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Abstract: Grape seeds are a copious part of the grape pomace produced by wine and juice industry
and they represent an interesting source of phenolic compounds. Proanthocyanidins (PAs) are the
main class of grape seed phenols and are important dietary supplements for their well-known
beneficial properties. In this study enriched extracts obtained from Chardonnay and Pignoletto grape
seeds were characterized for their proanthocyanidins and other minor phenolic compounds content
and composition. Seed PAs were fractionated using Sephadex LH-20, using different ethanol aqueous
solutions as mobile phase and analysed by normal phase HPLC-FLD-ESI-MS. Monomers, oligomers
up to dodecamers and polymers were recorded in all samples. For both cultivars, the extracts showed
a high content in PAs. The determination of other phenolic compounds was carried out using a
HPLC-QqQ-ESI-MS and Chardonnay samples reported a greater content compared to Pignoletto
samples. Contrary to PAs fraction, extracts obtained with ethanol/water 50/50 (v/v) presented a
significant higher phenolic content than the others.

Keywords: grape seeds; flavan-3-ols; oligomeric proanthocyanidins; phenolic compounds;
LH-20 Sephadex

1. Introduction

Grape crops are one of the main extended agro economic activities in the world. Grape-derived
products industry, such as winery and juices industries, generates high amounts of pomaces that
include pulp residues, stems, skins and seeds. It has been estimated that the grape pomace amounts
are approximately 20% (w/w) of wine or juice industry [1]. Grape pomace represents an environmental
problem; however, it contains large amounts of phytochemicals (phenolic compounds among others),
because of that it could be considered a low-cost source of these bioactive compounds [2].

Grape seeds consist of 13% of the grape’s weight and represent from 38% to 52% (dry weight) of
grape pomace [3,4]. Its composition is very interesting due to the content of 40% dietary fibre, 16% oil,
11% protein and 7% phenolic compounds and other substances.

After pressing, grape seeds are still a rich source of oil and bioactive compounds, like polyphenols.
The major part of grape seeds phenols are proanthocyanidins, a class of compounds which take form
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of oligomers and polymers derived from flavan-3-ols units, linked mainly by 4- 8 or 4-6 bonds [5].
Previous studies report the highest concentration of these compounds in grape seeds compared
to grape skins and steams [5,6]. Furthermore, grape seeds present only the procyanidin-type of
proanthocyanidins, consisting of (+)-catechin and (−)-epicatechin units. Monomers are the most
abundant flavan-3-ols in these seeds, even if procyanidin oligomers and polymers, until high degree of
polymerization (DP), were also detected. Another characteristic of the flavanol composition of grape
seeds is the presence of derivatives esterified with gallic acid [5,7,8].

The growing interest in by-products as source of bioactive compounds has prompted the attention
of the investigators on grape seed procyanidins and their beneficial effects on human health [9]. Several
studies report the free radical scavenging and antioxidant activity of grape seed proanthocyanidins,
demonstrating higher bioavailable and greater protection than vitamins C, E and β-carotene [10,11].
Besides the antioxidant potential, grape seed proanthocyanidins exhibit cardioprotective effects,
preventing atherosclerosis as antioxidants of human low density lipoprotein [12]. Research studies
show also anticarcinogenic [13–16], anti-inflammatory [17] and antiulcer [18] activity of the grape seed
phenolic extract, as well as preventing the progression of cataract formation [19].

Sephadex LH-20 resin is frequently employed for proanthocyanidin purification and
fractionation [20,21]. Acetone was usually used as elution solvent in order to recover the
proanthocyanidins from Sephadex LH-20 resin; however, several studies [22–24] showed that ethanol
could be a good alternative in order to obtain flavan-3-ols enriched extracts. Particularly, Li et al. [23]
reported that 55/45 ethanol/water (v/v) solution is able to recover gallocatechin-gallate; at the same
time, Tian et al. [24] showed that 70/30 and 90/10 ethanol/water (v/v) eluted fractions contain
flavan-3-ol compounds like catechin and procyanidins.

On the basis of these previous studies, the aim of this work was to compare the
purification efficiency of the ethanol/water solution (50/50 and 80/20 (v/v)) in order to obtain
proanthocyanidin enriched extracts from two grape seed by-products. Moreover, other goal was
to characterize the proanthocyanidin profile and other minor phenolic compounds in enriched
extracts purified by resins. The oligomeric and polymeric flavan-3-ols fractions were characterized
by normal-phase HPLC-FLD-MS, whereas the other phenolic compounds were analysed by
reverse-phase HPLC-QqQ-MS.

2. Results

2.1. Separation and Identification of Oligomeric Proantocyanidins

As previously described, literature on the use of ethanol solutions to recover flavan-3-ols from
LH-20 Sephadex resin is scarce. However, Li et al. [23] using a Sephadex LH-20 gel and 55%
ethanol–water solution as eluent allowed an extract of gallocatechin-gallate (GCG) with a 91% of purity
and a recovery of 68% from Camellia ptilophylla. Nevertheless, Tian et al. [24] studied the recovery
of flavan-3-ols from different Finnish berry plants after purification with Sepahadex LH-20 using 0,
20, 40, 70 and 90% ethanol as eluent solutions; their results underlined that the highest recovery of
flavan-3-ols was obtained eluting with 70–90% of ethanol. Thus, taking into account these previous
results, two solutions (50 and 80 % of aqueous ethanol) were used as eluent to recover flavan-3-ols
from grape seed by-products.

The dried extracts obtained after resin purification were analysed by HPLC-FLD-ESI-MS in order
to determine the oligomeric flavan-3-ols. Figure 1 shows the HPLC chromatogram of the flavan-3-ols
and their analytical parameters are reported in Table 1.
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Figure 1. Grape seed extracts flavan-3-ols profile as obtained by normal phase HPLC separation. 
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of an apple sample. Finally, the peak at 65.7 min was attributed to polymers flavan-3-ols (> 12 of 
degree of polymerization) [26]. 
  

Figure 1. Grape seed extracts flavan-3-ols profile as obtained by normal phase HPLC separation.

Table 1. Analytical parameters of HPLC–FLD-ESI-MS method.

