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Abstract

Production of organic particles in the micrometanometer range can find applications in a wide
range of areas, however for a number of matetigdsniot a straightforward task. In the present
work pulsed laser ablation in liquid environment.A2) of meloxicam was studied aiming the
production of near micrometer sized particles & fharmaceutical ingredient. Targets pressed
from crystalline meloxicam powder were placed istiled water and irradiated with a focused
beam of a frequency doubled (532 nm) nanosecondAGliaser at 4.2 — 9.4 J/cGfiuence.
Morphological investigation showed that the proadlisespension contained particles in ti€0

nm to 10 um size range, with 1.0 - 2.0 um on aweradpich is about 10 times smaller than the size
of the initial material. FTIR spectroscopic invegstiions demonstrated that the chemical
composition was preserved, while XRD and calorimetreasurements indicated partial
amorphization of meloxicam during the process. dVerall results suggest that the particles are
mostly produced by the fragmentation of the presasget by the recoil forces of the ablating laser
pulse. Long period sedimentation tests of the suspa combined with UV-Vis spectroscopic
analysis showed that by the method of PLAL a grdagetion of the poorly water soluble
meloxicam could be dispersed and dissolved in watarpharmaceutically preferred formation
than by simple dissolution of it.
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1. Introduction

Pulsed laser ablation (PLA) of different materiala well-known process being used in several
applications, especially on the field of materiedgessing. It is extensively used for the micro-
machining of various inorganic and organic samplgn application areas include the
construction of given patterns, surface structurmgsto-objects (by direct etching), and the
fabrication of thin layers (by collection of thelated fragments onto a substrate surface (PLD)).

Several studies have already proved that PLA isBl& for the generation of micrometer-
and submicrometer-sized particles from a wide rarfgeaterials in vacuum or gas environment. It
has been demonstrated that by pulsed laser irradiaf iron target in water, iron-oxide particles
can be formed at the liquid—solid interface [1]l9ed laser ablation in liquid (PLAL) is proved to
be a promising route to produce clean colloids auithany residual species in the case of metallic
targets [2]. In the early 2000s PLAL became a wsthblished technique for the controlled
fabrication of various nanoparticles (NPs) [3-5] ifadustrial, medical, biological or scientific
research applications [6-10]. Thanks to the coastsaind complementary theories and models, the
process of PLAL is thoroughly described, and théhme is reliably applicable for industrial NP
fabrication [11-16].

In the beginning, PLAL has mainly been used to poedinorganic nanopatrticles, such as
diamond [17], metals and metal alloys [18-27], @si{28-31] and semiconductor nanoparticles
[32]. However, subsequent studies have shown that s also suitable for the production of
organic nanopatrticles, even though organic mateagd more sensitive to optical radiation [33-39].
The obtained colloidal solution showed long timegbdtty, typically for weeks or more, without the
need of any additional surfactants due to the giensi Brownian motion of the nanopatrticles in the
solvent [37]. The size of the nanoparticles cardogrolled by the experimental conditions such as
the irradiating laser fluence [40,41], laser pulseation [42] and wavelength [36]. The easy and
high collectability of the created nanoparticlea isseful characteristic of laser ablation in the
liquid phase.

Initially, only a few, less-sensitive organic maaés were applied for nanoparticle generation
by PLAL, however in the last decade several stugiesented successful NP production from
different organic matters, like vanadyl phthaloayen quinacridone, melamine cyanurate,
polyethylene terephtalate, beclomethasone diprepe}85,37,43-48]. It has been shown that both
micron-sized (1 to 10 um) and submicron-sized #0800 nm) paclitaxel and megestrol acetate
particles can be produced successfully by PLAL48),

