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Abstract

Application of Convolutional Neural Networks to Building
Segmentation in Aerial Images

Kayode Kolawole Olaleye

Department of Mathematical Sciences,
University of Stellenbosch,

Private Bag X1, Matieland 7602, South Africa.

Thesis: MSc

December 2018

Aerial image labelling has found relevance in diverse areas including urban
management, agriculture, climate, mining, and cartography. As a result, re-
search efforts have been intensified to find fast and accurate algorithms. The
current state-of-the-art results in this context have been achieved by deep
convolutional neural networks (CNNs). This has been possible because of
advances in computing technologies such as fast GPUs and the discovery
of optimal architectures. One of the main challenges in using deep CNNs
is the need for a large set of ground truth labels during the training phase.
Moreover, one has to choose optimal values for the many hyperparameters
involved in the model construction to get a good result. In this thesis we
focus on building segmentation from aerial images, and study the effect of
different hyperparameter values, paying particular attention to the general-
isation ability of the resulting models. For all our experiments we use the
same architecture and performance metric as the one used in Mnih & Hin-
ton (2012). Our investigation found the following main results: 1) when it
comes to the size of CNN filters, small size filters perform as good or even
better than large sized filters; 2) the LeakyReLU activation functions lead to
a better precision-recall curve than ReLU (Rectified Linear unit) and Tanh
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ABSTRACT iii

activation functions; 3) batch-normalization leads to a slightly poor break-
even point than without batch-normalization - this is contrary to what has
been found in other studies with different architectures. In addition, we
also investigate how well our models generalise to the task of interpreting
contexts that are different from the training sets. Drawing from our find-
ings, we gave recommendations on how to make deep CNN models more
robust to variations in aerial images of other continent such as Africa where
annotations are either unavailable or in short supply.
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Uittreksel

Toepassing van Konvolutionele Neurale Netwerke om
Segmentasie in Lugfoto’s te bou

(“Application of Convolutional Neural Networks to Building Segmentation in Aerial
Images”)

Kayode Kolawole Olaleye

Departement Wiskuudige Wetenskappe,
Universiteit van Stellenbosch,

Privaatsak X1, Matieland 7602, Suid Afrika.

Tesis: MSc

Desember 2018

Lugfoto-etikettering het relevansie gevind in verskeie gebiede, insluitende
stedelike bestuur, landbou,klimaat, mynbou en kartografie. As gevolg hier-
van is navorsingspogings versterk om vinnige en akkurate algoritmes te
vind. Die huidige state-of-the-art resultate in hierdie konteks is bereik deur
diep konvolusie neurale netwerke (CNNs). Dit is moontlik as gevolg van
vooruitgang in rekenaar tegnologie soos vinnige GPU’s en die ontdekking
van optimale argitektuur. Een van die grootste uitdagings in die gebruik
van diep CNN’s is die behoefte aan ’n groot aantal grondwaarheidetikette
gedurende die opleidingsfase. Daarbenewens moet mens optimale waardes
kies vir die baie hiperparameters wat by die modelkonstruksie betrokke is
om ’m goeie resultaat te kry. In hierdie proefskrif het ons fokus op die bou
van segmentering van lugfoto’s en bestudeer die effek van verskillende hi-
perparameterwaardes, met spesiale aandag aan die veralgemeningsvermoe
van die gevolglike modelle. Vir al ons eksperimente gebruik ons dieselfde
argitektuur en prestasiemetriek as die een wat in Mnih en Hinton (2012) ge-
bruik word. Ons ondersoek het die volgende hoofresultate gevind: 1) As
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dit by die grootte van CNN-filters kom, doen klein grootte filters so goed
of selfs beter as groot grootte filters; 2) die LeakyReLU aktiverings funk-
sies lei tot ’n beter presisie-herhalingskromme as ReLU (reggestelde lineere
eenheid) en Tanh aktiverings funksies; 3) batch-normalsering lei tot ’n ef-
fens swak gelykbreekpunt as sonder batch-normalisering dit is strydig met
wat in ander studies met verskillende argitekture gevind is. Daarbenewens
ondersoek ons ook hoe goed ons modelle veralgemeen in die interpretasie
van kontekste wat verskil van die opleidingsstelle. Op grond van ons bevin-
dinge, het ons aanbevelings gegee oor hoe om diep CNN-modelle sterker
te maak vir variasies in lugfoto’s van ander vastelande soos Afrika waar
annotasies of onbeskikbaar of in gebreke is.
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Chapter 1

Introduction

Satellites orbiting the earth capture important information about different
parts of the world, making available an enormous amount of images that
can be tapped to provide insights into the dynamics impacting the earth and
its inhabitants. Such data can serve as an alternative to infering the urban
dynamics, for example for helping African cities optimize limited resources.
In particular, remotely sensed data provides near-real-time support to farm-
ers, urban-planning specialists, and cartographers. One of the ways this is
made possible is through creating systems designed to delineate objects of
interest from a massive amount of remotely sensed images in an automatic
fashion. Advances in deep learning architectures and hardware such as
GPUs have contributed immensely to the conversion of image data to high
impact products and services. Before their take-off, remote sensing prac-
titioners rely on hand-engineered computer vision techniques for insights
extraction from these data. Hand-engineered approaches require human
expertise, rendering the process error-prone, slow, and expensive. Convo-
lutional Neural Networks (CNN) - a class of neural networks designed to
perform well with data that has a grid-like topology (for example images) -
eliminates the need for hand-engineered discriminative feature extraction.
These techniques have continuously shown human-level performance and
outperform many computer vision techniques on diverse real-life tasks.

The availability of the OpenStreetMap (OSM) 1 project - a crowdsourcing
project for creating a free editable map of the world - contributes to the
success of CNN in the task of aerial image labelling. CNNs thrive under rich

1https://www.openstreetmap.org

1
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CHAPTER 1. INTRODUCTION 2

Figure 1.1: Some applications of CNNs to aerial imagery. Neal et al. [31],
Gui-Song et al. [74], Volodymyr [50], DigitalGlobe [15], Walker et al. [70]

supervision and abundance of data. While ground truth available on OSM
is fraught with human-error, a number of research results in this domain are
based on it. Some of them ([51, 50, 61]) devise means of mitigating the effect
of such error on the resulting trained models.

The goal of this thesis is to investigate the generalization capability of CNN
models trained on the Masachusset Building Dataset [50] and identify a set
of hyper-parameters that are particularly well-suited for the task of labelling
aerial images. This thesis focuses on:

• Generalisation Potential of CNN models: A possible limitation of the
application of existing CNN models for aerial image labelling is that

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 1. INTRODUCTION 3

they are trained on a limited amount of data covering few regions in
North America. In this thesis, we will develop CNN-based models
using existing ideas from the literature and evaluate such models on
aerial images from another continent. The aerial images used in the
investigation of the generalization capability of the models are not in-
cluded in the training sets.

• Empirical analysis of different hyper-parameters choices: When train-
ing CNN, finding good hyper-parameter choices determines the per-
formance of the network. Some of the key hyper-parameters that in-
fluence the performance of CNN include the number of convolution
layers, number of hidden filters, filter size, normalizing or renormaliz-
ing the output of each convolution layers, learning rate and activation
functions to use. Additionally, it might be useful to understand how
different choices of setting up dataset pipeline in terms of the amount
of training, validation and test sets impact the efficiency of the experi-
mentation.

The rest of the thesis is presented as follows:

• Chapter 2 provides a review of aerial datasets and existing methods
for analysing them.

• Chapter 3 presents the formulation of aerial image labelling task that
we use as well as details about the choice of CNN architecture and
parameters investigated in this work.

• Chapter 4 presents the models we investigated and the generalisation
potential of the models.

• Chapter 5 presents a conclusion for this thesis and highlights some of
the possible future directions.
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Chapter 2

Review

Several methods for learning from vision datasets have been developed
over the years. The methods are generally classified into image classifica-
tion [65], object localization and detection [25], semantic segmentation [41],
and instance segmentation [69]. These methods have been extended to the
task of labelling objects of interest in satellite and aerial imagery over the
past decades. Throughout the rest of this thesis, we use aerial imagery to
refer to any type of two dimensional and possibly multi-band data collected
by an airborne or spaceborne sensor. The sensors could be visible light, in-
frared, hyperspectral sensors, as well as airborne LIDAR, which measures
the distance to objects from the sensor [50]. The labelling of aerial images is
useful for a wide range of applications such as geospatial object detection
and segmentation [23, 44, 51, 50, 46, 3, 61], land use and land cover analy-
sis [48, 58, 6], natural disaster detection [47, 7, 66], and vegetation mapping
[71, 57, 49, 36].

The origin of public aerial image for machine learning training could be
traced to the cassification datasets [77, 63, 83, 80, 73]. These datasets consist
of high-resolution aerial images divided into object classes, where images
are assigned to a class based on the most noticeable object in the image.
Available classes include but not limited to buildings, forest and roads.

Classification of aerial images [6, 56, 54, 73, 77, 81, 79, 78] consists of making
a prediction for a whole input image, i.e., predicting the probability that a
given input image belong to a given object class. The drawback of classifi-
cation algorithms is that the location of the identified objects in the image
are not known.

4
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Localization and detection techniques [4, 57, 36, 5, 16, 71, 66], on the other
hand, are designed to learn the bounding boxes around the identified ob-
jects in the image to extract the location information. Semantic segmenta-
tion [51, 56, 26] takes a further step towards a fine-grained localization of
objects of interest. It entails grouping parts of images so that each pixel in
a group corresponds to the object class of the group as a whole. In a binary
class setting, the dataset contains two distinct classes: a class for the object
of interest and another class for the background. A multi-class setting is
characterised by more than two classes. In particular, the goal of semantic
segmentation is to predict the class of each pixel in the input aerial image.

