

THE INFLUENCE OF MICROBIAL MUTUALISTIC INTERACTIONS AND BIOFILM FORMATION ON THE PERFORMANCE OF MICROBIAL FUEL CELL

MOHAMMED AMIRUL ISLAM

DOCTOR OF PHILOSOPHY

UNIVERSITI MALAYSIA PAHANG

SUPERVISOR'S DECLARATION

We hereby declare that we have checked this thesis, and, in our opinion, this thesis is adequate in terms of scope and quality for the award of the degree of Doctor of Philosophy.

(Supervisor's Signature)Full Name: DR. MD. MAKSUDUR RAHMAN KHANPosition: ASSOCIATEPROFESSORDate:

(Co-supervisor's Signature)

Full Name: DR. CHENG CHIN KUIPosition: ASSOCIATE PROFESSORDate:

STUDENT'S DECLARATION

I hereby declare that the work in this thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at Universiti Malaysia Pahang or any other institutions.

(Student's Signature) Full Name : MOHAMMED AMIRUL ISLAM ID Number : PKC15010 Date : 13 June 2018

THE INFLUENCE OF MICROBIAL MUTUALISTIC INTERACTIONS AND BIOFILM FORMATION ON THE PERFORMANCE MICROBIAL FUEL CELL

MOHAMMED AMIRUL ISLAM

Thesis submitted in fulfillment of the requirements for the award of the degree of Doctor of Philosophy

Faculty of Chemical and Natural Resources Engineering UNIVERSITI MALAYSIA PAHANG

JUNE 2018

ACKNOWLEDGEMENTS

The research presented in this thesis has been carried out at the Faculty of Chemical and Natural Resources Engineering, Universiti Malaysia Pahang, Malaysia. The journey of my research would not be possible without help and support of a number of persons.

At first, I wish to my humble gratefulness and sincere thanks to honourable supervisor, Associate Professor Dr. Md. Maksudur Rahman Khan for his valuable support and guidance throughout the study. Indeed, it was utmost opportunity for me to get him as my main supervisor. He has always been able to keep on amazing me with his introspective thinking, ideas and insights. I would also like to give special thanks to my other supervisors, Dr. Chin Kui Cheng and Dr. Sabri Bin Muhammad for their inspiration and support.

I am highly grateful to the Universiti Malaysia Pahang (UMP), Malaysia, for funding this work under the grant number of GRS 150371 and RDU 140322. Apart from that, I would like to acknowledge the authority Panching Palm Oil Mill (FELDA), Kuantan, Pahang, Malaysia for their continuous support by giving me palm oil mill effluent and anaerobic sludge samples.

I would like to express my sincere gratitude to Dr. Abu Yousuf for his unconditional support in to write-up my thesis as well as research papers. A million thanks should go to Dr. Baranitharan Ethiraj for his kind helps and suggestions to conduct my experiments and to write-up my thesis. Some special thanks also goes to Dr. Ong Huei Ruey for helping me to do the optimization by Response surface Methodology. I also greatly appreciate to Mdm Hamidah Abdullah for correcting and polishing my thesis abstract (Malay version). Special thanks must be given to Mr. Ahasanul Karim, Mr Sheraj Ahmed, Mr. Kaykobad Md. Rezaul Karim, Mr. Woon Chee Wai for sharing their resource in the lab.

Lastly, I also want to thank to my parents and family for their continuous supports, encouragements and inspirations. It would be really tough to finish my study without their supports and devotions. On the *Insert* tab, the galleries include items that are designed to coordinate with the overall look of your document. You can use these galleries to insert tables, headers, footers, lists, cover pages, and other document building blocks. When you create pictures, charts, or diagrams, they also coordinate with the current look of your document.

