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Abstract 

 

MicroRNAs (miRNAs) are small non-coding RNAs that play a fundamental role in cellular 

function by regulating messenger RNA gene expression. Alterations in miRNA expression 

are implicated in metabolic dysregulation, with several studies reporting the involvement of 

miRNAs in the pathophysiology of Type 2 diabetes (T2D). Recently, circulating miRNAs 

have attracted considerable interest as biomarkers to identify individuals at risk for T2D, thus 

we hypothesised that circulating miRNA could be used as markers for T2D progression.  The 

aim of this study was to determine whether miRNA expression profiles differ between 

diabetic, pre-diabetic and normo-glycaemic individuals.  

 

Individuals were recruited from local communities and classified as diabetic, pre-diabetic or 

normo-glycaemic according to World Health Organization criteria, whereafter miRNAs were 

extracted from peripheral blood mononuclear cells (PBMCs) and serum of age-, gender-, 

ethnicity- and BMI-matched diabetic (n=4), pre-diabetic (n=4) and normo-glycaemic (n=4) 

individuals. MiRNAs extracted from PBMCs were sequenced using the Illumina HiSeq 2500 

platform, and validated by quantitative real time PCR (qRT-PCR) in PBMCs and serum of 

these individuals. Moreover, bioinformatics was conducted using various target prediction 

programs (TargetScan, DIANA and PITA) and the DAVID functional gene annotation tool to 

assign biological significance to the differentially expressed miRNAs identified by 

sequencing.  

 

Sequencing showed that 267 (pre-diabetics vs. normo-glycaemics), 277 (diabetics vs. 

normo-glycaemics) and 267 (pre-diabetics vs. diabetics) miRNAs were differentially 

expressed between groups. Of these, five differentially expressed miRNAs (miR-27b, miR-

379, miR-21, miR-98 and miR-143) were selected for validation by qRT-PCR in PBMCs. 

Only miR-143 and miR-27b were significantly differentially expressed using qRT-PCR, 

although the results for miR-143 were different compared to the sequencing data. MiR-143 

was upregulated in pre-diabetics compared to normo-glycaemic individuals (1.40-fold, 

p≤0.01), whereas sequencing showed upregulation of miR-143 in diabetics compared to pre-

diabetics (1.75-fold, p≤0.05). The differential expression of miR-27b was consistent between 

qRT-PCR (1.55-fold; p=0.07) and sequencing (1.15-fold; p<0.01), where both methods 
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showed upregulation in pre-diabetics compared to normo-glycaemic individuals. The 

expression of miR-27b was similarly upregulated in serum of pre-diabetics compared to 

normo-glycaemic individuals (2.0-fold; p≤0.05). Furthermore, five novel miRNAs identified by 

sequencing were successfully validated in PBMCs of diabetic, pre-diabetic and normo-

glycaemic individual. 

 

Sequencing and qRT-PCR showed that miR-27b was upregulated in PBMCs and serum of 

pre-diabetics compared to normo-glycaemic individuals. Bioinformatics identified peroxisome 

proliferator-activated receptor gamma (Pparg) as a target for miR-27b. PPARG is an insulin 

sensitizing agent, thus we speculate that increased miR-27b expression in pre-diabetes 

suppresses Pparg, thereby inhibiting insulin signaling and subsequently decreasing glucose 

uptake. The increased insulin and glucose levels observed in the pre-diabetic individuals 

support this idea, although further work is required to confirm this hypothesis. 

 

In conclusion, we showed that miRNA profiles differ during T2D progression, and are able to 

discriminate between diabetic, pre-diabetic and normo-glycaemic individuals. To our 

knowledge, this is the first study to report differential expression of miR-27b during T2D, 

suggesting its potential as a biomarker that could be incorporated into predictive models for 

the identification of high risk individuals. However, miRNA profiling in a larger sample size 

and prospective longitudinal studies are required to assess clinical applicability. 
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Uitreksel 

 

MikroRNAs (miRNAs ) is klein nie-koderende RNAs wat 'n fundamentele rol in sellulêre 

funksie speel deur regulering van boodskapperRNA geenuitdrukking. Verskeie studies 

ïmpliseer veranderings in miRNA ekspresie met metaboliese disregulering en in die 

patofisiologie van Tipe 2-diabetes (T2D). Onlangs het sirkulerende miRNAs groot 

belangstelling uitgelok as biomerkers om individue te identifiseer wat „n verhoogde risiko vir 

T2D het. Ons hipotese stel dus voor dat sirkulerende miRNA gebruik kan word as merkers 

vir T2D siekteprogressie. Die doel van hierdie studie was om vas te stel of miRNA 

geenuitdrukkings profiele verskil tussen diabete, prediabete en normoglisemiese individue. 

 

Individue wat uit plaaslike gemeenskappe gewerf is, is volgens die Wêreld Gesondheid 

Organisasie riglyne geklassifiseer as diabete, pre diabete of normoglisemiese individue. 

Hierna is miRNAs uit die perifere bloed mononukleêreselle (PBMS) en serum van 

ouderdom, geslag, etniesiteit en liggaamsmassa-indeks vergelykbare diabete (n=4), 

prediabete (n=4) en normoglisemiese individue (n=4), geïsoleer. Die geenvolgordebepaling 

van die geïsoleerde miRNAs is bepaal deur „n Illumina HiSeq 2500 platform, en bevestig 

deur kwantitatiewe “real time PCR” (qRT-PCR). Verder, is bioinformatika uitgevoer met 

behulp van verskeie teikenvoorspellings programme (TargetScan, Diana en PITA) asook 

David se funksionele geenannotasie instrument om biologiese betekenis aan die 

differensieel uitgedrukte miRNAs, te koppel. 

 

Geenvolgordebepaling het getoon dat 267 (prediabete vs. normoglisemies), 277 (diabete vs. 

normoglisemies) and 267 (prediabete vs. diabete) miRNAs differensieel uitgedruk word. 

Hiervan is vyf differensieel uitgedrukte miRNAs (miR-27b, miR-379, miR-21, miR-98 en miR-

143) gekies vir bevestiging deur qRT-PCR in PBMS. MiR-143 en miR-27b differensiasie was 

deur qRT-PCR bevestig, hoewel die qRT-PCR resultate vir miR-143 verskil het met die 

geenvolgordebepaling data. Met qRT-PCR is miR-143 opgereguleer in die prediabete 

teenoor normoglisemiese individue (1,40-voudig, p≤0.01), terwyl met geenvolgordebepaling 

miR-143 in diabete teenoor prediabete (1,75-voudig, p≤0.05) opgereguleer was. Daar was 

ooreenstemming in die differensiële uitdrukking van miR-27b tussen die qRT-PCR (1,55-

voudig; p=0,07) en geenvolgordebepaling (1,15-voudig; p<0,01), waar albei metodes 
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opregulering gewys het in die prediabete teenoor normoglisemiese individue. In die serum 

monsters was die uitdrukking van miR-27b soortgelyk opgereguleer in prediabete (2,0-

voudig; p≤0.05). Verder is vyf unieke miRNAs geïdentifiseer deur geenvolgordebepaling wat 

suksesvol bevestig is in PBMS van diabete en prediabete. 

 

Bioinformatika het Pparg geïdentifiseer as 'n teiken vir miR-27b. PPARG is 'n 

insuliensensiterings agent, dus spekuleer ons dat hoër miR-27b ekspresie, in prediabete 

Pparg onderdruk, wat die insuliensein demp en tot verlaagde glukose opname lei. Die 

verhoogde insulien en glukose vlakke wat in prediabete voorkom ondersteun hierdie idee, 

alhoewel verdere werk nodig is om hierdie hipotese te bevestig. 

 

Ten slotte, het ons getoon dat miRNA profiele tydens die T2D siekteprogressie verskil, en in 

staat is om tussen diabete, prediabete en normoglisemiese individue te diskrimineer. Tot ons 

kennis, dit is die eerste studie wat differensiele uitgedrukking van miR-27b in T2D 

rapporteer, en die potensiële toepassing as 'n nie-indringende biomerker uitwys. Dit kan 

moontlik in voorspellende modelle geïnkorporeer kan word vir die identifisering van hoë 

risiko individue. Maar verdere studies met groter monster getalle en prospektiewe 

longitudinale studies is nodig om die kliniese toepaslikheid te evalueer. 
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1. INTRODUCTION 

1.1 The global burden of Diabetes mellitus 

Diabetes mellitus (DM) is characterized by persistent hyperglycaemia (fasting blood glucose 

≥7.0 mmol/L), caused by defects in insulin secretion by pancreatic beta (β)-cells  and/or 

insulin action in peripheral tissue such as, skeletal muscle, liver and adipocytes (Fernandez-

Valverde et al., 2011; Tripathy and Chavez, 2010). According to the International Diabetes 

Federation (IDF), approximately 382 million people worldwide had diabetes in 2013 and this 

number is expected to increase to more than 592 million people by 2035 (Fig.1.1) (IDF, 

2013). The prevalence of DM in the African region is projected to increase from 19.8 million 

cases in 2013 to 41.5 million cases in 2035, representing an approximately 109% increase in 

people afflicted with the disease (Fig.1.1). Conservative estimates indicate that South Africa 

currently has the fifth highest prevalence (9.3%) of DM in Africa (IDF, 2013), which vary 

between ethnic groups and regions (Erasmus et al., 2012). In 2005, the South African 

Medical Research Council conducted a study on chronic diseases of lifestyle in South Africa 

between 1995 and 2005. This study revealed that the highest prevalence of DM was among 

the Indian community at 8.5% and 11.5%, followed by the mixed ancestry community with a 

prevalence of 3.1% and 5.8% for men and women, respectively (Goedecke et al., 2005). The 

lowest prevalence of DM was observed among males and females in the Northwest province 

of South Africa at 0.9% and 1.1%, respectively (Goedecke et al., 2005). However, recent 

studies have shown an increase in the prevalence of T2D in the mixed ancestry community 

in the Western Cape of South Africa (Erasmus et al., 2012). 

 

The major types of DM include Type 1 DM (T1D), Type 2 DM (T2D), Gestational DM and 

Maturity onset diabetes of young (MODY) (American Diabetes Association 2014). Type 2 

diabetes (T2D), also called non-insulin dependent diabetes (NIDDM) or adult-onset diabetes, 

is the most common form of diabetes accounting for approximately 90% of all cases 

worldwide, while T1D, gestational DM and MODY make up the remaining 10% (ADA, 2014; 

Butt and Swaminathan, 2015). Type 1 diabetes mellitus is referred to as insulin-dependent 

diabetes mellitus (IDDM), and occurs due to the inability of the pancreas to secrete insulin 

due to β-cell destruction, thus, requires insulin to maintain normo-glycaemia. Gestational DM 

is defined as glucose intolerance first diagnosed during pregnancy, and it is estimated that 

approximately 5-10% of all pregnancies are complicated by hyperglycaemia (Gunderson et 
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al., 2014).  Most cases of GDM resolve after delivery, however, these women have a greater 

than 70% lifetime risk of developing T2D (Ratner, 2007). Maturity onset diabetes of the 

young (MODY) occurs due to an autosomal dominant genetic mutation, and is characterized 

by impaired insulin secretion, with little or no defects in insulin action (Shields et al., 2010). 

Figure 1.1 The global prevalence of diabetes in 2013 and the predicted global prevalence in 2035 

(Adapted from: IDF, 2013). 

 

1.2 Aetiology of Type 2 diabetes 

Type 2 diabetes is a complex, multifactorial disease involving the interplay of many risk 

factors. These include, amongst others, genetics, lifestyle, nutrition and lack of physical 

activity (Fig. 1.2) (Hu, 2011; Wild et al., 2004; Zimmet et al., 2014).   

 

Over 70 susceptibility loci have been identified for T2D (Sun et al., 2014b), however, these 

account for only approximately 5-10% of all cases, suggesting that the increasing prevalence 

of T2D is not driven by genetic factors (McCarthy and Menzel, 2001). Indeed, several lines 

of evidence have suggested that an unhealthy diet, high in fats and sugars, together with a 

sedentary lifestyle are the main contributors of the current T2D pandemic (Wing et al., 2001). 
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Reports that the increased rates of T2D in developing countries, are due to, amongst others, 

increased prosperity, urbanization and a shift towards a “westernized lifestyle” (Ostbye et al., 

1989), confirm the importance of diet and physical activity in the development of T2D. The 

“westernized lifestyle” is characterized by high caloric intake (Hu, 2011; Popkin, 1999; 

Popkin and Gordon-Larsen, 2004) that is associated with highly processed and refined 

foods, which contain high levels of salt, sugars and fats (Odermatt, 2011), a sedentary 

lifestyle (Popkin, 1999), smoking, and alcohol consumption, (Hu, 2011), among others.  

 

 

 

 

.  

 

 

 

 

   

Figure 1.2 Interaction between genetic and environmental factors that contribute to the development of 

T2D. 
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1.3 Major metabolic mechanisms that characterize 

Type 2 diabetes 

As discussed previously T2D is a complex disease underpinned by a number of biological 

mechanisms. These mechanisms primarily include impaired insulin action, β-cell 

dysfunction, increased endogenous glucose output and obesity. These will be discussed 

below.  

1.3.1 Insulin resistance 

1.3.1.1 Insulin action  

Insulin, a peptide hormone secreted by β-cells in the pancreas, is secreted in response to 

elevated blood glucose levels (Kahn, 1998). The effect of insulin on glucose metabolism 

varies in different tissue types. Insulin regulates the metabolism of carbohydrates and fats by 

promoting the absorption of glucose from the blood in skeletal muscle, and promoting fat 

storage in adipose tissue (Saltiel and Kahn, 2001). Insulin also inhibits hepatic glucose 

production by inhibiting gluconeogenesis (glucose production) (Claus and Pilkis, 1976) and 

glycogenolysis (glycogen breakdown) (Marks and Botelho, 1986). 

1.3.1.2 Insulin signaling  

Insulin is the primary mediator of glucose homeostasis (Leahy, 2005). During conditions of 

hyperglycaemia, β-cells in the pancreas increase their secretion of insulin to stimulate 

glucose uptake in insulin-responsive tissues such as the skeletal muscle so as to restore 

normo-glycaemia (Araujo et al., 2013). Insulin initiates its biological action by binding to the 

tyrosine kinase insulin receptor located in the plasma membrane of insulin-responsive 

tissues. Phosphorylation of the insulin receptor results in the activation of a number of 

signaling cascades that regulates several biological processes including glucose uptake 

(Fig. 1.3). Activation of the insulin signaling cascade leads to the translocation of glucose 

transporter type 4 (GLUT4) to the cell membrane and the uptake of glucose from the 

circulation (Frosig et al. 2007). Skeletal muscle is considered the predominant site for 

insulin-mediated glucose disposal, and accounts for approximately 80% of peripheral 

glucose uptake in the postprandial state (Defronzo et al., 1981; Defronzo and Tripathy, 
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2009). Dysregulation of any intracellular protein (protein kinase C (PKC), insulin receptor 

substrate 1/2 (IRS1/2) or phosphatidylinositol 3-kinase/serine-threonine protein kinase-1 

(PI3K/AKT-1)) involved in the insulin signaling cascade leads to the development of insulin 

resistance (IR) (Kahn, 1998). The nature and extent of cellular IR depends on the tissue 

type, and vary according to the metabolic action of insulin within the tissue (Poornima et al., 

2006). 

 

 

 

 

Figure 1.3 Insulin signaling cascades (Adapted from: Li and Zhang, 2007).  

1.3.1.3 Insulin resistance and fatty acids 

Fundamental in the progression of T2D, are the deleterious effects of increased lipid 

accumulation and adipocyte hypertrophy and hyperplasia, which leads to the dysregulation 

of adipocyte control mechanisms and the recruitment of macrophages into adipose tissue, 

inflammation and the release of several factors that further exacerbate the IR state 

(Greenberg and Obin, 2006).  

Key: protein tyrosine phosphatase-1B (PTP-1B), growth factor receptor bound protein 2 (Grb2), 

SHC-transforming protein (SHC), protein subfamily SOS/Ras, mitogen-activating protein kinase 

(MAPK/MEK), cbl-associated protein complex (cbl/CAP), insulin receptor substrate 1/2/3/4, 

phosphatidylinositol 3-kinase/serine-threonine protein kinase-1 (PI3K/Akt), PI3k- dependent 

serine/threonine kinase (PDK), atypical protein kinase C (aPKC), glycogen synthase kinase 3 

(GSK3),  (AKT), preproinsulin (PPI), p70 ribosomal subunit S6 kinase (p70S6k), glucose-6-

phosphate (G-6-P), glucose transporter 4 (GLUT4). 
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Several studies have suggested that increased levels of non-esterified fatty acids (NEFA) 

during disease progression alter insulin signaling pathways through different mechanisms 

(Poornima et al., 2006). For example, Shulman et al. (2000) suggests that elevated levels of 

fatty acids inhibit the insulin signaling pathway, by activating PKC; an important intracellular 

insulin signaling protein (Shulman et al., 2000). Activation of PKC leads to serine/threonine 

phosphorylation on the IRS-1/2, failure to activate PI3K, and decreased translocation of 

GLUT4 to the cell membrane, and subsequently decreased glucose uptake into the cell 

(Dresner et al. 1999; Shulman, 2000). Others have also reported that fatty acids can inhibit 

insulin signaling through PKC-independent pathways, where fatty acids induce IR in cells by 

attenuating insulin receptor gene expression (Bhattacharya et al., 2007; Dey et al., 2005). 

These examples confirm that NEFAs play a significant role in altering cellular insulin 

signaling pathways, thereby contributing to IR. 

 

Furthermore, studies have suggested that elevated levels of glucose and fatty acids may 

impair β-cell function, and at a later stage, affect β-cell survival (Morgan, 2009; Purrello and 

Rabuazzo, 2000). It is generally agreed that both IR and β-cell dysfunction play important 

roles in the pathogenesis of T2D, although there is uncertainty about the relative contribution 

of these factors (Scheen, 2003; Kahn, 2003). 

1.3.2 Beta-cell dysfunction 

The primary function of β-cells is to synthesize and release insulin in response to increased 

blood glucose concentrations, thus restoring homeostasis. The process of insulin secretion 

is disrupted in dysfunctional β-cells as a result of irreversible damage to cellular components 

of insulin production over time (Stumvoll et al., 2005). Several mechanisms including 

glucotoxicity, lipotoxicity, and amyloid formation have been proposed as a direct link to β-cell 

dysfunction (Biden et al., 2014; Maedler, 2008; Stumvoll et al., 2005). The glucotoxic 

condition (chronic hyperglycaemia exposure) is characterized by decreased insulin gene 

transcription, due to hyperglycaemia-induced loss of critical proteins that activate the insulin 

promoter (Kaiser et al., 2003). The effect of hyperglycaemia on β-cells is often followed by a 

reduction in β-cell mass, as a result of β-cell apoptosis, without a compensatory increase in 

proliferation or neogenesis (cell renewal) (Bonner-Weir and O'Brien, 2008; Meier and 

Bonadonna, 2013).  
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The detrimental effects of excess glucose converge with the adverse consequences of 

lipotoxicity, both of which cause increased β-cell apoptosis. Lipotoxic conditions are induced 

in β-cells during chronic exposure to elevated levels of NEFAs, which is a characteristic of 

obesity and T2D (Kahn et al., 2014). Chronically elevated NEFAs and the accumulation of 

long-chain acyl coenzyme A inhibit insulin secretion, as a result of pre-existing 

hyperglycaemia and glucose-induced fatty acid oxidation (Robertson et al., 2003; Stumvoll et 

al., 2005). In addition, elevated glucose concentrations increase the levels of reactive 

oxygen species, thereby inducing oxidative stress in β-cells over time. Pancreatic β-cells are 

particularly sensitive to oxidative stress due to their low intrinsic antioxidant capacity, thus 

oxidative stress may further exacerbate the impairment of β-cells during the development of 

T2D (Drews et al., 2010).  

1.3.3 Obesity 

Obesity is currently a major health concern, affecting more than 475 million adults and 200 

million school-aged children globally (World Obesity, 2012). The increasing prevalence of 

T2D is concurrent with the rising rates of obesity, and appears to reflect common 

environmental and genetic factors that underlie both conditions (Feero et al., 2010; Hu, 

2011). Indeed, overweight and obesity is widely considered to be the major driver of T2D, 

and studies have reported that 90% of adults with T2D are overweight or obese (Whitmore, 

2010). These conditions are characterized by the excessive accumulation of body fat due to 

an imbalance between energy intake and expenditure, i.e. increased consumption of high 

fat, nutrient poor foods and decreased physical activity (Misra et al., 2009). The body mass 

index (BMI), is a tool used to calculate overweight and obesity, and individuals with a BMI of 

≥25 kg/m2 or ≥30 kg/m2 is defined as overweight or obese, respectively (Puoane et al., 

2002). Obesity is often associated with hypertension, low serum high-density-lipoprotein 

(HDL) cholesterol concentrations, and high serum low-density-lipoprotein (LDL) cholesterol, 

triglyceride and non-HDL cholesterol concentrations (Han et al., 1998; Mooradian, 2009; 

Pradhan et al., 2001). Together these factors are referred to as the metabolic syndrome, a 

risk factor for a number of chronic diseases, including T2D, and present major future 

challenges in reducing T2D mortality.   
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1.4 Progression of Type 2 diabetes 

Type 2 diabetes is a chronic disease that progresses and worsens over time (Fig. 1.4). The 

disease is usually diagnosed during the later stages of disease progression, when insulin 

sensitivity and β-cell function is already significantly impaired. Together, the effects of 

increased IR and impaired β-cell function exacerbate hyperglycaemia, ultimately resulting in 

insulin deficiency and excess glucagon production (Fanelli et al., 2006). Chronic 

hyperglycaemia leads to many long-term complications in the nerves, heart, kidney, eyes 

and blood vessels that cause irreversible tissue damage. Individuals with pre-diabetes, 

defined as having higher glucose levels than normal, but not high enough to be considered 

as T2D are also at risk of these micro- (nephropathy, neuropathy and retinopathy) and 

macro-vascular (coronary artery disease, stroke and peripheral arterial disease) 

complications (Fowler, 2008; Vinik and Flemmer, 2002). The risk of diabetic retinopathy and 

nephropathy, caused by progressive damage to the retina and kidney failure, respectively, is 

related to the severity of hyperglycaemia and the presence of hypertension in the pre-

diabetic stage (Fowler, 2008). The risk for diabetic neuropathy is increased, depending on 

both the magnitude and duration of hyperglycaemia exposure, before the development of 

T2D. This is indicated by the presence of symptoms and/or signs of peripheral nerve 

dysfunction (Fowler, 2008). The central pathological mechanism in macrovascular disease is 

the process of atherosclerosis, which leads to the hardening and narrowing of arterial walls 

throughout the body. Atherosclerosis is thought to result from chronic inflammation and 

injury to the arterial wall, which leads to increased risk of developing cardiovascular disease 

(CVD) (Boyle, 2007). Conservative estimates indicate that more than 70% of patients with 

T2D die of cardiovascular causes (Laakso, 2010). 

 

Taken together, these studies emphasize the need to detect T2D early, or to identify high 

risk individuals in the early stages, thereby, preventing or delaying T2D disease progression, 

and ultimately reducing mortality and morbidity worldwide. A number of studies have already 

reported that the benefits of the early detection and treatment of T2D can improve 

prognosis/management, and reduce T2D-related complication (Callejas et al., 2013; 

Shamoon et al., 1993; Tuomilehto et al., 2001).  
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Figure 1.4 Type 2 diabetes disease progression (Adapted from: AACE diabetes resource centre, 

2013). 

 

1.5 Diagnosis of Type 2 diabetes 

Diabetes is diagnosed according to the American Diabetes Association (ADA) or WHO 

criteria, by a fasting plasma glucose (FPG) concentration > 7.0 mmol/L, or a two-hour 

plasma glucose concentration during an oral glucose tolerance (OGTT) of > 11.0 mmol/L 

(Table 1.1). The FPG test measures glucose levels after fasting overnight for at least 8 hrs, 

while the OGTT test measures glucose tolerance after ingesting 75 g of glucose diluted in 

water. Glycated haemoglobin A1c (HbA1c) refers to the binding of glucose to haemoglobin, 

and due to the life-span of haemoglobin, reflects average glucose control over a three month 

period. The ADA has recently recommended that HbA1c > 6.5% can be used to diagnose 

diabetes (ADA, 2014).  

 

Glucose measuring devices such as a glucometer (finger prick) may be used as a quick 

indicator of high blood glucose concentrations, but are not considered accurate enough for 

diagnosis. Additionally, a random plasma glucose concentration (RPG) > 11.1 mmol/L may 

be used to indicate possible T2D, although a confirmatory test is required (ADA, 2014).  
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Currently, the FPG and OGTT are the preferred tests for diagnosing diabetes. However, 

OGTT has been regarded as clinically impractical due to the 2 hour waiting period, and has 

led to the FPG being the most common test used to diagnose T2D globally. Literature 

suggests that more than one test should be used to accurately diagnose diabetes or 

hyperglycaemia (Barr et al., 2002; Wang et al., 2002), however, criteria for diagnosing T2D 

varies greatly throughout the world. 

 

The various criteria and cut-off values used for the diagnosis of diabetes include FPG, 

HbA1c and OGTT, as presented in Table 1.1 (Malkani and DeSilva, 2012). The same tests 

are used for both screening and diagnosis, and are based on the 2015 ADA guidelines and 

the 2006 WHO addendum report (ADA, 2015; WHO, 2006). A number of European 

countries, as well as South Africa (Amod et al., 2012) prefer to use the WHO diagnostic 

criteria, while others in America prefer to use the ADA diagnostic criteria (ADA, 2015; 

Deckers et al., 2006).  

 

Table 1.1 The current ADA and WHO diabetes diagnostic criteria (ADA, 2015; WHO, 2006). 

 WHO criteria ADA criteria 

FPG                                        Normal: 

IFG: 

Diabetic: 

< 6.1 mmol/L 

6.1-6.9 mmol/L 

≥ 7.0 mmol/L 

< 5.6 mmol/L 

5.6-6.9 mmol/L 

≥ 7.0 mmol/L 

OGTT (2hr plasma)               Normal: 

IGT:  

Diabetic: 

< 7.8 mmol/L 

7.8-11.0 mmol/L 

≥ 11.1 mmol/L 

< 7.8 mmol/L 

7.8-11.0 mmol/L 

≥ 11.1 mmol/L  

HbA1C                                   Normal: 

Pre-diabetes: 

Diabetes: 

Not specified 

Not specified 

≥ 6.5% 

< 5.7% 

5.7-6.4% 

≥ 6.5% 
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1.5.1 Pre-diabetes 

Pre-diabetes is widely considered to be an intermediate state of hyperglycaemia (Beagley et 

al., 2014), and is often refered to as a state of impaired fasting glucose (IFG) or impaired 

glucose tolerance (IGT). Although controversy exists regarding the diagnostic criteria for pre-

diabetes, many studies have reported that it is a very high predictor for the development of 

overt diabetes and related complications (WHO, 2006; Forouhi et al., 2006). It is estimated 

that approximately 5%-10% of all pre-diabetes cases convert to T2D yearly. The WHO 

classifies IFG and IGT at 6.1-6.9 mmol/L (FPG) and 7.8-11.0 mmol/L (OGTT) cut-off values, 

respectively (WHO, 2006), while the ADA uses the same cut-off for IGT, but has a lower 

threshold for IFG (5.6-6.9 mmol/L) (ADA, 2015). Their rationale is based on data which 

showed that individuals with FPG concentrations between 5.6 mmol/L and 6.05 mmol/L were 

at increased risk of developing T2D and CVD, which would not be identified if a FPG cut-off 

threshold of 6.1-6.9 mmol/L was used (Gabir et al., 2000; Shyong Tai et al., 2004). However, 

Ferouhi et al. 2006 showed that the lowered threshold values (5.6-6.9 mmol/L) improved the 

sensitivity of IFG as a predictor of diabetes, but at the cost of specificity, thus 

misrepresenting the amount of individuals at risk of developing diabetes (Forouhi et al., 

2006; Sacks et al. 2011). Furthermore, the ADA has an additional HbA1c test at a cut-off 

value of 5.7-6.4% for detecting pre-diabetes, which is not defined in WHO (ADA, 2015). 

1.6 Limitations and shortfalls of current diagnostic 

tests 

In certain cases, the glycaemic status of patients may vary when different tests are used. 

Such variability may arise due to changes that occur over time, measurement variability, or 

because FPG, OGTT and HbA1c measure different physiological processes during the 

pathogenesis of T2D (Selvin et al., 2007). In addition to these factors, evidence suggests 

that several technical challenges are associated with each individual diagnostic test, and 

could impede the diagnosis of T2D. Furthermore, current available diagnostic tests by FPG, 

HbA1c and OGTT are limited with regards to predicting diabetes; as it does not allow the 

identification of individuals who are susceptible to develop diabetes when glucose levels are 

still considered normal, thus increasing the risk of developing several health complications. 

However, in the absence of a more specific biological marker to define diabetes, plasma 

glucose estimation remains the basis of diagnostic criteria (Molleutze, 2006). 
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1.6.1 Oral glucose tolerance test and fasting plasma 

glucose test 

The OGTT is currently the gold standard for the diagnosis of T2D due to its superiority in 

diagnosing diabetes in the clinical setting compared to the FPG test (Salmasi and Dancy, 

2005). However, the OGTT requires very stringent conditions, such as overnight fasting, 

multiple blood sampling, consumption of 75 grams (g) of glucose diluted in water, and 

preventing the subject from movement for the duration of the test (Appajigol et al., 2011). 

These conditions influence the test results, often making the test impractical. Moreover, the 

OGTT has greater inter-individual variability compared to the FPG test and HbA1c, and it is 

recommended that the test be confirmed by repeat testing on a different day (Selvin et al., 

2007; Waugh et al., 2007). Therefore, due to these limitations, the ADA recommended FPG 

as the preferred glucose-based diagnostic test (International Expert Committee, 1997). 

However, FPG lacks sensitivity and results in lower disease prevalence compared to OGTT, 

and moreover, cannot identify subjects with IGT (Waugh et al., 2007). A study investigating 

glycaemia in a black South African population illustrated that the prevalence of T2D would 

be lower if FPG was solely used for diagnosis compared to using both FPG and OGTT 

(Motala et al., 2008). This illustrates the different underlying pathophysiologies of T2D, and 

suggests that more specific tests are required to accurately diagnose diabetes.  

1.6.2 Glycated haemoglobin A1c 

The use of HbA1c has a number of advantages compared to glucose measurements by 

FPG and OGTT. These advantages include no fasting, less variability, greater pre-analytical 

stability, and a greater index for overall glycaemic control. However, there are a number of 

factors that could lead to the misinterpretation of HbA1c diagnostic measurements. These 

factors include altered red blood cells in patients with haemoglobinopathies, and variations 

due to iron deficiency, aging, ethnicity and antiretroviral drugs (Church and Simmons, 2014; 

International Expert Committee, 2009; Kilpatrick and Winocour, 2010; Kirkman and Kendall, 

2011; Saudek et al., 2008; Topic, 2014). These factors hamper the use of HbA1c, especially 

in countries where the prevalence of these disorders are high. For example, South Africa is a 

multi-ethnic country that currently has the highest prevalence of Human Immunodeficiency 

Virus Infection/Acquired Immune Deficiency Syndrome (HIV/AIDS) globally, therefore 

decreasing the predictive value of HbA1c (HIV and AIDS in South Africa, 2014). Indeed, a 
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recent analysis has precluded its use for diagnosing diabetes in a South African setting 

(George, 2011). The limitations of the current diagnostic tests underscore the need to 

identify new methods to diagnose T2D more accurately. 

1.7  Biomarkers 

Biomarkers are indicators of normal biological processes that can be used as indicators of a 

particular disease state or other biological states of organisms. They are clinically useful 

because they can potentially predict or diagnose disease, give insight into the 

pathophysiology of disease, and can be used to monitor or predict clinical outcome (Sahu et 

al., 2011). Although the term „biomarker‟ is fairly new, it has been used for many years in 

clinical diagnosis and research. Examples of a few well-known biomarkers include pulse and 

blood pressure (hypertension), cholesterol (coronary and vascular disease), C-reactive 

proteins (inflammation), and  HbA1c, FPG, RPG and OGTT (diabetes) (Kumar and Khanna, 

2011; Sahu et al., 2011). However, biomarkers need to fulfil several criteria to be clinically 

useful. Among others, these include: 

 Tissue or pathology specificity, 

 Easily accessible through minimally invasive methods to collect biofluids, 

 Sensitivity to relevant changes in the disease, 

 Early detection of disease before clinical symptoms appear, 

 A long half-life within the sample,  

 Optimal speed, accuracy and ease of analysis, 

 Cost effective and reproducible, and 

 The ability to differentiate between pathologies (Etheridge et al., 2011; Sahu et al., 

2011) 

Effective biomarkers are ones that are able to monitor and accurately identify individuals at 

the subclinical stage and enable preventative measures before the disease develops (Lyons 

and Basu, 2012). 

