

EFFECT OF DEPOSITION OF NANOPARTICLES DURING JOINING OF DISSIMILAR METALS BY FRICTION STIR WELDING

BARIDULA RAVINDER REDDY

DOCTOR OF PHILOSOPHY

UNIVERSITI MALAYSIA PAHANG

SUPERVISOR'S DECLARATION

We hereby declare that we have checked this thesis and in our opinion, this thesis is adequate in terms of scope and quality for the award of the degree of Doctor of Philosophy.

(Supervisor's Signature) Full Name : DR. ABDULLAH BIN IBRAHIM Position : PROFESSOR Date :

(Co-supervisor's Signature)
Full Name : DR. CHE KU MOHAMMAD FAIZAL BIN CHE KU YAHYA
Position : SENIOR LECTURER
Date :

STUDENT'S DECLARATION

I hereby declare that the work in this thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at Universiti Malaysia Pahang or any other institutions.

(Student's Signature) Full Name : BARIDULA RAVINDER REDDY ID Number : PPT15010 Date : 11 June 2018

EFFECT OF DEPOSITION OF NANOPARTICLES DURING JOINING OF DISSIMILAR METALS BY FRICTION STIR WELDING

BARIDULA RAVINDER REDDY

Thesis submitted in fulfillment of the requirements for the award of the degree of Doctor of Philosophy

Faculty of Engineering Technology UNIVERSITI MALAYSIA PAHANG

JUNE 2018

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to my supervisor, Dr. Abdulla Bin Ibrahim, for his overwhelming guidance, patience, and the endless hours spent editing this draft. I feel very fortunate to have him as my supervisor, to have had the opportunity to work with him, and to have his helpful advice for the past three years. He has always been available and willing to have a discussion with me, even on his busiest days. Working with him has made this journey very pleasant, and for that, I am deeply grateful.

I would like to express my gratitude to my co-supervisors Dr. Che Ku Mohammad Faizal Bin Che Ku Yahya and Dr. Rama Raju Ram Gopal Varma for their dedicated support, professional guidance and for showing me what research is all about. This thesis would not have been possible without their valuable feedback.

My deepest gratitude is also forwarded to the Universiti management for providing excellent lab facilities for me to successfully carry out the project work in our department.

I would like to thank Universiti Malaysia Pahang for granting of Doctoral Scholarship Scheme (DSS) and providing me with financial assistance. My special acknowledgment goes to the Dean and Deputy Dean of Faculty of Engineering Technology for their continuous support and motivation towards my postgraduate degree. I would also like to thank all of the technical staff of Faculty of Engineering Technology.

I acknowledge that my achievement is a result of collaborating efforts from my lecturers, classmates and friends. I would also like to acknowledge my dearest family, whose ultimate concern and support enabled me to finish my study. Those whom I have not mentioned above, I wish to thank you all. Finally, my deepest gratitude goes to my beloved wife Mrs. B.Sree Laxmi for her patience and moral support throughout this work. This dissertation could not be done without her dedication and sacrifice.

TABLE OF CONTENT

DEC	CLARATION	
TIT	LE PAGE	
ACK	KNOWLEDGEMENTS	ii
ABS	STRAK	iii
ABS	STRACT	iv
TAB	BLE OF CONTENT	v
LIST	Г OF TABLES	X
LIST	Г OF FIGURES	xi
LIST	Γ OF ABBREVIATIONS	XV
CHA	APTER 1 INTRODUCTION	1
1.1	Background	1
1.2	Benefits of friction stir welding	5
1.3	Applications of friction stir welding	5
1.4	Limitations of friction stir welding	6
1.5	Problem statement	7
1.6	Research objectives	8
1.7	Scope of study	9
1.8	Significance of study	9
1.9	Thesis organization	10
CHA	APTER 2 LITERATURE REVIEW	11
2.1	Introduction	11