One of the reasons for the increasing popularity of research in this field is
the recent advances in remote sensing instruments that has made it possible
to generate more and more different types of aerial images with different
spatial, spectral and temporal resolutions. Another reason is the advances
of image processing algorithms, particularly CNNs. The consistent success
of CNNs in achieving super-human results in computer vision tasks has
inspired researchers in the field to adopt them as an algorithm of choice for
aerial images classification tasks. The availability of powerful machines like
GPUs that make it possible to train very deep CNNs for classification tasks
further fuels the growing interest.

In aerial imagery, three types of resolution are common: the spatial res-
olution, the spectral resolution, and the temporal resolution. The spatial
resolution encodes the visible details about the pixel space, spectral reso-
lution specifies the electromagnetic bands in the image, and the temporal
resolution specifies the revisit time period of the satellite, airplane or drone.

Publicly available aerial images are of low resolution; starting from 10 me-
tres per-pixel and hence not suitable for most real-life applications. The
high-resolution imagery is made available for a fee by private aerial images
companies, at less than 0.5 metres per-pixel.

A study of existing methods for dealing with aerial images is performed
in [8] and information about existing dataset is provided. However, none
of the datasets is suitable for a semantic segmentation task (More details
in Section 2.1). In 2013, [50] released a benchmark dataset for training and
evaluating deep networks on aerial dataset.
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In the rest of this chapter we review the publicly available datasets for the
study of classification, detection and segmentation tasks. Additionally, we
discuss methods that are commonly applied to the datasets for a given ap-
plication as well as some of the known performance metrices.

2.1 Aerial Image Datasets

Publicly available datasets in this field of research can be classified into
three categories: classification, detection, and segmentation datasets. In
the following subsections, some of the properties, use-cases and drawbacks
of these datasets are presented. A summary of the presentation is provided
in Table 4.3.

2.1.1 Classification Datasets

UC Merced Land-Use

The widely used [6, 56, 54, 73, 77] UC Merced land-use dataset [77] is com-
posed of 2100 image patches divided into 21 classes. Each class has 100
images of size 256× 256 pixels with a spatial and spectral resolution of 0.3
metres and RGB respectively. Images were manually extracted from the
United States Geological Survey (USGS) National Map and covers several
US regions. The issues with this data are the small-scale size of the dataset
and unavailability of object contours, hence, not suitable for a semantic seg-
mentation task. However, due to their nature and relatively high resolution,
these images share many low-level features with general-purpose optical
images making them good candidates for fine-tuning a pre-trained CNN
[6].

WHU-RS19

The WHU-RS19 dataset [63] is composed of 19 scene classes, including air-
port, beach, bridge, commercial area, desert, farmland, football field, forest,
industrial area, meadow, mountain, park, parking lot, pond, port, railway
station, residential area, river, and viaduct. It was extracted from a set of
aerial images exported from Google Earth with a spatial and spectral reso-
lution of 0.5m and RGB. Each class has about 50 images of size 600× 600
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Figure 2.1: Samples of classification dataset from NWPU-RESISC45 Dataset
[8].

pixels. A drawback to this dataset is that per-pixel labelling is not available,
hence, not suitable for a semantic segmentation task. The high variations in
resolution, scale, orientation, and illuminations of the images further make
the data less attractive for some applications. The number of images per
class of this dataset is relatively small compared with UC-Merced dataset
[77]. However, it has also been widely adopted to evaluate scene classifica-
tion methods [10, 75, 82, 11, 27].
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CHAPTER 2. REVIEW 8

SIRI-WHU

The SIRI-WHU dataset [78] is composed of 12 scene classes including agri-
culture, commercial, harbor, idle land, industrial, meadow, overpass, park,
pond, residential, river, and water. Each class consists of 200 Google Earth
images with a spatial resolution of 2 m and a size of 200× 200 pixels. While
this dataset has been tested by several methods [81, 79, 78], the number
of scene classes is relatively small and per-pixel labelling is not available.
Moreover, it mainly covers urban areas in China and hence lacks diversity.

RSSCN7

The RSSCN7 dataset [83] is a 7-class images collected from the Google Earth
including grassland, forest, farmland, parking lot, residential region, in-
dustrial region, and river/lake. Each class consists of 400 images that are
cropped on four different scales with 100 images per scale. Each image has
a size of 400× 400 pixels. A drawback to this dataset, aside from the ab-
sence of per-pixel labels, comes from the scale variations of the images [72]
but can be used to fine-tune pretrained networks.

RSC11

The RSC11 dataset [80], collected from Google Earth, is composed of 11
classes including dense forest, grassland, harbor, high buildings, low build-
ings, overpass, railway, residential area, roads, sparse forest, and storage
tanks. Each class consists of 100 images with size 512 × 512 pixels and a
spatial resolution of 0.2 metres. A challenge with this dataset is that the
classes are quite similar in vision, which increases the difficulty in classify-
ing the scene images. RSC11 is not suitable for segmentation task.

Aerial Image Dataset (AID)

AID [73] is a new large-scale aerial image dataset created by collecting sam-
ple images from Google Earth imagery. It has 30 different scene classes and
about 200 to 400 samples of size 600× 600 in each class. The images in AID
are multi-source, as Google Earth images are from different remote imaging
sensors. This brings more challenges for scene classification than the single
source images like the UC-Merced dataset. Moreover, all the sample images
per class in AID are carefully chosen from different countries and regions
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around the world, namely China, the United States, England, France, Italy,
Japan, Germany; and they are extracted at different time and seasons under
different imaging conditions, which increases the intra-class diversity of the
data.

NWPU-RESISC45

NWPU-RESISC45 dataset [8] is a 45-class publicly available benchmark for
REmote Sensing Image Scene Classification (RESISC), created by North-
western Polytechnical University (NWPU), China. The classes include air-
plane, airport, baseball diamond, basketball court, beach, bridge, chaparral,
church, circular farmland, cloud, commercial area, dense residential, desert,
forest, freeway, golf course, ground track field, harbor, industrial area, in-
tersection, island, lake, meadow, medium residential, mobile home park,
mountain, overpass, palace, parking lot, railway, railway station, rectangu-
lar farmland, river, roundabout, runway, seaice, ship, snowberg, sparse res-
idential, stadium, storage tank, tennis court, terrace, thermal power station,
and wetland. This dataset contains 31500 images with spatial resolution of
0.3 to 0.2 metres has 700 images in each class. This dataset is not suitable
for segmentation task but can serve as a good candidate for fine-tuning pre-
trained networks.

Datasets and Reference Images per class Classes Total images Spatial resolution (metres) Image Size Year

UC Merced Land-Use [77] 100 21 2100 0.3 256× 256 2010

WHU-RS19 [63] 50 19 1005 up to 0.5 600× 600 2012

SIRI-WHU [78] 200 12 2400 2 200× 200 2016

RSSCN7 [83] 400 7 2800 - 400× 400 2015

RSC11 [80] 100 11 1232 0.2 512× 512 2016

AID [73] 400 30 10000 - 600× 600 2016

NWPU-RESISC45 [8] 700 45 31500 0.3 to 0.2 256× 256 2016

DOTA [74] - 15 2806 - 800× 800 to 4000× 4000 2018

NWPU VHR-10 [38] - 3 - - - 2016

COWC [52] - 2 - 0.15 - 2016

Massachusetts Buildings Dataset [50] - 2 151 1 1500× 1500 2013

ISPRS (Potsdam and Vaihingen) [30] - 6 - (0.05, 0.09) 6000× 6000 2012

Inria [45] - 2 - 0.3 5000× 5000 2012

Table 2.1: Comparison between the different RGB aerial datasets classifica-
tion, detection and segmentation.
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2.1.2 Object Detection Datasets

COWC

COWC [52] is extracted from 6 distinct locations: Toronto Canada, Sel-
wyn New Zealand, Potsdam and Vaihingen Germany, Columbus and Utah
United States. It has a spatial and spectral resolution of 15cm and RGB-
grayscale respectively. It contains 32716 annotated cars and 58247 negative
examples It is specifically created for car detection and counting, making its
application limited in scope.

NWPU VHR-10

NWPU VHR-10 [38] is an aerial image containing 3 categories of objects
including vehicles, ships and airplanes collected from different locations
on Google Earth. Specifically, the vehicles (recently 12000 instances) are
collected from an urban area in Beijing, China. The ships (3000 instances) are
collected from near the wharfs and ports besides the Changjiang River, the
Zhujiang River, and the East China Sea. The airplanes (2000 instances) are
collected from the images of 15 airports in China and America. Information
about the size and location of image bounding box are available, hence a
good candidate for training an object detector.

DOTA

DOTA [74] is a large-scale Dataset for Object deTection in Aerial images. It
can be used to develop and evaluate object detectors in aerial images just
like Pascal-VOC [18] is used in general object detection. It contains 2806
aerial images from different sensors and platforms. Each image ranges from
about 800× 800 to 4000× 4000 pixels. It currently includes 15 common ob-
ject categories including plane, ship, storage tank, baseball diamond, ten-
nis court, basketball court, ground track field, harbor, bridge, large vehicle,
small vehicle, helicopter, roundabout, soccer ball field and swimming pool.
Spatial resolution for each image is provided. Spatial resolution implies the
actual size of an instance. Fully annotated DOTA images contain 188282
instances. It is specifically created for multi-class object detection tasks in
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Figure 2.2: Samples of detection dataset from DOTA [74].

aerial images. Currently, this dataset is still of a smaller scale compared to
Pascal-VOC.

