

STUDY ON THE KINETICS OF CATION EXCHANGE RESINS AS CATALYSTS IN FREE FATTY ACID (FFA) ESTERIFICATION OF SIMULATED USED COOKING OIL

NURSOFIA BINTI MOHD YUNUS

Master

UNIVERSITI MALAYSIA PAHANG

SUPERVISOR'S DECLARATION

We hereby declare that we have checked this thesis project and in our opinion, this thesis is adequate in terms of scope and quality for the award of the degree of Master of Science.

(Supervisor's Signature) Full Name : Dr. Sumaiya Binti Zainal Abidin @ Murad Position : Senior Lecturer Date : 16th March 2018

(Co-supervisor's Signature)Full Name: Prof. Madya Dr. Chin Sim YeePosition: Senior LecturerDate: 16th March 2018

STUDENT'S DECLARATION

I hereby declare that the work in this thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at Universiti Malaysia Pahang or any other institutions.

(Student's Signature) Full Name : Nursofia Binti Mohd Yunus ID Number : MKC15019 Date : 16th March 2018

STUDY ON THE KINETICS OF CATION EXCHANGE RESINS AS CATALYSTS IN FREE FATTY ACID (FFA) ESTERIFICATION OF SIMULATED USED COOKING OIL

NURSOFIA BINTI MOHD YUNUS

Thesis submitted in fulfilment of the requirements for the award of the degree of Master of Science

Faculty of Chemical and Natural Resources Engineering

UNIVERSITI MALAYSIA PAHANG

MARCH 2018

ACKNOWLEDGEMENTS

Bismillahi ar-rahmaan ar-rahim In the name of Allah the Most Gracious and Most Merciful

First of all, my praise and thanks to you my Lord Allah, the Most Gracious, Most Merciful for enabling me to complete this research successfully. Thank you for blessing, protecting and guiding me throughout this period and for putting so many good people in my research journey.

A highest appreciation to be given to my supervisor, Dr. Sumaiya Binti Zainal Abidin @ Murad for granting me this great opportunity to work under her supervision. I have received a lot of her guidance and encouragements throughout this research work. Besides, she has been very helpful in providing clear insight to my research and arrange an effective weekly meeting for me. I would also like to thank my co-supervisor, Associate Professor Dr. Chin Sim Yee for her valuable suggestions and comments regarding this research work.

I offer my sincerest gratitude to Universiti Malaysia Pahang Research Grant (RDU RDU140357), TWAS-COMSTECH research grant (14-337) and Prototype Development Research Grant Scheme (PGRS 170320) for sponsoring this research work. Special gratitude also goes to all my UMP colleagues for their support, trust and friendship. I would like to thank Nurul Asmawati Binti Roslan (Postgraduate student) and Siti Amirah Binti Abdul Ghani (Undergraduate student) for helping me in finishing the research work. Without their help, I could not have finished my dissertation successfully.

I would also like to express our acknowledgement to Mitsubishi Chemical Corporation for kindly supplying the catalysts for this research work. I would like to acknowledge with appreciation to technical staff of FKKSA laboratory, who gave the permissions to use all the required machinery and necessary material to complete this research.

Finally, I would like thank my beloved parents, Mohd Yunus Bin Saidun and Meriam @ Rahanah Binti Busu for their support, love and faith in me. Without their prayer and motivation, I could have never reached this far.

TABLE OF CONTENT

DEC	LARATION		
TITI	LE PAGE		
ACK	NOWLEDGEMENTS	ii	
ABS	ГКАК	iii	
ABS	ГКАСТ	iv	
TAB	LE OF CONTENT	v	
LIST	OF TABLES	ix	
LIST	OF FIGURES	X	
LIST	LIST OF SYMBOLS xi		
LIST	OF ABBREVIATIONS	xvi	
СНА	PTER 1 INTRODUCTION	1	
1.1	Introduction	1	
1.2	Problem statement	4	
1.3	Research objectives	5	
1.4	Research scope	5	
1.5	Organisation of thesis	6	
СНА	PTER 2 LITERATURE REVIEW	8	
2.1	Introduction	8	
2.2	Biodiesel for alternative fuel vehicles	8	
2.3	Esterification as an alternative pre-treatment process for biodiesel feedstock	11	
2.4	Feedstock for esterification process	13	

