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1.0 EXECUTIVE SUMMARY 

This report summarizes research results from March 1995 to February 1996 for 
the Energy Efficient Industrialized Housing Research Program. 

One of our research focuses was stressed skin insulating core (SSIC) panel 
construction. SSIC panels, which carry their loads entirely through their skins, 
are of interest because they eliminate thermal bridging caused by studs and they 
easily form airtight construction reducing air infiltration. Working with a group 
of nonprofit developers and panel manufacturers, we have designed a SSIC 
panel, solar heated 1040 s.f. entry level house that costs $55,000 and uses 10% less 
energy than allowed by the stringent Oregon code. We are preparing a set of 
documents for nonprofits which includes construction documents with several 
variations of the house, marketing and financing information, and drawings for 
panel manufacturers. Working with industry partners, we have also designed 
and constructed scale and full-size models of an on-grade SSIC panel floor and 
foundation system. The system has been estimated to cost less than a concrete 
slab (the cheapest floor/foundation system currently in use) with superior 
thermal performance. In collaboration with three industry partners, we have 
completed structural tests on SSIC panels with fiber reinforced gypsum board 
interior skins. By substituting fiber reinforced gypsum board for the oriented 
strand board and conventional drywall layers currently used, we are able to 
reduce panel costs by 15% while maintaining both structural and thermal 
performance. 

Closed wood frame panels, those shipped to the site with windows, siding, 
insulation, vapor barriers and gypsum board installed, are more energy efficient 
than open panels, those shipped to the site with only windows and siding. We 
surveyed panel manufacturers ( 40% of all residential construction is panelized) 
and determined that only 6% of them build closed panels. Through interviews 
and additional surveys we identified barriers to increasing the market for closed 
panels and developed a program for overcoming those barriers. 

In collaboration with Softdesk, a large vendor of computer software, and Pacific 
Northwest National Laboratories, we developed and marketed Softdesk Energy, a 
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module within Softdesk's CAD program, Auto Architect. Softdesk Energy 

interprets the drawings that architects and builders prepare and automatically 

inputs areas for walls, roofs, windows, etc. eliminating the need to reenter this 

information and thereby making the energy design process easier, faster and 

more accurate. 

A key to convincing manufacturers to try energy efficient ideas is to convince 

them that the proposed design changes will not reduce their production 

efficiency. We have developed simulation software that enables manufacturers to 

see the impact of design changes on the production process before making costly 

production changes. As a result of our dissemination efforts we have had 

inquiries from some 50 manufacturers and have demonstrated the software to 

many more manufacturers at conferences. The software was also demonstrated 

in considerable detail to several industrialized home builders and housing 

industry suppliers who see simulation as a tool to facilitate the introduction of 

advanced manufacturing technologies. 

In our constructability lab we focused on the development of a bay window which 

addressed the problems of air infiltration, cold feet complaints and framing 

complexities. We developed a new design which used triangular roof trusses 

from which the bay window's floor was hung. The design has better thermal 

integrity, is easier to construct, and can be added to the building at any stage in 

the construction process. 

We have completed a number of component and whole house tests including the 

energy monitoring of the Springfield SSIC Panel Demonstration house, which is 

performing as expected with low amounts of energy used for heating. A similar 

house design built in Michigan has been tested and also shows low energy use for 

heating. 

Recently HUD changed its ventilation standards for manufactured housing. We 

interviewed manufacturers in the South to see how they were meeting the new 

ventilation requirements and have begun field monitoring of ventilation systems 

to see if they are performing as required. We have discovered several problems 

that should be addressed by HUD code manufacturers. 
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In collaboration with local affiliates of the American Lung Association we have 

constructed and tested two Health Houses®, one in Orlando, Florida, and one in 

Minneapolis, Minnesota. These houses have been featured in Professional 

Builder Magazine and Better Homes and Gardens. Health Houses® feature 

airtight energy efficient construction with excellent air distribution, whole house 

dehumidification, ventilation, high efficiency filtration and interior furnishings 

and finishes with low levels of VOC. It is expected that Health Houses® will 

significantly benefit the 20 percent of the population who suffer from allergies and 

asthma. Testing is in progress to evaluate the allergen levels in Health Houses® 

and comparable control houses. New Health Houses® are currently under 

construction in New Orleans, Louisiana; Birmingham and Huntsville, Alabama; 

and in Jacksonville, Florida. We are actively involved in the design and 

monitoring of these houses. 

We have also been working with the Energy Smart Corporation to improve the 

design of their houses and to monitor the performance of their houses. Through 

our newly established Residential Energy Efficient Design and Development 

Advisory Center (REDAC) we have been advising Habitat for Humanity affiliates 

throughout the United States on how to improve the energy performance of their 

houses. 
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2.0 IN'IRODUCTION 

The United States' housing industry is undergoing a metamorphosis from hand­

built to factory-built products. Virtually all new housing incorporates 

manufactured components; indeed, an increasing percentage is totally 

assembled in a factory. The factory-built process offers the promise of houses that 

are more energy efficient, of higher quality, and less costly. To ensure that this 

promise can be met, the U.S. industry must begin to develop and use new 

technologies, new design strategies, and new industrial processes. However, the 

current fragmentation of the industry makes research by individual companies 

prohibitively expensive and retards innovation. 

This research program addresses the need to increase the energy efficiency of 

industrialized housing. Two universities have responsibility for the program: the 

University of Oregon (UO) and the University of Central Florida (UCF). Together, 

these organizations provide complementary architectural, energy, systems 

engineering, computer science and industrial engineering capabilities. 

The research program focuses on three interdependent concerns: (1) energy use, 

(2) industrial process, and (3) housing design. Building homes in a factory offers 

the opportunity to increase energy efficiency through the use of new materials 

and processes, and to increase the value of these homes by improving the quality 

of their construction. Our work in housing design strives to ensure that these 

technically advanced homes are marketable and will meet the needs of the people 

who will live in them. 

Energy efficiency is the focus of the research, but it is always viewed within the 

context of production and design. This approach enables researchers to solve 

energy problems in ways that can help industry improve its product. These 

improved products will help U.S. companies compete with foreign companies, 

which would alleviate the trade imbalance in construction products, will increase 

the productivity of the U.S. housing industry, and will decrease both the cost of 

housing and the use of fossil fuels, which are expensive and damaging to the 

environment. 
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3.0 DEFINITIONS 

Of the many definitions currently used to describe industrialized housing, we 
have selected four: 

(1) HUD code houses (mobile homes) 
(2) modular houses 
(3) pane)hed houses (including domes, precuts, and log houses) 
(4) production-built houses (including those that use only a few 

industrialized parts). 
These four definitions were selected because they are the categories used to 
collect statistical data, and so are likely to persist. However, the categories are 
confusing because they are based on a mix of characteristics: unit of construction 
(modular, panelized), method of construction (production-built), material 
(panelized), and governing code (HUD Code). 

