’s depth in the tree is inversely proptional to its

frequency of occurrence in the data (i.e. frequent words have short paths). To optimise for
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likelihood, words should cluster in the trees in order to balance their empirical conditional

likelhoods in the data. Therefore, for a fixed context, words that are more probable should

cluster together in the tree. However, nodes are shared between words, which creates a

dependency between tree structure and node parameters. Since tree structure is unobserved,

learning the best tree structure requires solving a latent-variable problem.

We introduced the SimTree algorithm (§ 4.2), an efficient O(V log V ) algorithm for

learning an approximate likelihood-optimal tree structure. SimTree uses an alternating

maximisation approach which iterates between learning optimal model parameters given

a fixed tree, and learning an improved tree structure given fixed model parameters. The

context-dependent nature of the tree structure suggests that there might be many possible

approximately-optimal tree structures. SimTree averages over these by keeping a running

average of each word’s empirical context-vectors, and reclustering according to these. We

showed that the algorithm is very efficient to run in practice, learns interesting semantic

clusters, and improves the likelihood of the model in a language modelling task.

Bilingual Word Embeddings using Limited Sentence-aligned Data
BilBOWA (Chapter 5) is a computationally-efficient model for inducing general-purpose

bilingual distributed word representations directly from raw text without requiring word-

level alignments or dictionaries. Instead, the model trains directly on a limited sample of

parallel data and unlimited amounts of monolingual data. The model combines advances

in training monolingual word embeddings with a novel, efficient, sampled cross-lingual

objective. In the process, the model trades off learning general linguistic features with

learning cross-lingual relationships.

BilBOWA was motivated as a faster approximation of the bilingual embedding model

proposed by Klementiev et al. [16]. The model was evaluated on a semantic cross-lingual

English-German document-topic classification task, in the same setup as Klementiev [16],

as well as in a lexically fine-grained word translation task, in the same setup as the of-

fline Translation Matrix approach by Mikolov [82]. Our experimental results show that

BilBOWA is able to significantly improve upon the results of the original model by Kle-

mentiev, despite a computational speedup of three orders of magnitude. This suggests that

the Monte Carlo approximation employed by the BilBOWA model is indeed an effective

approximation of the original expensive cross-lingual regulariser employed by Klemen-

tiev [16].

In the translation task, we trained bilingual BilBOWA embeddings and used distance

in the induced vector space to select Spanish translation candidates for a selection of En-

glish words. Using the jointly-trained bilingual BilBOWA embeddings on this task shows

significant improvements over embeddings aligned after being trained in a disjoint mono-

lingual setting, using the Translation Matrix method. This suggests that the joint nature of

the optimisation employed by the BilBOWA model is able to discover finer-grained lexi-
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cal correspondences, even without using any word-level information, as was used by the

previous state-of-the-art Translation Matrix method.

Bilingual Task-specific Word Embeddings Barista (Chapter 6) is a very simple wrap-

per technique for inducing task-specific bilingual word embeddings using only monolingual

data and a small seed of extra semantic information. The algorithm exploits a prior semantic

mapping of how words in the source and target languages map into near-equivalence classes

(such as POS), and includes this information during the embedding process. We showed

qualitatively that the model trades off learning linguistic features with learning to cluster by

the prior semantic class information. We also showed experiments on cross-lingual part-

of-speech tagging using POS classes and word translation classes, as well as cross-lingual

supersense (SS) tagging using classes extracted from WordNet. In both cases, the bilingual

Barista embeddings were able to improve upon off-the-shelf bilingual embeddings, and for

English-Danish supersense tagging, led to a 10% improvement in the absolute accuracy of

the model.

Interestingly, for the POS task, bilingual embeddings induced using translation classes

outperformed embeddings induced using POS classes. However, for SS-tagging, WordNet

classes substantially outperformed translation classes. We can only conjecture that this is

perhaps related to the granularity of the classes: with 12 POS classes, the model is smooth-

ing over a lot of distributional information during the embedding process, compared to 41

SS classes, or the roughly 20 thousand translation “classes”. Evidently, for POS tagging,

the richer syntactic information retained using the finer-grained translation classes repre-

sents useful information for the POS-tagging task.

7.3 Future directions

Since SimTree is designed to optimize expected model likelihood, it often generates trees

that are very unbalanced and hence slow to use in practice. It might be a good idea

to combine the likelihood objective with a speed objective (as was done in Zweig and

Makarychev [57] for a shallow tree) to learn tree structures that are both fast to evaluate

and lead to good model likelihoods.

The BilBOWA-loss was originally motivated as an approximation to an all-pairs dis-

tance loss. However, combining the Euclidian distance with the monolingual losses based

on the dot-product can lead to scaling issues. The interaction between embedding norms

and the distance function used needs to be studied in more detail. It may be better to define

the BilBOWA-loss in terms of the cosine distance between word pairs, or alternatively to

impose a norm-constraint on embeddings during training.
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7.4 Conclusion

During the course of this dissertation, we have shown improvements in cross-lingual document-

topic prediction, cross-lingual part-of-speech tagging, cross-lingual supersense tagging and

word-level translation by primarily utilising bilingual word embeddings learned from raw

text as the predictive features. Together, these results provide overwhelming evidence in

favour of our primary research hypothesis (§ 1.2). We therefore conclude that distributed

neural word embeddings induced from raw text offer a suitable and efficient vehicle for

jointly representing two or more languages in order to accurately predict various different

aspects related to their meaning.
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[91] T. Kočiskỳ, K. M. Hermann, and P. Blunsom, “Learning bilingual word representa-

tions by marginalizing alignments,” arXiv preprint arXiv:1405.0947, 2014.

