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ABSTRACT. Multi-agent coordination control usually involves a potential func-
tion that encodes information of a global control task, while the control input
for individual agents is often designed by a gradient-based control law. The
property of Hessian matrix associated with a potential function plays an im-
portant role in the stability analysis of equilibrium points in gradient-based
coordination control systems. Therefore, the identification of Hessian ma-
trix in gradient-based multi-agent coordination systems becomes a key step
in multi-agent equilibrium analysis. However, very often the identification of
Hessian matrix via the entry-wise calculation is a very tedious task and can
easily introduce calculation errors. In this paper we present some general and
fast approaches for the identification of Hessian matrix based on matrix differ-
entials and calculus rules, which can easily derive a compact form of Hessian
matrix for multi-agent coordination systems. We also present several examples
on Hessian identification for certain typical potential functions involving edge-
tension distance functions and triangular-area functions, and illustrate their
applications in the context of distributed coordination and formation control.

1. Introduction.

1.1. Background and related literature. In recent years cooperative coordi-
nation and distributed control for networked multiple agents (e.g., autonomous
vehicles or mobile robots etc.) have gained considerable attention in the con-
trol, optimization and robotics community [8, 15]. This has been motivated by
various applications such as formation control, coordination in complex networks,
sensor networks, distributed optimization, etc. A typical approach for designing
distributed control law for coordinating individual agents is to associate an ob-
jective potential function for the whole multi-agent group, while the control law
for each individual agent is a gradient-descent law that minimizes the specified
potential function [19, 9]. Very often, such potential functions are defined by geo-
metric quantities such as distances or areas related with agents’ positions over an
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interaction graph in the configuration space. Typical scenarios involving gradient-
based control in multi-agent coordination include distance-based formation control
[16, 25, 26, 4, 10], multi-robotic maneuvering and manipulability control [14], mo-
tion coordination with constraints [32], among others. Comprehensive discussions
and solutions to characterize distributed gradient control laws for multi-agent coor-
dination control are provided in[19] and [20], which emphasize the notion of clique
graph (i.e., complete subgraph) in designing potential functions and gradient-based
controls. The recent book [23] provides an updated review on recent progress of
cooperative coordination and distributed control of multi-agent systems.

For multi-agent coordination control in a networked environment, a key task in
the control law design and system dynamics analysis is to determine convergence
and stability of such gradient-based multi-agent systems with a group potential
function. Gradient systems enjoy several nice convergence properties and can guar-
antee local convergence if certain properties such as positivity and analyticity of
potential functions are satisfied. However, in order to determine stability of differ-
ent equilibrium points of gradient systems, Hessian matrix of potential functions
are necessary and should be identified.

For gradient systems, Hessian matrix plays an important role in determining
whether an equilibrium point is stable or unstable (i.e., being a saddle point etc).
Hessian also provides key information to reveal more properties (such as hyperbolic-
ity) of an equilibrium associated with a potential function. However, identification
of Hessian matrix is a non-trivial and often very tedious task, which becomes even
more involved in the context of multi-agent coordination control, in that graph
topology that models agents’ interactions in a networked manner should also be
taken into consideration in the Hessian formula. The standard way of Hessian iden-
tification usually involves entry-wise calculation, which we refer as ‘direct’ approach.
But this approach soon becomes intractable when a multi-agent coordination sys-
tem under consideration involves complicated dynamics, and the interaction graph
grows in size with more complex topologies. Alternatively, matrix calculus that
takes into account graph topology and coordination laws can offer a more con-
venient approach in identifying Hessian matrices and deriving a compact Hessian
formula, and this motivates this paper.

In this paper, with the help of matrix differentials and calculus rules, we discuss
Hessian identification for several typical potentials commonly-used in gradient-based
multi-agent coordination control. We do not aim to provide a comprehensive study
on Hessian identification for multi-agent coordination systems, but we will identify
Hessian matrices for two general potentials associated with an underlying undi-
rected graph topology. The first is an edge-based, distance-constrained potential
that is defined by an edge function for a pair of agents, usually involving inter-agent
distances. The overall potential is a sum of all individual potentials over all edges.
The second type of potential function is defined by a three-agent subgraph, usu-
ally involving the (signed) area quantity spanned by a three-agent subgraph. We
will use the formation control with signed area constraints as an example of such
distributed coordination systems, and illustrate how to derive Hessian matrix for
these coordination potentials in a general graph. The identification process of Hes-
sian formula can be extended in identifying other Hessians matrices in even more
general potential functions used in multi-agent coordination control.

1.2. Paper contributions and organizations. The main contributions of this
paper include the following. We will first present two motivating examples with
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comparisons on different identification approaches, in which we favor the ‘indirect’
approach based on matrix calculus in the identification. For some typical multi-
agent potentials defined as edge-tension, distance-based functions, we will derive a
general formula of Hessian matrix that can be readily applied in calculating Hessians
for potential functions with particular terms. For potential functions involving
both distance functions and triangular-area functions, we will show, by using two
representative examples, how a compact form of Hessian matrix can be obtained
by following basic matrix calculus rules. Note it is not the aim of this paper to
cover all different types of potentials in multi-agent coordination and identify their
Hessian formulas. Rather, apart from the identification results of several Hessians,
the paper will also serve as a tutorial on Hessian identification for multi-agent
coordination systems by analyzing some representative potential functions, and by
following matrix calculus rules we will aim to advance this approach in Hessian
identification in the context of multi-agent coordination control.