	2.4.1	Non-edible vegetable oil	13
	2.4.2	Animal fats	16
	2.4.3	Waste oils	17
2.5	Types	of esterification catalyst	21
	2.5.1	Homogeneous acid catalyst	21
	2.5.2	Heterogeneous acid catalyst	22
2.6	Mass t	ransfer resistance	36
2.7	Proces	s variables of the esterification process	38
	2.7.1	Catalyst loading	38
	2.7.2	Reaction temperature	39
	2.7.3	Alcohol type	40
	2.7.4	Alcohol to oil ratio	42
2.8	Kineti	c modelling of free fatty acid esterification	43
	2.8.1	Pseudo homogeneous (P-H) model	44
	2.8.2	Langmuir-Hinshelwood-Hougen-Watson (LHHW) model	46
	2.8.3	Eley-Rideal (E-R) model	47
2.9	Summ	ary	51
CHAP	PTER 3	METHODOLOGY	53
3.1	Introdu	uction	53
3.2	Materi	als and chemicals	55
3.3	Cataly	st preparation	56
3.4	Cataly	st characterisation	56
	3.4.1	Particle size distribution (PSD) analysis	56
	2 4 2	Comming electron microscomy (CEM) analysis	57

	3.4.3	3.4.3 Field emission scanning electron microscopy (FESEM) and	
		energy dispersive x-ray (EDX) spectroscopy	57
	3.4.4	Fourier transform-infra red spectroscopy (FT-IR) analysis	57
	3.4.5	Nitrogen physiorption analysis	58
	3.4.6	Elemental analysis	58
	3.4.7	Acid capacity analysis	58
3.5	Feedstock		59
	3.5.1	Preparation of simulated used cooking oil (SUCO)	59
	3.5.2	Acid value and FFA content analysis	59
3.6	Esteri	fication reaction using batch reactor	60
3.7	Kineti	c study of batch esterification of FFA	63
	3.7.1	The kinetic models of FFA esterification	63

CHAPTER 4 ESTERIFICATION OF FREE FATTY ACID USING ION EXCHANGE RESINS

76

4.1	Introduction		76
4.2	Cataly	st characterisation	76
	4.2.1	Fourier transform infra-red spectroscopy (FT-IR) analysis	76
	4.2.2	Surface area analysis	78
	4.2.3	Elemental analysis	78
	4.2.4	Catalyst morphology analysis	79
	4.2.5	Acid capacity analysis	81
	4.2.6	Particle size distribution (PSD) analysis	81
4.3	Esterification of FFA in SUCO using ion exchange resins as catalyst- catalyst		-
	screen	ing study	83
4.4	Esterif	ication of FFA in SUCO using OVAAT method	85
	4.4.1	Effect of catalyst loading	85

	4.4.2	Effect of reaction temperature	86
	4.4.3	Effect of methanol to oil mass ratio	88
4.5	Reusa	bility study	89
4.6	Comp	arison between RCP160M with conventional cation exchange resins	92
4.7	Summ	ary	94

CHAPTER 5 KINETIC STUDIES OF THE FREE FATTY ACID ESTERIFICATION IN A BATCH MODE 96 5.1 Introduction 96 5.2 Effect of mass transfer resistance 96 5.3 Estimation of reactant rate constant 99 Evaluation of activation energy and pre-exponential factor 5.4 105 5.5 Summary 106

CHA	CHAPTER 6 CONCLUSION AND RECOMMENDATIONS	
6.1	Conclusion	108
6.2	Recommendations	109
REFERENCES		111
APP MEA	PENDIX A CALCULATION OF WEISZ-PRA' ARS CRITERION (Cm)	TE CRITERION (Cwp) AND 139
ACH	ACHIEVEMENTS 1	

LIST OF TABLES

Table 2.1	Seed oil content of non-edible plants	14
Table 2.2	An esterification reaction of two-step esterification and transesterification reaction using used cooking oil	20
Table 2.3	The list of the esterification reaction catalysed by ion exchange resins	34
Table 2.4	The list of the kinetic model used in esterification of FFA	49
Table 3.1	List of materials and chemicals	55
Table 3.2	List of catalysts	55
Table 3.3	List of main components in the experimental setup for esterification reaction in a batch reactor	62
Table 3.4	List of conditions for each parameters in batch esterification of SUCO	62
Table 4.1	The FT-IR assignment of bands for cation exchange resins	77
Table 4.2	BET results of ion exchange resins	78
Table 4.3	Elemental analysis of ion exchange resins	79
Table 4.4	Acid capacity analysis of ion exchange resins	81
Table 4.5	Physicochemical properties of fresh and spent RCP160M	92
Table 4.6	Comparison of performance RCP160M with reported cation exchange resins	94
Table 5.1	The C _M values of different stirring speed	97
Table 5.2	The C _{WP} values for difference size of catalyst	99
Table 5.3	Kinetic parameters for esterification of SUCO using RCP160M	101
Table 5.4	Activation energy and pre-exponential factor for each model	105
Table 5.5	Comparison of activation energy with reported heterogeneous catalyst	106
Table 5.6	Reaction enthalpy and entropy	106

