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One must still have chaos in oneself to be able to give birth to a dancing star.

Friedrich Nietzsche, Thus Spoke Zarathustra





Popular Science

All of us have at a certain point felt the excruciating pain of our mobile
phone shutting down in the middle of something important because the bat-
tery “died”. Batteries inevitably do need to get recharged, but everyone would
love it if they could at least last longer. This is definitely doable, and there
are many things that can be improved to extend battery life. In addition to
improving the battery itself, we can also consider doing something about the
things draining the battery. One of those things is a little piece of electronics,
we can call it a modem, attached to the phone antenna. The modem will am-
plify the very weak signal that is captured by the antenna, transform it into
numbers, and then perform a lot of calculations on those numbers to extract
the information that is contained in the signal. Energy from the battery is
needed for performing all those actions. In case of bad reception, the modem
has to work extra hard to extract the information and ends up draining a lot
of energy from the battery in the process. When the reception is good, the
modem doesn’t really need to struggle or spend that much energy. However,
because we never know when bad reception will hit, it’s easiest to make the
modem work hard all the time just to be on the safe side; this is how modems
are usually designed. The problem with this strategy is that bad reception
does not really hit that often. This means that for most of the time, the re-
ception is good but the modem is nevertheless working hard, spending a lot of
energy for nothing. If it were possible to sense the quality of the reception and
make the modem work harder or less hard based on the signal quality, a lot
of energy could be saved and the battery would last longer! One part of the
topics analyzed in this thesis is about how different parts of the modem - the
amplifier, the converter to numbers, the calculator extracting the information
from the numbers - adapt their actions to the quality of the signal so that they
go without burning more energy than necessary.

Other parts of this thesis are also about efficient design, but the focus is on
the design of the base station - a piece of wireless communication equipment
that usually sits on a building somewhere and makes sure all the mobile phones

v



vi Popular Science

around it are served with the information they want. Recently, it was suggested
that the base station should be equipped with an extreme number of antennas
because this way it can serve more users than usual, or provide the existing
users with a better user experience, or consume less energy which is good news
for both the environment and the owner of the base station who pays the electric
utility bill. As one of many good things claimed about base stations with lots
of antennas, it was claimed that the converter from a signal to numbers - the
same one as in the phone modem - can be made simpler because of the benefits
provided by a large number of antennas and in this way save energy in the base
station. One paper in the thesis investigates this claim in depth.

Everything said so far about putting many antennas on a base station
sounds so good, so is there any downside to doing this? Of course there is.
With a lot of antennas, the design of the base station becomes tricky. The
connections between the antennas and the central computer handling all the
signals carry a lot of data, sometimes too much for the central computer to
handle at once. One paper in the thesis proposes a radical idea - removing the
central computer altogether, connecting the antennas in a chain and letting
them do all the processing of signals between themselves. This strategy proves
to perform almost as good as if it was done on a central computer, with an
important difference that now the data flows can be handled easily!

The last paper in the thesis is about pairs of wireless devices wanting to
communicate directly and other devices in their vicinity helping those messages
get across by relaying them. If these helpers, or relays as they are technically
called, team up and relay the messages together, the quality of those messages
improves. The quality becomes very good if there are many relays. Unfortu-
nately, there is a caveat here too. The “teaming up” needs a lot of messages to
be exchanged internally between the relays, which will consume resources. So,
in the last paper it is proposed that relays only team up in smaller groups and
do the relaying independently of other relay groups. In this way, the amount of
resources spent on internal message exchange is reduced. The analysis shows
that the quality of relayed messages is almost the same as when all relays are
in one big group.



Abstract

The work at hand is a selection of topics in efficient wireless communication
system design, with topics logically divided into two groups.

One group can be described as hardware designs conscious of their possi-
bilities and limitations. In other words, it is about hardware that chooses its
configuration and properties depending on the performance that needs to be
delivered and the influence of external factors, with the goal of keeping the en-
ergy consumption as low as possible. Design parameters that trade off power
with complexity are identified for analog, mixed signal and digital circuits, and
implications of these tradeoffs are analyzed in detail. An analog front end and
an LDPC channel decoder that adapt their parameters to the environment
(e.g. fluctuating power level due to fading) are proposed, and it is analyzed
how much power/energy these environment-adaptive structures save compared
to non-adaptive designs made for the worst-case scenario. Additionally, the im-
pact of ADC bit resolution on the energy efficiency of a massive MIMO system
is examined in detail, with the goal of finding bit resolutions that maximize
the energy efficiency under various system setups.

In another group of themes, one can recognize systems where the system
architect was conscious of fundamental limitations stemming from hardware.
Put in another way, in these designs there is no attempt of tweaking or tuning
the hardware. On the contrary, system design is performed so as to work
around an existing and unchangeable hardware limitation. As a workaround
for the problematic centralized topology, a massive MIMO base station based
on the daisy chain topology is proposed and a method for signal processing
tailored to the daisy chain setup is designed. In another example, a large group
of cooperating relays is split into several smaller groups, each cooperatively
performing relaying independently of the others. As cooperation consumes
resources (such as bandwidth), splitting the system into smaller, independent
cooperative parts helps save resources and is again an example of a workaround
for an inherent limitation.

From the analyses performed in this thesis, promising observations about
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hardware consciousness can be made. Adapting the structure of a hardware
block to the environment can bring massive savings in energy, and simple
workarounds prove to perform almost as good as the inherently limited designs,
but with the limitation being successfully bypassed. As a general observation,
it can be concluded that hardware consciousness pays off.



Preface

Taking a look back at the timeline of my education, it is not easy to precisely
pinpoint when or how I developed a fascination with wireless communications.
It could have begun when I took the introductory courses in signal and sys-
tems and digital communications and saw those abstract mathematical con-
cepts from the first couple of years of engineering studies being used to both
create and deconstruct signals that convey information. Regardless of when
and how the whole thing started, I am quite sure why I found wireless so
appealing: there was something deeply mystical about the possibility of suc-
cessfully communicating, sometimes over vast distances, without any need for
a physical connection.

The initial fascination was followed, naturally, by a desire to know more.
And I didn’t want to focus on a very specific topic; I wanted to know some-
thing about everything, from adaptive equalization to how and why error con-
trol codes work. The quest for knowledge led me from my native Bosnia and
Herzegovina to Sweden and Lund. Here, at the Department of Electrical and
Information Technology at LTH, I got the opportunity to do a PhD, which,
thanks to many projects that the department was involved in, presented me
with a broad choice of topics to look into. It was exactly how I wanted it to
be. Very importantly, PhD studies were not just a learning experience in an
academic sense. They were also a process of learning about myself; a period of
life-changing personal development.

The results of research activities performed during my PhD studies are col-
lected in this thesis. The text itself comprises two parts. In the first part, a
general overview of the covered topics is given, with the emphasis on the under-
lying leitmotif: hardware-consciousness. Here, hardware-consciousness relates
to two points of view in system design: design of hardware-conscious wire-
less systems (those that dynamically tune the parameters of their constituent
hardware parts to meet a satisfactory balance between performance and com-
plexity/power consumption) and hardware-conscious design of wireless
systems (keeping in mind hardware-related limitations when designing the
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system with the goal of circumventing those limitations in an efficient way).
The second part of the thesis consists of a selection of original scientific

publications written during my PhD studies, each related to one of the topics
covered:

[1] Muris Sarajlić, Liang Liu, Henrik Sjöland and Ove Edfors, “Low Power
Receiver Front Ends: Scaling Laws and Applications,” submitted to IEEE
Transactions on Wireless Communications, Jan. 2019.

[2] Muris Sarajlić, Liang Liu and Ove Edfors, “When are Low Resolution ADCs
Energy Efficient in Massive MIMO?,” in IEEE Access, vol. 5, pp. 14837-
14853, July 2017.

[3] Muris Sarajlić, Liang Liu and Ove Edfors, “Modified Forced Convergence
Decoding of LDPC Codes with Optimized Decoder Parameters,” IEEE 26th
Annual International Symposium on Personal, Indoor, and Mobile Radio
Communications (PIMRC), Hong Kong, PRC, Sept. 2015.

[4] Muris Sarajlić, Fredrik Rusek, Jesús Rodŕıguez Sánchez, Liang Liu and
Ove Edfors, “Fully Decentralized Approximate Zero-Forcing Precoding for
Massive MIMO Systems,” in IEEE Wireless Communication Letters, doi:
10.1109/LWC.2019.2892044, Jan. 2019.

[5] Muris Sarajlić, Liang Liu, Fredrik Rusek, Farhana Sheikh and Ove Edfors,
“Impact of Relay Cooperation on the Performance of Large-scale Multipair
Two-way Relay Networks,” IEEE 37th Global Communications Conference
(GLOBECOM), Abu Dhabi, UAE, Dec. 2018.

During the course of my PhD studies, I have contributed (either as principal
author or as a secondary collaborator) to the following publications, which have
not been included in this thesis:

[6] Muris Sarajlić, Liang Liu and Ove Edfors, “Reducing the Complexity of
LDPC Decoding Algorithms: An Optimization-Oriented Approach,” IEEE
25th Annual International Symposium on Personal, Indoor, and Mobile
Radio Communication (PIMRC), Washington DC, USA, Sept. 2014.

[7] Muris Sarajlić, Liang Liu and Ove Edfors, “An Energy Efficiency Perspec-
tive on Massive MIMO Quantization,” 50th Asilomar Conference on Sig-
nals, Systems and Computers, Pacific Grove, CA, USA, Nov. 2016.

[8] João Vieira, Erik Leitinger, Muris Sarajlić, Xuhong Li and Fredrik Tufves-
son, “Deep Convolutional Neural Networks for Massive MIMO Fingerprint-
Based Positioning,” IEEE 28th Annual International Symposium on Per-
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sonal, Indoor, and Mobile Radio Communications (PIMRC), Montreal, QC,
Canada, Oct. 2017.

[9] Jesús Rodŕıguez Sánchez, Fredrik Rusek, Muris Sarajlić, Ove Edfors and
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cursive Methods”, IEEE Workshop on Signal Processing Systems (SiPS),
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Chapter 1

Motivation and Outline

The explosive development of semiconductor technology, characterized by ever
increasing computing power, ever reducing production costs and an exponential
increase of the number of integrated circuit elements per unit area, as predicted
by Moore [1], has been a key enabler of technological development in recent
decades. More than that, it has been a stepping stone for ushering a new era in
the history of human civilization, the one in which we find ourselves right now:
the Information Age. The ways in which information is transferred, stored,
accessed and - most importantly - used have a defining influence on the way
we live our lives in the Information Age.

One of the most significant, as well as most rapid technological develop-
ments underlying the Information Age was the evolution of digital wireless
communications. In the remainder of this text, the term “wireless communica-
tions” will be used to denote digital wireless communications, where wireless
transmission techniques are employed in the context of transfer of digital in-
formation, in contrast with more traditional wireless technologies as FM radio.
Motivation for (as well as consequence of) this brisk development can be found
in the inherent traits of wireless communications: freedom of movement, ex-
panded reach, and ease of use. A look at the evolution of the number of mobile
cellular subscriptions, provided by World Bank [2] and shown in Fig. 1.1 re-
veals that in year 2017, the number of subscriptions was approximately equal
to world population (7.68 versus 7.53 billions, respectively). Wireless commu-
nications are not only limited to personal use. Due to their ubiquitousness and
flexibility, they are also being increasingly adopted to support communication
between machines. In a white paper by Cisco [3] it is reported that in 2016,
there were already 0.8 billion wireless machine-to-machine (M2M) connections,
and it is also predicted that by 2021 this number will grow to 3.3 billions (cf.
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Fig. 1.2).
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Figure 1.1: Evolution of the number of mobile cellular subscriptions
worldwide [2]

The explosive growth of the number of wireless connections is also accom-
panied by an exponential increase of the amount of information transmitted
wirelessly, with global mobile data traffic growing from 7 Exabytes (7 × 1018

bytes) per month in 2016 to projected 49 Exabytes per month in 2021 [3]. The
spatial data rate density, expressed in bits/s/m2, is projected to increase by
a factor of 1000 between the fourth and fifth generation of broadband cellular
technology (4G/5G) [6]. This development asks for a radical rethinking of ways
wireless systems are designed, ranging from the design of individual units to
how the entire system is organized and operating.

1.1 The Energy Efficiency Issue

A particularly important issue in the design of future wireless systems is the
improvement of energy efficiency. There are numerous reasons why specifically
energy efficiency is of primary concern. These can roughly be classified as being
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Figure 1.2: Evolution of the number of wireless machine-to-machine
connections [3] (values for 2017. - 2021. are predictions)

either environmental, economic or practical, with numerous interdependencies
between the three groups.