There are other ways to categorize industrialized housing, each of which provides 
a different perspective on the energy use. Japan and Sweden, for example, define 
industrialized housing in terms of corporate structure. Industrialized housing is 
equated with home building companies. These companies vertically integrate or 
have under one roof all or most of the housing process, including raw material 
processing, component assembly, house construction, installation, financing, 
marketing, and land development. This definition is useful because it addresses 
the extent of control a given company has over the design, production, and 
marketing of the house, and therefore over its energy use. 

Other definitions can shed light on important aspects of industrialization and 
enable us to predict the impact of innovations, establish priorities for research 
activities, and identify targets for information. For example, industrialized 
housing can also be defined as to whether it uses open or closed systems. A 
closed system, which limits design alternatives, has the potential to benefit its 
supplier because it is exclusive. An open system, by contrast, is more tolerant of 
a wide range of designs and gives the home owner a range of component choices 
and the opportunity to purchase these components in a more competitive market 
place. 
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Other important ways of categorizing include 1) the level of technology employed -

-high, intermediate, or low; 2) the percentage of value that can be supplied by the 

home owner, using sweat equity; 3) the physical size of the elements-­

components, panels, cores, modules, or complete units. 

HUD Code Houses 

Figure3-1 
HUD Code House 

A HUD code house is a movable or mobile dwelling constructed for year-round 

living, manufactured to the preemptive Manufactured Housing Construction and 

Safety Standard of 197 4. Each unit is manufactured and towed on its own 

chassis, then connected to a foundation and utilities on site. A HUD code house 

can consist of one, two, or more units, each of which is shipped separately but 

designed to be joined as one unit at the site. Individual units and parts of units 

may be folded, collapsed or telescoped during shipment to the site. 

Modular Houses 
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Modular House 
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Modular housing is built from self-supporting, three-dimensional house sections 

intended to be assembled as whole houses. Modules may be stacked to make 

multistory structures and/or attached in rows. Modular houses are 

permanently attached to foundations and comply with local building codes. 

Panelired Houses 

Figure3-3 
Panelimd.House 

Panelized houses are whole houses built from manufactured roof, floor and wall 

panels designed for assembly after delivery to a site. Within this category are 

several sub-categories. Framed panels are typically stick-framed, carrying 

structural loads through a frame as well as the sheathing. Open-framed panels 

are sheathed on the exterior only and completed on site with interior finishes and 

electrical and mechanical systems. Closed-framed panels are sheathed on both 

the exterior and interior and are often pre-wired, insulated and plumbed. 

Stressed-skin panels are often foam filled, carrying structural loads in the 

sheathing layers of the panel only. 

9738/R96-3:TB Page 9 



Production-Built Houses 
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Figure3-4 
Production-Built House 

Production building refers to the mass production of whole houses "in situ." This 

large and influential industry segment is industrialized in the sense that it 

employs rationalized and integrated management, scheduling, and production 

processes, as well as factory-made components. In this instance, however, 

rather than the house being built in the factory and moved to the site the factory is 

the building site, which becomes an open-air assembly line through which 

industrialized labor and materials move. 
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4.0 S'IRESSED SKIN INSULATING CORE PANEL COMPONENTS 

This section describes three projects: the design of "Cascadia," a prototype, energy 
efficient entry level house, the continued development of the on-grade panel 
floor/foundation system, and the development of fiber reinforced gypsum board 
panel skins. 

Design of Energy Efficient Entry Level Housing- Cascadia 

The University of Oregon developed designs for a set of prototype energy efficient, 
low-income houses. These drew on our experience in building the Springfield 
Stressed Skin Insulating Core (SSIC) Panel Demonstration House in 1994. The 
objective was to develop an architecturally attractive entry level housing system 
suitable for construction by nonprofit housing developers such as St. Vincent 
dePaul Society or Habitat for Humanity. 

SSIC panels are an important energy saving building technology. Compared to 
conventional stick framing, they offer greater thermal resistance by eliminating 
the thermal bridging caused by studs, and they more easily create airtight 
envelopes which reduce infiltration. They also result in a higher quality of 
construction for a similar cost, use less framing lumber, and create less site 
waste because of their factory construction. 

Nonprofit housing developers are often the last organizations to avail themselves 
of innovation in the marketplace. Since funding for low-income housing is very 
limited, nonprofit developers are drawn to projects that eliminate risk and reduce 
cost. By offering design assistance and a variety of marketable schemes, we can 
allow nonprofit groups to build more energy efficient housing. Energy efficiency 
ultimately benefits the occupants of the houses by lowering their monthly energy 
expenses thus stretching their limited incomes. The large-scale projects we plan 
to pursue will also give us an opportunity to analyze and improve on the 
conservation potential of these designs. 

We began the project in 1995 by performing a detailed whole-house cost study of 
the Springfield Demo House to determine how we could use the energy efficient 
innovations of that project in a house design that was affordable and acceptable to 
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nonprofit builders. After a series of preliminary design studies, we held a focus 

group meeting with Oregon nonprofit developers to define their cost and design 

concerns. The results of this meeting were incorporated into design schematics 

that were then examined through detailed cost studies and energy analyses. 
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Figure 4-1, Cascadia Floor Plans-First and Second 

The early schematics were presented in a second focus group in order to critique 

the design work and to bring out financing and development issues. This meeting 

also allowed us to promote energy efficient construction techniques and identify 
potential projects with the nonprofits. The results of this meeting led to further 

refinement of the basic design along with development of critical details. Our goal 

was to develop a construction system with a set of design variations that could be 

adapted to any site. We performed a code review and determined the barriers to 

getting manufacturers to supply the required panels at reasonable cost. 

We concluded the year's efforts by making significant progress on construction 

documents for the housing system we are calling Cascadia. These will be part of 

a drawing package for developers that will also contain marketing materials and 

other supporting documents to assist nonprofits in realizing energy efficient 

housing for their clients. This includes a set of drawings for panel 
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manufacturers to help keep panel costs as low as possible. We have reviewed and 

updated our cost estimate and found that we are meeting our cost goal of $55,000. 