1.7.1 Recent advances in biomarker discovery 

A number of genomic, transcriptomic, proteomic, and metabolic markers currently exist, and 

have been correlated with T2D disease progression (Bain et al., 2009; Galazis et al., 2013; 

McKillop and Flatt, 2011). However, these biomarkers often lack sensitivity and/or specificity 
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and are associated with the irreversible stages of T2D (Galazis et al., 2013). Identification of 

novel biomarkers that fulfill some of the criteria listed in section 1.7 would be of great clinical 

value and would have the potential to facilitate intervention strategies that can be tailored to 

the characteristics of an individual to prevent or modify disease progression (Lyons and 

Basu, 2012). Recent advancements in the field of molecular biology have led to the 

development of molecular biomarkers that are easily measured in biological samples such 

as plasma, serum, and whole blood (Chen et al., 2008; Holland et al., 2003). 

1.8 Epigenetics 

Epigenetics is defined as the heritable changes in gene expression or phenotype that occurs 

without changes in the underlying DNA sequence (Christensen and Marsit, 2011). Recent 

findings suggest that epigenetics underpins the crucial link between environmental factors 

and genetic predisposition in the pathogenesis of T2D. Environmental exposures such as 

nutrition, toxins, age, physical inactivity, etc. modify the epigenome, causing epigenetic 

dysregulation; a key mechanism underlying the development of metabolic diseases 

(Hamilton, 2011). Recently, epigenetic mechanisms have attracted considerable interest as 

potential biomarkers which would identify T2D. Moreover, due to their reversible nature, 

epigenetic changes may provide a window of opportunity for intervention strategies to 

prevent or delay the progression to T2D (Reddy et al., 2013). 

 

These epigenetic mechanisms include DNA methylation, loss of genomic imprinting, 

chromatin remodeling and non-coding RNA (Gibney and Nolan, 2010; Hirst and Marra, 

2009). Non-coding RNAs include long non-coding and short-non-coding RNAs such as 

microRNAs that are able to positively and negatively regulate gene expression in a signaling 

cascade (Stefani and Slack, 2008; Wahlestedt, 2013).  

1.9 MicroRNAs 

MicroRNAs (miRNAs) are a class of small, highly conserved non-coding RNA molecules that 

have recently attracted considerable interest as epigenetic modulators of gene expression in 

a wide range of diseases, including T2D (Kong et al., 2011; Olson, 2014; Schwarzenbach et 

al., 2014). MiRNAs are single-stranded RNA species approximately 22 nucleotides (nt) in 

length, that are able to regulate gene expression by inducing repression of target messenger 

RNA (mRNA) through translational inhibition or initiating mRNA degradation (Brennecke et 
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al., 2005). Since their discovery in C. elegans in 1993 (Lee et al., 1993), over 1000 miRNAs 

have been identified in humans, where they regulate a large proportion of genes in the 

human genome (Ardekani and Naeini, 2010). MiRNAs play a critical role in gene regulation 

and have been shown to be involved in highly regulated processes including differentiation, 

apoptosis, proliferation and metabolic processes (Du and Zamore, 2005). Furthermore, 

miRNAs have been extensively studied to understand the regulatory mechanisms involved in 

the pathogenesis of diseases, such as neurological disorders, CVD, obesity and T2D 

(Creemers et al., 2012; Guay et al., 2011; Kong et al., 2011; Zampetaki et al., 2010; 

Zampetaki et al., 2012; Hamilton, 2011; Pinney and Simmons, 2010). These miRNA 

regulatory mechanisms may offer new opportunities for the early detection of T2D and 

associated disorders, which can be used in clinical diagnostics to identify points between 

exposure and disease. 

1.9.1 MicroRNA nomenclature  

For ease of understanding and identification of experimentally confirmed miRNAs, a 

nomenclature system has been adopted. Briefly, the numbering of newly identified miRNAs 

is sequential, and is attached to the prefix „mir‟ followed by a dash (-). The uncapitalized „mir‟ 

refers to the pre-miRNA and the capitalized „miR‟ refers to the mature form. MiRNAs are 

named using the prefix „miR‟, followed by the unique identifying number prescribed to each 

miRNA in the numerical order of discovery (for eg. miR-1, miR-2, miR-3 etc.) (Wright and 

Bruford, 2011). When two mature miRNAs originate from either the 3‟ or 5‟ arm of the same 

pri-miRNA, they are denoted with either a „-3p‟ or „-5p‟ suffix, respectively, at the end of each 

miRNA (for eg. miR-1-3p or miR-1-5p) (Issler and Chen, 2015). However, when the mature 

miRNA found from one arm is more abundant than that from the other, an asterisk (*) 

following the miRNA name is denoted for the miRNA with the lowest concentration (Bartel, 

2004). For example, miR-1 and miR-1* share a pri-miRNA hairpin, but higher concentrations 

of miR-1 is found in the cell.  

 

MiRNAs with nearly identical mature sequences are annotated with lower case letter to show 

their similar structure (for example, miR-1a and miR-1b). Distinct precursor sequences and 

genomic loci from different regions of the genome that express identical mature sequences, 

are distinguished with an additional number (for example, miR1a-1 and miR-1a-2) (Issler and 

Chen, 2015). MiRNAs are also annotated according to the species they are observed in, and 
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are designated with a three-letter prefix. For example, has-miR-1-3p is observed in Homo 

sapiens (human), while mmu-miR-1-3p is observed in Mus musculus (mouse) (Ambros et 

al., 2003). 

1.9.2  MicroRNA biogenesis and mechanism of action 

The biogenesis of miRNAs begins in the nucleus of the cell, where several primary miRNA 

sequences (pri-miRNAs) are transcribed by either RNA polymerase II or RNA polymerase III 

depending on promoter and terminator sequences (Cai et al., 2004), and then capped, 

spliced and polyadenelated. Thereafter, pri-miRNAs are processed by microprocessor 

complex Drosha (a nuclear RNase III enzyme) and DGCR8 (encoded in humans by 

DiGeorge critical region 8) into precursor miRNAs (pre-miRNAs) of ~60-70 nt long stem-loop 

structures (Lee et al., 1993; Muhonen and Holthofer, 2009). These pre-miRNAs are then 

exported from the nucleus to the cytoplasm by Exportin-5 (xpo5) and RanGTP complex. In 

the cytoplasm, pre-miRNAs are further processed and cleaved into ~22 nt long mature 

miRNA duplexes by Dicer, a cytoplasmic RNase III enzyme and its interacting partner, a 

transactivation-responsive RNA binding protein (TRBP or TARBP2) (Liu et al., 2008; Pandey 

et al., 2009). Having lower thermodynamic stability, the 5‟ end of the miRNA duplex is 

selected by the miRNA-induced silencing complex (miRISC), and is subsequently bound to 

the Argonaute protein, which forms part of the risk effector complex. The bound mature 

miRNA guides the miRISC to the 3‟ untranslated region (UTR) binding site of the target 

mRNA, where they are able to downregulate gene expression (Richard et al., 2005). This 

may be achieved by two posttranscriptional mechanisms, namely, mRNA 

cleavage/degradation or translational repression (Kumar and Khanna, 2011) (Fig.1.5). 
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Figure 1.5 Schematic diagram representing the biogenesis of miRNA and its mechanism of action. 

Primary miRNA transcripts (pri-miRNA) transcribed by RNA Polymerase (pol II or III) and processed 

by microprocessor (Drosha and DGCR8), are exported as pre-miRNAs into the cytoplasm by 

Exportin-5 and RanGTP. Dicer and its interacting binding protein TRBP process pre-miRNAs into 

short miRNA duplexes. The 5‟ mature miRNA strand binds to the RNA-induced silencing complex 

(miRISC)-associated argonaut protein (Ago2), and induces silencing of their mRNA target sequences. 

 

The basic difference between mRNA cleavage and translational repression is governed by 

the levels of complementarity between miRNAs and their target mRNA transcripts (Bartel, 

2004). In plants and in a small class of eukaryotes, miRNAs bind to a single, generally 

perfect or near perfect complimentary site in either the coding or 3‟ UTR of the target mRNA, 

which results in  target cleavage and degradation (Ghosh, 2011). In contrast, in most 

investigated animals (mammals), miRNAs bind to multiple, imperfect complementary sites in 

the 3‟ UTR target region, and directs the inhibition of protein accumulation through 

translational repression (Pillai et al., 2007). The complementarity is usually restricted to the 

5‟ end of the mature miRNA, at position 2 to 8, known as the miRNA „seed region‟, a 

sequence that occurs when the nucleotide adenine (A) pairs with uracil (U) and guanidine 
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(G) pairs with cytosine (C) (Xu et al., 2014) (Fig.1.6). However, when the nucleotide 

represents a G or a U, the pairing may be less specific, where two bases can be 

interchangeably recognised by the mRNA, more commonly known as wobble paring 

(Peterson et al., 2014). A perfect seed match between the miRNA and mRNA target has no 

gaps in the alignment, and is regarded to be the most important feature for miRNA target 

recognition in mammals (Lewis et al., 2003). Moreover, a number of miRNA target predicting 

analyses showed that the miRNA target sequence is highly conserved across species, and 

requires a number of base matches flanking the seed sequence to direct the specificity of 

miRNA:mRNA interactions (Lewis et al., 2005; Peterson et al., 2014). Although 

understanding of miRNA function is limited, enough evidence exists to illustrate that a given 

miRNA is able to regulate multiple mRNA targets in a signaling cascade (Friedman et al., 

2009; Lewis et al., 2005), and is therefore involved in controlling many biological processes 

to maintain metabolic homeostasis (Felekkis et al., 2010).  

 

 

 

 

 

Figure 1.6 Schematic overview of the miRNA:mRNA target interaction. Watson-crick base pairing of 

the miRNA seed sequence and the mRNA target sequence is shown in red, and an example of a G-U 

wobble in the seed sequence is shown in green. Flank refers to the 5‟ or 3‟ mRNA sequence 

corresponding to the region on either side of the seed sequence (Adapted from: Peterson et al., 

2014). 

1.9.3 The role of microRNAs in Type 2 diabetes 

The majority of miRNAs is tissue and cell type specific, and plays a critical role in gene 

regulation, while others may be expressed ubiquitously depending on their function (Lagos-

Quintana et al., 2002; Lim et al., 1999; Mao et al., 2013). Recently, scientists have shown 

that miRNA expression is regulated by environmental factors, which contribute to the 

aberrant gene expression patterns seen in metabolic disorders (Rottiers and Näär, 2012). 

The dysfunction of miRNA regulation disrupts normal cellular activity which may lead to the 

development of various diseases, such as cancers, lymphomas, CVD complications, T2D 
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and neurological disorders such as Parkinson‟s and Alzheimer‟s disease (Cheng and Zhang, 

2010; Cuk et al., 2013; Maes et al., 2009). Recently, there has been considerable interest in 

understanding the RNA regulatory phenomena and how miRNAs function in the 

development of T2D (Guay et al., 2011).  

 

In the context of T2D, miRNAs are widely expressed in blood, pancreas, liver, skeletal 

muscle and adipose tissue, and are able to regulate the expression of multiple genes 

(Rottiers and Näär, 2012). Together, these miRNAs regulate insulin sensitivity mainly by 

targeting insulin receptors and the components of insulin/protein kinase B (PKB) signaling 

pathways or GLUT4- mediated glucose uptake and metabolism (Tang et al., 2008). Global 

miRNA profiling has provided valuable information that couples miRNA expression changes 

occurring in pancreatic β-cells and insulin target tissues, with the changes that occur in 

glucose levels during the pathogenesis of T2D (Guay et al., 2011). For example, Herrara et 

al., (2010) measured the expression of several miRNAs in the liver, skeletal muscle and 

adipose tissue in spontaneously diabetic (Goto-Kakizaki) and normo-glycaemic (Brown-

Norway) inbred rats, and found that expression of several miRNAs correlated with the 

glycaemic status of the rats. Each miRNA showed a significant tissue-specific expression 

pattern that varied between the different strains of rats, and between normal and diabetic 

within each strain (Herrera et al., 2010; Herrera et al., 2009). Moreover, prolonged in vitro 

exposure of mouse β-cells (MIN6) to high glucose levels resulted in differential expression of 

a large number of miRNAs. Among these, miR-124a, miR-30d and miR-107 were 

upregulated, while miR-296, miR-484 and miR-690 were downregulated by high glucose 

treatment of MIN6 cells (Tang et al., 2009).  

 

Furthermore, several human studies have demonstrated that miRNAs are differentially 

expressed in multiple tissue types, and are able to regulate the expression of multiple genes 

in a signaling cascade. MiRNAs are expressed in several tissues that play a crucial role in 

insulin signaling, glucose metabolism and β-cell development. Among others, miRNAs 

expressed in pancreatic tissue include miR-375, miR-29a, miR-96, miR-124a, miR-376 and 

let-7, while three of these miRNAs (miR-29a, miR-375, and miR-96) are also expressed in 

other tissue types, such as muscle, liver and adipose, and regulate the expression of 

multiple genes involved in maintaining glucose homeostasis. Studies have reported that 

these miRNAs exert their action on different tissue types, and present a consistent 

regulatory role during the pathogenesis of T2D (Zhu and Leung, 2015). Although miRNA 
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research has skyrocketed over the last few years (Friedlander et al., 2014), more studies are 

needed to improve the understanding of these miRNAs and their regulation during disease.  

1.9.4 Circulating microRNAs 

Majority of miRNAs are found intracellularly, while a significant number of miRNAs are found 

in the extracellular fluid outside the cell, and are particularly useful in biomarker discovery 

(Creemers et al., 2012; Hanson et al., 2009; Weber et al., 2010). These extracellular 

miRNAs circulate in the bloodstream and compared to mRNA levels, have been found to be 

remarkably stable among individuals of the same species (Chen et al., 2008; Hunter et al., 

2008). Circulating miRNAs are able to withstand unfavorable physiological conditions such 

as extreme pH variability, boiling, multiple freeze thaw cycles and extended storage, making 

them attractive, potential biomarkers for clinical research (Chen et al., 2008).  

 

It has been postulated, that the stability of these miRNAs may result from the formation of 

complexes between circulating miRNAs and specific proteins (Turchinovich et al., 2012).  

These complexes include ribonucleoproteins (RBP) such as argonaute (Ago1-4) or 

nucleophosphin 1 (NPM1), exosomes, apoptotic bodies, microvesicles and lipoprotein 

complexes which serve to protect these miRNAs from nuclease degradation, and act as 

carriers to transport them to their target mRNAs (Creemers et al., 2012) (Fig. 1.7). This 

suggests cell-to-cell communication, allowing miRNAs to influence gene expression in 

neighbouring cells when conditions become stressful (Creemers et al., 2012). MiRNAs 

encapsulated in microvesicles (made up of exosomes and shedding vesicles) are released 

from the cell through blebbing (protrusion or bulge) of the plasma membrane, and can then 

be transferred to recipient cells where they trigger functional effects and modulate gene 

expression (Hunter et al., 2008; Thery et al., 2002; Valadi et al., 2007).  

 

The release of exosomes and microvesicles from cells are regulated by sphingomyelin, a 

major lipid in the lipid bilayer of the cell membrane. The biosynthesis of sphigomyelin is 

tightly controlled by neutral sphingolimyelinase 2, a hydrolase enzyme involved in lipid 

metabolism, and ceramide, a component of sphingomyelin, dependent secretary-machinery 

in response to cellular stresses (Cortez et al., 2011; Kosaka et al., 2010; Trajkovic et al., 

2008). Some miRNAs are found in apoptotic bodies and are released as byproducts from 

cells into the extracellular compartment during apoptosis. This could partly explain the 
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presence of tissue specific miRNAs in blood after toxicity in certain tissues (Laterza et al., 

2009; Zhang et al., 2010). The majority (approximately 90-99%) of all circulating miRNAs 

appears to be vesicle-free, and is associated with RNA-binding proteins (eg. Ago, NPM1), 

which allow miRNAs to remain highly stable during extracellular circulation (Arroyo et al., 

2011; Turchinovich et al., 2011). Additionally, a small portion of circulating miRNAs has also 

been found to be associated with high density lipoproteins (HDL) (Wagner et al., 2013). High 

density lipoproteins are capable of delivering both exogenous and endogenous miRNAs to 

recipient cells, and mediating direct targeting of mRNA, which leads to gene expression 

alterations (Vickers et al., 2011). However, in contrast to exosomes, miRNA associated 

lipoproteins are negatively regulated by neutral sphingolimyelinase 2, and delivery is 

dependent on the cell surface HDL receptors (SR-B1) (Chen et al., 2012; Vickers et al., 

2011).  

 

Although the mechanism of action for cell-to-cell communication is not completely 

understood, two theories currently exist regarding the export and biological function of 

extracellular miRNAs. One theory suggests that miRNAs are merely byproducts of 

microvesicle secretion and cell death, while the other theory suggests that miRNAs are 

specifically secreted and function in intercellular communication via paracrine and even 

endocrine signaling routes (Turchinovich et al., 2012; Valadi et al., 2007; Cortez et al., 

2011).  

Figure 1.7 Circulating miRNAs and associated complexes, such as ribonuclear proteins (RBP), 

apoptotic bodies, microvesicles, exosomes and high density lipoproteins (HDL), found in the 

bloodstream (Adapted from Kinet et al., 2013).  
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1.9.5 Circulating microRNAs as clinical biomarkers for 

Type 2 diabetes 

Regardless of the mechanism regulating circulating miRNAs, recent studies suggest that 

different pathophysiological conditions cause inappropriate release of miRNAs into the 

blood, altering miRNA expression profiles, and mediating the repression of critical mRNA 

targets in recipient cells. This leads to altered gene expression levels that consequently 

cause metabolic dysregulation (Chen et al., 2012; Santovito et al., 2014). Thus, distinct 

modification in the miRNA profile in blood may reflect the development of various chronic 

diseases that can be detected several years before the disease and its complications 

manifests (Hydbring and Badalian-Very, 2013). Extracellular circulating miRNAs have 

signatures for various diseases, and could play a major role as potential biomarkers in health 

and disease (Chen et al., 2008). The first link between circulating miRNAs and disease 

came from cancer studies in 2008 (Gilad et al., 2008; Lawrie et al., 2008; Mitchell et al., 

2008). These studies showed that tumour-derived miRNAs, were detected in serum or 

plasma, and could distinguish between cancer patients and healthy individuals (Lawrie et al., 

2008; Mitchell et al., 2008). Subsequent studies have also showed that circulating miRNAs 

can identify and monitor the progression of CVD, liver injury and kidney disease (Ding et al., 

2012; Saal and Harvey, 2009; Van Rooij and Olson, 2012). These findings support the 

hypothesis that circulating miRNAs may be used as informative biomarkers to assess an 

individual‟s pathophysiological status, sparking interest in their use as high risk, diagnostic or 

prognostic biomarkers for disease.  

 

In light of the positive associations between miRNAs and disease, a number of studies are 

exploring circulating miRNAs for their diagnostic and prognostic ability in T2D (Pescador et 

al., 2013; Yang et al., 2014; Zhang et al., 2013). Indeed, a number of studies have shown 

that miRNAs that are dysregulated during glycaemia, can be present in whole blood, 

PBMCs, serum and plasma of diabetic, pre-diabetic and normo-glycaemic individuals (Table 

1.2).  

 

Studies have also investigated their mechanism of action, confirming their role in T2D 

pathogenesis. For example, Yan et al. (2014) showed that miR-199, a miRNA significantly 

upregulated in the plasma of T2D patients compared to normo-glycaemic individuals, binds 

to GLUT4 mRNA and represses its expression, and subsequently glucose uptake in L6 rat 
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myoblast cells (Yan et al., 2014). The expression of MiR-144, another miRNA upregulated in 

T2D patients compared to normo-glycaemic individuals was upregulated in rat islets cultured 

under hyperglycaemic conditions (Karolina et al., 2011). Furthermore, using the Dual 

Luciferase reporter assay and Western blot analysis, these authors showed that miR-144 

induces repression of insulin receptor substrate 1 (IRS1) mRNA and protein, demonstrating 

its potential role in the insulin signaling pathway (Karolina et al., 2011). Studies have shown 

that two T2D-associated miRNAs, miR-146a and miR-155, may mediate their pathogenic 

effects by stimulating inflammation (Balasubramanyam et al., 2011; El-Ekiaby et al., 2012; 

O'Connell et al., 2010; Taganov et al., 2006; Zhang et al., 2010). The expression of these 

miRNAs was negatively associated with inflammation (nuclear factor kB (NFkB) mRNA 

levels and circulatory levels of tumour necrosis factor alpha (TNFα), and interleukin (IL-1β 

and IL-1)). 

 

Interestingly, a number of studies have reported that circulating miRNAs can distinguish 

between T2D, pre-diabetes and normo-glycaemia. For example, according to Karolina et al. 

(2011), eight circulating miRNAs (miR-144, miR-146a, miR- 150, miR-182, miR-192, miR-

29a, miR-30d and miR-320) were shown to be differentially expressed in PBMCs, and could 

serve as potential signatures to distinguish between IFG and T2D. Furthermore, Parrizas et 

al. (2014) showed that circulating levels of miR-192 and miR-193b were significantly 

upregulated in pre-diabetic compared to normo-glycaemic individuals, and interestingly, the 

increased levels of these miRNAs in pre-diabetics reverted back to normal following a 

therapeutic exercise intervention. Moreover, the authors showed that the abundance of 

these miRNAs was significantly correlated with metabolic parameters including OGTT, 

triglycerides and fatty liver index (Parrizas et al., 2014). Similarly, Liu et al. (2014) showed 

that the decreased expression of miR-126 in pre-diabetic and diabetic individuals compared 

to normo-glycaemic individuals was returned to normal after glucose lowering treatment (Lui 

et al., 2014). Moreover, Yang et al. (2014) explored the clinical significance of serum 

miRNAs (miR-23a, let-7i, miR-486, miR-96, miR-186, miR-191, miR-192, and miR-146a) in 

T2D patients. Of these miRNAs, miR-23a had significantly lower expression according to 

disease progression, i.e.  diabetic < pre-diabetic < normo-glycaemic individuals (Yang et al., 

2014). Finally, a prospective, longitudinal study showed that the expression of five miRNAs, 

miR-15a, miR-29b, miR-126, miR-223 and miR-28-3p, changed in normo-glyceamic 

individuals during disease progression to T2D (Zampetaki et al., 2010). Altered miRNA 

expression profiles were observed upon the manifestation of T2D, over a period of ten years.  
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Together, these studies support the hypothesis that circulating miRNAs could help to 

distinguish normo-glycaemic from diabetic and pre-diabetic individuals, and may have the 

potential as early predictive biomarkers of T2D.
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Table 1.2 A summary of studies on circulating miRNAs in T2D (Adapted from Raffort et al., 2015) 

MicroRNA Sample Disease Summary Reference 

miR-20b, -21,-24, -15a, -126, -191, -

97, -223, -320, -486, -28-3p 

Plasma T2D Differential miRNA expression between T2D 

patients and normo-glycaemic individuals 

(Zampetaki et al., 2010) 

miR-15a, -29b, -126, -223, -28-3p Plasma T2D Differential miRNA expression during disease 

progression 

 

miR-126  Plasma T2D Differential miRNA expression between T2D 

normo-glycaemic individuals, and between T2D 

susceptible and normo-glycaemic individuals  

(Zhang et al., 2015) 

miR-146a Plasma T2D Differential miRNA expression between T2D 

patients and normo-glycaemic individuals 

(Rong et al., 2013)  

miR-24, -29b Plasma T2D Differential miRNA expression between T2D 

patients and  normo-glycaemic individuals 

(Wang et al., 2014) 

miR-144 Plasma T2D Dysregulation associated with T2D in Swedish 

people, not in Iraqi people 
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miR-375 Plasma T2D Differential miRNA expression between Kazak 

T2D and Han T2D, and differences in the 

methylation of promoter regions 

(Chang et al., 2014) 

miR-140-5p, -142-3p, -222,-423-5p, 

-125b, -192, -195, -130b, -532-5p, -

126 

Plasma T2D Differential miRNA expression between T2D 

patients and normo-glycaemic individuals 

(Ortega et al., 2014) 

miR-192, 140-5p, 222 Plasma T2D Modification of miRNA expression by metformin  

miR-222, 140-5p Plasma T2D Modification of miRNA expression by 

molecules inducing IR 

 

miR-375 Plasma T2D Differential miRNA expression between T2D 

patients and normo-glycaemic individuals 

(Sun et al., 2014a) 

miR-191, -200b Plasma T2D Differential miRNA expression between T2D 

and normo-glycaemic individuals; and a 

correlation between miRNAs and C-reactive 

protein and cytokine levels in T2D patients 

(Dangwal et al., 2015) 

miR-199 Plasma T2D Differential miRNA expression between T2D 

patients and normo-glycaemic individuals 

(Yan et al., 2014) 
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miR-326, -let-7a, -let-7f Plasma T2D Differential miRNA expression between T2D 

patients and normo-glycaemic individuals 

(Santovito et al., 2014) 

miR-9, -29a, -30d, -34a, -124a, 

-146a, -375 

Serum  T2D Differential miRNA expression between T2D 

patients and normo-glycaemic individuals; No 

significant difference in miRNA expression 

between pre-diabetic and normal glucose 

tolerance group 

(Kong et al., 2011) 

miR-126 Serum T2D Differential miRNA expression between T2D 

patients and normo-glycaemic individuals; 

Differential miRNA expression between pre-

diabetic patients and normo-glycaemic  

individuals; Modification of miRNA expression 

by glucose lowering treatment 

(Liu et al., 2014) 

miR-23a, -let-7i, -486, -96, -186, -

191, -192, -146a 

miR-23a 

Serum T2D Differential miRNA expression between T2D 

patients and normo-glycaemic individuals 

Differential miRNA expression between pre-

diabetic and normo-glycaemic individuals 

(Yang et al., 2014) 

miR-191, -139-5p, -21 

 

Serum T2D Differential miRNA expression between T2D 

patients and normo-glycaemic individuals 

(Parrizas et al., 2014) 

Stellenbosch University  https://scholar.sun.ac.za

Stellenbosch University  https://scholar.sun.ac.za



 

28 
 

miR-191, -15b, -128, -125a-5p, -50, 

-192, -193b 

Serum T2D Differential miRNA expression between pre-

diabetic and normo-glycaemic individuals 

(Parrizas et al., 2014) 

 

miR-192, -193b Serum T2D Differential miRNA expression in pre-diabetic 

but not in diabetic patients; Modification of 

miRNA expression by lifestyle intervention in 

pre-diabetics 

 

miR-138, -376a Serum T2D Differential miRNA expression between normo-

glycaemic individuals, diabetic and obese 

diabetic patients  

(Pescador et al., 2013) 

miR-let-7a Whole 

blood 

T2D Differential miRNA expression between T2D 

patients and normo-glycaemic individuals; 

Differential miRNA expression between T2D 

with diabetic nephropathy and T2D 

(Zhou et al., 2013) 

miR-144, -146a, -150, -182, -192, -

29a, -30d, -320 

PBMC T2D Differential expression between patients with 

IFG and T2D 

Karolina et al., 2011 

miR-146a, -155 PBMC T2D Differential miRNA expression between T2D 

patients and non-diabetic individuals; 

Correlation between miR-146a levels and 

fasting blood glucose, HbA1c and inflammatory 

signals 

(Balasubramanyam et al., 

2011) 
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miR-103b Platelets T2D Differential miRNA and gene target SFRP4 

expression between pre-diabetic, non-

complicated T2D, coronary heart disease T2D 

vs. healthy controls 

(Luo et al., 2015) 
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1.9.6 Techniques to study microRNA expression 

MiRNA research has been facilitated by technological advancement that has spawned a 

multitude of platforms which enabled large scale epigenomic studies. At present, techniques 

including quantitative real-time polymerase chain reaction (qRT-PCR), microarray 

hybridization techniques such as oligonucleotide arrays and in situ hybridisation, and high 

throughput sequencing (HTS) of miRNAs are popular and widely used profiling methods 

(Thomas and Ansel, 2010; Git et al., 2010; Pritchard et al., 2012; Meyer et al., 2010). Among 

these techniques, the most cost effective and frequently used method for miRNA profiling is 

qRT-PCR (Fu et al., 2006; Kroh et al., 2010). Quantitative RT-PCR is a highly reproducible, 

sensitive and specific method, which is used for quantifying miRNA expression levels. The 

target specificity is based on the design of primers and probes specific to the miRNA of 

interest (Benes and Castoldi, 2010). Furthermore, although more expensive, HTS allows 

global miRNA expression profiling for the detection of less abundant and novel miRNAs, 

which cannot be detected using qRT-PCR (Pritchard et al., 2012). 

1.10 Bioinformatics: messenger RNA target 

prediction analysis  

One of the most interesting aspects of miRNA biology is the ability of a single miRNA to 

regulate multiple genes involved in specific cellular mechanisms and signaling cascades (He 

and Hannon, 2004). Experimental techniques to identify miRNA targets include Luciferase 

reporter assays, Western blot analysis and Enzyme-linked immunosorbent assay (ELISA) or 

Immuno-cytochemistry experiments (Kuhn et al., 2008). The Luciferase reporter assay is a 

tool used to study gene expression at the transcriptional level, and can determine the direct 

binding ability of miRNAs on messenger RNA (mRNA) target sequence (Simon and Evin, 

2008). Studies have shown that miRNAs are able to regulate the expression of targets at the 

protein level (Selbach et al., 2008), thus, Western blot analysis, ELISA or Immuno-

cytochemistry present techniques used to study protein expression of miRNA targets at the 

translational level (Kuhn et al., 2008). However, these techniques are costly and time-

consuming, focusing attention towards computational miRNA:mRNA target prediction (Min 

and Yoon, 2010; Witkos et al., 2011). Bioinformatic analysis allows high-throughput target 

prediction, and is relatively easy to conduct. However, targets that were computationally 
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predicted, must be experimentally validated before they can be acknowledged as a miRNA 

target. 

  

The four most common miRNA:mRNA bioinformatics target prediction algorithms are based 

on seed match complementarity (Fig.1.6), sequence conservation, free energy and binding 

site structural accessibility (Kertesz et al., 2007; Lewis et al., 2003; Lewis et al., 2005; Oulas 

et al., 2015; Witkos et al., 2011). Although all these algorithms are critical for miRNA target 

prediction, their selection depends on the research question. Potential interactions are best 

identified by firstly using a program that considers seed match complementarity, since these 

are characterized by high sensitivity and precision. Thereafter, to increase specificity, 

additional features such as binding site structural accessibility and sequence conservation 

should be used (Witkos et al., 2011).   
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1.11 Study motivation 

The increasing prevalence of T2D globally places a huge financial and health burden on 

governments, particularly those in middle and low income countries (Whiting et al., 2011).  

Individuals with diabetes are highly vulnerable to a multitude of complications, including 

CVD, retinopathy, peripheral arterial disease and infectious diseases, which increase the 

cost to treat the disease (Zhuo et al., 2013). It is estimated that more than half of all people 

with diabetes, are unaware that they are living with the disease (IDF, 2013). Furthermore, 

the alarming increase of T2D in children and the high number of undiagnosed cases 

globally, suggests that T2D may become the world‟s greatest health challenge within the 

next 25 years.  

 

Although a multitude of tests are currently available to diagnose T2D, they are all based on 

blood glucose measurements, and are unable to identify individuals in the asymptomatic 

stage (pre-diabetic), when glucose levels are still normal. Thus, these individuals remain 

undetected for many years, and have an increased risk of developing long term metabolic 

complications. Furthermore, despite the array of tools available for the management of T2D 

(drug therapies, advanced technology and improved education), the potential benefit of 

these tools are lost in people with undiagnosed diabetes (Waugh et al., 2007).   

