

HEAT AND MICROWAVE REFLUX EXTRACTION, OPTIMIZATION, AND PHYSICOCHEMICAL CHARACTERIZATION OF OLEORESINS FROM MALAYSIAN PEPPER (*Piper nigrum*)

OLALERE, OLUSEGUN ABAYOMI

Doctor of Philosophy

UNIVERSITI MALAYSIA PAHANG

SUPERVISOR'S DECLARATION

We hereby declare that we have checked this thesis and in our opinion, this thesis is adequate in terms of scope and quality for the award of the degree of Doctor of Philosophy

(Supervisor's Signature) Full Name: PROF. DR ABDURAHMAN HAMID NOUR Position: PROFESSOR Date: 1st August 2018

(Co-supervisor's Signature)
Full Name: PROF. DATO' DR ROSLI BIN MOHD YUNUS
Position: PROFESSOR
Date: 1st August 2018

STUDENT'S DECLARATION

I hereby declare that the work in this thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at Universiti Malaysia Pahang or any other institutions.

(Student's Signature) Full Name: OLALERE, OLUSEGUN ABAYOMI ID Number: PKC15013 Date: 1st August 2018

HEAT AND MICROWAVE REFLUX EXTRACTION, OPTIMIZATION, AND PHYSICOCHEMICAL CHARACTERIZATION OF OLEORESINS FROM MALAYSIAN PEPPER (*Piper nigrum*)

OLALERE, OLUSEGUN ABAYOMI

Thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy

Faculty of Chemical & Natural Resources Engineering

UNIVERSITI MALAYSIA PAHANG

AUGUST 2018

ACKNOWLEDGEMENTS

My thanks go to God Almighty, the giver, protector, and sustenance of my life. This work wouldn't have been a success without the support, guidance, and encouragement from my amiable supervisor, Prof. Dr Abdurahman Hamid Nour. I count it a great privilege and honour working under your tutelage; you acted more like a father to me than a supervisor. Also, I will like to show my appreciation to all the laboratory assistants, lecturers, advisors, and lab mates for their support in different capacities.

I am indebted to my sweet mother (Adebimpe Iyabo) and my only sister (Mrs Oladapo Funmilayo for their unimaginable sacrifice and prayers during the course of this research work. I thank my wife Mrs Modupeola Olalere for her love and patience during the period of my rigorous lab work. My thanks go to my friends, most especially, Mrs Alara Oluwaseun, Dr Edward, Dr John Olabode, Dr Mani Malam and Dr & Dr Mrs Victor Freida Ayodele for their encouragement during those periods of great challenge.

Finally, my regards and blessing go to everyone who has contributed in one way or the other to the success of this research work. My prayer is that you will never lack help when you needed it most. Thank you all and God bless.

TABLE OF CONTENT

TITI	LE PAGE	i
ACK	NOWLEDGEMENTS	ii
ABS	TRAK	iii
ABS	TRACT	iv
ТАВ	LE OF CONTENT	v
LIST	T OF FIGURES	xii
LIST	T OF SYMBOLS	XV
LIST	TOF ABBREVIATIONS	xvi
СНА	PTER 1 INTRODUCTION	1
1.1	Research Background	1
1.2	Problem Statement	3
1.3	Research Objectives	5
1.4	Scope of Study	5
1.5	Significance of Study	6
1.6	Thesis Layout	7
CHA	PTER 2 LITERATURE REVIEW	9
2.1	Historical Evolution of Pepper Production in Malaysia	9
2.2	Market Value of Malaysian Pepper and Potential for Nutraceutical Diversification	10
2.3	Pharmacological, Toxicological and Clinical Application of <i>P.nigrum</i>	11
	2.3.1 Antioxidant Activities	11

