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CUBATURE FORMULA FOR APPROXIMATE 
CALCULATION OF INTEGRALS OF TWO-DIMENSIONAL 

IRREGULAR HIGHLY OSCILLATING FUNCTIONS 

Vitaliy MEZHUYEV1, Oleg M. LYTVYN2, Olesia NECHUIVITER3, 
Yulia PERSHYNA4, Оleg О. LYTVYN5, Kateryna KEITA6 

The paper presents a new method for the calculation of integrals of two-
dimensional irregular highly oscillatory functions for the case when information 
about functions is given on sets of lines. Estimation of the proposed method is done 
for the class of differentiable functions.  
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1. Introduction 

The methods of digital signal and image processing are widely used in 
scientific and technical areas nowadays. Research in astronomy, radiology, 
computed tomography, holography, radars etc. require improvement of existing 
and development of new mathematical methods, especially for new types of input 
information. An important case is when an input information about considered 
function is given as the set of the function’ traces on planes or on lines. 

The paper proposes a new effective mathematical approach, build on the 
base of the theory of interlineation and interflatation of functions [1; 2]. The paper 
demonstrates, how application of the operators of interlineation and interflatation 
of functions results in the method of numerical integration of highly oscillating 
functions of many variables. 

Oscillatory integrals have various applications, but existing methods for 
their calculation have known limitations. There is a number of studies, where 
problems of highly-oscillating functions are discussed for the regular case. The 
most dated paper was published by Filon in 1928 [3]; let us also mention Luke 
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(1954) [4], Flinn (1960) [5], Zamfirescu (1963) [6], Bakhvalov and Vasileva 
(1968) [7]. Good review and analysis of existing methods were given by 
A. Iserles [8] and V. Milovanovic [9]. In [10] Eckhoff shown how the traditional 
Fourier method can be used to develop the numerical high order methods for 
calculating derivatives and integrals. The Eckhoff’s method for univariate and 
bivariate functions is described in details in [11].  

One and two-dimensional methods for the computation of integrals of 
highly oscillating functions in the irregular case were also discussed in various 
papers. A collocation procedure for the effective integration of rapidly oscillatory 
functions is presented in [12]. This method was extended to two-dimensional 
integration, and numerical results showed its efficiency for rapid irregular 
oscillations. In [13; 14] the methods for the computation of highly oscillatory 
integrals (for one and two-dimensional irregular cases) are explored. Outcomes 
are two families of the methods, one is based on a truncation of the asymptotic 
series and the other Filon’s idea [3]. These papers came with numerical 
experiments that demonstrate the potential of proposed methods. In [15] the new 
methods for numerical approximation of the integral of irregular highly oscillatory 
functions were derived. On the base of the method developed by Levin, Olver 
proposed a new approach that uses the same type of input information and has the 
same asymptotic order, as the Filon’s method, but without requiring the 
computation of moments. In [16] a calculation of canonical oscillatory integrals 
was discussed, where the irregular oscillatory integrals were transformed into 
canonical ones with respect to the stationary phase points. Two calculation 
methods for the canonical oscillatory integrals were then proposed: one is the 
Clenshaw-Curtis method and the other is the improved method of Levin. In [17], 
an adaptation of the Filon method for the calculation of highly oscillatory 
integrals with or without stationary points was developed. The main feature of this 
method is that it optimizes the choice of interpolation points between different 
oscillatory regimes. In [18] the problems of calculating integrals of an irregular 
highly oscillatory function in MATLAB were discussed. 

Problems of computing rapidly oscillating integrals of differentiable 
functions using various information operators were considered by V.K. Zadiraka 
in [19]. In [20] O.M. Lytvyn and O.P. Nechuyviter proposed the formulas for the 
evaluating two dimensional Fourier coefficients using spline-interlineation. These 
formulas were constructed for two cases: (1) when input information about a 
function is given on the set of traces of the function on lines and (2) as a set of 
values of the function at the points. The main advantages of the proposed methods 
are the high accuracy of approximation and less amount of the input data needed. 
This paper discusses a computation of the Fourier coefficients of a function of two 
variables ( , )f x y  by classic cubature formula and by cubature formula, which 
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uses piecewise spline interlineation for the case, when information about ( , )f x y  
is given as the set of values of the function at the grid points.  