2.1.3 Segmentation Datasets

Massachusetts Buildings Dataset (MBD)

The MBD consists of 151 aerial images of the Boston area, with each of the
images being 1500× 1500 pixels for an area of 2.25 square kilometers. The
entire dataset covers roughly 340 square kilometers. A training set of 137
images, a test set of 10 images and a validation set of 4 images are randomly
generated from the data. The dataset covers mostly urban and suburban
areas and buildings of all sizes, including individual houses and garages,
are included in the labels. Figures 6.1(a) and 6.1(b) show two representative
regions from the Massachusetts Buildings dataset. While this dataset pro-
vides building contours suitable for training a segmentation system, it cap-
tures a limited number of building structure and types which might make
any network trained on the dataset struggle in labelling buildings on aerial
images of other types. Another issue with this dataset is its limited scope of
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application as it provides contours for only one object class.

Figure 2.3: Samples of segmentation dataset from MBD [50].

Inria (Aerial Image Labelling) Dataset

Inria dataset was constructed by combining public domain imagery and
public domain official building footprints. The dataset has the following
features: a coverage of 810 square kilometers - 405 square kilometers each
for training and testing), a spatial resolution of 0.3 metres, and ground truth
data for two semantic classes: building and not building (publicly disclosed
only for the training subset). The images cover dissimilar urban settlements,
ranging from densely populated areas (e.g., San Francisco’s financial dis-
trict) to alpine towns (e.g,. Lienz in Austrian Tyrol). The drawbacks of this
dataset are similar to MBD’s.
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International Society for Photogrammetry and Remote Sensing (ISPRS)
Datasets

ISPRS provided two state-of-the-art aerial images datasets - Vaihingen and
Potsdam - consisting of very high resolution true orthophoto (TOP) tiles and
corresponding digital surface models (DSMs) derived from dense image
matching techniques. Both datasets cover urban scenes. While Vaihingen
is a relatively small village with many detached buildings and small multi
story buildings, Potsdam shows a typical historic city with large build-
ing blocks, narrow streets and dense settlement structure. Each dataset is
classified manually into six most common land cover classes: Impervious
surfaces, Building, Low vegetation, Tree, Car, Clutter/background. The
groundtruth for the test sets are not publicly available which makes the
evaluation of models trained on the training sets a bit challenging.

2.2 Machine Learning (ML) Methods for Aerial
Image Labelling

ML is a subfield of artificial intelligence. The goal of ML is to enable com-
puters to learn on their own which is in contrast with traditional computa-
tional approaches where algorithms are explicitly programmed. ML tasks
are generally classified into supervised, unsupervised and reinforcement
learning. In supervised learning, an algorithm is trained using parallel in-
put data, x and desired output, y. During training, the algorithm learns (in
an iterative fashion) a mapping, f from x to y (y = f (x) + ε where ε - an
arbitrary small positive quantity - accounts for the inherent noise present in
the input). A loss function that computes the discrepancy between y and
f (x) is defined and the goal of the training is to minimise the loss func-
tion. Supervised learning tasks are further divided into classification, and
regression. In classification, the variable y is the class label of x chosen from
two classes (binary classification) or more classes (multiclass classification).
In regression, y is a continuous/real value (e.g. the price of a commodity).
Examples of supervised learning algorithms include: nearest neighbours,
support vector machines (SVM), and artificial neural networks (ANNs) etc.
However, some of these algorithms are not exclusive to supervised learning
as they can be used as unsupervised learning algorithm as well. In partic-
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ular, ANN - a deep learning (DL) algorithm - can serve to classify data, or
discover interesting structure in data. DL is a subfield of ML that attempts
to imitate how the human brain processes signals. A deep learning architec-
ture is inspired by biological neural networks and consists of one or more
nonlinear hidden unit layers performing a transformation from the input
space to the output space. ANNs’ human-level performance on a number of
real life tasks make them the most prominent in the ML space. In this work,
we used the ANNs variant called CNNs (see Subsection 2.2.5 for more de-
tails). In unsupervised learning, there is no y. The algorithms are fed with
only the input x and the task is to discover interesting patterns in the data
that can explain the underlying input data. In reinforcement learning an al-
gorithm trains itself (in a trial and error fashion) through interactions with
a dynamic environment in which it must perform a particular goal (such as
playing a game with an opponent or driving a car).

The main goal of this section is to present how aerial image labelling has
progressed over the years from simply assigning each image an object class
to detecting the location of each object in the image and more recently, la-
belling each pixel in an image. The literature is currently dominated by
methods based on the classification dataset because it is more readily avail-
able compared to detection and segmentation datasets. There is an ongoing
effort to create more large-scale detection and segmentation datasets in the
aerial images space that compare relatively well with the volume of datasets
that exist in the general image space [50, 30, 45, 74]

Algorithms reviewed in this section are similar to those used for general
image datasets such as ImageNet [14], Pascal-VOC [18] and Microsoft Com-
mon Objects in COntext (MSCOCO) [37]. These algorithms, developed
to perform classification, detection and segmentation tasks have been ex-
tended to aerial datasets through different research efforts motivated by ur-
ban management, disaster monitoring, and agriculture. The performance of
these algorithms on the respective dataset is highlighted.

2.2.1 Classification Methods

Table 2.2 presents a number of methods based on the different datasets de-
scribed in Section 2.1.1. A comparison of different design modalities on
UC Merced dataset is done in [6]. The authors motivated their use of pre-
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trained deep network (CaffeNet [32] and GoogleNet [68]) on the dataset
by its relatively high resolution (0.3m) which makes it quite comparable
to the low-level features of general-purpose images. The model obtained
from fine-tuning the weights of a pre-trained GoogleNet generalizes bet-
ter than model designed from scratch. They further highlighted that it is
computationally cheaper to train such a model than it is to train a model
from scratch (see Figure 2.4 the archtecture of their CaffeNet). A similar ap-
proach is adopted by [56]. State-of-the-art performance of their approach on
the UC Merced dataset was obtained through the combination of two deep
CNN models: OverFeat [62] and CaffeNet [32].

[54] compared state-of-the-art baselines on UC Merced dataset - SIFT [42]
and Local Binary Pattern [55] - with deep CNN pre-trained on general-
purpose image and fine-tuned on the target dataset. The classification of
deep features extracted from the fine-tuned model with linear SVM achieved
the highest accuracy (99.47 ± 0.50). [73] benchmarked different architec-
tures on various data sets. They categorized the different methods into
three groups: Low-level methods, mid-level methods and high-level meth-
ods. They described low-level methods as methods that often first divide
aerial images into small patches, then use low-level visual features such as
spectral, texture or structure information to group patches and finally out-
put the distribution of the patch features as the scene descriptor. Mid-level
methods build aerial images representation by encoding low-level feature
descriptors and high-level methods encode the mid-level feature descrip-
tors to provide a better aerial images representation.

2.2.2 Object Detection Methods

Table 2.2 presents a number of methods based on the aerial images ob-
ject detection datasets presented in Subsection 2.1.2.[38] applied three dif-
ferent bounding box object detection approaches - Regions with CNN (R-
CNN) [19], Single Shot Multibox Detector (SSD) [40], and Detection Rotat-
able bounding Box (DRBox) [38] - to NWPU VHR-10 dataset. R-CNN pro-
poses few regions on the image to run the convnets on, rather than running
sliding windows on every single region in the image. It then proceeds to
classify each proposed region one at a time and outputs the label alongside

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 2. REVIEW 16

Method Dataset Accuracy Approach

CNN [6]∗classi f ication UC Merced 97.10± 00 Pretrained CNN (CaffeNet) with fine-tuning on UC Merced dataset

CNN [56]∗classi f ication UC Merced 99.43± 0.27 Concatenation of the feature vectors computed by CaffeNet and OverFeat

CNN [54]∗classi f ication UC Merced 99.47± 0.50 Pretrained CNN (GoogleNet) with fine-tuning on the target dataset with linear SVM

SIFT [73]∗classi f ication UC Merced 32.10± 1.95 Scale-Invariant Feature Transform

LBP [73]∗classi f ication UC Merced 36.29± 1.90 Local Binary Patterns

SIFT [73]∗classi f ication WHU-RS19 27.21± 1.77 Scale-Invariant Feature Transform

LBP [73]∗classi f ication WHU-RS19 44.08± 2.02 Local Binary Patterns

SIFT [73]∗classi f ication RSSCN7 32.76± 1.25 Scale-Invariant Feature Transform

LBP [73]∗classi f ication RSSCN7 60.38± 1.03 Local Binary Patterns

SIFT [73]∗classi f ication AID 16.76± 0.65 Scale-Invariant Feature Transform

LBP [73]∗classi f ication AID 29.99± 0.49 Local Binary Patterns

BoVW [73]∗classi f ication UC Merced 75.52± 2.13 Bag-of-Visual-Word, SIFT

BoVW [73]∗classi f ication WHU-RS19 82.58± 1.72 Bag-of-Visual-Word, SIFT

BoVW [73]∗classi f ication RSSCN7 81.28± 1.19 Bag-of-Visual-Word, SIFT

BoVW [73]∗classi f ication AID 68.37± 0.40 Bag-of-Visual-Word, SIFT

BoVW [73]∗classi f ication UC Merced 78.12± 1.38 Bag-of-Visual-Word, LBP

BoVW [73]∗classi f ication WHU-RS19 75.89± 2.40 Bag-of-Visual-Word, LBP

BoVW [73]∗classi f ication RSSCN7 81.40± 1.09 Bag-of-Visual-Word, LBP

BoVW [73]∗classi f ication AID 64.31± 0.41 Bag-of-Visual-Word, LBP

CNN [74]∗detection DOTA 10.59± 00 Single shot multibox detection oh oriented bounding boxes