[92] A. Haghighi, P. Liang, T. Berg-Kirkpatrick, and D. Klein, “Learning bilingual lexicons

from monolingual corpora,” in ACL, vol. 2008, 2008, pp. 771–779.

[93] S. Petrov, D. Das, and R. McDonald, “A universal part-of-speech tagset,” in LREC,

2011.

[94] S. Li, J. Graa, and B. Taskar, “Wiki-ly supervised part-of-speech tagging,” in EMNLP-

CoNLL’12, 2012, pp. 1389–1398.

[95] D. Tang, F. Wei, N. Yang, M. Zhou, T. Liu, and B. Qin, “Learning sentiment-specific

word embedding for Twitter sentiment classification,” in ACL, 2014.

[96] D. Das and S. Petrov, “Unsupervised part-of-speech tagging with bilingual graph-

based projections,” in Proceedings of the 49th Annual Meeting of the Association for

Computational Linguistics: Human Language Technologies-Volume 1. Association

for Computational Linguistics, 2011, pp. 600–609.

[97] M. Collins, “Discriminative training methods for hidden markov models: Theory and

experiments with perceptron algorithms,” in EMNLP, 2002.

[98] O. Täckström, D. Das, S. Petrov, R. McDonald, and J. Nivre, “Token and type con-

straints for cross-lingual part-of-speech tagging,” TACL, vol. 1, pp. 1–12, 2013.

[99] M. Ciaramita and Y. Altun, “Broad-coverage sense disambiguation and information

extraction with a supersense sequence tagger,” in Proc. of EMNLP, Sydney, Australia,

Jul. 2006, pp. 594–602.


	Declaration
	Acknowledgements
	Dedications
	Contents
	List of Figures
	List of Tables
	Nomenclature
	Introduction
	Motivation
	Research Objectives
	Contributions
	Publications
	Overview

	Background
	Probabilistic Models
	Probability basics
	Entropy and Cross-entropy
	Monte Carlo methods

	Machine Learning
	Learning from data
	Regularisation

	Neural Networks
	Inference: Forward propagation
	Loss functions
	Squared-error
	Hinge-loss
	Cross-entropy

	Training: Gradient-based training
	Automatic learning rate selection
	Early stopping with patience

	Training: Computational flow graphs
	Training: Backpropagation derivation
	Training: Backpropagation algorithm
	Unsupervised models

	Statistical Natural Language Processing
	Overview
	Representation Learning in NLP
	Brown clustering
	Spectral methods



	Neural Word Embedding Models
	Introduction
	Distributional Representation Learning Methods
	A Review of Neural Language Models
	Neural probabilistic language model (NPLM)
	Log-bilinear language model (LBL)
	Hierarchical (class-based) models
	Recurrent models
	Unnormalised, noise-contrastive NLMs
	Noise-contrastive rank loss
	CBOW and Skip-gram


	Discussion of NLMs
	How context h is defined
	The structure of f(h)
	The loss function L(wt, h)
	Maximum likelihood
	Stochastic maximum likelihood
	Noise-contrastive estimation (NCE)
	Noise-contrastive rank-loss
	Noise-contrastive cross-entropy (``Negative sampling'')


	A Geometrical Perspective on Word Embedding Models
	Why Do Similar Words Have Similar Embeddings?
	Conclusion

	Improved Learning with Hierarchical Output Layers
	Hierarchical Softmax (HS)
	Coarse-to-fine elimination of words for speed savings
	The HS objective
	Training the hierarchical softmax
	Optimal tree structure: Speed vs likelihood

	SimTree: An iterative, O(N logN) algorithm for learning a likelihood-optimal tree structure during training
	Qualitative experiments
	Reduced dataset
	Trees learned
	Codes learned

	Language modelling experiments

	Subsampled Hierarchical Softmax
	Motivation and definition
	Subsampling distribution
	Effect of the tree structure
	Experiments

	Conclusion

	BilBOWA: Bilingual Bag-of-Words without Alignments
	Introduction
	Learning Cross-lingual Word Embeddings
	The BilBOWA Model
	Learning Monolingual Features: The L term
	Learning Cross-lingual Features: The BilBOWA-loss ( term)
	Parallel subsampling for better results

	Implementation and Training Details
	Experiments
	Qualitative results
	Cross-lingual Document Classification
	WMT11 Word Translation

	Related work
	Discussion
	Conclusion

	Barista: Simple, Task-specific Bilingual Embeddings
	Introduction
	The Barista Model
	Implementation Details
	Obtaining Equivalence Classes
	Experiments
	Qualitative Evaluation
	POS classes
	Translation classes

	Cross-lingual part-of-speech tagging
	Hyperparameters and different perturbation schemes
	Results

	Cross-lingual super sense tagging

	Conclusion

	Conclusion
	Synopsis
	Summary of Findings
	Future directions
	Conclusion

	Bibliography