This paper is organized as follows. Section 2 reviews several essential tools of
matrix/vector differentials and calculus rules that will be used in the derivation
of Hessian matrix for various potential functions. Section 3 presents preliminaries
on basic graph theoretic tools in modeling multi-agent distributed systems, and
gradient systems for designing gradient-distributed controllers for multi-agent coor-
dination control. Motivating examples with a two-agent system and with a three-
agent system are discussed in Section 4, which presents obvious advantages of using
matrix calculus rules in identifying Hessian matrix for multi-agent coordination po-
tentials. Section 5 discusses a unified and general formula of Hessian identification
for edge-tension, distance-based potentials that are commonly-used in modeling
multi-agent coordination tasks. Several typical examples of edge-based potentials
are also discussed in this section, with their Hessian matrices correctly identified
by following the derived general formula. Section 6 shows general approaches for
identifying Hessian matrix for composite potential functions that involve not only
edge-based distance functions but also triangular-area-based functions within three-
agent groups as complete subgraphs. Brief discussions and remarks are shown in 7
that conclude this paper.

1.3. Notations. The notations used in this paper are fairly standard. A real scalar
valued function f is called a C" function if it has continuous first r derivatives. The
notation ‘d’ denotes ‘differential’. We use R™ to denote the n-dimensional Euclidean
space, and R™*™ to denote the set of m x n real matrices. The transpose of a matrix
or vector M is denoted by M T. For a vector v, the symbol ||v|| denotes its Euclidean
norm. We denote the n x n identity matrix as I,,. A diagonal matrix obtained from
an n-tuple vector {1, o, - ,z,} with z; € R as its diagonal entries is denoted as
diag(zq,zo, -+ ,x) € R™*"™ and a block diagonal matrix obtained from n-column
d-dimensional vectors {x1, 29, ,z,} with z; € RY as its diagonal block entries
is denoted as blk-diag(z1,z2, -+ ,xp) € Rx7  The symbol ® denotes Kronecker
product.

2. Background on vector/matrix differentials. In this section we review some
background on matrix calculus, in particular some fundamental rules on vector/matrix
differentials. More discussions and properties on matrix calculus can be found in
[31, Chapter 3], [12, Chapter 15], and [1, Chapter 13].
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Consider a real scalar function f(z) : R™ — R that is differentiable with the vari-

able © = [21,...,2,,]T € R™. ! The first-order differential (or simply differential)
of the multivariate function f(x1,...,x,,) is denoted by
0/ of@ (ot | or@] |
x T x x
d — d .. da,, = S : , 1
f(@) 0x1 TLte 0T, o 0rq oz, : (1)
dz,,
or in a compact form
of(x) T 0f(2)
d = = 2
flo) = e = (@) L, )
where %fﬁ) = [%fi«f)’.” ,%gi)] and dz := [dx1, - ,dx,,]". In this way one
can identify the Jacobian matrix D, f(z) := SBfT@ € R'*™ which is a row vector.
According to convention, we also denote the gradient vector as a column vector, in
T
the form V, f(x) := {—agif), e —%];(i) € Rmx1,

Note the same rule can also be applied to the identification of Jacobian matrix
for a real vector-valued function f(z) : R™ — R”, in which the Jacobian matrix
can be identified as D, f(z) := %@ e R™xm,

Now we consider a real scalar function f(z) € C? : R™ — R (i.e., twice differ-
entiable functions). We denote the Hessian matrix, i.e., the second-order derivative
of a real function f(x), as H ¢(z), which is defined as

_ 82f(a:) _ 0 af(l‘) mxm
Hf(x)_axaxT_é‘x(axT>€R '

(3)
In a compact form, we can also write

Hy@) = Vaf(x) = Va(Da f()). (4)
Therefore, the (i, j)-th entry of H is defined as

o _[Pr@] _ 9 (s
f(:v),zy_ axﬁxT Zj_al’z 8xj

- [57], =2 () ®

where the equality in the second line is due to the symmetry of Hessian matrix.

The entry-wise definition of Hessian H; in (5) presents a standard and direct
approach to identify the Hessian matrix for a real scalar function f. However, in
general it is not convenient for performing the calculation in practice by following the
entry-wise definition (5). We will now discuss a faster and more efficient approach
for Hessian matrix identification based on matrix calculus rules.

1One sufficient condition for a multivariate function f(z1,...,%m) to be differentiable at the
point (z1,...,xm) is that the partial derivatives 8f/0z1,...,0f/0xm exist and are continuous.
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From the compact form of first-order differential df(z) in (2), one can calculate
the second-order differential as

& f(x) = d(df(2)) = d(daT) 2L 4 g, 70U @)

Oz Oz
a5 (% )
T f(@)

= ) 3:1:6'1:T (6)

=0

_Hf

which presents a quick and convenient way to identify Hessian matrix in a compact
form. Note that in the above derivation we have used the fact d(dz ") = 0 because
dz is not a function of the vector z. In this paper, we will frequently use (6) to
identify Hessian matrices for several typical potential functions applied in multi-
agent coordination control.

3. Preliminaries on graph theory and gradient systems.

3.1. Basic graph theoretic tools and applications in modeling multi-agent
systems. Interactions in multi-agent coordination systems are usually modeled by
graphs, for which we review several graph theoretic tools in this section. Consider
an undirected graph with m edges and n vertices, denoted by G = (V, £) with vertex
set YV ={1,2,--- ,n} and edge set £ C V x V. Each vertex represents an agent, and
the edge set represents communication or interaction relationship between different
agents. The neighbor set N; of vertex 7 is defined as NV; := {7 € V: (i,7) € £}. The
matrix relating the vertices to the edges is called the incidence matrix H = {h;;} €
R™*™ whose entries are defined as (with arbitrary edge orientations)

1, the i-th edge sinks at vertex j;
hij =< —1,  the i-th edge leaves vertex j; (7)
0, otherwise.