Compounds Retention Time (min) [M-H]− In Source Fragment (m/z)

Monomers (DP1) 6.7 289 245

Dimers (DP2) 18.2 577 425, 289

Galloylated dimers (DP2-G) 25 729 303

Trimers (DP3) 28.1 865 739, 713

Galloylated trimers (DP3-G) 30.4 881, 1017 593, 303

Tetramers (DP4) 35.3 1153 c 865

Galloylated tetramers (DP4-G) 36.8 1305 -

Pentamers (DP5) 41.2 1441, 797, 873 -

Hexamers (DP6) 45.2 - -

Heptamers (DP7) 49 - -

Octamers (DP8) 52.2 - -

Nonamers (DP9) 55.0 - -

Decamers (DP10) 57.8 - -

Undecamers (DP11) 60.1 - -

Dodecamers (DP12) 62.0 - -

Polymers 65.7 - -

Peak at 6.7 min resulted in [M-H]− ion at m/z 289 that is attributed to catechin and epicatechin
that were described in grape seeds by several authors [25,26]. Their presence has been confirmed
by co-elution with chemical standards. Peak at 18.2 min reported a [M-H]− ion at m/z 577 that has
been assigned to procyanidin dimers; Prodanov et al. [25] described the presence of several dimer
isomers such as PC B1, PC B2, PC B3, PC B4, PC B5 and PC B6 in Malvar grape seeds. An ion peak was
detected at m/z 729 (retention time 25 min) which value has been previously attributed to the mass of
a galloylated procyanidin dimer [25,26]. [M-H]− ion at m/z 865 was detected for the peak at 28.1 min;
therefore this ion peak was attributed to procyanidin trimer according to literature [25,26]. Peak at
30.4 min showed two majors [M-H]− ion at m/z 881 and 1017 corresponding to galloylated procyanidin
trimers. Peak eluting at 35.3 min, showing [M-H]− at m/z 1153 was identified as procyanidin tetramer
according to Prodanov et al. [25]. Compound eluting at 36.8 min showed [M-H]− at m/z 1305 and was
identified as monogalloylated procyanidin tetramer. Three co-eluting compounds at 41.2 min with
[M-H]– 1441, 797 and 873 m/z were identified respectively, no-galloylated and galloylated procyanidin
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pentamers. Procyanidin oligomers from 6 to 12 degrees of polymerization were assigned comparing
the grape seed extract chromatogram with a co-elution of an apple sample. Finally, the peak at 65.7 min
was attributed to polymers flavan-3-ols (> 12 of degree of polymerization) [26].

2.2. Quantification of Oligomeric Proantocyanidins

The concentrations of monomers and proanthocyanidins (PAs) identified in the different grape
seed extracts are reported in Table 2. The normal phase HPLC analysis with fluorimetric detection
and diol stationary phase permitted the separation and quantification of the proanthocyanidins in
distinct peaks, according to their degree of polymerization (DP). As shown in Table 1, in all the
fractions obtained from Chardonnay (C) and Pignoletto (P) grape seeds, monomers, oligomers up
to dodecamers and polymers were recorded. In agreement with a previous study [26], monomers
represented the principal flavan-3-ols present in the grape seed samples, accounting for more than
60% of the total PAs content. For both cultivars, the extracts obtained eluting ethanol/water 80/20
v/v (CF1 ad PF1) showed a significant higher content than the fraction eluted with ethanol/water
50/50 v/v (CF2 and PF2). These results confirmed that high alcohol level released less soluble and
more stable compounds such as flavan-3-ols [27]. The same trend was observed for dimers content,
with CF1 as the richest sample. Dimers amount was about the 10%, whereas trimers and tetramers
were less abundant with an amount from 3.6 to 4.1% and from 2.3 to 2.8%, respectively. As already
reported elsewhere [26], with increasing DP the concentration of oligomers decreased until less than
1% from octamers to dodecamers. Polymers varied in a range from 3.3 to 6.6% of the total PAs, showing
a similar concentration in all extracts, except for PF1. Finally, the total flavan-3-ols (SPAs: sum of
monomers, oligomers and polymers) followed the trend of monomers and dimers, with CF1 as the
most concentrated sample and CF2 the less one. These results strongly agree with the data reported by
Tian et al. [24] that showed as higher ratio of ethanol were able to recover high amounts of (+)-catechin,
(−)-epicatechin and B-type procyanidin dimers in sea buckthorn berry and crowberry and several
leaf extracts (sea buckthorn, saskatoon, white currant, lingonberry, hawthorn). The same authors also
noticed that ethanol/water 60/40 (v/v) allowed lower recovery of flavan-3-ols only in Saskatoon and
hawthorn leaf extracts, confirming the low extraction power of the solvent when high amounts of
water is present in the elution solvent.
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Table 2. Concentrations (mg/g) of flavan-3-ols in grape seeds enriched extracts from cv. Chardonnay
(C) and Pignoletto (P) berries. *: SGPAs = Sum of galloylated proanthocyanidins; SPAs =
Sum proanthocyanidins.

Compounds CF1 CF2 PF1 PF2

PAs (mg/g)