Using interflatation cubature formulas for calculation of 3D Fourier 
coefficients for the class of differentiable functions were presented in [21]. 
Information about the function was given by the traces on the system of mutually 
perpendicular planes. It was proven that the approximation error of the cubature 
formulas can be evaluated by the estimation of the error of corresponding 
quadrature formulas. Paper [22] considered the cubature formula for the 
approximate calculation of triple integrals of rapidly oscillating functions by using 
Lagrange polynomial interlineation of functions with the optimal choice of the 
nodal planes for the approximation of the non-oscillating set. The error of the 
cubature formula was estimated for the class of differentiable functions, defined in 
a unit cube. 

This paper proposes a new effective method for the calculation of two-
dimensional integrals from highly oscillating functions for the more general case, 
when information about the functions is given on the set of lines. It develops a 
cubature formula for numerical computation of two-dimensional Fourier 
coefficients for the case, when information about ( , )f x y  is the set of traces of the 
function on lines. The paper also compares the results of calculation of Fourier 
coefficients of the function of two variables by classic cubature formula and by 
cubature formula using interlineation in the case when information about ( , )f x y  
is a set of values of the function at the grid points. 

 
2. Cubature formula for calculating a two-dimensional integral of the 

irregular highly oscillating function, for the case when input data is the set of 
traces of the function on lines 

Let us consider  2, ,rН M M , 0r    the class of functions, which defined 

in the domain  20,1G   and 

   ,0 0,( , ) ,  ( , ) , 0,r rf x y M f x y M r     , ( , ) , 0r rf x y M r  ,  

      2
,0 0, ,( , ) ,  ( , ) , ( , )

r r r
r r r r

r r r r
f f f

f x y f x y f x y
x y x y

  
  
   

, 

,M M − are the constants that limit the corresponding partial derivatives. 
Definition 2.1. Under the traces of the function ( , )f x y  on the lines 

1 1 / 2,kx k    1 1 / 2,jy j    1, 1,k j   , 1 11/    we understand the 

function of one variable ( , ), 0 1kf x y y   and ( , ), 0 1jf x y x  .  
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Definition 2.2. Under the traces of function g( , )x y  on the lines 

2 2 / 2,px p    2 2 / 2,sy s    2p,s 1,  , 2 21/    we understand a 

function of one variable g( , ), 0 1px y y   or g( , ), 0 1sx y x  . 

A two-dimensional integral of a highly oscillating function is defined as  
1 1

2 (x,y)

0 0

( ) ( , ) ei gI f x y dxdy     

for  2,1( , ), (x, y) ,f x y g Н M M .  

Let  

0 1 0 1

1, 1 ,1, 1 ,
1 ( ) 1, ,     1 ( ) 1, ,

0, 1 , 0, 1 ,

jk
k j

k j

y Yx X
h x k H y j

x X y Y

       
   

 1/2 1/2 1/2 1/21 , , 1 , ,k k k j j jX x x Y y y         

1 1 / 2,kx k     1/2 11 ,kx k     1/2 1,kx k    

1 1 / 2,jy j         1/2 11 ,jy j       1/2 1,jy j    

1, 1,k j   , 1 11/   , 

0 2 0 2

1, 2 , 1, 2 ,
2 ( ) 1, ,     2 ( ) 1, ,

0, 2 , 0, 2 ,

p s
p j

p s

x X y Y
h x p H y s

x X y Y

      
   

 1/2 1/2 1/2 1/22 , , 2 , ,p p p s s sX x x Y y y         

2 2 / 2,px p    2 2 / 2,sy s    2p,s 1,  , 2 21/   . 

Let us define two operators of the interlineation. The first is 

         
1 1

0 0
1 1

, , 1 , 1k k j j
k j

Jf x y f x y h x f x y H y
 

   
 

     
1 1

0 0
1 1

, 1 1k j k j
k j

f x y h x H y
 

 

 (1) 

and the second is given by 

         
2 2

0 0
1 1

, , 2 , 2p p s s
p s

Og x y g x y h x g x y H y
 

   
 

     
2 2

0 0
1 1

, 2 2p s p s
p s

g x y h x H y
 

 

. (2) 

The following cubature formula  
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1 1
2 (x,y)

0 0

( ) ( , ) ei OgJf x y dxdy     (3) 

is proposed for the numerical calculation of 
1 1

2 (x,y)

0 0

( ) ( , ) ei gI f x y dxdy    . (4) 

Theorem 2.1. Let us suppose that  2,1( , ), (x, y) , .f x y g Н M M  Let the 

functions ( , ), (x, y)f x y g be defined by the 1 22 2N     traces  , ,kf x y  

  1, , , 1,jf x y k j    and g( , ),px y 2g( , ), , 1,sx y p s   , on the systems of 

perpendicular lines in the domain  20,1G  . It is true that  

 2 2( ), ( )I     

1 1 1 1
(x,y) (x,y)

0 0 0 0

( , ) e ( , ) ei g i Ogf x y dxdy Jf x y dxdy      
  

2 2
1 2

1 1
min 2;

16 16

M M
M

 
   

  
. 