Panels $7,179.78 

Other Exterior Envelope $14,155.31 

Interior Carpentry $11,438.89 

Painting $1,444.14 

Porches $355.18 

Garage $6,065.47 

Plumbing $5,962.15 

Electrical $4,019.66 

Miscellaneous $1,464.74 

TOTALS $52,085.34 

Figure 4-2, Cascadia Cost Summary 

Our system optimizes passive solar design and exceeds Oregon's energy code by 

100%. We have also begun detailed energy studies to predict expected savings for 

our system over conventional construction. 

Figure 4-3 Cascadia Elevations-South and East 

Continuing with the work completed thus far, we will enhance the marketing 

presentations for the designs to give nonprofit builders an edge in obtaining 

financing for their projects. Several specific projects will be identified for 

development. We will provide site planning and development assistance and aid 

in their bidding with contractors and panel manufacturers. When necessary, 

additional support such as educating contractors as to proper practice will be 

provided. 

As the projects get built, video footage will be made of all critical procedures and 

reviewed as part of a detailed cost and construction analysis. A series of tests will 
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be done on the houses as part of the energy analysis. Post-occupancy studies will 

provide additional input to ongoing design modifications . This research will be 

used to increase national exposure of the project. 

On-Grade lnsulat.ed Panel Floor Syst.em 

The objective of this task is to reduce floor and foundation costs, while 

maintaining energy and structural performance, through development of an on­

grade insulated panel floor system. 

An industry group of panel manufacturers, material and component suppliers, 

architectural and engineering designers, and housing developers was convened 

at the University of Oregon in January, 1995 to select a small number of 

component innovations worthy of further design development and testing. This 

group's conclusions, plus our experience designing the Stressed Skin Insulating 

Core (SSIC) Panel Demonstration House and other projects, indicate that 

considerable cost savings may be possible using foundation and floor systems 

based on SSIC panel technology. Recent developments in frost-protected shallow 

foundation systems, combined with all-weather wood foundation systems, 

suggest a direction for development of such a new system. 
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1/2" gypsum board 
7/16" OSB top subfloor 
7/16" OSB faced EPS panel R-20 

I �  ' . .  - Treated 2x2 stakes 4' o.c. 
Figure 4-4, On-Grade Panel Floor Syst.em 

This preliminary design has been explored through scale model studies and 

construction of full-scale part prototypes. 

Comparative cost projections for 20' x 36' foundation and floor: 

on-grade insulated panel foundation/floor 

insulated concrete slab 

Demonstration House (SSIC panel/pier) 

reference house (wood frame/concrete) 

$4015 

$4902 

$7206 

$746.5 

The scale model and prototype studies have confirmed the feasibility of the on­

grade panel floor concept. Comments of reviewers of the preliminary report were 

positive and helpful. Interest in the on-grade panel floor system has been 

expressed by AFM (SSIC panels), Trus Joist Macmillan and Willamette 

Industries (building materials), the Department of Housing and Urban 

Development, and private builder/developers. 
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Site prototype test floors will be built in several climates to examine 

constructability, the effects of temperatures and moisture (especially frost heave­

related) and structural performance (settlement, creep, dimensional stability) of 

the system. 

We will develop agreements with participating manufacturers to incorporate the 

floor system into their product lines and assist them in preparing documents for 

ICBO approvals and other product certifications. 

We will continue development of the design, based on studies of models and 

prototypes plus feedback from industry reviewers. Prototypes will be constructed 

as needed to refine the design until it is ready to be released to trial builders. 

Fiber Reinforced Gypsum Board Skins for SSIC Panels 

The objective of this task is to reduce stressed skin insulating core (SSIC) panel 

construction costs while maintaining energy and structural performance 

through development of fiber reinforced gypsum board panel skins. 

An industry group of panel manufacturers, material and component suppliers, 

architectural and engineering designers, and housing developers confirmed our 

observation that a useful strategy for reducing the cost of SSIC panels would be to 

develop skins capable of acting as inner and outer finish surfaces as well as 

structural elements. 
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Figure 4-5, SSIC Panel with Fiber Reinforced Gypsum Board Skins 
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We subsequently surveyed the available materials as well as the building code, 

structural, manufacturing, fire and other criteria such materials would have to 

satisfy. Our attention focused on gypsum-bonded fiberboard as an inner skin, 

and a structural panel siding as outer skin. This work is being done in 

collaboration with W. H. Porter, Inc., Fischer Corporation, and PFS Corporation. 

To date we have completed ASTM E-72 methods testing in racking, transverse 

loading, and axial loading; ASTM E 661-88 method tests for concentrated loads; 

and ASTM E 6 method tests for creep. 

Working with the Fiber Reinforced Gypsum Board Panel Consortium (W.H. 

Porter, Inc., Fischer Corporation, and PFS Corporation), we will help consolidate 

and interpret fiber reinforced gypsum board test results and coordinate new tests 

as indicated. We will then use advanced fiber reinforced gypsum board SSIC 

panels in demonstration projects (the Cascadia entry level energy efficient 

housing systems demonstrations), monitoring and documenting post­

construction panel performance. Continued explorations will pursue further 

cost efficiencies, including use of fiber reinforced gypsum board as both inner and 

outer finish surfaces. 

The University of Oregon will use these studies to develop design guidelines, load 

charts, etc. to encourage builders to use the new panels. We will develop 

agreements with participating manufacturers to incorporate the advanced 

panels into their product lines and assist them in preparing documents for ICBO 

approvals and other product certifications. 

The expected benefit of this project will be to substantially increase the use of 

energy efficient SSIC panels by the building industry through reducing the cost of 

the panels by an estimated 15%. 
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5.0 INCORPORATION OF ENERGY ANALYSES INTO CAD 
SOFIWARE 

The objective of this task was to develop an energy analysis program that would 
encourage architects, builders, and housing manufacturers to improve the 
energy efficiency of their buildings. In order for these kinds of designers to 
readily attempt energy-efficient designs, several things must be possible: 

• The analysis must be done early enough that design changes are feasible. 
• The energy program should work within the user's normal design 

environment. 
• Accurate data about the building should be available. 
• The interface should be easy to use, highly visual, and nontechnical 

with respect to energy. 

Embedding our energy analysis within Softdesk's Auto Architect, which uses an 
AutoCAD system ( the largest selling PC CAD program), enabled us to meet the 
first three criteria. The fourth criteria required an interface that encourages 
visual input of data as well as the more common visual output of results in 
graphic form. We have succeeded in creating an interface that requires no 
numeric input, reports results graphically, and begins to develop the user's 
intuitions about energy efficiency. 