One of the most important application fields ofamg NPs is pharmacology. Smaller drug
particles have higher surface to volume ratio, thiedefore they have improved dissolution rate and
transport characteristics, which greatly assist flast absorption and uptake by the human cells
[49,50]. It has also been shown that the amorpioizatf pharmaceuticals can further improve their
dissolution properties since in the amorphous ftirene is no need to take over the crystal lattice
binding energies during the dissolution proces®lPtould be a non-conventional approach in
drug formulation, as a simple, clean (no additiarfe@micals are needed) and rapid wet grinding
method. The medical applicability of a drug nanpemsion produced by PLAL strongly depends
on the attained size of the suspended particleseXample the best uptake of the poorly water-
soluble oral and parenteral drugs can be achiavétkiform of nanoparticles. For the intranasal
and pulmonary application decreased size is ame@tant factor. As pulmonary drugs, particles in
the size range of 0.5 um - 5 um are the best abdornkxthe lungs. Particles bigger than 5 um are
eliminated by the mucociliary clearance and caeitgirate deep into the lungs, while, particles
smaller than 0.5 um are easily exhaled and alsdypabsorbed [51]. Therefore, it is of particular
interest to evaluate the size range of pulmonaug garticles prepared by PLAL.

In this paper pulsed laser ablation of a poorlyarabluble material, meloxicam, was
investigated in water. Meloxicam is a nonsteroatai-inflammatory analgesic and antipyretic drug
(NSAID), and it is frequently used to treat rheuondiarthritis, osteoarthritis and other joint
diseases [52]. However, meloxicam has low solybditphysiological pH which impedes its



clinical application. We studied the direct effettaser fragmentation on the size decreasing and
structural character of meloxicam, which is a pp&model drug for our further nanosuspension
formulations. The motivation of our study is toroduce a novel preparation method in drug
preformulation and also to produce intermediatelpcts for per os, nasal and pulmonary drug
administration.

2. Materials

Meloxicam (4-hydroxy-2-methyl-N-(5-methyl-2-thiaztl-2H-benzothiazine-3-car-boxamide-1,1-
dioxide) was obtained from EGIS Ltd., (Budapestnifary). It is a yellow powder with 10-50 pm
average particle size, 100% crystalline.

3. Experimental methods
3.1. Preparation of nanosuspension by pulsed lab&tion in liquid

A frequency doubled Q-switched Nd:YAG laser beaWHM = 8 ns, . = 532 nm, f = 3 Hz) was
focused by a fused silica lens (f=10 cm) onto gdaplaced in a rotating water-containing vessel.
The targets were pastille pressed from commercaadgilable meloxicam powder by a hydraulic
compactor at 175 MPa pressure. The applied lasendes were varied between 4.2 — 9.4 3/amad
the number of pulses was 48600. The meloxicamllesstvere placed in 20 ml distilled water
(approximately 1.5 cm deep below the water surfaod)clamped to the bottom of the vessel. In
order to be treated evenly, the target was rotateler the beam during laser irradiation.

3.2. Size and morphology studies

After ablation an aliquot was taken from the salntiby avoiding the bottom of the vessel, in order
to exclude pieces originating from occasional ciragland breaking of the surface layer of the
pastille in consequence of the ablation inducednaeical forces. This step was important because
these pieces could falsify the results of the itigasons. Small droplets taken from the middle of
the produced suspension were placed on silicoegpkatd left to dry for scanning electron
microscopy investigations (SEM, Hitachi S-4700)oPto imaging the samples were gold coated
with a sputter coater (Bio-Rad SC 502). SEM imagfesome typical areas were recorded at
different magnifications and analyzed using thedeidbsoftware.

3.3. Structural characterization

FTIR

For chemical characterization, the ablated padialere analyzed by Fourier transform infrared
spectroscopy (FTIR). A portion of the suspensios te&en from the middle of the vessel, right
after the ablation. A few mg ablated particles wav&ined from the suspension by the evaporation
of water at 60°C. Then this dry powder was grouiiti 50 mg KBr in an achate mortar and the
mixture was pressed to a self-supporting diskHerETIR analysis.

FT-IR spectra were recorded with an FT-IR specttem@hermo Nicolet AVATAR 330, LabX
Midland, ON, Canada) between 4000 and 400 ,cat a resolution of 4 cth

XRPD

Crystallinity of the dried meloxicam sample wasrettéerized using an X-ray powder diffraction
(XRPD) BRUKER D8 Advance X-ray diffractometer (BekAXS GmbH, Karlsruhe, Germany).
The powder samples were loaded in contact witlaagptuartz glass sample slide with an etched
square. Cu-K; radiation § = 1.5406 A) source and a slit-detector was appl®elttings were as
follows: the samples were scanned at 40 kV and A@nd the angular range was 3° to 40, & a



step time of 0.1 s and a step size of 0.007°. Ty&tallinity index was calculated on the basishaf t
following formula: Acrys{ (AcrysttAamorpt), WhereAcryst andAamorph denotes the area under the
crystalline and amorphous peaks in the diffractognaspectively.

