CORE
Provided by UMP Institutional Reposit

2018

4<sup>th</sup> International Conference of Chemical Engineering & Industrial Biotechnology, 1<sup>st</sup> -2<sup>nd</sup> Aug 2018, Kuala Lumpur, Malaysia

## HYDROGEN PRODUCTION VIA CO<sub>2</sub> DRY REFORMING OF GLYCEROL OVER Re-Ni/CaO CATALYSTS

Nur Nabillah Mohd Arif<sup>1</sup>, <u>Sumaiya Zainal Abidin<sup>1,2\*</sup></u>, Osarieme Uyi Osazuwa<sup>1</sup>, Dai-Viet N. Vo<sup>1,2</sup>, Taufiq-Yap Yun Hin<sup>3</sup>

<sup>1</sup> Faculty of Chemical & Natural Resources Engineering, <sup>2</sup> Centre of Excellence for Advanced Research in Fluid Flow (CARIFF), Universiti Malaysia Pahang, 26300 Gambang, Pahang, Malaysia.

<sup>3</sup> Catalysis Science and Technology Research Centre, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

\*Corresponding author: sumaiya@ump.edu.my

## **Extended Abstract**

Hydrogen  $(H_2)$  has become a promising alternative energy source due to its high efficiency, clean emission and impact in reducing the dependency on non-renewable energy sources [1]. Glycerol has become one of the attractive feedstock for H<sub>2</sub> production and it has received considerable attentions from researchers worldwide [2,3]. Glycerol dry reforming offers a better pathway for the production of  $H_2$  as it is reported to have a greener process where it utilize waste products; glycerol and greenhouse gases  $(CO_2)$  as its feedstock. This dry reforming reaction was carried out over two catalysts which is 15%Ni/CaO and 5%Re-Ni/CaO in a packed bed reactor with CGR ratio of 1 – 5, reaction temperature of 600 – 900 °C and GHSV of 1.44 x  $10^4$  – 7.2 x  $10^4$  ml g<sub>cat</sub><sup>-1</sup> s<sup>-1</sup>. From the characterization analyses, fresh 5% Re-Ni/CaO catalyst was found to have lower specific surface area when compared to 15%Ni/CaO due to the plugging of pore. The addition of Re also improved the reduction temperature and contributed to higher acidic sites concentration, hence, improving the catalytic activity of the reaction by enhancing the surface adsorption of OH group in glycerol. From the reaction studies, it was found that suitable operating condition for both catalysts was at 800°C and GHSV of  $3.6 \times 10^4$  hh<sup>-1</sup> with CGR of 1.0 for non-promoted and CGR of 3.0 for promoted catalyst. Hydrogen gas was directly produced from glycerol decomposition and indirectly produced through the water gas shift reaction. Post reaction analysis of the spent catalysts using FESEM-EDX and TPO analysis showed existence of whisker carbon from the CO<sub>2</sub> hydrogenation and methanation process.

Keywords: glycerol; dry reforming; hydrogen; nickel-based catalyst; whisker carbon



Fig. 1: The hydrogen yield of 15%Ni/CaO and 5%Re-Ni/CaO at different CGR [Reaction conditions: T=700 °C, Pgly = 8.41 kPa and GHSV =  $3.6 \times 10^4$  ml g<sub>cat</sub><sup>-1</sup> s<sup>-1</sup>]





Fig 2: Comparison on hydrogen yield for 15%Ni/CaO and 5%Re-Ni/CaO at different reaction temperatures [Reaction conditions:  $P_{gly} = 8.41$  kPa, CGR=1:1 for Ni/CaO and CGR=3:1 for Re-Ni/CaO, GHSV =  $3.6 \times 10^4$  ml  $g_{cat}^{-1}$  s<sup>-1</sup>, time = 120 min]

| Table 1  | Glycerol  | conversion | and gas | product | yield at | different | range | of GHSV | that is | manipulated | by | mass | of |
|----------|-----------|------------|---------|---------|----------|-----------|-------|---------|---------|-------------|----|------|----|
| catalyst | from 0.1g | to 0.5 g   |         |         |          |           |       |         |         |             |    |      |    |

| GHSV                  | Glycerol                   | Yield (%)      |                 |       |        |  |  |
|-----------------------|----------------------------|----------------|-----------------|-------|--------|--|--|
| $(ml g_{cat} s)$      | conversion $(X_G), (\%)$ – | H <sub>2</sub> | CO <sub>2</sub> | СО    | $CH_4$ |  |  |
| $7.2 \text{ x} 10^4$  | 28.49                      | 15.81          | 8.45            | 37.20 | 75.78  |  |  |
| $3.6 \text{ x} 10^4$  | 60.98                      | 55.55          | 3.62            | 73.43 | 60.51  |  |  |
| $2.4 \text{ x} 10^4$  | 58.66                      | 50.36          | 5.53            | 54.58 | 48.44  |  |  |
| $1.8 \text{ x} 10^4$  | 53.20                      | 44.94          | 5.50            | 53.89 | 67.15  |  |  |
| $1.44 \text{ x} 10^4$ | 44.46                      | 37.09          | 4.91            | 47.46 | 68.03  |  |  |

## Acknowledgment

The authors would like to thank Ministry of Higher Education Malaysia for awarding the FRGS research grant (RDU130108) and Universiti Malaysia Pahang for financial support.

## References

- Siew KW, Lee HC, Gimbun J, Cheng CK. Production of CO-rich hydrogen gas from glycerol dry reforming over Lapromoted Ni/Al<sub>2</sub>O<sub>3</sub> catalyst. International Journal of Hydrogen Energy 2014;39:6936-6927.
- [2] Wan D, Czernik S, Chornet E. Production of hydrogen from biomass by catalytic steam reforming of fast pyrolysis oils. Fuel and Energy Abstracts 1998;39:188.
- [3]Dave CD; Pant KK. Renewable hydrogen generation by steam reforming of glycerol over zirconia promoted ceria supported catalyst. Renewable Energy 2011;36:3202-3195.