• Environmental: A study from 2011 [4] predicts that the total CO2

equivalent emissions related to mobile networks (manufacturing + op-
eration), expressed in megatonnes of CO2 equivalent (CO2e) will have
increased from 86 Mt CO2e in 2007 to 235 Mt CO2e in 2020, which is
equivalent to a third of total emissions of United Kingdom in 2011 [4]. A
significant portion (30 %) of these emissions is due to radio access net-
work (RAN) operation. Although small in comparison with other sources
of greenhouse gas emissions, mobile industry emissions still need to be
kept under control, having in mind the underlying exponential growth in
the number of devices. Improved energy efficiency of mobile systems, on
all levels, is the key to achieving this goal.

• Economic: Tightly connected with greenhouse emissions, the global
RAN energy consumption is forecast to have grown from 49 TWh in
2007 to 109 TWh in 2020 [4], which is approximately equal to the total
electrical energy consumption of Netherlands in 2016 [8]. This energy
consumption can be directly related to operational expenditure (OPEX),
and network operators will be interested in maintaining, or even reducing
these costs with the proliferation of the number of mobile connections. As
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with emissions, improved energy efficiency will be instrumental in keeping
these costs low.

• Practical: A white paper by the Next Generation Mobile Networks
(NGMN) alliance predicts that in 5G, battery life will be increased to
“at least 3 days for a smartphone, and up to 15 years for a low-cost MTC
[machine-type-communication, i.e. M2M] device.” [5]. Extended battery
life will offer greater mobility and greater ease of use for mobile users,
and simplified maintenance of M2M networks. Along with advances in
battery technology, improving the energy efficiency of device hardware
related to signal processing is key to achieving a longer battery life for
battery-powered devices.

In short, energy efficiency needs to be improved in all segments of a wireless
communication system. Improving the energy efficiency of RAN is important
in the context of environment or cost. Currently, energy consumption of user
equipment, normalized by the number of mobile subscribers, is much smaller
than the energy consumption of RAN [4], [7]. Therefore, improving the energy
efficiency of devices is of secondary importance in the context of environment
or expenditure. However, when it comes to quality of user experience or conve-
nience of maintaining a network of connected devices, energy efficiency is the
prime design requirement. Energy efficiency will be the central design principle
of the next-generation (5G) mobile systems, where the aforementioned 1000x
increase in data traffic should be accompanied by reducing the overall power
consumption of wireless systems to half of what it is today [5] or at least by
maintaining it at the same level [6]. This corresponds to a staggering 1000x to
2000x improvement of overall energy efficiency!

Achieving this ambitious goal is envisioned to be the cumulative result of
applying a plethora of system design techniques, which can be grouped as [9]:

• Resource allocation: techniques of allocating resources in a wireless
system with the goal of maximizing energy efficiency, in contrast to max-
imizing throughput, which is the traditional approach;

• Energy harvesting/transfer: exploiting renewable energy sources and
the electromagnetic energy of radio signals to provide energy for operation
of wireless systems;

• Network planning: in general terms, these techniques are concerned
with the spatial distribution and number of infrastructure nodes that
support the operation of a wireless network. In the context of next-
generation networks, we can distinguish two subgroups of energy-efficient
techniques [6], [9]:
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– Densification of infrastructure nodes: a (large) number of nodes with
a smaller coverage is deployed to assist a base station (BS) with a
wider coverage [6]. These “assisting nodes” can be other BSs or
relays.

– Densification of antennas at BS - massive multiple input, multiple
output (MIMO): the number of antennas at the BS is (typically) set
to the order of a hundred, which is one or two orders of magnitude
larger than in traditional systems. This enables diverse possibilities
of improving the energy and cost efficiency of the system.

• Hardware: the design of analog and digital hardware used to imple-
ment devices and network nodes is tailored specifically to improve energy
efficiency.

1.2 Hardware-Consciousness

The topics analyzed and presented in this thesis are concentrated, for the most
part, on the hardware-related aspects of energy efficiency (and related metrics
such as cost) in the context of wireless systems design. Some of the inves-
tigated topics also fall in the category of network design, but with a strong
underlying relation to hardware constraints. Hardware constraints lie in the
heart of the entire work, and thus the qualifier hardware-conscious is used in
the descriptions of all the topics considered. The online version of the Oxford
English Dictionary [10] offers several definitions of “conscious”, out of which
two selected ones are:

1. Aware of and responding to one’s surroundings.

2. Having knowledge or awareness.

In light of these two definitions, the topics covered in this thesis fall into one
of the following categories:

• Design of wireless communication systems that are hardware-conscious:
such systems consist of blocks whose hardware subblocks are tunable.
This tuning allows trading performance with power consumption. More
specifically, the value of the tuning parameter is chosen such that the
power consumption of the block is minimized while the block deliv-
ers some predetermined level of performance, under fluctuating environ-
ment/system parameters. This is in contrast with designing the system
such that the value of the parameter in question is determined according
to some worst-case scenario of environment/system parameters. If the
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tuning is performed according to the random fluctuations of the environ-
ment, it is done in real time. It can also be set according to a specific
constellation of system parameters and then it is usually fixed. In any
case, reduced power consumption of the block due to tuning improves
the overall energy efficiency of the system. The block is “conscious of
its hardware”, hence the hardware-conscious qualification. One example
of a real-time tunable block is a receiver analog front end (AFE) with
tunable linearity that adapts to the fluctuating level of an out-of-band
interferer.

• Hardware-conscious design of wireless communication systems: the de-
sign of the system takes into account (“is conscious of”) a hardware-
related constraint that is fundamental and cannot be changed but ne-
cessitates a workaround. This usually entails completely redesigning the
system. One example of such a workaround is changing the massive
MIMO BS topology from star to daisy chain in order to do away with
connections from the periphery to the central processing unit. Moving
from star to daisy chain topology asks for a complete redesign of signal
processing algorithms, with a controlled (ideally minor) degradation of
performance.

1.3 Thesis Structure

The physical layer of a wireless communication system can be broken down into
constituent parts corresponding to different layers of abstraction. A bottom-up
list of these layers relevant to the work at hand is

• Hardware block (e.g. low noise amplifier - LNA, mixer, channel de-
coder). One or more hardware blocks constitute a(n)

• Analog front end/analog back end (AFE/ABE), mixed-signal sec-
tion, digital baseband section (BB). Put together, these form a

• Transmitter/receiver (transceiver). A transceiver together with an
antenna constitutes a

• Single-antenna unit (AU). Several AUs, together with optional addi-
tional hardware can be organized to form a

• Base station/access point (BS/AP), or a group of cooperating
single-antenna user equipments (UEs) or relays.
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The first part of the thesis contains a detailed overview of selected parts
of this stratification, where special focus is put on the impact of hardware
on both power consumption/energy efficiency/cost efficiency and performance.
This overview is divided into two sections corresponding to different chapters
of the thesis:

• Chapter 2 analyzes the tradeoffs between power consumption/complexity
and performance on the level of a receiver, with separate sections on the
AFE, mixed-signal section (analog-to-digital conversion - ADC) and digi-
tal baseband where the low density parity check (LDPC) channel decoder
is in focus.

• Chapter 3 gives a brief overview of massive MIMO (MaMI) systems,
with focus on the impact of hardware impairments and limitations on
performance and energy/cost efficiency. Additionally, multipair two-way
relay systems with a large number of relays are described, and some
inherent hardware/cost limitations connected with the implementation
of such systems are identified.

Finally, Chapter 4 gives a detailed summary of the main findings and scientific
contributions in each of the research papers.

The second part of the thesis contains the five original research papers.
Topics covered by each of the papers can be mapped to different layers of the
aforementioned stratification, which is illustrated in Fig. 1.3. Additionally,
Fig. 1.4 shows how the papers are classified based on whether they thematize
hardware-conscious systems or hardware-conscious design. More specifically,

• Paper I looks into how power consumption of an AFE scales with lin-
earity and thermal noise, which can be directly mapped to performance,
expressed by the signal-to-noise-and-distortion ratio (SNDR);

• Paper II examines how energy efficiency of a massive MIMO system
depends on the bit resolution of the ADCs at the BS;

• Paper III presents an LDPC decoder with a flexible tuning parame-
ter that can be used to trade computational complexity with error rate
performance;

• Paper IV proposes that the BS array in a massive MIMO system is
arranged in form of daisy chain, thus obviating the central processing
unit (CU) and corresponding links from AUs to CU. These links are
known to form a bottleneck in terms of throughput (which could also be
related to energy consumption or other cost metrics). Signal processing
algorithms tailored to the daisy chain topology are also presented;
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• Paper V examines a two-way relay system with a large number of relays
and how the level of cooperation between relays impacts the performance.
The level of cooperation can be directly connected with various cost met-
rics; the paper itself analyzes bandwidth utilization.

Figure 1.3: Illustration of a generalized wireless communication sys-
tem and its constituent parts with mapping of research papers to each
part/layer of abstraction. ABE = analog back end, AFE = analog front
end, DAC = digital-to-analog converter, ADC=analog-to-digital con-
verter, BB = digital baseband

Figure 1.4: Classification of research papers according to the type of
hardware constraints analyzed



Chapter 2

Power-Performance
Tradeoffs in Receivers

As it was pointed out in Chapter 1, optimizing hardware power consumption
is one of the means of improving energy efficiency in wireless systems. A
large portion of communication-theoretical works that implicitly or explicitly
concern hardware in the context of wireless systems focuses on the transmitter
side. This can include optimizing transmit power/energy, e.g. finding energy-
efficient modulation and coding schemes, or improving the energy efficiency of
the transmit power amplifier, e.g. by use of schemes for digital predistortion
and peak-to-average-power ratio (PAPR) reduction.

When it comes to analyzing the energy efficiency of the entire communica-
tion system, with all transmitters (TX) and receivers (RX) taken into account,
focusing solely on transmit power issues makes sense when distances between
TX and RX are large. In this scenario, TX power is much larger than the power
consumed by the circuits performing analog and digital signal processing in the
receiver [11]. On the other hand, when distances in the system are small, RX
power consumption also needs to be taken into account, as it can be on the or-
der of, or even larger than the TX power. Finally, if the analysis focuses only on
the energy efficiency of a receiver (e.g. in the case of battery-constrained RXs),
optimizing RX power consumption becomes an issue of primary importance.

A standard approach in works analyzing the energy-efficiency on the level of
the entire communication system is to assume that the RX circuitry consumes
a constant amount of power regardless of system and environment parameters,
as in e.g. [11]. Here the term “system parameters” subsumes system design
variables that are under the control of a designer, such as

11
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• Number of users in a multiuser system;

• Number of antennas in the base station/access point;

• Coverage area;

• Transmit power;

• Bandwidth.

On the other hand, “environment parameters” refers to variables outside of the
control of the designer that are usually stochastic in nature, such as

• Received signal power, which experiences fluctuations due to fading;

• In- and out-of-band interference.

The assumption of constant RX power consumption is well grounded in com-
mon receiver design practice. Namely, a very common approach in building
receivers is to have one design that will deliver the prescribed performance in
a wide range of system and environment parameters. Such a design is made
assuming the most adverse combination of environment parameters, usually
specified by the wireless standard.

However, this conservative approach in receiver design is markedly subop-
timal. Namely, for the vast majority of time the environment conditions are
better than the worst-case and a fixed, conservatively designed receiver is de-
livering a performance which exceeds the prescribed minimum level. Since the
performance can always be traded for power consumption, this implies that a
conservatively designed receiver will waste energy [12–14]. On the other hand,
if one or more of the building blocks in the receiver are made tunable, it would
be possible to change their properties as the environment changes. The tuning
would be performed such that the performance constraint is always met, but
the power consumption is not higher than what is necessary. Such a tunable,
adaptive receiver would have a smaller energy consumption compared to the
conservative worst-case design [12,13].

The energy-efficient receiver design problem can now be generalized and for-
malized. Namely, under the condition that the receiver meets the performance
requirement, its power consumption should be minimal at any time instant of
its operation, taking all system and environment parameters into account. If
the values of system and/or environment parameters change over time, the re-
ceiver necessarily needs to be flexible, i.e. its constituent blocks need to have a
dynamic structure which will adapt to the changes. In line with the nomencla-
ture introduced in Chapter 1, such a receiver can also be referred to as being
hardware-conscious.
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Figure 2.1: A general receiver structure

In order to give the described concept a mathematical formulation, we as-
sume that the receiver is structured as a chain of N blocks, shown in Fig. 2.1.
A set of design parameters, whose values are collected in a variable-length vec-
tor τi of dimensions Di × 1 determines both the power consumption Pi and
the performance/quality measure Qi of the ith block in the chain. The power
consumption of the entire receiver chain is simply a sum of individual power
consumptions, Ptot =

∑N
i=1 Pi(τi). On the other hand, the overall performance

Q, measured at the output of the chain, is an involved, usually highly nonlin-
ear function of individual quality measures Qi and system variables. All design

parameters can be represented by vector τ =
[
τT1 τT2 . . . τTN

]T
of dimensions

D × 1, D =
∑N
i=1Di. Aditionally, system parameters are represented by a

S × 1 vector σ and all environment parameters are collected in a E × 1 vector
ν. The energy efficient receiver design can now be formulated as an optimiza-
tion problem

minimize
τ

Ptot =

N∑
i=1

Pi(τi)

subject to Q(τ ,σ,ν) ≥ Qmin,

(2.1)

where Qmin is some predetermined minimal performance/quality level.