LIST OF FIGURES

Figure 1.1	Final energy consumption by fuel type in 2015	1
Figure 2.1	Final energy consumption by sectors in 2015	9
Figure 2.2	Chemical equation for esterification of FFA	12
Figure 2.3	Mechanism scheme of esterification of FFA	12
Figure 3.1	Summary of the experimental work	54
Figure 3.2	Schematic diagram of esterification of SUCO in a batch reactor	61
Figure 3.3	Kinetic study of FFA esterification using POLYMATH 6.10	75
Figure 4.1	FT-IR spectra of ion exchange resins	77
Figure 4.2	SEM images of a) RCP145H, b) RCP160M, c) PK208LH, d) PK216LH, e) PK228LH, f) SK1BH, g) SK104H	80
Figure 4.3	Particle size distribution of the cation exchange resins	82
Figure 4.4	Screening study on the performance of cation exchange resins (Reaction conditions: 5 wt. % catalyst loading; 60 °C reaction temperature; 450 rpm stirring speed; 12:1 methanol to oil mass ratio; 8 h reaction time)	84
Figure 4.5	Studies on the effect of different catalyst loadings (Reaction conditions: 300 rpm stirring speed; 60 °C reaction temperature; 12:1 methanol to oil mass ratio; 8 h reaction time)	86
Figure 4.6	Studies on the effect of reaction temperature (Reaction conditions: 300 rpm stirring speed; 4 wt. % catalyst loading; 12:1 methanol to oil mass ratio; 8 h reaction time)	87
Figure 4.7	Studies on the effect of methanol to oil mass ratio (Reaction conditions: 300 rpm stirring speed; 4 wt. %; 60 °C reaction temperature; 8 h reaction time)	89
Figure 4.8	Reusability of RCP160M catalyst by methanol and hexane washing (Experimental conditions: 300 rpm stirring speed; 4 wt. % catalyst loading; 60 °C reaction temperature; 18:1 methanol to oil mass ratio; 8 h reaction time)	91
Figure 4.9	Reusability of RCP160M catalyst by methanol washing (Experimental conditions: 300 rpm stirring speed, 4 wt. % catalyst loading, 60 °C reaction temperature, 18:1 methanol to oil mass ratio, 8 h reaction time)	91
Figure 5.1	Studies on the effect of different stirring speed (Reaction conditions: 5 wt. % catalyst loading; 60 °C reaction temperature; 12:1 methanol to oil mass ratio)	98
Figure 5.2	Studies on the effect of different range of catalyst size, small (300-700 μ m), mixture (300-1000 μ m), large (700-1000 μ m) (Reaction conditions: 300 rpm stirring speed; 5 wt. % catalyst loading; 60 °C reaction temperature; 12: methanol to oil mass ratio)	99

Figure 5.3	The Arrhenius plot at 300 rpm stirring speed, 4 wt. % catalyst loading, 60 °C reaction temperature, 18:1 methanol to oil mass ratio, a) P-H model, b) LHHW model, c) E-R (Case I) model and d) E-R (Case II) model	103
Figure 5.4	The comparison of experimental and calculated data of FFA conversion versus time (min). Experimental conditions: Catalyst: RCP160M; 12:1 methanol to oil mass ratio, 4 wt. % catalyst loading and 300 rpm in 8 h reaction time.	104

LIST OF SYMBOLS

TPA	12-tungstophosphoric acid
H ₃ PW/ZrO ₂	12-tungstophosphoric acid supported on zirconia
Ea	Activation energy
K_A	Adsorption coefficient of FFA
K_B	Adsorption coefficient of methanol
K _C	Adsorption coefficient of esters
K_D	Adsorption coefficient of water
Al	Aluminium
Al_2O_3	Aluminium oxide
Å	Ångstrøm (0.1 nanometre)
CAB	Bulk concentration of limiting reactant
CaO	Calcium oxide
С	Carbon
CO_2	Carbon dioxide
ρь	Catalyst density
R_c	Catalyst radius
Cm	Centimetre
Ce	Cerium
Cs	Caesium
R^2	Coefficient of determination
Μ	Concentration
C_A	Concentration of free fatty acid
C_C	Concentration of esters
C _{HCl}	Concentration of hydrochloric acid
C_B	Concentration of methanol
C_{NaOH}	Concentration of sodium hydroxide
C_V	Concentration of vacant sites on surface
C_D	Concentration of water
C_{li}	Concentration of the limiting reactant in mixture
X	Conversion
cm^3	Cubic centimetre