MDSC

Differential scanning calorimetry (DSC) measurersemére carried out on a TA Q20 (TA
Instruments, USA) to examine and compare the thienesponse of the ablated meloxicam with the
original drugs’. The meloxicam powder was weighao ia Tzero aluminum sample pan and sealed
with an aluminum Tzero lid. During modulated DSCOBIC) measurements the samples were
heated from 25 °C to 300 °C at a heating rate Gf&in with a temperature modulation of £1°C in
60 seconds periods, in inert atmosphere. Resuls arelyzed by Universal Analysis V4.5
software.

3.4. Sedimentation test (dissolution of meloxicam)

The sedimentation of the ablated meloxicam pagiciehe aqueous medium was studied by
extinction spectroscopy. The meloxicam suspensias pvoduced by 43200 ablating laser pulses at
9.4 J/cm fluence and the suspension was immediately treresféo a Shimadzu UV-2101PC VUV-
Vis spectrophotometer. Extinction spectra were ne@w repeatedly with time.

4. Experiments and results

4.1. Particle size distribution investigations

We compared the size distribution of the PLAL proetliand the original meloxicam particles. Fig.
1. illustrates the evaluation process for the plagigenerated with PLAL and the reference powder.
The ImageJ software calculated the area of eacl jp&ing assigned to the individual particles,
and determined the diameter of a hypothetical sptviich would have the same projected area.
This diameter value will be considered as the sfazbe corresponding particle. Since only a small
mass fraction of particles were smaller than 200 afower limit of 1200 nm for the measured
particle size was set.
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e

) RIS
o,

Ty s . 27T ¢
Fig. 1. Steps for determination of the particle size dsition from SEM images using image

processing software (for details see text).




Fig. 2. shows, that while the particles of the imrag meloxicam are in the 2-35 um size range, fall o
the particles obtained from the laser generatedxmeam suspension are smaller than 10 um, and a
significant fraction is in the sub-micrometer siaage. We have to note, that the overlapping of
particles observed especially for the original melam powder can affect the calculated average
size of the particles to some extent, but not deslizg The average dimensions of the meloxicam
particles produced by PLAL at 9.4, 5.4 and 4.2 3/ftuences were calculated to be 1.33, 1.05 and
1.9 um, respectively, while the original meloxicapwder particles were 16.5 um on average size.
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Fig. 2. The size distribution of particles produced byadioin of meloxicam pastilles in water at
different laser fluences. The original meloxicamvder was also investigated as reference.

4.2. Morphological investigations

Small droplets of the suspensions produced byrdiftdaser fluences were placed on silicon plates
and left to dry for scanning electron microscoplg investigations and for comparison with the
original meloxicam powder (Fig. 3(a)-(c)). The pads of the raw meloxicam powder wer2-40

pum in size and displayed a lamellar crystallinedtire, with sharp edges (Fig.3(c)). The particles
obtained from the ablation suspension wet@0 nm - 10 um in size and less crystalline-like,
having more rounded edges and showing traces dingéFig. 3(a),(b)). The morphology of the
particles created at different laser energy demsWas similar.

'
15 0kV 12 8mm x10.0k SE(V)

Fig. 3. SEM images of the partlcles obtained from the Riedn nanosuspension produed by (a)
4.2 J/cn and (b) 9.4 J/chlaser fluences and of the original meloxicam pawaeticles (c).
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4.3. Chemical composition and structural analysis

Our size-distribution measurements proved thaafipied PLAL method is suitable for the particle
size reduction. However, the chemical compositiot erystal structure of the obtained particles
are also important parameters for their pharmacaiaiailability.