TABLE OF CONTENT

DEC	CLARATION	
TIT	LE PAGE	
ACK	KNOWLEDGEMENTS	ii
ABS	TRAK	iii
ABS	TRACT	iv
TAB	BLE OF CONTENT	v
LIST	Γ OF TABLES	xi
LIST	Γ OF FIGURES	xiii
LIST	Г OF SYMBOLS	xviii
LIST	Γ OF ABBREVIATIONS	xix
CHA	APTER 1 INTRODUCTION	1
1.1	Background	1
1.2	Problem statement	3
1.3	Objectives	4
1.4	Scope	5
1.5	Organization of the thesis	5
CHA	APTER 2 LITERATURE REVIEW	7
2.1	The concept and working principles of MFCs	7
2.2	Substrates used in MFC	10
	2.2.1 Synthetic wastewater	11
	2.2.2 Brewery wastewater	11

	2.2.3	Starch processing wastewater	12
	2.2.4	POME	12
	2.2.5	Inorganic and other simple substrates	14
2.3	Limita	ations of electrochemical reactions	14
	2.3.1	Activation over-potentials	16
	2.3.2	Concentration over-potentials	16
	2.3.3	Ohmic voltage losses	16
2.4	Micro	bial electron transfer mechanism	18
	2.4.1	Direct electron transfer	18
	2.4.2	Mediated electron transfer	19
2.5	Biofil	m formation in MFCs	21
	2.5.1	Effect of biofilm formation on MFC performance	22
	2.5.2	Existing methods of biofilm removal in bioreactors	26
2.6	Micro	bial community in MFCs	29
2.7	Micro	bial mutualistic interactions	34
2.8	Micro	bial synergistic interaction	35
	2.8.1	Interaction modes between microorganisms	36
	2.8.2	Molecular mechanisms of interactions in microbial consortia	36
		2.8.2.1 Contact-independent interactions	37
		2.8.2.2 Contact-dependent interactions	40
2.9	Mutua	alistic effects on MFC performance	40
2.10	Optim	nization of MFC performance	43
	2.10.1	Effect of operational parameters	45
		2.10.1.1 Effect of inoculum composition	46
		2.10.1.2 Effect of time	46

		2.10.1.3 Effect of pH	47
		2.10.1.4 Effect of substrate concentration	47
	2.10.2	2 Statistical models used in MFCs	48
	2.10.3	B Data generation	49
2.11	Summ	nary	51
СНА	PTER 3	3 METHODOLOGY	53
3.1	Inocul	lum screening and time-course biofilm analysis	54
	3.1.1	Sampling	54
	3.1.2	Wastewater characterization	54
		3.1.2.1 COD measurement	54
		3.1.2.2 BOD measurement	55
		3.1.2.3 Total solids	55
		3.1.2.4 Total dissolved solids	56
		3.1.2.5 Total suspended solids	57
		3.1.2.6 Ammoniacal nitrogen	57
	3.1.3	Sources of inoculums	58
	3.1.4	Characterization of the microorganisms	58
		3.1.4.1 Biolog GEN III analysis	58
		3.1.4.2 16s rRNA analysis	59
		3.1.4.3 Phylogenetic analysis:	60
	3.1.5	Inoculum screening	60
	3.1.6	Chemicals and raw materials	61
	3.1.7	Electrode preparation	62

	3.1.8	Membrane pre-treatment	62
	3.1.9	MFC fabrication and operations	63
	3.1.10	Measurements and analyses	66
	3.1.11	COD removal efficiency	66
	3.1.12	FESEM analysis	67
	3.1.13	Cell viability count	68
	3.1.14	Electrochemical impedance spectroscopy analysis	68
	3.1.15	CV analysis	70
3.2	Microb	bial mutualistic interaction	71
	3.2.1	MFC operation	71
	3.2.2	Cell growth measurement	71
	3.2.3	Metabolite analysis	71
	3.2.4	DGGE analysis	72
	3.2.5	Numerical and statistical analysis of DGGE	73
3.3	Optimi	ization of MFC performance	73
	3.3.1	MFC operation	73
	3.3.2	RSM analysis	74
	3.3.3	Experimental design and data analysis	75
	3.3.4	Statistical analyses	75
СНАР	TER 4	CORRELATION OF MFC PERFORMANCE WITH TIME-	
COUR	RSE BIO	OFILM FORMATION	77
4.1	Inocul	um screening	77
	4.1.1	Isolation and identification of bacteria	77
	4.1.2	Evaluation of inoculum performance using U-tube MFC	77
4.2	Perform	nance of MFCs using targeted pure culture microbes	80