Figure 2.2: A high-level structure of a wireless receiver

In the follow-up of Chapter 2, the specifics of problem (2.1) are analyzed
in detail. The high-level structure of the receiver represented in Fig. 2.2 is
assumed, where receiver blocks are organized into functional units depending
on what type of signals are being processed (only analog, analog and digital, or
only digital). For each of the three functional units, specific design parameters
τ are identified and their connection with performance and power consump-
tion/complexity is examined in detail. This will set the ground for the analyses
described in Papers I - III, where each paper thematizes one of the functional
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units using the approach summarized by (2.1).

2.1 Analog front end

In this work, analog front end (AFE) comprises all RF and baseband receiver
blocks that perform analog signal processing tasks: amplification, frequency
synthesis, downconversion and filtering. One example of an AFE is the direct
conversion receiver, an analog signal processor that lends itself to an integrated,
on-chip implementation and has thus become a virtual standard for the analog
part of contemporary receiver implementations [16, Ch. 4]. However, the de-
scriptions given here are general and valid for any type of analog receiver. In
the analysis that follows, we focus on blocks performing amplification, down-
conversion and filtering.

In general, each block in the AFE chain can be described as having a nonlin-
ear transfer function and adding thermal noise. More specifically, if memoryless
nonlinearity is assumed for simplicity, the output signal for the block i with
input signal xin,i can be written as

xout,i(t) = α1,ixin,i(t) + α2,ix
2
in,i(t) + α3,ix

3
in,i(t) + · · ·+ wi(t), (2.2)

where wi(t) is the thermal noise signal.
Thermal noise and the effects of nonlinearities will corrupt the wanted

(information-bearing) signal and thus have a decisive impact on the perfor-
mance of the ith block, as well as the entire chain. The quantification of their
effects will now be analyzed in detail.

2.1.1 Thermal noise

There exist two important measures of the impact of thermal noise in the ith
block. One is the noise power spectral density (PSD) V̄ 2

n,i [V2/Hz]. The other
one is the noise factor, which is defined as

Fi =
SNRout,i

SNRin,i
, (2.3)

where SNRout,i and SNRin,i are the signal-to-noise ratios at the output and
input of the ith block, respectively.

2.1.2 Nonlinearities

In contrast to noise, which simply adds to the wanted signal, the effects of non-
linearities are more intricate in their genesis as well as their analysis. Nonlin-
earity effects that have the biggest impact on receiver performance are shortly



Chapter 2. Power-Performance Tradeoffs in Receivers 15

described here and illustrated in Fig. 2.3. A detailed description can be found
in [16, Ch. 2.2].

Figure 2.3: A summary of most important nonlinearity effects

• Gain compression: decrease of the effective gain of the wanted signal.
The underlying cause is third-order nonlinearity. It occurs when either
the wanted signal is strong, or a weak wanted signal is accompanied by
one strong out-of-band interferer. The effect in latter case is also referred
to as desensitization or blocking;

• Cross modulation: mixing of wanted signal and one out-of-band in-
terferer due to third-order nonlinearity. The resulting signal falls in the
band of the wanted signal, causing interference;

• Intermodulation: mixing of two out-of-band interferers due to third-
order nonlinearity. If fc, wanted ≈ 2fc, interferer 1−fc, interferer 2, the result-
ing signal falls in the wanted signal band.

The described effects occur when wanted signal is in the passband as well as
in baseband.

It is immediately observed that the third-order nonlinearity is the main
“culprit” in all of the most important nonlinearity effects. It is quantified by
the input-referred third-order intercept point VIIP3, which is defined as the
voltage level of the two interference signals in the “intermodulation” scenario
for which the levels of wanted signal and intermodulation distortion are the
same.
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2.1.3 The case of out-of-band interferers

As seen in the preceding section, the interference signals that do not share the
bandwidth with the wanted signal can still inflict damage and cause in-band
interference in conjunction with nonlinearities. Apart from nonlinearity, there
are numerous other scenarios in which out-of-band (OOB) interference can be
detrimental to receiver performance, and some will be described in the later
sections.

The effects of OOB interference are usually overlooked or ignored by
communication-theoretic works. However, its impact is well-known to hard-
ware designers and worst-case interference scenarios are carefully outlined in
communication standards. For example, in the Long-Term Evolution (LTE)
standard, depending on the scenario, systems need to be designed to deliver
minimum performance in presence of OOB interference which is anywhere from
20 dB to 60 dB stronger than the wanted signal [17].

OOB interference originates in emissions of nearby wireless devices and
other units that emit electromagnetic radiation. It can also occur on the same
device when TX and RX are working in a frequency duplex setup and the TX
signal leaks to the RX due to insufficient TX-RX isolation. The issues con-
nected to OOB interference are located exclusively in the analog part of the
receiver, for two main reasons. First, some of the analog circuits (as amplifiers
or mixers) are broadband, so both wanted signal and OOB signals pass through.
Secondly, even if analog circuits are specifically made narrowband (e.g. base-
band or passband filters), they still have limited capabilities of combating very
strong interference.

2.1.4 Chain rules for noise and nonlinearity

A common task in receiver design is calculating the overall noise and nonlinear-
ity metrics for a chain of N analog blocks when the individual input-referred
third-order intercept (IIP3) voltage VIIP3, noise PSD V̄ 2

n or alternatively, noise
factor F are known for each block.

The expressions given here are based on the ones found in [18]. Instead of
more recognizable expressions based on power gains of individual blocks, these
are based on voltage gains

Av,i =
Vout

Vin
. (2.4)

The use of voltage gains is more applicable in integrated RF designs, where the
input impedance of one block might not be matched to the output impedance
of the preceding block, thus making power and voltage gains different when
measured in dB and causing possible ambiguity [16, Ch. 2]. To be more
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specific, the chain rules from [18] are based on the loaded voltage gains

Avn,i = Av,i

(
Rload,i

Rload,i +Rout,i

)
, (2.5)

where Rload,i and Rout,i are the load and output impedances of the ith block,
respectively.

The total noise figure Ftot of the chain can be found as

Ftot = 1 +
1

kT50

(
V̄ 2

n,1 +
V̄ 2

n,2

A2
vn,1

+
V̄ 2

n,3

A2
vn,1A

2
vn,2

+ . . .

)
, (2.6)

and the chain rule for IIP3 is given as

V 2
IIP3, tot =

(
1

V 2
IIP3,1

+
A2

vn,1

V 2
IIP3,2

+
A2

vn,1A
2
vn,2

V 2
IIP3,3

+ . . .

)−1

, (2.7)

where k is the Boltzmann constant and T temperature in Kelvins and both
input and output impedances of the chain are set to 50 Ohms. One can gather
from (2.6) and (2.7) that the noise contribution of the front stages of the chain
determines the overall noise figure, and that the total IIP3 is mostly determined
by the IIP3 of the blocks at the end of the chain.

2.1.5 Power - performance tradeoffs in the analog front
end

Based on the foregoing discussion, it is evident that noise and third order
nonlinearity for the most part determine the performance of the analog part
of the receiver. How do they relate to the power consumption? Looking for
the answer to this questions starts by defining the dynamic range of an analog
block:

DR ,
V 2

IIP3

V̄ 2
n

. (2.8)

Starting from the single MOSFET transistor and moving on to more com-
plicated structures such as a common-source LNA, a Gilbert-cell mixer and
OTA-C low-pass filter, it can be shown [15], [18] that for all the aforemen-
tioned basic analog blocks, DR ∝ I, where I is the bias current of the circuit.
Since the power consumption is simply P = VDDI with VDD being the sup-
ply voltage, this yields a very simple but powerful relation between the power
consumption and performance of an analog block:

P = κDR, (2.9)
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with κ being a circuit-dependent proportionality parameter.
What about the power-performance tradeoff on the level of the entire analog

chain? Based on (2.9), it can be shown [18] that if the total noise factor Ftot and
total IIP3 voltage VIIP3, tot are given, values of V̄ 2

n,i and VIIP3,i that minimize
the total power consumption of the chain Ptot can be found for each block i.
Most importantly, the connection between this minimal power consumption
and Ftot and VIIP3, tot is given as

P ∗AFE, tot =
V 2

IIP3, tot

(Ftot − 1)kT50

(
N∑
i=1

3
√
κi

)3

. (2.10)

In the context of the general receiver design problem (2.1), VIIP3 and F ,
alternatively V̄ 2

n can be identified as the “tuning knobs” τ , either on the level
of a single block or the entire analog section. Expressions (2.9) and (2.10) show
how these parameters can be related to the power consumption of one block or
the entire AFE. The dynamic range DR can serve as an elementary performance
metric Q. Mapping to other metrics, such as the signal-to-noise-and-distortion
ratio SNDR can be performed in a straightforward fashion.

2.1.6 Tunable analog designs

Design of analog front ends that are able to dynamically change their structure
with the goal of saving power has been a topic of interest in both academia
and industry. A short overview of designs is presented here. In [19], total noise
figure of the receiver is tuned by enabling gain tunability in the LNA. Paper [20]
describes an LNA design where F and IIP3 are made orthogonally tunable, for
maximal flexibility between scenarios featuring varying wanted signal power
and OOB interference levels. The design described in [21] features mixers with
adjustible IIP3 and F . Works [22–24] focus on flexible channel select filters that
are able to tune their bandwidth to accommodate a varying symbol rate, or to
adapt their dynamic range to the fluctuations in the OOB interference level or
wanted signal power. Paper [25] features an entire analog front end with noise,
linearity and selectivity adaptable to a varying OOB interference level. Finally,
industrial patent [26] describes a receiver which switches between a high- and
low-linearity implementations of a front end depending on the blocker level.

2.2 Analog-digital conversion

The section of the receiver performing the translation of analog signals into
digital ones consists of a single block: analog-to-digital converter (ADC). The
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process of converting an analog signal into a digital one can be split into two
operations: sampling with frequency fs (discretization in time) and quantiza-
tion (discretization in amplitude), as illustrated in Fig. 2.4, where Ts = 1

fs

and Q(·) is used to denote the quantization operator. Based on the sampling
frequency fs, ADCs can be classified in two types. Nyquist-rate ADCs, such as
flash, pipeline and succesive approximation register (SAR) ADCs have fs equal
to the Nyquist sampling rate. On the other hand, oversampling ADCs such
as the sigma-delta (Σ∆) ADC have fs which is much larger than the Nyquist
rate.

Figure 2.4: A conceptual diagram of analog-to-digital conversion.

The fundamental design parameters of an ADC are

• Sampling frequency fs,

• Power consumption PADC, and

• Nominal bit resolution b.

Different ADC types, some of which have been listed above, offer different
tradeoffs between these parameters, and some architectures are preferred over
the others depending on the application.

The relations between the fundamental parameters of an ADC, as well as
between the fundamental parameters and performance are commonly described
using simplified heuristic expressions. These, however, can be shown to match
well with theoretic analysis. All of these aspects will be covered in the following.

2.2.1 ADC performance. Modeling the effects of quanti-
zation

The corruption of the input signal by the ADC hardware block can be tracked
down to different causes. Analog circuitry in the ADC will add thermal noise
to the signal and nonlinearities in the circuitry can cause nonlinear distortion.
Since the ADC is usually preceded by a chain of components with high com-
posite gain, the effects of thermal noise can in general be neglected (cf. (2.6)).
On the other hand, the effects of nonlinear distortion in an ADC can have a
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significant impact on the performance (cf. (2.7)), especially in presence of a
strong, poorly filtered OOB interferer. In any case, modeling the impact of
thermal noise and nonlinearities in the ADC can be considered covered by the
analysis in the preceding section.

Here, the focus is put on the inherent corruption of the input signal in-
curred by the discretization in amplitude, i.e. quantization. The quantization
operation Q(·) is heavily nonlinear in nature. However, for the purpose of em-
bedding it in an analysis of a wider system setup it is beneficial to represent it
by a classical “linear amplification plus noise” model and indeed, good models
can be found that serve this purpose.

The PQN model

The first commonly used model is in the simple form of

zn , Q(yn) = yn + qn, (2.11)

where qn is in general correlated with yn. For example, if the quantizer Q(·) is
designed to minimize the mean square error (MSE) E

{
|yn − zn|2

}
, qn can be

shown to always be correlated with yn [27, Ch. 6]. Correlatedness of qn with
yn might sound as bad news, taking into account that the calculation of most
system performance metrics assumes additive noise that is uncorrelated with
the signal. However, under some realistic assumptions that are readily encoun-
tered in practice, the following approximations regarding the model (2.11) can
be adopted [27]:

1. yn and qn are uncorrelated, i.e. E {ynqn} = 0 for E {yn} = E {yn} = 0;

2. Additive noise process qn is uniformly distributed;

3. qn is white.