2.2	Friction stir welding of aluminium alloys		12
2.3	Friction stir welding of dissimilar aluminium alloys		14
	2.3.1	Friction stir welding of dissimilar aluminium alloys AA5XXX, AA6XXX and AA2XXX	14
	2.3.2	Friction stir welding of dissimilar aluminium alloys AA2024 and AA7075	18
2.4	Frictio	on stir processing (FSP)	21
	2.4.1	Friction stir processing of magnesium alloys with reinforcements	22
	2.4.2	Friction stir processing of aluminium alloys with reinforcements	24
	2.4.3	Friction stir processing of copper with reinforcements	33
2.5	Frictio	on stir welding by the addition of reinforcements	36
2.6	Summ	nary	42
СНАН	PTER 3	B METHODOLOGY	43
3.1	Introd	uction	43
3.2	Research design		43
3.3	Research Methodology		44
3.4	Friction Stir Welding machine		45
3.5	Tool nomenclature		46
3.6	Material Properties		47
3.7	Process parameters		49
3.8	Joint p	preparation	50
3.9	Fabric	ation of welded joint by depositing the nanoparticles	55
3.10	Tensil	e test	59
3.11	Micro	hardness test	60
3.12	Optica	al Metallography	61
3.13	Field Emission Scanning Electron Microscopy (FESEM) vi		63

55 55 56
55 56
56
59
72
73
74
75
76
78
30
31
33
34
35
36
37
38
m 90

64

4.4.1 Microstructure of the stir zone 90

	4.4.2	Electron dispersive X-ray analysis (EDX) of stir zone	92
	4.4.3	Tensile strength	93
	4.4.4	Microhardness	95
	4.4.5	Concluding remarks	96
4.5	Effect	of carbon nanotube reinforcements on the stir zone during friction sti	r
	weldir	ng of high strength dissimilar aluminium alloys	97
	4.5.1	Microstructure of the stir zone	98
	4.5.2	Electron dispersive X-ray analysis (EDX) of stir zone	101
	4.5.3	Microhardness	103
	4.5.4	Tensile strength	104
	4.5.5	Concluding remarks	108
4.6	Influe	nce of groove size and reinforcements addition on mechanical proper	ties
	and m	icrostructure of friction stir welded joints	109
	4.6.1	Microstructure of the stir zone	109
	4.6.2	Electron dispersive X-ray analysis (EDX) of stir zone	111
	4.6.3	Tensile Strength	112
	4.6.4	Microhardness	113
	4.6.5	Concluding remarks	114
4.7	Effect	of welding speed on microstructure and mechanical properties due to	the
	deposition of reinforcements on friction stir welded high strength dissimilar		
	alumi	nium alloys	115
	4.7.1	Microstructure of the stir zone	115
	4.7.2	Electron dispersive X-ray analysis (EDX) of stir zone	117
	4.7.3	Tensile strength	118
	4.7.4	Microhardness	120
	4.7.5	Concluding remarks	120

4.8 Effect of titanium dioxide reinforcements on the stir zone during		of titanium dioxide reinforcements on the stir zone during friction sti	r
	weldi	ng of high strength dissimilar aluminium alloys	122
	4.8.1	Microstructure of the stir zone	122
	4.8.2	Electron dispersive X-ray analysis (EDX) of stir zone	126
	4.8.3	Tensile strength	127
	4.8.4	Microhardness	129
	4.8.5	Concluding remarks	131
4.9	Effect	of Aluminium oxide nanoparticles deposition on friction stir welded	
	dissim	nilar aluminium alloys AA2024 and AA7075	132
	4.9.1	AA2024 and AA7075 weld joint with nanoparticles (S29)	133
	4.9.2	AA2024 and AA7075 weld joint with nanoparticles (S32)	135
	4.9.3	AA2024 and AA7075 weld joint with nanoparticles (S34)	136
	4.9.4	AA2024 and AA7075 weld joint with nanoparticles (S35)	138
	4.9.5	Concluding remarks	141
4.10	Summ	nary	142
CHAI	PTER 5	5 CONCLUSION AND RECOMMENDATIONS	143
5.1	Introd	uction	143
5.2	Concl	usion	143
5.3	Novel	Contributions of the Research	146
5.4	Recommendations 14		
REFE	RENC	ES	149