Another important matrix representation of a graph G is the Laplacian matrix
L(G) [17]. For an undirected graph, the associated Laplacian matrix can be written
as L(G) = H"H. For more introductions on algebraic graph theory and their
applications in distributed multi-agent systems and networked coordination control,
we refer the readers to [17] and [7].

Let p; € R? denote a point that is assigned to agent i € V in the d-dimensional
Euclidean space R?. The stacked vector p = [p], pg,---, p,]T € R represents
a configuration of G realized in R%. Following the definition of the matrix H, one
can construct the relative position vector as an image of H ® I; from the position
vector p:

z=(H & Iq)p, (8)
T T

where z = [z, 29 ,--+, 2] ]T € R, with 2, € R? being the relative position
vector for the vertex pair (7, j) defined for the k-th edge: 2z, = p; —p;. In this paper
we may also use notations such as Zk,; O Zij if no confusion arises.
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3.2. Gradient systems and gradient-based multi-agent coordination con-
trol. In this section we briefly review the definition and properties of gradient
systems. Let V(z) : R® — R>( be a scalar valued function that is C” with r > 2.
Consider the following continuous-time system

i=-V,V(x). (9)

The above system is usually called a gradient system, and the corresponding function
V(z) is referred to as a potential function.

Gradient system enjoys several convergence properties due to the special struc-
ture of the gradient vector field in the right-hand side of (9). Firstly, it should
be clear that equilibrium points of (9) are critical points of V(x). Moreover, at
any point except for an equilibrium point, the vector field (9) is perpendicular to
the level sets of V/(z). In fact, it is obvious to observe that V(z) = V,V(z)Td =
—||V.V (2)||* < 0, which indicates that the potential V() is always non-increasing
along the trajectory of (9). The following results are also obvious.

Theorem 3.1. Consider the gradient system (9) with the associated potential V(x).
e V(z) <0 and V(x) =0 if and only if x is an equilibrium point of (9).
e Suppose T is an isolated minimum of a real analytic V(x), i.e., there is a
neighborhood of T that contains no other minima of V(x). Then T is an
asymptotically stable equilibrium point of (9).

The proof of the above facts can be found in e.g. [29, Chapter 15]. Note that in
the second statement we have emphasized the condition isolated minimum in the
convergence property. We also refer the readers to the book [29, Chapter 15| for
more introductions and properties on gradient vector fields and gradient systems.

Note that a local minimum of V' is not necessarily a stable equilibrium point of
(9), unless some more properties on the potential V' are imposed (while the smooth-
ness of the potential V' is not enough). In [2], several examples (and counterexam-
ples) are carefully constructed to show the relationship between local minima of V'
and stable equilibrium points of (9). In particular, it is shown in [2] that with the
analyticity 2 of the potential V', local minimality becomes a necessary and sufficient
condition for stability.

Theorem 3.2. (See [2, Theorem 3]) Let V' be real analytic in a neighborhood of an
equilibrium T € R™. Then, T is a stable equilibrium point of (9) if and only if it is
a local minimum of V.

In order to determine convergence and stability properties for general equilib-
rium points for a gradient system (9), one needs to further analyze the linearization
matrix of (9) (i.e., the Hessian matrix of V, with a reverse sign). Therefore, identifi-
cation of Hessian matrix is a key step prior to analyzing equilibrium and convergence
properties of gradient systems.

In the context of multi-agent coordination control, gradient systems and gradient-
based control provide a natural solution to coordination controller design. Very
often, group objective functions for a multi-agent system serve as a potential func-
tion, and control input for each agent typically involves a gradient-descent control
that aims to minimize a specified potential function. A key question is whether
the gradient control input for each agent is local and distributed, in the sense that

2A real function is analytic if it possesses derivatives of all orders and agrees with its Taylor
series in the neighborhood of every point in its domain.
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control input only involves information (or relative information) of an agent itself
and its neighbors as described by the underlying network graph that models inter-
actions between individual agents. This question is addressed in [19], from which
we recall some key definitions and results as follows. The following definition refers
to a fundamental property of objective potential functions whose gradient-based
controllers (9) are distributed.

Definition 3.3. A class C'! function f; is called gradient-distributed over the graph
G if and only if its gradient-based controllers (9) are distributed; that is, there exist
n functions f; such that
oV (p)
opi

= _fi(pi7pNi)7Vi eN. (10)

The recent papers [19] and [20] provide a comprehensive study on gradient-based
distributed control, in which a full characterization of the class of all gradient-
distributed objective potential functions is discussed. A key result in [19] and [20]
is that the notion of clique (i.e., complete subgraph) plays a crucial role to obtain
a distributed controller for multi-agent coordination control. That is, in order for a
gradient-based coordination control to be distributed, the objective potential func-
tion should involve only agents’ states in a clique. Typical cliques include edges
associated with two agents, triangular subgraphs associated with three agents, etc.
In this paper, our focus will be on the Hessian analysis of a distributed gradient-
based coordination control system (10) associated with an overall potential function,
with the aim of providing some unified formulas of Hessian matrix. The identifica-
tion of Hessian formulas will aid the stability analysis of different equilibriums in
gradient-distributed multi-agent systems.