^{o}C	Degree celsius
ID	Diameter
$D_{e\!f\!f}$	Effective diffusivity
ΔH	Enthalphy
ΔS	Entrophy
K_{eq}	Equilibrium constant
$Fe_2(SO_4)_2/C$	Ferric sulphate on carbon
$C_{NaOHfinal}$	Final concentration of sodium hydroxide
k _f	Forward rate constant
R	Gas constant
g	Gram
h	Hour/hours
HF	Hydrofluoric acid
Н	Hydrogen
H^+	Hydrogen ion/ proton
$C_{NaOH initial}$	Initial concentration of sodium hydroxide
Vinitial	Initial volume
J	Joule
Κ	Kelvin
kJ	Kilojoule
kv	Kilovolt
La_2O_3	Lanthanum oxide
>	Larger than
<	Less than
L	Litre
MnO	Manganese oxide
m_c	Mass of catalyst
K_c	Mass transfer coefficient
C_M	Mears Criterion
Мра	Megapascal
μm	Micrometre
mg	Milligram
ml	Millilitre

mmol	Millimoles
Mm	Millimetre
mmHg	Millimetre of mercury
min	Minute/minutes
mol	Molarity
Nd_2O_3	Neodymium oxide
NiO	Nickel (II) oxide
N_2	Nitrogen
ррт	Parts per million
%	Percent
H_3PO_4	Phosphoric acid
±	Plus or minus
psi	Pound per square inch
КОН	Potassium hydroxide
A/a	Pre-exponential factor
r _{AD}	Rate of adsorption
r _{DC}	Rate of desorption
r_s	Rate of surface reaction
r _A	Reaction rate
rpm	Revolution per minute
Si	Silica
NaOH	Sodium hydroxide
SiO_2	Silicon dioxide
m^2	Square metre
NH ₂ SO ₃ H	Sulfamic acid
-SO ₃ H	Sulfonic group
S	Sulphur
H_2SO_4	Sulphuric acid
SO_2	Sulphuric oxide
SO_4^2	Sulphated
SO_4^2/SnO_2	Sulphated tin oxide
SO_4^{2-}/TiO_2	Sulphated titanium oxide
SO_4^{2-}/ZrO_2	Sulphated zirconium oxide

$Fe(SO_4)_3/C$	Supported ferric sulphate on carbon
Т	Temperature
TCD	Thermal conductivity detector
TiO_2	Titanium oxide
C_t	Total concentration of active sites on surface
WO ₃	Tunsteng trioxide
vol	Volume
V _{HCl}	Volume of hydrochloric acid
V _{NaOH}	Volume of sodium hydroxide
<i>v/v</i>	Volume per volume
wt. %	Weight percent
w/w	Weight per weight
C_{wp}	Weisz Prater Criterion
Yb ₂ O ₃	Ytterbium (III) oxide
ZnO	Zinc oxide
ZrO_2	Zirconium oxide

LIST OF ABBREVIATIONS

TPA	12-Tungstopphosphoric acid
ASTM	American Society for Testing and Materials
A-SZr	Aerogel sulphated zirconia catalyst
BET	Brunauer-Emmett-Teller
CAHZ	Dealuminated HSZM-5 with citric acid
CHNS	Elemental analysis
CSTR	Continuous stirred tank reactor
DDPO	Deodorisation processes of palm oil
EDX	Energy dispersive x-ray spectroscopy
E-R	Eley-Rideal
FAME	Fatty acid methyl ester
FAU	Faujasite
FESEM	Field emission scanning electron microscopy
FFA	Free fatty acid
FS/OMC	Ferric sulfate supported on ordered mesoporous carbon
FT-IR	Fourier-Transform Infrared Spectroscopy
Н	Hydrogen
HPA	Heteropolyacid
HPAs	Heteropolyacids
HZ	HZSM-5 zeolite
IM-1	Intermediate 1
IM-2	Intermediate 2
LA	Lanthanum oxide
L-M	Levenberg-Marquardt
MFI	ZSM-5
MK700	Kaolin waste
LHHW	Langmuir-Hinshelwood-Hougen-Watson
MOR	Mordenite
Ν	Nitrogen
OBR	Oscillatory baffled reactor
OSHA	Occupational Safety and Health Administration

OVAAT	One-variable-at-a-time
PBR	Packed bed reactor
PFR	Plug flow reactor
РМо	Molybdophosphoric acid
PSD	Particle size distribution
PSS	Polystyrene waste
P-H	Pseudo-homogeneous
R&D	Research and development
RBFA	Rice bran fatty acid
RBO	Rice bran oil
RHC	Rice husk char
S	Sulphur
SCER	Sulfonated cation exchange resins
SEM	Scanning Electron Microscopy
SiW	Tungstosilicic acid
SLO	Sulphated lanthanum oxide
ST-DVB	Styrene and divinyl benzene
SUCO	Simulated used cooking oil
SZ	Sulphated zirconia
TFR	Tubular flow reactor
TiZ	Titania zirconia
TPD	Thermal desorption spectroscopy
TW	Tungstophoric acid
UCO	Used cooking oil
USDA	United States Department of Agriculture
WZ	Tungstated zirconia
X-SZr	Xerogel sulphated zirconia catalyst