The vehicle for this project was a collaboration between industry, government, 
and academia, represented respectively by Softdesk, in Henniker, New 
Hampshire; Pacific-Northwest National Laboratory (PNNL), in Richland, 
Washington; and the University of Oregon. The Collaborative Research and 
Development Agreement (CRADA) was signed by the three groups in late 1992. 
An extension was signed this year by all groups. 

The product has three major parts: geometry interpretation, input of non­
geometric data, and calculation and presentation of results. All three parts are 
oriented toward making energy analysis visual and nontechnical. 

The geometry interpreter is a tremendous labor saver for the user. Most energy 
analysis programs require that the user type in the geometric features (length, 
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area, pitch and thickness) of all energy elements - walls, windows, floors, roofs. 

However, this is information that the user has already indicated graphically in a 

CAD system. So in this tool the geometry interpreter scans the drawing and 

determines these parameters automatically, saving the user typing and 

preventing errors and inaccuracies. The user is then given visual feedback about 

what was interpreted. 

Other, non-geometric data is input by the user through a series of dialog boxes. 

Although a mechanical engineer may be content to specify a building in terms of 

BTUs per square foot, most architects, builders, and manufacturers think of the 

spaces in terms of their functions or physical configurations. In our tool, the 

user picks wall types by looking at drawings of typical wall sections, then the tool 

reports an R-value. Likewise the user selects a human activity, and the tool 

reports the BTU s per hour per person that are expended. 

The third major part of the tool is the graphic report of the energy analysis 

results. When the user requests results, a bar graph is drawn on the CAD work 

area depicting the heat load or loss due to each building component for each 

month of the year in the selected climate. Examination of this graph quickly 

shows the user what component is causing the greatest problem, and whether 

there is a general heating problem or a cooling problem. Several graphs can be 

displayed at once, allowing the user to compare the energy impact of different 

design choices. 

Softdesk Energy was released by Softdesk in May, 1995 and demonstrated at the 

June AEC show. During the summer and fall we added a metric capability and 

developed Canadian climates and maps in addition to the US data included in the 

first version. These changes enable Softdesk to distribute Softdesk Energy 

throughout North America. 

The Trane Company, a manufacturer of HV AC equipment, authors several 

sophisticated software tools to assist their users in the specification of HV AC 

equipment. Like all other energy analysis programs except Softdesk Energy, the 

analysis begins with the user typing in large quantities of detailed geometric and 

non-geometric data about the building. Trane Company has joined the CRADA 
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team this year to consult on extensions to Softdesk Energy that would enable a 

user to export data from Softdesk Energy to the Trane product. This will save 

HV AC engineers many hours of data input for each customer. Instead of typing 

in pages of numbers such as 845 sq ft of floor area for Room 135, the user simply 

draws the building in Softdesk Auto-Architect, uses Softdesk Energy's graphical 

interface for the input of non-geometric data, and then exports a complete room­

by-room building description for the HV AC engineer. 
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6.0 MANUFACTURING PROCESS AUTOMATION AND 

SIMULATION 

This section describes two tasks aimed at improving the constructability of energy 

efficient housing. The first involves the development and use of software to 

simulate new production process technologies. The second task focuses on the 

development of a more energy efficient and constructible bay window design. 

Manufacturing Process Simulator 

The objective of this task is to develop and use simulation software tools to support 

housing manufacturers as they plan and implement advanced manufacturing 

systems. FY95 simulation activities had two major thrusts. The first was the 

broad dissemination of results from our successful efforts with Glaize 

Components. The Glaize effort was the subject of a two-page article which 

appeared in the August issue of Automated Builder magazine (Figure 6-1). Fifty 

housing manufacturers requested additional information via Automated 

Builder's reader service card. We responded to each request. The Glaize model 

was demonstrated to a large number of attendees at the 1995 Building Systems 

Council Showcase in Pittsburgh. The model was also demonstrated in 

considerably greater detail to several industrialized homebuilders and housing 

industry suppliers who see simulation as a tool to facilitate the introduction of 

their advanced manufacturing technologies. Industrialized homebuilders 

included Ryan and BuildTech, and suppliers included MiTek (the truss 

manufacturing equipment and systems supplier), Icynene (the insulation 

supplier), Burmek (the Swedish automated equipment supplier), and Makron 

(the Finnish automated equipment supplier), We continue to believe that 

suppliers of advanced process technologies are the most likely vehicle for 

transitioning simulation technologies into the industrialized housing 

marketplace. The Glaize modeling effort was also the topic of presentations given 

to the Build America contractors, the BETEC (Building Environment and 

Thermal Envelope Council) Symposium, and the Institute of Industrial 

Engineers. 

The second thrust of the simulation effort was to identify industry partners who 

would work with the EEIH team,to use simulation to improve manufacturing 
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operations. We now have three partners for modeling: MiTek, Icynene and 
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Figure 6-1, Computer Simulation ofMakron Wall Panel Line 

BuildTech. Modeling a second manufacturing operation has been delayed at the 

request of our partners; however, we expect each of the partners to support a 

modeling effort in FY96. 

Optimum Manufacturing/Construction Mix 

The objective of this task is to develop and prototype a bay window design that is 

both more energy efficient and constructible. Bay windows are one of the most 

popular options in homebuilding. However, when built on a cantilevered floor 

deck, bay windows are often a source of air infiltration, cold feet complaints, and 

9738/R96-3:TB Page 24 



framing complexities. These problems are magnified when the bay window is 

added to the gable end of the house, requiring the bay's floor system to be tied to 

the perpendicular main floor system. 

The EEIH team used a three step design approach to accomplish the objective. 

First, researchers reviewed floor plans and construction drawings from three 

major builders, Pulte, Ryan and Ryland as well as designs from four major 

window manufacturers. To better understand the manufacturing and 

construction complexities, the team visited several Ryan and Pulte construction 

sites in the Washington, DC area and the Ryan factory in Thurmont, MD. The 

trip yielded fresh insight into the design, construction, costing and pricing of bay 

windows. A key finding was the need for a design which can be easily added at 

any point during the construction process. 

The second step involved developing a range of alternative design concepts, 

evaluating the concepts for energy efficiency and constructability and selecting a 

concept for prototyping. In the final step the team constructed an alpha prototype 

of the concept and documented preliminary findings in a report "Constructability 

Design Report for the Cantilevered Bay Window Prototype." 