	2.3.2	Gastrointestinal Activities	12
	2.3.3	Anti-Inflammatory/Pain-relieving Activities	13
	2.3.4	Bioavailability Enhancement	13
2.4	Conve	ntional Heat Reflux Extraction	14
2.5	Microv	wave Extraction Technique	16
2.6	Factor	Affecting Microwave Reflux Extraction	17
	2.6.1	Dielectric Properties of the Extracting Solvents	17
	2.6.2	Microwave Power and Temperature	19
	2.6.3	Irradiation Time	20
	2.6.4	Feed Particle Size	22
	2.6.5	Hydration Duration and Solvent Type	23
2.7	Compa	arative Summary of the Previous Investigation on Piper nigrum Fruits	24
2.8	The Fundamental Principle of Taguchi Orthogonal Methodology 26		26
2.9	Correl	ation of Free Radicals, Total Phenolic Content and Antioxidant Activit	ies
			29
2.10	Physic	ochemical Characterization	30
	2.10.1	Liquid Chromatography-Mass Spectrometry (LCMS-QTOF) Analysis	30
	2.10.2	Inductive Coupled Plasma Mass Spectrometry (ICP-MS)	31
	2.10.3	Scanning Electronic Microscopy (SEM)	32
	2.10.4	Fourier Transforms Infrared Spectroscopy (FTIR)	32
	2.10.5	Brunauer-Emmett-Teller (BET)	33
CHAF	PTER 3	METHODOLOGY	34
3.1	Materi	als and Reagents	34
	3.1.1	Sample Collection	34
	3.1.2	Sample Preparation	34

	3.1.3	Reagents	35
3.2	Extrac	ction Process	35
	3.2.1	Heat Reflux Extraction (HRE)	36
	3.2.2	Microwave Reflux Extraction (MRE)	36
3.3	Deter	mination of Specific Energy Absorbed	37
3.4	Ortho	gonal Design for Independent Variables	38
3.5	Deter	mination of Total Phenolic Content (TPC)	40
3.6	In Vit	ro Antioxidant Assays	40
	3.6.1	DPPH-Free Radical Scavenging Assay	41
	3.6.2	Complementary Assay: Hydrogen peroxide Free Radical	
		Scavenging Assay	42
3.7	LCMS	S-QTOF/ Analysis	43
3.8	ICP-N	IS Trace-Element Analysis	43
3.9	Morphological Analysis		
3.10	Funct	ional Group Analysis	44
3.11	Surfac	ce Adsorption Analysis	44
CHA	PTER 4	RESULTSAND DISCUSSION	45
4.1	Overv	iew of Parameter and Optimization Studies	45
4.2	Param	neters Studies in Heat Reflux Extraction (HRE)	46
	4.2.1	Effects of Extraction Time Variation	46
	4.2.2	Effects of Particle Size Variation	47
	4.2.3	Effects of Feed-Solvent Ratio Variation	48
	4.2.4	Determination of Factors' Operating Levels in HRE	49
4.3	Optim	nization of Heat Reflux Extraction	49
	4.3.1	Determination of Optimum Condition	50

	4.3.2	Statistical Analysis of Mean (ANOM)	51
	4.3.3	Validation of Optimized Condition and Chi Square Statistics	54
4.4	Invest	igation of Parametric Effects in MRE Extraction	55
	4.4.1	Effects of Irradiation Time Variation	55
	4.4.2	Effects of Microwave Power	56
	4.4.3	Effects of Particle Size	57
	4.4.4	Effects of Feed-Solvent Ratio	58
	4.4.5	Determination of Factors and Operating Levels in MRE	59
4.5	Optim	ization Studies of MRE	60
	4.5.1	Determination of Optimum Condition	60
	4.5.2	Statistical Analysis of Mean (ANOM)	61
	4.5.3	Validation of Optimized Condition and Chi Square Statistics	65
4.6	Perfor	mance Index Evaluation for the Extraction Methods	65
4.7	Determination of Total Phenolic Contents		66
4.8	Antioxidant Evaluation		66
	4.8.1	Antioxidant Evaluation of Oleoresin Extracts Obtained Via HRE	67
	4.8.2	Antioxidant evaluation of oleoresin extracts obtained by MRE	68
	4.8.3	Comparative Study of Antiradical Power (ARP)	68
4.9	Physic	cochemical Characterization	72
4.10	Morpl	nological Characterization	72
	4.10.1	Morphological Elucidation HRE Extracts	72
	4.10.2	Morphological Elucidation MRE Extracts	74
4.11	Estim	ation of Micro Structural Area and Volume Changes	75
	4.11.1	Micro Structural Surface Area and Volume Changes in BPOE	75
	4.11.2	Micro Structural Surface Area and Volume Change in WPOE	76