4.3	Biofilm characterization		83
	4.3.1	FESEM analysis	83
	4.3.2	Cell viability count	86
	4.3.3	EIS analysis	88
	4.3.4	CV analysis	94
4.4	Biofil	m revitalization	97
	4.4.1	Mechanical method	97
	4.4.2	Ultrasound-assisted method	100
	4.4.3	Flow-induced method	105
4.5	Discu	ssions	108
4.6	Summ	ary	114

CHAPTER 5 EFFECT OF MICROBIAL INTERACTION ON MFC PERFORMNACE

116

5.1	Performance of MFCs 1	
5.2	Electrochemical characterization	118
	5.2.1 CV analysis	118
	5.2.2 EIS analyses	122
5.3	Mechanism of synergistic interaction between P. aeruginosa and K. variicol	la
		124
5.4	Discussions	129
5.5	Summary	133
CHAP	TER 6 OPTIMIZATION OF MFC PERFORMANCE	135
6.1	Development of regression model analysis	135
6.2	Statistical analysis	140
6.3	Performance of MFC	142

	6.3.1	Power density	142
	6.3.2	COD removal efficiency	144
6.4	Discu	ssion	146
6.5	Summ	ary	149
CHAPTER 7 CONCLUSIONS AND RECOMMENDATIONS			151
7.1	Concl	usions	151
7.2	Recon	nmendations	153
REFE	RENC	ES	154
APPENDIX A		Α	186
APPE	NDIX	В	193

LIST OF TABLES

Table 2.1	Typical electron donors and acceptors in MFCs	9
Table 2.2	General properties of POME	12
Table 2.3	Contents of POME	13
Table 2.4	Some common exo-electrogens with known electron transfer mechanisms	20
Table 2.5	Pure culture microorganisms studied in microbial fuel cells	29
Table 2.6	Performance MFC using different pure and mixed culture inoculums in wastewater fed MFCs	32
Table 2.7	Summary of statistical models used in MFCs	49
Table 3.1	Summary of GC clump in PCR program	60
Table 3.2	List of chemicals and materials	61
Table 3.3	Descriptions of inoculums used in co-culture and mixed culture operated MFCs	71
Table 3.4	Composition of denaturing gels used in microbial community analysis	72
Table 3.5	Variables for model to optimize the performance of co-culture inoculated MFCs	74
Table 4.1	The contribution of internal resistance of anode at different MFCs	90
Table 4.2	The oxidative and reductive applied potential and maximum oxidative and reductive current using different inoculums on the 11 th day operations	95
Table 5.1	The oxidative peak potential with corresponding current and reductive peak potential with corresponding current using different inoculums	121
Table 5.2	The contribution of internal resistance of anode at different MFCs	123
Table 5.3	Performance comparison to literature for co-culture inoculums	131
Table 6.1	Level of independent variables in power density using different co-culture composition of inoculums	137
Table 6.2	Analysis of variance (ANOVA) for quadric model of power density	140

- Table 6.3Analysis of variance (ANOVA) for quadric model of COD141removal efficiency
- Table 6.4The best operational conditions of MFC obtained from the146optimization process and experimental results