CNN [74]∗detection DOTA 26.79± 00 Regional Fully convolution network on oriented bounding boxes

CNN [74]∗detection DOTA 21.39± 00 You only look once on oriented bounding boxes

CNN [74]∗detection DOTA 10.94± 00 Single shot multibox detection oh horizontal bounding boxes

CNN [74]∗detection DOTA 47.24± 00 Regional Fully convolution network on horizontal bounding boxes

CNN [74]∗detection DOTA 39.20± 00 YOLO on horizontal bounding boxes

CNN [50]∗segmentation MBD 91.50± 00 patch-based training of CNN

CNN [50]∗segmentation MBD 92.11± 00 patch-based training of CNN + Conditional Random Field (CRF)

CNN [61]∗segmentation MBD 92.30± 00 patch-based CNN with Maxout activation function and Dropout

CNN [46]∗segmentation MBD 94.23± 00 Modifying and joining VGGNet with AlexNet and fine tuning on MBD

Table 2.2: Comparison between the different methods for classification, de-
tection and segmentation of aerial images. Accuracy here is reported as
defined by each paper.
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Figure 2.4: The CaffeNet architecture used in [6]. The first convolutional
layer filters the 224× 224× 3 input image with 96 kernels of size 11× 11× 3
with a stride of 4 pixels. The second convolutional layer takes as input the
output of the first convolutional layer and filters it with 256 kernels of size
5× 5× 48. The third, fourth, and fifth convolutional layers are connected to
one another without any intervening pooling or normalization layers. The
third convolutional layer has 384 kernels of size 3× 3× 256 connected to the
outputs of the second convolutional layer. The fourth convolutional layer
has 384 kernels of size 3× 3× 192, and the fifth convolutional layer has 256
kernels of size 3× 3× 192. The fully-connected layers have 4096 neurons
each. The last layer of the network with a different fully-connected layer,
with 21 outputs instead of 1000, followed by a softmax classifier. Maxpool
layers are not shown. ReLU is applied to the output of every convolutional
and fully connected layers.

the bounding box. SSD uses a single neural network and discards the idea of
region proposal in R-CNN but instead uses different bounding boxes and
then adjust the bounding box as part of the prediction. DRBox migrates
from the use of bounding box and attempts to tackle the difficulties faced
with locating objects with different orientations using rotatable bounding
box (RBox). DRBox was found to have the best performance. Evaluation of
state-of-the-art object detection algorithms (Faster R-CNN [60], R-FCN [12],
YOLO [59] and SSD) on DOTA is investigated in [74] by proposing detec-
tion on horizontal and oriented bounding boxes. The authors established
a benchmark for object detection in aerial images and show the feasibility
to produce oriented bounding boxes by modifying a mainstream detection
algorithm.

2.2.3 Segmentation Methods

In this thesis, we use semantic segmentation. In this section, we present
an overview of the different deep learning based semantic segmentation
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Figure 2.5: The architecture used in [38]. The input image is fed into the
multi-layer CNNs to generate detection results. Features are extracted from
the input image by the hidden convolution layers and the last convolution
layer is for prediction. The prediction layer includes K groups of channels
where K is the number of prior RBoxes in each position. For each prior
RBox, the prediction layer output a confidence prediction vector indicat-
ing whether it is a target object or background, and a 5 dimensional vector
which is the offset of the parameters between the predicted RBox and the
corresponding predefined prior RBox. The decoding layer transforms the
offsets to the exact predicted RBoxes. In the output layer, the predicted
RBoxes are sorted with their confidence and passed through non-maximum
suppression (NMS) to remove repeated predictions.
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algorithms for aerial image labelling.

A patch-based semantic segmentation technique is proposed in [50, 51].
This approach entails training CNN using small squared patches, if nec-
essary by cutting out patches of the same size with or without overlap from
larger aerial images. [51] trained a deep neural network on aerial images
and the corresponding groundtruths collected from crowdsourcing plat-
forms such as OpenStreetMap. Other works in the literature that used a sim-
ilar patch-based framework exist: [61] (see Figure 2.7) use CNN to learn a
mapping from raw pixel values in aerial images to three object labels (build-
ings, roads, and others). The contribution is the extension of [50] to three
classes namely: roads, buildings and others. [76] proposed using nighttime
light intensities to supervise the training of fully-connected CNN to predict
nighttime light from daytime imagery. They train their model to simulta-
neously learn poverty discriminative features using logistic regression clas-
sifier pre-trained on limited poverty data. The problem is set up as a com-
bination of deep learning and transfer learning - a model trained on the
ImageNet is modified and adapted to the task of predicting nighttime light
intensity from daytime imagery. [46] (see Figure 2.6) proposes a dual-stream
deep neural network model that processes information along two indepen-
dent pathways. They train their model to combine local object appearance
as well as information from the larger scene, in a complementary way, so
that together, they form a powerful classifier. A similar approach is used by
[44] for high-resolution semantic segmentation. In addition to learning fea-
tures at different resolutions, the CNN framework learns how to combine
these features (local and global) in an efficient and flexible manner. [23]
identified two limitations in previous methods. First, the failure of feature
representation technique to capture the spatial and structural patterns of ob-
jects and the background regions. Second, inadequacy and unreliability of
training data with manual annotation; hence, proposed a method combin-
ing the use of unsupervised feature learning approach via Deep Boltzmann
Machine (DBM) and a weakly supervised learning approach to object de-
tection in optical aerial images where the training sets require only binary
labels indicating whether an image contains the target object or not. [6] ex-
plored the use of pre-trained networks - CaffeNet [32] and GoogleNet [68]
to highlight that training a deep CNN from scratch is not always advisable
with limited sized datasets currently available in the field. The networks are
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Figure 2.6: The architecture used in [46].

fine-tuned only on the target data to avoid overfitting and reduce training
time. The experiment was performed on two aerial images datasets - [77]
and [56].
These works outperform much of the earlier attempts that used ad-hoc and
knowledge-based approach on the task of semantic segmentation [28, 2, 33].

The basic architecture of the CNN comprises stacked convolutional layers
and spatial pooling layers often followed by one or more fully connected
layers. The feature extraction over the input image is done in the convo-
lutional layer which contains several convolution filters. This layer is fol-
lowed by an optional pooling layer to make the network’s output invariant
to small translations in the input space. A non-linear activation function is
applied to the output of each convolution to make the network learn non-
linear patterns in the input dataset.

2.2.4 Image Preprocessing Techniques

Popular preprocessing techniques applied to images include: data augmen-
tation, dimensionality reduction, normalizing image inputs, mean and standard
deviation of input data, uniform aspect ratio and image scaling. These prepro-
cessing techniques or a subset of them, depending on the ones necessary
to apply on the underlying dataset, can improve the way the model learns
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Figure 2.7: The architecture used in [61]. It consists of a convolution layer
with 64 filters of size 9× 9 with stride 1 followed by a maxout layer followed
by a 2× 2 max pooling with stride 1. The next layer is a convolutional layer
with 128 filters of size 7× 7 with stride 1 followed by a maxout layer fol-
lowed by a convolutional layer with 128 filters of size 5× 5 with stride 1
and a maxout layer (All maxout layer performs pooling across 4 feature
maps (see Figure 2.8). The next and final hidden layer is a fully-connected
layer of 4096 units. The output layer is a fully-connected layer of 768 soft-
max units.

Figure 2.8: Maxout layer pooling across 4 feature maps. The left image
shows an example of input aerial image, and the right image depicts the
corresponding label image. [61].
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and fast-tracks convergence. In general, building a high-performing neural
network requires - among other considerations - careful selection of input
data format. Typically, the parameters of input image data to neural net-
work include: the number of images, image height, image width, number
of channels (RGB), and number of levels per pixel.

Data augmentation is a popular preprocessing technique performed on im-
ages. Augmentation involves transforming available images through scal-
ing, rotations and other transformations and including them in the dataset
fed into the neural network. This preprocessing technique - among other
benefits - exposes the neural network to more training examples, potentially
enhancing its generalization ability.
Normalizing image inputs is applied to ensure that input images have
similar color range and histogram distributions. This results in faster con-
vergence while training the neural network. Input image normalization is
achieved by subtracting the mean of each image from each pixel, and then
dividing the result by the standard deviation to obtain data with distribu-
tion resembling a Gaussian curve centered at zero.
Image scaling involves resizing images in neural network application. This
technique is commonly employed to experiment with different scales of the
input image data. For example, scaling an image of size 64× 64 to 32× 32
involves scaling the width and height by a factor of 0.5(32/64).
Uniform aspect ratio involves cropping the input images to square size fol-
lowing neural network models assumption that the input image data have
the same size and aspect ratio (square shape input images).

2.2.5 Convolutional Neural Network Architecture

Below we describe individual modules that make up the basic architecture
of existing state-of-the-art methods for labelling aerial images.

CNNs are artificial neural networks specially designed to process data that
come in the form of multiple arrays. Common examples include a multi-
spectral image which can be thought of as a 2-D array of pixels in multiple
channels. CNNs differ from neural networks due to the mathematical oper-
ation called convolution used in place of the weight matrix multiplication
in one or more of the network’s layers. A rigorous definition of the convo-
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lution operation and a principled motivation for its application in CNN is
presented in Ian Goodfellow book on deep learning [21].