 

Several lines of evidence suggest that early intervention is the most effective strategy to 

reduce the prevalence of T2D, manage the disease, and to prevent complications. For 

example, diagnosis of T2D is associated with micro- and macro-vascular complications 

(Fowler, 2008; Vinik and Flemmer, 2002). Thus, the detection of individuals with sub-clinical 

disease, for example, during pre-diabetes may facilitate intervention strategies to prevent or 

delay the progression to disease, ultimately reducing mortality and morbidity.   

 

Research efforts to reduce the burden of T2D by early intervention and treatment are 

underpinned by the need for biomarkers to identify subclinical disease. Thus, the discovery 

of differentially expressed miRNAs between diabetic, pre-diabetic and normo-glycaemic 

individuals may have the potential as a pre-screening tool in high risk individuals. Moreover, 

identification of such miRNAs may provide insight into the pathophysiology of T2D and 

furthermore, may present novel therapeutic targets against diabetes.    
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1.11.1 Hypothesis 

We hypothesize that miRNA expression patterns are associated with the development of 

diabetes and that their expression profiles change during disease progression. The 

identification of different miRNA expression profiles in diabetic, pre-diabetic and normo-

glycaemic individuals could potentially represent early biomarkers for the development of 

T2D, and could facilitate intervention strategies to prevent, better manage or delay the 

development of T2D. 

1.11.2 Aim 

The aim of this study is to determine whether miRNA expression patterns differ in diabetic, 

pre-diabetic, and normo-glycaemic individuals, thereby offering the potential as biomarkers 

which could be used to identify individuals with a high risk of developing T2D. 

1.11.3 Objectives 

 Recruit subjects and obtain blood samples from diabetic, pre-diabetic and normo-

glycaemic individuals, 

 Measure metabolic parameters (FPG, OGTT, HbA1c, insulin, glucagon, C-peptides 

and lipid profile), 

 Characterize participants according to WHO classification using FPG, OGTT and 

HbA1c  test, 

 Match participants according to age, gender, ethnicity and BMI, 

 MiRNA expression profiling in PBMCs of diabetic, pre-diabetic and normo-glycaemic 

individuals using Illumina sequencing, 

 Validation of selected differentially expressed miRNAs in PBMCs of diabetic, pre-

diabetic and normo-glycaemic individuals by qRT-PCR, 

 Validate the selected miRNAs in serum of diabetic, pre-diabetic and normo-

glycaemic individuals by qRT-PCR, and 

 Bioinformatic analysis to assess functional significance of miRNAs and their mRNA 

targets. 
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2. MATERIALS AND METHODS 

2.1 Study design 

A flow diagram illustrating the experimental protocol is shown in Figure 2.1. Briefly, 258 

research participants were recruited to the study and were classified as diabetic (T2D), pre-

diabetic or normo-glycaemic (control) according to WHO criteria (WHO, 2006). The preferred 

criteria used in the South African setting. These participants were matched according to age, 

gender, ethnicity and body mass index (BMI), and four individuals per group were selected 

for this study. Thereafter, miRNAs were profiled in peripheral blood mononuclear cells 

(PBMCs) and in serum samples of these individuals using next generation sequencing and 

qRT-PCR. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 Study overview. 
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2.2 Subject recruitment  

Relatives and friends of individuals from diabetes support groups or high risk individuals 

recommended by medical practitioners in the Cape Town Metropole, South Africa were 

invited to partake in the study. Individuals were predominantly from Malmesbury, while 

others were from Parow and Mitchells Plain. The inclusion criteria of the study were: 1) 

subjects that were never diagnosed with T2D, 2) subjects that were a first-degree blood 

relative of someone previously diagnosed with T2D i.e. a parent, child or full sister/brother, 

and 3) subjects that were a second-degree relative of someone previously diagnosed with 

diabetes i.e. a grandparent, grandchild, aunt/uncle, nephew/nieces or half-brother/sister. The 

exclusion criteria of the study were: 1) subjects that were on any form of medication for 

health related issues. The study aims and procedures were explained to subjects in a 

language they understood (Appendix 1). Subjects were recruited to the study after they 

provided written informed consent confirming that they understood and agreed to participate 

in the study (Appendix 2). All procedures were conducted according to Ethical Guidelines for 

research in South Africa and approval for the study was granted by the ethics committee of 

the South African Medical Research Council (EC010-5/2013) and the Human Research 

Ethics Committee of Stellenbosch University (S15/04/095). All participants were required to 

complete a questionnaire, whereafter bodyweight, height and blood pressure was measured 

with a calibrated scale (UC-321S digital, A&D Medical, San Jose, California) portable  

stadiometer (Seca 214,  Seca GmbH & Co, Hamburg, Germany) and a blood pressure 

monitor (Omron, HiTech, Bryanston, South Africa), respectively. Staff who were involved in 

the study (conducted the interviews, anthropometric measurements and blood collection) 

were trained by the clinic site project manager at the start of the study.  

2.3 Blood collection 

Blood glucose concentrations were measured with a calibrated glucometer (OneTouch, 

Lifescan inc., Milpitas, California.) after an overnight fast of about 10 hours (hrs), using the 

second drop of blood obtained by finger prick. Thereafter, blood from the upper arm was 

collected by a trained nurse, phlebotomist or medical doctor.  Twelve tubes of blood were 

collected from each participant; eight fasting and four during the oral glucose tolerance test 

(OGTT). Eight fasting blood samples were collected in one fluoride-containing tube (to 

reduce glycolysis) to measure glucose concentrations, four gel-containing tubes (induce 

coagulation and for collection of serum) to measure insulin, c-peptide, and lipid 

concentrations, and to determine protein markers, one Ethylenediaminetetraacetic acid 
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(EDTA) tube for HbA1c and DNA extraction, one EDTA tube containing trasylol for glucagon 

measurement, and finally in a PAXgene tube for the isolation of miRNA.  Thereafter, 

subjects were required to drink 75 grams (g) of glucose in 100 ml of water, and blood was 

collected after 30 minutes (min) and 120 min in SST tubes and fluoride-containing tubes for 

measuring insulin and glucose concentrations. Samples were stored on ice, and were either 

sent to Pathcare (Pathcare, South Africa) or to the laboratory (BRIP, SAMRC) for processing 

using standard operating procedures. 

 

For serum collection, BD Vacutainer® SST™ Tubes (Vacutainer, BD, Woodlands, South 

Africa) were stored at room temperature for 2 hrs prior to centrifugation (5810R, Eppendorf, 

Hamburg, Germany) at 4 Celsius (oC) for 15 mins at 3220 g (relative centrifugal force). Each 

tube was coated with silicone and micronized silica particles to accelerate clotting of blood, 

and contains a gel that separates blood cells and plasma from serum. Once separated, the 

serum from each tube was aliquoted into cryotubes (250 µl) and stored at -80oC for long 

term storage (Fig. 2.2A). 

 

PAXgene® Blood RNA Tubes (PreAnalytix, Qiagen, Feldbachstrasse, Switzerland)  contain 

6.9 ml of RNA stabilising reagent that lyses peripheral blood mononuclear cells (PBMCs) 

and immediately stabilizes intracellular RNA by preventing in vitro RNA degradation and 

minimizing gene induction (Fig. 2.2B). Briefly, 2.5 ml of blood was collected into the tubes 

and processed according to the manufacturer‟s instructions. Tubes were gently inverted 10 

times immediately after blood collection, and thereafter stored upright at room temperature 

(20ºC to 25ºC) for 2 hrs, transferred to 4ºC for 24 hrs, -20°C for 24 hrs and finally transferred 

to -80ºC for long-term storage upright in wire or metal racks.  
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Figure 2.2 An illustration of A) BD vacutainer tubes and B) PAXgene blood RNA tubes for collecting 

blood. 

 

2.4 Selection of subjects for microRNA profiling 

Subjects were characterized as diabetic, pre-diabetic and normo-glycaemic individuals 

based on their OGTT, FPG and HbA1c concentrations, according to the WHO diagnostic 

classification criteria (Fig. 2.3, WHO, 2006). Subjects with OGTT, FPG and HbA1c levels 

≥11.0 mmol/L, ≥7.0 mmol/L and ≥6.5 %, respectively, were classified as diabetic, while 

subjects with OGTT and FPG levels between 7.8 mmol/L-10.9 mmol/L and 6.1 mmol/L-6.9 

mmol/L, respectively, were classified as pre-diabetic. Furthermore, subjects with OGTT and 

FPG levels <7.8 mmol/L and <6.1 mmol/L, respectively, were characterized as normo-

glycaemic individuals. Thereafter, subjects in each group were matched according to age, 

gender, ethnicity and BMI for miRNA profiling of their blood samples. 

  

A B

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 2 MATERIALS AND METHODS 

38 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3 WHO criteria for classification of diabetic, pre-diabetic and normo-glycaemic (WHO, 2006). 

 

2.5 RNA isolation and quantification:  

RNA was isolated from the PBMCs and serum of diabetic, pre-diabetic and normo-glycaemic 

individuals, using the PAXgene blood miRNA kit (Qiagen, Hilden, Germany), and the 

miRNeasy Serum/Plasma kit (Qiagen, Hilden, Germany) respectively. 

2.5.1 Peripheral blood mononuclear cells 

PAXgene® Blood RNA tubes were thawed gradually according to the manufacturer‟s 

recommendations. Briefly, tubes were removed from -80°C and allowed to thaw by 

transferring them to -20°C for 24 hrs and thereafter to room temperature (20°C - 25°C) for 2 

hrs. Once thawed, tubes were inverted 10 times whereafter RNA extraction was conducted 

using the PAXgene blood miRNA kit according to the manufacturer‟s instructions. Peripheral 

blood mononuclear cells were pelleted by centrifuging PAXgene blood RNA tubes at 3220 g 

for 10 mins using a swing-out rotor (5810R, Eppendorf, Hamburg, Germany). Thereafter, 

cells were washed with 4 ml of RNAse free water, vortexed for 10 seconds (s) until the pellet 

Oral glucose tolerance test (mmol/L)

Fasting plasma glucose test (mmol/L)

HbA1c (%)

<7.8 7.8-10.9 ≥11.0

<6.1 6.1-6.9 ≥7.0

Not specified Not specified ≥6.5
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was visibly dissolved, and re-centrifuged at 3220 g for 10 mins. The supernatant was 

removed by decanting and inverting the tube, the cell pellet was resuspended in 350 µl of 

buffer BM1 and vortexed for 10 mins until the pellet was visibly dissolved. Thereafter, 

samples were digested by adding 300 µl of buffer BM2 and 40 µl of proteinase K (20 mg/ml), 

vortexed for 5 s and incubated for 10 mins at 55°C in a shaking incubator at 1400 

revolutions per minute (rpm) (Qiagen, Retsch, Germany).  

 

After incubation, samples were homogenized by pipetting, transferred onto a PAXgene 

Shredder spin column in a 2 ml tube, and centrifuged for 3 mins at full speed (16100 g) 

(5415R, Eppendorf, Hamburg, Germany). Supernatants were transferred into new tubes, 

700 µl of isoproponol was added and samples were mixed vigorously by vortexing. 

Thereafter, 700 µl of sample was pipetted onto a PAXgene spin column in a 2 ml tube, and 

centrifuged at 16100 g for 1 min. The spin column was placed in a new 2 ml tube, and the 

remaining sample pipetted into the PAXgene spin column, and centrifuged at 16100 g for 1 

min. Thereafter, 350 µl of buffer BM3 was added to the spin column and centrifuged at 

16100 g for 15 s. RNA was then subjected to on-column DNase digestion by pipetting 80 µl 

of DNase I incubation mix (10 µl DNase 1 stock solution added to 70 µl buffer RDD) directly 

onto the PAXgene spin column membrane, and incubating at room temperature (20°C - 

25°C) for 15 mins. Samples were washed by adding 350 µl and 500 µl of buffer BM3 and 

BM4, respectively, to the spin columns, and centrifuged at 16100 g for 15 s, while discarding 

the flow through each time. Another 500 µl of buffer BM4 was added to the PAXgene spin 

column, and centrifuged at 16100 g for 2 mins. The PAXgene RNA spin column was placed 

in a new 2 ml tube, and centrifuged at 16100 g for 1 min to completely dry the spin column 

membrane. Thereafter, 40 µl of elution buffer BR5 was directly pipetted onto the spin column 

membrane, and centrifuged at 16100 g for 1 min to elute the RNA. RNA was denatured by 

incubating at 65oC for 5 mins and immediately chilling it on ice.  

 

RNA concentrations were determined by measuring the absorbance at a wavelength of 260 

nm (A260) using a nanodrop spectrophotometer (Nanodrop Technologies, Wilmington, USA). 

RNA purity was assessed by using the A260/280 (protein contamination) and A260/230 (salt 

contamination) ratios, where a ratio of 1.8 - 2 indicates a high level of purity and is assumed 

suitable for gene expression measurements.  
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2.5.2 Serum 

Frozen serum aliquots in cryotubes were removed from -80oC and allowed to thaw by 

incubating at 37oC in a water bath for 3 mins. Once samples were thawed, miRNA-enriched 

total RNA was extracted from 200 µl of serum using the miRNeasy Serum/Plasma kit, 

according to the manufacturer‟s instructions. One thousand microliters of QIAzol lysis 

reagent was added to each serum sample, mixed by vortexing for 5 s, and left on the 

benchtop at room temperature (15oC - 25oC) for 5 mins. Thereafter, 3.5 µl of MiRNeasy 

serum/plasma spike-in-control (Caenorhabiditis elegans-miR-39) (1.6 x 108 copies/µl 

working solution) was added as an exogenous synthetic miRNA to control for technical 

variation during RNA extraction, cDNA synthesis and qRT-PCR processing. Two hundred 

microliters of chloroform was then added to each sample and vortexed for 15 s for 

subsequent phase separation. Samples were left on the benchtop at room temperature 

(15oC - 25oC) for 2 to 3 mins, and then centrifuged (5415R, Eppendorf, Hamburg, Germany) 

at 4oC for 15 mins at 16100 g. After centrifugation, the upper colourless aqueous phase 

containing approximately 600 µl of RNA was transferred to a new collection tube, and mixed 

thoroughly with 900 µl of 100% ethanol. Thereafter, 700 µl of sample was pipetted into an 

RNeasy MinElute spin column, and centrifuged at 11200 g for 15 s at room temperature 

(15oC - 25oC). This step was repeated, and the flow through was discarded both times. 

Samples were then washed with 700 µl and 500 µl of buffer RWT and RPE, respectively, 

and centrifuged at 11200 g for 15 s. For a final wash, 500 µl of 80% ethanol was added into 

the RNeasy MinElute spin column, and centrifuged for 2 mins at 11200 g at room 

temperature (15oC - 25oC). The spin column was placed in a new 2 ml processing tube, and 

centrifuged at 16100 g for 5 mins to completely dry the spin column membrane. After drying, 

the spin column was placed in a 1.5 ml tube, and 14 µl of RNase-free water was directly 

pipetted onto the spin column membrane, and centrifuged at 16100 g for 1 min to elute the 

RNA. 

 

Total RNA concentration was measured using a nanodrop spectrophotometer (Nanodrop 

Technologies, Wilmington, USA) as mentioned previously. 
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2.6 Assessment of RNA integrity  

RNA quality is known to affect the efficiency and accuracy of downstream experiments and 

high quality RNA is essential to obtain reliable gene expression data (Fleige and Pfaffl, 

2006). In mammalians, the 28S/18S ratio is used to assess RNA integrity, where a ratio of 

2:1 is generally representative of good quality RNA, and is considered optimal for 

downstream applications (Wieczorek et al., 2012). RNA quality has historically been 

assessed using agarose or acrylamide gel electrophoresis to quantitatively and qualitatively 

measure RNA concentrations. However, newer methods such as the Agilent 2100 

bioanalyser (Agilent Technologies, CA, USA) have revolutionized RNA integrity 

determination since they require less RNA sample and time. The bioanalyser is an 

automated device, utilizing microfluidic technology to analyze the quality of RNA on a 

sample-specific chip, using only 1 µl of RNA sample. The analysis can be completed in 

approximately 30 to 40 mins.  

2.6.1 Total RNA 

To assess the quality of the total RNA extracted using the PAXgene blood miRNA kit, the 

Agilent RNA 6000 Nano kit (Agilent Technologies, CA, USA) was used, according to the 

manufacturer‟s instructions. Firstly, 9 µl of fluorescent gel-dye mixture was pipetted into the 

nanochip, and primed using a plunger to form micro-channels consisting of interconnected 

networks (Fig. 2.4A). The plunger was held down for exactly 30 s before releasing the clip, 

and then slowly pulled back to the 1 ml position after 5 s. Another 9 µl gel-dye mixture was 

added to a different well in the nanochip. For calibration, 5 µl of RNA marker was added into 

all the sample wells, as well as to the RNA ladder well, which was included as a positive 

control to align all plots. The samples and RNA ladder were denatured for 2 mins at 70oC 

and loaded into individual wells of the chip. Thereafter the chip was vortexed at 1000 rpm for 

1 min (Fig. 2.4B), and immediately loaded onto the Agilent 2100 Bioanalyser (Fig. 2.4C) 

.  
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Figure 2.4 Representative image of an Agilent LabChip assay with A) priming station and plunger, B) 

the vortex used for the Agilent chip, and C) an Agilent 2100 Bioanalyser used to determined RNA 

quality. 

 

In the bioanalyser, 16-pin electrodes are arranged to fit perfectly into each well of the chip 

and are connected to an independent power supply that provides maximum control and 

flexibility. Charged RNA biomolecules are electrophoretically driven by a voltage gradient of 

constant mass-to-charge ratio that separates these molecules according to size in the 

presence of the sieving polymer matrix. During the chip run, the dye intercalates directly with 

the RNA, and is detected via laser-induced fluorescence detection. The amount of measured 

fluorescence correlates directly with the amount of RNA of a given size (Mariam Ayabi, 

2007). A RNA ladder containing a range of different size fragments is used as a reference 

for data analysis. The data is then visualized as an electropherogram (Fig. 2.5A), or 

translated into a virtual gel image (Fig.  2.5B). The 28S:18S ribosomal ratio is calculated by 

assessing the bands or peaks of each sample, and represents the quality of the RNA. The 

integrity of each sample is represented by an RNA integrity number (RIN) ranging between 1 

and 10, where 10 represents high quality intact RNA and 1 represents a completely 

degraded RNA sample (Mueller et al., 2004). All samples with a RIN greater than 7 were 

used in this study. 
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Figure 2.5 Example of a bioanalyser electropherogram and a virtual gel image detailing the regions 

that are indicative of good quality RNA. A) An electropherogram illustrating peaks representing 

variable rRNA sizes. B) A virtual gel illustrating two clear ribosomal bands illustrating 28S and 18S, 

with a RIN of 10 (Adapted from Mueller et al. 2004). 

 

2.6.2 MicroRNA  

MiRNAs are a unique class of small sized nucleic acids that can be accurately examined 

with the same technologies as total RNA. MicroRNA quality and its percentage relative to 

total RNA, was assessed using the Agilent small RNA (Pico) kit (Agilent Technologies, CA, 

USA), according to manufacturer‟s instructions. This kit enables the detection and analysis 

of small RNAs (<200 nt) and miRNAs (15 - 40 nt) within a small RNA fraction (Fig. 2.6). The 

concentration of miRNA is calculated as an absolute amount (pg/µl) and as a percentage 

(%) of small RNA in the total RNA sample. Briefly, the same procedures for miRNA analysis 

was followed as described previously for total RNA (section 2.6.1), except that: 1) the 

plunger in the priming station (which forms micro-channels) was held down for 60 s instead 

of 30 s and 2) the syringe clip was adjusted from the highest to the lowest position. 
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Figure 2.6 Representative image of an electropherogram for small RNA analysis, showing the content 

of small RNAs (miRNAs, tRNAs, and small rRNAs) that form part of the total RNA sample (Adapted 

from: Agilent Technologies, 2007). 

 

2.7 MicroRNA sequencing 

To gain insight into miRNA regulation during T2D progression, miRNAs were isolated from 

PBMCs of diabetic, pre-diabetic and normo-glycaemic individuals and subjected to high 

throughput miRNA sequencing (Arraystar, Rockville, USA). MiRNA sequencing has a wide 

dynamic range and is a highly sensitive and accurate technique that can distinguish between 

very similar miRNA sequences and isoforms, and is able to discover novel uncharacterized 

miRNAs (Motameny et al., 2010). 

 

Approximately 2 µg of RNA from age, gender, BMI and ethnicity matched diabetic (n=4), pre-

diabetic (n=4) and normo-glycaemic individuals (n=4) were lyophilized by freeze-drying 

according to the manufacturer‟s instructions (VirTis Benchtop K, United Scientific), using 100 

mTorr optimum vacuum pressure at -113oC (condenser temperature) for approximately 90 

mins. Thereafter, samples were stored at -80oC for 24 hrs until shipping on dry ice to the 

USA, as recommended by Arraystar. MicroRNA sequencing was performed on an Illumina 
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Hiseq 2000 instrument (Illumina Inc., San Diego, USA), using TruSeq Rapid SBS kits 

(Illumina), according to the manufacturer‟s instructions. The procedures followed by 

Arraystar are described below. 

  

Firstly, lyophilized samples were resuspended in water, and the concentrations of the RNA 

samples were measured using the NanoDrop ND-1000 instrument. The A260/A280 ratios were 

used to assess purity, and each sample was subjected to miRNA sequencing. A miRNA 

sequencing library was prepared as follows: firstly, total RNA was subjected to 

polyacrylamide gel electrophoresis and bands corresponding to the size of the miRNAs (~15 

- 35 nt) were excised from the gel for further processing (Fig. 2.7B). Thereafter, 3‟ and 5‟ 

small RNA adapters were sequentially ligated to the size selected RNA molecules, using T4 

RNA ligase 2 (Fig. 2.7C). Adapters act as binding sites for primers, allowing reverse 

transcription and complementary DNA (cDNA) synthesis to form a cDNA library. Thereafter, 

the cDNA library was run on a polyacrylamide gel, and the band corresponding to the 

molecular size of miRNA fragments with ligated adapters (~135 - 155 bp) was excised from 

the gel for subsequent sequencing (Fig. 2.7D). The cDNA libraries were quantified by the 

Agilent 2100 Bioanalyser, using the Agilent DNA 1000 chip kit (Agilent Technologies), and 

denatured with 0.1M NaOH. The samples were diluted to a final concentration of 8 pM and 

cluster generation was performed on the Illumina cBot using the TruSeq Rapid SR cluster 

kit, according to manufacturer‟s instructions. Single stranded DNA molecules were captured 

on Illumina flow cells, amplified in situ as clusters and sequenced for 36 cycles on the 

Illumina Hiseq 2000, according to the manufacturer‟s instructions. Several basic data 

processing steps were then performed to extract the relevant information from the raw data 

as described below.  
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Figure 2.7 A Schematic representation of the miRNA sequencing procedure (Adapted from 

Motameny et al. 2010). 

 

The raw data (also called reads) were generated by aligning the sequences of expressed 

miRNAs to the reference human genome in miRBase version (v) 21, to produce clean reads. 

Clean reads were provided as text files in FASTQ format as illustrated in Figure 2.8. These 

files contain four lines per read: the first line is the title line which contains the „@‟ symbol, 

followed by a (unique) read identifier; the second line contains the read‟s nucleotide 

sequence; the third line contains the read identifier again, preceded by a „+‟ symbol to signal 

the start of the quality string and the end of the sequence lines; and the fourth line contains 

A

B

C

D

E

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 2 MATERIALS AND METHODS 

47 
 

quality encoding scores (Cock et al., 2010). The missing nucleotides in the read sequence 

were denoted with an „N‟ character, underlined in red (Fig. 2.8). All sequence reads start at 

the first base after the 5‟ sequence adapter, and typically ends after 36 bp, thus excluding 

the 5‟ adapter sequence from the reads. However, all reads contained part of the 3‟ adapter 

sequence, and to eliminate ambiguity of sequence detection, these 3‟ adapter sequences 

were removed from the mature miRNA sequence (trimmed reads). Trimmed reads were 

recorded in FASTA format. 

Figure 2.8 An extract of the sequence data in FASTQ format illustrating the four lines per read. 

 

All trimmed reads greater than or equal to 15 nt in length, with zero or one base pair 

mismatch were aligned to the reference human genome in mirBase, to identify known 

miRNAs from previously annotated miRNAs, using Novoalign software, v2.07.11. All other 

reads were discarded, and the alignment results were saved in text files. The miRNA 

isoforms with the highest read counts were used to estimate the expression levels of each 

miRNA. The expression of each unique sequence (s) occurring among the reads in the 

sample were normalised (as reads per million) against the total number of reads produced 

for the sample, to estimate the relative expression level of each miRNA (Equation 2.1) 

(Motameny et al. 2010), and to compare expression patterns between groups (normo-

glycaemic vs. pre-diabetic; normo-glycaemic vs. diabetic and pre-diabetic vs. diabetic). 

Significantly differentially expressed miRNAs were classified as those having fold changes 

(FC)  1.1 and p-values  0.05 (threshold values set by ArrayStar). Furthermore, novel 

miRNAs were predicted from the miRNA sequencing data using miRDeep algorithms. This 

uses a score compatibility model of the position and frequency of the mature miRNA 

sequence with the secondary structure of the miRNA precursor (Friedlander et al., 2008). 
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Equation 2.1 Calculation used to determine reads in each sample. 

 

2.8 Quantitative real time PCR  

Quantitative real-time PCR (qRT-PCR) is a sensitive, accurate and reliable method to 

measure miRNA expression, and is often used to validate miRNA sequencing data. This 

method enables the detection and measurement of the exact amount (relative or 

quantitative) of DNA or RNA product, by determining the number of copies of DNA or RNA in 

each sample.  When RNA is used as a template, reverse transcription before amplification of 

the mRNA is necessary in order to quantify gene expression (Livak and Schimittgen, 2001).  

2.8.1 Reverse transcription 

Reverse transcription refers to the process whereby miRNA is reverse transcribed into 

cDNA, using reverse transcriptase. The cDNA is then used as a template for exponential 

amplification, using PCR. In this study, the TaqMan® MicroRNA Reverse Transcription (RT) 

kit (Life Technologies, Carlsbad, USA) and the miScript II RT kit (Qiagen, Hilden, Germany) 

were used, according to the manufacturer‟s instructions. The Taqman RT kit uses highly 

stable, small miRNA-specific stem-loop RT primers which lengthen the target cDNA, thus 

reverse transcribing mature miRNAs. On the other hand, the miScript II RT kit uses random 

hexamers or oligo-(dT) primers that randomly binds to and reverse transcribes large 

fragments of mRNA, to form cDNA.  

2.8.2 PCR 

The two most common technologies for the detection of PCR products in qRT-PCR are 

Taqman probes and SYBR Green. Taqman probes are sequence specific oligonucleotides 
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that are labelled with a fluorescent reporter, such as FAMTM and a non-fluorescent quencher 

(NFQ), which is covalently attached to the 5‟ and 3‟ end of the probe, respectively. When the 

fluorescent reporter dye and quencher molecule are in close proximity, emission of the 

reporter dye is prevented. Furthermore, Taq polymerase extends the amplicon, making new 

complementary DNA before it reaches the 5‟ end of the TaqMan probe, where upon the 5‟- 

3‟ exonuclease activity of Taq polymerase hydrolyses the probe base by base releasing the 

fluorescent reporter dye. Once the fluorescent reporter dye and quencher dye are no longer 

in close proximity, fluorescence is emitted and a signal is collected (Benes and Castoldi, 

2010).  

 

Using specific optical system software, fluorescence is measured at each cycle for each 

product and the signal is collected at a specific cycle threshold (Ct) on the Applied Biosystem 

7500 instrument (Thermo ScientificTM, MA, USA). The fluorescence is directly proportional to 

the amount of PCR product generated, and therefore permits a specific, quantitative 

measure of miRNA expression levels in each sample. SYBR Green is a fluorescent dye that 

intercalates with any double-stranded DNA resulting in light emission. SYBR green I dye will 

detect all double-stranded cDNA, including non-specific reaction products, while Taqman 

probes detects only specific amplification products (Bustin and Mueller 2005). 

2.8.2.1 Taqman probes 

MiRNA sequencing data was validated using Taqman probes. Briefly, 10 ng of miRNA-

enriched total RNA was reverse transcribed into cDNA with small RNA-specific, stem-loop 

RT primers specific to the microRNAs of interest (Table 2.1), and to custom designed 

primers for novel miRNA detection (Table 2.2), using the TaqMan® MicroRNA Reverse 

Transcription Kit according to the manufacturer‟s instructions. Thereafter, 15 µl of cDNA was 

amplified with TaqMan probes specific to the miRNAs of interest (Table 2.1 and 2.2), and 

TaqMan® Universal PCR Master Mix II.  

 

RNU6b, miR-454 and miR-425 were used as endogenous reference miRNAs (Table 2.1). 

Normfinder; a mathematical model of gene expression, that uses an algorithm to estimate 

overall  variation of reference genes and variation between subgroups of the same sample 

set was used to identify the best endogenous reference miRNA (Andersen et al. 2004). The 

delta delta Ct (2−ΔΔCT)  method was used to quantify relative expression using equation 2.2.  
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Equation 2.2 Calculation used to determine relative miRNA expression. 

 

Table 2.1 MiRNA primer and probe assays used for validation analysis. 

miR refers to the mature form of the miRNA, while the first three letters (hsa) signifies the organism 

(human in this case) that the miRNA is expressed in. The number following „miR‟ refers to the order in 

which they were discovered and published, and the 3p or 5p signifies the miRNA precursor arm 

(Wright and Bruford, 2011).  

#
NCBI miRNA accession number 

*Mature miRNA sequence selected from the sequencing data 

±
Mature miRNA sequence selected from Applied Biosystem‟s database  

Assay name miRbase ID/ 

NCBI acc. # 

Assay 

ID 

Species Mature microRNA sequence 

hsa-miR-27b hsa-miR-27b-3p 000409 Human UUCACAGUGGCUAAGUUCUGC*
±
 

hsa-miR-98 hsa-miR-98-5p 000577 Human UGAGGUAGUAAGUUGUAUUGUU*
±
 

hsa-miR-143 hsa-miR-143-3p 002249 Human UGAGAUGAAGCACUGUAGCUC*
±
 

hsa-miR-21 hsa-miR-21-3p 002438 Human CAACACCAGUCGAUGGGCUGU*
±
 

hsa-miR-379 hsa-miR-379-5p 001138 Human UGGUAGACUAUGGAACGUAGG*
±
 

hsa-miR-425 hsa-miR-425-5p 001516 Human AAUGACACGAUCACUCCCGUUGA
±
 

hsa-miR-454 hsa-miR-454-3p 002323 Human UAGUGCAAUAUUGCUUAUAGGGU
±
 

RNU6B NR_002752 # 001093 Human 
CGCAAGGAUGACACGCAAAUUCGU

GAAGCGUUCCAUAUUUUU
±
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Table 2.2 Custom designed primer and probe assays for validation of novel miRNAs. 

 

Assay 

name# 

 

Mature ID† 

 

Assay ID 

 

Species 

 

Mature miRNA sequence 

MYNO59 hsa-miR-novel-

chr6_11861 

CSCSU6 human UACUUGACCUUGACUCUCCCU
±
 

MYNO8 hsa-miR-novel-

chr9_17319 

CSD1TDE human AAGUUUCUCUGAACGUGUAGAGC
±
 

MYNO66 hsa-miR-novel-

chr22_33839 

CSGJPPU human GAUGCCUGGGAGUUGCGAUCUG
±
 

MYNO95 hsa-miR-novel-

chr12_22392 

CS39QZ3 human AAAGCAAAUGUUGGGUGAACGG
±
 

MYNO22 hsa-miR-novel-

chr15_25713 

CS5IO6B human UCCCUGUCCUCCAGGAGCU
±
 

#
Temporary primer assay name 

†
Mature novel miRNA ID illustrating its chromosomal location 

±
Mature sequence selected from sequencing data 

2.8.2.2 SYBR Green 

MiRNA detection in serum samples was conducted using the miScript PCR SYBR Green 

detection kit (Qiagen, Hilden, Germany) according to the manufacturer‟s instructions. Briefly, 

90 ng of total RNA in a 20 µl reaction was reverse transcribed into cDNA, using the miScript 

Hispec Buffer, nucleic acid and reverse transcriptase mix from the miScript II RT kit, 

according to the manufacturer‟s recommendations.  