Figure 6-2, Structural Components of the Proposed Bay Window Design 
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The primary structural components of the alpha prototype are shown in Figure 6-

2. The floor system for the bay is a 6" structural insulated panel (SIP). The 

moment load of the bay is supported by two 45 degree right angle trusses. Each 

truss includes a long vertical member which attaches to the outboard edge of the 

SIP. The SIP is attached to each truss by two metal twist straps (Figure 6-3). The 

straps are connected to the double 2x spline on the outboard perimeter of the SIP 

and to each side of the vertical truss member. 

u :J 

Figure 6-3, Truss t.o SIP Connection using Metal Straps 
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Figure 6-4, Truss and Connection t.o House 

At the top of the bay, each truss is attached to the house by two metal hangers, one 
at the peak and one at the foot of the truss (Figure 6-4). The upper hanger is 
attached to the second floor exterior wall studs or to additional nailers. The lower 
hanger is attached to the header and double top plate of the bay. Figure 6-4 also 
demonstrates another important element of constructability research, the test jig, 
which is used to simulate the bay's interaction with the house. In this prototyping 
effort, the jig consists of a concrete block wall with a pseudo header/double top 
plate, a second floor nailer, and a first floor rim joist. 

Framing for the completed bay window prototype is shown in Figure 6-5. The 
prototype design is expected to have several important advantages over current 
site built designs. First, the thermal integrity of the SIP should eliminate air 
infiltration and cold feet associated with current floor framing. Second, the 
simplicity of the design is likely to improve constructability. The design 
minimizes the framing difficulty and cost of tying to the floor deck. Major 
components are manufactured, reducing disruption on the construction site. It 
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the site on a just-in-time basis. Finally, the ease of connection at the floor, even for 

difficult gable end applications, allows the bay option to be added later in the 

construction process, without extensive modification to the existing floor 

framing. 

Figure 6-5, Completed Bay Wmdow Prototype 
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The design has been reviewed by various industry representatives and their 

recommendations for further improvement are included in the report. The report 

has also been forwarded to parties in the SIP industry to explore interest in future 

efforts. 
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7.0 FIELD 'IESTING OF WHOLE HOUSES AND COMPONENTS 

Monit.oring and Analyzing the Energy Efficiency of the SSIC Panel 
Demonstration House 

In 1994, the University of Oregon Energy Studies In Buildings Laboratory 

constructed a Stressed-Skin Insulating Core (SSIC) Panel Demonstration House. 

In November 1995, The Florida Solar Energy Center made repairs and additions 

to the installed energy-use monitoring instrumentation, and began data 

acquisition from both the Springfield demonstration house site and the Eugene 

weather station site. 
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Figure 7-1 Measured t.otal energy use and heating systems (heat pump + electric 
resistance) energy use for the SSIC demonstration house, Springfield, OR 

Summary results for the '95-'96 winter heating season are best presented 

graphically in Figures 7-1 through 7-4. The period of analysis was chosen as 2-

J an-96 to 2-Mar-96. The summary analysis calculated an hourly profile of a 

"typical day" during the winter period by averaging the values at each hour of the 

day. Figure 7-1 shows that, for the all-electric house, the energy consumed for 
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heating was less than half of the total energy consumed. 

Figure 7-.2 shows the total energy consumption, normalized by floor area and 
inside to outside temperature difference, was low, at 5.39 Wh/m2/C/day. The 
hourly inside and outside temperatures, and the differential temperature are 
show in Figure 7-3. The winter-period average inside temperature was 23.2 C, 
average outside temperature was 5.6 C, giving an average differential 
temperature of 17.6 C. Although the house has a ventilation system which 
operates automatically by a timer, and can be operated manually, Figure 7-4 
indicates that the carbon dioxide levels are consistently above the ASHRAE 
Standard 62-1989 recommendation of less than 1000 ppm (parts per million). 
Monitoring of the SSIC demonstration house will continue to complete one year. 
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Figure 7-2 Normalized total energy use for the SSIC demonstration 
house Springfield, OR 
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Inside and Outside Temperature 
Springfield SSIC Demonstration House 
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Figure 7-3 Measured inside and outside temperatures, and differential 
t.emperature for SSIC demonstration house, Springfield, OR 
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Figure 7-4 Carbon dioxide levels at the SSIC demonstration house, 
Springfield, OR 

9 738/R96-3 :TB Page 33 



Cooling Short-Term Energy Monitoring 

In 1994, an early version of a cooling season short-term energy monitoring 

protocol was developed and executed at the Florida Solar Energy Center on a 

single-wide mobile home. In 1995, in collaboration with Macrodyne Energy 

International and the National Renewable Energy Laboratory, refinements were 

made to the test protocol, and modeling routines were included in the analysis to 

separately account for latent loads and the effect of moisture adsorption and 

desorption processes. The refined four-day, three-night cooling season short­

term energy monitoring test was repeated almost continuously between July and 

October 1995, on the same mobile home, to establish accuracy and repeatability 

limits. The experiments were conducted in collaboration with consultant C. 

Edward Hancock. 

The basic test sequence consisted of: 

a) maintaining a constant indoor temperature during daytime of day 1 

through daytime of day 2 

b) a night time pull down of indoor temperature, on night 2, by about 3 C over 

a few hours, and a warm up back to the original operating temperature 

over a few hours, while maintaining constant relative humidity 

c) a night time pull down of indoor relative humidity, on night 3, by about 5% 

over a few hours and return to original operating relative humidity over a 

few hours, while maintaining constant indoor temperature 

The part a) elicits solar gains and the building load coefficient; part b) elicits the 

heat capacitance; and part c) elicits moisture adsorption and desorption effects. 

Figure 7-5 shows data from the July testing period which illustrates the 

temperature and relative humidity "pulses." 

A number of interesting technical issues arise in controlling temperature and 

humidity in different zones of a building to closely approximate a one-zone 

building. A system of seven ducts, each with its own fan, provided conditioned 

air to different parts of the building as needed to cool and/or dry the zone, by 

drawing air over a chilled water cooling coil and supplying it to the zone. Electric 

heaters in each zone were activated to provide reheat as needed. Indoor 

temperature and relative humidity were measured in each of the seven locations 
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and were used for control purposes. Continuous measurement of air exchange 

rate was made by tracer gas injection, and outdoor environmental conditions 

were measured. 

After filtering the data, three periods were selected for detailed analysis. The 

data analysis was conducted by Macrodyne Energy International. Results 

showed that the primary and secondary terms renormalization parameters were 

quite consistent, giving support for the test protocol and analysis. It became clear 

that moisture adsorption-desorption is an important secondary term. Previous, 

extensive experience with heating season short-term energy monitoring has 

clearly demonstrated that including the secondary terms is important in 

improving the repeatability and accuracy of determining building characteristics 

from short-term tests. 