Convolution Operation: Given an input aerial image;

S ∈ Rn[l−1]
h ×n[l−1]

w ×n[l−1]
c (2.1)

and a linear image kernel

K ∈ R f [l]h × f [l]w ×n[l−1]
c (2.2)

the convolution operation involves convolving kernel K with S to produce

a new image S′ ∈ Rn[l]
h ×n[l]

w as depicted by Figure 2.9. f [l]h and f [l]w represent

respectively the kernel’s height and width in layer l, n[l−1]
c the number of

channels in the input image, n[l−1]
h and n[l−1]

w are the input image’s height
and width. The feature map1),S′(x, y), representing the intensity at position
(x, y), is calculated by point-wise multiplication of one kernel element with
one element of input image S:

S′(x, y) = (S ∗K)(x, y) = ∑
i

∑
j

∑
c

S(x + i, y + j, c) ·K(i, j, c) (2.3)

The spatial size of S′ can be obtained mathematically as follows:

n[l]
h × n[l]

w =

⌊
n[l−1]

h + 2p[l] − f [l]

σ[l]

⌋
+ 1×

⌊
n[l−1]

w + 2p[l] − f [l]

σ[l]

⌋
+ 1 (2.4)

where σ known as stride, controls how the kernel slides across the input im-
age S and p known as padding, prevents the feature maps from shrinking
too fast after each convolution operation (see Figure 2.9. Another motiva-
tion for the use of padding is that it helps preserve important signal that
may be present at the boundaries of input image.

1also known as activation map
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S ∈ R7×7

Filter kernel
K ∈ R3×3

Result of point-
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S′ ∈ R7×7
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Figure 2.9: application of a linear 3× 3× 1 image kernel to an input image
of size 7× 7× 1. Setting σ[l] = 1, p[l] = 1, n[l−1]

h = n[l−1]
w = 7, and f [l] = 3 in

Equation 2.4 yields an output of size 7× 7

Convolution Layer: The convolution layer accepts an input image S and
four hyper-parameters that affects the conv layer’s outputs: n, the number
of kernels, fh and fw, the size of each kernel, σ the stride and the non-linear
activation to produce feature maps S′ of size n[l]

h × n[l]
w × n[l]. One of the

properties that make CNNs powerful is parameter sharing - a procedure
applied in convolution layer that helps to reduce the number of parameters.
A reasonable justification for parameter sharing is that if a feature is useful
to compute at some spatial position (x, y), then it should also be useful to
compute at a different position (x2, y2). The parameter sharing assumption
results in a dramatic reduction in the number of parameters in the network.
This in turn result in less demand for training data to prevent the network
from overfitting during training. Typical settings are n ∈ {32, 64, 128}, kw =

kh = k ∈ {1, 3, 5, 7, 9, 11}, σ = {1, 2} and ReLU activation.
Pooling Layer: The pooling layer is stacked next to the convolutional layer
activations to further reduce the amount of parameters and computation
in the network, and hence controls overfitting. Specifically, pooling layers
are applied mainly to reduce the feature map dimensionality. Pooling also
helps to make the network invariant to small changes in the feature map.
It accepts as input, the activations of the previous convolution layer of size
n[l]

h × n[l]
w × n and two hyper-parameters: the spatial extent Ke and the stride

σe to produce an output of size n′[l]h × n′[l]w × n′ where: n′[l]h = (n[l]
h −Ke)/σe +

1 , n′[l]w = (n[l]
w − Ke)/σe + 1, n = n′. While there are other functions used

for pooling such as: average pooling and l2-pooling, we make use of max
pooling throughout this work.
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Figure 2.10: A single convolutional layer with n filters of size fh × fw × 3
with stride σ = 1 applied to input data of size n[l−1]

h × n[l−1]
w × 3, producing

feature maps of size n[l]
h × n[l]

w × n.

Maxout Layer: A maxout layer [22] is a hidden layer of a feed-forward ar-
chitecture such as deep CNNs where the activation is the maximum of the
inputs to the layer across k feature maps. Given an input x ∈ Rd, a maxout
layer implements the function:

hi(x) = max
j∈[1,k]

zij (2.5)

where zij = xTW···ij + bij, and W ∈ Rd×m×k and b ∈ Rm×k are learned
parameters.
A unit in a maxout layer can serve as a substitute for ReLU and othe hidden
layer activation functions.

Activation Functions

Activation functions are linear or non-linear functions that decide whether
a neuron should be activated or not. Non-linear activation function, com-
monly used in CNN, makes a transformation of the input signal allowing
the neural network to solve complex problems. Back-propagation is possi-
ble in neural networks because of the use of non-linear activation functions
as they provide the neural network with a differentiable nonlinear function
that makes it possible for gradients of the cost function to be computed.
These gradients are used to update the weights and biases.
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ReLU [53]: It is the Rectified Linear Unit used as non-linear activation func-
tion in the hidden layers of CNNs

f (x) = max(0, x)

The main advantage of using the ReLU function over other functions is that
it does not activate all the neurons at the same time. If the input is negative,
it will convert it to zero and the neuron does not get activated. This means
that at a time, only a few neurons are activated making the network sparse
making it efficient and easy for computation.
Caveats: It is susceptible to vanishing gradients. The gradients are zero in
the negative side of the function which means the weights are not updated
during back-propagation. This can create dead neurons which never get
activated.

LeakyReLU [43]: This is an improved version of the ReLU function. For
ReLU function, the gradient is 0 if x < 0 which made the neurons die for
activation in that region. To address the ’dying’ problem, LeakyReLU, re-
defines the ReLU function as a small linear component of x.
Mathematically,

f (x) = ax, x < 0, a = 0.3

f (x) = x, x ≥ 0

Sigmoid Function: A sigmoid function is a bounded differentiable real
function that is defined for all real input values [24] and has a return value
from 0 to 1. Mathematically, it is represented as follows:

S(xi) =
1

1 + exp(−xi)

Tanh: The tanh function is the scaled version of the sigmoid function.

tanh(x) = 2 ∗ sigmoid(2x)− 1

It can be directly written as

tanh(x) =
2

(1 + exp(−2x))
− 1

Tanh works similar to the sigmoid function but its output is symmetric over
the origin because it ranges between −1 to 1. Hence, optimization is easier.
It basically prevents all the output values to be of the same sign.
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2.3 Evaluation Measures

In this section, a review of some commonly used evaluation metrics for se-
mantic segmentation (global precision, class-wise precision, confusion ma-
trix, F-measure or the Jaccard index (also called intersection over union))
are presented.

2.3.1 Region-based accuracies

Most semantic segmentation measures evaluate a pixel-level classification
accuracy.The use of pixel-level confusion matrix as a measure for the per-
formance of semantic segmentation systems was perhaps most widely used
in the early days of development of this framework. The research commu-
nity has in recent times gravitated towards the use of more sophisticated
accuracy measures. The following paragraphs will give a brief summary of
some of the measures developed and applied in the semantic segmentation
literature.

Precision measures the labels belonging to the object of interest that are
correctly predicted from the total number of predicted object of interest.
The Overall Pixel (OP) accuracy measures the ratio of correctly labelled
pixels to the total number of pixels. This score was used in [64] to evaluate
the performance of the learned model on automatic visual recognition and
semantic segmentation of photographs. One notable drawback to the use
of this measure is its bias in dealing with dataset containing imbalanced
classes.
The Mean Per-Class (PC) accuracy measures the ratio of correctly labelled
pixels to the total number of pixels for each class and then averages over
the classes. It is less affected by imbalanced class frequencies than the OP.
Instead of measuring the ratio of correctly labelled pixel to the total number
of pixels, [35] proposes to measure the ratio of correctly predicted pixels to
wrongly predicted pixels in a region surrounding the class boundaries.
Receiver Operating Characteristics (ROC) Curve measures the discrep-
ancy between the ground truth pixels and the predicted pixels of the seg-
mentation method based on confusion matrix. Confusion matrix makes use
of true positives (TP) - the number of pixels predicted as object of interest
pixels when they indeed are, false positives (FP) - the number of pixels pre-
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dicted as belonging to the object of interest when they are not, true negatives
(TN) - the number of pixels predicted as not belonging to the object of in-
terest when they indeed are not, and false negatives (FN) - the number of
pixels predicted as not belonging to the object of interest when they indeed
are. The ROC curve is plotted using the sensitivity (also known as the re-
call or true positive rate (TPR)) and the 1-specificity (also known as the false
positives rate (FPR)).
F1-score combines the values of the precision and recall to evaluate the per-
formance of our segmentation model:

Metric Definition
Overall Pixel (OP) TP+TN

TP+FP+TN+FN
Jaccard Index (JI) TP

TP+FN+FP
Precision (P) TP

TP+FP
Recall or TPR TP

TP+FN
FPR FP

FP+TN
F-1 Score 2× P×TPR

P+TPR

Table 2.3: Threshold metrics for segmentation evaluations

Stellenbosch University  https://scholar.sun.ac.za



Chapter 3

Methodology

3.1 Preprocessing

In this work, all preprocessing operations are performed on patches gen-
erated from the original aerial image datasets. Though the original image
can also be referred to as a patch, in this thesis, we use patch to refer to any
square image of size far less than the size of the original image. The MBD
dataset has 131 images each with 1500× 1500 pixels. We made patches from
images that are not corrupted. Examples of corrupted and uncorrupted im-
ages are shown in Figures 3.1a, 3.2a & 3.3a. The corrupted images present
two notable challenges: First, the vector values of some of them are not ex-
tractable. Second, corrupted images with accurate ground truths introduce
confusion into the network as a result of wrong supervision during training.
The main idea of the patch based preprocessing is to extract all w×w patches
from the original W ×W image size (w << W), usually with overlaps from
the given image. In this approach, it is expected that each patch taken from
the original image has similarity with neighbouring patches. The intuition
behind this approach is that a combination of these patches during train-
ing may result in learning of a better representation of the input image and
potentially translates to a better prediction of image class. Below, we pro-
vide a mathematical formulation of creating square patches from an orig-
inal square image of a given size. Note that it is also possible to divide a
non-square image into patches. Here, we focus only on square patches and
square image.