Monomers (DP1) 456.1 ± 3.4 a 185.2 ± 2.9 d 252.6 ± 3.0 b 222.5 ± 8.3 c

Dimers (DP2) 55.4 ± 0.1 a 29.1 ± 0.02 d 42.9 ± 0.2 b 38.4 ± 0.01 c

Galloylated dimers (DP2-G) 9.8 ± 0.1 a 8.3 ± 0.3 b 9.6 ± 0.1 a 10.3 ± 0.1 a

Trimers (DP3) 22.8 ± 0.01 a 11.4 ± 0.1 c 15.2 ± 0.1 b 14.7 ± 1.5 b

Galloylated trimers (DP3-G) 8.4 ± 0.01 a 6.3 ± 0.02 b 8.7 ± 0.3 a 8.8 ± 0.0 a

Tetramers (DP4) 14.6 ± 0.1 a 8.3 ± 0.1 c 9.9 ± 0.1 b 9.2 ± 0.5 b,c

Galloylated tetramers (DP4-G) 5.6 ± 0.1 a 4.1 ± 0.0 c 5.2 ± 0.1 b 5.2 ± 0.2 b

Pentamers (DP5) 11.7 ± 0.1 a 6.4 ± 0.1 c 8.0 ± 0.1 b 7.9 ± 0.3 b

Hexamers (DP6) 6.4 ± 0.1 a 3.9 ± 0.0 d 4.3 ± 0.02 c 4.5 ± 0.01 b

Heptamers (DP7) 6.5 ± 0.1 a 4.5 ± 0.0 c 4.6 ± 0.0 c 4.9 ± 0.0 b

Octamers (DP8) 4.2 ± 0.2 a 3.2 ± 0.0 b 3.2 ± 0.1 b 3.4 ± 0.1 b

Nonamers (DP9) 2.3 ± 0.02 a 2.0 ± 0.02 b,c 2.0 ± 0.02 c 2.1 ± 0.03 b

Decamers (DP10) 3.2 ± 0.01 a 3.0 ± 0.02 b,c 2.9 ± 0.02 c 3.1 ± 0.02 a,b

Undecamers (DP11) 3.0 ± 0.0 a 2.9 ± 0.0 b 2.8 ± 0.0 c 3.0 ± 0.0 a,b

Dodecamers (DP12) 2.9 ± 0.01 a 2.8 ± 0.01 b 2.7 ± 0.01 c 2.9 ± 0.02 a

Polymers 21.0 ± 0.2 a,b 19.9 ± 0.7 b 15.8 ± 0.2 c 22.0 ± 0.6 a

SGPAs * 23.8 ± 0.1 a 18.7 ± 0.4 b 23.5 ± 0.5 a 24.3 ± 0.1 a

SPAs * 634.0 ± 3.1 a 301.4 ± 3.2 d 390.2 ± 2.5 b 362.9 ± 9.7 c

Different letters in the same row indicate significant differences (p < 0.05).

Galloylated dimers, trimers and tetramers were also found and they eluted after their
non-galloylated PA, with a significant lower amount. Their total content (SGPAs) was similar in
the grape seed extracts (about 24 mg/g), except for CF2 (18.7 mg/g); nevertheless, their percentage
content on the total PAs amount was up to 6% for extracts CF2, PF1 and PF2, whereas CF1 showed
a percentage of about half of the others (3.8%). Their presence in grapes seeds is usually evaluated
after hydrolysis and expressed as percentages of galloylated units [28]. With this analytical approach,
the % of galloylation in grape seeds has been found to spans between 13% and 30% depending on
the PAs polymerization degree [28,29]. The lower percentages found in our samples is certainly due
to: (i) the different analytical technique we adopted, capable of estimating the absolute amount of
procyanidins gallate instead of single gallic residues; (ii) the lack of chromatographic separation of
polymeric PAs > 12 DP.

Although the trend was not the same for all individual compounds, CF1 and PF1 showed higher
total content in PAs compared to the others. Polymers were up 6% of total proanthocyanidins in F2
fractions and less than 4% in F1 fractions. It is, however, worth to note that, while for Pignoletto
seeds the use of the two extraction solvents (80/20 and 50/50) gave quite similar results in terms
of composition of the extract, for Chardonnay samples, the solution composed of ethanol/water
80/20 v/v resulted in higher extraction of monomeric and oligomeric compounds, with likely distinct
antioxidant and organoleptic characteristics with respect to other.

Grape seed proanthocyanidins garnered the attention of several researchers and companies due
to their bioactive properties. Several investigations have been developed in the last years, focusing the
attention as on technological use of procyanidins from winery by-products [30,31] than for functional
foods and/or nutraceuticals [32–38].

As reported by several authors [39–46] one of the activities of grape proanthocyanidins is related
to the amelioration of the symptoms of metabolic syndrome diseases and its related diseases. Different
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mechanisms were reported; Banerji and Banerjee [39] proposed that the control of type 2 diabetes
mellitus in advanced-stage patients is possible using a mixture of grape seed procyanidin extract
(GSPE); Indian gooseberry, turmeric and fenugreek extracts that is able to prevent β cell apoptosis and
facilitate cell replication due to a decrease of the pancreatic oxidative stress and modulation of the
immune response. Grape seed proanthocyanidin extract was also used by Sun et al. [42] in diabetic
rats and they reported the reduction of apoptosis of retinal cells suggesting the protection of the
retina against hyperglycaemic damage, probably due to the amelioration of oxidative stress-mediated
injury via the activation of the Nrf2 pathway. Aragones et al. [41] demonstrated that grape seed
proantocyanidins modulate many metabolic pathways in the liver in a dose-dependent manner
increasing the NAD+ availability and activating SIRT1, which was significantly associated with
improved protection against hepatic triglyceride accumulation. Moreover, as reported by Seo et al. [40],
grape flavonoids reduced the hepatic ROS and prevents non-alcoholic fatty liver disease by reducing
oxidative stress and inflammation; modulating cholesterol, bile acid and ceramide synthesis and lipid
metabolism in the liver; and ameliorating insulin resistance. The body weight loss was also noticed; this
effect was confirmed in vivo by Serrano et al. [47] that showed as GSPE improved the lipid oxidation
in subcutaneous adipose tissue and consequently improved the total energy expenditure. Moreover,
the inhibition of adipogenesis induced by grape procyanidin B2 and GSPE were also reported by
others [45,48].

2.3. Identification and Quantification of Other Phenolic Compounds

While proanthocyanidins represent the largest part of grape seed flavonoid composition, other
phenolic compounds, which have been reported in minor amounts, were also investigated for their
contribution to the bioactive properties of grape seed extracts [49]. Accordingly, to determine other
phenolic compounds present in the grape seed extracts, HPLC-QqQ-MS analysis has been carried
out. Several phenolic compounds were identified and the analytical parameters for their analysis are
reported in Table 3.

Table 3. Analytical parameters of HPLC-ESI-MS/MS method.

Compound Retention
Time (min) [M-H]−

Product
Ions

Quantification
Transition (m/z)

Fragmentor
(V) CE (V)

Gallic acid 1.53 169 125 169→ 125 108 12

Protocatechuic aldehyde 5.03 137 108 137→ 108 98 12

Dihydrofisetin glucoside 9.05 449 287, 259 449→ 287 131 16

Ellagic acid 12.25 301 284, 257 301→ 284 169 28

Ellagic acid hexoside 1 12.45 463 301, 169 463→ 301 169 28

Ellagic acid hexoside 2 12.82 463 301, 169 463→ 301 169 28

Kaempferol-glucoside 12.95 447 285 447→ 285 131 16

Quercetin-pentoside 1 14.24 433 301, 179, 151 433→ 151 131 16

Quercetin-pentoside 2 14.46 433 301, 179, 151 433→ 151 131 16

Quercetin 17.81 301 179, 151 301→ 151 131 16

A total of five phenolic acid derivatives and five flavonols have been quantified using MRM mode.
Briefly, MS/MS data permitted the identification of gallic acid with m/z 169 and fragment at 125 m/z;
it was previously described in grape seeds and their extracts by several authors [25]. Protocatechuic
aldehyde was also identified and its presence in grape seeds was reported by Prodanov et al. [25]. Two
compounds at 463 m/z and fragment at 301 m/z were detected and according to Prodanov et al. [25]
they were attributed to ellagic acid hexoside isomers; moreover, aglycone form of ellagic acid
was detected [25]. Among the different flavonols, the peak with m/z 449 and fragment ions at
287 and 259 m/z, according to Prodanov et al. [25], was identified as dihydrofisetin glucoside.
Kaempferol-glucoside with a pseudomolecular ion at m/z 447 and fragment at m/z 285 (kaempferol)
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was also detected [50]. On the other hand, the flavonols quercetin-3-pentoside (two isomers) and
quercetin were detected; the pseudomolecular ion at 433 m/z and the fragments at 301, 179 and
151 m/z confirmed the presence of quercetin-pentoside [51]. Finally, quercetin was detected with
pseudomolecular ion at m/z 301 and fragments at 179 and 151 m/z [50].