Proof. It is important to note that 

     1,1( , ) , ,

k j

yx

x y

f x y Jf x y f d d        

and 

     1,1g( , ) , ,

s p

yx

x y

x y Of x y g d d       . 

The integral 2 ( )I   can be rewritten as  
1 1

2 (x,y)

0 0

( ) ( , ) ei OgI Jf x y dxdy     

 
1 1 1 1

(x,y) (x,y) (x,y)

0 0 0 0

( , ) ( , ) e ( , ) e ei Og i g i Ogf x y Jf x y dxdy f x y dxdy           . 
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Hence, it is sufficient to show that 

 2 2( ), ( )I  

1 1 1 1
(x,y) (x,y)

0 0 0 0

( , ) ( , ) ( , ) e ei g i Ogf x y Jf x y dxdy f x y dxdy        . 

Let us use the fact that 

(x,y) (x,y)e ei g i Og 
 (x,y) ( , )

2g(x, y) g(x, y)
2 sin e .

2

i g Og x yO
i


  

  

Therefore  

 2 2( ), ( )I  
1 1

0 0

( , ) ( , )f x y Jf x y dxdy   

 1 1 (x,y) ( , )
2

0 0

g(x, y) g(x, y)
( , ) 2 sin e

2

i g Og x yO
f x y i dxdy


  

    

   

1 1

2 21 1

1 1
2 2

1,1

1 1

,

k j

k j
k j

x y
yx

k j x y x y

f d d dxdy   
 

 
 

      
 



1 1

2 22 2

1 1

2 2

1 1

( ( , ) ( , ))
2 sin

2

p s

p s

x y

p s x y

g x y Og x y
M dxdy


 

 
 


  

 
  


1 1

2 21 1

1 1
2 2

1 1

k j

k j

x y

k j
k j x y

M x x dx y y dy

 

 
 

      
 



1 1

2 22 2

1 1

2 2

1 1

( , ) ( , )
2 min 1;

2

p s

p s

x y

p s x y

g x y Og x y
M dxdy


 

 
 

  
 

 
  
 
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
1 1

2 21 1

1 1
2 2

1 1

k j

k j

x y

k j
k j x y

M x x dx y y dy

 

 
 

      
 



1 1

2 22 2

1 1

2 2

(1,1)

1 1

2 min 1; ( , )
2

p s

p s
p s

x y
yx

p s x y x y

M g d d dxdy
    

 

 
 

 
 

 
 
 

    
 

 


2 2

2 1 1
1 4 4

M
 

 

 
1 1 1 1

2 2 2 22 2 2 2

1 1 1 1

2 2 2 2

1 1 1 1

2 min ,
2

p s p s

p s p s

x y x y

p s
p s p sx y x y

M
M dxdy x x y y dxdy


   

   
   

 
 
    
  
 

    
   

 

   2 2
2 2 2 2 2 2

1 2 2 22 min ,
16 2 4 4

M M
M

  
      

 
   

  
2 2

1 2min 2;
16 16

M M
M

 
    

 

  
2 2

1 2

1 1
min 2; .

16 16

M M
M

 
    

  
 

 
3. Cubature formulas for calculating two-dimensional Fourier 

coefficients for various types of data 
Let us suppose that in the formula 

 
1 1

2

0 0

( ) ( , ) sin (x, y)sI f x y g dxdy     

we have (x, y) 2 2g mx ny     and 1 2    . Then the cubature formula  

 

1

2

1
2

1
2
1

1 0

, sin 2 ( , )sin 2

k

k

x

k
k x

m n mxdx f x y nydy 





    


 

1

2

1
2

1

1 0

( , ) sin 2 sin 2

j

j

y

j
j y

f x y mxdx nydy 





  

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1 1

2 2

1 1
2 2

1 1

( , ) sin 2 sin 2 ,

k j

k j

x y

k j
k j x y

f x y mxdx nydy 
 

 
 

  
 

 

, , , 1,
2 2k jx k y j k j
 

        , 
1

 


 

is used for numerical calculation of two-dimensional Fourier coefficients  
1 1

2
1

0 0

( , ) ( , ) sin 2 sin 2I m n f x y mx nydxdy     

in the case when information about ( , )f x y  is the set of traces of the function on 
lines [23]. 

