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Abstract. The aim of this paper is to investigate the performance response 
of a set of coir fibre modified asphalt samples subjected different ageing 
conditions and containing three different fibre contents. The laboratory 
experimental programs are indirect tensile test at 25°C and repeated load 
axial test at 40°C. The results showed that the fibres improved the 
mixture’s performance. The main findings obtained at 25°C for short and 
long-term ageing reveal that low fibre content at around 0.3% per 
aggregate weight display a stiffness modulus up to 14% higher than that of 
unmodified mixtures, hence showing that fibres may improve the bearing 
capacity and rut-resistance of asphalt mixtures. Conversely, as the amount 
of fibre increases to 0.5% and 0.7%, the stiffness decreases to the point of 
becoming unacceptably low, almost 80% lower than unmodified mixes 
stiffness. However the data also reveal that high fibre contents at 0.5% and 
above completely neutralize the impact of ageing on the mixture, 
indicating that fibre-modified mixtures would yield longer lives.  

1 Introduction  
Countries around the world face challenges to maintain their existing road networks due to 
increase in traffic loading density in terms of numbers of axles and high tyre pressures 
resulting from heavy vehicles, places great demand on the existing road network [1]. 
Conventional bitumen is widely used in most countries hardens at the early stages during 
handling, mixing and in service. The level of pavement performance has a close 
relationship with the properties of bitumen used. This rheological weakness of the 
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conventional bitumen has generated an increasing interest in the use of modifiers to 
enhance properties of conventional bitumen. Modifiers vary in function and effectiveness, 
and development of modified bituminous material to improve the overall performance of 
pavements has been the focus of research for the past few decades. Among additives used 
to improve pavement materials are fibres, synthetic or natural, which are used to create a 
network of tension-resisting strings within the mixture [2]. Coir fibre is an organic material 
extracted from the coconut husk [3]. Fibres in general can be produced from a great number 
of virgin or recycled materials such as polyester, asbestos, glass, polypropylene, carbon, 
cellulose or solid wastes such as bamboo, coconut, date palm, and oil palm, [4]. The 
addition of coir fibre in asphaltic mixtures enhances properties such as material strength, 
stability, durability, resistance to permanent deformation, ductility and compressibility as 
reported by [5]. Thulasirajan and Narasimha [6] found that air voids of the mix are directly 
proportional to the fibre content, but behaves differently with fibre length. More precisely, 
the volume of air voids initially decreases with length to reach a minimum at a fibre length 
around 13.5mm, but then increases again as fibres get longer. Ting et al. [7] recommends 
using 17.25 mm long fibres at 0.46% content along with 5% bitumen content. It must be 
noted that in both studies the recommended content percentage values for the fibre are 
rather small. Ramadhansyah et al. [8] reported that replacing filler in the mix with coconut 
powder may also reduce the pozzolanic properties of the mix as compared to quarry dust, 
hence reducing its strength. Besides coconut husk, engineers have explored a wide range of 
potential organic materials to serve for fibre modification [9]. For example, Shao Peng et al. 
[10] reported on the viscosity, rheological, dynamic and fatigue properties of bituminous 
mixes containing polyester fibres. Chen and Lin [11] reported that good adhesion between 
fibres and the binder enhances the load-carrying ability of asphalt-fibre mastics.  

2 Material and methods  

2.1 Material and methods  

2.1.1 Materials 

The coir or coconut fibre is extracted from the husk of disposed-off ripe coconut shells, 
which are harvested from the Cocos-nucifera palm trees. The bitumen used is 80/100 
penetration grade. Physical properties of material used as shown in Table 1. In order to 
further reduce the number of independent variables, bitumen percentage content used 
throughout this experiment is to remain fixed at 5% of the aggregate weight. The type of 
aggregate involved in the casting of those samples is granite, both coarse and fine, under 
the form of quarry dust. Aggregate gradation is defined as per JKR ACW14 [12] 
specifications as shown in Fig. 1. 
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Table 1. Physical properties of material used 

Property Measured Parameter Values 

Bitumen 
(80/100) 

Relative Density 1.02 

Softening Point (oC) 44.0 

Penetration at 25oC (dmm) 83 

Ductility (cm) at 25oC  100 

Aggregate Specific Gravity 2.681 

 Specific Gravity  

Cement Specific Gravity 3.018 

 