LIST OF TABLES

Table 2.1	Review table for friction stir welding by the addition of reinforcements	41
Table 3.1	FSW machine specification	46
Table 3.2	Chemical Composition of AA 5052 and AA 6063 alloys	48
Table 3.3	Mechanical Properties of AA 5052 and AA6063 alloys	48
Table 3.4	Chemical Composition of AA 2024 and AA 7075 alloys	49
Table 3.5	Mechanical Properties of AA 2024 and AA 7075 alloys	49
Table 3.6	Process Parameters for AA5052 and AA6063	50
Table 3.7	Process Parameters for AA2024 and AA7075	50
Table 4.1	Groove size in mm	66
Table 4.2	Properties of welded joint with different groove size	72
Table 4.3	Experimental plan for AA5052 and AA6063 with copper nanoparticles	75
Table 4.4	Tensile Strength of AA5052 and AA6063 weld joints	76
Table 4.5	Microhardness of AA5052 and AA6063 weld joints	76
Table 4.6	Properties of welded joint at different rotational speed	95
Table 4.7	Experimental plan for AA2024 and AA7075 with carbon nanoparticles	97
Table 4.8	Microhadrness of samples with and without carbon nanotubes	103
Table 4.9	Tensile Strength of samples with and without carbon nanotubes	106
Table 4.10	Properties of welded joint for different size of the groove	112
Table 4.11	Mechanical properties of friction stir welded joints	119
Table 4.12	Experimental plan for AA2024 and AA7075 with TiO_2 nanoparticles	122
Table 4.13	Tensile Strength of the samples with and without TiO_2 nanoparticles	129
Table 4.14	Microhadrness of the samples with and without TiO ₂	130
Table 4.15	Experimental Plan for AA2024 and AA7075 with Al_2O_3 nanoparticles	132
Table 4.16	Tensile Strength of the samples with Al ₂ O ₃ nanoparticles	132
Table 4.17	Microhardness of the samples with Al ₂ O ₃ nanoparticles	132
Table 4.18	Mechanical Properties of high strength aluminium alloy weld joints with and without nanoparticles	141

LIST OF FIGURES

Figure 1.1	Principle of Friction Stir Welding	2
Figure 1.2	Detailed procedure in Friction Stir Welding	3
Figure 3.1	Flow chart of research process	44
Figure 3.2	NC 5T Friction stir welding machine	45
Figure 3.3	Dimensions of the tool with 3D model	47
Figure 3.4	Fabricated welding tools	47
Figure 3.5	Schematic view of workpiece arrangement	51
Figure 3.6	Schematic view of butt joint	52
Figure 3.7	Schematic view of welded joint	53
Figure 3.8	Friction stir welded Joint	54
Figure 3.9	Mitsubishi EDM wire cut machine	54
Figure 3.10	Schematic diagram of tensile samples from EDM wire cut machine	55
Figure 3.11	FESEM image of as-received copper nanoparticles	56
Figure 3.12	Friction stir welded dissimilar Joint AA5052 and AA6063	56
Figure 3.13	FESEM image of as-received CNT	57
Figure 3.14	FESEM image of as-received TiO2	57
Figure 3.15	FESEM image of as-received Al ₂ O ₃	58
Figure 3.16	Groove filled with nanoparticles	58
Figure 3.17	Friction stir welded dissimilar Joint AA2024 and AA7075	59
Figure 3.18	ASTM E8 standard specimen for tensile testing	60
Figure 3.19	Test specimen for Micro Hardness	61
Figure 3.20	Polishing Machine	62
Figure 3.21	(a) Photograph of FESEM (b) Schematic diagram representing its working.	63
Figure 4.1	Microstructure of stir zone for groove size of $3 \text{ mm} \times 1 \text{ mm}$	67
Figure 4.2	Microstructure of Stir zone for groove size of $3 \text{ mm} \times 2 \text{ mm}$	67
Figure 4.3	Microstructure of Stir zone for groove size of 2 mm×1mm	68
Figure 4.4	Microstructure of Stir zone for groove size of $1 \text{ mm} \times 2 \text{ mm}$	68
Figure 4.5	EDX results of Stir zone for groove size of 3 mm×1 mm	69
Figure 4.6	EDX results of Stir zone for groove size of $3 \text{ mm} \times 2 \text{ mm}$	70
Figure 4.7	EDX results of Stir zone for groove size of 2 mm×1 mm	71
Figure 4.8	EDX results of Stir zone for groove size of $1 \text{ mm} \times 2 \text{ mm}$	71
Figure 4.9	Tensile strength of welded joint with different groove size	72