	4.11.3 Comparative Study of Cumulative Micro Structural Changes via	
	HRE and MRE	77
4.12	Functional Group Characterization	78
	4.12.1 Effects of HRE on Functional Group Characteristics	78
	4.12.2 Effects of MRE on Functional Group Characteristics	81
4.13	Mineral Element Profiling	85
4.14	Phenolic Compound Chemical Profiling	86
	4.14.1 Identification of Phenolic Compounds in HRE Oleoresins	86
	4.14.2 Identification of Phenolic Compounds in MRE Oleoresins	87
4.15	Summary of Heat and Microwave Heating Effects on Profiling	
	Physicochemical Characterization	89
СНА	PTER 5 CONCLUSION	91
5.1	Conclusion	91
5.2	Recommendation	93
REF	ERENCES	94
APPI	ENDIX A extraction experimental set-up	108
APPI	ENDIX B Determination of Total Phenolic Content	109
APPI	ENDIX C LCMS-QTOF Instrumentation	111
APPENDIX D Estimation of Relative Extraction Index (REI) 11		
APPI	ENDIX E Phenolic Compounds Chemical Profiling (HRE)	113

LIST OF TABLES

Table 1.1	Taxonomical classification of black and white pepper	2
Table 2.1	Overview of various extraction techniques used in previous studies	25
Table 3.1	Specified quality of the standard pepper procured from MPB	34
Table 3.2	Coded Taguchi L ₉ (2 ⁴) orthogonal design in HRE	38
Table 3.3	Coded Taguchi L ₉ (3 ⁴) orthogonal design in MRE	39
Table 4.1	Extraction factors and levels	49
Table 4.2	Experimental layout using L9 orthogonal array and their responses	51
Table 4.3	Average main effects on mean response	52
Table 4.4	Confirmatory test results	54
Table 4.5	Extraction factors and levels	59
Table 4.6	Experimental layout using L9 orthogonal array and their responses	60
Table 4.7	Average mean effects	62
Table 4.8	Total phenolic and contents in fixed oil extracted	66
Table 4.9	Radical scavenging assay for black and white pepper extracts (HD)	67
Table 4.10	Radical scavenging assay for black and white pepper extracts (MRE)	68
Table 4.11	MRE Cumulative BET-Parameters from N ₂ adsorption-desorption isotherms	77
Table 4.12	HRE Cumulative BET-Parameters from N ₂ adsorption-desorption isotherms	78
Table 4.13	FTIR spectra characteristics of white pepper before and after HRE	80
Table 4.14	FTIR spectra characteristics of black pepper before and after HRE extraction	81
Table 4.15	FTIR spectra characteristics of white pepper before and after MRE extraction	84

Table 4.16	FTIR spectra characteristics of black pepper before and after MRE	
	extraction	84
Table 4.17	Total concentration of mineral and trace elements in the extracts	85
Table 4.18	Identified phenolic compounds in black pepper via HRE	87
Table 4.19	Identified phenolic compounds in white pepper via HRE	87
Table 4.20	Identified phenolic compounds in black pepper via MRE	88

LIST OF FIGURES

Figure 1.1	Black and white peppercorns	2
Figure 2.1	Black and white peppercorns	11
Figure 2.2	Basic Heat and Mass Transfer in Conventional Heat Reflux Extraction	15
Figure 2.3	Basic Heat and Mass transfer in Microwave Reflux Extraction	16
Figure 2.4	Irradiation time effect in microwave extraction	21
Figure 2.4	Steps in robust parametric Taguchi optimization	28
Figure 3.1	Protocol in oleoresin extraction and analysis	35
Figure 4.1	Extraction time variation in HRE	47
Figure 4.2	Particle size variation in HRE	48
Figure 4.3	Feed-solvent ratio in variation in HRE	49
Figure 4.4	Illustration of optimal point determination (a) black pepper (b)white pepper	e 50
Figure 4.5	Black pepper HRE yield (a) Average mean effects (b) Significant contribution	52
Figure 4.6	White pepper HRE yield (a) Average mean effects (b) Significant contribution	53
Figure 4.7	White pepper HRE absorbed energy (a) Average mean effects (b) Significant contribution	54
Figure 4.8	Effect of irradiation variation in MRE	56
Figure 4.9	Effect of microwave power variation MRE	57
Figure 4.10	Effect of feed particle size	58
Figure 4.11	Effect of feed-solvent ratio variation in MRE	59
Figure 4.12	Illustration of optimal point determination (a) black pepper (b)white pepper	e 61

