Experimental evaluation and empirical modelling of palm oil mill effluent steam reforming

Kim HoongNg^aYoke WangCheng^{bc}; Zhan ShengLee^{bc}; Maksudur R.Khan^{bc}; Su ShiungLam^dChin KuiCheng^{bc}

^a Chemistry and Chemical Engineering, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900, Sepang, Selangor, Malaysia

- ^b Centre of Excellence for Advanced Research in Fluid Flow, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300, Gambang Kuantan, Pahang, Malaysia
 - ^c Faculty of Chemical & Natural Resources Engineering, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300, Gambang Kuantan, Pahang, Malaysia
 - ^d Eastern Corridor Renewable Energy Group (ECRE), School of Ocean Engineering, Universiti Malaysia Terengganu, 21030, Kuala Terengganu, Malaysia

ABSTRACT

The current work describes a novel application of steam reforming process to treat palm oilmill effluent (POME), whilst co-generating H₂-rich syngas from the treatment itself. The effects of reaction temperature, partial pressure of POME and gas-hourly-space-velocity (GHSV) were determined. High crystallinity 20 wt%Ni/80 wt%Al₂O₃ catalyst with smooth surface was prepared via impregnation method. Baseline runs revealed that the prepared catalyst was highly effective in destructing organic compounds, with a two-fold enhancement observed in the presence of 20 wt% Ni/80 wt%Al₂O₃ catalyst, despite its low specific surface area (2.09 m² g⁻¹). In addition, both the temperature and partial pressure of POME abet the COD reduction. Consequently, the highest COD reduction of 99.7% was achieved, with a final COD level of 73 ± 5 ppm from 27,500 ppm, at GHSV of 40,000 mL/h.g_{cat} and partial pressure of POME equivalent to 95 kPa at 1173 K. In terms of gaseous products, H₂ was found to be the major component, with selectivity ranged 51.0%–70.9%, followed by CO₂(17.7%–34.1%), CO (7.7%–18.4%) and some CH₄ (0.6%–3.3%). Furthermore, quadratic models with high R²-values were developed.

KEYWORDS:

Palm oil mill effluent; Steam reforming; Syngas; Quadratic models