Let w×w represent the width and height of a single patch Sij from a collec-

29
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(a) A corrupted aerial image (b) Image groundtruth

Figure 3.1: An example of a corrupted image but with a valid groundtruth
mask.

(a) A partially corrupted aerial image (b) Image groundtruth

Figure 3.2: An example of partially corrupted image but with a valid
groundtruth mask. This image can be read without error, but the presence
of labels on blank regions of the image would introduce confusion during
training.

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 3. METHODOLOGY 31

(a) An uncorrupted aerial image (b) Image groundtruth

Figure 3.3: (a) An example of an uncorrupted aerial image (b) The corre-
sponding groundtruth for the uncorrupted aerial image. It can be seen that
the groundtruth is similar to the uncorrupted aerial image

tion of patches S̃i to be cut out from the original image Si of size W ×W. In
this formulation, it is expected that w << W. Generally, the total number
of patches n(S̃i) that can be produced from Si is given by:

n(S̃i) =

(
w
η
× Wi

w

)2

(3.1)

Where η ≥ 1 is the number of Sij pixels excluded in its nearest neighboring
patches.

An immediately obvious benefit of working with image patches instead of
working with the entire image is the reduction of computational demand as
a result of less number of convolutional operations performed on patches in
a CNN framework.

Setting η in Equation 3.1 to w is the case of producing non-overlapping
patches from Si. A downside of this is the appearance of artifacts in the
resulting patches - a single object may fall in more than one patch. This can
be reduced by using overlapping patches obtained by setting 1 ≤ η < w.
Overlapping gives objects a better chance of being fully visible in at least one
patch. While overlapping can result in gain in accuracy; non-overlapping
produces fewer patches, hence reduced preprocessing and training time.
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3.2 CNN Architecture

Adopted from [51], the CNN architecture used in this work (Figure 3.4) ac-
cepts as input, aerial image patches each of size 64× 64. The first hidden
layer is a convolution layer with 64 filters of size 7× 7 with stride 3. It is
followed by 2× 2 max pooling with stride 1. The second hidden layer is
also convolutional with 112 filters of size 3× 3 with stride 1, followed by a
third convolutional layer with 80 filters of size 2× 2 with stride 1. All four
hidden layers consist of LeakyReLU activation function. The output layer
is a fully-connected layer of 4096 logistic units.

Input(64× 64× 3)

Conv(64, 7× 7/3)

→

Pool(2/1)

→

Conv(112, 3× 3/1)

→

Conv(80, 2× 2/1)

→

FC(4096)

Output(64× 64× 1)

Figure 3.4: CNN Architecture used in this work.

Let K′ be the number of classes of interest (1 in our case representing the
building class); label image M̃ has K′ + 1 classes. Because it is difficult to
consider all objects that can appear in aerial imagery as classes of interest,
we consider the background class to represent pixels that do not belong to
any of the K′ classes of interest.

Let K denote the number of all classes including the background, K = K′ +
1; 2 in our case. The goal is to train a CNN to predict a n[l−1]

h × n[l−1]
w sized

label patch from a n[l−1]
h × n[l−1]

w × n[l−1]
c sized aerial image S where l is the

l-th layer of our architecture. The architecture used in this thesis generally
takes an order 3 tensor as its inputs, specifically, an aerial image (prepared
as described in Section 3.1) of width n[l−1]

w , height n[l−1]
h and channel n[l−1]

c

(n[l−1]
c = 3 representing R,G,B colour channels). The input passes through a

series of processing units in a sequential fashion. A processing unit in this
single forward-pass collectively represents a layer in the CNN architecture.
The layer could be a convolutional layer, a pooling layer, a fully connected
layer or a normalization layer with non-linear activation. In the architecture
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investigated in this thesis, the first layer is a hidden convolutional layer.
Our task is image segmentation, i.e., classify each pixel on the image and

Figure 3.5: The input a[0] is fed into the first hidden convolutional layer
where w[1] denote the parameters associated with the layer. The resulting
activation a[1] is fed into the next hidden convolutional layer. The process is
repeated until the last layer of the network to obtain the output predictions
representing the class each pixel belongs to. ŷ represent the actual class of
each pixel found in the input image and L denotes the loss function applied
to compute the difference between the actual labels and the predicted labels.

create a map of all detected building areas on the aerial image. Basically, we
want our final output to be a binary image where each pixel in the image is
either a building pixel or non-building pixel. Figure (3.6) shows a typical
output from a segmentation system.
Figure (3.5) illustrates the processing that takes place from one layer to the
other in a CNN. The input a[0] is fed into the first hidden convolutional layer
where w[1] denotes the parameters associated with this layer. LeakyReLU
activation is applied to the resulting output a[1]. The output of this layer is
max-pooled and fed into the next hidden convolutional layer. The process
continues until all layers in the CNN have been visited. The final output
is computed by applying a sigmoid function at every unit/neuron/node in
the final layer.

The CNN computes the probability of a pixel p belonging to the building
class, using as input the intensity values of an input aerial image of size
n[l−1]

h × n[l−1]
w × n[l−1]

c . The CNN is first trained using the available train-
ing images. After training, the model is used to predict the probability of
each pixel in the test image being a building pixel thus generating a map of
building probabilities. By thresholding, a new binary image of similar size
with the input image is obtained. To achieve better output quality, a post-
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Figure 3.6: the image is the map predicted by our base model (without
dropout, and post-processing) overlayed on the actual image. The green
parts are true positives, the red parts are false positives, the blue parts are
false negatives and the rest are true negatives.
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processing technique is usually applied to the building probabilities before
or after thresholding but we did not consider this in this thesis.

3.2.1 Fully Connected Deep CNN Architecture

In this thesis, deep CNN is used to extract features from one hidden layer
to the other in a hierarchical fashion. The output (or last) layer of our base
deep CNN architecture is a fully connected layer that infers the class of each
pixel in the input aerial image.

The output layer, in our architecture, is a fully connected layer with one
neuron per pixel. Using a sigmoid activation function for the last layer
guarantees that each neuron’s output activation can be interpreted as the
probability of a particular pixel belonging to the building class. a[L−1] is
transformed by sigmoid activation function to obtain its probability of be-
ing a building pixel a[L]. The last layer L as represented in Figure 3.5 com-
putes the distance between a[L] and the corresponding ground-truth value
ŷ. In our case, the loss function used to compute the distance is a binary
cross entropy defined as:

Li,j,c = −(ŷi,j,c ln a[L]i,j,c + (1− ŷi,j,c)(1− ln a[L]i,j,c)) (3.2)

The total loss function expressed as:

C = ∑
i

∑
j

∑
c
Li,j,c (3.3)

is then minimized using stochastic gradient descent.
The convolution operation applied in this work can be expressed as

zl
i.j,c =

H

∑
i=0

W

∑
j=0

Cl

∑
cl=0

wi,j,cl ,c × a[l−1]
i,j,cl (3.4)

where w are filter values and z is the feature map.
Throughout this thesis, we omit the bias term usually added to zi,j,c. For a
more detailed description of the convolution operation, see Chapter 2.

Activation Function

A detailed review of all activation functions used in this thesis is provided
in Chapter 2 and a comparison of the use of tanh, LeakyReLU and ReLU
non-linear activations in the hidden layers is provided in Chapter 4.
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For our task, the main hidden layer activation function used is LeakyReLU.
Individual element in the output obtained from convolving w[l] with the
input a[l−1] (l = {1, 2, · · · , L− 1}) is fed as input to the LeakyReLU layer to
obtain the corresponding activation maps a[i] as represented in Figure 3.5.

We experimented with other non-linear activation functions namely Tanh
and ReLU for the purpose of comparison.

The Forward Pass

After learning the weights of the CNN model w[1], · · ·w[L−1], the probability
of each pixel in the input image belonging to the object of interest (building
in our case) is predicted using the model. This completes the first forward
pass.

Later, we discuss the role of the L layer in our base CNN architecture.

Training

The L layer is useful in the training stage to learn the CNN model param-
eters using the given training examples. CNN model parameters are ad-
justed to minimize the distance between the CNN model prediction and the
ground-truth.

In particular, for a single training example a[0], adjusting such parameters
involves running the CNN network in the forward direction to compute
a[L] which is then compared with ŷ - the label corresponding to a[0]. The
gradient of the loss function as defined in Equation 3.2 is computed to ob-
tain information about how to update the parameters of the network. In
our task, the optimizer used is stochastic gradient descent represented in
the form:

w[l] ← w[l] − η
∂L

∂w[l]
(3.5)

where ∂L
∂w[l] computes the rate of change of L with respect to changes in

w[i]. η, the learning rate guides how the parameters are updated. Popular
choices for η are 0.001, 0.005, 0.05. In our case, we used 0.05 as default
learning rate as it appears to give the best performance. The parameter
update is performed at the end of each batch to minimize the overall loss.
A single epoch is completed once all training examples have been seen and
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used to update the parameters. The number of steps or iteration in a single
epoch is typically equal to the number of dataset samples divided by the
batch size but in our case, we set batch size to 32 and with 64000 training
examples we iterate 2000 times per epoch.