Temperature and Relative Humidity 
CSTEM test, data file=25jul95.dat 
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HUD Code Ventilation Syst.em Assessment 

Since October 1994, all new HUD Code manufactured housing is required to have 

a fresh air ventilation system installed. In the southern HUD Code Thermal Zone 

1, the pressure relationship of the houses relative to outdoors should be either 

positive or neutral. This pressure relationship will reduce the potential for 

moisture problems, due to air transport, in the humid, cooling dominated south. 

In northern HUD Code Thermal Zones 2 and 3, the pressure relationship of the 

houses relative to outdoors should be either negative or neutral. This pressure 

relationship will reduce the potential for moisture problems, due to air transport, 

in the heating dominated climates. In FY95, the Florida Solar Energy Center 

surveyed the manufactures supplying houses to HUD Code Thermal Zone 1 to 

assess how they were complying with the new ventilation code requirements. It 

was determined that there were essentially four approaches being taken by the 

manufacturers: 

1) An additional exhaust fan, such as is used to exhaust bathrooms, is 

installed in the main body of the house and exhausts to the outside through 

the roof; 

2) An undampered and unfiltered five inch diameter duct from the return 

side of the central air distribution system fan to the outside through the 

roof; 

3) A dampered and filtered five inch diameter duct from the return side of the 

central air distribution system fan to the outside through the roof; 

4) A dampered and filtered five inch diameter duct from the return side of the 

central air distribution system fan to a roof mounted fan that supplies 

outside air to both ventilate the attic and provide fresh air whenever the 

central fan and the fresh air damper operated. 

Figure 7-6 shows the percentages of the different system types being used by the 54 

manufacturers surveyed. 
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Manufactured House Ventilation Systems 
Survey In HUD Code Thermal Zone 1 
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Figure 7-6, Manufacturer survey results for ventilation systems 
used in HUD Code Thermal 7A>ne 1 

In June 1995, a house with system 1), in Edgewater, Florida, was tested and 

instrumented for year-long monitoring of indoor air conditions to determine 

ventilation system effectiveness. The monitoring also included pressure 

differential with respect to outdoors and energy use. In order to obtain more 

useful information from the ventilation system monitoring, the occupants were 

given a schedule to follow which designated a sequence of four, three-month 

periods whereby the occupants would operate the ventilation system in any way 

they chose for the first month, then operated the ventilation system constantly for 

the second month, and turned it off for the entire third month. This sequence 

would repeat four times. Results for the house with system 1) show that when the 

ventilation fan is on continuously the level of carbon dioxide is below the ASHRAE 

Standard 62-1989 recommendation of <1000 parts per million (ppm). When the 

fan is not operated, the level of carbon dioxide often exceeds 1000 ppm. Figure 7-6 

illustrates this graphically. 
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Figure 7-7 Carbon dioxide levels at the Edgewater, FL HUD Code house 

In May 1996, a house with system 2), in Tallahassee, Florida, was also tested and 

instrumented for year-long monitoring. The assessment of this ventilation 

system has revealed many flaws which should be addressed by the HUD Code 

industry. They are listed as follows: 

a) The fresh air duct from outdoors is ducted only to the furnace fan, the 

separate cooling system fan, in an outdoor packaged unit, has no provision 

for bringing in fresh air. Hence, when the house thermostat is switched to 

cooling mode, no ventilation air will be provided. 

b) The fresh air duct has no damper to block unwanted air infiltration when 

the furnace fan is off, and, since the cooling and heating systems share the 

same supply ducts, when the cooling fan is on, cooled air flows backward 

through the furnace fan and up the undampered fresh air duct to outdoors. 

c) The fresh air duct bypasses the furnace filter, this can allow outside dirt, 

dust and insects to pass directly into the air distribution system to be 

distributed throughout the house. 

9738/R96-3:TB Page 38 



d) The house thermostat has a selection for the central fan to operate in either 

AUTO or ON mode. The ON mode should cause the central furnace fan to 

operate constantly. This should allow the occupant to constantly get fresh 

air, although the expense of operating the relatively large fan constantly 

(940 cfm measured) to get a small amount of fresh air (50 cfm measured) is 

questionable. For this system, with thermostat fan switch in the ON mode, 

no fan was activated. A switch to activate the furnace fan was found only 

by removing the fan access panel, an unlikely thing for most occupants to 

do, or think to do. 

9738/R96-3:TB Page 39 



9738/R96-3:TB Page 40 



8.0 RESEARCH UTILIZATION 

Cooperative Energy Efficient Industry Construct.eel Demonstration Housing 

The objectives of this task are to: 

1) Provide design assistance, construction quality control services and test the 

energy and indoor air quality performance of Health House®s being 

constructed throughout the U.S.as a project of the local affiliates of the 

American Lung Association (ALA). Health House®s were pioneered by the 

Minneapolis affiliate of the ALA in 1993. Health House®s are high visibility 

demonstration homes which feature energy efficient construction and 

excellent indoor air quality so that allergic individuals can breathe easier. 

2) Test the energy efficiency and indoor air quality of other high visibility 

industry constructed energy efficient demonstration homes. 

Health House®s 

In 1995 two Health House®s were constructed. One in Orlando, FL and the other 

one in Minneapolis, JMN. The Orlando Health House® is shown in Figure 8-1. 

This house was featured as the cover story in the March 1996 issue of Professional 

Builder magazine, a widely read trade publication (circulation ~150,000). A key 

feature of the house is a whole house dehumidifier which independently controls 

the relative humidity(RH) in the house. Controlling RH to 50% is expected to 

create an environment where dust mites cannot survive. The house is being 

monitored to determine its energy efficiency and its indoor air quality. A key 

parameter of interest is the dust mite allergen level. Dust samples are being 

collected monthly in the Health House® and a neighboring control house. If, as 

expected, the dust mite allergens are lower in the Health House® then it will not 

have a principal cause of asthma and allergies in humid climates. 

The Minneapolis Health House®, also completed in 1995, was a remodeling 

project and is featured in the May 1996 issue of Better Homes and Gardens. The 

EEIH team participated in conducting the diagnostics testing and recommending 

the remediation work to be done to alleviate the mold and mildew problems in the 

house. 
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Figure 8-1, The 1995 Orlando Health House® 

In 1996, Health House®s are being planned in the cities of New Orleans, LA; 

Huntsville, AL; Birmingham, AL and Jacksonville, FL. The EEIH project is 

involved in all these houses and plans to continue the evaluation of energy 

efficiency and indoor air quality in these homes and comparable control homes. 