 

Complimentary DNA was diluted with 200 µl of RNAse free water and 1 µl was used as a 

template for real-time PCR analysis, using miRNA-specific miScript primer assays (Table 

2.1) as forward primers and the miScript universal primer as the reverse primer and miScript 

SYBR Green PCR master mix, in a total volume of 10 µl. Relative expression was quantified 

using the 2−ΔΔCT method as described in section 2.8.2.1. 
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2.9 Messenger RNA target prediction analysis 

Bioinformatic target prediction analysis was performed to predict the mRNA targets of miR-

27b, miR-143, miR-98, miR-21 and miR-379. Messenger RNA targets are predicted 

according to seed match complementarity between mature miRNAs and the 3‟ untranslated 

region (UTR) of their mRNA target, sequence conservation, free energy and target site 

accessibility. Table 2.3 lists three mRNA target prediction programs (TargetScan-Human 

(TargetScan), Probability of Interaction by Target Accessibility (PITA) and DNA Intelligent 

Analysis (DIANA)-microT-CDS) that use different algorithms for target prediction (Fig. 2.9).  

 

The TargetScan algorithm integrates thermodynamic based modeling of miRNA:mRNA 

interaction and searches for perfect complementarity and sequence conservation to predict 

miRNA targets conserved across multiple genomes. Binding of the 6 nt miRNA seed region 

forms perfect base pairing complementarity to the 3‟ UTR target mRNA region, and then 

extends to binding long fragments outside the seed region to filter out false positives 

(Friedman et al., 2009; Lewis et al., 2005). Thus, defining the score for miRNA:mRNA target 

interactions includes features such as 3‟ complementary pairing, local adenine and uracil 

content and position contribution of miRNA:mRNA binding (Lewis et al., 2005; Grimson et 

al., 2007). Compared to TargetScan, the DIANA algorithm uses a much longer frame (38 nt) 

for scanning complementarity, and focuses on coding regions of target mRNAs to increase 

specificity and sensitivity (Min and Yoon, 2010). It also calculates the minimum binding 

energy between miRNAs and sequences in the mRNA 3‟ UTR target region, which 

generates a scoring system to help evaluate the significance of the predicted targets 

(Kiriakidou et al., 2004; Maragkakis et al., 2009). Additionally, DIANA allows mismatches 

and weak binding at the 5‟ seed region, involving six consecutively paired nucleotides within 

the seed region or guanine:uracil (G:U) wobble pairs if additional base pairing between the 

miRNA 3‟ end and target region exists (Min and Yoon, 2010). Furthermore, the PITA 

algorithm predicts targets based on free energy and target site accessibility, by calculating 

the free energy gained from the miRNA:mRNA duplex and the energy cost of unpairing the 

target to make it accessible to the miRNA (Witkos et al., 2011).  
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Table 2.3 Computational methods used for miRNA target prediction analysis. 

Target 
prediction 
Program 

Algorithm used for 
target prediction 

Advantages Disadvantages URL References 

 

TargetScan-

Human 

Seed match; 

Sequence conservation;  

3‟ complementarity; 

local AU content and 

position contribution 

 

Parameters including 

in target scoring; 

Final score correlates 

with protein 

downregulation 

Sites with poor 

seed paring are 

omitted 

http://targetscan.org/ (Lewis et al., 2005) 

 

DIANA-

microT-CDS 

Free energy binding 

and complementarity 

Signal-to-noise ratio 

and probability given 

to each target site-

possibility of using 

own miRNA sequence 

as input 

Some miRNA 

with multiple 

target sites may 

be omited 

http://diana.imis.athena-

innovation.gr/DianaTools

/index.php 

(Kariakidou et al., 2004) 

 

PITA 
Target site accessibility; 

Free energy 

The secondary 

structure of 3‟UTR is 

considered for miRNA 

interaction 

Low efficiency 

compared to 

other algorithms 

http://genie.weizmann.ac

.il/pubs/mir07/mir07_dyn

_data.html 

(Kertesz et al., 2007)  

UTRs = untranslated regions; PITA = Probability of Interaction by Target Accessibility; DIANA = DNA Intelligent Analysis; AU = adenine/uracil; URL = Uniform 

Resource Locator (website address) 
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The common mRNA target gene lists produced by each program, were filtered using an 

interactive venn diagram tool called Venny v2.0.2 

(http://bioinfogp.cnb.csic.es/tools/venny_old/index.html) (Oliveros, 2007). Common mRNA 

targets were further analyzed using the Database for Annotation, Visualization and 

Integrated Discovery (DAVID) to identify Kyoto Encyclopedia of Genes and Genomes 

(KEGG) pathways (Fig. 2.9). Thereafter, genes potentially linked to T2D were manually 

selected and confirmed using an online Type 2 diabetes-database (T2D-db), and their 

interacting proteins were determined using a Search Tool for the Retrieval of Interacting 

Genes/Proteins (STRING). In addition, experimentally validated miRNA:mRNA interactions 

were identified for each miRNA using DIANA-TarBase and MiR-TarBase. 

 

Figure 2.9 Schematic representation of microRNA target prediction workflow. 

TargetScan Human DIANA-microT-CDS PITA

MicroRNA target 

prediction analysis

Target genes commonly 

predicted

Venn diagram 

tool

DAVID

KEGG

Type 2 diabetes database
Experimentally validated 

miRNA:mRNA interactions

DIANA-

TarBase 

MiRTarBase

Manually selected genes

Protein-protein 

interactions
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2.9.1 Functional analysis of predicted targets 

The functional role of commonly predicted mRNAs targets for each miRNA was investigated 

using the DAVID gene functional annotation tool, which classifies mRNA targets according to 

biological pathways, functional biological modules, and inter-relationships between groups of 

genes (Huang et al., 2008).  

 

Commonly predicted target gene lists were uploaded, using the official gene symbol 

identifier (gene ID) for each gene. These gene IDs were then converted to gene names 

using the DAVID gene name batch viewer. The genes were functionally annotated to the 

Homo sapien genome. Thereafter, a more comprehensive functional analysis was performed 

by selecting or deselecting functional annotation categories of interest. By selecting the 

functional annotation summary and table, all data including biological processes, metabolic 

function and functional analysis of proteins were retrieved for all genes in the list. All genes 

mapped to the KEGG pathway database were selected. Genes potentially linked to T2D 

were selected based on their regulatory role in metabolic pathways previously associated 

with the development of the disease. Thereafter, the roles of these genes in T2D were 

confirmed using the T2D-db v2.0. The T2D-db is an integrated platform to study the 

molecular basis of T2D (http://t2ddb.ibab.ac.in/home.shtml) which provides information on 

candidate genes, gene expression data, gene/pathway interactions, protein-protein 

interactions and SNP markers and risk factors/complications from a combination of online 

content and published literature previously reported to be associated with T2D (Agrawal et 

al., 2008) (Fig. 2.9).  

 

MiRNA:gene interactions potentially linked to T2D were further investigated using 

experimentally validated miRNA:mRNA target prediction databases such as DIANA-TarBase 

v7.0 (http;//www.microrna.gr/tarbase) and miRTarbase v6.0 

(http://miRTarBase.mbc.nctu.edu.tw/thout). These databases include miRNA:mRNA 

interactions that have been manually curated from information found in thousands of 

previously published studies. For DIANA-TarBase, miRNAs of interest were inserted into the 

search box, and filters including, Homo sapien, normal and high throughput method types, 

all experimental methods and all source types were selected and applied to the search. 

Further details regarding the miRNAs, target genes and interaction information was available 

by selecting the information links. For miRTarbase, standard default settings were used. 
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These databases provides a detailed description of involved genes and miRNAs, a list of 

publications supporting each interaction, the experimental methods used for validation along 

with their outcomes, and links related to KEGG pathways and other external databases (Fig. 

2.9) (Elton and Yalowich, 2015; Hsu et al., 2014). 

2.9.2 Protein-protein interactions 

To identify known and predicted protein-protein interactions of miRNA target gene/proteins, 

STRING v10.0 was used (http://string-db.org/). The interactions include direct (physical) and 

indirect (functional) associations that were derived from three sources including, genomic 

context, high throughput experiments, and previously published literature.  Interactions are 

scored by integrating active predictive mechanisms (neighbourhood, gene fusion, co-

occurrence, co-expression, experiments, databases and text mining of scientific texts), 

resulting in large comprehensive protein networks (Szklarczyk et al., 2014). 

 

On the home page, the name of a predicted miRNA target gene/protein was inserted into the 

search box, and the species Homo sapien was selected to restrict the search. After 

identification of proteins, the protein network was inspected for interactive evidence, and the 

confidence score cut-off was set at 0.95 or greater to filter out false positives. Thereafter, a 

limit was set to show no more than 10 interacting proteins.  

2.9.3 Functional analysis of microRNAs 

To determine the functional role of miRNAs in disease pathogenesis, the Human miRNA 

Disease Database (HMDD) v2.0 was used (http://www.cuilab.cn/hmdd). The HMDD is a 

collection of experimentally supported miRNA-disease associations, which provides data 

from genetics, epigenetics, circulating miRNAs and miRNA-target interactions. This 

database allows users to browse, search and download datasets, as well as submit novel 

data into the database. It is a valuable resource for investigating the roles of miRNAs in 

human disease, and currently contains over 10 000 experimentally supported miRNA-

disease association entries, including 600 miRNA genes and 400 human diseases from 

more than 3000 articles (Li et al., 2014).  
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For each miRNA searched, information about disease association, experimental evidence, 

dysfunction, genetics and epigenetics, presence in circulating biofluids, and the publication 

PubMed reference is given. 

2.9.4 Statistical analysis 

To assess the accuracy of the sequencing data, Chastity scores were calculated using the 

Solexa CHASTITY quality filter. Similar to the Phred quality scoring (Q-scores) system, 

individual bases are assigned a quality score that reflect the probability that the base call is 

correct. This score is quantified by a CHASTITY formula, which excludes clusters with a low 

signal to noise ratio. The default cut-off for filtering is no less than 0.6 in the first 25 bases. 

Statistical significance of differentially expressed miRNAs from the sequencing data was 

determined using the student t-test.  

 

The data selected from the sequencing results were validated using qRT-PCR. Data was 

analysed using Microsoft Excel (2010) and relevant software packages, and statistical 

analysis was performed using GraphPad Prism v5.02. Thereafter, statistical analysis 

between diabetic, pre-diabetic and normo-glycaemic groups were performed using the One-

way analysis of variance (ANOVA), followed by Bonferroni or Tukey post hoc and an 

unpaired t-test where appropriate. All values were presented as the mean ± standard error of 

the mean (SEM), and P values <0.05 were accepted as significant.  
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3. RESULTS 

3.1 Clinical characteristics of participants 

Participants were classified as diabetic (T2D), pre-diabetic or normo-glycaemic (controls) 

according to WHO criteria (World Health Organisation, 2006). Of the 258 study participants, 

12 age-, gender-, ethnicity- and BMI-matched subjects representing diabetics (n=4), pre-

diabetics (n=4) and normo-glycaemics (n=4) were selected for this part of the study.  

 

The clinical parameters of the subjects are shown in Table 3.1. Subjects were matched for 

age and BMI, thus as expected, no significant differences in age (46.8 ± 6.6 vs. 47.3 ± 6.9 

vs. 46.3 ± 5.7 years) and BMI (36.7 ± 3.1 vs. 38.6 ± 3.7 vs. 33.7 ± 1.8 kg/m2) were observed 

between diabetic, pre-diabetic and normo-glycaemic individuals. Blood glucose 

concentrations varied significantly between groups. Fasting plasma glucose concentrations 

were 6.7 ± 0.5 vs. 5.4 ± 0.3 vs. 5.1 ± 0.1 mmol/L for diabetic, pre-diabetic and normo-

glycaemic individuals, respectively (Fig. 3.1A). Two hour glucose concentrations obtained 

from the OGTT were 13.4 ± 0.7 vs. 8.9 ± 0.3 vs. 5.6 ± 0.3 mmol/L (Fig. 3.1B), while the 

percentage of HbA1c was 6.5 ± 0.2 vs. 5.6 ± 0.2 vs. 5.4 ± 0.07 (Fig. 3.1C) for diabetic, pre-

diabetic and normo-glycaemic individuals, respectively. Statistical significance was 

determined using the p-value of ANOVA, followed by Tukey post hoc and an unpaired t-test. 
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Table 3.1 Clinical characteristics of participants. 

N = number of participants; BMI = body mass index; FPG = fasting plasma glucose; OGTT = oral 

glucose tolerance test; HbA1c = glycated haemoglobin A1c; 2 hr refers to a test performed 2 hrs after 

an oral glucose challenge. HDL = high-density lipoprotein; LDL = low-density lipoprotein.  

Blood pressure was measured as systolic/diastolic. 

Boldface values indicate statistical significance. *p≤0.05; p≤0.01;  p≤0.001. 

 

 

 Diabetic Pre-diabetic Normo-glycaemic  

N  4  4  4  

Age (years)  46.8 ± 6.6  47.3 ± 6.9  46.3 ± 5.7  

Gender          Female  Female  Female  

Ethnicity  Mixed ancestry  Mixed ancestry  Mixed ancestry  

BMI (kg/m2)  36.7 ± 3.1  38.6 ± 3.7  33.7 ± 1.8  

Blood pressure (mmHg):  

Systolic- 

Diastolic- 

 

113.7 ± 10.8 

72.3 ± 8.7 

 

131.3 ± 5.9 

83.3 ± 4.4 

 

118.5 ± 4.0 

82.0 ± 3.4  

FPG (mmol/L)  6.7 ± 0.5* 5.4 ± 0.3  5.1 ± 0.1* 

OGTT (2 hr Glucose) 

(mmol/L)  

13.4 ± 0.7   8.9 ± 0.3  5.6 ± 0.3  

HbA1c (%)  6.5 ± 0.2*   5.6 ± 0.2* 5.4 ± 0.07   

Fasting Insulin (ng/ml)  23.6 ± 6.7  34.8 ± 6.3  21.6 ± 3.1  

2 hr Insulin (ng/ml)  97.8 ± 28.4  264.4 ± 87.7  92.5 ± 23.7  

Fasting C-peptide (ng/ml)  2.7 ± 0.6  2.9 ± 0.4  2.7 ± 0.2  

2 hr C-peptide (ng/ml)  7.9 ± 1.8  11.1 ± 1.7  9.1 ± 0.8  

Glucagon (pg/ml)  91.0 ± 9.5  114.2 ± 16.9  79.6 ± 6.6  

Cholesterol (mmol/L)  5.5 ± 0.7  5.3 ± 0.3  5.4 ± 0.8  

HDL (mmol/L)  1.2 ± 0.1  1.2 ± 0.1  1.3 ± 0.03  

LDL (mmol/L)  3.8 ± 0.6  3.6 ± 0.3  3.6 ± 0.7  

Triglycerides (mmol/L)  1.2 ± 0.3  1.7 ± 0.3  1.1 ± 0.2  
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Figure 3.1 Blood glucose concentrations in diabetic, pre-diabetic and normo-glycaemic individuals. A) 

Fasting plasma glucose, B) 2 hr OGTT glucose, and C) HbA1c levels in diabetics (n=4), pre-diabetics 

(n=4) and normo-glycaemics (n=4). *p<0.05, **p<0.01, ***p<0.001. 

 

Levels of insulin, the primary hormone responsible for maintaining glucose homeostasis, 

was measured in the fasting state, and 30 mins and two hrs after a glucose challenge 

(OGTT). Fasting insulin concentrations were 23.6 ± 6.7 vs. 34.8 ± 6.3 vs. 21.6 ± 3.1 ng/ml 

for diabetic, pre-diabetic and normo-glycaemic individuals, respectively (Fig. 3.2A). After the 

glucose challenge, insulin levels increased in all three groups until 30 mins, whereafter, 

levels decreased in normo-glycaemics, but continued to rise in diabetics and pre-diabetics, 

signifying abnormal glucose metabolism in these groups (Fig. 3.2B). The increase observed 

in pre-diabetics was higher than that observed in diabetics (2.85-fold). 

 

A B

C
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No significant difference was observed when measuring additional parameters, including 

glucagon (91.0 ± 9.5 vs. 114.2 ± 16.9 vs. 79.6 ± 6.6 pg/ml), C-peptide (2.7 ± 0.6 vs. 2.9 ± 0.4 

vs. 2.7 ± 0.2 ng/ml), cholesterol (5.5 ± 0.7 vs. 5.3 ± 0.3 vs. 5.4 ± 0.8 mmol/L), HDL (1.2 ± 0.1 

vs. 1.2 ± 0.1 vs. 1.3 ± 0.03 mmol/L), LDL (3.8 ± 0.6 vs. 3.6 ± 0.3 vs. 3.6 ± 0.7 mmol/L) and 

triglycerides (1.2 ± 0.3 vs. 1.7 ± 0.3 vs. 1.1 ± 0.2 mmol/L), between diabetic, pre-diabetic and 

normo-glycaemic individuals, respectively (Table 3.1).  

Figure 3.2 Fasting and 2hr OGTT insulin concentrations in diabetic, pre-diabetic and normo-

glycaemic individuals. A) Fasting insulin and B) OGTT insulin concentrations in diabetic (n=4), pre-

diabetic (n=4) and normo-glycaemic individuals (n=4) 

.  

A B
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3.2 MicroRNA expression analysis in peripheral blood 

mononuclear cells 

3.2.1 RNA concentration and yield 

Nanodrop spectrophotometry was used to determine the concentration, purity and yield of 

total RNA from PBMCs. The concentration and yield of RNA varied between 31.61 - 124.33 

ng/µl and 1264.40 - 4973.00 ng, respectively (Table 3.2). The A260/A280 and A260/A230 ratios 

are indicative of protein and solvent/salt/other contamination, which varied between 2.03 - 

2.10 and 0.68 - 2.06, respectively, indicating that most of the samples (~83.3 %) contained 

good quality RNA. 

Table 3.2 Total RNA concentration, purity and yield of samples (n=12). 

*RNA concentration was measured at A260 nm 

RNA yield was calculated by multiplying RNA concentration (ng/µl) by the sample volume (40 µl in 
this case) 

 Presence of protein contaminants were measured at A260/A280 nm 

Presence of solvent/salt/other contaminants were measured at A260/A230 nm 

Sample ID Concentration (ng/µl)* Yield (ng) A260/A280 (nm)  A260/A230 (nm)  

1 123.47 4938.60 2.08 2.05 

2 56.45 2258.00 2.08 1.21 

3 119.45 4777.80 2.08 1.94 

4 76.15 3045.80 2.07 2.06 

5 93.16 3726.20 2.09 1.78 

6 124.33 4973.00 2.03 2.02 

7 49.87 1994.80 2.10 1.59 

8 75.85 3034.00 2.08 1.54 

9 100.67 4026.80 2.08 1.87 

10 31.61 1264.40 2.07 0.68 

11 75.69 3027.60 2.08 1.57 

12 108.05 4321.80 2.08 1.06 
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3.2.1.1 RNA quality control  

The success of downstream applications is dependent on the quality and integrity of RNA. 

The quality of the RNA isolated from PBMCs was assessed using the bioanalyser. A gel 

image representing the 12 samples using the RNA Nano Assay and 11 samples using the 

RNA small assay, and an electropherogram representing total and small RNA (miRNA) of 

one of the samples generated by the bioanalyser is indicated in Figure 3.3. The low visibility 

and signal in the miRNA region (Fig. 3.3C-D) may be due to low miRNA content (10%) after 

purification, and could be related to low RNA concentration.  

 

The RNA integrity number (RIN), miRNA as a percentage (%) of total RNA, and the 

concentration (pg/µl) of miRNAs for all 12 samples are presented in Table 3.3. The RIN 

values ranged between 7.30 - 8.50 (7.91 ± 0.12), demonstrating intact and good quality RNA 

for all samples. The percentage and concentration of miRNAs within the samples ranged 

between 7 - 16 % (9.6 ± 0.81) and 230.60 - 897.90 pg/µl (374.9 ± 37.55), respectively.  
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Figure 3.3 A gel image of total RNA and an electropherogram indicating RNA quality. A) Gel image 

representing the 12 RNA samples in lanes 1-12, showing bands representative of intact 28S and 18S 

rRNA molecules. Lane L represents the RNA ladder with the marker for comparative analysis 

indicated in green. B) Electropherogram of total RNA with two main peaks indicating 28S and 18S 

rRNA. C) Gel image representing 11 RNA samples in lanes 1-11, showing the region representative 

of the miRNA length (nt), and an D) electropherogram of small RNA, indicating the region of miRNAs 

between 6 and 40 nt. 
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Table 3.3 Integrity of total RNA, and the percentage and concentration of miRNAs within each sample 

(n=12). 

 

Sample 

 

RIN no. 

 

% miRNA 

 

miRNA concentration (pg/µl) 

1 8.2 11.0 512.9 

2 7.8 9.0 341.6 

3 7.7 7.0 408.7 

4 7.5 9.0 371.0 

5 8.1 10.0 594.2 

6 7.6 16.0 431.1 

7 7.4 8.0 260.8 

8 8.5 7.0 366.0 

9 8.4 7.0 231.9 

10 7.3 11.0 230.6 

11 8.5 7.0 416.8 

12 8.0 13.0 897.9 

RIN = RNA integrity number 

3.2.2 MicroRNA sequencing  

To identify miRNAs that are dysregulated during disease progression, miRNA-enriched total 

RNA from diabetic, pre-diabetic and normo-glycaemic individuals were subjected to next 

generation sequencing on the Illumina HiSeq 2500. All the twelve RNA samples that were 

sent to Arraystar passed their quality control test, which included total RNA quantification and 

quality assurance by NanoDrop ND-1000 spectrophotometry.  Thereafter, a sequencing 

library of the RNA samples were prepared as described in section 2.7, and the quality 

thereof assessed with the Agilent 2100 Bioanalyser. All the samples passed the quality 

control, and were thus subjected to miRNA sequencing. Details of the quality control test 

and the quality assessment of the sequencing library can be found in Appendix 3. 

 

Reads generated by the Illumina HiSeq 2500 instrument were cleaned, adapters trimmed 

and aligned to a known reference human genome in the miRBase v21 database 

(http://www.mirbase.org/), to determine the number of reads generated, as described in 
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section 2.7. The total number of clean reads, adapter trimmed reads, reads aligned to known 

miRNA sequences, and the percentage of reads aligned to the human genome, are 

presented in Table 3.4. 

 

The size distribution of adapter trimmed reads aligned to human reference miRNAs (Table 

3.4, column 3) is illustrated in Figure 3.4. The majority of sequencing read peaks occurred 

around 22 nt as expected. 

 

Table 3.4 The read counts at the different data processing stages. 

Sample 
Name 

Clean 
Reads 

Adapter-trimmed 
Reads (length >= 

15nt) 

Reads aligned to known 
human pre-miRNA in 

miRBase 21 

Percentage of 
aligned reads 

1 6,124,069 6,061,197 5,676,739 93% 

2 3,458,762 3,442,273 3,248,139 94% 

3 5,404,671 5,356,925 5,014,891 94% 

4 4,082,938 4,057,478 3,817,335 94% 

5 4,872,306 4,853,250 4,577,000 94% 

6 3,352,766 3,329,626 3,133,999 94% 

7 4,050,955 4,015,379 3,737,566 93% 

8 5,803,200 5,754,741 5,372,612 93% 

9 7,611,759 7,525,970 6,950,059 92% 

10 6,865,665 6,823,551 6,445,241 94% 

11 6,433,218 6,353,760 5,880,953 93% 

12 5,301,440 5,260,559 4,932,301 93% 
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Figure 3.4 Size distribution of sequencing reads. The size distribution of sequence reads of a 

representative miRNA sample is indicated by total read counts (y-axis) and adapter trimmed read 

length (x-axis).  

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 3 RESULTS 

68 
 

3.2.3 Differential expression of microRNAs during 

Type 2 diabetes progression 

The expression of miRNAs in each sample was determined by comparing the expression of 

each unique sequence to the total number of reads per sample, using equation 2.1 (section 

2.7). A total of 294 miRNAs were found to be expressed among all samples.  Using 

Novoalign, 277, 267 and 267 miRNAs were differentially expressed between diabetics vs. 

normo-glycaemics, pre-diabetics vs. normo-glycaemics, and pre-diabetics vs. diabetics, 

respectively (Table 3.5). A number of novel miRNAs that have not previously been 

annotated in the miRNA database were identified; 35, 33 and 33 novel miRNAs were 

differentially expressed between diabetics vs. normo-glycaemics, pre-diabetics vs. normo-

glycaemics and pre-diabetics vs. diabetics, respectively. Using an arbitrary cut-off of ≥1.1 

expression fold difference and statistical significance set at p≤0.05, five miRNAs (miR-27b, 

miR-98, miR-143, miR-21 and miR-379) were selected for validation by qRT-PCR (Table 

3.6). 

 

MiR-143, miR-21 and miR-379 were upregulated in diabetics compared to pre-diabetics 

(1.75-fold; p≤0.05, 1.22-fold; p<0.01, 1.12-fold; p<0.05, respectively), while miR-27b was 

upregulated in pre-diabetic compared to normo-glycaemic individuals (1.15-fold; p<0.01). In 

contrast, miR-98 was downregulated in diabetics compared to pre-diabetics (1.25-fold; 

p<0.05) and in pre-diabetics compared to normo-glycaemic individuals (1.23-fold; p<0.05) 

(Table 3.6). 

 

Table 3.5 Total number of differentially expressed and novel miRNAs among all samples.  

 

 Diabetic vs. 
Normo-glycaemic 

Pre-diabetic vs. 
Normo-glycaemic 

Pre-diabetic vs. 
Diabetic 

No. of differentially 

expressed miRNAs 

 

277 

 

267 

 

267 

 

Novel miRNAs 

 

35 

 

33 

 

33 
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 Table 3.6 MiRNAs selected for qRT-PCR. 

Positive values indicate miRNAs that were upregulated between groups, while negative values 

indicate miRNAs that were downregulated between groups. D= Diabetics; PD= Pre-diabetics; C= 

Normo-glycaemics. 

 

The hierarchally clustered heat map that was generated to illustrate the differential 

expression of miRNAs between diabetic, pre-diabetic and normo-glycaemic samples is 

shown in Figure 3.5. 

   

Gene symbol Mature miRNA ID Disease group Fold change P-value 

MI0000100 hsa-miR-98 D vs. PD -1.25 0.04 

MI0000459 hsa-miR-143 D vs. PD 1.75 0.05 

MI0000077 hsa-miR-21 D vs. PD 1.22 0.008 

MI0000787 hsa-miR-379 D vs. PD 1.12 0.02 

MI0000440 hsa-miR-27b PD vs. C 1.15 0.003 

MI0000100 hsa-miR-98 PD vs. C -1.23 0.02 
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Figure 3.5 A hierarchal clustered heat map of differentially expressed miRNAs between diabetic, pre-

diabetic and normo-glycaemic individuals. Heat map colours represent relative miRNA expression as 

indicated in the colour key. High and low miRNA expression levels are indicated by red, and green, 

respectively. 
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3.2.4 Quantitative real time PCR validation of 

differentially expressed microRNAs 

Quantitative real time PCR was used to validate the differential expression of miR-27b, miR-

98, miR-143, miR-21 and miR-379, identified by miRNA sequencing. Expression was 

calculated using the ΔΔCt method where RNU6B, miR-454 and miR-425 were used as 

endogenous reference genes, and the average expression in normo-glycaemic individuals 

(n=4) were used as a calibrator. The relative expression of each miRNA was calculated 

using the equation 2.2 in section 2.8.2.1.  

 

Endogenous reference genes were stably expressed in all samples when combined; no 

significant difference was observed between diabetic, pre-diabetic and normo-glycaemic 

groups (Fig. 3.6A), thus making these genes ideal endogenous controls for miRNA 

expression analysis. The expression of miR-143 was upregulated in pre-diabetics compared 

to normo-glycaemic individuals (1.4-fold, p≤0.01) (Fig. 3.6B), while no significant changes 

were observed for miR-21, miR-27b, miR-379 and miR-98 (Fig. 3.6C-F). However, for miR-

27b, a trend towards significance (1.55-fold; p=0.07) was observed between pre-diabetic 

and normo-glycaemic individuals (Fig. 3.6C), confirming sequencing results which showed 

significant upregulation of miR-27b in pre-diabetics compared to normo-glycaemic 

individuals (Table 3.6). 
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Figure 3.6 MiRNA expression analysis using real-time quantitative PCR. A) Average Ct of 

endogenous control, B) relative expression changes of miR-143, C) miR-27b, D) miR-21, E) miR-98, 

and F) miR-379 between diabetic (n=4), pre-diabetic (n=4) and normo-glycaemic individuals (n=4), 

*p<0.05. 
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3.3 MicroRNA expression analysis in serum 

The differentially expressed miRNAs in PBMCs were investigated in serum samples of the 

same individuals. 

3.3.1 Total RNA concentration and yield 

Nanodrop spectrophotometry was used to determine the concentration, purity and yield of 

total RNA-enriched miRNAs from serum samples. The concentration and yield of total RNA 

varied between 11.15 - 19.05 ng/µl and 227.10 - 380.90 ng, respectively (Table 3.7), 

indicating lower total RNA amounts in serum compared to PBMCs, as expected. The 

A260/A280 and A260/A230 ratios varied between 1.26 - 1.49 nm and 0.29 - 0.44 nm, respectively. 

These low ratios may be indicative of possible protein-bound miRNA detection or cellular 

contamination from miRNA origin. 

 

Table 3.7 Total RNA concentration, purity and yield of serum samples (n=12). 

Sample ID Concentration (ng/µl)* Yield (ng) A260/A280 (nm)  A260/A230 (nm)  

1 17.03 340.60 1.49 0.29 

2 17.16 343.20 1.34 0.27 

3 14.51 290.10 1.30 0.28 

4 12.11 242.10 1.33 0.28 

5 13.70 273.90 1.27 0.31 

6 19.05 380.90 1.26 0.41 

7 12.78 255.50 1.29 0.44 

8 17.96 359.20 1.44 0.21 

9 14.80 296.00 1.39 0.21 

10 14.03 280.50 1.28 0.42 

11 11.58 231.60 1.31 0.17 

12 11.36 227.10 1.42 0.07 

*RNA concentration was measured at A260 nm 

RNA yield was calculated using total RNA concentration (ng/µl) in 14 µl of total sample volume 
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Presence of protein contaminants were measured at A260/A280 nm 

Presence of solvent/salt/other contaminants were measured at A260/A230 nm 

 

3.3.2 MicroRNA quality control  

The quality of the RNA-enriched miRNAs isolated from serum samples was assessed using 

the small Agilent bioanalyser for total miRNA detection. The percentage and concentration of 

miRNAs within the 12 samples ranged between 50 - 89 % (67.4 ± 9.4) and 134.40 – 1017.70 

pg/µl (336.0 ± 249.7), respectively, and is presented in Table 3.8. 

 

 Table 3.8 Percentage and concentration of miRNAs in each serum sample (n=12). 

 

 

Sample % of miRNA miRNA concentration (pg/µl) 

1 74 330.10 

2 71 318.40 

3 69 134.40 

4 89 260.70 

5 67 161.00 

6 69 331.50 

7 65 191.80 

8 50 117.50 

9 69 1017.70 

10 57 179.90 

11 66 509.50 

12 63 479.90 
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3.3.3 Differential expression of microRNAs in serum 

The expression of miR-27b, miR-98, miR-143, miR-21 and miR-379 in serum of diabetic 

(n=4), pre-diabetic (n=4) and normo-glycaemic individuals (n=4) was calculated using the 

ΔΔCt methods and using miR-425 as the endogeneous control (Fig. 3.7).  

 

Of the three endogenous controls investigated, Normfinder showed that miR-425 was the 

most stably expressed among all samples, with no significant difference between diabetic, 

pre-diabetic and normo-glycaemic groups (Fig. 3.7A). In addition, the exogenous synthetic 

spike in control (miR-39); used to control for technical variation, was stably expressed in all 

samples (Fig. 3.7B), suggesting efficiency of RNA extraction, cDNA synthesis and PCR 

amplification. 