The quantification of the phenolic acid derivatives and flavonols present in the grape seed extracts
is reported in Table 4, as µg/g of dry weight.

Table 4. Concentrations (µg/g) of phenolic compounds in grape seeds enriched extracts from cv.
Chardonnay (C) and Pignoletto (P) berries.

Compounds CF1 CF2 PF1 PF2

Phenolic Compounds (µg/g)

Gallic acid 1788.7 ± 52.3 a 1516.1 ±24.7 b 832.4 ±10.8 c 1490.6 ±19.9 b

Protocatechuic
aldehyde 108.8 ± 6.4 a 62.0 ±2.9 b 26.2 ±0.9 c 58.0 ±1.5 b

Dihydrofisetin
glucoside 207.1 ± 2.2 a 147.5 ±1.0 c 152.2 ±1.2 b 65.4 ±0.8 d

Ellagic acid 1102.4 ± 6.9 b 1401.7 ± 12.7 a < LOQ < LOQ

Ellagic acid hexoside 1 22473.6 ± 24.3 b 28726.7 ± 34.6 a 12570.4 ± 21.8 d 19509.3 ± 25.1 c

Ellagic acid hexoside 2 3371.9 ± 8.9 c 4719.2 ± 10.5 a 2426.6 ± 6.1 d 4407.6 ± 4.8 b

Kaempferol-glucoside 55.5 ± 0.5 c 77.5 ± 0.8 a 35.2 ± 0.3 d 66.3 ± 0.6 b

Quercetin-pentoside 1 5.6 ± 0.2 b 13.3 ± 0.5 a 1.6 ± 0.2 c 12.9 ± 0.3 a

Quercetin-pentoside 2 4.0 ± 0.2 c 11.8 ± 0.6 b 2.0 ± 0.1 d 20.7 ± 0.5 a

Quercetin 85.0 ± 1.3 c 177.5 ± 2.5 a 10.3 ± 0.2 d 98.8 ± 1.6 b

Total 29202.5 ± 72.5 b 36853.3 ± 69.8 a 16056.8 ± 21.5 d 25729.6 ± 20.7 c

LOQ ellagic acid = 0.047 µg/mL; Different letters in the same row indicate significant differences (p < 0.05).

The ellagic acid hexoside isomers were the predominant phenolic compounds in all samples,
accounting for more than 70% for the isomer 1 and only from the 12 to 17% for the isomer 2. Both of
them were present at the highest amount in sample CF2, whereas PF1 had the lowest content compared
to the other extracts. Gallic acid was the third most abundant compounds with amounts varying
from 4.1 to 6.1%, with CF1 as the most concentrated sample. According to the results obtained by
Garcia-Jares et al. [49] on 11 distinct monovarietal grape seed extracts, Chardonnay seed demonstrated
to be particularly rich in this trihydroxylated and highly antioxidant phenolic acid. Ellagic acid
showed also an important percentage in sample CF1 and CF2, whereas it was detected in quantities
under the Limit of Detection (LOQ) for the extracts obtained from the Pignoletto seeds. All the other
phenolic compounds accounted for less than 1%. The total content has the same trend observed for
the main phenol (ellagic acid hexoside 1), where CF2 showed the highest quantity in the amount of
36,853.3 µg/g, followed in decreasing amount by CF1 (29,202.5 µg/g), PF2 (25,729.6 µg/g) and PF1
(16,056.8 µg/g).

These data show how the Chardonnay seed extracts reported a greater phenolic compound
content compared to Pignoletto samples. In addition, contrary to proanthocyanidin results, the extracts
obtained eluting ethanol/water 50/50 v/v (CF2 and PF2) presented a significantly higher phenolic
content than the fraction eluted with ethanol/water 80/20 v/v (CF1 ad PF1). These data strongly agree
with the results reported by other authors [9,27] that underlined as high water ratio allowed high
phenolic acids recovery.
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3. Materials and Methods

3.1. Extraction and Purification of Phenolic Compounds

Grape seeds were obtained from berries of Chardonnay (C) and Pignoletto (P) after wine
production (Faenza, Italy, 44◦17′00”N 11◦53′00”E) and they were air-dried at room temperature (final
moisture 13%) and grounded to a granulometry of 2 mm. Briefly, according to Ky and Teissedre [27]
25 g of seeds were extracted with 500 mL of water-ethanol (3/7 v/v) under sonication for 40 min
in an ultrasound bath (Starsonic 90 Liarre (Bologna, Italy) equipment with frequency 34 kHz) and
the solvent was rotary evaporated under vacuum at 35 ◦C to remove ethanol. The resulting extracts
were washed two times with 250 mL of n-hexane to remove lipid-soluble substances and then rotary
evaporated to remove the residual hexane. After that, the extract was fractionated using Sephadex
LH-20. The aqueous fraction was applied to a Sephadex LH-20 column (20 × 450 mm) (GE Healthcare,
Barrington, IL, USA) and the resin was previously equilibrated with water (150 mL). The extracts were
obtained using two water-ethanol ratio solutions: extracts F1 were obtained eluting with 300 mL of
ethanol/water 80/20 v/v, whereas extracts F2 were eluted with 300 mL of ethanol/water 50/50 v/v.
Both fractions were immediately frozen at −20 ◦C and then freeze-dried (Thermo HETO, power dry
LYOLAB 3000; Waltham, MA, USA) and stored at −23 ◦C until the analysis.