Figure 4.10	Microhardness of welded joint	73
Figure 4.11	Fractured Tensile specimens Case 1	77
Figure 4.12	Microstructure of the stir zone Case 1	77
Figure 4.13	Elemental identification of the stir zone Case 1	78
Figure 4.14	Fractured Tensile specimens Case 2	79
Figure 4.15	Microstructure of the stir zone Case 2	79
Figure 4.16	Elemental identification of the stir zone Case 2	80
Figure 4.17	Microstructure of the stir zone Case 3	80
Figure 4.18	Elemental identification of the stir zone Case 3	81
Figure 4.19	Microstructure of the stir zone Case 4	82
Figure 4.20	Elemental identification of the stir zone Case 4	82
Figure 4.21	Microstructure of the stir zone Case 5	83
Figure 4.22	Elemental identification of the stir zone Case 5	83
Figure 4.23	Microstructure of the stir zone Case 6	84
Figure 4.24	Elemental identification of the stir zone Case 6	84
Figure 4.25	Microstructure of the stir zone Case 7	85
Figure 4.26	Elemental identification of the stir zone Case 7	86
Figure 4.27	Microstructure of the stir zone Case 8	87
Figure 4.28	Elemental identification of the stir zone Case 8	87
Figure 4.29	Microhardness distribution for all samples along weld zone	88
Figure 4.30	Microstructure of Stir zone at 1200 rpm	91
Figure 4.31	Microstructure of Stir zone at 1400 rpm	91
Figure 4.32	Elemental identification of the stir zone at 1200rpm	92
Figure 4.33	Elemental identification of the stir zone at 1400 rpm	93
Figure 4.34	Fractured Tensile specimens at 1200 rpm	94
Figure 4.35	Fractured Tensile specimens at 1400 rpm	94
Figure 4.36	Microhardness Indentation at (a) 1200 rpm (b) 1400 rpm	95
Figure 4.37	Microstructure of the stir zone for the samples a) S14b) S15 without nanoparticles	ut 98
Figure 4.38	Microstructure of the stir zone for the samples a) S17 b) S20 without nanoparticles	99
Figure 4.39	Microstructure of the stir zone for the samples a) S13 b) S16 with nanoparticles	100
Figure 4.40	Microstructure of the stir zone for the samples a) S18 b) S19 with nanoparticles	101