 

MiR-27b was upregulated (2.0-fold; p≤0.05) in pre-diabetic compared to normo-glycaemic 

individuals (Fig. 3.7C). Although miR-21, miR-379, miR-98 and miR-143 were also detected 

in serum, none of them were differentially expressed between the groups (Fig. 3.7D-G). 
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Figure 3.7 Expression of miRNAs in the serum of diabetic, pre-diabetic and normo-glycaemic 

individuals, using real-time quantitative PCR. A) Average Ct of endogenous control, B) average Ct of 

exogenous control, relative expression changes of C) miR-27b,  D) miR-143, E) miR-21, F) miR-98 

and G) miR-379 between diabetic (n=4), pre-diabetic (n=4) and normo-glycaemic individuals (n=4), 

*p<0.05.  
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3.4 Novel microRNAs  

A total of 151 potential novel miRNA precursors (both 3p and 5p) were identified by next 

generation miRNA sequencing. MiRDeep algorithms showed that only 130 novel miRNA 

precursor structures were predicted to be significant across the genome. Of these, 33, 35 

and 33 novel miRNAs were shown to be differentially expressed in pre-diabetic compared to 

normo-glycaemic individuals, diabetic compared to normo-glycaemic individuals, and pre-

diabetics compared to diabetics, respectively. Comparative analysis of the differentially 

expressed miRNAs in each of the groups identified 23 novel miRNAs that were commonly 

differentially expressed in all 3 groups (pre-diabetic vs. normo-glycaemic, diabetic vs. normo-

glycaemic and pre-diabetic vs. diabetic) (Fig. 3.8). Six miRNAs were differentially expressed 

in both diabetic and pre-diabetics compared to normo-glycaemic individuals, six miRNAs 

were differentially expressed in diabetics compared to both pre-diabetic and normo-

glycaemic individuals, and four miRNAs were differentially expressed in pre-diabetics 

compared to diabetics and normo-glycaemic individuals (Fig. 3.8).  

Figure 3.8 Venn diagram showing novel miRNAs commonly expressed between diabetic, pre-diabetic 

and normo-glycaemic groups.  
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3.4.1 Quantitative real time PCR validation of novel 

microRNAs 

Five novel miRNAs (MYNO22, MYNO59, MYNO66, MYNO8, MYNO95) were selected for 

validation using qRT-PCR. Validation was performed in the same RNA samples used for 

miRNA sequencing; diabetic (n=3), pre-diabetic (n=4) and normo-glycaemic (n=4) samples. 

One diabetic sample did not have sufficient RNA for analysis. Quantitative real-time PCR 

confirmed the expression of MYNO22, MYNO59, MYNO66, MYNO8, MYNO95 in all 

samples (Fig. 3.9). 

 

The relative expression levels of these miRNAs was calculated using the average Ct of 

RNU6B, miR-454 and miR-425 as endogenous reference genes for normalization (Fig. 

3.9A). MYNO59, MYNO95 and MYNO66 was downregulated in diabetics compared to 

normo-glycaemic individuals (-0.4-fold; p≤0.05, -0.5-fold; p≤0.05, -0.5-fold; p≤0.01) (Fig. 

3.9B-D). In addition, MYNO66 and MYNO8 was downregulated in pre-diabetics compared to 

normo-glycaemic individuals (-0.5-fold; p≤0.05), and in diabetics compared to pre-diabetics 

(-0.8-fold; p≤0.05), respectively (Fig. 3.9D-E). No significant differential expression was 

observed for MYNO22 (Fig. 3.9F).  
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Figure 3.9 Validation of novel miRNAs using quantitative real-time PCR. A) Average Ct of 

endogenous control, relative expression changes of B) MYNO59, C) MYNO95, D) MYNO66, E) 

MYNO8, and F) MYNO22 between diabetic (n=3), pre-diabetic (n=4) and normo-glycaemic individuals 

(n=4), *p<0.05, **p<0.01. 

A

DC
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E F
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3.5 Bioinformatics 

3.5.1 Messenger RNA target prediction analysis 

Messenger RNA (mRNA) target prediction for each of the five selected differentially 

expressed miRNAs (section 3.2.3) was conducted using three target prediction programs 

(TargetScan, DIANA and PITA) that differ in the algorithms they use for prediction (Table 

3.9). The number of mRNA targets predicted for miRNAs varied according to the target 

prediction program used. For example, for miR-27b, TargetScan, DIANA and PITA predicted 

71, 2107 and 1553 mRNA targets, respectively. Of these 39% of targets predicted by 

TargetScan were commonly predicted by all three programs, while 1.3% and 1.8% of targets 

predicted by DIANA and PITA, respectively, were commonly predicted by all three programs. 

TargetScan had the highest percentage of true predicted targets compared to DIANA and 

PITA, based on the assumption that mRNA targets predicted by all three programs are „true‟ 

targets. 

 Table 3.9 Number of commonly predicted targets between TargetScan, DIANA and PITA. 

TargetScan predicts targets based on seed match complementarity and sequence conservation. 

DIANA predicts targets based on free energy binding and complementarity. 

PITA predicts targets based on target site accessibility and free energy. 

*Commonly predicted targets determined using the venny tool (Oliveros 2007) 

Percentages (%) were determined by dividing the commonly predicted targets by the total number of 

targets predicted by the program, and multiplying by 100. 

 

Number of targets predicted 

Mature miRNA TargetScan DIANA  PITA  Common* 

miR-27b 71 (39%) 2107 (1.3%) 1553 (1.8%) 28 

miR-379 38 (18%) 377 (1.8%) 665 (1.5%) 7 

miR-21 164 (7.9%) 554 (2.3%) 975 (1.3%) 13 

miR-98 46 (26%) 991 (1.2%) 1291 (0.9%) 12 

miR-143 279 (26.1%) 1062 (6.8%) 289 (25%) 73 
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3.5.2 Functional analysis of predicted targets 

Pathway analysis of the commonly predicted mRNA target genes was conducted using the 

DAVID functional annotation tool. Commonly predicted mRNA target gene lists for the five 

miRNAs (Table 3.9) were copied into DAVID for pathway analysis. Results of the individual 

miRNAs and their predicted mRNA targets are indicated in Table 3.10. A total of 40 

predicted mRNA target genes were mapped to KEGG pathways (Table 3.10, column 3). Of 

these, 13 predicted target genes were selected based on their potential role in T2D disease 

progression, as described in section 2.9.1 (Table 3.10, column 4). Thereafter, the role of 

these targets in T2D was confirmed using the T2D-db. Three of the 13 predicted target 

genes (peroxisome proliferator-activated receptor gamma (Ppagr), the insulin receptor (Insr) 

and v-Ki-ras2 kirsten rat sarcoma viral oncogene homolog (Kras) were identified in this 

database.  

 

For miR-27b, 12 of the 28 mRNA targets commonly predicted by TargetScan, DIANA and 

PITA mapped to KEGG pathways. Of these, two genes; peroxisome proliferator-activated 

receptor gamma (Pparg) and vascular endothelial growth factor C (Vegf-c), which plays a 

role in the PPARG and mTOR signaling pathways, respectively, were selected as genes 

linked to T2D.  

 

For miR-379, two of the seven mRNA targets commonly predicted by TargetScan, DIANA 

and PITA mapped to KEGG pathways. Of these, the insulin receptor (Insr) gene which plays 

a role in the development of T2D through its effect on the insulin signaling pathway was 

selected. 

 

Four of the 13 mRNA target genes commonly predicted by TargetScan, DIANA and PITA for 

miR-21 mapped to KEGG pathways. Of these, one target gene; tuberous sclerosis 1 (Tsc1), 

was selected due to its role in T2D through effects on the mTOR and insulin signaling 

pathway.  

 

For miR-98, four of the 12 mRNA target genes commonly predicted by TargetScan, DIANA 

and PITA mapped to KEGG pathways. Of these, three target genes; mitogen-activated 
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protein kinase 3 (Map4k3), Unc-51-like kinase (Ulk2) and stearoyl-CoA desaturase (delta-9-

desaturase) (Scd) were potentially linked to T2D, and is predicted to play a role in MAPK, 

mTOR and PPARG signaling pathways, respectively. Additionally, Scd may also play a 

potential role in the biosynthesis of unsaturated fatty acids.  

 

For miR-143, 18 of the 73 mRNA targets commonly predicted by TargetScan, DIANA and 

PITA mapped to KEGG pathways. Of these, six target genes; fibroblast growth factor 1 

(Fgf1), calcium channel voltage-dependent alpha 1A subunit (Cacna1a), protein kinase C, 

epsilon (Prkce), tao kinase 2 (Taok2), v-ki-ras2 Kirsten rat sarcoma viral oncogene homolog 

(Kras), and an independent companion of mTOR complex 2 (Rictor) may play a role in T2D 

disease progression. These genes are predicted to be involved in mTOR, MAPK, insulin and 

chemokine signaling.  
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Table 3.10 Significantly differentially expressed miRNAs and their mRNA targets. Genes listed were 

identified to play a potential role in T2D-related metabolic pathways, identified using the 

DAVID/KEGG pathway database. 

*Manually selected genes that have previously been reported to play a role in metabolic pathways 

linked to T2D.  

MiRNA 

No. of 

predicted 

mRNA targets 

No. of  linked 

to KEGG 

pathway 

Genes linked 

to T2D* 

Role of genes in T2D 

related metabolic 

pathways 

miR-27b 28 12 

Pparg PPARG signaling 

Vegf-c mTOR signaling 

miR-379 7 2 Insr 

Insulin signaling and T2D 

disease pathogenesis 

miR-21 13 4 Tsc1 

mTOR and insulin 

signaling 

miR-98 12 4 

Map4k3 MAPK signaling 

Ulk2 mTOR signaling 

Scd 

PPARG signaling and 

the biosynthesis of fatty 

acids 

miR-143 73 18 

Rictor mTOR signaling 

Taok2 MAPK signaling 

Cacna1a 

T2D disease 

pathogenesis 

Fgf1 MAPK signaling 

Prkce 

T2D disease 

pathogenesis 

Kras 

MAPK, chemokine and 

insulin signaling 
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3.5.3 Protein-protein interactions regulated by 

differentially expressed microRNAs 

Protein-protein interactions possibly regulated by the differentially expressed miRNAs were 

investigated using the protein interaction database called STRING. Predicted mRNA target 

gene/proteins were investigated, and related interacting proteins are illustrated in Appendix 

4. For example, miRNA-27b target: vascular endothelial growth factor C (VEGFC) interacts 

with fms-related tyrosine kinase 4 (FLT4), kinase insert domain receptor (KDR), neuropilin 2 

(NRP2), fms-related tyrosine kinase 1 (FLT1), and insulin-like growth factor 1 receptor 

(IGF1R). The estimated likelihood that the predicted proteins interact in the same metabolic 

map in the KEGG database was indicated by a 95% confidence score generated by the 

active prediction methods in the STRING tool.  

3.5.4 Functional analysis of microRNAs 

In addition to functional analysis of mRNA target genes, biological activity of the differentially 

expressed miRNAs was also explored. Using HMDD, the biofluid and disease association of 

the differentially expressed miRNAs were investigated using the miRNA database, HMDD. 

MiR-27b, miR-143 and miR-21 were previously identified in biofluids such as serum, plasma, 

urine and faeces, and were mostly found to be associated with neoplasms and different 

types of cancers (Table 3.11). Circulating miR-21 have also been found to be associated 

with T2D (Table 3.11). In contrast, miR-98 and miR-379 has not yet been detected in its 

circulatory form. 
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Table 3.11 Functional analysis of miRNAs using the HMDD (Li et al., 2014). 

MiRNA ID Bio-fluid detection Disease association 

hsa-miR-27b urine urinary bladder neoplasms 

miR-379 none n/a 

miR-21 plasma and serum fatty liver non-alcoholic disease, neoplasm, 

hepatitis C, different cancer types, and T2D 

miR-98 none n/a 

miR-143 faeces pancreatic neoplasms 

3.5.5 Experimental validation of microRNA:mRNA 

target interactions 

The databases DIANA-TarBase and miRTarBase were used to investigate whether the 

interactions between differentially expressed miRNAs (miR-27b and miR-143) and their 

predicted mRNA targets were experimentally validated. MiRNA:mRNA interactions were 

validated using a range of experimental methods including Reporter assays, Western blot, 

qRT-PCR, Microarrays and others (Table 3.8). The predictive scores ranged from 0 - 1, with 

1 representing the highest likelihood of an interaction, and 0 representing the lowest 

likelihood of a true interaction (Table 3.8). Both DIANA-TarBase and miRTarBase gave high 

predictive scores for the interaction between miR-27b and PPARG, and between MiR-143 

and KRAS. 
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Table 3.12 Experimental validation of miRNA:mRNA target interactions.  

  Prediction 

program 

Validation method   

 

 

miRNA  

 

 

Target 

gene 

 

 

DIANA-

Tarbase 

 

 

miRTar

Base 

 R
e
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Predictive 

score 

 

 

Refer

ences 

miR-27b Pparg yes yes      1 3 

miR-143 Kras yes yes      0.994 5 
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4. DISCUSSION 

The prevalence of T2D continues to increase worldwide, placing a huge financial and health 

burden on governments, particularly those in middle and low income countries (Whiting et 

al., 2011). The costs to treat T2D are worsened by the multitude of associated morbidities 

such as CVD, stroke and peripheral vascular disease (Fowler, 2008). Without effective 

intervention, the WHO predicts that T2D may become the world‟s greatest health challenge 

within the next 25 years, a prediction supported by the high numbers of undiagnosed cases 

globally, and the alarming increase of T2D in children (WHO, 2006). 

 

A major priority in T2D research is the prevention, improved diagnosis and management of 

the disease. It is widely believed that the identification of individuals during the pre-diabetic, 

sub-clinical stage of disease will facilitate intervention strategies which may prevent or delay 

their disease progression (Sherwin et al., 2004). Such intervention strategies could include 

lifestyle modifications such as diet and exercise, or therapeutic interventions that could 

protect against insulin resistance, β-cell dysfunction and obesity. The early identification of 

individuals who are at risk of T2D, before the clinical onset of symptoms, will decrease the 

burden of T2D and its micro- and macro-vascular complications.  

 

Research efforts to reduce the burden of T2D by early intervention are underpinned by the 

need for biomarkers to identify subclinical disease. Despite the availability of the OGTT, FPG 

and HbA1c, limitations of these screening and diagnostic tests prevent the identification of 

high risk individuals or the early identification of T2D before the manifestation of micro- and 

macro-vascular complications. Recently a number of studies have reported that miRNAs 

play an important role in various diseases, including T2D (Guay et al., 2011). Although 

miRNAs were first identified in tissue and play important regulator roles in cells, they also 

occur in PBMCs, or as free circulating miRNAs in serum and plasma, suggesting that they 

could be used as potential, minimally invasive blood-based biomarkers of disease (Lagos-

Quintana et al., 2002; Mao et al., 2013). The ultimate goal would be to develop a reliable, 

affordable, straightforward point-of-care device that can analyze a patient‟s serum/plasma, 

urine or saliva in a clinical setting, allowing on-site miRNA detection and disease diagnosis. 
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In this study we hypothesized that circulating miRNAs differ during disease progression, and 

that these epigenetic marks could be used as biomarkers which will differentiate between 

normo-glycaemic, pre-diabetic and diabetic (T2D) individuals.  

 

4.1 Clinical characterization of participants 

Study participants were classified as diabetic, pre-diabetic or normo-glycaemic according to 

their FPG, OGTT and HbA1c levels. Higher fasting insulin and 2 hr OGTT insulin 

concentrations were observed in pre-diabetic compared to normo-glycaemic individuals, 

consistent with studies that have reported that pre-diabetes is characterized by insulin 

resistance and hyperinsulinaemia (Beagley et al., 2014). During insulin resistance, insulin 

sensitive cells fail to respond to physiological concentrations of insulin, causing β-cells to 

compensate by increasing insulin secretion, resulting in hyperinsulinaemia and 

hyperglycaemia, as observed in the pre-diabetic individuals in this study. Similarly, fasting 

and 2 hr C-peptide concentrations were higher in pre-diabetic compared to diabetic and 

normo-glycaemic individuals. C-peptide is the cleavage product produced during the 

processing of insulin from the proinsulin molecule to mature insulin, and is secreted by β-

cells in equimolar concentrations to insulin (Akuri, 2014). It is widely believed that 

quantification of C-peptides are better markers of β-cell secretory activity, since they are 

more stable in blood over longer time periods compared to insulin (~6-fold greater half-life) 

(Palmer et al., 2004). Insulin concentrations in diabetics were decreased compared to 

normo-glycaemic individuals, illustrating possible β-cell dysfunction and failure to secrete 

insulin (Kahn, 2003).  

 

Both insulin and glucagon concentrations were increased in pre-diabetics and diabetics 

compared to normo-glycaemic individuals, consistent with the hypothesis that dysglycaemia 

causes dysregulation of regulatory mechanisms in pancreatic cells, such as the failure to 

inhibit glucagon secretion from alpha (α) cells during hyperglycaemia (Moon and Won, 

2015). The glucagon-like peptide hormone (GLP-1) is an incretin hormone secreted by the 

ileum in response to nutrients. Activation of GLP-1 stimulates insulin secretion and inhibits 

glucagon secretion in a glucose-dependent manner under normal fed conditions. During 

T2D, defects in α-cells cause impaired glucose sensing, thus preventing glucagon inhibition 

(Dunning et al., 2005). It has also been reported that α-cells become resistant to insulin 

under conditions of impaired glucose sensing. For example, α-cell specific insulin receptor 
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knockout mice, exhibited mild glucose intolerance, hyperglycaemia and hyperglucagonaemia 

compared to control mice in the fed state, suggesting dysregulation of insulin and glucose 

sensing mechanisms (Kawamori et al., 2009). 

 

Despite differences observed in insulin, C-peptide and glucagon concentrations, these were 

not statistically significant. The failure to attain statistical significance could be due to the 

small sample size and heterogeneity between the individuals studied. Individuals of mixed 

ancestry originate from a combination of different ethnic backgrounds including Khoisan, 

African, Caucasian and Asian, thus represent a diverse genetic group (de Wit et al., 2010). A 

number of studies have reported the complexities of studying mixed ancestry individuals. 

However we selected this population group due to their high prevalence in the Western 

Cape of South Africa where the study was based, and because of the prevalence of T2D 

within mixed ancestry communities (Erasmus et al., 2012). Erasmus et al. (2012) reported 

that the prevalence of T2D was 28.2% in a mixed ancestry cohort in Bellville South, a suburb 

in the Western Cape. A previous study conducted by Levitt and colleagues in a mixed 

ancestry community in Mamre, another suburb in the Western Cape, reported a prevalence 

of 10.8% (Levitt et al., 1993). The same authors (Levitt et al., 1993) reported that the 

prevalence of T2D was 8.0% amongst black Africans living in African residential areas in 

Cape Town. These findings support the selection of mixed ancestry individuals to investigate 

the association between miRNAs and T2D progression. 

 

Diabetes is often characterized by hyperlipidaemia (Krauss, 2004). In this study, no 

difference in the lipid profile (HDL, LDL, cholesterol and triglycerides) between diabetic, pre-

diabetic and normo-glycaemic individuals was observed. Study participants in each group 

were matched according to BMI, to reduce confounding factors due to bodyweight, and 

could explain the failure to observe differences in the lipid profile between these groups. 

Several studies have shown the association between lipid composition and BMI (Shamai et 

al., 2011; Szczygielska et al., 2002). Szczygielska et al. (2002) reported that triglyceride and 

total cholesterol concentrations were higher in obese individuals compared to normal weight 

subjects (BMI<25 kg/m2), while lower HDL cholesterol concentrations were observed in 

obese individuals compared to normal subjects. Another study showed a positive 

relationship between BMI and triglycerides in individuals with a wide range of BMI values 

(Shamai et al. 2011). All participants in this study were either overweight (BMI>25 kg/m2) or 

obese (BMI>30 kg/m2) with a mean BMI greater than 33 kg/m2.  
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A number of factors including ethnicity, age, gender, BMI, socioeconomic status, nutrition, 

toxins, physical inactivity, alcohol, smoking, etc. are known to modify the epigenome and 

cause epigenetic dysregulation (Hamilton, 2011). Unfortunately, many of these factors, such 

as alcohol consumption, smoking, physical activity and diet were not known for the 

participants of this study. Participants were recruited from communities with similar socio-

economic statuses, so as to minimize the effects of environmental influences. Moreover, 

individuals were matched for ethnicity, age, gender and BMI to further minimize confounding 

and bias. 

4.2 MicroRNA sequencing 

Next generation sequencing has gained popularity for assessing RNA abundance in 

biological samples, and as a high throughput platform for detecting differentially expressed 

known and novel miRNA expression profiles (David, 2013; Tam et al., 2014). The majority of 

sequencing reads obtained with NGS varied between 19 nt and 24 nt in length, correlating 

with the average size of miRNAs in the human genome (Felekkis et al., 2010). An average of 

4.9 million reads were mapped to small RNA species, with a total of 294 miRNAs expressed 

among the 12 samples. Illumina technology can detect between 3.4 million and 3 billion 

reads per run (Moldoval et al. 2014). Total read counts vary according to sample size, 

sample type and disease association (Lopez et al., 2015). 

 

Our study identified 277, 267 and 267 differentially expressed miRNAs between diabetics vs. 

normo-glycaemics, pre-diabetics vs. normo-glycaemics, and pre-diabetics vs. diabetics, 

respectively. The presence of such a large population of differentially expressed miRNAs 

between diabetic, pre-diabetic and normo-glycaemic individuals provide support for their 

involvement in the regulation of genes important in the development of T2D (Karolina et al., 

2011). For example, a study conducted in HEK293T cells using the Dual-Luciferase assay 

reported that high expression levels of miR-199 as seen in T2D, represses GLUT4 

expression (Yan et al., 2014). Overexpression of miR-199 reduces glucose uptake in rat L6 

muscle cells, as repression of GLUT4 inhibits insulin-stimulated glucose uptake (Yan et al., 

2014). Karolina et al. (2011) showed significant upregulation of miR-144 in PBMCs of T2D 

patients compared to healthy controls. Furthermore, a significant downregulation of IRS1 

was observed when miR-144 was overexpressed, and a significant upregulation was 
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observed when miR-144 was inhibited, thus, illustrating the potential role of miR-144 in the 

insulin signaling pathway (Karolina et al., 2011).  

 

Although NGS provides a high throughput platform that is highly sensitive and specific for 

miRNA detection (Motameny et al., 2010), the high cost of the technique limits the amount of 

samples that can be investigated. Due to inter-individual heterogeneity, as observed in our 

study, large sample sizes are required to attain statistical and clinical significance.   

4.3 Validation of microRNA sequencing by quantitative 

real time PCR 

The differential expression of five miRNAs identified by NGS was validated by qRT-PCR in 

the same PBMC samples that were previously used. Using the arbitrary cut-off threshold 

values set by ArrayStar; five differentially expressed miRNAs (miR-143, miR-98, miR-21, 

miR-27b and miR-397) were selected for further analysis. Of the five miRNAs tested, qRT-

PCR results for miR-27b confirmed sequencing results, showing a trend towards significance 

in pre-diabetics compared to normo-glycaemic individuals. None of the expression 

differences of the other four miRNAs identified by NGS were confirmed by qRT-PCR. 

However, miR-143 was significantly upregulated in pre-diabetics compared to normo-

glycaemics in contrast to sequencing, where a significant downregulation was observed in 

pre-diabetics compared to diabetics. No expression differences for the other three miRNAs 

were observed between disease groups.  

 

The discrepancies between qRT-PCR and sequencing results could be due to technical 

differences of the techniques. For qRT-PCR, technical aspects that could influence the 

results include template quality, poor assay efficiency, primer–dimers (Klein, 2002), 

subjectivity in data analysis, and the selection of reference genes (Bustin and Nolan, 2004). 

Quantitative real time PCR produces expression data relative to stably expressed reference 

genes, whereas miRNA sequencing data generates millions of reads per sample, providing a 

more absolute representation of miRNA expression. This enables the highly sensitive 

sequencing technique to detect both high and low miRNA expression levels mapped to the 

entire human reference genome. Although qRT-PCR provides an easy, rapid and cost 

effective platform for quantifying miRNA expression profiles, NGS is considered more 

sensitive than qRT-PCR, and can detect novel miRNAs (Motameny et al., 2010). 
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Furthermore, a lack of consensus exists regarding the selection of reference genes used for 

normalizing miRNA expression profiles in qRT-PCR (Marabita et al., 2015). The most 

common choice of reference genes are endogenous miRNAs that are stably expressed 

among all samples. However, the selection of these genes may be arbitrary in a small 

sample size when based entirely on the variability of raw data, without further computational 

analysis. In our study NormFinder was used to confirm the appropriate selection of reference 

genes for normalisation, while some other studies use BestKeeper or eNorm, to identify the 

most suitable reference genes (Liu et al., 2014). A number of published articles select 

reference genes randomly without validation, which could explain the lack of comparability in 

miRNA expression patterns in these studies (Tiberio et al., 2015). Thus, although qRT-PCR 

is routinely used to validate NGS data, it has a number of limitations, which should be taken 

into account during data analysis. 

4.4 Functional analysis of predicted messenger RNA 

targets 

To gain insight into the biological function of these miRNAs, mRNA targets were predicted 

using three target prediction software programmes; TargetScan, PITA and DIANA. These 

programs differ in the algorithms they use for target prediction. TargetScan predicts mRNA 

targets based on sequence complementarity and conservation (Friedman et al., 2009; Lewis 

et al., 2005), DIANA focuses on the minimum binding energy between miRNA and 

sequences in the mRNA target region (Kiriakidou et al., 2004; Maragkakis et al., 2009), and 

PITA focuses on free energy and target site accessibility (Witkos et al., 2011). Since target 

prediction programs are prone to predicting false-positives (Kertesz et al., 2007; Kiriakidou et 

al., 2004; Lewis et al., 2005), only targets that were commonly predicted by all three 

programs were selected, thereby reducing the chance of identifying false-positive targets. In 

our study, TargetScan had a higher likelihood of predicting a true mRNA target compared to 

DIANA and PITA, based on the assumption that the commonly predicted targets were true-

positives. In recently published literature, TargetScan has been considered one of the best 

target prediction programs, as it incorporates evolutionary conservation i.e. miRNA and 

mRNA sequences highly conserved across a wide range of species, as well as strict 

complementarity between sequences (Lewis et al., 2005). Algorithms which consider 

complementarity along with conserved nature and/or free energy have been shown to 

perform better than methods that consider a single characteristic only (Yue et al., 2009).  
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The functional role of mRNA targets were investigated using the DAVID gene functional 

annotation tool, which classifies mRNA targets according to their inter-relationships between 

gene groups and biological terms, specific biological pathways, and functional significance in 

biological modules (Huang et al., 2007). A common problem encountered with DAVID is that 

the output of data is often large and overwhelming (Huang et al., 2007; Huang et al., 2008). 

Therefore, we focused our analysis on mRNA targets that mapped to KEGG pathways. 

Messenger RNA genes that were associated with metabolic pathways linked to the 

development of T2D were selected based on personal knowledge.  

 

The personal selection of genes linked to T2D may have missed important genes due to the 

limitations inherent in personal knowledge. The selected T2D-related genes were confirmed 

using the T2D-db. The T2D-db provides information of all molecular factors known to be 

involved in the pathogenesis of T2D in humans (Agrawal et al., 2008). Three of the selected 

genes (Pparg, Kras and Insr) known to be involved in T2D disease development were 

associated with the database. The lack of association between other genes may be due to 

missing information of newly discovered T2D-related genes, since the database was last 

updated in 2009. 

 

To identify signaling cascades that may be affected by miRNA regulation, interacting 

proteins of predicted miRNA target gene/proteins were evaluated and identified using 

STRING. Analyzing gene targets in the context of protein regulation provides insight into 

how the dynamic biological system is controlled (Szklarczyk et al., 2014). The interactions 

between proteins identified in our study illustrates various metabolic pathways implicated in 

the pathogenesis of T2D, suggesting that miRNA dysregulation forms part of a wider 

network of complex regulatory systems (Liang and Li, 2007). 

4.5 Functional analysis of microRNAs 

In addition to conducting functional analysis of target genes, we also investigated the 

biological role of miRNAs in circulation using HMDD. This database provides information 

about the association of miRNAs with disease.  For example, miR-27b was previously 

investigated in a study using miRNAs as urinary biomarkers in cancer patients (Miah et al., 

2012). MiR-143 was expressed at high levels in faecal samples of pancreatic cancer patients 

and healthy individuals (Link et al., 2012). Interestingly, miR-21 was decreased in plasma of 
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T2D patients compared to normo-glycaemic individuals (Zampetaki et al., 2010). MiR-98, 

and miR-379 have not yet been discovered in its circulatory form. 

4.6 Computational validation of microRNA:mRNA 

target interactions 

In this study, we investigated the relationship between differentially expressed miRNAs and 

their T2D-related target genes, using DIANA-TarBase and miRTarBase, with a special focus 

on miR-27b and miR-143, as these showed significance in the validation analysis. These 

databases provide information for miRNA:mRNA target interactions that have previously 

been experimentally validated, providing a list of publications for each interaction (Elton and 

Yalowich, 2015; Hsu et al., 2014). The analysis showed high predictive scores for previously 

experimentally validated miRNA:mRNA target interactions between miR-27b and Pparg, and 

between miR-143 and Kras, by three or more techniques. For example miR-27b:Pparg 

interaction was validated using a Luciferase reporter assay, Western blot and qRT-PCR 

(Karbiener et al., 2009; Jennewein et al., 2010; Lee et al., 2012), while miR-143:Kras was 

validated using a Luciferase reporter assay, Western blot, qRT-PCR and Microarrays (Chen 

et al., 2009; Lin et al., 2009; Pagliuca et al., 2012; Ni et al., 2012), illustrating direct binding 

of miRNAs on predicted target sites. 

4.7 Novel microRNA 

Since their initial discovery in C. elegans in 1993 (Lee et al., 1993), over 30,000 mature 

miRNA sequences have been identified in more than 150 species (miRBase v21). 

Conservative estimates indicate that over 1000 miRNAs are found in the human genome, 

where they regulate a large number of genes (Ardekani and Naeini, 2010). Our sequencing 

data identified a total of 151 novel miRNAs among all samples. Of these, 35, 33 and 33 

novel miRNAs were differentially expressed in diabetic vs. normo-glycaemic, pre-diabetic vs. 

normo-glycaemic and pre-diabetic vs. diabetics, respectively. Validation of novel miRNAs 

identified by sequencing is required before they can be regarded as a „true‟ finding (Juan et 

al., 2014). In this study, the expression of five novel miRNAs (MYNO22, MYNO59, MYNO66, 

MYNO8 and MYNO95) was confirmed using qRT-PCR. The sequences of these novel 

miRNAs will be submitted into the online miRNA registry for the assignment of an 

appropriate miRNA gene name, after a manuscript describing experimental validation has 

been accepted (Griffiths-Jones et al., 2006). 
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Both sequencing and qRT-PCR showed that three of the five novel miRNAs, MYNO59, 

MYNO95 and MYNO66 were downregulated in diabetics compared to normo-glycaemic 

individuals. Moreover, MYNO66 was significantly downregulated with disease progression, 

i.e. decreased expression in normo-glycaemics > pre-diabetics > diabetics. These results 

suggest that these novel miRNAs, particularly MYNO66, are associated with disease 

development, warranting further investigation of their role in T2D. Investigating the 

expression of these miRNAs under different metabolic conditions, and then identifying their 

mRNA targets, may provide a better understanding of their role in the development of T2D. 

4.8 MicroRNA profiling in serum 

Circulating miRNAs that occur cell-free in plasma and serum have attracted considerable 

interest as biomarkers for numerous diseases due to their highly stable nature (Chen et al., 

2008). The expression of miRNAs that were shown to be differentially expressed in PBMCs 

was investigated in serum samples of the same individuals. All five miRNAs were detected in 

serum of diabetic, pre-diabetic and normo-glycaemic individuals. Of these, only miR-27b was 

significantly upregulated in pre-diabetics compared to normo-glycaemic individuals. These 

results were consistent with results observed for sequencing and qRT-PCR in PBMCs. No 

difference in the expression of the other four miRNAs was observed.  

 

The discrepancies of miRNA expression in PBMCs and serum samples could be due to the 

different qRT-PCR methods used. In serum samples, miRNAs were detected using the 

miScript PCR SYBR Green detection kit. This method uses SYBR Green I dye that 

intercalates into double-stranded cDNA, as well as into non-specific reaction products, and 

emits a fluorescent signal that is directly proportional to the amount of PCR product 

generated (Rajeevan et al., 2001). On the other hand, miRNAs in PBMCs were detected 

using TaqMan primers and specific probes to the miRNAs of interest. This method detects 

only specific amplification products (Ponchel et al., 2003). Thus differences of miRNA 

expression profiles in PBMCs and serum could be due to variable sensitivity and specificity 

of the validation platforms used (Bustin and Mueller, 2005).  