4. Motivating examples: Hessian matrix identification for simple gradient-
based coordination systems.

4.1. Hessian identification for a two-agent coordination system. As a mo-
tivating example, we provide a general approach to identify Hessians for simple
gradient-based control systems that involve two or three agents (examples taken
from [21]). Consider a multi-agent system that consists of two agents ¢ and j in a
2-D space, with p; € R? being fixed and p; € R? governed by

oV,
==V, Vi = ——2 11
pj pi Vij 5pj ( )
where
1 2
Vig =171 (lps = pyI1> = di;)" (12)

in which d;; is a positive value denoting a desired distance between agents 7 and j.
The gradient vector is

V. Vis = (Ipi — ps11* = ;) (pi — pj). (13)
Now we identify the Hessian matrix by following the matrix calculus rule in (6):
d*Vi; = (dp;) "dV,, Vi

= (dp) " (A (lpi — s 1I* — d3;) (pi — p;) + (Ilpi — p;1I* — d;) d(pi — p;)) -
(14)
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Note that

d (Ipi — pill* = d;) = 2(ps — p;j) "dps, and d(p; — p;) = dp;. (15)

Therefore,

d (Ipi = pjlI* = d2;) (pi — p;) = 2(pi — p;) "dpi(pi — ;) = 2(pi — p;)(pi — p;) " dps,
(16)

and from (14) one has

d*Viy = (dp)) " 20i = )i =) + (lpi = ps1* = d;) ® L) dps,  (17)
which readily shows the expression of Hessian matrix. We summarize:

Lemma 4.1. The Hessian matrixz for the potential (12) with the gradient system
(11) is identified as

My oy = 200 =)0 =) "+ (Ipi = pjl° = dF) © L. (18)

Remark 1. If one assumes p; = [0,0]" and denotes e;; = [|p; — p;l|> — df; =
[pill* — di; and p; = [2;,4:] ", then the above Hessian (18) is reduced to

Hy,, = 21%‘17? +ei; ® 1
_ 23322 + €ij 2x,;y;

2ziy; 2y7 + ey (19)

The Hessian formula (19) has been discussed in [21] for stability analysis of a
two-agent distance-based coordination control system. The derivation of Hessian
(19) in [21] is based on entry-wise identifications, which is in general not convenient
as compared with the above derivation using matrix calculus rules.

4.2. Hessian identification for a three-agent coordination system. As a
further motivating example, we consider a three-agent coordination problem from
[21], in which the potential function includes both distance-based potentials and an
area-based potential. The overall potential function is defined as

1 2 1 2 1 *
Vijk = 1 (llpx — pill* — dis)” + 1 (llpk = pilI* — di;) ™ + §K(5 — 5%, (20)

where K is a positive scalar gain and

=22 0~ p)) = 50— 20 I i ) (21)

2 2
with J = [0,1; —1,0] defines the signed area of the triangle associated with three
agents (¢,7,k). For notational convenience we denote Vi, = Vg + Vg, with Vy
defined as the first two quadratic functions and Vg the third quadratic function in
(20). Note that the third quadratic function Vg in (20) with S terms serves as a
signed area constraint that involves positions of a three-agent group, which makes
it different to the edge potential function (12) that only involves two agents. In this
example, by following the same problem setting as in [21], we again assume that
agents ¢ and j are fixed and stationary, and agent k’s dynamics are governed by a
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gradient descent control law

P = = Vi Vigi = — (g}‘;j L (S - S*)S}i)
=(llpi = pell* = ) (i — pe) + (Ilp; — pell* — d5,) (0 — pr)
~ SK (S~ 5)T(pi ) (2
where we have used the fact that
ds = —%(—dpk)TJ(pi —pj) = —%(pi —p;) " Jdpy, (23)
which implies % = %J(pi —p;).

Now we identify the Hessian matrix Hy, which holds Hy = Hy, + Hyy, for the
gradient flow (22) associated with the potential (20). By following similar steps as
in Section 4.1, one obtains

Hy, =2(pr — pi)(pr — i) " + 20k — pj) (P — ;)"
+ (lpk = pill> = d3;) @ I + (|lpx — p; 1> = di;) @ L. (24)
There also holds

d*Vs = (dpg)Td (K(S — S*)%J(pi — pj)> = (dpk)T%KJ(pi —p;)dS

= (@) (1K= )= 2) 7 ) (25)
which implies
My, = 1 KJ (0~ ,)(oi )T (26)
We summarize the Hessian identification result in the following:
Lemma 4.2. The Hessian matriz for the potential (20) is identified as
Mgy =20k = i) (01 = 2i) "+ 2(p1 — 0) (0 — p5)
+ (o = pill® = d2;) @ Lo+ (px — pylI* — di;) ® I

1
= KT = p)(pi = )" - (27)
Remark 2. If one assumes dj;, = dj; = d and p; = [—a,0]T, pj = [a,0]7, pr, =
[z,y] T, the above Hessian formula reduces to the following
[ 62% + 6a% + 2y* — 247 dxy
v, = dzy 222 4 202 + 6y — 2d> + Ka® | (28)

The Hessian formula (28) has been discussed in [21] for stability analysis of a
three-agent formation control system with both distance and area constraints. As
can be seen above, if the Hessian is calculated via the entry-wise approach, it is
often tedious to get the right formula.

The two examples presented in this section motivate the Hessian identification
approach via matrix differentials and calculus rules. In the following sections, we
will show how to derive general formulas for Hessian matrices for some typical
potential functions in multi-agent coordination control.
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5. Hessian identification for edge-tension, distance-based potentials. In
this section we consider some typical potential functions in multi-agent coordination
control, which are defined as edge-tension, distance-based functions, for modeling
multi-agent systems in a general undirected graph.

Consider a local edge-tension potential in the form V;;(p;,p;) associated with
edge (i,j) that involves p; € R? and p; € Re. If (i,5) ¢ &, we suppose V;; = 0.
Furthermore, for the symmetry of coordination systems interacted in an undirected
graph, we also assume that V;;(p;,p;) = Vji(pi,p;). The overall potential for the
whole multi-agent group is a summation of local potentials over all edges, con-
structed by

V= %szij(p“pj) = %Z > Vis(pirpy). (29)

i=1 j=1 i=1 jEN;

The coefficient % in the overall potential (29) is due to the fact that each local
potential V;; is counted twice in the underlying undirected graph.