 
Fig. 1. Aggregate gradation used in this study [12] 

2.2 Ageing procedure  

The mix ageing procedure adopted here is based on Strategic Highway Research Program 
procedure as described in AASHTO R30-02 [13]. Separate specimens were prepared at the 
time of mixing to represent an un-aged condition. Their preparation was identical as for the 
other specimens but not subjected to conditioning. As soon as mixing was complete, the 
specimens were then compacted using a gyratory compactor. The short-term conditioning 
for the mixture mechanical property testing procedure applies to laboratory-prepared, loose 
mix only. The mixture was placed in a pan, and spread it to an even thickness ranging 
between 25 and 50 mm. the mixture were placed in a forced-draft oven for 4 h ± 5 min. at a 
temperature of 135±3°C. Long term mixture conditioning procedure can be applied to 
laboratory-prepared samples following short term aging, to plant-mixed HMA, or to 
compact roadway samples when needed to simulate long term aging effects. The procedure 
was carried out on compacted specimens after they have been short-term aged. The 
specimens were placed in a forced-draft oven in two different stages, the first stage the 
samples were pre-heated to 85°C temperature and left for five days. The specimens were 
then removed from the oven and are tested within 24 hours.  
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2.3 Stiffness modulus test  

This investigation principally rests on the results obtained from a 5-pulse repeated Indirect 
Tensile Test, as it provides essential information in a short amount of time, such as the 
fatigue behaviour, the deformation rate and the stiffness modulus of the material. A load 
pulse is applied along the vertical diameter, and the peak horizontal transient deformation is 
measured. The specimens are 100 to 150mm in diameter and possess a thickness ranging 
between 30 and 80mm. For this investigation, the test method shall be as per ASTM 
D7369-11 [14], where only the horizontal LVDTs set in the diameter axis are recorded. 
This test is carried out by a MATTA machine, or Nottingham Asphalt Tester (NAT). The 
sample as subjected to a minimum of 4 hours of preconditioning at 25 ± 0.5°C immediately 
before the testing session. 

2.4 Repeated load axial test  

In this test an unconfined cylindrical specimen is subjected to axial stress pulses of 1 
second duration and magnitude 100kPa separated by 1 second rest periods. The 
deformation is measured by the change in distance between the loading platens throughout 
the test. This is monitored and recorded by 2 diametrically positioned displacement 
transducers resting on the upper platen. Both axial strain and axial strain rate are noted at 
completion of the test. The test duration is normally 1800 load pulses and it is carried out at 
a constant temperature. 

3 Results and discussion 

3.1 Stiffness modulus 

Fig. 2 can be observed that two ranges of stiffness modulus behavior emerge despite the 
difference in fiber content. The temperature measured test specimen was similar for both 
mixtures. In the first category, addition of 0.3% fiber content results overall in slightly 
higher stiffness in both the short and long-term stages as compared to the samples 
containing no fiber. The 0.3% specimens achieve a resilient modulus of 1130 MPa, whereas 
the unmodified samples fall slightly short of 1000 MPa. The difference is even more 
obvious at the long-term ageing stage, where the stiffness of the fiber modified specimens 
soars to reach 2070 MPa, whilst that of the unmodified samples do not cross 1850 MPa. In 
comparison, the 0.5% and 0.7% samples are completely outclassed in terms of strength, 
achieving only 715 MPa and 393 MPa respectively at their best. This suggests that low 
fiber inclusion improves the stiffness of the mix, allowing for better load-spreading and rut-
resistance, whereas high amounts of fiber significantly reduce it, making it impractical for 
use. It is also very obvious that fiber inclusion dramatically reduces the impact of short-
term ageing on the specimens. At control sample, the drop in stiffness is both extremely 
important and sudden, whereas the 0.3% set undergoes only a very small change from 
unaged to short-term ageing, a change which is actually an increase. 
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Fig. 2. Stiffness Modulus at different Fibre Content 

3.2 Stiffness modulus at different aging 

The percentage difference between unaged, short and long term stiffness may still be 
noticeable, but the range it covers is much smaller as compared to the first category as 
shown in Fig. 3. It remains less than 250 MPa for both the 0.5% and 0.7% samples against 
more than 1000 MPa for the 0.3% specimen. Therefore, coir fibres do affect the ageing 
behaviour proportionally to the level of modification.  Inversely, a soft mixture would be 
harder to crack, but less resistant to rutting and permanent deformation. Considering the 
fact that this test has been carried out in relatively low temperature conditions, at 25°C, 
there is prospect that fibre inclusion will allow the stiffness to be better controlled in cool 
climates, where the mixture strength is critical as low temperatures would naturally stiffen 
the pavement materials. Fibre modification would hence not only adjust the stiffness at a 
level where brittle failure, but it would also reduce the effect of hardening over time due to 
low susceptibility to ageing [15]. 
 