 

Another factor to consider is the miRNA expression profile in different biological fluids. Wang 

et al. (2012) investigated the expression of miRNAs in serum, plasma and blood 

components (red blood cells (RBC), white blood cells (WBC) and platelets) of six healthy 
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individuals. Their study showed that more miRNAs were detected in blood cells, ranging 

from 280 and 477 miRNAs compared to serum and plasma, where only 118 miRNAs and 

106 miRNAs were detected, respectively. The most abundantly expressed miRNAs (miR-

126, miR-16 and miR-150) in blood cells were equally expressed in serum and plasma 

samples, while the most abundantly expressed miRNA in serum was observed at much 

lower levels in RBC (Wang et al., 2012). Therefore, although biofluids share similar miRNA 

profiles, their patterns differ according to tissue and cell type, which may be due to 

differential uptake or release of miRNAs from different circulating cell types in the blood 

(Maldovan et al., 2014). 

 

Despite these discrepancies, to our knowledge, this study is the first to demonstrate the 

differential expression of miR-27b in PBMCs and serum of pre-diabetic and normo-

glycaemic individuals, thus, illustrating its potential as a biomarker of pre-diabetes. Other 

studies have shown the association of miR-27b with a wide range of cancers, CVD, 

adipogenesis, atherosclerosis, T1D and diabetic nephropathy (Bi et al., 2015; Goto et al., 

2014; Karbiener et al., 2009; Kong et al., 2014; Lehmann et al., 2015; Veliceasa et al., 2015; 

Zampetaki et al., 2015). Using genome wide microarray analysis and qRT-PCR, Lin et al. 

(2009a) showed significant downregulation of miR-27b during adipogenesis, consistent with 

other literature (Karbiener et al., 2009). Over expression of miR-27b inhibits adipocyte 

formation, without affecting myogenic differentiation, suggesting its role in the pathological 

development of obesity (Lin et al., 2009a). Moreover, miR-27b was one of 12 miRNAs 

investigated in serum of diabetic, obese-diabetic, and healthy individuals (Pescador et al., 

2013). However, no significance in miRNA expression was observed between these groups. 

MiR-27b was significantly upregulated in serum of T1D patients compared to healthy 

individuals, illustrating a possible role in β-cell apoptosis and β-cell regulatory networks 

(Nielsen et al., 2012). Li et al. (2010) showed the significant upregulation of three miRNAs, 

including miR-27b in the serum and tissue of patients with atherosclerosis compared to 

healthy controls, as evidence for a possible risk marker in the early stages of atherosclerosis 

(Li et al., 2011). Results of these studies illustrate a possible role of miR-27b in T2D-related 

complications. However, data directly linking miR-27b to pre-diabetes and T2D is still 

lacking. 
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4.9 MiR-27b as a potential biomarker for Pre-diabetes 

Both sequencing and qRT-PCR showed a significant increase in the expression of miR-27b 

in PBMCs and serum of pre-diabetics compared normo-glycaemic individuals. These results 

suggest that miR-27b could be used as a potential biomarker for pre-diabetes; the early 

stages of T2D development that precedes overt diabetes. Individuals with pre-diabetes have 

a 3 to 10–fold increased risk of developing T2D (Garber et al., 2008), and the identification of 

these individuals in the early stages could delay or prevent disease progression through 

lifestyle interventions or therapeutic strategies to reverse progression. However, due the 

limitations of this study and the extensive heterogeneity and non-specificity of miRNAs 

(Turchinovich et al., 2012), validation of miR-27b will be required in a larger cohort and in 

different populations to confirm its potential as a biomarker to identify those at risk for T2D.  

 

It is currently suggested that a biomarker should be involved in disease progression. MiR-

27b was not increased in diabetics, compared to pre-diabetics and normo-glycaemics, 

suggesting an alteration associated with a specific physiological state in the disease. Unlike 

intermediate biomarkers, which represent direct steps in the causal pathway of disease, 

circulating biomarkers represent changes in biological factors that lead to the disease 

(Mayeux, 2004), and are used as indicators of disease susceptibility. Thus, these biomarkers 

need not always be causal, and may merely reflect the subclinical stage of disease to be 

considered useful for screening and prevention. 

4.9.1 Molecular mechanism of miR-27b 

Both computational prediction programs and experimental studies have identified Pparg as a 

target for miR-27b. The positive effect of PPARG on insulin signaling has been widely 

reported (Leonardini et al., 2009). Our results suggest that upregulation of miR-27b in pre-

diabetics suppress PPARG activity by inhibiting Pparg with negative effects on insulin 

signaling and subsequent glucose uptake. The effects of insulin on glucose uptake is 

mediated by phosphorylation of the tyrosine kinase insulin receptor, which leads to 

increased IRS-1–associated PI3K activity, and subsequent translocation of GLUT4 from 

cytoplasmic vesicles to the cell membrane, and uptake of glucose into the cell, thereby 

reducing overall blood glucose concentrations (Chakraborty et al., 2014). Dysregulation of 

intracellular proteins involved in the insulin signaling cascade leads to the development of 
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IR, characterized by high insulin and glucose concentrations. Indeed, insulin and glucose 

levels were increased in pre-diabetics compared to normo-glycaemics (Fig 4.1).   

 

Using a Cre-loxP system for the deletion of Pparg in mouse skeletal muscle, Hevener et al. 

(2003) showed that mice with a Pparg deletion exhibited glucose intolerance and 

progressive insulin resistance after four months. Furthermore, using a hyperinsulinaemic-

euglycaemic clamp, these authors showed a 80% reduction in insulin-stimulated glucose 

uptake in vivo, thus, confirming the crucial role that PPARG plays in skeletal muscle insulin 

action (Hevener et al., 2003). Verna et al. (2004) showed that inhibition of Pparg in C2C12 

skeletal muscle cells induced insulin resistance under normal conditions, while 

overexpression of Pparg in the presence of insulin and/or Pioglitazone (anti-diabetic drug) 

stimulation increased glucose uptake under both normal and insulin resistant conditions 

(Verma et al., 2004).  

 

Consistent with our findings, other studies showed the regulatory effect of miR-27b on 

Pparg. For example, transient transfection of miR-27b in human multipotent adipose-derived 

stem cells decreased the expression of adipogenic markers including Pparg (Karbeiner et 

al., 2009). Using the Dual-Luciferase assay, Karbeiner et al. (2009) demonstrated that miR-

27b directly binds to the 3‟ UTR of human Pparg, thereby decreasing PPARG protein levels, 

and inhibiting adipogenesis. Similarly, the expression of miR-27b in 3T3-L1 pre-adipocytes, 

inhibit both PPARG and CCAAT-enhancer-binding protein α (C/EBPα), thus, confirming its 

role as an adipogenic inhibitor (Lin et al., 2009). Moreover, miR-27b also targets Pparg in 

neuroblastoma cells, which leads to neuroblastoma growth inhibition, associated with 

decreased Pparg target gene expression, and reduced inflammatory responses. In the 

absence of miR-27b, Pparg promotes tumour formation in neuroblastomas (Lee et al., 2012). 

Together, these studies suggest that disease progression associated with impaired PPARG 

signaling is often accompanied by the ability of miR-27b to bind to Pparg and decrease 

mRNA and protein expression. 
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Figure 4.1 Schematic representation of the insulin signaling pathway and a possible role of miR-

27b.The peroxisome proliferator-activated receptor gamma (PPARG) stimulates the insulin signaling 

pathway, which leads to the translocation of glucose transporter 4 (GLUT4) vesicle to the plasma 

membrane, allowing glucose uptake into the cell. The negative effect of miR-27b on PPARG causes 

dysregulation of insulin signaling proteins (insulin receptor substrate 1 (IRS-1) and kinase/serine-

threonine protein kinase-1 (PI3K/AKT)), thereby preventing glucose uptake. 
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4.10 Limitations 

Our study has a number of limitations. These include the small sample size and the absence 

of data for environmental factors that are known to affect miRNA expression. The small 

sample size was due to a number of factors including 1) the challenge to recruit diabetic 

individuals that were not on treatment, 2) the requirement of matching participants for 

ethnicity, age, gender and BMI, and 3) the high cost of sequencing. The primary goal of 

diabetic treatment is to restore glucose homeostasis. However, changes in glucose 

concentrations are known to alter miRNA expression patterns. For example, increased 

miRNA (miR-192 and miR-193b) expression levels in serum of pre-diabetics compared to 

T2D individuals was decreased after chronic exercise, illustrating the effects of glucose 

control on miRNA expression (Parrizas et al., 2014). Matching participants in each group 

was necessary to reduce variability between individuals, and to further minimize confounding 

and bias. The requirement to match individuals for ethnicity, age, gender and BMI limited the 

number of individuals that could be studied. The high cost of sequencing prevented the 

analysis of a larger sample set.  Large sample sizes are required to account for inter-

individual heterogeneity between samples, and to attain clinical significance. 

 

In addition, our study was limited by the lack of data regarding diet, physical activity, and 

behavior such as smoking and alcohol consumption, as these factors are well known to 

contribute to changes seen in miRNA expression patterns. 
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4.11 Future work 

The results of this study will form the basis for future work to explore the role of miRNAs in 

the pathogenesis of T2D. Studies should be conducted in larger cohorts and in different 

populations to investigate the potential of miRNAs such as miR-27b as biomarkers to identify 

those at high risk of developing T2D, and to facilitate intervention strategies that can prevent, 

delay or reverse disease progression. However, due to the extensive heterogeneity of 

miRNAs, and their ability to bind multiple targets, future investigations should focus on a 

panel of T2D-specific miRNAs to identify high risk individuals. 

 

The biological role and cell-type specificity of miR-27b and the novel miRNAs could be 

investigated by conducting gain-of-function and loss-of-function experiments in the four 

major cell-types associated with T2D, i.e., pancreatic β-cells, skeletal muscle cells, 

hepatocytes and adipocytes. For example, miRNA mimics and inhibitors could be 

transfected into pancreatic β-cells to investigate their effects on insulin secretion. Using a 

similar strategy, Tang et al. (2009) reported decreased glucose-stimulated insulin gene 

transcription in β-cells (MIN6) after miR-30d inhibition (Tang et al., 2009). A number of 

miRNA target genes are involved in insulin signaling (Granjon et al., 2009), thus their 

biological role could be investigated by transfection studies in skeletal muscle cells to 

measure the effectes of glucose metabolism under normal and insulin resistant conditions. 

The role of miRNAs in hepatocytes (Herrara et al., 2010) and adipocytes (Hilton et al., 2013) 

have been described, thus transfection experiments in hepatocytes and adipocytes could 

elucidate the molecular mechanism of these miRNAs. 
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4.12 Conclusion 

In conclusion, we showed that miRNA profiles differ during T2D progression, and are able to 

discriminate between diabetic, pre-diabetic and normo-glycaemic individuals. Despite the 

limitations of the study, as alluded to previously, this study showed that miR-27b is 

differentially expressed in both PBMCs and serum of pre-diabetic compared to normo-

glycaemic individuals. These findings demonstrate the importance of miR-27b in the 

pathophysiology of T2D and suggest its potential as a biomarker that could be incorporated 

into predictive models for the identification of high risk individuals with glucose dysregulation. 

Such strategies could facilitate interventions to prevent or better manage T2D, ultimately 

reducing the disease burden. These predictive models could include miRNA expression 

patterns and other known risk factors for pre-diabetes or T2D. However, miRNA profiling in a 

larger sample size and prospective longitudinal studies are required to assess clinical 

applicability. 

 

  

Stellenbosch University  https://scholar.sun.ac.za



 

103 
 

References 

 

Agarwal, V., Bell, G.W., & Bartel, D.P. (2015) Predicting effective microRNA target sites in 

mammalian mRNAs. eLife, 4, e05005 

 

Agilent Technologies. (2007) [Cited 20 March 2015]; Available from: 

http://www.chem.agilent.com/Library/technicaloverviews/Public/5989-7002EN.pdf  

 

Agrawal, S., Dimitrova, N., Nathan, P., Udayakumar, K., Lakshmi, S.S., Sriram, S., 

Manjusha, N., & Sengupta, U. (2008) T2D-Db: an integrated platform to study the molecular 

basis of Type 2 diabetes. BMC Genomics, 9 (1), 320-332 

 

Akuri, S.R. (2014) C-peptide is the better marker to rule out prediabetes in chronic 

pancreatic disorder patients. Asian Journal of Pharmaceutical and Clinical Research, 7 (4), 

137-140 

 

Ambros, V., Bartel, B., Bartel, D.P., Burge, C.B., Carrington, J.C., Chen, X., Dreyfuss, G., 

Eddy, S.R., Griffiths-Jones, S.A.M., & Marshall, M. (2003) A uniform system for microRNA 

annotation. RNA, 9 (3), 277-279 

 

American Association of clinical endocrinology (AACE) diabetes resource centre. (2013) 

[Cited 20 July 2015]; Available from:  

http://outpatient.aace.com/type-2-diabetes/clinical-presentation-of-type-2-diabetes-mellitus 

 

American Diabetes Association. (2015) Classification and diagnosis of diabetes. Diabetes 

Care, 38 (Suppl1), S8-S16 

 

American Diabetes Association. (2014) Diagnosis and classification of diabetes mellitus. 

Diabetes Care, 37 (Suppl1), S81-S90 

 

Amod, A., Motala, A., Levitt, N., Berg, J., Young, M., Grobler, N., Heilbrunn, A., Distiller, L., 

Pirie, F., & Dave, J. (2012) The SEMDSA Guideline for the Management of type 2 Diabetes. 

Journal of Endocrinology Metabolism & Diabetes of South Africa, 17 (1), S1-S94 

 

Stellenbosch University  https://scholar.sun.ac.za

http://elifesciences.org/content/4/e05005/
http://elifesciences.org/content/4/e05005/
http://www.chem.agilent.com/Library/technicaloverviews/Public/5989-7002EN.pdf
http://innovareacademics.in/journals/index.php/ajpcr/article/view/2742/1146
http://outpatient.aace.com/type-2-diabetes/clinical-presentation-of-type-2-diabetes-mellitus


 

104 
 

Andersen, C.L., Jensen, J.L., & Orntoft, T.F. (2004) Normalization of real-time quantitative 

reverse transcription-PCR data: a model-based variance estimation approach to identify 

genes suited for normalization, applied to bladder and colon cancer data sets. Cancer 

Research, 64 (15), 5245-5250 

 

Appajigol, J., Somannavar, M., & Araganji, R. (2011) Feasibility of oral glucose tolerance test 

as a diagnostic tool for diabetes prevalence study in a rural community. Recent Research in 

Science & Technology, 3 (9), 53-56 

 

Araujo, T.G., Oliveira, A.G., & Saad, M.J. (2013) Insulin-resistance-associated 

compensatory mechanisms of pancreatic beta cells: a current opinion. Frontiers in 

Endocrinology, 4 (49), 1-2 

 

Ardekani, A.M. & Naeini, M.M. (2010) The role of microRNAs in human diseases. Avicenna 

Journal of Medical Biotechnology, 2 (4), 161-179 

 

Arroyo, J.D., Chevillet, J.R., Kroh, E.M., Ruf, I.K., Pritchard, C.C., Gibson, D.F., Mitchell, 

P.S., Bennett, C.F., Pogosova-Agadjanyan, E.L., & Stirewalt, D.L. (2011) Argonaute2 

complexes carry a population of circulating microRNAs independent of vesicles in human 

plasma. Proceedings of the National Academy of Sciences, 108 (12), 5003-5008 

 

Bain, J.R., Stevens, R.D., Wenner, B.R., Ilkayeva, O., Muoio, D.M., & Newgard, C.B. (2009) 

Metabolomics applied to diabetes research moving from information to knowledge. Diabetes, 

58 (11), 2429-2443 

 

Balasubramanyam, M., Aravind, S., Gokulakrishnan, K., Prabu, P., Sathishkumar, C., 

Ranjani, H., & Mohan, V. (2011) Impaired miR-146a expression links subclinical 

inflammation and insulin resistance in Type 2 diabetes. Molecular and Cellular Biochemistry, 

351 (1-2), 197-205 

 

Baroukh, N., Ravier, M.A., Loder, M.K., Hill, E.V., Bounacer, A., Scharfmann, R., Rutter, 

G.A., & Van Obberghen, E. (2007) MicroRNA-124a regulates Foxa2 expression and 

intracellular signaling in pancreatic beta-cell lines. Journal of Biological Chemistry, 282 (27), 

19575-19588 

 

Barr, R.G., Nathan, D.M., Meigs, J.B., & Singer, D.E. (2002) Tests of glycemia for the 

diagnosis of type 2 diabetes mellitus. Annals of Internal Medicine, 137 (4), 263-272 

Stellenbosch University  https://scholar.sun.ac.za



 

105 
 

Bartel, D.P. (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116 

(2), 281-297 

 

Beagley, J., Guariguata, L., Weil, C., & Motala, A.A. (2014) Global estimates of undiagnosed 

diabetes in adults. Diabetes Research and Clinical Practice, 103 (2), 150-160 

 

Benes, V. & Castoldi, M. (2010) Expression profiling of microRNA using real-time 

quantitative PCR, how to use it and what is available. Methods, 50 (4), 244-249 

 

Bennett, C.M., Guo, M., & Dharmage, S.C. (2007) HbA1c as a screening tool for detection of 

type 2 diabetes: a systematic review. Diabetic Medicine, 24 (4), 333-343 

 

Bhattacharya, S., Dey, D., & Roy, S.S. (2007) Molecular mechanism of insulin resistance. 

Journal of Biosciences, 32 (2), 405-413 

 

Bi, R., Bao, C., Jiang, L., Liu, H., Yang, Y., Mei, J., & Ding, F. (2015) MicroRNA-27b plays a 

role in pulmonary arterial hypertension by modulating peroxisome proliferator-activated 

receptor γ dependent Hsp90-eNOS signaling and nitric oxide production. Biochemical and 

Biophysical Research Communications, 460 (2), 469-475 

 

Biden, T.J., Boslem, E., Chu, K.Y., & Sue, N. (2014) Lipotoxic endoplasmic reticulum stress, 

β-cell failure, and type 2 diabetes mellitus. Trends in Endocrinology & Metabolism, 25 (8), 

389-398 

 

Bonner-Weir, S., & O'Brien, T.D. (2008). Islets in type 2 diabetes: in honor of Dr. Robert C. 

Turner. Diabetes, 57 (11), 2899-2904 

 

Boyle, P.J. (2007) Diabetes mellitus and macrovascular disease: mechanisms and 

mediators. The American Journal of Medicine, 120 (Suppl 9), S12-S17 

 

Brennecke, J., Stark, A., Russell, R.B., & Cohen, S.M. (2005) Principles of microRNA target 

recognition. PLoS Biology, 3 (3), e85 

 

Bustin, S.A., & Mueller, R. (2005) Real-time reverse transcription PCR (qRT-PCR) and its 

potential use in clinical diagnosis. Clinical Science, 109 (4), 365-379 

 

Stellenbosch University  https://scholar.sun.ac.za



 

106 
 

Bustin, S.A., & Nolan, T. (2004) Pitfalls of quantitative real-time reverse-transcription 

polymerase chain reaction. Journal of Biomolecular Techniques, 15 (3), 155-166 

 

Butt, A., & Swaminathan, R. (2015) Circulating Nucleic Acids and Diabetes Mellitus. Annals 

N Y Acad Sc, 5 (1), 258-270 

 

Cai, X., Hagedorn, C.H., & Cullen, B.R. (2004) Human microRNAs are processed from 

capped, polyadenylated transcripts that can also function as mRNAs. RNA, 10 (12), 1957-

1966 

 

Callejas, D., Mann, C.J., Ayuso, E., Lage, R., Grifoll, I., Roca, C., Andaluz, A., Ruiz-de 

Gopegui, R., Montané, J., & Muñoz, S. (2013) Treatment of diabetes and long-term survival 

following insulin and glucokinase gene therapy. Diabetes, 62 (5), 1718-29 

 

Chakraborty, C., Doss, C., Bandyopadhyay, S., & Agoramoorthy, G. (2014) Influence of 

miRNA in insulin signaling pathway and insulin resistance: micro-molecules with a major role 

in type 2 diabetes. Wiley Interdisciplinary Reviews: RNA, 5 (5), 697-712 

 

Chang, X., Li, S., Li, J., Yin, L., Zhou, T., Zhang, C., Chen, X., & Sun, K. (2014) Ethnic 

differences in microRNA-375 expression level and DNA methylation status in type 2 diabetes 

of Han and Kazak populations. Journal of Diabetes Research; doi: 10.1155/2014/761938 

 

Chang-Chen, K.J., Mullur, R., & Bernal-Mizrachi, E. (2008) Beta cell failure as a complication 

of diabetes. Reviews in Endocrine and Metabolic Disorders, 9 (4), 329-343 

 

Chen, X., Ba, Y., Ma, L., Cai, X., Yin, Y., Wang, K., Guo, J., Zhang, Y., Chen, J., & Guo, X. 

(2008) Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of 

cancer and other diseases. Cell Research, 18 (10), 997-1006 

 

Chen, X., Guo, X., Zhang, H., Xiang, Y., Chen, J., Yin, Y., Cai, X., Wang, K., Wang, G., & 

Ba, Y. (2009) Role of miR-143 targeting KRAS in colorectal tumorigenesis. Oncogene, 28 

(10), 1385-1392 

 

Chen, X., Liang, H., Zhang, J., Zen, K., & Zhang, C.Y. (2012) Secreted microRNAs: a new 

form of intercellular communication. Trends in Cell Biology, 22 (3), 125-132 

 

Stellenbosch University  https://scholar.sun.ac.za



 

107 
 

Cheng, Y., & Zhang, C. (2010) MicroRNA-21 in cardiovascular disease. Journal of 

Cardiovascular Translational Research, 3 (3), 251-255 

 

Christensen, B.C., & Marsit, C.J. (2011) Epigenomics in environmental health. Frontiers in 

Genetics, 2 (84), 1-10 

 

Church, D., & Simmons, D. (2014) More evidence of the problems of using HbA1c for 

diagnosing diabetes? The known knowns, the known unknowns and the unknown 

unknowns. Journal of Internal Medicine, 276 (2), 171-173 

 

Claus, T.H., & Pilkis, S.J. (1976) Regulation by insulin of gluconeogenesis in isolated rat 

hepatocytes. Biochimica et Biophysica Acta (BBA)-General Subjects, 421 (2), 246-262 

 

Cock, P.J., Fields, C.J., Goto, N., Heuer, M.L., & Rice, P.M. (2010) The Sanger FASTQ file 

format for sequences with quality scores, and the Solexa/Illumina FASTQ variants. Nucleic 

Acids Research, 38 (6), 1767-1771 

 

Cortez, M.A., Bueso-Ramos, C., Ferdin, J., Lopez-Berestein, G., Sood, A.K., & Calin, G.A. 

(2011) MicroRNAs in body fluids: the mix of hormones and biomarkers. Nature reviews 

Clinical Oncology, 8 (8), 467-477 

 

Creemers, E.E., Tijsen, A.J., & Pinto, Y.M. (2012) Circulating microRNAs novel biomarkers 

and extracellular communicators in cardiovascular disease? Circulation Research, 110 (3), 

483-495 

 

Cristina, L., Roberto, L., & Stefano, D.P. (2008) Beta-cell Failure in Type 2 Diabetes Mellitus. 

Current Diabetes Reports, 8 (3), 179-184 

 

Cuk, K., Zucknick, M., Heil, J., Madhavan, D., Schott, S., Turchinovich, A., Arlt, D., Rath, M., 

Sohn, C., & Benner, A. (2013) Circulating microRNAs in plasma as early detection markers 

for breast cancer. International Journal of Cancer, 132 (7), 1602-1612 

 

Dangwal, S., Stratmann, B., Bang, C., Lorenzen, J.M., Kumarswamy, R., Fiedler, J., Falk, 

C.S., Scholz, C.J., Thum, T., & Tschoepe, D. (2015) Impairment of Wound Healing in 

Patients With Type 2 Diabetes Mellitus Influences Circulating MicroRNA Patterns via 

Inflammatory Cytokines. Arteriosclerosis, Thrombosis & Vascular Biology, 35 (6), 1480-1488 

 

Stellenbosch University  https://scholar.sun.ac.za

http://link.springer.com/journal/11892


 

108 
 

de Wit, E., Delport, W., Rugamika, C.E., Meintjes, A., Möller, M., van Helden, P.D., Seoighe, 

C., & Hoal, E.G. (2010) Genome-wide analysis of the structure of the South African Coloured 

Population in the Western Cape. Human Genetics, 128 (2), 145-153 

 

Deckers, J.G., Schellevis, F.G., & Fleming, D.M. (2006) WHO diagnostic criteria as a 

validation tool for the diagnosis of diabetes mellitus: a study in five European countries. The 

European Journal of General Practice, 12 (3), 108-113 

 

Defronzo, R.A., & Tripathy, D. (2009) Skeletal muscle insulin resistance is the primary defect 

in type 2 diabetes. Diabetes Care, 32 (suppl 2), S157-S163 

 

Defronzo, R.A., Ferrannini, E.L.E.U., Sato, Y.U.Z.O., Felig, P.H.I.L., & Wahren, J. (1981) 

Synergistic interaction between exercise and insulin on peripheral glucose uptake. Journal of 

Clinical Investigation, 68 (6), 1468-1474 

 

Dey, D., Mukherjee, M., Basu, D., Datta, M., Roy, S.S., Bandyopadhyay, A., & Bhattacharya, 

S. (2005) Inhibition of insulin receptor gene expression and insulin signaling by fatty acid: 

interplay of PKC isoforms therein. Cellular Physiology & Biochemistry, 16 (4-6), 217-228 

 

Ding, X., Ding, J., Ning, J., Yi, F., Chen, J., Zhao, D., Zheng, J., Liang, Z., Hu, Z., & Du, Q. 

(2012) Circulating microRNA-122 as a potential biomarker for liver injury. Molecular 

Medicine Reports, 5 (6), 1428-1432 

 

Dresner, A., Laurent, D., Marcucci, M., Griffin, M.E., Dufour, S., Cline, G.W., Slezak, L.A., 

Andersen, D.K., Hundal, R.S., & Rothman, D.L. (1999) Effects of free fatty acids on glucose 

transport and IRS-1 associated phosphatidylinositol 3-kinase activity. Journal of Clinical 

Investigation, 103 (2), 253-259 

 

Drews, G., Krippeit-Drews, P., & Defer, M. (2010) Oxidative stress and beta-cell dysfunction. 

Archiv-European Journal of Physiology, 460 (4), 703-718 

 

Du, T., & Zamore, P.D. (2005) microPrimer: the biogenesis and function of microRNA. 

Development, 132 (21), 4645-4652 

 

Dunning, B.E., Foley, J.E., & Ahrén, B. (2005) Alpha cell function in health and disease: 

influence of glucagon-like peptide-1. Diabetologia, 48 (9), 1700-1713 

 

Stellenbosch University  https://scholar.sun.ac.za



 

109 
 

Edgerton, D.S., Lautz, M., Scott, M., Everett, C.A., Stettler, K.M., Neal, D.W., Chu, C.A., & 

Cherrington, A.D. (2006) Insulin‟s direct effects on the liver dominate the control of hepatic 

glucose production. Journal of Clinical Investigation, 116 (2), 521-527 

 

El-Ekiaby, N., Hamdi, N., Negm, M., Ahmed, R., Zekri, A.R., Esmat, G., & Abdelaziz, A.I. 

(2012) Repressed induction of interferon-related microRNAs miR-146a and miR-155 in 

peripheral blood mononuclear cells infected with HCV genotype 4. FEBS open Bio, 2 (1), 

179-186 

 

Elton, T.S., & Yalowich, J.C. (2015) Experimental procedures to identify and validate specific 

mRNA targets of miRNAs. EXCLI Journal, 14 (5), 758-790 

 

Erasmus, R.T., Soita, D.J., Hassan, M.S., Blanco-Blanco, E., Vergotine, Z., Kengne, A.P., & 

Matsha, T.E. (2012) High prevalence of diabetes mellitus and metabolic syndrome in a 

South African coloured population: Baseline data of a study in Bellville, Cape Town. SAMJ: 

South African Medical Journal, 102 (11), 841-844 

 

Etheridge, A., Lee, I., Hood, L., Galas, D., & Wang, K. (2011) Extracellular microRNA: a new 

source of biomarkers. Mutation Research/Fundamental and Molecular Mechanisms of 

Mutagenesis, 717 (1), 85-90 

 

Fanelli, C.G., Porcellati, F., Rossetti, P., & Bolli, G.B. (2006) Glucagon: the effects of its 

excess and deficiency on insulin action. Nutrition, Metabolism & Cardiovascular Diseases, 

16 (Suppl 1), S28-S34 

 

Feero, W.G., Guttmacher, A.E., & McCarthy, M.I. (2010) Genomics, type 2 diabetes, and 

obesity. New England Journal of Medicine, 363 (24), 2339-2350 

 

Felekkis, K., Touvana, E., Stefanou, C., & Deltas, C. (2010) microRNAs: a newly described 

class of encoded molecules that play a role in health and disease. Hippokratia, 14 (4), 236-

240 

 

Fernandez-Valverde, S.L., Taft, R.J., & Mattick, J.S. (2011) MicroRNAs in β-cell biology, 

insulin resistance, diabetes and its complications. Diabetes, 60 (7), 1825-1831 

 

Fleige, S., & Pfaffl, M.W. (2006) RNA integrity and the effect on the real-time qRT-PCR 

performance. Molecular Aspects of Medicine, 27 (2), 126-139 

Stellenbosch University  https://scholar.sun.ac.za



 

110 
 

Forouhi, N.G., Balkau, B., Borch-Johnsen, K., Dekker, J., Glumer, C., Qiao, Q., Spijkerman, 

A., Stolk, R., Tabac, A., & Wareham, N.J. (2006) The threshold for diagnosing impaired 

fasting glucose: a position statement by the European Diabetes Epidemiology Group. 

Diabetologia, 49 (5), 822-827 

 

Fowler, M.J. (2008) Microvascular and macrovascular complications of diabetes. Clinical 

Diabetes, 26 (2), 77-82 

 

Friedlander, M.R., Chen, W., Adamidi, C., Maaskola, J., Einspanier, R., Knespel, S., & 

Rajewsky, N. (2008) Discovering microRNAs from deep sequencing data using miRDeep. 

Nature Biotechnology, 26 (4), 407-415 

 

Friedlander, M.R., Lizano, E., Houben, A.J., Bezdan, D., Banez-Coronel, M., Kudla, G., 

Mateu-Huertas, E., Kagerbauer, B., Gonzalez, J., & Chen, K.C. (2014) Evidence for the 

biogenesis of more than 1,000 novel human microRNAs. Genome Biol, 15 (4), 57-62 

 

Friedman, R.C., Farh, K.K.-H., Burge, C.B., & Bartel, D.P. (2009) Most mammalian mRNAs 

are conserved targets of microRNAs. Genome Research, 19 (1), 92-105 

 

Frosig, C., Rose, A.J., Treebak, J.T., Kiens, B., Richter, E.A., & Wojtaszewski, J.F. (2007) 

Effects of endurance exercise training on insulin signaling in human skeletal muscle 

interactions at the level of phosphatidylinositol 3-kinase, Akt, and AS160. Diabetes, 56 (8), 

2093-2102 

 

Fu, H.J., Zhu, J., Yang, M., Zhang, Z.Y., Tie, Y., Jiang, H., Sun, Z.X., & Zheng, X.F. (2006) A 

novel method to monitor the expression of microRNAs. Molecular Biotechnology, 32 (3), 

197-204 

 

Gabir, M.M., Hanson, R.L., Dabelea, D., Imperatore, G.I.U.S., Roumain, J.A.N.I., Bennett, 

P.H., & Knowler, W.C. (2000). The 1997 American Diabetes Association and 1999 World 

Health Organisation criteria for hyperglycemia in the diagnosis and prediction of diabetes. 