In this section we consider a general potential function as a function of inter-agent
distances ||p; — p;||, defined as

. Viillpi —psl), i (4,5) €&;
Vij i= { 0, otherwise. (30)

Such a distance-based potential function has found many applications in distributed
multi-agent coordination control and has been one of the most popular functions in
developing coordination potentials. Typical applications of the potentials (30) and
(29) include multi-agent consensus [18], distance-based formation control [16, 22,
6], formation control laws with collision avoidance [5, 3], multi-robotic navigation
control [11], multi-agent manipulability control [14], and connectivity-preserving
control [13, 30], among others.

5.1. Derivation of a general Hessian formula. The control input for agent ¢
is a gradient-descent control

n
Di = _VPiV == Z Vpi‘/;j(pivpj)' (31)
JEN;

Note that

allp = o3l = (/o =2 =)

1 -3
=5 (i =p) (i =) " (i =) (i — )
1 T
=———®i —pj) dpi. 32
o — ;] 7~ P) (32)
Therefore,
OVij(lpi —pill) _ 0Vij(llpi — psll) Ollpi — psll
Op; d|lpi — pjll Op;
1
=Vii———(pi — ), 33
Jl\pi—pjll( i) (33)

L. OV P
where we have used the definition V}; := 75\|(z‘7|?ip-p\|3“)'
i —Pj
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Now an explicit form of the gradient-based control (31) is derived as

n n
. 1
Bi ==Y VpVig(pipy) = = D Vis——(pi = 1j)- (34)
JEN; jere b= pil
The distributed coordination system in (34) may be seen as a weighted multi-
agent consensus dynamics, in which the weights, defined as wy,; = Vz’jm =
: i—D;

Vk’,”Z—i”, are dependent on states (i.e., state-dependent weights); however, the control
objective is encoded by the potential V;; and its gradient that encompasses many
coordination tasks, while consensus or state agreement is only a special case. A
compact form for the overall coordination system is derived as

p=-V,V=—(H WH® I)p, (35)
where
. . Vi vy %4
W = diag(w,wa, . . .,wy,) = diag <||Zi|| , ”Z;I ey Zm||> . (36)
Following the matrix calculus rules in (6) one can show
d*V = (dp)"dv,V
=(dp)" (H'AWH @ I;)p+ (dp)" (H'"WH @ 1) dp, (37)
where
dW = diag(dwy, dwa, - - - , dwp,). (38)
Recall that
(H®Ia)p = z. (39)

We can obtain a nice formula for the term ((H TdWH ® Id) p as follows. Note that
(AWH®I;)p=(dW 1)z

Z1 dwlzl
Z9 dUJQZQ
- (diag(dwla dw?a e ’dwm) ® Id) . -
Zm dwm zm
dwl
d(UQ
= (blk-diag(z1, 22, " ,2m)) ) . (40)
dw,
Now by defining
Z = blk-diag(z1, 22, - - , 2 ) € RMIX™ (41)

one obtains (AWH ® I3)p = Zdw from (40). We then analyze the term dw. One
can actually show

dw (pi —p;) " (dpi — dp;) (42)

k= Wy

c = W
lpi — pj

Therefore, in a compact form, one can obtain

dw=QZ" (H ® I;)dp, (43)
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where

1 1 1
Q = diag (w’,w',~~- W > (44)
Hlza 2 (122l " zmll

Now (37) becomes
d*V = (dp)"dv,V
=(dp)" (H" ®1,)ZQZ"(H®13))dp+ (dp)" (H'WH & I,) dp
=(dp)" (H'®1,)ZQZ"(H® 1)+ H WH ® 1) dp. (45)

Then according to the basic formula (6), the Hessian matrix is obtained as the
matrix in the middle of (45).

In short, we now summarize the main result on Hessian identification for edge-
tension, gradient-based distributed systems as follows.

Theorem 5.1. For the edge-tension distance-based potential function (29) and the
associated gradient-based multi-agent system (31), the Hessian matriz is identified
as

Hyp = (H' ®1)29Z2" (H® 1)+ (H'WH @ 1), (46)
where H is the incidence matriz for the underlying graph, Z = blk-diag(z1, 22, , 2m),

and the diagonal matrices Q and W are defined in (36) and (44), respectively.

Remark 3. From the general and compact formula of Hessian matrix in (46), one
can also easily show the entry-wise expression of the Hessian. To be specific, the
(¢,4)-th block of the Hessian Hy,,, is expressed as

Hyii = > (Qij(pi — p)(pi — p;) " + wiijla) , (47)
JEN;
and the (7, )-th block is expressed by
=i — i) (i — )T — wkiila, i (i, 5) € &
HV,U - { 07 if (Z,]) ¢ 87 (48)
ViiUlpi—p; wi; (Ilpi —p;

5.2. Examples on Hessian identification for certain typical potential func-
tions. In this subsection, we show several examples on Hessian identification for
some commonly-used potential functions in coordination control. These potential
functions have been extensively used in designing gradient-based coordination laws
in the literature; however, litter study was reported on their Hessian formulas. We
will see how to use the general formula (46) in Fact 5.1 to derive a compact form
of Hessian matrix for each potential function.