Figure 4.41	Elemental identification of the stir zone for the samples a) S14 b) S15 c) S17 d) S20 without nanoparticles	102
Figure 4.42	Elemental identification of the stir zone for the samples a) S13 b) S16 c) S18 d) S19 with nanoparticles	102
Figure 4.43	Microhardness distribution for all samples along weld zone	103
Figure 4.44	Tensile Strength for all samples with and without multiwalled carbon nanotubes	105
Figure 4.45	Fractured surfaces of samples (a) S14 (b) S15 (c) S17 and (d) S20 without nanoparticles	107
Figure 4.46	Fractured surfaces of samples (a) S13 (b) S16 (c) S18 and (d) S19 with nanoparticles	108
Figure 4.47	Microstructure of Stir zone for groove size (a) 1 mm×2 mm (b) 1.6 mm×2 mm	110
Figure 4.48	Microstructure of Stir zone for groove size (a) $2 \text{ mm} \times 2 \text{ mm}$ (b) $3 \text{ mm} \times 2 \text{ mm}$	110
Figure 4.49	EDX results of Stir zone for groove size (a) 1 mm×2 mm (b) 1.6 mm×2 mm	111
Figure 4.50	EDX results of Stir zone for groove size (a) $2 \text{ mm} \times 2 \text{ mm}$ (b) $3 \text{ mm} \times 2 \text{ mm}$	112
Figure 4.51	Tensile Strength of welded joints	113
Figure 4.52	Microhardess of welded joint	114
Figure 4.53	Microstructure of Stir zone at (a) 70 mm/min (b) 80 mm/min	116
Figure 4.54	Microstructure of Stir zone at (a) 90 mm/min (b) 80 mm/min without nanoparticles	117
Figure 4.55	EDX results of Stir zone with nanoparticles at (a) 70 mm/min (b) 80 mm/min	117
Figure 4.56	EDX results of Stir zone with nanoparticles at (a) 90 mm/min (b) 80 mm/min without nanoparticles	118
Figure 4.57	Mechanical Properties of the welded joint (a) Tensile Strength (b) Microhardness	119
Figure 4.58	Microstructure of the stir zone for specimen S26	123
Figure 4.59	Microstructure of the interface for specimen S26	123
Figure 4.60	Microstructure of the stir zone for specimen (a) S21 (b) S24	124
Figure 4.61	Microstructure of the stir zone for specimen (a) S26 (b) S27	125
Figure 4.62	SEM micrograph of the stir zone for specimen (a) S21 (b) S24	125
Figure 4.63	SEM micrograph of the stir zone for specimen (a) S26 (b) S27	126
Figure 4.64	Elemental identification of the stir zone for the samples a) S21 b) S24	126
Figure 4.65	Elemental identification of the stir zone for the samples a) S26 b) S27	127

Figure 4.66	Tensile Strength for all samples with and without TiO ₂ nanoparticles	128
Figure 4.67	Microhardness distribution along the stir zone for TiO ₂ nanoparticles	130
Figure 4.68	Microstructure of the stir zonefor specimen S29	133
Figure 4.69	SEM micrograph of the stir zone for specimen S29	134
Figure 4.70	Elemental identification of the stir zone for the sample S29	134
Figure 4.71	Fractured tensile specimens for S29	135
Figure 4.72	Microstructure of the stir zonefor specimen S32	135
Figure 4.73	SEM micrograph of the stir zone for specimen S32	136
Figure 4.74	Elemental identification of the stir zone for the sample S32	136
Figure 4.75	Microstructure of the stir zonefor specimenS34	137
Figure 4.76	SEM micrograph of the stir zone for specimen S34	137
Figure 4.77	Elemental identification of the stir zone for the sample S34	138
Figure 4.78	Fractured tensile specimens for S34	138
Figure 4.79	Microstructure of the stir zonefor specimen S35	139
Figure 4.80	SEM micrograph of the stir zone for specimen S35	139
Figure 4.81	Elemental identification of the stir zone for the sample S35	140
Figure 4.82	Microhardness distribution along the stir zone for Al ₂ O ₃ nanoparticles	140

LIST OF ABBREVIATIONS

AA	Aluminium Alloy
Al_2O_3	Aluminium oxide
ASTM	American society of testing materials
Cu	Copper
EDM	Electrical Discharge Machining
EBW	Electron Beam Welding
EDX	Electron dispersive X-ray analysis
FESEM	Field emission scanning electron microscope
FSW	Friction Stir Welding
FSP	Friction Stir Processing
GTAW	Gas tungsten arc welding
HAZ	Heat affected zone
HSS	High Speed Steel
Hv	Hardness Vickers
MPa	Megapascal
MWCNT	Multi-walled carbon nanotubes
NC5T	Numerical Control 5Tons
NZ	Nugget zone
Rpm	Revolutions per minute
SEM	Scanning electron microscope
SZ	Stir Zone
TiO_2	Titanium dioxide
TMAZ	Thermo-mechanically affected zone