Model (2.11) in conjunction with the above set of approximations is com-
monly referred to as the pseudoquantization noise (PQN) model. In order
to analyze the conditions under which the PQN model is applicable it is as-
sumed that the quantizer Q(·) is uniform and operating on a zero-mean Gaus-
sian input signal yn with variance σ2

y. A predefined symmetric input signal

range of width 2Ymax is divided into N = 2b quantization bins of width

∆ =
2Ymax

2b
. (2.12)

For the described setup, it is shown in [28] that
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1.

E {ynqn} = −2σ2
y

∞∑
l=1

(−1)l exp

(
−

2π2l2σ2
y

∆2

)
; (2.13)

2. qn is approximately uniform for
σy
∆

> 0.5;

3. qn is uncorrelated, E {qnqn+l} = 0 for an uncorrelated input process yn.

Moreover, the variance of quantization noise qn is shown to be equal to

σ2
q , E

{
q2
n

}
=
∆2

12

[
1 +

12

π2

∞∑
l=1

(−1)l

l2
exp

(
−

2π2l2σ2
y

∆2

)]
(2.14)

≈ ∆2

12
for

σy
∆

> 0.5.

It is evident that the PQN model applies well for high bit resolutions b.
Additionally, even at lower values of b the PQN model can be shown to be
applicable with carefully chosen values of the ADC input backoff µ = Y 2

max/σ
2
y.

For convenience, the variance of the quantization noise from (2.14) can be
expressed as a function of bit resolution b:

E
{
q2
n

}
≈ 1

3
µσ2

y2−2b. (2.15)

For the purpose of further discussion it is useful to define the signal-to-
quantization noise ratio SQR at the ADC output:

SQR ,
σ2
y

σ2
q

, (2.16)

and from (2.15) this metric is found to be

SQR ≈ 3

µ
22b. (2.17)

The AQN model

In another model that is commonly used to describe the effects of quantization,
the output of the quantizer is split into a wanted signal part and additive noise
part uncorrelated with the wanted signal, i.e.

zn = (1− β)yn + εn, (2.18)
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where E {ynεn} = 0 for E {yn} = E {εn} = 0. Now, if the quantizer Q(yn) is
designed such that

zn = E {yn|zn} , (2.19)

factor β is calculated as [29]

β =
E
{

(yn − zn)2
}

E {y2
n}

, (2.20)

and moreover, the variance of the additive noise term ε is

σ2
ε = β(1− β)σ2

y. (2.21)

Condition (2.19), also known as the “centroid condition”, is satisfied for Q(·)
designed to minimize the MSE [27] and moreover, it will be also satisfied for
an uniform quantizer at high bit resolutions. Model (2.18) is referred to as
the additive quantization noise (AQN) model. It should be noted that
if the AQN model is derived under the assumption (2.19), no assumptions are
needed on the distribution of the input yn. Another common way of deriving
model (2.18) is through the use of Bussgang theorem, as in e.g. [30], but in
that case yn must be assumed to be Gaussian, which however commonly holds
in practice. From (2.20) and (2.11), it is seen that PQN and AQN models are
connected by

β =
σ2
q

σ2
y

. (2.22)

Values of β need to be found numerically, as is done in the seminal paper by
Max [31] for σ2

y = 1. At high bit resolutions b, closed-form approximations and
bounds for β are available under some assumptions commonly encountered in
practice. For example, if input yn is Gaussian and the quantizer is designed to
minimize the MSE, β can be well approximated as [27]

β ≈ π
√

3

2
2−2b, (2.23)

and from (2.18), (2.21) and (2.23), the SQR in the high-resolution scenario can
be found as (cf. (2.17))

SQR ,
(1− β)2σ2

y

σ2
ε

=
1− β
β
≈ 1

β
=

2

π
√

3
22b. (2.24)

On the other hand, for a uniform quantizer Q(·) operating on a Gaussian input
yn, it is shown in [32] that

O (β) ≥ O
(
b2−2b

)
. (2.25)
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Overall, it can be concluded that at high bit resolutions b, with uniform
and MMSE quantization and a Gaussian input signal, model (2.11) applies well
and quantization noise and input signal can safely be assumed uncorrelated.
Factor µ from (2.15) can be optimized numerically, and is shown in Paper II
to be of O (b). Therefore, it can further be claimed that at high bit resolutions,
quantization noise variance σ2

q = γσ2
y, where O (γ) ≥ O

(
b2−2b

)
for both uniform

and MMSE quantization and Gaussian input. At low resolutions, the deviations
from this general model increase but it can still be considered robust enough
to enable a reliable analysis.

2.2.2 ADC power consumption

The power PADC consumed in the process of analog-to-digital conversion is, for
the most part, determined by the circuitry performing the sampling operation,
cf. Fig. 2.4. For the purpose of describing important concepts, this circuitry
can in the ideal case be represented by the sample-and-hold (S&H) circuit [33],
shown in Fig. 2.5. The performance of this structure is limited by the thermal
noise generated in the sampling capacitor Cs. For a class-B amplifier and a
sinusoidal rail-to-rail input to the S&H circuit, the relation between the power
consumed in the amplifier, Pamp and the SNR at the output of the S&H circuit
is found to be ( [34–36])

Pamp = 8kTfsSNR. (2.26)

The power consumption of the ideal S&H circuit can be considered to be the
fundamental lower bound on PADC, and the power consumption of contempo-
rary ADC designs is observed to be one or two orders of magnitude larger than
(2.26) [34,37].

Figure 2.5: Ideal sample-and-hold circuit.

The performance of the quantizer is determined by the SQR, whereas PADC

(or bounds thereof) are described in terms of SNR. This is not strange, since
quantization noise is intrinsic to digital signal processing and thermal noise
to its analog counterpart. However, it is of interest to establish the relation
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between performance of the ADC and its power consumption. More specifically,
connecting PADC with the nominal bit resolution b is of particular interest.

As a preliminary, it is noted that the power dissipated in the sampling
capacitor is ∝ Cs and that the power of the thermal noise generated by the same
capacitor is ∝ 1/Cs [35]. Now, in order to gain an insight in connecting PADC

with b, a high bit resolution can be assumed so SQR is also high and the ADC
performance can be considered limited by thermal noise. In this regime, Cs is
made large so as to limit the impact of the thermal noise. However, increasing
Cs also has the effect of increasing power consumption. For simplicity, it can
be assumed that SQR = SNR at the ADC output. Then, assuming that the
sampler is ideal and dominates the power consumption and that additionally
Q(·) operates on an ideal sinusoidal input (to match the assumptions behind
(2.26)), Sundström et. al. show in [38] that the power consumption of this
“ideal” ADC is

PADC, ideal = 24kT22bfs, (2.27)

Hence, it can be established that the power consumption of an ideal ADC scales
exponentially with bit resolution (more specifically, as 22b) and linearly with
sampling rate fs at high bit resolutions, where ADC performance is limited by
thermal noise. The scaling laws between the fundamental ADC design param-
eters observed in (2.27) are shown to be remarkably accurate, especially for
ADCs with a high nominal bit resolution.

At lower bit resolutions, quantization noise power increases, so thermal noise
can also be relaxed in conjunction with this increase. This implies shrinking
of the sampling capacitor and has a welcome consequence of decreasing PADC.
However, value of Cs cannot be decreased below some minimum value Cmin,
which is determined by fundamental size limitations of the CMOS process if the
ADC has an integrated circuit implementation. It can therefore be expected
that the scaling of PADC with b has a rate lower than 22b at lower bit resolutions,
and ADCs designed to operate in the low bit resolution region are therefore
sometimes referred to as being process-limited or technology-limited.

Using (2.27) as the starting point, Sundström et. al. in [38] derive lower
bounds on PADC by taking into account all the circuitry needed for imple-
menting actual ADCs and also considering the impact of process limitations.
For such a detailed analysis to be meaningful, assumptions on the actual ADC
structure need to be made, and in [38] the analysis focuses on flash and pipeline
ADCs. The theoretical lower bounds on flash and pipeline ADC power con-
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sumption from [38] are given as

P th
ADC, flash =

(
c1,f + c2,fb+ c3,f2

b + c4,f2
2b + c5,fb2

2b + c6,f2
3b + c7,fb2

3b
)
fs,

(2.28)

P th
ADC, pipeline =

(
c1,pb+ c2,pb

2 + c3,p22b + c4,pb2
2b
)
fs, (2.29)

where constants ci,f , ci,p depend on various circuit parameters related to a
particular CMOS technology generation.

Figure 2.6: Theoretical lower bounds on the power consumption of the
pipeline (2.29) and flash ADCs (2.28), normalized by the sampling rate
fs.

A deeper look into the rather involved expressions for the bounds (2.29)
and (2.28) reveals that, depending on b, different terms can be considered to
dominate, which simplifies the expressions and enables drawing some interest-
ing insights. The bounds are plotted in Fig. 2.6 together with the respective
dominant terms, for the values of circuit parameters given in detail in [38]
that correspond to the 90 nm CMOS process. The distinction between the
process- and thermal noise limited regions of operation is clearly visible, with
a distinct “knee” at the intersection of the two dominant terms. For pipeline
ADCs, the lower bound on power scales roughly quadratically in the process-
limited region and as b22b in the thermal noise limited region. On the other
hand, PADC of flash ADCs scales approximately as 2b in the process-limited
regime. A comparison of the calculated bounds with actual designs up to the
year of publication (2009) was also made in [38] and it showed that the energy
consumption of practical designs was 10 - 100 times larger than the bounds.
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An alternative, semi-heuristic way of modeling the dependence of PADC on
the bit resolution has emerged and gained popularity in the analysis of trends
in ADC design. The attractiveness of this approach lies in its simplistic formu-
lation and in the fact that it is agnostic to the choice of the ADC architecture.
Namely, it consists of forming a figure-of-merit (FoM) that features the funda-
mental ADC parameters: PADC, fs and, instead of nominal bit resolution b, the
signal-to-noise-and-distortion ratio SNDR at the ADC output, or alternatively,
the effective number of bits

ENOB ,
SNDRdB − 1.76

6.02
. (2.30)

The SNDR metric subsumes all measurable impairments occurring during the
process of analog to digital conversion, i.e. quantization noise, thermal noise
and nonlinear distortion. There are two FoM commonly used in literature. One
is the so-called Walden FoM [39]:

FoM W =
PADC

fs2ENOB
, (2.31)

and the other is the Schreier FoM [37,40]:

FoM S(dB) = SNDRdB + 10 log10

(
fs/2

PADC

)
. (2.32)

The basic idea with FoM is to have a simple scalar metric that enables a
fair comparison of different ADC designs, regardless of the intricacies of their
particular designs. If assumed that FoM stays constant as a certain parameter
changes, it can also serve as a “zeroth order” approximation of scaling trends
between the fundamental parameters. Using this simplistic approach and with
Schreier FoM converted to linear units, two scaling laws emerge:

PADC = FoM W2ENOBfs, (2.33)

PADC =
3

4FoM S
22ENOBfs. (2.34)

Energy consumption data for academic ADC designs, collected in [41] is
shown in Fig. 2.7 together with scaling laws (2.33) and (2.34), for values of
FoM W and FoM S chosen as the best fit for the state-of-the-art designs in 2018.
In spite of being only a very crude approximation, scaling law (2.33) turns out
to be a good fit for process-limited designs in the low- and mid-resolution range.
Likewise, (2.34) fits well with high-resolution designs limited by thermal noise.



Chapter 2. Power-Performance Tradeoffs in Receivers 27

Figure 2.7: Measured energy consumption of ADC designs from ISSCC
and VLSI Symposia, 1997. - 2018., together with scaling laws (2.33)
(“Walden FoM”) and (2.34) (“Schreier FoM”).

2.2.3 Power - performance tradeoff in the ADC

Based on the foregoing discussion, it is evident that a unique exact rule on
interdependence between performance and power consumption of the ADC
cannot be derived. There is no “silver bullet” here, and in fact the same can
be claimed for the analysis of this tradeoff anywhere in the receiver, due to
the inherent intricacy of hardware designs. Different rules exist depending on
the type of the ADC architecture, operating regime, metrics and parameters
involved, and even then they might be derived heuristically. However, some
approximate rules of thumb can be stated, and they work rather well. In light of
(2.1), nominal bit resolution b can be chosen as the tuning/tradeoff parameter
τ .