3.2. HPLC-FLD-ESI-MS Analyses of Oligomeric Proanthocyanidins

The final extracts were dissolved in water-ethanol (1/1, v/v), filtered through 0.45 µm PTFE
syringe filters and analysed by HPLC (Agilent 1200 Series, Agilent Technologies, Palo Alto, CA, USA),
equipped with a binary pump delivery system, a degasser, an autosampler and a fluorimetric detector
(FLD) and coupled to a single quadrupole mass spectrometer (MSD, model G1946A, Santa Clara,
CA, USA).

Proanthocyanidins were separated in a Develosil Diol 100Å column 5 m, 250 × 4.6 mm ID
(Phenomenex, Torrance, CA, USA), according to Robbins et al. [52]. Fluorescence detection was
conducted with an excitation wavelength of 230 nm and an emission wavelength of 321 nm. The
injection volume was 5 µL and all the analyses were carried out at 35 ◦C. Calibration curves of
(+)-catechin and procyanidin B2 were both arranged in the range of limit of quantification (LOQ)-500
and LOQ-500 µg/mL, respectively, at 6 concentration levels for each compound. The correction factors
suggested by Robbins et al. [52] were used to quantify the oligomeric proanthocyanidins from trimers
to dodecamers and polymers. The limit of detection (LOD) and the limit of quantification (LOQ)
were 0.058 and 0.193 µg/mL, respectively, for catechin and 0.042 and 0.14 µg/mL, respectively, for
procyanidin B2. LOQ was calculated based on the standard deviation (σB) of γ-intercepts of linear
regression and the slope of the calibration curve (S) of standards, according to the formula: LOQ =
10 (σB)/S.

3.3. HPLC-QqQ-ESI-MS Analyses of Other Phenolic Compounds

The HPLC method established by Gomez-Caravaca et al. [53] was used. MRM analyses were
performed on 6420 Triple Quadrupole (Agilent Technologies, Santa Clara, CA, USA) equipped with
the Agilent HPLC 1200 series autosampler and a binary pump. Phenolic separation was performed on
a 100 mm × 3.0 mm Zorbax Poroshell C18 column (Agilent Technologies, Millford, MA, USA) at 25 ◦C.
MS/MS acquisition parameters (MRM mode) used for identification of the target phenolic compounds
are provided in Table 2. The phenolic compounds were quantified as ellagic acid equivalents
(ellagic acid and ellagic acid hexoside), rutin equivalent (quercetin pentoside and dehydrofisetin
glucoside), quercetin equivalent and gallic acid equivalent (gallic acid and protocatechuic aldehyde).
The calibration curves were built, from LOQ-500 mg/L, at six concentration levels, plotting peak area
versus analyte concentration. LOQ was calculated based on the formula described in the Section 3.2.
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3.4. Statistical Analysis

HPLC analyses were replicated three times for each extract and calibration point (n = 3). Significant
differences (at p < 0.05) were explored by using analysis of variance (ANOVA) combined with the
Tukey’s post-hoc test using Statistica 8.0 software (2007, StatSoft, Tulsa, OK, USA).

4. Conclusions

The results demonstrated that ethanol, a food grade solvent, is a good choice to recover the
flavan-3-ol compounds from grape seed by-products. The elution with ethanol/water 80/20 (v/v)
recovered the highest amounts of proanthocyanidins and Chardonnay seed extracts reported a greater
flavan-3-ols content compared to Pignoletto samples. In addition, contrary to proanthocyanidin
results, the extracts obtained eluting ethanol/water 50/50 (v/v) presented a significant higher phenolic
content than the fraction eluted with ethanol/water 80/20 (v/v). Once again, these results suggest the
possibility to modulate the quali-quantitative characteristics of bioactive compounds extracted from
grape seeds, as a function of the composition of the eluent utilized.

Author Contributions: F.P. and V.V. performed the experiments, analysed the data and wrote the paper; F.C. and
M.F.C. conceived and designed the experiments, contributed reagents/materials/analysis tools and reviewed and
edited the manuscript.

Funding: This project was supported by University of Granada (project PPJI2017.16).

Acknowledgments: Vito Verardo thanks the Spanish Ministry of Economy and Competitiveness (MINECO) for
“Ramon y Cajal” contract (RYC-2015-18795).

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses or interpretation of data; in the writing of the manuscript or in the decision to
publish the results.

References

1. Zhang, L.L.; Zhu, M.T.; Shi, T.; Guo, C.; Huang, Y.S.; Chen, Y.; Xie, M.Y. Recovery of dietary fibre
and polyphenol from grape juice pomace and evaluation of their functional properties and polyphenol
compositions. Food Funct. 2017, 8, 341–351. [CrossRef] [PubMed]

2. Medouni-Adrar, S.; Boulekbache-Makhlouf, L.; Cadot, Y.; Medouni-Haroune, L.; Dahmoune, F.;
Makhoukhe, A.; Madani, K. Optimization of the recovery of phenolic compounds from Algerian grape
by-products. Ind. Crop. Prod. 2015, 77, 123–132. [CrossRef]

3. Mateo, J.J.; Maicas, S. Valorization of winery and oil mill wastes by microbial technologies. Food Res. Int.
2015, 73, 13–25. [CrossRef]

4. Maier, T.; Schieber, A.; Kammerer, D.R.; Carle, R. Residues of grape (Vitis vinifera L.) seed oil production as a
valuable source of phenolic antioxidants. Food Chem. 2009, 112, 551–559. [CrossRef]

5. Spranger, I.; Sun, B.; Mateus, A.M.; de Freitas, V.; Ricardo-da-Silva, J.M. Chemical characterization and
antioxidant activities of oligomeric and polymeric procyanidin fractions from grape seeds. Food Chem. 2008,
108, 519–532. [CrossRef] [PubMed]

6. Tang, G.Y.; Zhao, C.N.; Liu, Q.; Feng, X.L.; Xu, X.Y.; Cao, S.Y.; Meng, X.; Li, S.; Gan, R.Y.; Li, H.B. Potential of
Grape Wastes as a Natural Source of Bioactive Compounds. Molecules 2018, 23, 2598. [CrossRef] [PubMed]

7. Zhang, S.; Li, L.; Cui, Y.; Luo, L.; Li, Y.; Zhou, P.; Sun, B. Preparative high-speed counter-current
chromatography separation of grape seed proanthocyanidins according to degree of polymerization. Food
Chem. 2017, 219, 399–407. [CrossRef]