LIST OF FIGURES

- Figure 2.1 Functional principle of typical dual chamber microbial fuel cell 8 (Schematic diagram)
- Figure 2.2 Protein involved in DET mechanism especially for G 10 *sulfurreducens*. This organism is capable of producing different types of c-type cytochromes for extracellular electron transfer (EET). However, among them, the role of certain cytochromes (OmcB and OmcZ) is clearly understood. The cytochromes OmcZ which is located to the electrode surface is associated with the cytochrome-based electron transfer mechanism while OmcB and pili are associated with distant electron transfer
- Figure 2.3 Polarization curves for anode (E_{anode}) and cathode $(E_{cathode})$ with 17 the possible over-potentials in function of the current. The three regions represent the potential losses in a MFC system, i.e. i) the region A represents the activation losses, ii) the region B represents the ohmic losses, and the region C represents the concentration losses
- Figure 2.4 Different types of electron transfer mechanisms from microbes to 19 electrode. The cells in the biofilm close to the electrode transfer electrons though the membrane bound cytochromes, whereas distant cells from the electrode could use a conductive pilli network and electron shuttling mediators to transfer electrons from the cells to the electrode
- Figure 2.5 Polarization curves of MFCs on different days of operation 23
- Figure 2.6 Contribution of anode internal resistance of MFCs (Rs represents 25 the solution resistance, R_{ct} represents the charge transfer resistance and R_d represents the diffusion resistance
- Figure 2.7 The regeneration of biofilm by applying vibration technique in 27 MBR system
- Figure 2.8 Effect of microbial synergistic relationships for biofuel 39 production, a) symbiotic relationship between *Clostridium phytofermentans* and *S. cerevisiae*, b) mutual interaction between *T. reesei* and *E. coli*
- Figure 2.9 Current generation of MFCs inoculated with pure and cocultures 42 of *S. oneidensis* and *E. coli*, a) Current generation generated as a function of time, b) maximum current density of pure and cocultures

Figure 2.10	Design of experiments (DOE) used in the MFC studies, a) factorial design (FD), b) central composite design (CCD), c) box-Behnken design (BBD) and d) Placket-Burman design PBD	51
Figure 3.1	Overview of research methodology	54
Figure 3.2	Schematic diagram of U-tube microbial fuel cell	63
Figure 3.3	Fabrication of MFC reactor, a) material used to fabricate MFC, b) schematic diagram of dual chamber MFC	64
Figure 3.4	Schematic diagram of MFC set-up under the flow rate conditions	65
Figure 3.5	Schematic diagram of EIS measurement set up	69
Figure 3.6	The resistance control region of Nyquist plot	70
Figure 4.1	Power generation trend of MFCs using different pure culture inoculums	78
Figure 4.2	COD removal efficiency of MFCs using different pure culture inoculums	79
Figure 4.3	Profile of current generation of MFCs with time under fixed external resistance (1000 Ω), a) <i>B. cereus</i> , b) <i>K. variicola</i> , c) <i>K. pneumonia</i> , d) <i>P. aeruginosa</i>	80
Figure 4.4	Polarization and power density curves of MFCs after different days of operation, a) <i>B.cereus</i> , b) <i>K. variicola</i> , c) <i>K. pneumonia</i> and d) <i>P. aeruginosa</i>	81
Figure 4.5	FESEM images on anode electrode at 3 rd day using different inoculums, a) <i>B.cereus</i> , b) <i>K. variicola</i> , c) <i>K. pneumonia</i> and d) <i>P. aeruginosa</i>	83
Figure 4.6	FESEM images on anode electrode at 11 th day using different inoculums, a) <i>B. cereus</i> , b) <i>K. variicola</i> , c) <i>K. pneumonia</i> and d) <i>P. aeruginosa</i>	84
Figure 4.7	FESEM images on anode electrode at 21 st day using different inoculums, a) <i>B. cereus</i> , b) <i>K. variicola</i> , c) <i>K. pneumonia</i> and d) <i>P. aeruginosa</i>	85
Figure 4.8	Cell viability count of anode biofilm for <i>K. variicola</i> and <i>P. aeruginosa</i> on different days of operations	87
Figure 4.9	Fitting results of MFC Nyquist plots on the 3 rd day of operation using different inoculums, a) <i>B. cereus</i> , b) <i>K. variicola</i> , c) <i>K. pneumonia</i> and d) <i>P. aeruginosa</i>	89