For simplicity, an affine mapping

ENOB = b− ζ (2.35)

can be assumed, where ζ ≥ 0 is a correction factor accounting for the influ-
ence of impairments other than quantization noise. For example, ζ = 0.5 when
SNR = SQR and neglecting other sources of impairment [38]. With this as-
sumption in place and taking into account the FoM-based modeling of power
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consumption, it can be claimed that PADC scales as 2b for low and intermedi-
ate bit resolutions and as 22b for high bit resolutions. The theoretical analysis
represented by (2.29) and (2.28), though not being comprehensive and encom-
passing all possible ADC designs, adheres approximately to this conclusion in
some of the selected cases. The analysis of performance presented in Sec. 2.2.1
likewise allows us to conclude that SQR, an idealized performance measure of
the ADC, scales approximately as 22b, with the approximation being tight at
high bit resolutions.

2.3 Digital baseband

From the discussion in the preceding sections, an important meta-observation
can be made, namely, that the modeling of the tradeoff between power/energy
consumption and performance becomes more difficult as one progresses from
the antenna to the digital baseband part. Due to the generally overwhelming
complexity of digital hardware designs, any closed-form analysis of performance
on block level would prove to be intractable, and the same holds for analyzing
the power or energy. Therefore, these analyses, which are nevertheless im-
portant and needed, have to be performed heuristically or be very general in
nature.

In digital processing blocks, computational complexity (here broadly de-
fined as the number of computations needed to perform a certain calculation)
is interchangeable with energy consumption and will be used as such in the re-
mainder of the text. Taking a broader definition of performance encompassing
bit error rate, throughput and latency, three possible groups of techniques that
allow for trading off energy with performance in digital blocks can be identified.
Each of these approaches corresponds to a particular layer of design abstraction
which are, bottom to top, [42,43]

• circuit,

• architecture and

• algorithm.

There are many interdependencies between the three groups of techniques and
a truly optimal design is attained by cooptimization across layers. Common
circuit techniques for trading off power/energy with performance are clock and
power gating, dynamic voltage scaling and body biasing. On the other hand,
architectural techniques specifically trade throughput and latency with energy,
and classical techniques are pipelining and parallelization. Finally, computa-
tional complexity can be directly exchanged for error rate performance using a
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plethora of algorithmic techniques, heavily dependent on the application and
function of the particular block. One standard and general method, applicable
in most scenarios is varying the wordlength in fixed-point implementations.

In this thesis, the focus is on application-specific algorithmic techniques for
trading off energy/complexity with error rate performance. In particular, a
low-density parity check (LDPC) channel decoder with tunable parameters in
the decoding algorithm is analyzed. The mechanism of this tuning is described
in more detail in the following.

2.3.1 LDPC decoding with tunable decoding parameters

Owing to their excellent forward error correction capabilities, LDPC codes,
introduced around 1960 by Gallager [44] have been adopted in a variety of
communication standards, most recently in the New Radio (NR) standard for
the cellular part of 5G [45,46]. For some LDPC code constructions, performance
is fractions of a dB away from Shannon’s capacity.

LDPC codes are able to approach the Shannon limit due to large block sizes
and a randomized structure, which can be considered to represent a practical
embodiment of Shannon’s random coding argument. An LDPC code of block-
length B and rate r = D/B is fully described by the P ×B binary parity check
matrix H, P = B−D which describes parity relations between check bits and
information bits in a codeword. For good codes, this matrix is extremely sparse,
which is what gives the code its randomized structure. The relations between
codeword bits and parity checks can be mapped from the parity check matrix
to a bipartite graph, also commonly referred to as the Tanner graph [47], where
codeword bits are represented by variable nodes and parity checks with check
nodes. Fig. 2.8 shows an illustration of a Tanner graph for a B = 6, P = 3
example block code with parity check matrix

H =

1 0 1 0 1 1
0 1 1 1 1 0
1 1 0 1 0 1

 .
Another key defining feature of LDPC codes which makes them practically

implementable is an efficient decoding algorithm. The algorithm consists of
passing probabilistic messages, or “beliefs” between variable nodes and check
nodes in the Tanner graph, in an iterative manner. For computational con-
venience, the probabilities can be substituted by log-likelihood ratios (LLRs),
and the decoding scheme then consists of following steps [48]:

1. Initialization. Calculate aposteriori LLRs Lv for each variable node v
from the output of the channel. Initialize messages from variable nodes
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Figure 2.8: Example bipartite graph.

v to check nodes c as Qvc = Lv.

2. Check-node update. For all check nodes c and all variable nodes v adja-
cent to c and contained in the set V (c), calculate the check-to-variable
messages

Rcv =

 ∏
v′∈V (c)\v

sign (Qv′c)

 2 tanh−1

 ∏
v′∈V (c)\v

tanh

(
|Qv′c|

2

) .
(2.36)

3. Variable node update. For all variable nodes v and all check nodes c
adjacent to v and contained in the set C (v), calculate the variable-to-
check messages

Qvc = Lv +
∑

c′∈C (v)\c

Rc′v. (2.37)

Update the LLR of bit v:

Qv = Lv +
∑
c∈C (v)

Rcv. (2.38)

Go back to step 2 until the predefined maximum number of iterations
Imax.

This incarnation of the LDPC belief propagation decoding algorithm is referred
to as the sum-product algorithm (SPA).

Step 2 of SPA involves computationally heavy nonlinear functions. In order
to reduce complexity, the following useful approximation can be utilized:

Rcv ≈

 ∏
v′∈V (c)\v

sign (Qv′c)

 min
v′∈V (c)\v

|Qv′c|, (2.39)
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and if (2.36) is substituted by (2.39), the resulting algorithm is referred to
as the min-sum algorithm (MSA). There is a minor performance degradation
between SPA and MSA that can be ameliorated by scaling or offsetting the
right hand side of (2.39) by a constant value, yielding the normalized/scaled
or offset MSA, respectively.

Figure 2.9: Evolution of LLR values Qv for sample LDPC codewords
of a R = 1/2, B = 648 LDPC code developed for the PHY layer of the
IEEE 802.11n standard. Left: Eb/N0 = 0 dB, right: Eb/N0 = 3 dB.

Behavior of LLR values Qv over iterations is illustrated in Fig. 2.9 for sam-
ple codewords transmitted over an AWGN channel with two different values of
Eb/N0 and decoded using the offset MSA. At Eb/N0 = 0 dB, the aposteriori
LLRs are of poor quality so soft parity checks (2.36) fail and Qv do not increase
in magnitude, i.e. there is no reinforcement of belief about whether a particular
bit is 0 or a 1, altogether surely indicating a decoding failure. On the other
hand, LLRs at Eb/N0 = 3 dB for the chosen sample are good enough to trigger
convergence of beliefs, manifested as |Qv| growing monotonically with itera-
tions. While this only means that the decoder converges to a valid codeword,
it does not necessarily mean that it is the correct codeword ; however, proba-
bility of converging to a wrong codeword is marginally low for well-structured
codes with large blocklengths B. From this basic example, one can intuitively
gather that error rate performance will improve with each iteration. This in-
deed proves to be the case, but it is also observed that after a certain point,
differential improvements in performance diminish rapidly with iterations [49],
indicating that the decoding can be stopped at a certain finite Imax once a cer-
tain performance requirement close to the optimal performance is met. Since
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the total number of computations in the SPA/MSA is linear with Imax as can
be gathered from the algorithm description, this early termination can be used
to save energy, and Imax is therefore one simple example of a tunable parameter
trading energy with performance in LDPC decoders.

A careful look into the structure of the algorithm combined with the in-
tuition about LLR magnitude evolution for “good” codewords reveals more
opportunities for energy-performance tradeoffs. Namely, if during the iterative
message passing some |Qv| is found to be larger than some predefined threshold
θ, that LLR/belief can be considered “good enough” and there is no need for
its further updating, which means that steps 2 and 3 of the algorithm can be
omitted for that v-node. If θ is chosen too low, there is a risk that a node is
“frozen” before its sign converges to its correct value. The error will propagate
in the graph and cause a decoding failure. Threshold θ is therefore another
decoding parameter that can be used to trade complexity with performance.
The described approach, referred to as “forced convergence” (FC) [50–52] uses
a bit-level stopping criterion, in contrast with early termination which is a
block-level stopping criterion.

Eb/N0 (dB)

0 2 4 6 8

B
E
R

10−4

10−3

10−2

10−1

100

θ = 5
θ = 6
θ = 8
θ = 10
no FC

Figure 2.10: BER performance of offset-MSA with forced convergence
for different values of θ and Eb = 1. LDPC code the same as for the
results in Fig. 2.9.

The performance of offset MSA with FC is shown in Fig. 2.10. It exhibits
a property similar to early termination of iterations, namely, the differential
improvements of performance quickly diminish with increasing θ.
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2.3.2 Power - performance tradeoff in the digital base-
band

Analyzing the tradeoff between the power and performance in digital circuits
is not possible in closed form apart from some special cases. A multitude of
different design techniques and the sheer complexity of digital designs prohibit
such an analyis, and insights into the trends for particular techniques and
applications need to be induced from a set of numerical simulations. Focusing
on the particular case of LDPC decoding and different stopping criteria, it is
seen that the complexity is linear in the number of iterations performed in
the algorithm, while the performance is observed to improve monotonically
and to saturate at a large number of iterations. Regarding the per-bit stopping
criteria, complexity is a random variable with a generally unknown distribution,
so dependence of both complexity and performance on the forced convergence
threshold θ needs to be determined through numerical simulations. Finding
θ that minimizes the average complexity under a performance constraint is
possible through use of probabilistic optimization methods such as stochastic
approximation, as discussed in more detail in Paper III.
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Chapter 3

System Densification Under
Hardware Constraints

As it was pointed out in Sec. 1.1, system densification, referring here to either
a drastic increase of the number of BS antennas or an increase in spatial den-
sity of infrastructure nodes, has a beneficial influence on the energy efficiency
and other cost efficiency metrics of a wireless network. However, great care
needs to be taken when quantifying the benefits of densification. Insights into
what constitutes an efficiently designed densified system can vary drastically
depending on the choice of system parameters and cost metrics. Specifically,
hardware-related constraints in practical system implementation are of primary
importance here.

This chapter serves to provide a short overview of the basics of densified sys-
tems, and sheds a light on the determining influence that hardware constraints
have on the benefits that these systems can provide. As elsewhere in this
thesis, the main conclusion is that being hardware-conscious is of paramount
importance in system design.

3.1 Massive MIMO

3.1.1 Preliminaries

There exist slightly differing notions on what Massive MIMO (MaMI) is, and
the definition of MaMI is rather flexible. In this work, the notion of MaMI
corresponds to the one outlined in the work that introduced the MaMI concept,
Marzetta’s seminal paper [53]. This definition is sometimes referred to as the

35
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“canonical MaMI”, as in the excellent monograph [54] which will be used as
the main reference for the most important concepts described in this chapter.
Canonical MaMI assumes a wireless network with L cells where

• the number of antennas Mj at the base station corresponding to cell j is
much larger than the number of users in the cell, Kj . Typically, Kj is on
the order of tens whereas Mj can be on the order of hundreds;

• space-division multiple access (SDMA) is used for multiplexing the Kj

users in the same time-frequency resource;

• time division duplex (TDD) is used to separate uplink (UL) and downlink
(DL) transmissions. Radio channel reciprocity of the UL and DL channels
is assumed, which enables estimating the channel in the UL and using
the estimates for formulating the DL precoder. UL and DL processing is
linear, which is an asymptotically optimal strategy for Mj →∞ [55].

Increasing the number of antennas Mj can, under proper conditions, lead
to

• decrease of random variations of the channel from one user to all BS
antennas [56], which is commonly referred to as channel hardening [57];

• channels from different users to BS becoming asymptotically orthogonal,
usually referred to as favorable propagation [58].

Channel hardening leads to a gradual elimination of channel fading while
favorable propagation eliminates interuser interference. Additionally, increas-
ing the number of antennas serves to boost the array gain, which increases
the post-processing SNR. As a result, spectral and energy efficiency of MaMI
systems can be orders of magnitude larger than the conventional systems, as
initial investigations have shown [56].

Initial investigations have, however, made use of an idealized channel model
with spatially uncorrelated user channels. Recent theoretical results, supported
by analyses conducted on measured channels, indicate that propagation prop-
erties of the channel, in particular spatial correlation, can diminish the fa-
vorable effects of MaMI and reduce the level of improvement over traditional
systems [54,59]. Moreover, the initial analyses only considered the transmitted
power in calculating the energy efficiency, without taking into account power
consumption spent on analog and digital signal processing. Finally, testbed
architectures of MaMI BSs presented in [60–62] indicate that practical imple-
mentations of MaMI can be significantly constrained by hardware limitations,
manifesting itself, among other things, as large overall power consumption and
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high data interface throughput, both caused by the number of antennas being
large.

In order to illustrate the importance of considering the limiting effects of
hardware on the spectral efficiency (SE) and energy efficiency (EE) of MaMI
systems, the analysis of the SE - EE tradeoff from [54] is given here in broad
strokes. For more detailed information on different channel estimation tech-
niques, linear processing schemes and technicalities of the mathematical anal-
ysis, the reader is referred to classical papers [55, 56, 63], as well as the mono-
graph [54] and references given therein.