Example 1. Distance-based multi-agent formation control, discussed in e.g.,
[16]. The edge-tension distance-based potential is

1 2
Vij = 1 (Ilps = pi1I” = d?j) . (49)

Then wy = (||pl —p;l? —d?j)7 and W := diag (wy,wa, *+ ,wm). It is clear that
wy, = Owg(||2k]1) /0] 2|l = 2||2x]| and therefore Q = diag(2,2,---,2) = 2I3. Thus,
the Hessian matrix in this case is identified as

Hyy =2H' ®19)ZZT(H@1a)+ (H'WH® 1) . (50)
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In the context of distance-based formation control, the matrix Z ' (H ® I4) is the
distance rigidity matrix associated with the formation graph, denoted by R.
The Hessian in the form

Hyy =2R"R+ (H'WH ® I4) (51)
has been calculated (with different approaches) in e.g., [22, 6, 24] for formation

systems with special shapes, e.g., 3-agent triangular shape or 4-agent rectangular
shape.

Example 2. Formation control law with edge-based distance constraints,
discussed in e.g., [5, 3, 11]. The edge-based potential is

1 2
Vij = 5 (lpi = pjll = i) (52)
Then 0V;;/0|lpi — pill = (Ilpi — pjll — di;) and therefore w), = (”’]‘;I’%ﬂ;ﬁ” Thus,
one can obtain the diagonal matrix W as follows
—d —d ml| — dm
W= diag<”21” Ll el > (53)
[ [[ 22l [[2ml
It is clear that wj, = Owg(||zk])/0||zk|| = szﬁ and therefore
. dl d2 dm )
Q = dia, , N . 54
o (o T e oY

Thus, the Hessian matrix in this case is identified as
Hy, = (H' ®19)292 " (H®1y)+ (H'WH @ 1), (55)
with W and Q defined in (53) and (54), respectively.

Example 3. Leader-follower manipulability control, discussed in e.g.,[14].
The edge potential is a function in the form
1 2 .
Vij(pisps) = 5 (eij(Ipi = psl))", i, 5) € €, (56)
where e;; is a strictly increasing, twice differentiable function. Now we identify the
Hessian matrix by following the above result in Fact 5.1. Note that 0V;;/0||p; —

pill = eije;j where e;j = 0e;;/0(||pi — pjl|). Therefore wy, = exel/||zk|l and
W .= diag (elell , €265 e eme;n> . (57)
21l |22l ll2ml
It is clear that
exel
ol _ 0 ()
= =

9|z |z

_ (6;662 + eke;c/)”’zk” — eke;c) (58)
(B

(ehehrenel)lzell—exeh )
Tzl

Therefore, the entries of the diagonal matrix  is w} /|| zx| =
The Hessian matrix for the potential

V%ZZ%%ZZ(eij(nm—mn)f (59)

i=1 j=1 i=1 j=1
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is identified as
Hyey = (H' ®19)292T(H® 1)+ (H'WH @ 1), (60)

with W defined in (57) and Q defined with diagonal entries of wj, /|| zx|| as calculated
above.

Example 4. Connectedness-preserving control in multi-agent coordina-
tion, discussed in e.g., [13, 30]. The edge-based potential function takes the follow-
ing form

Vis(oey) = 22l (61)
PR —pe =l
where ¢ is a positive parameter. Note that
v (25— = pl) i — ) .
7 Ollps - sl 0 =llpi = pslD>
Di — Dy bi — Dy
and therefore wy = VJ; /| 2| = (?s H!iﬁ‘)g where z;, = p; — pj. The diagonal matrix
W is obtained as
(20— lzll 26— ||zl 26 — |[zm|l )
W:dlag( , S (63)
(@ —1lzal)?" (6 = ll22l)? (0 —llzml])?
Furthermore, one can show
Owy, —HZkH + 39
Wy, = = . (64)
ST AT R PATNE
Therefore, the diagonal matrix €2 can be obtained as
. 30 — ||z 30 — ||z 36 — [ zm|l )
Q:dlag( , S (65)
120016 = [[z211)? " [l22[1(6 — [|=2[))? [2m1(0 = [lzm)?
The Hessian matrix for the overall potential V = 1 37" 37" V;; is identified as
Hy,, = (H' ®19)292 " (H® 1)+ (H'WH ® 1), (66)

with W and Q defined in (63) and (65), respectively.

5.3. A further example of Hessian identification for edge-based coordi-
nation potentials. In this subsection, as a further example, we will show an al-
ternative approach for identifying Hessian formula for an edge-based coordination
potential.

Consider the overall potential function

2

\Zkll2 ’

where 2, = p; — p; is the relative position vector for edge k. The potential function
(67) has been discussed in e.g., [27] for multi-agent formation and coordination
control with collision avoidance

Define py, = Hzﬁil#fk and the gradient function for agent ¢ is obtained as
VoV =3 20,2k, (68)
JEN;

We may use pg,; and py, 2 and 2y, interchangeably in the following text.
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Define a vector p = [p1,p2,- -+ ,pm]' and a block diagonal matrix Z in the form
7 = blk-diag(z1, 22, - , zm). Then one can obtain a compact form of the gradient

V,V=2H®1) Zp
=2(H ® 1) (diag(px) ® I2)(H ® Ia)p. (69)

where diag(px) denotes a diagonal matrix with its k-th diagonal entry being p. As
we will show later, the second line of the above equality will be particularly useful
for later calculations.