Theorem 3.1. [23, p. 335] Suppose that  2,1( , ) , .f x y Н M M  Let the 

function ( , )f x y  be defined by the 2N    traces  ,kf x y ,  , , , 1,jf x y k j    

on the system of perpendicular lines in the domain  20,1G  . It is true that  

  
2 2
1 1 2

( , ), ( , )
16

M
I m n m n  


. 

In [23] there were proposed the cubature formulas for calculating two-
dimensional Fourier coefficients for the case, when information about ( , )f x y  is a 
set of values of the function at the grid points 


1 1

2 2 2

1 1
2 2

2
1

1 1

( , ) ( , ) sin 2 sin 2

k j

k j

x y

k j
k j x y

m n f x y mxdx nydy 
 

 
 

    





 


 

  

1 1
2 2 2

1 1
2 2

1 1

( , ) sin 2 sin 2

k j

k j

x y

jk
j k x y

f x y mxdx nydy 
 

 
 

   





 


 

  

1 1

2 2

1 1
2 2

1 1

( , ) sin 2 sin 2

k j

k j

x y

k j
k j x y

f x y mxdx nydy 
 

 
 

  
 

, 

1
, , , 1, , ,

2 2k jx k y j k j
 

        

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21 1
1 1 1 2

1
, , , 1, , .

2 2jkx k y j k j
 

             


 

The advantages of proposed formula are the high accuracy of 
approximation and the possibility to decrease the size of input data about function, 
need for its computation. 

Theorem 3.2. [24, p. 45] Suppose that  2,1( , ) , .f x y Н M M  Let the 

function ( , )f x y  be defined by ( , )k jf x y  , ( , )jkf x y , , 1, ,k j    2, 1,k j     knots 

in the domain  20,1G   . It is true that 

  22
11 2 2 2

1
( , ), ( , )

2 16

M M
I m n m n O       

   
. 

 
4. Results and discussion 
 
Let us prove the theorem 2.1. Let us calculate  

 
1 1

2

0 0

( ) ( , ) sin (x, y)sI f x y g dxdy    , 

by the cubature formula 

 
1 1

2

0 0

( ) ( , ) sin (x, y)s Jf x y Og dxdy     , 

where Jf ,Og  are given by (1) and (2) correspondingly. 

When  , sin( ),f x y x y   , cos( ),g x y x y  2   and 5  . For 

2 ,   5   exact values were calculated in MathCad system of version 15.0:  
2 (2 ) 0.062699216073162sI   , 2 (5 ) 0.022780463640219sI   . 

Let us denote the computing error 2 2( ) ( )ex s sI    . It is clear that 

 1 2,ex ex    . Let's show that ,ex th   where 

  
2 2

1 2

1 1
min 2;

16 16th
M M

M


 
    

  
 for various 1 2,  . In our case, for 

 , sin( ),f x y x y   , cos( )g x y x y   we have  1M M   and 

2 2
1 2

1
min 2; .

16 16
th


 

    
  
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Table 1 presents the results of computing 2 ( )sI   by cubature formula 
2 ( )s   for 2  , 5   and values of th  and ex  when 1 2,   are changed. 

The numerical results show that ex th  .  
Table 1 

Computation of 2 ( )sI   by cubature formula 2 ( )s   

  
1  2  2 ( )s   ex  th  

2  4 4 0.062432583948326 42.6 10  22.8 10  

2  7 7 0.062683978467995 51.5 10  39.2 10  

5  6 6 0.022786668787906 66.2 10  22.9 10  

5  10 4 0.022808425368659 52.7 10  26.1 10  

5  10 10 0.02277048162594 69.9 10  21.04 10  

The second example compares cubature formula 2
1 ( , )m n  with the well-

known formula [23, p. 254]. 


1 1

2 2

1 1
2 2

2
1

1 1

( , ) ( , ) sin 2 sin 2

k j

k j

x y

L L

k j
k j x y

m n f x y mxdx nydy 
 

 
 

    . 

It is necessary to note [23, p. 255] that 22
11

1
( , ), ( , ) .I m n m n O

L
          

 

To have the same order of approximation as in theorem 3.2 let us suppose 2.L    

In this case 22
11 2

1
( , ), ( , ) .I m n m n O          

 It is easy to see that formula 


1 1

2 2 2

1 1
2 2

2
1

1 1

( , ) ( , ) sin 2 sin 2

k j

k j

x y

k j
k j x y

m n f x y mxdx nydy 
 

 
 

    





 


 

  

1 1
2 2 2

1 1
2 2

1 1

( , ) sin 2 sin 2

k j

k j

x y

jk
j k x y

f x y mxdx nydy 
 

 
 

   





 


 

  
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1 1

2 2

1 1
2 2

1 1

( , ) sin 2 sin 2

k j

k j

x y

k j
k j x y

f x y mxdx nydy 
 

 
 

  
 

, 

1
, , , 1, , ,

2 2k jx k y j k j
 

        


 

21 1
1 1 1 2

1
, , , 1, ,

2 2jkx k y j k j
 

             


 

uses less number of numeric data - values of the function at the grid points.  