3.1.2 Energy efficiency - spectral efficiency tradeoff in
massive MIMO

Asymptotic power scaling law

As an overture to the analysis of the EE - SE tradeoff in MaMI, a convenient
scaling law is shortly discussed. It can serve to illustrate both the potential
benefits of MaMI as well as the potential pitfalls in the analysis of these benefits
when hardware effects are ignored. The initial version of the scaling law was
derived for the UL in [56]; what is given here is its more general formulation
from [54, sec. 5.2.1], derived for the DL.

To start with, the ergodic channel capacity of user k in cell j in the DL is
lower bounded by [54, sec. 5.2.1]

SE jk =
τd
τc

log2

(
1 + SINRjk

)
, (3.1)

where τd is the number of channel uses (symbols) dedicated to the DL data
(payload), τc the total number of symbols in a channel coherence block (encom-
passing UL channel estimation and UL and DL data transmission) and SINRjk

is the ergodic signal-to-interference-and-noise ratio for the kth user in the jth
cell.

Now, assume that Mj = M for all cells j and that per-user UL pilot power
pjk scales as M−ε1 and DL power per user ρjk as M−ε2 , ε1, ε2 > 0. If maximum
ratio transmission (MRT) is used, it can be shown that as M →∞, SE jk has
a nonzero asymptotic value if ε1 + ε2 < 1. This result indicates that, under
the aforementioned conditions, the array gain is able to compensate for the
scaling-down of pilot and DL transmit power. Therefore, pjk and ρjk can

e.g. simultaneously be scaled down roughly as 1/
√
M and the lower bound on

capacity will not go to zero as M →∞. This scaling law illuminates one of the
benefits of MaMI, namely, that the per-antenna transmit powers in a MaMI
system can be scaled down drastically compared to traditional cellular systems,
resulting in power-efficient and “cheap” UEs and BSs.
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How does this relate to the energy efficiency? In order to answer this
question, energy efficiency needs to be defined first. In general terms, it can be
defined as

EE =
Throughput [bit/s]

Power consumption [W]
[bits/Joule]. (3.2)

Now, for simplicity, only one cell with K users is considered. The throughput
in (3.2) can be measured by the sum of the lower bounds (3.1), i.e. by the
lower bound on system sumrate. Modeling the power consumption is not so
straightforward, and the choice of what to include in the power consumption
has a decisive impact on the conclusions that are made. If we decide to neglect
the power consumption of analog and digital signal processing and only consider
the transmitted power at the BS in the denominator of (3.2) (as it was done
in [56]), the aforementioned scaling laws could lead us to believe that the energy
efficiency grows unbounded as M →∞.

This is an attractive but misleading result. Power consumption of the cir-
cuits in the BS (and, if system EE is of concern, the power consumption of the
UEs) cannot be neglected, since in a wide variety of cases it can dominate the
transmitted power (which could e.g. happen in picocells where propagation
distances and transmit powers tend to be small). Hadware power consumption
modeling and its impact on the SE - EE tradeoff are addressed in the following
section.

EE - SE tradeoff for different power consumption models

Following the exposition in [54, sec. 5], in this section spectral efficiency (SE)
is equivalent to the lower bound on the ergodic achievable rate of a single user.
In setups where K = 1, SE will be used as a measure of throughput in (3.2);
for K > 1, the throughput will be quantified by sumrate. As for the power
consumption, the hardware power consumption (excluding the transmit power)
is modeled using four different models, ordered by complexity and level of detail.

1. Hardware power consumption Phardware is a fixed value Pfix, independent
of M :

P
(a)
hardware = Pfix. (3.3)

2. Phardware consists of a fixed term and a term that scales linearly with M .
The latter term can model the power consumption of all DL RF chains
in the BS, where the consumption of a single chain is Pchain, BS:

P
(b)
hardware = Pfix +MPchain, BS. (3.4)
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3. Phardware subsumes a fixed term, a term that scales linearly with M and
a term modeling the total power consumption of receiver hardware at the
users, where each user consumes Pchain, user:

P
(c)
hardware = Pfix +MPchain, BS +KPchain, user. (3.5)

4. Phardware takes into account all power consumed in the RF and digital
blocks, together with power consumed by backhaul and finally a fixed
power consumption term:

P
(d)
hardware = Pfix + Ptransceiver + Pchannel estimation + Pcoding/decoding

(3.6)

+ Pload-dependent backhaul + Pspatial signal processing.

In the case of a single user, K = 1 in a one-cell system, L = 1, the relation
between EE and SE is given by [54, sec. 5.3.1]

EE =
B × SE

(2SE − 1) ν
M−1 + Phardware

, (3.7)

where B is system bandwidth and

ν =
σ2

µβ
, (3.8)

with σ2 being the thermal noise power, µ the efficiency of the power amplifier
at the BS and β the average channel gain.

The tradeoff (3.7) is illustrated in Fig. 3.1 for K = 1, L = 1 and two

different power consumption models P
(a)
hardwareand P

(b)
hardware. Several things of

interest can be observed. First, the EE - SE tradeoff is a unimodal function,
i.e. it has a single distinct maximum (SE∗,EE∗). Second, the behaviour of this
optimum on M depends heavily on which power consumption model is chosen.
It can be shown [54, sec. 5.3.1] that

EE∗ ≈ eB

1 + e

log2 (MPhardware)

Phardware
. (3.9)

Relating this to hardware power consumption model (3.3), it can be seen that
if the hardware is assumed to consume a constant amount of power, EE∗ scales
as log2(M), i.e. grows unbounded with M . This is in line with the conclusions
gathered from the scaling law in Sec. 3.1.2. On the other hand, if the more
realistic power model (3.4) is used, EE∗ is a unimodal function of M . This
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Figure 3.1: EE - SE tradeoff (3.7) with hardware consumption model

P
(a)
hardware used in the results on the left and P

(b)
hardware on the right hand

side. σ2/β = 24 dBm, µ = 0.4, Pfix = 10 W, Pchain = 1 W.

means that the gains in spectral efficiency stemming from the increase of the
number of antennas after a certain point get offset by the increase of hardware
power consumption caused by the increased number of RF chains.

A similar conclusion can be made in the case K > 1, L = 2, where nu-
merical analysis shows that the optimal tradeoff (SE∗,EE∗) is unimodal with
M/K [54, sec. 5.3.1]. Since SE depends on M , this implies that M and K max-
imizing EE can be found. This is done for a multicell, small-cell scenario with
the detailed power consumption model (3.6) in [54, sec. 5.3.1] (a similar, more
theoretical analysis is provided in [64]). For a wide range of parameters (differ-
ent linear processing schemes, different generations of hardware with varying
power consumption), it is shown that EE is optimized for K = 20 to 30 and
M/K ranging from 2 to 4.

In conclusion, optimizing the fundamental parameters (number of users and
BS antennas) in MaMI networks heavily depends on the modeling of hardware
power consumption. With a realistic power model, it can be shown that a)
the energy efficiency does not grow unbounded as the number of antennas is
increased (although it is still orders of magnitude better than in the traditional
networks) and b) energy efficiency is maximized for a large, but not extremely
large number of antennas.

Massive MIMO and hardware impairments

In addition to being beneficial for system energy efficiency, MaMI also allows
for improved hardware efficiency, i.e. use of hardware that introduces a higher
level of impairments and consequently has lower cost and power consumption.
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The level of impairments introduced by a general nonlinear block can be
quantified using the hardware quality factor q, which is defined as follows. As-
sume that a zero-mean Gaussian signal x with variance p is fed to a memoryless
nonlinear block. Applying the Bussgang theorem in this setup, the output sig-
nal of the block can be represented as

y =
√
qx+ η, (3.10)

where x and η are uncorrelated, and q is calculated as

q =
E {yx∗}
E {|x|2}

. (3.11)

Moreover, the additive distortion η is zero-mean and if the signal is processed
such that E

{
|y|2
}

= p, its variance is equal to [54, Sec. 6]

E
{
|η|2
}

= (1− q)p. (3.12)

Nonlinear distortion at TX and RX chains of UEs and BSs in a MaMI
system will result in various impairments affecting the spectral efficiency of the
system. These impairments can be divided into two groups [54, Sec. 6]:

• Impairments that are noncoherently combined after linear processing,
similarly to thermal noise or interuser interference in systems with perfect
hardware. These impairments vanish asymptotically as M →∞.

• Impairments that combine coherently and therefore cannot be removed
by the increase of number of antennas. These impairments depend ex-
clusively on UE hardware quality.

The asymptotic vanishing of noncoherently combined impairments gives rise
to a hardware scaling law, described initially in [65]; the formulation given here
is taken from [54, sec. 6.4]. This scaling law is similar to the power scaling
law of Sec. 3.1.2, and is stated as follows. Assume that Mj = M for all cells
j. Additionally, assume that the transmitter and receiver hardware quality
factors qBSt and qBSr scale as M−ε1 and M−ε2 , respectively, where ε1, ε2 > 0. If
maximum ratio transmission (MRT) is used, it can be shown that as M →∞,
SE jk has a nonzero asymptotic value if ε1 + ε2 < 1. The asymptotic value of
SE jk is limited solely by UE hardware quality.

This scaling law implies that MaMI processing gains can compensate for an
increased level of impairments caused by lowering the hardware quality. From
the analyses in Sec. 2, it follows that low quality hardware can be expected to
have a low power consumption. Hence, there is a possibility that the energy
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efficiency of the system can be improved by reducing the hardware quality while
increasing the number of antennas. This potential depends on the impact of
hardware quality on SE for a finiteM , the connection between hardware quality
and the power consumption of a hardware block, and the power consumed in
other parts of the system. An analysis of the effects of hardware quality on the
energy efficiency in MaMI, focusing specifically on the energy-efficient choice
of ADC resolution, is given in Paper II.

3.1.3 Interconnect throughput limitation

One implementational challenge that is peculiar to MaMI and is caused by
hardware limitations is the high demand on the data throughput between the
periphery of the BS (i.e. transceiver blocks close to the antennas) and the
central data processing unit. This issue was observed already in the earliest
attempts of MaMI BS implementation [60] and later BS test designs feature
techniques particularly designed for overcoming it [62].

Figure 3.2: Conceptual diagram of a centralized base station architecture.

Defining and quantifying the interconnect throughput depends on the base
station topology and on how the processing functions are divided between the
periphery and center. For the purpose of illustration, we can assume a straight-
forward setup of a BS, shown in Fig. 3.2, for multicarrier MaMI. Peripheral
units close to the antennas are assumed to perform all analog signal processing,
AD/DA conversion, digital filtering and synchronization (not illustrated) and
FFT/IFFT together with cyclic prefix removal/addition. Frequency domain
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samples from/to all the antennas are then communicated over a bus to/from
a centralized processing block, which will perform channel estimation, pre-
coder/combiner calculation, precoding and combining, demodulation and chan-
nel decoding. It should be noted that maximum ratio combining/transmission
does not ask for a centralized array topology since the channel from an antenna
to all the users can be processed locally; on the other hand, the use of (regu-
larized) zero forcing requires the channel state information to be present at a
single central point in order for precoder/combiner to be formulated.

For both UL and DL transmission, in channel estimation as well as data
transmission phases, each antenna will send/receive Nused complex samples
over the bus, where Nused is the number of data-carrying subcarriers in an
OFDM symbol. With w denoting the number of bits used to represent a com-
plex sample and TOFDM being the total duration of an OFDM symbol, the
throughput of the bus is

Rbus =
MwNused

TOFDM
. (3.13)

Assuming a LTE-like multicarrier setup used in [62] with sampling rate of
30.72 MHz, TOFDM = 71.7 µs and Nused = 1200, and additionally assuming
that w = 32 (16 bits per I and Q sample), the required throughput of the bus
for M = 128 is 8.6 GBps.

A throughput of this magnitude might prove to be unsupportable by stan-
dard radio interfaces such as the Common Public Radio Interface (CPRI) [66].
Even with advances in radio interface technology, the interconnect throughput
limitation will never allow for an arbitrarily large number of antennas in a cen-
tralized base station topology. Alternative techniques of array data processing,
as well as alternative array topologies need to be investigated with the goal of
relaxing the interconnect throughput requirement. Paper IV presents a step in
this direction.

3.2 Large-scale multipair two-way relay net-
works

As it was pointed out in Sec. 1.1, network energy efficiency can be boosted
by increasing the number of infrastructure nodes, e.g. base stations or relays.
When it comes to relays, one particular system setup involving relays that bears
similarities to MaMI shows promising qualities. This system setup assumes
two groups of K users, group A and group B, where each user from group
A has a corresponding user from group B with whom it intends to exchange
information but cannot do so via a direct link. Instead, the K user pairs are
assisted in communication by a set of M single-antenna relays (or one relay
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with M antennas). The traffic from one group to the other and vice versa is
symmetric, and the exchange of information occurs in consecutive pairs of time
slots. In the first slot of one pair, both groups transmit the information to the
relays (UL transmission). The relays process the received information in an
amplify-and-forward fashion and send the result to the intended users in the
second slot of the pair (DL transmission). By keeping all the channels between
users and relays active in every time slot, this method, referred to as two-way
relaying, effectively doubles the throughput compared to traditional relaying.
A sketch of a multipair two-way network is given in Fig. 3.3.