We follow the matrix calculus rule to obtain a compact form of the Hessian.
From the basic formula (6), one can obtain

d?V(p) = 2(dp) "(H ® I;) T (dZ)p + 2(dp) " (H © 1) " Zdp. (70)
First note that

(dZ)p = (diag(pr) ® Ia)(H @ I4)dp. (71)
We then calculate the term dp. To this end, we define ay = ||2;]|> and a =
[1, @9, -+ ,a,,]T. Tt is obvious that
llz]l* —ds ai—dy
Iy _ o (L) _ o (i)
Bak 8||zk\|2 80%
2dy  2d}
=F =" (72)
ap |zl

Note that there holds

0
—api =2Z"(H® I). (73)
Therefore one can obtain
d4
dp = 2diag (” |6> ZT(H ® I,)dp. (74)

From the above derivations one can further rewrite (70) as

d*V(p) =2(dp) " (H © 1) (diag(pr) @ Ia)(H @ Ia)dp
+2(dp) " (HeIy)" (dlag < B le|"’)> 27" (H @ I;)dp

=(dp) " (2(H @ Ia)" (diag(px) ® La)(H ® Ia)

+2(He ) Z (diag ( 4d; >) Z'(H® Id)> dp, (75)

AN

in which a compact formula of the Hessian matrix is derived.
In short, we summarize the above result in the following lemma.

Lemma 5.2. For the potential function (67) in multi-agent coordination, the Hes-
sian formula is identified as

My, =2(H @ 1g) " (diag(py,) @ 1a)(H ® I)

+2H®I,)" (dzag ( ZITIG >) ZT(H® I), (76)
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which can be equivalently written as

4

, 4d
Hyry = 2(H ® I’ (dwg (pk ® I+ ||zk|kGZkzl;r>) (H® Iy). (77)

A brief calculation of the above Hessian matrix is shown in the appendix in [28].
The formula can also be calculated from the general formula in Fact 5.1, while
the above calculation provides an alternative way to obtain a compact form of the
Hessian matrix.

6. Hessian matrix identification for composite potential functions. In this
section we consider more complex potential functions that involve both distance-
based functions and area-based functions (which are thus termed composite poten-
tials).

These composite functions are examples of clique-based potentials (with edge-
based functions being the simplest case, and triangular-area functions being the
second simplest case). Since a general and compact form of of Hessian formula
for clique-based potentials is generally intractable, we will discuss in this section
two examples of Hessian derivation for composite potentials with both distance and
area functions, while clique graphs specialize to 2-agent edge subgraph and 3-agent
triangle subgraph. These examples of such potential functions are taken from [4].
Nevertheless, the derivation of Hessian formula to be discussed in this section will
be helpful in identifying Hessians for more general potentials for other clique-based
graphs.

6.1. Identification example I: 3-agent coordination system with both dis-
tance and area functions. Consider a 3-agent coordination system with the fol-
lowing potential that includes two terms incorporating both distance and area con-
straints:

1 1 N
V(p1,p2,p3) = Z Z(HPi*PjHZ *d?j)2+§K(S*S )27 (78)
(4,7)€{(1,2),(2,3),(1,3)}

where d;; is the desired distance between agents 7 and j, and S = —%(pg —p3) " J(p1—
p2) = —5(p2—p3) " J(p1 —ps) defines the signed area for the associated three agents.
By denoting V; = fe'e, with e = [e1, e2,e3]" and e = ||z]|? — di for k = 1,2,3
corresponding to the three edges, and V5 = %K(S — 8%)2, we rewrite V = V; + Va.
Therefore, the Hessian will have two parts Hy = Hy, +Hyv,. According to Example

1 in Section 5.2, the first part of Hessian matrix Hy, is readily identified as
Hy, =2R'"R+ (H'WH ® I,), (79)

where R is the 3 x 6 rigidity matrix associated with the underlying undirected graph,
and W = diag{ey, e, e3}.
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We now calculate the second part Hy,. First note that J' = —J. One has

dvy = K(S — §%)dS

- —lK(S — 8%) ((dp2 — dp3) " T (p1 — p2) + (p2 — p3) " J(dp1 — dp2))

2
1
= _iK(S — 5% ((p1 — p2) " T " (dp2 — dp3) + (p2 — p3) " J(dp1 — dp2))
_ 71 _Qx o o T o o T o
= 2K(S S*) (=(p1 — p2) " J(dp2 — dp3) + (p2 — p3) ' J(dp1 — dp2))
1 dpl
= _EK(S — S [ (p2—ps)"T (—p1+p3)'J (pr—p2)"J || dp2 |.
dps
(80)
Thus, the Jacobian matrix associated with V5 can be written as
1 *
A= =g K(S=8)[ (a=ps)" T (=prtp3)"T (o1 =p2)"T | (81)

From (81) one can obtain

1 JT(p2 —p3)
@7 =a (2K -5 | TTptp)
J(p1 — p2)
1 J(p2 —pS)
=d §K(S =S*) | J(=p1+ps3)
J(p1 — p2)
1 J(p2 — p3) 1 J(dp2 — dps)
= SKWAS) | J(=pi+ps) | +5K(S=57) | J(~dpitdps) | . (32)
J(p1 — p2) J(dp1 — dp2)
Note that
1 dpl
ds = 3 [ (p2—p3)"T (—=p1+p3)"T (p1—p2)'J | [ jpz ] ;o (83)
P3

and therefore

1 J(pQ —P3)
§K(d5’) J(—=p1 +p3)
J(p1 — p2)
J(p2 — p3) dp
:_ZK J(=p1+p3) | [ (p2—p3)"J (=pr+p3)'J (pr—p2)"J ]| dp2 |.
J(p1 — p2) dpg )
84

We then factorize the second term in (82):

1 J(dps — dp3) 1 o J —J dpy
J(dpy — dp2) J —=J 0 dps
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Therefore, one can rewrite (82) as

dp:
dA)T =B | dpy |, (86)
dps
where
1 p2 - ps
B=|—K p1 +P3 (—=p1+p3)' T (pr—p2)' T ]
0 J  —=J
K(S—S%) 0o J (87)
J —-J 0

is the Hessian matrix Hy,. We summarize the above result and calculations in the
following:

Theorem 6.1. For the composite potential function (78), its Hessian matriz is
identified as Hy = Hv, + Hv,, with Hy, and Hy, calculated as in (79) and (87),
respectively.