Next example shows the comparative analysis of two formulas 2
1 ( , )m n  

and 
2
1 ( , )m n  for the function  , sin( )f x y x y  . Let us analyze the difference 

between such characteristics:  

- the number of values of the function at the points Q  for 2
1 ( , )m n  and 

Q  for 
2
1 ( , )m n ; 

- the time spent Т  for 2
1 ( , )m n  and T  for 

2
1 ( , )m n ; 

- the size of the memory P  for 2
1 ( , )m n  and  P  for 

2
1 ( , )m n  for data 

computing.  
Using Wolfram Mathematica 8 was calculated  

1 1
2
1

0 0

( , ) ( , ) sin 2 sin 2I m n f x y mx nydxdy     

by formula 2
1 ( , )m n  and 2

1 ( , )m n . We denote 

  22
11 1 1, ( , ) ( , )m n I m n m n     and   22

12 2 1, ( , ) ( , )m n I m n m n    . 

Table 2 presents the errors of numerical calculation 2
1 ( , )I m n  by the 

formula 2
1 ( , )m n  and 

2
1 ( , )m n  for  , sin( )f x y x y   and the number of 

values of the function at the points Q  for 2
1 ( , )m n  and Q  for 

2
1 ( , )m n .  
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Table 2 

Errors of numerical calculation 2
1 ( , )I m n  by formulas 2

1 ( , )m n  and 
2
1 ( , )m n  

m  n    1  3 22Q      2   4Q    

4 4 10 81.01 10  
1900 81.01 10  

10000 

4 4 25 102.66 10  
30625 102.62 10  

390625 

5 5 25 101.69 10  
30625 101.67 10  

390625 

5 5 35 114.43 10  
84525 114.36 10  

1500625 

5 6 20 103.43 10  
15600 103.40 10  

160000 

5 6 30 116.83 10  
53100 116.73 10  

810000 

5 6 40 112.16 10  
126400 112.12 10  

2560000 

 
Results in table 2 demonstrate that the errors of numerical calculation of 

2
1 ( , )I m n  by the formula 2

1 ( , )m n  and formula 
2
1 ( , )m n  have the same order. 

Table 2 also shows the advantages of the formula 2
1 ( , )m n : it needs less number 

of input data about function for the computation. 

Table 3 demonstrates the difference between time spent Т  and T , the size of data 

in computer memory P  and P  for the formula 2
1 ( , )m n  and for the formula 

2
1 ( , )m n .  

Table 3 

Values of Т , T , P , P  for 2
1 ( , )m n  and 

2
1 ( , )m n  

m  n    Т , c T , c   , b P , b  

4 4 10 0.4 2.0 4010868 40311244 
4 4 25 8.4 91.1 39979828 48502900 
5 5 25 7.1 84.7 42660708 42863484 
5 5 35 21.6 337.9 43036868 43188236 
5 6 20 3.3 24.2 44500004 44659660 
5 6 30 8.4 165.0 44843860 44991564 
5 6 40 13.4 465.5  45150228 45416260 

 

Times spent Т  for the calculation of 2
1 ( , )m n  and T  for 

2
1 ( , )m n  and 

sizes of memory P  and P  were computed by the functions Timing and 
MemoryInUse correspondingly of Wolfram Mathematica 8. Table 3 shows 
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that a computation of the formula 2
1 ( , )m n  and the formula 

2
1 ( , )m n  needs the 

allocation of the approximately same size of computer memory. At the same time, 

proposed cubature formula 2
1 ( , )m n  for the numerical integration 2

1 ( , )I m n  

requires less computation time. 

5. Conclusions 

The paper develops a cubature formula for approximate calculation of 
two-dimensional irregular highly oscillatory integrals. A feature of proposed 
approach is using the sets of traces of a function on lines as the input information. 
Estimation of the formula for numerical integration has been done for the class of 
differentiable functions of two variables. Computation of the Fourier coefficients 
by the classic cubature formula and by the proposed cubature formula was done 
during numerical experiment. It is shown, that comparatively to classical 
approaches, based on the operator of interlineation cubature formula uses smaller 
number of input data and needs less computation time to achieve the same 
accuracy. 
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