Figure 3.3: A multipair two-way network with 2K users and M relays.
Full arrows: UL transmission phase, dashed arrows: DL transmission
phase.

Multipair two way networks where the number of relays M is large have
some of the appealing properties of MaMI systems. A large scale multipair
two way (LS - MTW) network where the M single-antenna relays are not
exchanging CSI or data but only amplifying and forwarding their received scalar
symbols is analyzed in [67]. It is shown that, under the condition of perfect CSI
and as M → ∞, transmit powers of users and relays can simultaneously scale
as 1/M and system sumrate will still tend to a nonzero value. The same scaling
law was derived in [68] for a MaMI relay, which is equivalent to a setup where
all single-antenna relays would send the CSI and received data to a central
point where joint processing would be performed. Now, similarly to what was
presented in Sec. 3.1.2, if only the transmit powers are used in the system
energy efficiency metric, this scaling law could result in a conclusion that the
energy efficiency of such a system will grow without bounds with M .

Although there does not seem to exist an exhaustive analysis of EE - SE
tradeoff in LS - MTW networks, the similarities with MaMI strongly indicate
that, as in MaMI, EE of the network will be maximized for some (M∗,K∗)
when a realistic power consumption model is used. In this thesis, it is assumed
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that the working point (M,K) is fixed according to some criterion and the
focus is put on a different problem.

Namely, by comparing the numerical results in [67] and [68] for matching
system parameters, it can be observed that if all M relays from Fig. 3.3 behave
like a MaMI relay (where the CSI information and received data from all the
relays is centrally processed), the sumrate is vastly improved compared to the
case when each relay does its local amplification and forwarding. Intuitively, it
makes sense that cooperation is rewarded by an improvement in performance.
However, centralized processing of information does come with a price. In one
way or another, some system resources will be spent on collecting the data in
the central processing node and sending it back to the relays after it has been
processed. For example, if relays are communicating wirelessly, some energy
will be spent on sending the data from the relays to the central processing node
and vice versa, with more energy being consumed by a relay system covering a
larger area. Likewise, some bandwidth might be dedicated for communicating
the overhead data, and it must not necessarily be in the same band, or of
the same size as the bandwidth dedicated to UL and DL transmissions. The
consumption of resources by this overhead communication can be regarded as
another case of hardware-related (or, more precisely, implementation-related)
limitation.

The idea examined in Paper V of this thesis is based on dividing the M
relays into groups and making all relays in the group exchange information so
that they operate as a MIMO relay. All such groups will process the informa-
tion independently of other groups, without exchange of information. What is
examined is how resource consumption for overhead communication trades off
with performance, and in Paper V, the focus is on how system sumrate trades
with bandwidth dedicated for overhead communication as the relay group size
changes.
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Chapter 4

Paper Summary and
Discussion

This chapter presents a concise summary of work performed in each of the
five original research papers contained in the thesis. For each paper, main
findings and novel contributions are highlighted. Also, remarks are made on
my personal contributions as the author in each of the papers.

4.1 Research contributions

4.1.1 Paper I: Low Power Receiver Front Ends: Scaling
Laws and Applications

The overarching idea of this work is bridging the gap between circuit and
communication theory by combining known theoretical results from both fields
in a unified theoretical framework for analyzing the tradeoffs between power
consumption and performance of the analog front end (AFE). The starting
point of the analysis is the circuit-theoretic result (2.10), linking the minimum
power consumption of the AFE with noise PSD and IIP3 power. Based on this
fundamental result, the main contributions of the paper are:

• Derivation of an approximate scaling law between (optimal) power con-
sumption of the AFE and the SNDR. AFE power consumption is shown
to approximately scale as SNDR3/2;

• Using the derived scaling law to determine how AFE power consumption
scales with constellation size of the digital modulation and with the rate

47



48 Introduction

and coding gain of error control codes. AFE energy efficiency is shown to
always improve with decreasing size of square QAM constellation. Addi-
tionally, a numerical analysis utilizing extrapolated power numbers from
implementations of error control decoders and the derived scaling laws
suggests that codes with moderate coding gains and simple, noniterative
decoding algorithms (such as convolutional codes) maximize the energy
efficiency of the entire receiver;

• Using side results on scaling of AFE power with received power and OOB
interference power, it is shown that a receiver that continuously adapts its
structure to match the received power or interferer power level can achieve
a vast reduction of power consumption (e.g. 20x) compared to a non-
adaptive design. Practical implementations of such receivers, utilizing
only two steps of adaptation (low power/high power) are proposed in
a general form, and the loss in power savings compared to continuous
adaptation is analyzed.

Personal contribution: I performed the complete theoretical analysis, struc-
turing and organization of the material and wrote the paper.

4.1.2 Paper II: When are Low Resolution ADCs Energy
Efficient in Massive MIMO?

The main motivation behind the investigation presented in this work was a se-
ries of claims found in the academic literature that the use of 1 - bit ADCs is a
strategy that is beneficial from the point of view of energy efficiency in massive
MIMO. A parametric power consumption model for the massive MIMO base
station is set up, relating the power consumption of the ADCs to the power
consumed by the rest of the constituent blocks in the base station. Circuit-
theoretic models are used for the power consumption of the ADC, and in setting
up the analysis, particular care is taken of including assumptions and parame-
ters of practical relevance. Main findings of the paper are:

• Energy efficiency of the entire base station is not maximized at low bit
resolutions unless the power consumed by the ADCs is comparable to the
power consumed by all the other hardware blocks, which is unlikely in
practice;

• For practical ratios of ADC power consumption and power consumed
by other blocks, energy efficiency is typically optimized at 4 - 8 bits of
resolution;
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• Making the number of antennas extremely large makes lower resolutions
energy-optimal only when the number of users is kept constant. On the
other hand, if antenna and user numbers are scaled up simultaneously
with keeping the antenna/user ratio constant, the energy-optimal resolu-
tion stays constant or even increases with this scaling;

• Energy-optimal bit resolution can significantly increase with presence of
unfiltered OOB blockers, which is a common concern in practice.

• The overall findings advise against the use of low bit resolutions as means
of improving system energy efficiency in the uplink of massive MIMO.

Personal contribution: Structuring and organization of the material have
in most part been done by myself with additional input from the last author.
I performed the complete theoretical and numerical analysis and wrote the
paper.

4.1.3 Paper III: Modified Forced Convergence Decoding
of LDPC Codes with Optimized Decoder Parame-
ters

This paper looks into LPDC decoding with forced convergence (FC) and elab-
orates how the FC threshold θ should be determined. It proposes setting the
value of θ such that the computational complexity of the decoding is minimized
subject to a block error rate constraint. The main challenge identified with this
approach is that the functional dependence of complexity and error rate on θ
cannot be determined in closed form but only estimated from observations in
runtime. The main contributions of the work are:

• A small modification of the way bit-to-check messages are calculated is
introduced, which results in a complexity reduction;

• The stochastic approximation (SA) algorithm is proposed to be used for
determining the value of θ that minimizes the average computational
complexity under a block error rate constraint;

• The described structure (SA algorithm wrapped around a tunable LDPC
decoding algorithm) is noted to be a natural way of implementing a de-
coder that adapts in real-time to the time variations in SNR. Such con-
tinuous tuning of the decoder to SNR is found to yield an additional 7 -
12 % reduction in complexity compared to an optimized but fixed LDPC
decoder with FC, for the analyzed set of codes. Additionally, the settling
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time of this adaptive structure is analyzed numerically, and it is con-
cluded that the SA-based adaptation of the LDPC decoder is generally
applicable in slowly varying channels.

Personal contribution: I performed the theoretical analysis and simulations
and wrote the paper.

4.1.4 Paper IV: Fully Decentralized Approximate Zero-
Forcing Precoding for Massive MIMO Systems

The analysis in this paper is motivated by the fact that centralized massive
MIMO processing at the base station side imposes extremely large throughput
requirements on the interconnects/backhaul. A daisy chain of single-antenna
units with local channel knowledge is investigated as an alternative base station
topology. The main contributions of the paper are:

• Derivation of a decentralized linear precoding algorithm that suppresses
interuser interference. The algorithm is specifically tailored to the limi-
tations of the daisy chain topology;

• Theoretical analysis of the mechanisms of operation of the derived algo-
rithm;

• The algorithm is shown to be close in error rate performance to zero-
forcing precoding for a very large number of antennas at the base sta-
tion, while also significantly outperforming maximum ratio tranmission
precoding. Latency of the precoder formulation is shown not to be limit-
ing for the applicability of the algorithm when calculations are carefully
scheduled over antennas and subcarriers in a multicarrier setting. For
a very large number of antennas, the throughput of the links inside the
daisy chain is shown to be much lower than the throughput needed for
backhaul in a centralized topology;

• Overall, the results indicate that the daisy chain topology should be cho-
sen for implementing massive MIMO base stations when the number of
base station antennas is extremely large.

Personal contribution: I proposed the use of the daisy chain topology and
derived the precoding algorithm together with the second author. I performed
the theoretical analysis and simulations and wrote the paper.
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4.1.5 Paper V: Impact of Relay Cooperation on the Per-
formance of Large-scale Multipair Two-way Relay
Networks

The paper analyzes relay networks where equally-sized groups of users exchange
messages via a relay system with a large number of relays. The relay system can
attain the form of a single multiantenna relay, or be embodied by single-antenna
relays that individually perform information processing. As in Paper IV, the
cost of centralized processing at the relays is a major implementation issue.
The investigation in the paper focuses on clustering the relays in a number of
groups that perform information processing individually and where the relays
inside a group closely cooperate, without any exchange of information between
the groups. Performance of such a system as a function of the group size is
analyzed. The main contributions of the paper are:

• Derivation of a lower bound on the ergodic sumrate of the described
system when zero-forcing processing is used at the relays to process the
uplink and downlink signals;

• From the analysis of this lower bound, it is concluded that the perfor-
mance (in this case sumrate) is approximately independent of the group
size when the group size is much larger than the number of user pairs;

• The preceding observation indicates that a large centralized group of
relays (alternatively, a massive MIMO relay) can be broken down into
smaller constituent groups (smaller-sized MIMO relays) with only a
marginal performance degradation;

• If the resource used to support the centralization of the data processing
at each group is assumed reusable (e.g. bandwidth), then the resource
efficiency is maximized for small sizes of the constituent group.

Personal contribution: Structuring and organization of the material have
been done by myself. I also performed the theoretical analysis and simulations
and wrote the paper.

4.2 Discussion and future work

This thesis represents a selection of topics in wireless communication system
design where hardware-related implementation limitations are explicitly taken
into account during the system design process. It examines the improvements
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resulting from making the communication hardware adaptive to the environ-
ment, or by incorporating fundamental hardware limitations in the system
design so that they become an integral part of the structure.

With this thesis work being a rather eclectic collection of topics, it is natural
that all aspects of interest have not been covered in depth in all of the analyses
since that would far exceed a format of an ordinary PhD thesis. Indeed, the
list of things that could have additionally been looked into is extensive. Here
is a short, subjective selection of the most interesting and attractive extensions
of the work presented in the thesis that can form the topics of future work:

• The analysis in Paper I is for a single-antenna receiver. It would be of
interest to use the laws derived there in a multiantenna context. More
specifically, employing these power-performance laws in the uplink of mas-
sive MIMO, at the base station and calculating the tradeoff of overall sys-
tem power with performance as the number of antennas grows. Because
of uplink/downlink duality, the scaling laws from Paper I could like-
wise be used at the single-antenna terminals. Massive MIMO is known
to enable relaxations in terminal hardware, so these laws could give an
estimate how much overall power in the system would be saved by scaling
up the number of antennas and simultaneously relaxing the performance
requirements in user hardware.

• There are many topics of interest that appear in the context of the daisy
chain topology, with only the most basic ones actually having been ana-
lyzed in Paper IV. Aspects of uplink detection, clustering of antennas so
that they share CSI, connecting the first and last antenna units directly
so that they form a ring and then performing iterative processing on that
ring are some of the most interesting topics. Also, after all the extensive
analyses it would be good to see the benefits of the daisy chain topology
verified in an actual massive MIMO testbed implementation.