Figure 4.10	Fitting results of MFC Nyquist plots on the 7 th day of operation using different inoculums, a) <i>B. cereus</i> , b) <i>K. variicola</i> , c) <i>K. pneumonia</i> and d) <i>P. aeruginosa</i>	91
Figure 4.11	Fitting results of MFC Nyquist plots on the 11 th day of operation using different inoculums, a) <i>B. cereus</i> , b) <i>K. variicola</i> , c) <i>K. pneumonia</i> and d) <i>P. aeruginosa</i>	92
Figure 4.12	Fitting results of MFC Nyquist plots on the 21 st day of operation using different inoculums, a) <i>B. cereus</i> , b) <i>K. variicola</i> , c) <i>K. pneumonia</i> and d) <i>P. aeruginosa</i>	93
Figure 4.13	Contribution of R_{ct} and R_{dif} on MFCs using different inoculums, a) <i>B. cereus</i> , b) <i>K. variicola</i> , c) <i>K. pneumonia</i> and d) <i>P. aeruginosa</i>	94
Figure 4.14	Cyclic voltammograms for the anode on different days of operation using different pure cultures, a) <i>B. cereus</i> , b) <i>K. pneumonia</i> , c) <i>K. variicola</i> and d) <i>P. aeruginosa</i>	96
Figure 4.15	Current generation trend of MFC under fixed external resistance (1000 Ω)	98
Figure 4.16	FESEM images on carbon felt, a) before (21 st day), b) after (22 nd day) the removal of biofilm, c) cell viability count and d) Nyquist plots	99
Figure 4.17	Effect of ultrasonic treatment (15 min) under fixed external resistance (1000 Ω) on MFC, a) current generation (the fresh medium injections are indicated by small arrows), b) biofilm visualization, c) Polarization curve and d) Nyquist plots	100
Figure 4.18	Effect of ultrasonic treatment (30 min) under fixed external resistance (1000 Ω) on MFC, a) current generation (the fresh medium injections are indicated by small arrows), b) biofilm visualization, c) Polarization curve and (d) Nyquist plots	101
Figure 4.19	Effect of ultrasonic treatment (60 min) under fixed external resistance (1000 Ω) on MFC, (a) current generation (the fresh medium injections are indicated by small arrows), b) biofilm visualization, c) Polarization curve and d) Nyquist plots	102
Figure 4.20	Profile of current generation of MFC (under fixed external resistance, 1000Ω) with intermittent 30 min ultrasonic treatment (the fresh medium injections are indicated by small arrows)	104
Figure 4.21	Effect of different shear stress on MFC performance, a) current generation vs time (shear stress 4.38 mPa), b) current generation vs time (shear stress 9.34 mPa), c) current generation vs time (shear stress 14.32 mPa), d) polarization curve on 25 th day for different shear stress	106

Figure 4.22	Visualization of biofilm at different shear stresses, a) virgin, b) low shear stress (4.38 mPa), c) moderate shear stress (9.34 mPa) and d) high shear stress (14.92 mPa)	107
Figure 4.23	Nyquist plots on the 25 th day for different shear stresses.	108
Figure 4.24	Schematic diagram of biofilm formation mechanism and the effects of shear force on multilayer biofilm removal	109
Figure 4.25	Schematic diagram of diffusion resistance control in the cell, a) yang stage of biofilm and b) matured biofilm	110
Figure 4.26	Schematic diagram of the effects of shear stress treatment on multilayer biofilms	111
Figure 5.1	Current generation of MFCs using different inoculums under the resistance of 1000 Ω	117
Figure 5.2	Polarization curve of MFCs using different inoculums on the 11 th day of operation	118
Figure 5.3	CV data for pure culture and co-culture MFCs using different inoculums on the 11 th day of operations	119
Figure 5.4	Fitting results of MFC Nyquist plots using different inoculums, magnification of high-frequency region for MFC _{PB} (inset)	122
Figure 5.5	DGGE profile of co-culture on different days of operation	124
Figure 5.6	Current generation profile of co-culture MFCs using different ratios of <i>P. aeruginosa</i> and <i>K. variicola</i> with time under fixed external resistance (1000 Ω)	125
Figure 5.7	Production and utilization of metabolites by microbes, a) concentration of 1,3 PD with time in <i>K. variicola</i> inoculated MFC, b) utilization rate of 1,3 PD by <i>P. aeruginosa</i> in 1,3 PD dosed (50 mg/L) MFC	126
Figure 5.8	Substrate based synergistic mutualism in the co-culture, a) current generation trend, production of pyocyanin on the 11 th day using co-culture as shown inset, b) performance of MFCs on the 11 th day of operation	127
Figure 5.9	Schematic diagram of mutualistic relationship between <i>P</i> . <i>aeruginosa</i> and <i>K</i> . <i>variicola</i>	129
Figure 6.1	Maximum performance of MFC between actual and predicted value, a) power density, b) COD removal efficiency	136
Figure 6.2	Normal probability plot for the residuals from the a) power density, b) COD removal efficiency output model	139