Gradient Descent (GD)

GD is an approach for training Deep Neural Networks (DNN). To further
establish GD as the state-of-the-art for training DNN, different variants of it
have been introduced over the years [67, 29, 17, 34]. The primary objective
of GD is to optimize the parameters θ of DNN by minimizing the objective
function which (in essence) is the average-sum of discrepancies between the
DNN predictions and the actual input labels.

J(θ) =
1
N

N

∑
i=1
L(a[L], ŷ) (3.6)

Variants of GD include:
online training or Stochastic Gradient Descent (SGD) - designed to see exactly
one training example at a time before parameters update are performed.
While this strategy potentially reduces premature convergence due to noisy
updates, one downside is that it is computational expensive to apply be-
cause it requires parameters update to be done after each training example
is seen by the network.
Batch Gradient Descent (BGD) - designed to perform parameters updates
only after all training examples have been treated. BGD tackles the down-
side of SGD but the DNN stands the risk of converging to a sub-optimal set
of parameters due to less noisy error gradients. Another drawback of BGD
is that it requires all training examples to be loaded all at once to memory
making it less memory efficient.
Mini-batch Gradient Descent (MGD) attempts to combine the model robust-
ness of SGD with the computational efficiency of BGD by exposing the al-
gorithm to randomly chosen subsets (mini-batches) of the entire dataset.
Parameters update are performed after each mini-batch is evaluated. A
downside is that MBG introduces an additional hyper-parameter (mini-
batch size) to the algorithm.
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Optimizing Gradient Descent

MGD is a widely used DNN optimization technique but its vanilla form
does not guarantee good convergence due to the difficulties in choosing
proper learning rate as well as adjusting the learning rate during training
and the issue of getting stuck in their numerous local sub-optimal minima
as a result of the use of non-convex objective function popularly used in
DNN. Here, we briefly describe some of the optimization algorithms that
are considered in this thesis to improve the performance of the vanilla MGD.

Momentum [67]: In essence, momentum helps to accelerate GD in relevant
direction towards global minimum by avoiding getting trapped in local sub-
optimal minima. In our experiment we use a momentum value of 0.9 - [51]
demonstrated that using other values does yield an improvement in the
performance of the network.

vt+1 = µvt − η J(θt) (3.7)

θt+1 = θt + vt+1 (3.8)

where η > 0 is the learning rate, µ ∈ [0, 1] is the momentum coefficient, v is
the update vector, and ∇J (θt) is the gradient of the objective function J at
θt.

Batch Normalization [29]: As the parameters of all preceding layers of
DNN adjust during training, they in-turn affect the distribution of input u
fed into successive layers. This effect is popularly referred to as the internal
covariate shift [29]. Batch normalization helps to ensure that the param-
eters to be optimized during training do not have to re-adjust to account
for the change in the distribution of u. This is achieved by linearly trans-
forming each scalar feature in layer inputs to have zero mean and unit vari-
ance, and decorrelated [29]. Formally, for a layer with n-dimensional input
x =

(
x1, · · · , xn), the normalized ith feature is given by:

x̂i =
xi − E

[
xi]√

Var [xi]
(3.9)

where the expectation E
[
xi], and variance Var

[
xi] are computed over the

training data set.
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To avoid reducing the representional power of each layer as a result of the
normalization, a pair of learnable parameters γi and βi are applied to scale
and shift x̂ as follows:

yi = γi x̂i + βi (3.10)

Backward Pass

Stochastic gradient descent involves adjusting the parameters of the net-
work using gradients obtained from each batch. This approach is known
as minibatch SGD when a minibatch training examples is used. Popular
choices for mini batch training examples are 32 and 64.

The backward pass starts by computing how much the prediction a[L] dif-
fers from the actual label ŷ using the loss functionL as given in Equation 3.2.

For each layer of the CNN architecture, the partial derivatives of the loss
function with respect to z[l] (result of the convolution operation performed
on layer l − 1) ∂L

∂z[l]
and that layer’s parameters ∂L

∂w[l] are computed using
chain rule. ∂L

∂w[l] guides the update of the current i-th layer parameters and
∂L

∂z[l]
provides information about how z[l] should be changed to reduce the

loss function. Equation 3.5 gives the update rule for the parameters of each
layer.

Formally, ∂L
∂z[L]

and ∂L
∂w[L] are computed as follows:

From Equation 3.2, the gradient of the loss function with respect to the i-th
activation of L-th layer is given by:

∂Li,j,c

∂a[L]i,j,c

= − ŷi

a[L]i,j,c

+
1− ŷi,j,c

1− a[L]i,j,c

(3.11)

Using chain rule and Equation 3.11

∂Li,j,c

∂z[L]i

= a[L]i,j,c − ŷi,j,c (3.12)

∂Li,j,c

∂w[L]
i,j,c

= (a[L]i,j,c − ŷi,j,c) · z[L]i,j,c (3.13)
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Figure 3.7: Forward and backward pass of CNN architecture

3.3 Experimental Setup

Keras

Building deep neural networks from scratch, particularly deep CNN, is a
daunting task involving complex computational graphs with atleast a few
million of tunable parameters. Hence, open source frameworks that abstract
most of the computations away from the user are generally employed. A
number of such frameworks exist but in this work, we make use of Keras
- a high-level neural networks API, written in Python and capable of run-
ning on top of TensorFlow, CNTK, and Theano. Keras allows for fast ex-
perimentation, supports CNNs, runs seamlessly on CPU and GPU, treats
individual components of a neural network architecture (neural layers, cost
functions, optimizers, initialization schemes, activation functions, regular-
ization schemes) as standalone modules that can be combined to create new
models, and easy addition of customized modules [9]. In this work, we use
TensorFlow [1] as backend for Keras.

Hyper-parameter Initializations

Here, we discuss how we set the initial values of the hyper-parameters. For
the most part, we follow approaches proposed in the literature.

• Filters Size: In this study, we use small filter size (7× 7) in the first
hidden convolutional layer since they are better suited for learning
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low level features and computationally more efficient than larger ones
(a comparison of different choices of filter size is presented in Chap-
ter 4).

• Weight Initialization: We initialized the weights of the CNNs using
Glorot uniform [20] to make the variance of the output of a layer to be
equal to the variance of its inputs.

• Number of epochs versus iterations-per-epoch: we favoured the use
of large number of epochs over the use of large number of iterations-
per-epoch.

• Learning Rate: We use a default learning rate of 0.05.

• Batch Normalization (BN): To investigate the effect of BN on the per-
formance of our model, we performed three experiments - 1). apply-
ing batch normalization to the feature maps after non-linear activation
(BNA), 2). applying batch normalization to the feature maps before
non-linear activation (BNC), and 3). No batch normalization (NBN).
The results of these experiments are discussed in Chapter 4.

Learning

We used SGD and momentum and trained 100 epochs with a learning rate
of 0.05 and set momentum to 0.9. Each epoch was trained on 2000 batches.
Each batch consists 32 image patches. Each batch was generated randomly
by cropping 32 64 × 64 patches from the original images. We learn the
parameters of the neural network by minimizing the negative log likeli-
hood of the training data. The negative log likelihood takes the form of
a cross entropy between the patch m̃ derived from the given map and the
predicted patch m̂. Experiments with different activation functions (ReLU-
family, tanh) show that LeakyReLU leads to a network that performs well
in labelling buildings from aerial images. The model is trained on MBD and
evaluated on held-out samples of MBD. To understand the generalization
capability of the model, we further evaluated its performance on INRIA
dataset.
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3.4 Evaluation Measures

In this thesis, we evaluated the performance of our models using precision-
recall curve, and the F-1 score. The break-even point corresponding to a single
value in the precision-recall curve (where precision is equal to recall) is also
used in order to compare with other works in this domain ([50]. We re-
viewed these metrices in Chapter 2.
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Results and Discussion

In this chapter we present and discuss the main results as well as insights
gained from our experiments to determine the effect of hyperparameter
choices in our analysis pipeline.

Overlapping patches

Our input pipeline involves making a cutout of smaller patches from larger
images. This method has, however, an undesirable effect of splitting objects
at the boundary between two separate patches - which may confuse CNN
during training. A non-overlapping cutout strategy also reduces the total
number of training samples. To mitigate this issue we generated training
samples by letting neighbouring patches overlap as described in Chapter 3.

In Figure 4.1, we show the precision-recall curve of a CNN model trained
with examples produced using sliding windows 16 (blue curve), 32 (red
curve) and 64 (green curve). The amount of the sliding window size con-
trols the degree of overlapping. Given our choice of an input image size
64× 64, sliding window size of 64 means no overlapping between neigh-
bouring patches. The performance of our model significantly improves as
we increase the amount of overlap between neighbouring patches.

43
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Figure 4.1: Effect of overlapping patches: a precision-recall curve of two
hidden layer model trained on samples cutout from an aerial image using
different window strides - 16, 32 and 64. The numbers inside the parenthe-
sis give the break-even point values, where precision is equal to recall. The
model trained on samples generated by using stride = 16 performed best
while the model trained on samples with no correlation between neighbour-
ing patches (stride = 64) has the worst performance. Each patch contains at
least 10% building pixels.

Number of iterations

It is well known that deep CNNs require a large number of iterations with
large number of data to learn robust features. Commonly a single epoch is
defined by the number of iteration it takes to train the model by all available
data. The number of weight updates per epoch is determined by the ratio of
the total number of training sampled and the batch size. In our case we have
about 1.2 millions patches and a batch size of 32. As a compromise between
computational limitations and a high correlation in our training samples, as
a result of large overlapping fraction, we set an epoch to be the number of
iteration it takes to process 64000 randomly selected images. A batch size of
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32 means, the number of weight updates per epoch is 2000.