Diabetes Care, 23 (8), 1108-1112 

 

Galazis, N., Afxentiou, T., Xenophontos, M., Diamanti-Kandarakis, E., & Atiomo, W. (2013) 

Proteomic biomarkers of type 2 diabetes mellitus risk in women with polycystic ovary 

syndrome. European Journal of Endocrinology, 168 (2), 33-43 

 

Stellenbosch University  https://scholar.sun.ac.za



 

111 
 

Garber, A., Handelsman, Y., Einhorn, D., Bergman, D., Bloomgarden, Z., Fonseca, V., 

Timothy Garvey, W., Gavin III, J., Grunberger, G., & Horton, E. (2008) Diagnosis and 

management of prediabetes in the continuum of hyperglycemia: when do the risks of 

diabetes begin? A consensus statement from the American College of Endocrinology and 

the American Association of Clinical Endocrinologists. Endocrine Practice, 14 (7), 933-946 

 

George, J.A. (2011) Should haemoglobin A1c be used for the diagnosis of diabetes mellitus 

in South Africa? Journal of Endocrinology, Metabolism & Diabetes of South Africa, 16 (3), 

122-127 

 

Ghosh, S. (2011) Micro RNA-Biogenesis, Mechanism of Action and Applications-A Review. 

Journal of Biotechnology & Biochemistry, 1 (1), 11-36  

 

Gibney, E.R., & Nolan, C.M. (2010) Epigenetics and gene expression. Heredity, 105 (1), 4-

13 

 

Gilad, S., Meiri, E., Yogev, Y., Benjamin, S., Lebanony, D., Yerushalmi, N., Benjamin, H., 

Kushnir, M., & Cholakh, H. (2008) Serum microRNAs are promising novel biomarkers. PloS 

One, 3 (9), e3148 

 

Git, A., Dvinge, H., Salmon-Divon, M., Osborne, M., Kutter, C., Hadfield, J., Bertone, P., & 

Caldas, C. (2010) Systematic comparison of microarray profiling, real-time PCR, and next-

generation sequencing technologies for measuring differential microRNA expression. RNA, 

16 (5), 991-1006 

 

Goedecke, J.H., Jennings, C., & Lambertc, E.V. (2006) In South Africa. [Cited 20 November 

2015]; Available from: http://www.mrc.ac.za/chronic/cdl1995-2005.htm  

 

Goto, Y., Kojima, S., Nishikawa, R., Enokida, H., Chiyomaru, T., Kinoshita, T., Nakagawa, 

M., Naya, Y., Ichikawa, T., & Seki, N. (2014) The microRNA-23b/27b/24-1 cluster is a 

disease progression marker and tumor suppressor in prostate cancer. Oncotarget, 5 (17), 

7748-7759 

 

Granjon, A., Gustin, M.P., Rieusset, J., Lefai, E., Meugnier, E., Guller, I., Cerutti, C., Paultre, 

C., Disse, E., & Rabasa-Lhoret, R. (2009) The microRNA Signature in Response to Insulin 

Reveals Its Implication in the Transcriptional Action of Insulin in Human Skeletal Muscle and 

Stellenbosch University  https://scholar.sun.ac.za

http://www.mrc.ac.za/chronic/cdl1995-2005.htm


 

112 
 

the Role of a Sterol Regulatory Element-Binding Protein-1c/Myocyte Enhancer Factor 2C 

Pathway. Diabetes, 58 (11), 2555-2564 

 

Greenberg, A.S., & Obin, M.S. (2006) Obesity and the role of adipose tissue in inflammation 

and metabolism. The American Journal of Clinical Nutrition, 83 (Suppl 2), 461S-465S 

 

Griffiths-Jones, S., Grocock, R.J., Van Dongen, S., Bateman, A., & Enright, A.J. (2006) 

miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Research, 

34 (suppl 1), D140-D144 

 

Grimson, A., Farh, K.K.-H., Johnston, W.K., Garrett-Engele, P., Lim, L.P., & Bartel, D.P. 

(2007) MicroRNA targeting specificity in mammals: determinants beyond seed pairing. 

Molecular Cell, 27 (1), 91-105 

 

Guay, C., Roggli, E., Nesca, V., Jacovetti, C., & Regazzi, R. (2011) Diabetes mellitus, a 

microRNA related disease? Transl Res,157 (4), 253-264 

 

Gunderson, E.P., Chiang, V., Pletcher, M.J., Jacobs, D.R., Quesenberry, C.P., Sidney, S., & 

Lewis, C.E. (2014) History of Gestational Diabetes Mellitus and Future Risk of 

Atherosclerosis in Mid-life: The Coronary Artery Risk Development in Young Adults Study. 

Journal of the American Heart Association, 3 (2), e000490 

 

Hamilton, J.P. (2011) Epigenetics: principles and practice. Digestive Diseases, 29 (2), 130-

135 

 

Han, T.S., Feskens, E.J.M., Lean, M.E.J., & Seidell, J.C. (1998) Associations of body 

composition with type 2 diabetes mellitus. Diabetic Medicine, 15 (2), 129-135 

 

Hanson, E.K., Lubenow, H., & Ballantyne, J. (2009) Identification of forensically relevant 

body fluids using a panel of differentially expressed microRNAs. Analytical Biochemistry, 387 

(2), 303-314 

 

He, L., & Hannon, G.J. (2004) MicroRNAs: small RNAs with a big role in gene regulation. 

Nature Reviews Genetics, 5 (7), 522-531 

 

Herrera, B.M., Lockstone, H.E., Taylor, J.M., Ria, M., Barrett, A., Collins, S., Kaisaki, P., 

Argoud, K., Fernandez, C., & Travers, M.E. (2010) Global microRNA expression profiles in 

Stellenbosch University  https://scholar.sun.ac.za

http://www.ncbi.nlm.nih.gov/pubmed/21420036


 

113 
 

insulin target tissues in a spontaneous rat model of type 2 diabetes. Diabetologia, 53 (6), 

1099-1109 

 

Herrera, B.M., Lockstone, H.E., Taylor, J.M., Wills, Q.F., Kaisaki, P.J., Barrett, A., Camps, 

C., Fernandez, C., Ragoussis, J., & Gauguier, D. (2009) MicroRNA-125a is over-expressed 

in insulin target tissues in a spontaneous rat model of Type 2 Diabetes. BMC Medical 

Genomics, 2 (1), 54-62 

 

Hevener, A.L., He, W., Barak, Y., Le, J., Bandyopadhyay, G., Olson, P., Wilkes, J., Evans, 

R.M., & Olefsky, J. (2003) Muscle-specific PPARG deletion causes insulin resistance. 

Nature Medicine, 9 (12), 1491-1497 

 

Hilton, C., Neville, M.J., & Karpe, F. (2013) MicroRNAs in adipose tissue: their role in 

adipogenesis and obesity. International Journal of Obesity, 37 (3), 325-332 

 

Hirst, M., & Marra, M.A. (2009) Epigenetics and human disease. The International Journal of 

Biochemistry & Cell Biology, 41 (1), 136-146 

 

HIV and AIDS in South Africa. (2014) [Cited 23 February 2015]; Available from: 

http://www.avert.org/professionals/hiv-around-world/sub-saharan-africa/overview 

 

Holland, N.T., Smith, M.T., Eskenazi, B., & Bastaki, M. (2003) Biological sample collection 

and processing for molecular epidemiological studies. Mutation Research/Reviews in 

Mutation Research, 543 (3), 217-234 

 

Hsu, S.D., Tseng, Y.T., Shrestha, S., Lin, Y.L., Khaleel, A., Chou, C.H., Chu, C.F., Huang, 

H.Y., Lin, C.M., & Ho, S.Y. 2014. miRTarBase update (2014) an information resource for 

experimentally validated miRNA-target interactions. Nucleic Acids Research, 42 (Suppl D1), 

D78-D85 

 

Hu, F.B. (2011) Globalization of Diabetes The role of diet, lifestyle, and genes. Diabetes 

Care, 34 (6), 1249-1257 

 

Huang, D.W., Sherman, B.T., & Lempicki, R.A. (2008) Systematic and integrative analysis of 

large gene lists using DAVID bioinformatics resources. Nature Protocols, 4 (1), 44-57 

 

Stellenbosch University  https://scholar.sun.ac.za

http://www.avert.org/professionals/hiv-around-world/sub-saharan-africa/overview


 

114 
 

Huang, D.W., Sherman, B.T., Tan, Q., Kir, J., Liu, D., Bryant, D., Guo, Y., Stephens, R., 

Baseler, M.W., & Lane, H.C. (2007) DAVID Bioinformatics Resources: expanded annotation 

database and novel algorithms to better extract biology from large gene lists. Nucleic Acids 

Research, 35 (suppl 2), W169-W175 

 

Hunter, M.P., Ismail, N., Zhang, X., Aguda, B.D., Lee, E.J., Yu, L., Xiao, T., Schafer, J., Lee, 

M.L.T., & Schmittgen, T.D. (2008) Detection of microRNA expression in human peripheral 

blood microvesicles. PloS One, 3 (11), e3694 

 

Hydbring, P., & Badalian-Very, G. (2013) Clinical applications of microRNAs. F1000 

Research, 3 (2), 132 

 

International Diabetes Federation. (2013) [Cited 24 February 2014]; Available from: 

http://www.idf.org/diabetesatlas  

 

International Expert Committee. (2009) International Expert Committee report on the role of 

the A1C assay in the diagnosis of diabetes. Diabetes Care, 32 (7), 1327-1334 

 

Issler, O., & Chen, A. (2015) Determining the role of microRNAs in psychiatric disorders. 

Nature Reviews Neuroscience, 16 (4), 201-212 

 

Jennewein, C., von Knethen, A., Schmid, T., & Brune, B. (2010) MicroRNA-27b contributes 

to lipopolysaccharide-mediated peroxisome proliferator-activated receptor gamma (PPARG) 

mRNA destabilization. Journal of Biological Chemistry, 285 (16), 11846-11853 

 

Juan, L., Tong, H.l., Zhang, P., Guo, G., Wang, Z., Wen, X., Dong, Z., & Tian, Y.P. (2014) 

Identification and characterization of novel serum microRNA candidates from deep 

sequencing in cervical cancer patients. Scientific Reports, 4 (6277), 1-9 

 

Kahn, B.B. (1998) Type 2 diabetes: when insulin secretion fails to compensate for insulin 

resistance. Cell, 92 (5), 593-596 

 

Kahn, S.E. (2003) The relative contributions of insulin resistance and beta-cell dysfunction to 

the pathophysiology of type 2 diabetes. Diabetologia, 46 (1), 3-19 

 

Kahn, S.E., Cooper, M.E., & Del Prato, S. (2014) Pathophysiology and treatment of type 2 

diabetes: perspectives on the past, present, and future. The Lancet, 383 (9922), 1068-1083 

Stellenbosch University  https://scholar.sun.ac.za

http://www.idf.org/diabetesatlas


 

115 
 

Kaiser, N., Leibowitz, G., & Nesher, R. (2003) Glucotoxicity and beta-cell failure in type 2 

diabetes mellitus. Journal of Pediatric Endocrinology and Metabolism, 16 (1), 5-22 

 

Karbiener, M., Fischer, C., Nowitsch, S., Opriessnig, P., Papak, C., Ailhaud, G., Dani, C., 

Amri, E.Z., & Scheideler, M. (2009) MicroRNA miR-27b impairs human adipocyte 

differentiation and targets PPARG. Biochemical and Biophysical Research Communications, 

390 (2), 247-251 

 

Karolina, D.S., Armugam, A., Tavintharan, S., Wong, M.T., Lim, S.C., Sum, C.F., & 

Jeyaseelan, K. (2011) MicroRNA 144 impairs insulin signaling by inhibiting the expression of 

insulin receptor substrate 1 in type 2 diabetes mellitus. PloS One, 6 (8), e22839 

 

Kawamori, D., Kurpad, A.J., Hu, J., Liew, C.W., Shih, J.L., Ford, E.L., Herrera, P.L., 

Polonsky, K.S., McGuinness, O.P., & Kulkarni, R.N. (2009) Insulin signaling in α-cells 

modulates glucagon secretion in vivo. Cell Metabolism, 9 (4), 350-361 

Kertesz, M., Iovino, N., Unnerstall, U., Gaul, U., & Segal, E. (2007) The role of site 

accessibility in microRNA target recognition. Nature Genetics, 39 (10), 1278-1284 

 

Kilpatrick, E.S., & Winocour, P.H. (2010) ABCD position statement on haemoglobin A1c for 

the diagnosis of diabetes. Practical Diabetes International, 27 (7), 306-310 

 

Kinet, V., Halkein, J., Dirkx, E., & De Windt, L.J. (2013) Cardiovascular extracellular 

microRNAs: emerging diagnostic markers and mechanisms of cell-to-cell RNA 

communication. Frontiers in Genetics, 4, 214  

 

Kiriakidou, M., Nelson, P.T., Kouranov, A., Fitziev, P., Bouyioukos, C., Mourelatos, Z., & 

Hatzigeorgiou, A. (2004) A combined computational-experimental approach predicts human 

microRNA targets. Genes & Development, 18 (10), 1165-1178 

 

Kirigia, J.M., Sambo, H.B., Sambo, L.G., & Barry, S.P. (2009) Economic burden of diabetes 

mellitus in the WHO African region. BMC International Health & Human Rights, 9 (1), 6 

 

Kirkman, M.S., & Kendall, D.M. (2011) Hemoglobin A1c to diagnose diabetes: why the 

controversy over adding a new tool? Clinical Chemistry, 57 (2), 255-257 

 

Klein, D. (2002) Quantification using real-time PCR technology: applications and limitations. 

Trends in Molecular Medicine, 8 (6), 257-260 

Stellenbosch University  https://scholar.sun.ac.za



 

116 
 

Kong, L., Zhu, J., Han, W., Jiang, X., Xu, M., Zhao, Y., Dong, Q., Pang, Z., Guan, Q., & Gao, 

L. (2011) Significance of serum microRNAs in pre-diabetes and newly diagnosed type 2 

diabetes: a clinical study. Acta Diabetologica, 48 (1), 61-69 

 

Kong, X., Yu, J., Bi, J., Qi, H., Di, W., Wu, L., Wang, L., Zha, J., Lv, S., & Zhang, F. (2014) 

Glucocorticoids transcriptionally regulate miR-27b expression promoting body fat 

accumulation via suppressing the browning of white adipose tissue. Diabetes, 64 (2), 393-

404 

 

Kosaka, N., Iguchi, H., Yoshioka, Y., Takeshita, F., Matsuki, Y., & Ochiya, T. (2010) 

Secretory mechanisms and intercellular transfer of microRNAs in living cells. Journal of 

Biological Chemistry, 285 (23), 17442-17452 

 

Krauss, R.M. (2004) Lipids and lipoproteins in patients with type 2 diabetes. Diabetes Care, 

27 (6), 1496-1504 

 

Kroh, E.M., Parkin, R.K., Mitchell, P.S., & Tewari, M. (2010) Analysis of circulating 

microRNA biomarkers in plasma and serum using quantitative reverse transcription-PCR 

(qRT-PCR). Methods, 50 (4), 298-301 

 

Kuhn, D.E., Martin, M.M., Feldman, D.S., Terry, A.V., Nuovo, G.J., & Elton, T.S. (2008) 

Experimental validation of miRNA targets. Methods, 44 (1), 47-54 

 

Kumar, A., & Khanna, R. C. (2011) Biomarkers: Its Novel Application. The Pharma Journal, 

1 (1), 22-28 

 

Laakso, M. (2010) Cardiovascular Disease in Type 2 Diabetes From Population to Man to 

Mechanisms The Kelly West Award Lecture 2008. Diabetes Care, 33 (2), 442-449 

 

Lagos-Quintana, M., Rauhut, R., Yalcin, A., Meyer, J., Lendeckel, W., & Tuschl, T. (2002) 

Identification of tissue-specific microRNAs from mouse. Current Biology, 12 (9), 735-739 

 

Laterza, O.F., Lim, L., Garrett-Engele, P.W., Vlasakova, K., Muniappa, N., Tanaka, W.K., 

Johnson, J.M., Sina, J.F., Fare, T.L., & Sistare, F.D. (2009) Plasma MicroRNAs as sensitive 

and specific biomarkers of tissue injury. Clinical Chemistry, 55 (11), 1977-1983 

 

Stellenbosch University  https://scholar.sun.ac.za



 

117 
 

Lawrie, C.H., Gal, S., Dunlop, H.M., Pushkaran, B., Liggins, A.P., Pulford, K., Banham, A.H., 

Pezzella, F., Boultwood, J., & Wainscoat, J.S. (2008) Detection of elevated levels of tumour 

associated microRNAs in serum of patients with diffuse large B-cell lymphoma. British 

Journal of Haematology, 141 (5), 672-675 

 

Leahy, J.L. (2005) Pathogenesis of type 2 diabetes mellitus. Archives of Medical Research, 

36 (3), 197-209 

 

Lee, J.J., Drakaki, A., Iliopoulos, D., & Struhl, K. (2012) MiR-27b targets PPARG to inhibit 

growth, tumor progression and the inflammatory response in neuroblastoma cells. 

Oncogene, 31 (33), 3818-3825 

Lee, R.C., Feinbaum, R.L., & Ambros, V. (1993) The C. elegans heterochronic gene lin-4 

encodes small RNAs with antisense complementarity to lin-14. Cell, 75 (5), 843-854 

 

Lehmann, T.P., Korski, K., Gryczka, R., Ibbs, M., Thieleman, A., Grodecka-Gazdecka, S., & 

Jagodzinski, P.P. (2015) Relative levels of let-7a, miR-17, miR-27b, miR-125a, miR-125b 

and miR-206 as potential molecular markers to evaluate grade, receptor status and 

molecular type in breast cancer. Molecular Medicine Reports, 12 (3), 4692-4702 

 

Leonardini, A., Laviola, L., Perrini, S., Natalicchio, A., & Giorgino, F. (2009) Cross-Talk 

between PPAR and Insulin Signaling and Modulation of Insulin Sensitivity. PPAR Research; 

 doi:  10.1155/2009/818945 

 

Levitt, N.S., Katzenellenbogen, J.M., Bradshaw, D., Hoffman, M.N., & Bonnici, F. (1993) The 

prevalence and identification of risk factors for NIDDM in urban Africans in Cape Town, 

South Africa. Diabetes Care, 16 (4), 601-607 

 

Lewis, B.P., Burge, C.B., & Bartel, D.P. (2005) Conserved seed pairing, often flanked by 

adenosines, indicates that thousands of human genes are microRNA targets. Cell, 120 (1), 

15-20 

 

Lewis, B.P., Shih, I.H., Jones-Rhoades, M.W., Bartel, D.P., & Burge, C.B. (2003) Prediction 

of mammalian microRNA targets. Cell, 115 (7), 787-798 

 

Li, C., & Zhang, B.B. (2007) Insulin signaling and action: glucose, lipids, protein. [Cited 13 

October 2015]; Available from: 

http://www.endotext.org/Diabetes/diabetes4/diabetesframe4.htm.  

Stellenbosch University  https://scholar.sun.ac.za

http://dx.doi.org/10.1155%2F2009%2F818945
http://www.endotext.org/Diabetes/diabetes4/diabetesframe4.htm


 

118 
 

Li, T., Cao, H., Zhuang, J., Wan, J., Guan, M., Yu, B., Li, X., & Zhang, W. (2011) 

Identification of miR-130a, miR-27b and miR-210 as serum biomarkers for atherosclerosis 

obliterans. Clinica Chimica Acta, 412 (1), 66-70 

 

Li, Y., Qiu, C., Tu, J., Geng, B., Yang, J., Jiang, T., & Cui, Q. (2014) HMDD v2. 0: a 

database for experimentally supported human microRNA and disease associations. [Cited 

14 August 2015]; Available from: http://www.cuilab.cn/hmdd 

 

Liang, H., & Li, W.H. (2007) MicroRNA regulation of human protein-protein interaction 

network. RNA, 13 (9), 1402-1408 

 

Lim, L.P., Lau, N.C., Garrett-Engele, P., Grimson, A., Schelter, J.M., Castle, J., Bartel, D.P., 

Linsley, P.S., & Johnson, J.M. (1999) Microarray analysis shows that some microRNAs 

downregulate large numbers of target mRNAs. Mol.Cell.Biol, 19 (7), 6379-6395 

 

Lin, Q., Gao, Z., Alarcon, R.M., Ye, J., & Yun, Z. (2009a) A role of miR-27 in the regulation of 

adipogenesis. Febs Journal, 276 (8), 2348-2358 

 

Lin, T., Dong, W., Huang, J., Pan, Q., Fan, X., Zhang, C., & Huang, L. (2009b) MicroRNA-

143 as a tumor suppressor for bladder cancer. The Journal of urology, 181 (3), 1372-1380 

 

Link, A., Becker, V., Goel, A., Wex, T., & Malfertheiner, P. (2012) Feasibility of fecal 

microRNAs as novel biomarkers for pancreatic cancer. PLoS One, 7 (8), e42933 

 

Liu, C., Xin, N., Zhai, Y., Jiang, L., Zhai, J., Zhang, Q., & Qi, J. (2014) Reference gene 

selection for quantitative real-time RT-PCR normalization in the half-smooth tongue sole 

(Cynoglossus semilaevis) at different developmental stages, in various tissue types and on 

exposure to chemicals. PLoS One, 9 (3), e91715 

 

Liu, R., Wang, X., Aihara, K., & Chen, L. (2014) Early diagnosis of complex diseases by 

molecular biomarkers, network biomarkers, and dynamical network biomarkers. Medicinal 

Research Reviews, 34 (3), 455-478 

 

Livak, K.J., & Schmittgen, T.D. (2001) Analysis of relative gene expression data using real-

time quantitative PCR and the 2−ΔΔCT method. Methods, 25 (4), 402-408 

 

Stellenbosch University  https://scholar.sun.ac.za

http://www.cuilab.cn/hmdd


 

119 
 

Lopez, J.P., Cruceanu, C., Fiori, L.M., Laboissiere, S., Guillet, I., Fontaine, J., Ragoussis, J., 

Benes, V., Turecki, G., & Ernst, C. (2015) Biomarker discovery: quantification of microRNAs 

and other small non-coding RNAs using next generation sequencing. BMC Medical 

Genomics, 8 (1), 35 

 

Luo, M., Li, R., Deng, X., Ren, M., Chen, N., Zeng, M., Yan, K., Xia, J., Liu, F., & Ma, W. 

(2015) Platelet-derived miR-103b as a novel biomarker for the early diagnosis of type 2 

diabetes. Acta diabetologica, 52 (5), 943-949 

 

Lyons, T.J., & Basu, A. (2012) Biomarkers in diabetes: hemoglobin A1c, vascular and tissue 

markers. Translational Research, 159 (4), 303-312 

 

Maedler, K., (2008) Beta cells in type 2 diabetes: a crucial contribution to pathogenesis. 

Diabetes, Obesity & Metabolism, 10 (5), 408-420 

 

Maes, O.C., Chertkow, H.M., Wang, E., & Schipper, H.M. (2009) MicroRNA: implications for 

Alzheimer disease and other human CNS disorders. Current Genomics, 10 (3), 154-168 

 

Malkani, S., & DeSilva, T. (2012) Controversies on how diabetes is diagnosed. Current 

Opinion in Endocrinology, Diabetes & Obesity, 19 (2), 97-103 

 

Mao, Y., Mohan, R., Zhang, S., & Tang, X. (2013) MicroRNAs as pharmacological targets in 

diabetes. Pharmacological Research, 75 (5), 37-47 

 

Marabita, F., de Candia, P., Torri, A., Tegnér, J., Abrignani, S., & Rossi, R.L. (2015) 

Normalization of circulating microRNA expression data obtained by quantitative real-time 

RT-PCR. Briefings in Bioinformatics: doi: 10.1093/bib/bbv056  

 

Maragkakis, M., Reczko, M., Simossis, V.A., Alexiou, P., Papadopoulos, G.L., Dalamagas, 

T., Giannopoulos, G., Goumas, G., Koukis, E., & Kourtis, K. (2009) DIANA-microT web 

server: elucidating microRNA functions through target prediction. [Cited 21 July 2015]; 

Available from: http://diana.imis.athena-innovation.gr/DianaTools/index.php  

 

Mariam, A. (2007) Quality assessment of total RNA. Biomedical Genomics. [Cited 20 March 

2015]; Available from:  

http://www.biomedicalgenomics.org/How_does_Agilent_2100_Bioanalyzer_work.html   

 

Stellenbosch University  https://scholar.sun.ac.za

http://diana.imis.athena-innovation.gr/DianaTools/index.php
http://www.biomedicalgenomics.org/How_does_Agilent_2100_Bioanalyzer_work.html


 

120 
 

Marks, J.S., & Botelho, L.H. (1986) Synergistic inhibition of glucagon-induced effects on 

hepatic glucose metabolism in the presence of insulin and a cAMP antagonist. Journal of 

Biological Chemistry, 261 (34), 15895-15899 

Mayeux, R. (2004) Biomarkers: potential uses and limitations. NeuroRx, 1 (2), 182-188 

 

McCarthy, M., & Menzel, S. (2001) The genetics of type 2 diabetes. British Journal of Clinical 

Pharmacology, 51 (3), 195-199 

 

McKillop, A.M., & Flatt, P.R. (2011) Emerging applications of metabolomic and genomic 

profiling in diabetic clinical medicine. Diabetes Care, 34 (12), 2624-2630 

 

Meier, J.J., & Bonadonna, R.C. (2013) Role of reduced beta-cell mass versus impaired beta-

cell function in the pathogenesis of type 2 diabetes. Diabetes Care, 36 (Suppl 2), S113-S119 

 

Meyer, S.U., Pfaffl, M.W., & Ulbrich, S.E. (2010) Normalization strategies for microRNA 

profiling experiments: a normal way to a hidden layer of complexity? Biotechnology Letters, 

32 (12), 1777-1788 

 

Miah, S., Dudziec, E., Drayton, R.M., Zlotta, A.R., Morgan, S.L., Rosario, D.J., Hamdy, F.C., 

& Catto, J.W.F. (2012) An evaluation of urinary microRNA reveals a high sensitivity for 

bladder cancer. British journal of Cancer, 107 (1), 123-128 

 

Min, H., & Yoon, S. (2010) Got target?: computational methods for microRNA target 

prediction and their extension. Experimental and Molecular Medicine, 42 (4), 233-244 

 

Misra, A., Khurana, L., Isharwal, S., & Bhardwaj, S. (2009) South Asian diets and insulin 

resistance. British Journal of Nutrition, 101 (4),  465-473 

 

Mitchell, P.S., Parkin, R.K., Kroh, E.M., Fritz, B.R., Wyman, S.K., Pogosova-Agadjanyan, 

E.L., Peterson, A., Noteboom, J., O'Briant, K.C., & Allen, A. (2008) Circulating microRNAs 

as stable blood-based markers for cancer detection. Proceedings of the National Academy 

of Sciences, 105 (30), 10513-10518 

 

Moldovan, L., Batte, K.E., Trgovcich, J., Wisler, J., Marsh, C.B., & Piper, M. (2014) 

Methodological challenges in utilizing miRNAs as circulating biomarkers. Journal of cellular 

and molecular medicine, 18 (3), 371-390 

 

Stellenbosch University  https://scholar.sun.ac.za



 

121 
 

Molleutze, L. (2006) Diabetes mellitus and impaired glucose tolerance. [Cited 26 September 

2015]; Available From: http://www.mrc.ac.za/chronic/cdl1995-2005.htm.  

 

Moon, J.S., & Won, K.C. (2015) Pancreatic Beta-Cell Dysfunction in Type 2 Diabetes: Old 

Kids on the Block. Diabetes & Metabolism Journal, 39 (1), 1-9 

 

Mooradian, A.D. (2009) Dyslipidemia in type 2 diabetes mellitus. Nature Cinical Practice 

Endocrinology & Metabolism, 5 (3), 150-159 

 

Morgan, N.G. (2009) Fatty acids and beta-cell toxicity. Current Opinion in Clinical Nutrition & 

Metabolic Care, 12 (2), 117-122 

 

Motala, A.A., Esterhuizen, T., Gouws, E., Pirie, F.J., & Omar, M.A. (2008) Diabetes and 

other disorders of glycemia in a rural South African community prevalence and associated 

risk factors. Diabetes Care, 31 (9), 1783-1788 

 

Motameny, S., Wolters, S., Nurnberg, P., & Schumacher, B. (2010) Next generation 

sequencing of miRNAs - Strategies, Resources and Methods. Genes, 1 (1), 70-84 

 

Mueller, O., Lightfoot, S., & Schroeder, A. (2004) RNA integrity number (RIN)-

standardization of RNA quality control. Agilent Application Note, 1-8 

 

Muhonen, P., & Holthofer, H. (2009) Epigenetic and microRNA-mediated regulation in 

diabetes. Nephrology Dialysis Transplantation, 24 (4), 1088-1096 

 

Ni, Y., Meng, L., Wang, L., Dong, W., Shen, H., Wang, G., Liu, Q., & Du, J. (2013) 

MicroRNA-143 functions as a tumor suppressor in human esophageal squamous cell 

carcinoma. Gene, 517 (2), 197-204 

 

Nielsen, L.B., Wang, C., Sørensen, K., Bang-Berthelsen, C.H., Hansen, L., Andersen, M.L., 

Hougaard, P., Juul, A., Zhang, C.Y., & Pociot, F. (2012) Circulating levels of microRNA from 

children with newly diagnosed type 1 diabetes and healthy controls: evidence that miR-25 

associates to residual beta-cell function and glycaemic control during disease progression. 

Experimental Diabetes Research: doi: 10.1155/2012/896362 

 

Stellenbosch University  https://scholar.sun.ac.za

http://www.mrc.ac.za/chronic/cdl1995-2005.htm


 

122 
 

O'Connell, R.M., Kahn, D., Gibson, W.S., Round, J.L., Scholz, R.L., Chaudhuri, A.A., Kahn, 

M.E., Rao, D.S., & Baltimore, D. (2010) MicroRNA-155 promotes autoimmune inflammation 

by enhancing inflammatory T cell development. Immunity, 33 (4), 607-619 

 

Odermatt, A. (2011) The Western-style diet: a major risk factor for impaired kidney function 

and chronic kidney disease. American Journal of Physiology-Renal Physiology, 301 (5), 919-

931 

 

Oliveros, J.C. (2007) VENNY. An interactive tool for comparing list with Venn Diagrams 

[Cited 22 July 2015]; Available from: http://bioinfogp.cnb.csic.es/tools/venny_old/venny.php  

 

Olson, D.E., Rhee, M.K., Herrick, K., Ziemer, D.C., Twombly, J.G., & Phillips, L.S. (2010) 

Screening for diabetes and pre-diabetes with proposed A1C-based diagnostic criteria. 

Diabetes Care, 33 (10), 2184-2189 

 

Olson, E.N. (2014) MicroRNAs as therapeutic targets and biomarkers of cardiovascular 

disease. Science Translational Medicine, 6 (239), 239-242 

 

Ortega, F.J., Mercader, J.M., Moreno-Navarrete, J.M.a., Rovira, O., Guerra, E., Esteve, E., 

Xifra, G., Martenez, C., Ricart, W., & Rieusset, J. (2014) Profiling of circulating microRNAs 

reveals common microRNAs linked to type 2 diabetes that change with insulin sensitization. 

Diabetes Care, 37 (5), 1375-1383 

 

Ostbye, T., Welby, T.J., Prior, I.A.M., Salmond, C.E., & Stokes, Y.M. (1989) Type 2 (non-

insulin-dependent) diabetes mellitus, migration and westernisation: the Tokelau Island 

Migrant Study. Diabetologia, 32 (8), 585-590 

 

Oulas, A., Karathanasis, N., Louloupi, A., Pavlopoulos, G. A., Poirazi, P., Kalantidis, K., & 

Iliopoulos, I. (2015) Prediction of miRNA targets. RNA Bioinformatics, 1268, (5) 207-229 

 

Pagliuca, A., Valvo, C., Fabrizi, E., di Martino, S., Biffoni, M., Runci, D., Forte, S., De Maria, 

R., & Ricci-Vitiani, L. (2013) Analysis of the combined action of miR-143 and miR-145 on 

oncogenic pathways in colorectal cancer cells reveals a coordinate program of gene 

repression. Oncogene, 32 (40), 4806-4813 

 

Stellenbosch University  https://scholar.sun.ac.za

http://bioinfogp.cnb.csic.es/tools/venny_old/venny.php


 

123 
 

Palmer, J.P., Fleming, G.A., Greenbaum, C.J., Herold, K.C., Jansa, L.D., Kolb, H., Lachin, 

J.M., Polonsky, K.S., Pozzilli, P., & Skyler, J.S. (2004) C-peptide is the appropriate outcome 

measure for type 1 diabetes clinical trials to preserve β-cell. Diabetes, 53 (1), 250-264 

 

Pandey, A., Agarwal, P., Kaur, K., & Datta, M. (2009) MicroRNAs in Diabetes: Tiny Players 

in Big. Cell Physiol Biochem, 23 (4-6), 221-232 

 

Parrizas, M., Brugnara, L., Esteban, Y., Gonzollez-Franquesa, A., Canivell, S., Murillo, S., 

Gordillo-Bastidas, E., Cusso, R., Cadefau, J.A., & Garcia-Roves, P.M. (2014) Circulating 

miR-192 and miR-193b are markers of prediabetes and are modulated by an exercise 

intervention. The Journal of Clinical Endocrinology & Metabolism, 100 (3), 149-153 

 

Pescador, N., Perez-Barba, M., Ibarra, J.M., Corbaton, A., Martinez-Larrad, M.T., & Serrano-

Roos, M. (2013) Serum circulating microRNA profiling for identification of potential type 2 

diabetes and obesity biomarkers. PLoS One, 8 (10), e77251  

 

Peterson, S.M., Thompson, J.A., Ufkin, M.L., Sathyanarayana, P., Liaw, L., & Congdon, C.B. 