Figure 6.3	3D surface response of the relationship between (a) pH and inoculum composition. b) initial COD and inoculum	142
	composition, c) initial COD and pH	
Figure 6.4	3D surface response of the relationship between (a) time and inoculum composition, b) time and pH, b) initial COD and time	143

- Figure 6.5 3D surface response of the relationship between (a) pH and 144 inoculum composition, b) initial COD and inoculum composition, c) initial COD and pH
- Figure 6.6 3D surface response of the relationship between (a) time and 145 inoculum composition, b) time and pH, c) initial COD and time
- Figure 6.7 The correlation between MFC performance and anode resistance, a) the anode R_{ct} and R_d with time using different inoculums, b) 148 the performance of MFCs with time using different inoculums

LIST OF SYMBOLS

X1	Inoculum composition
X2	Substrate pH
X3	Operational time
X4	Initial chemical oxygen demand (COD) of substrate
y 1	Power density of microbial fuel cell performances (W/m ³)
y 2	COD removal efficiency
F	Faraday's constant
h	Hour
Ι	Current
Р	Power
RΩ	Ohmic resistance
R _{ct}	Charge transfer resistance
R_{dif}	Diffusion resistance
V	Voltage
W	Watt
Ee ^{anode}	Anode potential
Eecathode	Cathode potential
Σ_{η}^{anode}	Anode overpotential
$\Sigma_{\eta}^{cathode}$	Cathode overpotential
ΔE_η	Overpotential difference between anode and cathode
ΔE_{Ω}	Ohmic voltage losses
ΔE	Real cell voltage
b_i	Linear coefficient
b_o	Constant coefficient
b_{ii}	Quadric coefficient
b_{ij}	Interaction of coefficient, x_i , x_j coded values
Σ	Summation

LIST OF ABBREVIATIONS

ANOVA	Analysis of variance
ATP	Adenosine triphosphate
AEM	Anion exchange membrane
АРНА	American Public Health Association
BES	Bio electrochemical system
COD	Chemical oxygen demand
CE	Coulombic efficiency
CEM	Cation exchange membranes
CV	Cyclic voltammetry
DET	Direct electron transfer
DNA	Deoxyribonucleic acid
DGGE	Denaturing gradient gel electrophoresis
dNTP	Deoxynucleotide triphosphate
EAB	Electrochemically Active Bacteria
EET	Extracellular electron transfer
EIS	Electrochemical impedance spectroscopy
EPS	Extracellular polymeric substances
FAD	Flavin-adenine dinucleotide
PACF	Poly acrylonitrile carbon felt
g/L	Gram per liter
GC-MS	Gas chromatography mass spectrophotometry
kΩ	Kilo ohm
LB	Luria Bertani
μΑ	Micro ampere
μg	Micro gram
MFC	Microbial Fuel Cell
MEA	Membrane electrode assembly
mg/L	Milligram per litre
mM	Milli mole
mV	Millivolt
mW	Milliwatt

NAD	Nicotinamide-adenine dinucleotide
NADH	Nicotinamide adenine dinucleotide
NADPH	Nicotinamide adenine dinucleotide phosphate
NCBI	National center for biotechnology
OCV	Open circuit voltage
OD	Optical density
PEM	Proton exchange membrane
FESEM	Field emission scanning electron microscopy
RNA	Ribonucleic acid
RSM	Response surface methodology
rpm	Revolutions per minute
rRNA	Ribosomal ribonucleic acid
SD	Standard deviation
SHE	Standard hydrogen electrode
UV	Ultraviolet
VFA	Volatile Fatty Acid