 
Fig. 3. Stiffness Modulus vs. Level of Ageing 

3.3 Stiffness modulus versus service life 

Fig. 4 shows the evolution in stiffness behaviour of the different asphalt mixture throughout 
a service life ranging from the moment it comes out of the mixing plant until 10 years after. 
It can be observed that all fibre-modified mixtures display a fairly consistent trend with an 
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overall increase in stiffness with time. This trend is more obvious at higher fibre contents, 
whereas there is little to almost no change for lower percentages. This not only confirms 
that fibre inclusion considerably reduces the impact of short-term ageing, but it also shows 
that if the level of modification is high enough, the long-term impact on the stiffness also 
remains insignificant. This means that the modified bituminous mixtures are expected to 
yield longer lives due to much better ageing. However, this advantage comes at the expense 
of the material strength which is dangerously low, making it a useless mixture. This 
property of fibre-modified asphalts should nevertheless be investigated for application in 
sub-zero temperatures, where the resultant hardening due to extreme cold weather may 
cater for the lack of strength, but without the risk of the pavement stiffening too much and 
hence cracking over time. Now when observing the case of the unmodified asphalt mix, it is 
interesting to notice the sudden drop of its strength in the first half of the graph, between 
the time it comes out of the mixing stage until it is laid. In comparison, the 0.3% sample 
experiences instead a slight increase in strength of about 15%, indicating that storing, 
hauling and paving delays for fibre-modified mixtures are not critical. This property may 
prove very valuable depending on the type of project, especially if site accessibility is low. 
The long-term hardening behaviour of the unmodified bitumen is however not as dramatic 
as its short-term response, as the mixture only recovers to around 65% of its initial strength. 
Likewise, the 0.3% fibre content sample follows a parallel evolution within the short to 
long-term ageing period, indicating that if fibre inclusion is low enough, it will not prevent 
the impact of ageing during the service life. Under those conditions, small amounts of fibre 
may be used as a stiffness enhancer if there is a need for stronger pavements that require 
additional strength curing over time. 

 

 

Fig. 4. Stiffness Modulus vs. Service Life 

3.4 Strain of stiffness modulus 

Fig. 5 shows the strain response of each sample expressed as a percentage of the strain in 
the other three samples. Hence, the largest bar of the chart reaches almost 190%, meaning 
the strain value of the 0.5% sample represents almost 190% of the strain recorded for 
control sample, indicating that the 0.5% sample’s deformation rate is nearly twice as high 
as that of an unmodified specimen. Similarly, there is a 47% increase in strain from the 
0.0% to the 0.7% fibre content, suggesting high fibre modification is not suitable for high 
temperatures, because of the greater risk of permanent deformation and rutting to occur. In 
contrast, the strain difference between the unmodified and 0.3% content mixture remains 
relatively low as it only represents a 20% increase in strain rate, but this is still too 
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unfavorable to justify fiber modification at high temperature, where high flexibility would 
also results in poor load spreading. 
 

 
Fig. 5. Strain Response at different fiber content 

3 Conclusions 
Based on the results obtained, the fibre can yield both higher and lower stiffness at low 
temperature. Additionally, fibre also significantly reduces the impact of ageing on asphaltic 
mixture. The inclusion of fibre greatly reduces the effect of ageing in terms of stiffness gain 
or loss, especially from unaged to short-term. In this investigation, it is suggested to use 
coir fibre ≈ 0.4% (cold climates) and ≤ 0.3% (hot climates). This coir fibre modification not 
only provide the pavement with a high stiffness, but also with a better resistance to 
hardening over time, and therefore to cracking. This would give the pavement a much 
longer service life. 
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