(2014) Common features of microRNA target prediction tools. Frontiers in Genetics, 18 (5), 

e23 

 

Pinney, S.E., & Simmons, R.A. (2010) Epigenetic mechanisms in the development of type 2 

diabetes. Trends in Endocrinology & Metabolism, 21 (4), 223-229 

 

Ponchel, F., Toomes, C., Bransfield, K., Leong, F.T., Douglas, S.H., Field, S.L., Bell, S.M., 

Combaret, V., Puisieux, A., & Mighell, A.J. (2003) Real-time PCR based on SYBR-Green I 

fluorescence: an alternative to the TaqMan assay for a relative quantification of gene 

rearrangements, gene amplifications and micro gene deletions. BMC  Biotechnology, 3 (1), 

18 

 

Poornima, I.G., Parikh, P., & Shannon, R.P. (2006) Diabetic cardiomyopathy the search for a 

unifying hypothesis. Circulation Research, 98 (5), 596-605 

 

Popkin, B.M., & Gordon-Larsen, P. (2004) The nutrition transition: worldwide obesity 

dynamics and their determinants. International Journal of Obesity, 28 (Suppl), S2-S9 

 

Popkin, B.M. (1999) Urbanization, lifestyle changes and the nutrition transition. World 

Development, 27 (11), 1905-1916 

Stellenbosch University  https://scholar.sun.ac.za



 

124 
 

Pradhan, A.D., Manson, J.E., Rifai, N., Buring, J.E., & Ridker, P.M. (2001) C-reactive 

protein, interleukin 6, and risk of developing type 2 diabetes mellitus. Jama, 286 (3), 327-334 

 

Pritchard, C.C., Cheng, H.H., & Tewari, M. (2012) MicroRNA profiling: approaches and 

considerations. Nature Reviews Genetics, 13 (5), 358-369 

 

Puoane, T., Steyn, K., Bradshaw, D., Laubscher, R., Fourie, J., Lambert, V., & Mbananga, 

N. (2002) Obesity in South Africa: the South African demographic and health survey. Obesity 

Research, 10 (10), 1038-1048 

 

Purrello, F., & Rabuazzo, A.M. (2000) Metabolic factors that affect beta-cell function and 

survival. Diabetes, Nutrition & Metabolism, 13 (2), 84-91 

 

Qi, L. (2014) Personalized nutrition and obesity. Annals of Medicine, 46 (5), 247-252 

 

Raffort, J., Hinault, C., Dumortier, O., & Van Obberghen, E. (2015) Circulating microRNAs 

and diabetes: potential applications in medical practice. Diabetologia, 58 (9), 1978-1992 

 

Rajeevan, M.S., Ranamukhaarachchi, D.G., Vernon, S.D., & Unger, E.R. (2001) Use of real-

time quantitative PCR to validate the results of cDNA array and differential display PCR 

technologies. Methods, 25 (4), 443-451 

 

Ratner, R.E. (2007) Prevention of type 2 diabetes in women with previous gestational 

diabetes. Diabetes Care, 30 (Suppl 2), S242-S245 

 

Reddy, M. A., Tak Park, J., & Natarajan, R. (2013) Epigenetic Modifications in the 

Pathogenesis of Diabetic Nephropathy. Semin Nephrol, 33 (4), 341–353 

 

Robertson, R.P., Harmon, J., Tran, P.O., Tanaka, Y., & Takahashi, H. (2003) Glucose 

toxicity in beta-cells: type 2 diabetes, good radicals gone bad, and the glutathione 

connection. Diabetes, 52 (3), 581-587 

 

Rong, Y., Bao, W., Shan, Z., Liu, J., Yu, X., Xia, S., Gao, H., Wang, X., Yao, P., & Hu, F.B. 

(2013) Increased microRNA-146a levels in plasma of patients with newly diagnosed type 2 

diabetes mellitus. PLoS One, 8 (9), e73272 

 

Stellenbosch University  https://scholar.sun.ac.za



 

125 
 

Rottiers, V., & Näär, A.M. (2012) MicroRNAs in metabolism and metabolic disorders. Nature 

Reviews Molecular Cell Biology, 13 (4), 239-250 

 

Saal, S., & Harvey, S.J. (2009) MicroRNAs and the kidney: coming of age. Current Opinion 

in Nephrology & Hypertension, 18 (4), 317-323 

 

Sacks, D.B., Arnold, M., Bakris, G.L., Bruns, D.E., Horvath, A.R., Kirkman, M.S., Lernmark, 

A., Metzger, B.E., & Nathan, D.M. (2011) Guidelines and recommendations for laboratory 

analysis in the diagnosis and management of diabetes mellitus. Diabetes Care, 34 (6), e61-

e99 

 

Sahu, P., Pinkalwar, N., Dubey, R.D., Paroha, S., Chatterjee, S., & Chatterjee, T. (2011) 

Biomarkers: an emerging tool for diagnosis of a disease and drug development. Asian 

Journal of Research in Pharmaceutical Science, 1 (1), 9-16 

 

Salmasi, A.M. & Dancy, M. (2005) The Glucose Tolerance Test, But Not HbA1c, Remains 

the Gold Standard in Identifying Unrecognized Diabetes Mellitus and Impaired Glucose 

Tolerance in Hypertensive Subjects. Angiology, 56 (5), 571-579 

 

Saltiel, A.R., & Kahn, C.R. (2001) Insulin signalling and the regulation of glucose and lipid 

metabolism. Nature, 414 (6865), 799-806 

 

Santovito, D., De Nardis, V., Marcantonio, P., Mandolini, C., Paganelli, C., Vitale, E., Buttitta, 

F., Bucci, M., Mezzetti, A., & Consoli, A. (2014) Plasma exosome microRNA profiling 

unravels a new potential modulator of adiponectin pathway in diabetes: effect of glycemic 

control. The Journal of Clinical Endocrinology & Metabolism, 99 (9), 1681-1685 

 

Saudek, C.D., Herman, W.H., Sacks, D.B., Bergenstal, R.M., Edelman, D., & Davidson, M.B. 

(2008) A new look at screening and diagnosing diabetes mellitus. The Journal of Clinical 

Endocrinology & Metabolism, 93 (7), 2447-2453 

 

Scheen, A.J. (2003) Pathophysiology of type 2 diabetes. Acta Clinica Belgica, 58 (6), 335-

341 

 

Schwarzenbach, H., Nishida, N., Calin, G.A., & Pantel, K. (2014) Clinical relevance of 

circulating cell-free microRNAs in cancer. Nature reviews Clinical Oncology, 11 (3), 145-156 

 

Stellenbosch University  https://scholar.sun.ac.za



 

126 
 

Selbach, M., Schwanhñusser, B.r., Thierfelder, N., Fang, Z., Khanin, R., & Rajewsky, N. 

(2008) Widespread changes in protein synthesis induced by microRNAs. Nature, 455 

(7209), 58-63 

 

Selvin, E., Crainiceanu, C.M., Brancati, F.L., & Coresh, J. (2007) Short-term variability in 

measures of glycemia and implications for the classification of diabetes. Archives of Internal 

Medicine, 167 (14), 1545-1551 

 

Shamai, L., Lurix, E., Shen, M., Novaro, G.M., Szomstein, S., Rosenthal, R., Hernandez, 

A.V., & Asher, C.R. (2011) Association of body mass index and lipid profiles: evaluation of a 

broad spectrum of body mass index patients including the morbidly obese. Obesity Surgery, 

21 (1), 42-47 

 

Shamoon, H., Duffy, H., Fleischer, N., Engel, S., Saenger, P., Strelzyn, M., Litwak, M., 

Wylierosett, J., Farkash, A., & Geiger, D. (1993) The effect of intensive treatment of diabetes 

on the development and progression of long-term complications in insulin-dependent 

diabetes-mellitus. New England Journal of Medicine, 329 (14), 977-986 

 

Sherwin, R.S., Anderson, R.M., Buse, J.B., Chin, M.H., Eddy, D., Fradkin, J., Ganiats, T.G., 

Ginsberg, H.N., Kahn, R., & Nwankwo, R. (2004) Prevention or delay of type 2 diabetes. 

Diabetes Care, 27 (Suppl), S47 

 

Shields, B.M., Hicks, S., Shepherd, M.H., Colclough, K., Hattersley, A.T., & Ellard, S. (2010) 

Maturity-onset diabetes of the young (MODY): how many cases are we missing? 

Diabetologia, 53 (12), 2504-2508 

 

Shulman, G.I. (2000) Cellular mechanisms of insulin resistance. Journal of Clinical 

Investigation, 106 (2), 171-176 

 

Shyong Tai, E., Goh, S.Y., Lee, J.J., Wong, M.S., Heng, D., Hughes, K., Suok, K.C., Cutter, 

J., Chew, W., & Gu, K. (2004) Lowering the criterion for impaired fasting glucose: Impact on 

disease prevalence and associated risk of diabetes and ischemic heart disease. Diabetes 

care, 27 (7), 1728-1734 

 

Simon, A., & Evin, K. (2008) Luciferase reporter assays: powerful, adaptable tools for cell 

biology research. Promega, 1 (21), 9-16 

 

Stellenbosch University  https://scholar.sun.ac.za



 

127 
 

Stefani, G., & Slack, F.J. (2008) Small non-coding RNAs in animal development. Nature 

reviews Molecular Cell Biology, 9 (3), 219-230 

 

Stumvoll, M., Goldstein, B.J., & van Haeften, T.W. (2005) Type 2 diabetes: principles of 

pathogenesis and therapy. The Lancet, 365 (9467), 1333-1346 

 

Sun, K., Chang, X., Yin, L., Li, J., Zhou, T., Zhang, C., & Chen, X. (2014a) Expression and 

DNA methylation status of microRNA-375 in patients with type 2 diabetes mellitus. Molecular 

Medicine Reports, 9 (3), 967-972 

 

Sun, X., Yu, W., & Hu, C. (2014b) Genetics of type 2 diabetes: insights into the pathogenesis 

and its clinical application. BioMed Research International 

 

Szczygielska, A., Widomska, S., Jaraszkiewicz, M., Knera, P., & Muc, K. (2002) Blood lipids 

profile in obese or overweight patients. Medicina, 58 (2), 343-349 

 

Szklarczyk, D., Franceschini, A., Wyder, S., Forslund, K., Heller, D., Huerta-Cepas, J., 

Simonovic, M., Roth, A., Santos, A., & Tsafou, K.P. (2014) STRING v10: protein-protein 

interaction networks, integrated over the tree of life. [Cited 19 August 2015]; Available from: 

http://string-db.org  

 

Taganov, K.D., Boldin, M.P., Chang, K.J., & Baltimore, D. (2006) NF-kB-dependent induction 

of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune 

responses. Proceedings of the National Academy of Sciences, 103 (33), 12481-12486 

 

Tam, S., de Borja, R., Tsao, M.S., & McPherson, J.D. (2014) Robust global microRNA 

expression profiling using next-generation sequencing technologies. Laboratory 

Investigation, 94 (3), 350-358 

 

Tang, X., Muniappan, L., Tang, G., & Ozcan, S. (2009) Identification of glucose-regulated 

miRNAs from pancreatic beta cells reveals a role for miR-30d in insulin transcription. RNA, 

15 (2), 287-293 

 

Tang, X., Tang, G., & Őzcan, S. (2008) Role of microRNAs in diabetes. Biochimica Et 

Biophysica Acta-Gene Regulatory Mechanisms, 1779 (11), 697-701 

 

Stellenbosch University  https://scholar.sun.ac.za

http://string-db.org/


 

128 
 

Thery, C., Zitvogel, L., & Amigorena, S. (2002) Exosomes: composition, biogenesis and 

function. Nature Reviews Immunology, 2 (8), 569-579 

 

Thomas, M. F., & Ansel, K. M. (2010) "Construction of small RNA cDNA libraries for deep 

sequencing. Methods in Molecular Biology, 667 (9), 93-111 

 

Tiberio, P., Callari, M., Angeloni, V., Daidone, M.G., & Appierto, V. (2015) Challenges in 

using circulating miRNAs as cancer biomarkers. BioMed Res Int, 2015, 731479 

 

Topic, E. (2014) Guidelines and recommendations for testing in diagnosis of diabetes 

mellitus: The role of HbA1c. Biochemia Medica, 24  (Suppl 1), S1-S78 

 

Trajkovic, K., Hsu, C., Chiantia, S., Rajendran, L., Wenzel, D., Wieland, F., Schwille, P., 

Brűgger, B., & Simons, M. (2008) Ceramide triggers budding of exosome vesicles into 

multivesicular endosomes. Science, 319 (5867) ,1244-1247 

 

Tuomilehto, J., Lindstrőm, J., Eriksson, J.G., Valle, T.T., Hämäläinen, H., Ilanne-Parikka, P., 

Keinäñen-Kiukaanniemi, S., Laakso, M., Louheranta, A., & Rastas, M. (2001) Prevention of 

type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose 

tolerance. New England Journal of Medicine, 344 (18), 1343-1350 

 

Turchinovich, A., Weiz, L., & Burwinkel, B. (2012) Extracellular miRNAs: the mystery of their 

origin and function. Trends in Biochemical Sciences, 37 (11), 460-465 

 

Turchinovich, A., Weiz, L., Langheinz, A., & Burwinkel, B. (2011) Characterization of 

extracellular circulating microRNA. Nucleic Acids Research, 39 (16), 7223-33 

 

Valadi, H., Ekstrőm, K., Bossios, A., Sjostrand, M., Lee, J.J., & Lőtvall, J.O. (2007) 

Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic 

exchange between cells. Nature Cell Biology, 9 (6), 654-659 

 

Van Rooij, E., & Olson, E.N. (2012) MicroRNA therapeutics for cardiovascular disease: 

opportunities and obstacles. Nature Reviews Drug Discovery, 11 (11), 860-872 

 

Veliceasa, D., Biyashev, D., Qin, G., Misener, S., Mackie, A.R., Kishore, R., & Volpert, O.V. 

(2015) Therapeutic manipulation of angiogenesis with miR-27b. Vascular Cell, 7 (1), 1-13 

 

Stellenbosch University  https://scholar.sun.ac.za

http://link.springer.com/bookseries/7651


 

129 
 

Verma, N.K., Singh, J., & Dey, C.S. (2004) PPARG expression modulates insulin sensitivity 

in C2C12 skeletal muscle cells. British Journal of Pharmacology, 143 (8), 1006-1013 

 

Vickers, K.C., Palmisano, B.T., Shoucri, B.M., Shamburek, R.D., & Remaley, A.T. (2011) 

MicroRNAs are transported in plasma and delivered to recipient cells by high-density 

lipoproteins. Nature Cell Biology, 13 (4), 423-433 

 

Vinik, A., & Flemmer, M. (2002) Diabetes and macrovascular disease. Journal of Diabetes & 

its Complications, 16 (3), 235-245 

 

Wagner, J., Riwanto, M., Besler, C., Knau, A., Fichtlscherer, S., Röxe, T., Zeiher, A.M., 

Landmesser, U., & Dimmeler, S. (2013) Characterization of levels and cellular transfer of 

circulating lipoprotein-bound microRNAs. Arteriosclerosis, Thrombosis, and Vascular 

Biology, 33 (6), 1392-1400 

 

Wahlestedt, C. (2013) Targeting long non-coding RNA to therapeutically upregulate gene 

expression. Nature Reviews Drug Discovery, 12 (6), 433-446 

 

Wang, K., Yuan, Y., Cho, J.H., McClarty, S., Baxter, D., & Galas, D.J. (2012) Comparing the 

MicroRNA spectrum between serum and plasma. PLoS One, 7 (7), e41561 

 

Wang, W., Lee, E.T., Fabsitz, R., Welty, T.K., & Howard, B.V. (2002) Using HbA1c to 

Improve Efficacy of the American Diabetes Association Fasting Plasma Glucose Criterion in 

Screening for New Type 2 Diabetes in American Indians The Strong Heart Study. Diabetes 

Care, 25 (8), 1365-1370 

 

Wang, X., Sundquist, J., Zöller, B., Memon, A.A., Palmér, K., Sundquist, K., & Bennet, L. 

(2014) Determination of 14 circulating microRNAs in Swedes and Iraqis with and without 

diabetes mellitus type 2. PloS One, 9 (1), e86792 

 

Waugh, N., Scotland, G., McNamee, P., Gillett, M., Brennan, A., Goyder, E., Williams, R., & 

John, A. (2007) Screening for type 2 diabetes: literature review and economic modelling. 

British Journal of Clinical Governance, 12 (4), doi: 10.1108/cgij.2007.24812dae.003 

 

Weber, J.A., Baxter, D.H., Zhang, S., Huang, D.Y., Huang, K.H., Lee, M.J., Galas, D.J., & 

Wang, K. (2010) The microRNA spectrum in 12 body fluids. Clinical chemistry, 56 (11), 

1733-1741 

Stellenbosch University  https://scholar.sun.ac.za



 

130 
 

Wellen, K.E., & Hotamisligil, G.S. (2005) Inflammation, stress, and diabetes. Journal of 

Clinical Investigation, 115 (5), 1111-1119 

 

Whiting, D.R., Guariguata, L., Weil, C., & Shaw, J. (2011) IDF diabetes atlas: global 

estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Research and Clinical 

Practice, 94 (3), 311-321 

 

Wieczorek, D., Delauriere, L., & Schagat, T. (2012) Methods of RNA Quality Assessment. 

[Cited 6 July 2015]; Available from: 

https://worldwide.promega.com/resources/pubhub/methods-of-rna-quality-assessment/  

 

Wild, S., Roglic, G., Green, A., Sicree, R., & King, H. (2004) Global prevalence of diabetes 

estimates for the year 2000 and projections for 2030. Diabetes Care, 27 (5), 1047-1053 

 

Wing, R.R., Goldstein, M.G., Acton, K.J., Birch, L.L., Jakicic, J.M., Sallis, J.F., Smith-West, 

D., Jeffery, R.W., & Surwit, R.S. (2001) Behavioral science research in diabetes lifestyle 

changes related to obesity, eating behavior, and physical activity. Diabetes Care, 24 (1), 

117-123 

 

Witkos, T.M., Koscianska, E., & Krzyzosiak, W.J. (2011) Practical aspects of microRNA 

target prediction. Current Molecular Medicine, 11 (2), 93-109 

 

World Health Organisation. (2006) International Diabetes Federation. Definition and 

diagnosis of diabetes mellitus and intermediate hyperglycemia. Report of WHO/IDF 

consultation  

 

World Obesity. (2012) [Cited 11 February 2015]; Available from: 

http://www.worldobesity.org/aboutobesity/ 

 

Wright, M.W. & Bruford, E.A. (2011) Naming „junk‟: human non-protein coding RNA (ncRNA) 

gene nomenclature. Hum Genomics, 5 (2), 90-98 

 

Xu, W., Wang, Z., & Liu, Y. (2014) The characterization of microRNA-mediated gene 

regulation as impacted by both target site location and seed match type. PLoS One, 9 (9), 

e108260 

 

Stellenbosch University  https://scholar.sun.ac.za

https://worldwide.promega.com/resources/pubhub/methods-of-rna-quality-assessment/
http://www.worldobesity.org/aboutobesity/


 

131 
 

Yan, S.T., Li, C.L., Tian, H., Li, J., Pei, Y., Liu, Y., Gong, Y.P., Fang, F.S., & Sun, B.R. 

(2014) MiR-199a is overexpressed in plasma of type 2 diabetes patients which contributes to 

type 2 diabetes by targeting GLUT4. Molecular and Cellular Biochemistry, 397 (1-2), 45-51 

 

Yang, Z., Chen, H., Si, H., Li, X., Ding, X., Sheng, Q., Chen, P., & Zhang, H. (2014) Serum 

miR-23a, a potential biomarker for diagnosis of pre-diabetes and type 2 diabetes. Acta 

Diabetologica, 51 (5), 823-831 

 

Yue, D., Liu, H., & Huang, Y. (2009) Survey of computational algorithms for MicroRNA target 

prediction. Current Genomics, 10 (7), 478-492 

 

Zampetaki, A., Kiechl, S., Drozdov, I., Willeit, P., Mayr, U., Prokopi, M., Mayr, A., Weger, S., 

Oberhollenzer, F., & Bonora, E. (2010) Plasma microRNA profiling reveals loss of 

endothelial miR-126 and other microRNAs in type 2 diabetes. Circulation Research, 107 (6), 

810-817 

 

Zampetaki, A., Willeit, P., Burr, S., Yin, X., Langley, S.R., Kiechl, S., Klein, R., Rossing, P., 

Chaturvedi, N., & Mayr, M. (2015) Angiogenic MicroRNAs Linked to Incidence and 

Progression of Diabetic Retinopathy in Type 1 Diabetes. Diabete, db150389 

 

Zampetaki, A., Willeit, P., Drozdov, I., Kiechl, S., & Mayr, M. (2012) Profiling of circulating 

microRNAs: from single biomarkers to re-wired networks. Cardiovascular Research, 93 (4), 

555-562 

 

Zhang, J., Xiao, X., & Ji, L. (2013) Epigenetic disorder plays a fundamental role in the 

etiology of type 2 diabetes. Wuhan University Journal of Natural Sciences, 18 (1), 9-19 

 

Zhang, T., Li, L., Shang, Q., Lv, C., Wang, C., & Su, B. (2015) Circulating miR-126 is a 

potential biomarker to predict the onset of type 2 diabetes mellitus in susceptible individuals. 

Biochemical and Biophysical Research Communications, 463 (1-2), 60-63 

 

Zhang, Y., Jia, Y., Zheng, R., Guo, Y., Wang, Y., Guo, H., Fei, M., & Sun, S. (2010) Plasma 

microRNA-122 as a biomarker for viral-, alcohol-, and chemical-related hepatic diseases. 

Clinical Chemistry, 56 (12), 1830-1838 

 

Stellenbosch University  https://scholar.sun.ac.za



 

132 
 

Zhou, J., Peng, R., Li, T., Luo, X., Peng, H., Zha, H., Yin, P., Wen, L., & Zhang, Z. (2013) A 

potentially functional polymorphism in the regulatory region of let-7a-2 is associated with an 

increased risk for diabetic nephropathy. Gene, 527 (2), 456-461 

 

Zhu, H., & Leung, S.W. (2015) Identification of microRNA biomarkers in type 2 diabetes: a 

meta-analysis of controlled profiling studies. Diabetologia, 58 (5), 900-11 

 

Zhuo, X., Zhang, P., & Hoerger, T.J. (2013) Lifetime direct medical costs of treating type 2 

diabetes and diabetic complications. American Journal of Preventive Medicine, 45 (3), 253-

261 

 

Zimmet, P.Z., Magliano, D.J., Herman, W.H., & Shaw, J.E. (2014) Diabetes: a 21st century 

challenge. The Lancet Diabetes & Endocrinology, 2 (1), 56-64 

 

  

Stellenbosch University  https://scholar.sun.ac.za



 

133 
 

Appendices 

Appendix 1: Information sheet 

 

Stellenbosch University  https://scholar.sun.ac.za



 

134 
 

Appendix 2: Consent form 
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Appendix 3: RNA quality control and assessment 

 

Table A3.1 Total RNA quantification and quality assurance by NanoDrop ND-1000 spectrophotometer 

Sample Name OD260/280 Ratio Conc. (ng/µl) Volume (µl) Total Amount 

(ng) 

1 1.81 121.96 10 1219.6 

2 1.73 123.19 10 1231.9 

3 1.81 133.72 10 1337.2 

4 1.78 175.11 10 1751.1 

5 1.78 150.92 10 1509.2 

6 1.87 124.07 10 1240.7 

7 1.76 88.53 10         885.3 

8 1.78 162.49 10 1624.9 

9 1.78 138.24 10 1382.4 

10 1.71 64.37 10         643.7 

11 1.80 130.06 10 1300.6 

12 1.79 147.66 10 1476.6 
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Table A3.2 Quality assessment of the sequencing library, determined by Agilent 2100 Bioanalyser 

using the Agilent DNA 1000 chip kit (Agilent technologies). 

Sample Name Size (bp) Conc. (nmol/L) Conc. (ng/µl) Volume (µl)** Total Amount 
(ng) 

1 142 54.2 5.08 
 

20 101.6 

2 
 

140 
 

54.5 
 

5.03 
 

20 100.6 

3 
 

141 
 

53.3 
 

4.95 
 

20 99.0 

4 
 

140 
 

59.4 
 

5.49 
 

20 109.8 

5 
 

140 
 

66.1 
 

6.12 
 

20 122.4 

6 
 

141 
 

52.8 
 

4.93 
 

20 98.6 

7 
 

141 
 

39.4 
 

3.67 
 

20 73.4 

8 
 

142 
 

53.8 
 

5.04 
 

20 100.8 

9 
 

141 
 

34.5 
 

3.22 
 

20 64.4 

10 
 

142 
 

89.6 
 

8.38 
 

20 167.6 

11 
 

141 
 

58.0 
 

5.41 
 

20 108.2 

12 
 

141 
 

63.2 
 

5.86 
 

20 117.2 

**The concentration of each library was adjusted to 10nM before cluster generation 

 

.  
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Appendix 4: Protein-protein interactions 

Protein-protein interactions possibly regulated by the differentially expressed miRNAs were 

investigated using the protein interaction database called STRING. The red nodes represent 

the target protein of interest, which interact with a number of functional proteins predicted 

using different sources of evidence. The different colour lines indicate different prediction 

methods such as, fusion evidence (red), neighbourhood (green), co-occurrence (blue), 

experimental evidence (purple), text-mining (yellow), database evidence (light blue) and co-

expression (black). 

MicroRNA target gene/protein Functional protein-protein interaction network 

 

 

 

Vascular endothelial growth factor 

C (VEGFC) 

 

 

 

 

 

Peroxisome proliferator-activated 

receptor gamma (PPARG) 

 

Table A4 Functional protein-protein interactions determined by STRING. 
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Insulin receptor (INSR) 

 

 

 

 

 

 

 

 

Tuberous sclerosis 1 (TSC1) 

 

 

 

Mitogen-activated protein 4 kinase 

3 (MAP4K3) 
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Unc-51-like kinase (ULK2) 

 

 

 

 

 

 

 

Stearoyl-CoA desaturase (SCD) 

 

 

 

 

 

 

RPTOR independent companion of 

mTOR (RICTOR) 
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TAO kinase 2 (TAOK2) 

 

 

 

 

 

 

 

 

 

v-Ki-ras2 Kirsten rat sarcoma 

viral oncogene homolog (KRAS) 

 

 

 

 

 

 

 

Fibroblast growth factor 1 (FGF1) 

 

 

 

 

 

 

Protein kinase C, epsilon 

(PRKCE) 
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Calcium channel, voltage-

dependent, P/Q type, alpha 1A 

subunit (CACNA1A) 

 

 

The names of proteins that interact with predicted miRNA targets are as follows: 

 VEGFC; fms-related tyrosine kinase 4 (FLT4), kinase insert domain receptor (KDR), 

neuropilin 2 (NRP2), fms-related tyrosine kinase 1 (FLT1) and insulin-like growth 

factor 1 receptor (IGF1R). 

 PPARG; peroxisome proliferator-activated receptor gamma (PPARGC1A), mediator 

complex subunit 1 (MED1), nuclear receptor coactivator 1 (NCOA1), E1A binding 

protein p300 (EP300), nuclear receptor corepressor 1 (NCOR1), nuclear receptor 

coactivator 2 (NCOA2), histone deacetylase 3 (HDAC3), leptin (LEP), adiponectin 

(ADIPOQ) and nuclear receptor corepressor 2 (NCOR2). 

 INSR; insulin receptor substrate 1 (INS1), protein tyrosine phosphatase non-receptor 

type 1 (PTPN) , SHC (Src homology 2 domain containing) transforming protein 1 

(SHC1), insulin receptor substrate 2 (IRS2), growth factor receptor-bound protein 10 

(GRB10), growth factor receptor-bound protein 14 (GRB14), insulin (INS), 

phosphoinositide-3-kinase regulatory subunit 1 (alpha) (PIK3R1), protein tyrosine 

phosphatase non-receptor type 11 (PTPN11) and suppressor of cytokine signaling 3 

(SOCS3). 

 TSC1; tuberous sclerosis 2 (TSC2), Ras homolog enriched in brain (RHEB), v-akt 

murine thymoma viral oncogene homolog 1 (AKT1), mechanistic target of rapamycin 

(mTOR), v-akt murine thymoma viral oncogene homolog 2 (AKT2), ribosomal protein 

S6 kinase, 90kDa, polypeptide 1 (RPS6KA1), inhibitor of kappa light polypeptide 

gene enhancer in B-cells (IKBKB), v-akt murine thymoma viral oncogene homolog 3 

(AKT3), cyclin-dependent kinase 1 (CDK1) and RPTOR independent companion of 

mTOR (RICTOR). 

 MAP4K3; debrin-like (DBNL) 

 ULK2; RB1-inducible coiled-coil 1 (RB1CC1), autophagy related 13 (ATG13), 

mechanistic target of rapamycin (mTOR), regulatory associated protein of mTOR, 
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complex 1 (RPTOR), GABA(A) receptor-associated protein-like 2 (GABARAPC2), 

GABA(A) receptor-associated protein (GABARAP) and autophagy related 9A 

(ATG9A) 

 SCD; ubiquitin C (UBC), sterol regulatory element binding transcription factor 1 

(SREBF1), peroxisome proliferator-activated receptor alpha (PPARA) and 

cytochrome b5 type A (CYB5A) 

 RICTOR; mechanistic target of rapamycin (mTOR), mitogen-activated protein kinase 

associated protein 1 (MAPKAP1), v-akt murine thymoma viral oncogene homolog 1 

(AKT1), proline rich 5 like (PRR5L), mTOR associated protein (MLST8) and 

eukaryotic translation initiation factor 4 binding protein 1 (EIF4BP1) 

 TAOK2; mitogen-activated protein kinase 3(MAP2K3) and mitogen-activated protein 

kinase 6 (MAP2K6) 

 KRAS: v-raf-1 murine leukemia viral oncogene homologue 1 (RAF1), epidermal 

growth factor receptor (EGFR), ral guanidine nucleotide dissociation stimulator 

(RALGDS), phosphatidylinositol-4-5-bisphosphate 3-kinase (PIK3CA), Son of 

sevenless homolog 1 (SOS1), B-cell CLL/lymphoma 2 (BCL2), protein tyrosine 

phosphatase, non-receptor type 11 (PTPN11) and tumor protein p53 (TP53). 

 FGF1; fibroblast growth factor receptor 1 (FGFR1), fibroblast growth factor receptor 2 

(FGFR2) , fibroblast growth factor receptor 4 (FGFR4), fibroblast growth factor 

receptor 3 (FGFR3), S100 calcium binding protein A13 (S100A13) and fribroblast 

growth factor 23 (FGF23) 

 PRKCE; 3-phosphoinositide dependent protein kinase-1 (PDPK1), voltage-

dependent anion channel 1 (VDAC1), v-raf murine sarcoma viral oncogene homolog 

B1 (BRAF) and ras homolog family member A (RHOA) 

 CACNA1A; calcium binding protein 1 (CABP1), calcium channel voltage dependent 

beta-4 subunit (CACNB4) and guanine nucleotide binding protein (GNB1) 
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