8. Jara-Palacios, M.J.; Hernanz, D.; Escudero-Gilete, M.L.; Heredia, F.J. The use of grape seed byproducts rich
in flavonoids to improve the antioxidant potential of red wines. Molecules 2016, 21, 1526. [CrossRef]

9. Lucarini, M.; Durazzo, A.; Romani, A.; Campo, M.; Lombardi-Boccia, G.; Cecchini, F. Bio-based compounds
from grape seeds: A biorefinery approach. Molecules 2018, 23, 1888. [CrossRef]

10. Bagchi, D.; Bagchi, M.; Stohs, S.J.; Das, D.K.; Ray, S.D.; Kuszynski, C.A.; Joshi, S.S.; Pruess, H.G. Free radicals
and grape seed proanthocyanidin extract: Importance in human health and disease prevention. Toxicology
2000, 148, 187–197. [CrossRef]

http://dx.doi.org/10.1039/C6FO01423B
http://www.ncbi.nlm.nih.gov/pubmed/28045183
http://dx.doi.org/10.1016/j.indcrop.2015.08.039
http://dx.doi.org/10.1016/j.foodres.2015.03.007
http://dx.doi.org/10.1016/j.foodchem.2008.06.005
http://dx.doi.org/10.1016/j.foodchem.2007.11.004
http://www.ncbi.nlm.nih.gov/pubmed/26059130
http://dx.doi.org/10.3390/molecules23102598
http://www.ncbi.nlm.nih.gov/pubmed/30314259
http://dx.doi.org/10.1016/j.foodchem.2016.09.170
http://dx.doi.org/10.3390/molecules21111526
http://dx.doi.org/10.3390/molecules23081888
http://dx.doi.org/10.1016/S0300-483X(00)00210-9


Molecules 2019, 24, 677 10 of 12

11. Shi, J.; Yu, J.; Pohorly, J.E.; Kakuda, Y. Polyphenolics in grape seeds-biochemistry and functionality. J. Med.
Food 2003, 6, 291–299. [CrossRef] [PubMed]

12. Vinson, J.A.; Dabbagh, Y.A.; Sherry, M.M.; Jang, J. Plant flavonoids, especially tea flavonols, are powerful
antioxidants using an in vitro oxidation model for heart disease. J. Agric. Food Chem. 1995, 43, 2800–2802.

13. Bomser, J.; Singletary, K.; Wallig, M.; Smith, M. Inhibition of TPA-induced tumor promotion in CD-1 mouse
epidermis by a polyphenolic fraction from grape seeds. Cancer Lett. 1999, 135, 151–157. [CrossRef]

14. Ye, X.; Krohn, R.; Liu, W.; Joshi, S.; Kuszynski, C.; McGinn, T.; Bagchi, M.; Preuss, H.; Stohs, S.; Bagchi, D.
The cytotoxic effects of a novel IH636 grape seed proanthocyanidin extract on cultured human cancer cells.
Mol. Cell. Biochem. 1999, 196, 99–108. [CrossRef] [PubMed]

15. Zhang, X.-Y.; Li, W.-G.; Wu, Y.-J.; Zheng, T.-Z.; Li, W.; Qu, S.-Y.; Liu, N.-F. Proanthocyanidin from grape seeds
potentiates anti-tumor activity of doxorubicin via immunomodulatory mechanism. Int. Immunopharmacol.
2005, 5, 1247–1257. [CrossRef] [PubMed]

16. Jara-Palacios, M.J.; Hernanz, D.; Cifuentes-Gomez, T.; Escudero-Gilete, M.L.; Heredia, F.J.; Spencer, J.P.E.
Assessment of white grape pomace from winemaking as source of bioactive compounds and its
antiproliferative activity. Food Chem. 2015, 183, 78–82. [CrossRef] [PubMed]

17. Li, W.-G.; Zhang, X.-Y.; Wu, Y.-J.; Tian, X. Anti-inflammatory effect and mechanism of proanthocyanidins
from grape seeds. Acta Pharmacol. Sin. 2001, 22, 1117–1120.

18. Saito, M.; Hosoyama, H.; Ariga, T.; Kataoka, S.; Yamaji, N. Antiulcer activity of grape seed extract and
procyanidins. J. Agric. Food Chem. 1998, 46, 1460–1464. [CrossRef]

19. Yamakoshi, J.; Saito, M.; Kataoka, S.; Tokutake, S. Procyanidin-rich extract from grape seeds prevents cataract
formation in hereditary cataractous (ICR/f) rats. J. Agric. Food Chem. 2002, 50, 4983–4988. [CrossRef]

20. Brown, R.H.; Mueller-Harvey, I.; Zeller, W.E.; Reinhardt, L.; Stringano, E.; Gea, A.; Drake, C.; Ropiak, H.M.;
Fryganas, C.; Ramsay, A.; et al. Facile Purification of Milligram to Gram Quantities of Condensed Tannins
According to Mean Degree of Polymerization and Flavan-3-ol Subunit Composition. J. Agric. Food Chem.
2017, 65, 8072–8082. [CrossRef]

21. Leppä, M.M.; Karonen, M.; Tähtinen, P.; Engström, M.T.; Salminen, J.P. Isolation of chemically well-defined
semipreparative liquid chromatography fractions from complex mixtures of proanthocyanidin oligomers
and polymers. J. Chromatogr. A 2018, 1576, 67–79. [CrossRef] [PubMed]

22. Amarowicz, R.; Shahidi, F. A rapid chromatographic method for separation of individual catechins fromgreen
tea. Food Res. Int. 1996, 29, 71–76. [CrossRef]

23. Li, K.; Zhou, X.; Liu, C.L.; Yang, X.; Han, X.; Shi, X.; Song, X.; Ye, C.; Ko, C.H. Preparative separation of
gallocatechin gallate from Camellia ptilophylla using macroporous resins followed by sephadex LH-20
column chromatography. J. Chromatogr. B 2016, 1011, 6–13. [CrossRef] [PubMed]

24. Tian, Y.; Liimatainen, J.; Puganen, A.; Alakomi, H.L.; Sinkkonen, J.; Yang, B. Sephadex LH-20 fractionation
and bioactivities of phenolic compounds from extracts of Finnish berry plants. Food Res. Int. 2018, 113,
115–130. [CrossRef] [PubMed]

25. Prodanov, M.; Vacas, V.; Hernández, T.; Estrella, I.; Amador, B.; Winterhalter, P. Chemical characterisation of
Malvar grape seeds (Vitis vinifera L.) by ultrafiltration and RP-HPLC-PAD-MS. J. Food Comp. Anal. 2013, 31,
284–292. [CrossRef]