READ Project, East Lansing, Michigan 

The Resource Efficient and Affordable Demonstration Home (READ) project in 

East Lansing, Michigan is a house which was constructed for a family of five 

people. The goal, stated by the project organizers, was " . . .  to strengthen the 

understanding of highly energy-efficient building technology and demonstrate its 

applicability and economic availability to the community-at-large."  Figure 8-2 

shows the front of the house, south facade, at the time of completion. The owners 

decided to build the same SSIC demonstration house designed by the EEIH project 

at the University of Oregon, except with a full basement. The basement walls are 

also of Structural Insulated ·Panel (SIP) construction, with a pressure treated 
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plywood outside skin. The owner was able to solicit collaboration, and some cost 

share, from several private sector groups, including: Great Lakes Insulspan; 

John Barrie Associates Architects; Sunway Builders; and Consumers Power 

Company. 

Figure 8-2, Front of READ Project House, East Lansing, MI 

The USDOE EEIB project was requested to support the READ project with energy 

and indoor air quality testing and monitoring to verify project goals. In 

September, FSEC pre-wired the house for monitoring sensors, during 

construction. In December, an intensive three days of building diagnostic testing 

and monitoring system setup was completed. Two local television stations 

featured the testing project in their news programs. Initial results show the 

house to be well insulated, and exceptionally airtight. A small ventilation fan is 

capable of providing adequate ventilation air, and control of interior pressure 

relationship relative to outside. The house heating energy consumption, indoor 

air quality, and interior and exterior environmental conditions will be monitored 

for a one year period. Condensed results for winter '95-'96 monitoring are shown 

in Figure 8-3 Energy use is relatively low for the 1800 ft2 house, and indoor 

relative humidity is under good control, however, to dilute carbon dioxide 
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generated from breathing, the ventilation fan ON-time should be increased. 

Figure 8-5 shows the total energy consumption, averaged by hour for the entire 

'95-'96 winter analysis period, and normalized by floor area and inside to outside 

temperature difference. The normalized total energy use was low, at 6.62 

Wh/m2/C/day. This compares to 5.39 Wh/m2/C/day for essentially the same 

house (see section IV .A) in Springfield, OR. Major differences between the two 

houses are basement versus crawl space, and gas heat versus electric resistance 

and heat pump heat, for the East Lansing and Springfield houses, respectively. 

Hourly averaged inside and outside temperatures, and temperature differential, 

are show in Figure 8-4. 

Winter '95-'96 
27-Dec-95 through 31-Mar-96 

Average daily gas 78.9 kW-h/day 269.4 ft3/day 
heating energy use 269.4 kBtu/day 

2.694 therm/day 
Average daily total 1 5. 1  kW-h/day 
electric energy use 

Average daily inside to 22.3 C 40. 1 °F 
outside temperature 
difference 

Average daily outside -3.7 C 25.4°F 
temperature 

Average daily inside CO2 > 1 000 ppm standard 
concentration 

Average daily ventilation 1 5.8% 
fan ON-time 

Average daily inside 45. 1  % 
relative humidity 

Figure 8-3, Summary Monit.oring Results for READ Project House, 
East Lansing, MI 

9738/R96-3:TB Page 44 



Inside and Outside Temperature 
East Lansing READ Project House 
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Energy Smart Demonstration House, Pensacola, FL 

The Pensacola Energy Smart Demonstration House is the first of a series of 

demonstration houses being constructed by Energy Smart Corporation. Figure 8-

6 shows the front of the house shortly after completion. The most important 

energy efficiency features of the home are: 1) high efficiency, heat rejecting 

windows; 2) high efficiency heating and cooling with two ground-source heat 

pumps, and one of those with two zones; 3) thicker insulation and outside air 

infiltration barrier; 4) sealed air distribution system; 5) sealed recessed canister 

lights. Nearly 60 product manufacturers contributed to the demonstration house 

in trade for extensive exposure to customers. 

Figure 8-6, Photograph of front of Pensacola, FL Energy Smart Demonstration 
House 

The Florida Solar Energy Center reviewed the house design and made specific 

recommendations regarding the Solarium and Sun Basement in July 1994. FSEC 

returned to pre-wire the house for monitoring instrumentation, conduct pre­

drywall duct air tightness testing, and contribute in design discussions in 

November 1994. In January 1996, at the end of the three-month open-house 

period, FSEC completed building diagnostic testing, indoor air quality sampling, 
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and the setup of instrumentation to monitor energy use and indoor air quality for 

one year. Three local television stations featured the testing project in their news 

programs, as well as in newspaper articles. 

Testing results showed the house to be well insulated, with the exception of some 

knee-wall areas (vertical ceiling surfaces which transition between vaulted and 

flat ceilings) where the insulation was poorly supported from falling away. Air 

tightness testing of the large 7,000 ft2, 70,000 ft3 house showed the building 

envelope leakage to be lower than average new construction, with a 

dimensionless specific leakage area of 3.2, and a natural air change rate of 0.21 

as tested by tracer gas. Duct air tightness was excellent upon the initial pre­

drywall test, but was subsequently compromised by the poor installation of two 

short return air ducts and a zoning damper. This illustrated the need for 

vigilance throughout the entire building process. Sampling for volatile organic 

compounds and formaldehyde showed low concentrations, and odor levels below 

standardized thresholds except for the compound octanal which was slightly 

higher. The home was not occupied, except for tours, during the winter '95-'96 

period. Hence, it was not usually heated to a normal setpoint, rendering little 

information on heating energy use performance. The summer '96 season should 

be more informative. 

Residential Energy Effi.cient Design and Development Advisory Center (REDAC) 

Objective: 

Provide climate-specific design guidance to Habitat for Humanity affiliates 

through a variety of presentation, consultation, and publication activities. Provide 

similar information to designers, engineers, builders, and building owners as 

resources permit. 

Rational: 

This kick-off year of REDAC is preceded by a rich history of FSEC design advisory 

services to housing manufacturers nationwide as well as residential design 

assistance in a variety of climates. Historically, presentations to and publications 

for design decision makers deliver a message on the concrete methods of energy 

conservation. While review of specific projects helps professionals and building 
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owners successfully apply these concepts and make the shift toward energy 

conscious design. Through these consultation activities, the research team 

fosters development of energy intuition, the thought process needed to repeat 

successful energy design. 

Progress: 
Announcement of this technical assistance service appeared in one Habitat for 

Humanity's newsletter for affiliates, Affiliate Update, and the Florida Solar 

Energy Center's newsletter, the Solar Collector. Exhibition at the National Home 

Builders Association in conjunction with Houston Habitat for Humanity's energy 

demonstration project and a presentation of planned activities at the American 

Society of Solar Engineers conference brought further focus to REDAC. Requested 

assistance has ranged from basic weather data to detailed building simulation 

and analysis. Each Habitat affiliate received climate specific information 

appropriate and was encouraged to continue pursuing energy conscious design 

and consulting with REDAC. 