FTIR



The FTIR spectra showed no visible differences betwthe ablation produced particles and the
original meloxicam powder in the investigated floemange. Examining the fingerprint region (400
— 1700 ct) the characteristic peaks matched to the refer@fige4.). This indicates that the

PLAL produced particles with reduced average sizechemically identical with the initial
meloxicam.
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Fig. 4. FTIR spectra of the particles generated by ablatiodistilled water milieu at different
laser fluences and the original meloxicam powderedsrence.

XRPD

The XRPD pattern of meloxicam particles producedbpL (Fig. 5.),was relatively weak,
probably due to the small amount of sample avasl&dnl the analysis, however the characteristic
peaks of the original meloxicam powder were preaeniffraction angles@ of 13.22, 15.06,
26.46 and 26.67 indicating their identical crystalline structlge!]. According to the crystallinity
index calculation the ablated particles have 93¢B¢stalline fraction.
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Fig.5.: XRPD pattern of meloxicam particles proddit®y PLAL compared to the reference
meloxicam powder.



MDSC
As shown in Fig. 6. the melting point of the pdescproduced by laser ablation shifted to lower

temperature (236C) as compared to the original crystalline meloxiq258°C). Earlier studies
showed that this could be attributed to the amagtion of meloxicam to some degiéd, 59,
which in our case can be the consequence of tketiatment/fragmentation.
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Fig. 6. MDSC data of the particles produced by PLAL aspmaned to untreated meloxicam powder.

4.4 Sedimentation test
For the medical application of the meloxicam susp@Enit is important to know the stability of the
colloid solution produced by PLAL.

Extinction spectra were recorded at different tirafter the ablation (Fig. 7(a)). The
intensity of the main meloxicam peak (at 360 nm3 wktted as a function of time (Fig. 7(b)).

Over a 100 hour period it was found that the intgref this peak first decreases, reaches a
minimum value and then, afteb0 hours, it starts to increase again until it hesats final value
after[B0 hours. We suppose that during the time periadsgfection two simultaneous processes,
sedimentation and dissolution, occur and influgtheeextinction oppositely: i) in the beginning the
relatively fast sedimentation of meloxicam partsctesults in the decrease of the extinction (mainly
via the elimination of scattering sources from ltkik) ii) later on the relatively slow (and weak)
chemical dissolution of meloxicam causes the slowease of the extinction.

The analytical balance measurement showed thatlagion entailed a 3.5 mg loss in mass
of the target pastille. This means that the prodwsespension contains totally 3.5 mg meloxicam in
20 ml water in the form of particles and dissolvedlecules. A reference suspension was made by
adding 3.5 mg meloxicam powder to 20 ml distillegter and shacked for 2 minutes in ultrasonic
bath. The extinction of the reference suspensianweay low, and only a slight increase in it could
be observed with time (Fig. 7(b)). The low initedtinction is attributed to the very small fraction
of the particles floating in the bulk: most of timeloxicam powder is settled at the bottom of the
cuvette or afloat on the surface of the water. Adtgout 60 hours the extinction started to increase
and then reached a constant value, indicatingtfisstissolution of meloxicam and then the
saturation of the solution. (The solubility of meloam in water is 7.15 mg/L at 25°C [53].)
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Fig. 7. The extinction spectra of meloxicam suspensiodumed by 9.4 J/cfrablating fluence at
different times elapsed (a). Graph (b) shows thensity of the main meloxicam peak (at 360 nm)
as a function of time for the PLAL generata)l énd reference solutiond(). Note the different
scaling above and below the axis brake in (b).

5. Discussion

The absorption of laser photons in the surfacerlafeneloxicam pastille can result in thermal
dissociation of the molecules. Thermal model caltohs were carried out to estimate the
temperature of the uppermost surface layer of #stilfe after one laser pulse. We applied the
Lambert-Beer law in order to estimate the tempeeathange as the function of depth by
neglecting the heat conduction:

AT(x) =2 e
plc

wherea is the absorption coefficient at 532 ngris the density, c is the specific heat of melomica
and F is the applied laser fluence. Due to lacaté in the literature, the absorption coefficieint
meloxicam was determined by ellipsometry, whichultesl ina=4 um?. For the mean specific heat
of meloxicam in the temperature range 25-250i%, pelow the decomposition temperature) we
obtained 1800 J/(kgK) on the basis of ModulatedtHéaw measurement by Modulated
Differential Scanning Calorimetry (MDSC). The thedndecomposition temperature of meloxicam
was measured to be 258, in good agreement with the data in PubChem ocpemistry

database (25%C) [53].