26. Kuhnert, S.; Lehmann, L.; Winterhalter, P. Rapid characterisation of grape seed extracts by a novel HPLC
method on a diol stationary phase. J. Funct. Foods 2015, 15, 225–232. [CrossRef]

27. Ky, I.; Teissedre, P.L. Characterisation of Mediterranean Grape Pomace Seed and Skin Extracts: Polyphenolic
Content and Antioxidant Activity. Molecules 2015, 20, 2190–2207. [CrossRef]

28. Prieur, C.; Rigaud, J.; Cheynier, V.; Moutounet, M. Oligomeric and Polymeric procyanidins from grape seeds.
Phytochemistry 1994, 36, 781–784. [CrossRef]

29. Bautista-Ortín, A.B.; Busse-Valverde, N.; Fernández-Fernández, J.I.; Gómez-Plaza, E.; Gil-Muñoz, R.J. The
extraction kinetics of anthocyanins and proanthocyanidins from grape to wine in three different varieties.
Int. Sci. Vigne Vin. 2016, 50, 91–100. [CrossRef]

30. Mattos, G.N.; Tonon, R.V.; Furtado, A.A.L.; Cabral, L.M.C. Grape by-product extracts against microbial
proliferation and lipid oxidation: A review. J. Sci. Food Agric. 2017, 97, 1055–1064. [CrossRef]

31. Lavelli, V.; Torri, L.; Zeppa, G.; Fiori, L.; Spigno, G. Recovery of Winemaking By-Products for Innovative
Food Applications. Ital. J. Food Sci. 2016, 28, 542–564.

http://dx.doi.org/10.1089/109662003772519831
http://www.ncbi.nlm.nih.gov/pubmed/14977436
http://dx.doi.org/10.1016/S0304-3835(98)00289-4
http://dx.doi.org/10.1023/A:1006926414683
http://www.ncbi.nlm.nih.gov/pubmed/10448908
http://dx.doi.org/10.1016/j.intimp.2005.03.004
http://www.ncbi.nlm.nih.gov/pubmed/15914329
http://dx.doi.org/10.1016/j.foodchem.2015.03.022
http://www.ncbi.nlm.nih.gov/pubmed/25863613
http://dx.doi.org/10.1021/jf9709156
http://dx.doi.org/10.1021/jf0201632
http://dx.doi.org/10.1021/acs.jafc.7b03489
http://dx.doi.org/10.1016/j.chroma.2018.09.034
http://www.ncbi.nlm.nih.gov/pubmed/30314685
http://dx.doi.org/10.1016/0963-9969(95)00048-8
http://dx.doi.org/10.1016/j.jchromb.2015.12.039
http://www.ncbi.nlm.nih.gov/pubmed/26744789
http://dx.doi.org/10.1016/j.foodres.2018.06.041
http://www.ncbi.nlm.nih.gov/pubmed/30195504
http://dx.doi.org/10.1016/j.jfca.2013.06.003
http://dx.doi.org/10.1016/j.jff.2015.03.031
http://dx.doi.org/10.3390/molecules20022190
http://dx.doi.org/10.1016/S0031-9422(00)89817-9
http://dx.doi.org/10.20870/oeno-one.2016.50.2.781
http://dx.doi.org/10.1002/jsfa.8062


Molecules 2019, 24, 677 11 of 12

32. Weseler, A.R.; Bast, A. Masquelier’s grape seed extract: From basic flavonoid research to a well-characterized
food supplement with health benefits. Nutr. J. 2017, 16, 5. [CrossRef] [PubMed]

33. Downing, L.E.; Edgar, D.; Ellison, P.A.; Ricketts, M.L. Mechanistic insight into nuclear receptor-mediated
regulation of bile acid metabolism and lipid homeostasis by grape seed procyanidin extract (GSPE). Cell
Biochem. Funct. 2017, 35, 12–32. [CrossRef] [PubMed]

34. Nunes, M.A.; Pimentel, F.; Costa, A.S.G.; Alves, R.C.; Oliveira, M.B.P.P. Cardioprotective properties of grape
seed proanthocyanidins: An update. Trends Food Sci. Technol. 2016, 57, 31–39. [CrossRef]

35. Nassiri-Asl, M.; Hosseinzadeh, H. Review of the Pharmacological Effects of Vitis vinifera (Grape) and its
Bioactive Constituents: An Update. Phytother. Res. 2016, 30, 1392–1403. [CrossRef] [PubMed]

36. Katiyar, S. Dietary proanthocyanidins inhibit UV radiation-induced skin tumor development through
functional activation of the immune system. Mol. Nutr. Food Res. 2016, 60, 1374–1382. [CrossRef] [PubMed]

37. Teixeira, A.; Baenas, N.; Dominguez-Perles, R.; Barros, A.; Rosa, E.; Moreno, D.A.; Garcia-Viguera, C. Natural
Bioactive Compounds from Winery By-Products as Health Promoters: A Review. Int. J. Mol. Sci. 2014, 15,
15638–15678. [CrossRef]

38. Bagchi, D.; Swaroop, A.; Preuss, H.G.; Bagchi, M. Free radical scavenging, antioxidant and cancer
chemoprevention by grape seed proanthocyanidin: An overview. Mutat. Res. 2014, 768, 69–73. [CrossRef]

39. Banerji, S.; Banerjee, S. A formulation of grape seed, Indian gooseberry, turmeric and fenugreek helps
controlling type 2 diabetes mellitus in advanced-stage patients. Eur. J. Integr. Med. 2016, 8, 645–653.
[CrossRef]

40. Seo, K.H.; Bartley, G.E.; Tam, C.; Kim, H.S.; Kim, D.H.; Chon, J.W.; Kim, H.; Yokoyama, W. Chardonnay
Grape Seed Flour Ameliorates Hepatic Steatosis and Insulin Resistance via Altered Hepatic Gene Expression
for Oxidative Stress, Inflammation and Lipid and Ceramide Synthesis in Diet-Induced Obese Mice. PLoS
ONE 2016, 11, e0167680. [CrossRef]

41. Aragonès, G.; Suárez, M.; Ardid-Ruiz, A.; Vinaixa, M.; Rodríguez, M.A.; Correig, X.; Arola, L.; Bladé, C.
Dietary proanthocyanidins boost hepatic NAD+ metabolism and SIRT1 expression and activity in a
dose-dependent manner in healthy rats. Sci. Rep. 2016, 6, 24977. [CrossRef]