Design assistance was provided to the following Habitat affiliates: 

Hanover County, Virginia 

Indian River County, Florida 

Seattle, Washington 

Kansas City, Missouri 

Columbus, Ohio 

Rutherford County, Tennessee 

Washington DC 

Houston, Texas 

HFH International, Department of Environment 

HFH Florida, State Director 

HFH Southeast, Regional Director 

Those affiliates requesting advisement fall into three general categories: 

Curious: Thinking about pursuing energy conservation on a future project. 

Active: Pursuing energy conservation on a current project. 

Accomplished: Comprehensive energy design on three or more projects. 
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Because affiliates vary in understanding and commitment to energy design, a 
broad protocol is used to determine appropriate guidance for each type of 
requestor: 

Curious requestors: 

The research team offers guidance in energy goal setting, discussion of energy 
design concepts and the affiliate's current design as well as construction 
practices, publications, and brief design review including suggestion of 
inexpensive, volunteer friendly energy improvements. 

Active requestors: 

The research team reviews plans for current or future projects, evaluating 
current energy features as well as identifying the next level of efficiency to target. 
This involves simulation of annual energy use as well as interaction with the 
affiliate's design team and an obvious commitment to energy conservation by both 
the affiliate administration and the construction staff. 
Accomplished requestors: 

The research team requests a description of the energy design package and any 
formal material such as brochures or articles that detail the process and/or 
result of the project. These are made available to other requestors when 
appropriate. For an affiliate at this level of energy consciousness, REDAC serves 
as a clearing house for new technical information and a champion of successful 
projects . 

Future work: 

The presentation, publication, and consultation strategy will continue to guide 
the activities of this task. REDAC will participate in several conferences and 
produce two publications for wide distribution. REDAC staff will work with 
several affiliates in different regions to exemplify energy conscience design. 
Seeking publicity for these projects to disseminate the concepts embodied in them 
will be a part of this activity. 
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Increasing the Market Share of Wood Framed Closed Pane1s 

The objectives of this task were to identify market barriers to energy-efficient 
closed wood frame panels and to develop strategies to overcome these barriers. 

The University of Oregon completed diagnostic testing of six units of housing 
which used open and closed panels. Open panels are built with wood studs and 
shipped to the site with sheathing and sometimes windows and siding installed 
but without insulation, vapor barriers, drywall, or wiring. Closed panels, in 
contrast, usually come to the site with insulation, vapor barriers, and electrical 
chases installed. The testing indicated that the units constructed of wood framed 
closed panels performed better thermally than open framed wood panels. 

< 

Majority of US Wood Frame 

/ 
Panel Manufacturers 

:a: 
Range of Wood Frame Wall Pane1s 

Produced in the us 
> 

1 .·.•.•:•.·.·.·.·:-:-:-·-•.:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:.:-:❖:❖:❖sf.i:a 
Increasing Energy Performance ) 

Open Panel 

INSTALLED IN FACTORY 
studs 
sheathing 

INSTALLED IN FIELD 
windows 
siding 
wind barrier 
electrical 
plumbing 
insulation 
gypsum board 
vapor retarder 

Figu.re S-7 

Closed Panel 

INSTALLED IN FACTORY 
studs 
sheathing 
windows 
siding 
wind barrier 
electrical 
plumbing 
insulation 
gypsum board 
vapor retarder 

Range of Value and Energy Efficiency Added to Manufactured Panels 
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Currently about 40% of U.S. homes are built from panels. Most of these panels 

are wood framed open panels which are finished in the field. Wood framed closed 

panels represent an opportunity for greater value and energy efficiency. In 

addition to increased energy efficiency, inherent to closed panels are increased 

quality control and cost savings available in the factory. 

A survey of 363 manufacturers was performed to identify the number of 

manufacturers who produced wood frame closed panels and to determine the 

barriers to closed panels. Results of the survey indicated only 6% of panel 

manufacturers produced a wood framed closed panel. The majority of these 

manufacturers are producing panels for international markets. 
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8. 40% 
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Q) 

1= 20% 
Q) 
u 

� 0% 
Stressed 

Skin 
Wood 
Frame 

□ Open 

IE Closed 

Steel 
Frame 

Other 

Figure 8-8, Survey Response 

From the survey, open and closed panel manufacturers were identified and 

contacted to gather more in depth information on barriers to closed panels. 

Further insight into barriers to wood framed closed panels were gained through 

the observation of manufacturing and construction of a wood framed closed panel 

duplex by Soft Tech of Springfield, Oregon. Perspectives on barriers were also 

gained through interviews with Oregon State Building Code Officials. 

The following list of barriers to wood framed closed panels were identified: 

• Lack of flexibility in installation of panels, their wiring and plumbing. 
• Misconceptions concerning codes and inspection requirements. 
• Resistance of construction trades to increased industrialization due to 
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the fear of lost business. 
• Damage to wood framed closed panels during shipping and installation. 
• Lack of awareness of the benefits of wood framed closed panels by 

builders and prospective owners. 
• Lack of knowledge concerning required manufacturing equipment to 

move from open to closed panels. 
• Perceived loss of flexibility in design for manufacturers and a 

consequent loss of market. 

The following strategies were identified to overcome these barriers: 

• Develop educational material to increase awareness of the benefits of 

wood framed closed panels. Educational material required for 

development includes: 

Data on the cost effectiveness of construction with closed 

panels 

Cost studies on conversion from open panel manufacturing to 

closed panel manufacturing 

Details of panelized construction techniques for contractors 
• Increase computerization in office, field, and factory to facilitate 

production, communication, and design flexibility. 
• Increase the adoption of on site construction cranes for residential 

scale projects. Contractors often must use large commercial cranes 

which require licensed operators. Contractors need greater access to 

smaller cranes for residential purposes to install closed panels. 
• Increase the regional uniformity in building codes for manufactured 

panels. Uniformity in building codes would facilitate the growth of 

markets for wood framed closed panels. 
• Increase the adoption of Manufacturing Compliance Programs for 

code approval. Manufacturing Compliance Programs ensure quality 

control and conformance with codes without factory inspection of 

every house. 

• Improve the durability of finish skin through the use of more durable 

materials such as fiber reinforced gypsum board rather than 

conventional gypsum board to decrease damage during shipping and 
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construction. 
• Make advances in storage containers made specifically for the 

shipment of panels to facilitate the loading and unloading of panels 

as well as their protection in transport 
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