Our thermal model calculation demonstrated thatéhgerature of the upper 227-429 nm
layer of the pastille exceeds the decompositiorpegature of meloxicam in the whole range of
laser fluence (4.2-9.4 J/@rapplied. It is plausible that the fast decomposibf meloxicam
molecules in the uppermost volume element givestasan explosion-like gas emission and
expansion (Fig. 8(a)-(c)). The generated recoidsrtear off and accelerate softened/molten
droplets and solid particles from the bottom of aliation hole into the solution pulse by pulse
(Fig. 8(c)-(d)). Thereby, a meloxicam suspensidioisied. The typical size of the ejected grains
ranges from tens of nanometers to a few micrometdrde the even smaller particles tend to
aggregate and form larger particles.

(b) (C) Ablation (d) 5£1ertcitcelgs (9)
. . plume <009
Dissociated AA 4

Fig. 8. Phenomenological model of the particle generapatess during laser ablation of
meloxicam pastille.



SEM images of the ablated area demonstrate thghdicant amount of micrometer- to
sub-micrometer-size debris can be found at thebotf the ablation hole (Fig. 9(a)). At larger
magnifications re-solidified molten droplets antsjean also be seen in the ablated area (Fig..9(b))
Figures (c) and (d) show the pressed (intact uppeace) and the fracture surface of the original

15.0kV 12.8mm x50.0k SE(U)

10.0kV 11.8mm x1.00k SE(U) 15, mm x1.00k SE(V) 50.0um

Fig. 9. SEM images (a) and (b) of the bottom of a laséatatl hole (F= 5.4 J/cR), captured at
different magnifications. Solid debris (a) and wigified molten droplets and jets (b) can be seen
well. As reference, the pressed (c) and the fracfdy surface of the original meloxicam pastille is

shown.

6. Conclusion

PLAL has been applied successfully for the prodaunctf highly stable aqueous suspension of near-
micrometer size meloxicam particles.

The average size of the particles produced by B32aser ablation of meloxicam pastilles
fell in the 1.0 - 2.0 um range. This is approxinhatme tenth of the average size of the original
meloxicam powder particles (16.5 pm) and therelsymore appropriate for the cellular uptake of
the drug.

We established that the ablated particles were wadignidentical with the original
meloxicam powder for all applied laser fluences.

According to our observations, a fast sedimentadiothe big particles occurs in the
suspension during the first two days and after ab0uhours only the slow chemical dissolution of
meloxicam can be seen. The higher extinction ofthlated suspension as compared to the
reference meloxicam suspension during the whole period of observation indicates that a larger
amount of small particles could be dispersed irewhy PLAL than by the simple dissolution of the
original powder of the drug. The sedimentation meaments proved the stability of the PLAL
produced suspension over a 100 hour time periaceds

Our thermo-mechanical model calculations preditied each laser pulse triggers the
explosive decomposition of the target moleculethenupper 227-429 nm layer. The fast expansion
of this upper volume element results in significar@chanical forces in its close proximity which
can tear out meloxicam patrticles from the targstiff@ The particles being ablated into the sotven
on this (“gentle”) way suffer no chemical decompiosi but still are much smaller than the
particles of the original meloxicam powder.



The crystal structure of meloxicam didn’t changermythe ablation process, and only a
slight decrease in the crystalline fraction waseobsd. The amorphization of meloxicam could also
increase the dissolution rate and improve the laibavility of the poorly water soluble drug
(especially if accessing the nanometer size raageedl) [55].

On the basis of our results we can conclude thiaeguaser ablation of meloxicam pastille
in water is appropriate for the preparation of pmedoxicam suspension. The obtained size range
of the particles predicts that PLAL may become @esior technique for the production of
intermediate products for per os, nasal and pulmyothaig administration.
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