42. Sun, Y.; Xiu, C.; Liu, W.; Tao, Y.; Wang, J.; Qu, Y. Grape seed proanthocyanidin extract protects the retina
against early diabetic injury by activating the Nrf2 pathway. Exp. Ther. Med. 2016, 11, 1253–1258. [CrossRef]

43. Zhang, Z.; Li, Y.; Li, Y. Grape seed proanthocyanidin extracts prevent hyperglycemia-induced monocyte
adhesion to aortic endothelial cells and ameliorates vascular inflammation in high-carbohydrate/high-fat
diet and streptozotocin-induced diabetic rats. Int. J. Food Sci. Nutr. 2015, 67, 524–534. [CrossRef]

44. Pons, Z.; Margalef, M.; Bravo, F.I.; Arola-Arnal, A.; Muguerza, B. Chronic administration of grape-seed
polyphenols attenuates the development of hypertension and improves other cardiometabolic risk factors
associated with the metabolic syndrome in cafeteria diet-fed rats. Br. J. Nutr. 2017, 117, 200–208. [CrossRef]

45. Zhang, J.; Huang, Y.; Shao, H.; Bi, Q.; Chen, J.; Ye, Z. Grape seed procyanidin B2 inhibits adipogenesis of
3T3-L1 cells by targeting peroxisome proliferator-activated receptor γ with miR-483-5p involved mechanism.
Biomed. Pharmacother. 2017, 86, 292–296. [CrossRef]

46. Pinna, C.; Morazzoni, P.; Sala, A. Proanthocyanidins from Vitis vinifera inhibit oxidative stress-induced
vascular impairment in pulmonary arteries from diabetic rats. Phytomedicine 2017, 25, 39–44. [CrossRef]

47. Serrano, J.; Casanova-Martí, À.; Gual, A.; Pérez-Vendrell, A.M.; Blay, M.T.; Terra, X.; Ardévol, A.; Pinent, M.
A specific dose of grape seed-derived proanthocyanidins to inhibit body weight gain limits food intake and
increases energy expenditure in rats. Eur. J. Nutr. 2017, 56, 1629–1636. [CrossRef]

48. Heidker, R.M.; Caiozzi, G.C.; Ricketts, M.L. Grape Seed Procyanidins and Cholestyramine Differentially
Alter Bile Acid and Cholesterol Homeostatic Gene Expression in Mouse Intestine and Liver. PLoS ONE 2016,
11, e0154305. [CrossRef]

49. Garcia-Jares, C.; Vazquez, A.; Lamas, J.P.; Pajaro, M.; Alvarez-Casas, M.; Lores, M. Antioxidant White
Grape Seed Phenolics: Pressurized Liquid Extracts from Different Varieties. Antioxidants 2015, 4, 737–749.
[CrossRef]

50. Flamini, R. Recent Applications of Mass Spectrometry in the Study of Grape and Wine Polyphenols. ISRN
Spectrosc. 2013, 2013, 813563. [CrossRef]

51. Perestrelo, R.; Lu, Y.; Santos, S.A.O.; Silvestre, A.J.D.; Neto, C.P.; Câmara, J.S.; Rocha, M.S. Phenolic profile of
Sercial and Tinta Negra Vitis vinifera L. grape skins by HPLC–DAD–ESI-MSn. Novel phenolic compounds in
Vitis vinifera L. grape. Food Chem. 2012, 135, 94–104. [CrossRef]

http://dx.doi.org/10.1186/s12937-016-0218-1
http://www.ncbi.nlm.nih.gov/pubmed/28103873
http://dx.doi.org/10.1002/cbf.3247
http://www.ncbi.nlm.nih.gov/pubmed/28083965
http://dx.doi.org/10.1016/j.tifs.2016.08.017
http://dx.doi.org/10.1002/ptr.5644
http://www.ncbi.nlm.nih.gov/pubmed/27196869
http://dx.doi.org/10.1002/mnfr.201501026
http://www.ncbi.nlm.nih.gov/pubmed/26991736
http://dx.doi.org/10.3390/ijms150915638
http://dx.doi.org/10.1016/j.mrfmmm.2014.04.004
http://dx.doi.org/10.1016/j.eujim.2016.06.012
http://dx.doi.org/10.1371/journal.pone.0167680
http://dx.doi.org/10.1038/srep24977
http://dx.doi.org/10.3892/etm.2016.3033
http://dx.doi.org/10.3109/09637486.2016.1154020
http://dx.doi.org/10.1017/S0007114516004426
http://dx.doi.org/10.1016/j.biopha.2016.12.019
http://dx.doi.org/10.1016/j.phymed.2016.12.015
http://dx.doi.org/10.1007/s00394-016-1209-x
http://dx.doi.org/10.1371/journal.pone.0154305
http://dx.doi.org/10.3390/antiox4040737
http://dx.doi.org/10.1155/2013/813563
http://dx.doi.org/10.1016/j.foodchem.2012.04.102


Molecules 2019, 24, 677 12 of 12

52. Robbins, R.J.; Leonczak, J.; Johnson, J.C.; Li, J.; Kwik-Uribe, C.; Prior, R.L.; Gu, L. Method performance and
multi-laboratory assessment of a normal phase high pressure liquid chromatography–fluorescence detection
method for the quantitation of flavanols and procyanidins in cocoa and chocolate containing samples. J.
Chromatogr. A 2009, 1216, 4831–4840. [CrossRef]

53. Gómez-Caravaca, A.M.; Verardo, V.; Berardinelli, A.; Marconi, E.; Caboni, M.F. A chemometric approach
to determine the phenolic compounds indifferent barley samples by two different stationary phases: A
comparison between C18 and pentafluorophenyl core shell columns. J. Chromatogr. A 2014, 1355, 134–142.
[CrossRef]

Sample Availability: Samples of the compounds are not available from the authors.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.chroma.2009.04.006
http://dx.doi.org/10.1016/j.chroma.2014.06.007
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results 
	Separation and Identification of Oligomeric Proantocyanidins 
	Quantification of Oligomeric Proantocyanidins 
	Identification and Quantification of Other Phenolic Compounds 

	Materials and Methods 
	Extraction and Purification of Phenolic Compounds 
	HPLC-FLD-ESI-MS Analyses of Oligomeric Proanthocyanidins 
	HPLC-QqQ-ESI-MS Analyses of Other Phenolic Compounds 
	Statistical Analysis 

	Conclusions 
	References