6.2. Identification example II: 4-agent coordination system with both
distance and triangular-area functions. In this section, we consider a more
complex potential with both distance and triangular-area functions in a 4-agent
system (examples taken from [4]). In this example, the overall potential is defined
as

V(p1,p2,p3,pa) == (el + €33 + €15 + €34 + €34))

7
SK ((Sa—S3)?+(Sp — S5)?)., (88)

where e;; = ||p; — pil|* — dj; for the five edges (1,2),(2,3),(1,3),(2,4),(3,4), and
Sa = —2(p2—p3) " J(p1 —p2) = —2(p2 — p3) " J(p1 — p3) and Sp = —1(ps —
pa) J(p2 — p3) = —2(ps — pa) " J(p2 — pa) defined as signed areas for the triangle
subgraphs (1,2, 3) and (2, 3.4), respectively.

Write the performance index V as a sum Vi + V5, where V; contains the distance
error terms e;; and Vo contains the area error terms S4, Sp. Again, according to
Example 1 in Section 5.2, the first part of Hessian matrix Hy, can be computed in
a similar way, and is given by

Hy, =2R"R+ E® I, (89)

where R € R5*8 is the rigidity matrix associated with the underlying graph (the
edge orientations having immaterial effect on the Hessian), and E := H'WH is
the matrix calculated as

e12 + €13 —e12 —e13 0
E— —€12 e12 + e23 + e —e23 —e2q
—e13 —e23 €13 + €23 + €34 —e34
0 —e2q —e34 €24 + €34

We now identify the Hessian for the second part of potential function V5. Note
that

AVy =K (Sa — 5%)dSa + K(Sp — S5)dSs, (90)
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in which one can show

dpy
1 T B T T dp2
dS4 = 2[(102 ps)'J (=p1+ps)'J (pr—p2)'J O] dps | (91)
| dpa |
and
Cdpy ]
1 T B T T dp2
dSp = 2[0 (p3—pa)"J (=pa+ps)'J (p2—p3)'J | dps |- (92)
| dpa |
Now denote
J(p2 — p3)
J(—p1 +p3)
Y4 = , 93
A J(p1 — p2) (93)
0

From (91) there holds dS, = Y dp and therefore
1(35 (50 - 537) ) = @) (3K (5450072 ).
By following the Hessian matrix identification rule (6), one has
&’ <§K (Cre Sz>2)> =(dp)"d GK(SA - szm)

—(a@n) " (SR@SAYa+ JR(Sa—S3a¥ ). (00

2
Note that $K(dS4)Ys = 1K (YaY, )dp, and
J(dpz — dps) o J —-J 0 dp
| J(=dpi+dps) | | =J O J 0 dps
Wa=1 Jdp—dp) |=| 7 7 0 o/ dps (95)
0 | 0 0 0 0]][dp
Similarly, by denoting
i 0
J(ps — pa)
Yp = 96
2= JCpatp) | (86)
J(p2 — p3)

one can show dSp = 3Y dp and therefore

d @K ((Sp — 55)2)> = (dp) " <;K (Sp — Sjg.)YB) .
Similar to (94), there also holds
d? (;K ((Sp — Sg)2)> =(dp)"d <;K(SB - Sg)Yfg)

~(@n)" (HS)Ya + 3K (Sn — S3)aVa). (90
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Again, note that $K(dSp)Yp = 1K (YgY, )dp, and

J(dp2 — dps) 0 0 0 0 dp1

_ | J(=dpi+dps) | _| O O J —J dpo
D=1 Jdpy—dp) | T 0 =7 0 J || dps (98)

0 0 J —J 0 dpy

The above calculation immediately shows the formula of the Hessian matrix. We
now summarize:

Theorem 6.2. The Hessian matrix associated with the potential function is iden-
tified as Hy = Hy, + Hy, with Hy, given in (89) and

0 J —J 0
My, = K | vavi vasa-so | 00D
0 0 0 0
00 0 0

v s | 0 O 0 T o)
0 J —J 0

where Y4 and Yp are defined in (93) and (96), respectively.

The Hessian formula was discussed and used in [4] but details were not shown.
A conventional way with entry-wise calculation will soon make the identification
process intractable. We remark that, by following the two examples illustrated in
this section, one can readily identify Hessians for more general composite potentials
modelled in a general undirected graph.

7. Discussions and conclusions. In this paper we present fast and convenient
approaches for identifying Hessian matrix for several typical potentials in distributed
multi-agent coordination control. We have advanced the ‘indirect” approach in the
Hessian identification based on matrix differential and calculus rules, as opposed
to the direct approach with entry-wise calculation. Many distributed coordination
laws involve an overall potential as a summation of local distance-based potentials
over all edges. For such edge-tension distance-based potentials, We derive a general
formula for the Hessian matrix, with which Hessian formulas for several commonly-
used coordination potentials can be readily derived as special cases. We also analyze
the case of composite potentials with both distance and triangular-area functions,
associated with a pair of three agents (as opposed to edge-tension potentials with
two agents); two examples of Hessian identification for such potentials are discussed
in detail. The advantage of using ‘indirect’ matrix calculus approach shows its
benefit as a fast and tractable identification process. The results in this paper can
be a guidance in Hessian identification for other types of potentials in multi-agent
coordination control.
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