Figure 4.13	Black pepper MRE yield (a) Average mean effects (b) Significant contribution	62
Figure 4.14	Black pepper MRE absorbed energy (a) Average mean effects (b) Significant contribution	63
Figure 4.15	White pepper MRE yield (a) Average mean effects (b) Significant contribution	64
Figure 4.16	White pepper MRE absorbed energy (a) Average mean effects (b) Significant contribution	64
Figure 4.17	Comparison of the IC ₅₀ values obtained by HRE and MRE on $DPPH^+$	69
Figure 4.18	Comparison of the ARP values obtained by HRE and MRE on $DPPH^+$	70
Figure 4.19	Comparison of the IC_{50} values obtained by HRE and MRE on *OH	71
Figure 4.20	Comparison of the ARP values obtained by HRE and MRE on *OH	72
Figure 4.21	SEM-monograph in HRE (a) Black <i>P.nigrum</i> at pre-extraction (b) Black P.nigrum at post-extraction	73
Figure 4.22	SEM-monograph in HRE (a)White P.nigrum at pre-extraction (b)White P.nigrum at post-extraction	73
Figure 4.23	SEM-monograph in MRE (a) Black P.nigrum at pre-extraction (b)Black P.nigrum at post-extraction	74
Figure 4.24	SEM-monograph in MRE (a)White P.nigrum at pre-extraction (b)White P.nigrum at post-extraction	75
Figure 4.25	Pore distribution curve for untreated and treated BPOE	76
Figure 4.26	Pore distribution curve for untreated and treated WPOE	77
Figure 4.27	Pre-extraction FT-IR spectra of black pepper oleoresin extracts obtained via HRE	79

Figure 4.28	Pre-extraction FT-IR spectra of white pepper oleoresin extracts	
	obtained via HRE	79
Figure 4.29	Post-extraction FT-IR spectra of black and white pepper oleoresin	
	extracts obtained at optimized HRE conditions	80
Figure 4.30	Pre-extraction FT-IR spectra of black pepper oleoresin extracts	
	obtained via MRE	82
Figure 4.31	Pre-extraction FT-IR spectra of black pepper oleoresin extracts	
	obtained via MRE	83
Figure 4.32	Post-extraction FT-IR spectra of black and white pepper oleoresin	
	extracts obtained at optimized HRE conditions	83

LIST OF SYMBOLS

h1	Extraction time in heat reflux extraction
h ₂	Feed particle size in heat reflux extraction
h ₃	Feed-solvent ratio in heat reflux extraction
X ₁	Irradiation time in microwave refluxation
X2	Microwave power in microwave refluxation
X3	Feed particle size in microwave refluxation
X4	Feed-solvent ratio in microwave refluxation
y'w	Extraction yield from heat refluxed white pepper
y'b	Extraction yield from heat refluxed black pepper
yw	Extraction yield from white pepper microwave refluxation
Уb	Extraction yield from black pepper microwave refluxation
y'w(av)	Average extraction yield from heat refluxed white pepper
y'b(av)	Average extraction yield from heat refluxed black pepper
Yw(av)	Average extraction yield from white pepper refluxation
Yb(av)	Average extraction yield from black pepper refluxation
Qt'w	Absorbed energy by heat refluxed white pepper sample
Qt'b	Absorbed energy by heat refluxed black pepper sample
Q_{tw}	Absorbed microwave energy by white pepper sample
Qt b	Absorbed microwave energy by black pepper sample
Qt'w(av)	Average absorbed energy by heat refluxed white pepper sample
Qt'b(av)	Average absorbed energy by heat refluxed black pepper sample
Qt w(av)	Average absorbed microwave energy by white pepper sample
Qt b(av)	Average absorbed microwave energy by black pepper sample
a	Values are means ±SD of triplicate runs

LIST OF ABBREVIATIONS

ANOM	Analysis of Mean
ARP	Antiradical Power
BPOE	Black Pepper Oleoresin Extracts
HRE	Heat Reflux Extraction
MRE	Microwave Reflux Extraction
PI	Performance Index
REI	Relative Extraction Index
SFE	Single Factor Experiment
SNR	Signal to noise ratio
TODOE	Taguchi orthogonal design of experiment
WPOE	White Pepper Oleoresin Extracts