Our experiment shows that increasing the number of epochs to about 100
yields a better result - see Figure 4.2. Increasing further, however, did not
improve our result. We used 100 epochs to train our main model but due
to the computational burden we limited the number of epochs to 20 for all
experimental runs used to study the effect of hyperparameters.

Figure 4.2: Effect of total number of iterations: precision-recall curve com-
paring models trained for 20 and 100 epochs. The red and green dots repre-
sent the break-even points for 100 and 20 epoch models respectively, shown
in the legend inside the parenthesis.

Effect of Activation Function

Details about different types of activation functions, their pros and cons as
well as their use cases are presented in Chapter 2. In this section, we discuss
how ReLU, Tanh, LeakyReLU activation functions impact the performance
of CNN model trained on aerial images.
The difference between using ReLU, tanh and LeakyReLU functions in the
hidden layer is apparent in the first hidden convolutional layer (See Fig-
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Model type Accuracy Break-even point F1-Score

BNA 0.9019 0.9594 0.9574

BNC 0.8951 0.9578 0.9585

NBN 0.9072 0.9598 0.9505

Table 4.1: Effect of batch-normalization: no batch-normalization (NBN)
compared with batch normalization after convolution but before activation
layer (BNC) and after activation layer (BNA).

ures 4.3. In ReLU, filters with non-positive values are not activated, mak-
ing the network sparse. This sparsity results in efficiency and easy com-
putation. One of the caveats of using ReLU, however, is that during back-
propagation, the weights associated to non-positive filters are not updated
which can result in dead filters which never get activated. The impact of
sparsity caused by ReLU on CNN performance in labelling aerial images
is compared to less sparse activation functions (Tanh and LeakyReLU) in
Figure 4.4. We observe that LeakyReLU activation leads to a slightly better
precision-recall performance.

Effect of Batch Normalization

We carried out three experiments to understand the effect of batch normal-
ization: 1) NBN - no batch-normalization layer is added 2) BNC - adding a
batch-normalization layer after a convolution but before an activation layer
3) BNA - adding a batch-normalization map after an activation layer. As
can be seen from Table 4.3, the best (F1-score) accuracy is achieved by BNA.
The same table and Figures 4.5, on the other, suggest that when it comes
to visual inspection and the break-even point value, NBN performs better
than the others.

Effect of Filter Size

In this section, we present a discussion on the results obtained from explor-
ing the hyper-parameter space (such as filter size, learning rate, and weight
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(a) A patch from the test set. (b) Tanh activation maps

(c) ReLU activation maps (d) LeakyReLU activation maps

Figure 4.3: Effect of activation functions: the image in the top left is
used to produce the activation maps at the first hidden convolutional layer
shown in the other figures. The model with the ReLU (bottom left) activa-
tion function leads to sparse features while Tanh results in dense features.
LeakyReLU is in between.
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Figure 4.4: Effect of activation functions: Comparison of Precision-Recall
(PR) curve from ReLU, LeakyReLU and Tanh activation functions. The
LeakyReLU has a slightly better PR performance. The red, blue and green
dots represent the break-even points,and mentioned in the legend, for
LeakyReLU, Tanh and ReLU models respectively.

decay) different from the ones used in [50].
We compare the classification output obtained from using convolutional fil-
ter size as presented in [50] with other filter size choices.
Table 4.3 shows the precision-recall break-even point values and the overall
accuracy achieved by CNN models with different filter sizes. The second
row compares the result obtained using [50] filter sizes. This clearly illus-
trates the well known fact that large convolutions can be replaced by smaller
ones without loosing accuracy. Aside from a model performance gain, small
convolution filter sizes are also better suited for smoothing, edge detection
and shifting which ultimately contribute to a better model performance.
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Figure 4.5: Effect of batch-normalization: Precision-recall curve for three
models as named in the legend. The values in the parenthesis are the break-
even point, which is where precision and recall are equal.

Ref. Year Break-even-point∗

Volodymyr [50] 2013 0.9211

Shunta & Yoshimitsu [61] 2015 0.9230

Marcu [46] 2016 0.9423

This work 2018 0.9568

Table 4.2: Results on MBD from 2013 to 2018.
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Conv 1 Conv 2 Conv 3 Break-even point F1-Score

16 4 3 0.9211 -

16 3 2 0.9686 0.9566

9 3 2 0.9715 0.9611

7 3 2 0.9737 0.9626

Table 4.3: Effect of filter size: comparison between different filter sizes used
in this work. The break-even point is computed from the precision-recall
curve. The second row entry displays the filter sizes used in [50] work.

Unless stated otherwise, we use relaxed precision and recall scores to com-
pare with previous works ([50, 61]). The relaxed precision is defined as the
fraction of detected pixels that are within ρ pixels of a true pixel, while the
relaxed recall is defined as the fraction of true pixels that are within ρ pixels
of a detected pixel [61].

4.1 Generalisability of the model

Training models to find buildings on an aerial image is an expensive task.
The number of satellites and airborne devices equipped with different sen-
sors capturing images from different parts of the world under continuously
changing lighting conditions introduces more complications for coming up
with a unified model. In this section, we investigate how well our model
(trained on MBD) generalises to the task of finding buildings on the Inria
Aerial Image Labeling Dataset (Inria) - See Chapter 2 for the description of
this dataset.

Figure 4.6 shows the precision-recall curve obtained using CNN model trained
on MBD dataset applied to a sample of Inria training maps. We applied the
MBD trained model to a variety of city maps included in the Inria data. For
comparisons in the same figure we show the curve from the MBD test data.
From this figure, we see that the MBD trained model performs poorly on all
Inria maps - illustrating the difficulty of generalization in CNN networks.

In Figures 4.7 & 4.8, we show the predicted masks for a sample of Inria maps

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 4. RESULTS AND DISCUSSION 51

Figure 4.6: Precision-Recall curve obtained by applying MBD-trained model
on a sample of Inria dataset. We applied the MBD trained model on a va-
riety of cities included in the Inria data. The model generalises poorly to
the Inria dataset. For comparison we show the curve from the MBD test
data. Break-even points, where precision and recall values are equal, are
mentioned in the legend.

Figure 4.7: Image on the left is a patch from Inria. Image at the middle
is maps predicted by the last (fully connected) layer of one of our models
before the sigmoid function is applied. The image on the right is same as
the middle figure but after sigmoid activation function is applied. Clearly,
our model is able to learn some structure of the Inria dataset.
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Figure 4.8: The predictions made by our MBD trained model (green parts in
the image) are overlayed on one of the Inria dataset. The red parts are the
false positives and the blue parts are the false negatives.

- visually illustrating the weak performance of the MBD trained model on
the Inria dataset.

The poor generalization may largely be a result of difference between the
structure of buildings found in the training set (MBD) and the Inria dataset.
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Chapter 5

Conclusions and Future Work

In this thesis we presented the following:

• A review of aerial datasets and existing methods for labelling from
them, paying special attention to the algorithms’ performance.

• Drawing inspiration from [50], we investigated the impact of different
hyper-parameter choices on our CNN architecture using the Masachus-
set Building Dataset.

• We studied the generalisation potential of MBD trained model.

In Chapter 3, we looked at different choices of feeding data into our models
in terms of the amount of training, validation and test sets and presented
our findings in Chapter 4. For all our analysis on overlapping patches we
defined an epoch being 64, 000 iterations of randomly selected patches out
of more than a million possible ones. We used 20 epochs while testing for
optimal hyper-parameter values. We used 100 epochs to train the main
model as we observed a significant improvement in the precision-recall
metric when increasing the total number of iterations - see Figure 4.2. We
checked that increasing the number of epochs further does not improve our
results.
In [50] it is shown that for L2 regularization the effect of the weight decay
parameter is negligible, hence in our analysis we did not use weight decay.

Similarly, like [50] we used max-pooling sparingly. An attempt to do other-
wise resulted in a model with inferior performance. Thus, we restricted its
use to only the first convolution layer.

53
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In Chapter 4, we presented the results obtained from training CNN using
dfferent filter sizes. The use of small filter size in our network outperforms
the larger ones used in [50]. Aside from the reduction in computation time,
small filter size also improves the accuracy of the model in labelling build-
ings and non-building pixels. Using the optimal hyperparameters found
from the different experiments we carried out, we achieved high accuracy
on MBD testing dataset than presented in [50]. Our break-even point on the
precision-recall curve is 95.68 compared to 92.11 for [50].

We also studied the generalisability of our model which is trained on MBD
data, and applied it to other data sets in particular the Inria data set. The
MBD and Inria datasets have a completely different geographic conditions
and city structure, and, expectedly, our model performed poorly on Inria.

Possible ways to extend our work include:

• Refining the model predictions [13] - this is possibly the most cost-
effective approach as it does not incur training cost.

• Fine-tuning the model’s weights on a more diverse aerial dataset.

• Labelling African aerial dataset. A possible way to achieve this, in
addition to the afore-mentioned, is to establish a good procedure for
fitting our main model to the dataset as suggested in [50] - instead of
the common procedure of using SGD on the negative log likelihood,
the authors suggested searching for a better loss function such as the
area under the precision-recall curve.

• While semantic labelling of building is already a useful application,
it can further be used to facilitate urban management by counting the
number of buildings in a given building map. A possible future path is
to integrate the building counting operation into the training process.
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