• Similarly to Paper IV, Paper V has only “scratched the surface” when
it comes to the analysis of relay grouping. The impact of inter-group syn-
chronization on system performance is one aspect of practical relevance
that can be analyzed in future work. Also, linear processing schemes
other than zero-forcing can be considered.
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Low Power Receiver Front Ends:

Scaling Laws and Applications

In this paper, we combine communication-theoretic laws with known,

practically verified results from circuit theory. As a result, we obtain

closed-form theoretical expressions linking fundamental system design and

environment parameters with the power consumption of analog front ends

for communication receivers. This collection of scaling laws and bounds is

meant to serve as a theoretical reference for practical low power front end

design. In one set of results, we first find that the front end power con-

sumption scales at least as SNDR3/2 if environment parameters (fading and

blocker levels) are static. The obtained scaling law is subsequently used to

derive relations between front end power consumption and several other

important communication system parameters, namely, digital modulation

constellation size, symbol error probability, error control coding gain and

coding rate. Such relations, in turn, can be used when deciding which sys-

tem design strategies to adopt for low-power applications. For example,

if error control coding is employed, the most energy-efficient strategy for

the entire receiver is to use codes with moderate coding gain and simple

decoding algorithms, such as convolutional codes. In another collection of

results, we find how front end power scales with environment parameters

if the performance is kept constant. This yields bounds on average power

reduction of receivers that adapt to the communication environment. For

instance, if a receiver front end adapts to fading fluctuations while keep-

ing the performance above some given minimum requirement, power can

theoretically be reduced at least 20x compared to a non-adaptive front

end.
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1 Introduction

Low power consumption is one of the main design targets for communication
receivers, and its importance is especially high when it comes to wireless de-
vices, which are often battery-powered and therefore energy-limited. At the
same time, receivers also need to satisfy some performance requirement, such
as minimum throughput and maximum bit error rate (BER).

Designing receivers that jointly meet power consumption and performance
criteria tends to be predominantly based on the experience of hardware design-
ers. Additionally, more often than not, receiver designs are optimized based on
the worst-case scenario of operation (the most adverse possible combination of
environment conditions under which satisfying performance must be delivered).
The latter, conservative design trend in particular is what prevents hardware
designs from exploiting their full potential for low-power operation.

It would be of significant interest to be able to theoretically predict how
much power would be consumed by a receiver with certain performance require-
ments, with all system and environment constraints taken into consideration.
Such a result would serve as a benchmark and motivation for both practical
hardware and system design, an indicator of how low the power consumption
can really be driven. If combined with the knowledge of the statistical prop-
erties of environment variables, it could also provide a measure of how much
power can be saved if the receiver adapts to the communication environment.

The analog front end (AFE) (the chain of analog signal blocks of the re-
ceiver excluding the oscillator) typically has a defining impact on the overall
performance of the receiver, while also consuming a substantial portion of its
power. One of the main questions of low-power receiver design can thus be
formulated as

“How does the power consumption of an analog front end (AFE) of a receiver
scale with performance?”

If this question is answered, some important follow-up questions can be
answered as well, such as:

• If the overall system design features techniques that serve to improve
performance (e.g. by use of error control coding) and this opens up the
possibility of relaxing the design of the AFE, how much power do we save
by performing this relaxation?

• If the receiver is made adaptive to communication environment conditions
(e.g. channel fading or out-of-band interference), how much AFE power
can be saved, on average, compared to a design based on worst-case
conditions?
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The theoretical analysis of the relation between analog circuit power con-
sumption and performance appears not to have gained a lot of attention in
the scientific community. The relation between power consumption and perfor-
mance for individual analog blocks is analyzed in [1] and [2]. It is found that
power consumption grows linearly with the dynamic range of an analog circuit
block1. Analysis of this relation for a chain of analog blocks becomes rather
involved because performance metrics for the entire chain exhibit a complex
dependence on gain, noise and linearity properties for individual blocks. More-
over, there are practically infinitely many combinations of per-block parameters
that satisfy the performance requirements for the entire chain, with each com-
bination resulting in a unique power consumption. A sensible approach is then
to find the combination that yields the minimum power consumption, which
then makes it possible to reveal the implicit or explicit connection between
the performance requirement and the obtained optimal power consumption.
In [3] and [4] this approach is adopted, with the focus being mostly on how
to conveniently model the power - performance relation for individual blocks
and how to solve the optimization problem. The analysis in [5] extends the
ideas from [4], with the power - performance relation also being given some
treatment in the context of communication systems.

There also exists a body of academic work [6] - [14] that examines the topic
of environment-adaptive AFEs and receivers, with the focus being primarily on
practical hardware implementations. It is demonstrated that adaptive receivers
are implementable, and various implementation strategies are suggested. Fur-
thermore, measured power numbers from these designs indicate that substantial
power reduction is attainable if environment-adaptive receiver techniques are
adopted.

What is found to be largely missing in the existing literature is a work
that takes the power-performance laws from circuit theory and combines them
with classical results from communication theory to formulate joint circuit-
communication-theoretical laws of system behavior 2. With such laws at hand,
system design questions such as “if the BER requirement is relaxed from 10−6

to 10−3 and we redesign the receiver to meet the new requirements, how much
power is this new receiver expected to consume?” can be answered in a pre-
cise and immediate fashion, without resorting to educated guessing or iterative
hardware redesign and simulation/measurement cycles. Moreover, by taking
into account the influence of environment conditions on front end power con-
sumption, it would be possible to precisely determine power savings obtainable
when making the receiver environment-adaptive.

1 The definitions of dynamic range differ slightly between these two papers. As will be
shown, here we adhere to the definition given in [1]. 2 A rare example is [5], but with
the analysis limited only to the connection between throughput and relative level of the
out-of-band blocking signal.
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Here we aim at bridging this gap between circuit and communication the-
ory. The idea is to obtain theoretical expressions that will describe how optimal
AFE power consumption scales with important system and environment pa-
rameters. More specifically, we are interested in finding out the scaling of
front end power with the signal-to-noise-and-distortion ratio (SNDR), repre-
senting system performance, when the environment parameters (fading and
out-of-band interference) do not exhibit temporal changes. Conversely, we also
aim to describe how AFE power scales with environment parameters when
SNDR is kept constant. The obtained set of fundamental scaling laws can then
be used to build up a more extensive system level analysis. We derive our
scaling laws from a known relation between performance and minimum power
consumption for AFEs, presented and verified in actual hardware implementa-
tions in [3]. This relation is modified so that it can be seamlessly combined with
communication-theoretic laws. One set of results is based on a novel scaling law
we obtain, namely, that AFE power consumption scales at least as SNDR3/2.
This result is then employed in finding closed-form expressions for AFE power
scaling with QAM constellation size, symbol error rate and error control coding
gain, which are further used to decide on appropriate system-level strategies
for low-power design. In another line of results, we obtain power-law type re-
lations between AFE power and environment parameters. These are combined
with fading and blocker statistics, yielding important theoretical bounds on
average power savings of environment-adaptive front ends, which demonstrate
that substantial power savings are possible if the environment-adaptive design
approach is adopted.

Throughout the course of our analysis, we rely on the fact that the fun-
damental results we build upon have been verified in practical front end im-
plementations and we do not aim at recreating these verifications. Instead,
we put the focus on laying out a general theoretical framework for low power
receiver design and showing the advantages of environment-adaptive designs,
which will hopefully make this work both a point of reference and motivation
for future research efforts in the area of practical hardware implementations of
such systems.

2 Optimal power consumption of analog front
ends

Let us observe a chain of analog circuit blocks that form the front end of
a communications receiver. One example of such a chain can be the direct
conversion receiver with the structure LNA - downconversion mixer - channel
select filter - variable gain amplifier. While the direct conversion receiver is
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given as an example, we emphasize that the forthcoming analysis holds for any
type of receiver chain.

Each of the blocks in the chain can be qualitatively characterized by noise
and linearity properties (serving as performance quantifiers) and by an as-
sociated power consumption. Noise performance is commonly quantified by

noise power spectral density V
2

N

[
V2/Hz

]
, and linearity by V 2

IIP3 [V2], the
input-referred third-order intercept voltage squared. Additionally, we denote
by FAFE the total noise factor and by V 2

IIP3, AFE the total IIP3 voltage squared
of the AFE chain. These are usually set by performance requirements dictated
from digital baseband. Given FAFE and V 2

IIP3, AFE, one would preferably like

to select V
2

N and V 2
IIP3 of individual blocks such that the power consumption

of the entire chain is minimized.
In order to solve this task, we first need to look into the nature of the

relation between the performance quantifiers and power consumption for each
block. The dynamic range of a block with index j is defined as

DRj ,
V 2

IIP3,j

V
2

N,j

. (1)

As presented in [1] and [3], for a wide range of the most common front-end
blocks, the power consumption of a circuit is linear with the dynamic range as
defined in (1), i.e.

Pj = PC,jDRj , (2)

where PC,j is a proportionality factor that can be taken as a natural figure-of-
merit for analog blocks.

Starting from this simple but powerful relation, the authors in [3] have

devised a method of finding V
2

N,j and V 2
IIP3,j that results in minimum power

consumption of the whole AFE chain. Although proof is given in [3] that re-
lation (2) holds for standard CMOS circuits (such as a common-source stage
LNA, a double-balanced Gilbert cell mixer and an OTA-C baseband filter),
the results of the optimization are valid for any chain of analog blocks that
satisfy (2) and are hence not limited only to CMOS circuits. Moreover, [3]

provides a comparison of theoretically optimal V
2

N,j and V 2
IIP3,j with measured

noise PSD and IIP3 from an actual “hand-optimized” Bluetooth receiver im-
plementation, with a good match between the two. This hardware verification
naturally extends to our analysis, which considers optimally designed front ends
in communication system settings.

What is important for our analysis is that the method from [3] provides the
connection between the optimal power consumption of the entire AFE, denoted
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by P ∗AFE, and V 2
IIP3, AFE and FAFE, which reads [3, eq. (60)]

P ∗AFE =
V 2

IIP3, AFE

(FAFE − 1)kT50

 N∑
j=1

3
√
PC,j

3

, (3)

where k is Boltzmann constant and T temperature in Kelvins. Remarkably,
the optimal power consumption of the chain is independent of power/voltage
gains of individual blocks.

If we are to use the result in (3) for drawing conclusions on the system-
level behaviour of receivers, it would be convenient to “translate” this result to
system designer parlance, so that it features power-related parameters:

• received wanted signal power at the antenna - pS,

• total input-referred thermal noise power - pN,

• power of the out-of-band (OOB) interfering signal at the antenna - pI.
3

As a first step, we can relate pN and FAFE through

pN = kTBFAFE, (4)

with B being the noise-equivalent bandwidth of the system. On the other hand,
IIP3 power and voltage can be related by

pIIP3, AFE =
V 2

IIP3, AFE

Rin
, (5)

where Rin is the input resistance of the receiver which we assume to be 50 Ω
for simplicity. In order to directly assess the impact of third-order nonlinearity
on system performance, we need to relate the IIP3 to pIM3, the power of the
in-band third-order intermodulation (IM3) distortion. A well-known relation
linking pIIP3, pI and pIM3 reads [15]

pIIP3 =

√
p3

I

pIM3

. (6)

For the purpose of notational convenience, we denote the last term in (3) as

κcircuit ,

 N∑
j=1

3

√
PC,j

3

(7)

3 The results (1) and consequently, (3) were derived with the assumption of a two-tone
interference model. For the sake of consistency, we maintain this model throughout our
analysis, and pI then denotes the total power of the two interfering tones. However, we
conjecture that the obtained trends hold even in the case of modulated interferers.
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and use (4), (5) and (6) in conjunction with (3) to obtain

P ∗AFE =
FAFE

FAFE − 1
B

p
3/2
I

pN

√
pIM3

κcircuit. (8)

For the analysis at hand it is of use to define the power ratio of intermodulation
distortion and noise

αIM3 ,
pIM3

pN

, (9)

which combined with (8) yields

P ∗AFE =
FAFE

FAFE − 1
B

1
√
αIM3

(
pI

pN

)3/2

κcircuit, (10)

with pI > 0 which follows from constraint V 2
IIP3, AFE > 0. Equation (10) can

be used as a basis for deriving simple but very useful scaling laws, as presented
in the following section.

3 Scaling laws of AFE power consumption

A holistic receiver system design benefits greatly from the availability of closed
form relations between receiver power consumption and other system parame-
ters. This way, a mathematically tractable analysis of the tradeoffs encountered
during receiver system design is made possible. When it comes to real-world
hardware, obtaining such relations is not a trivial task, and there always exists
a tradeoff between the accuracy of the functional dependencies and their ana-
lytical tractability. Ideally, they should appear in form of simple power laws.
It turns out that (10), under some realistic assumptions, can yield such simple
relations. The advantage of using (10) for this purpose is that it is soundly
grounded in circuit theory which has also been verified against real-life receiver
designs, so it enables striking a good balance between accuracy, simplicity and
theoretical rigour.

To start with, a performance metric is needed that will provide a link be-
tween baseband metrics, like bit error rate (BER), via power-related system
parameters, with circuit parameters FAFE and V 2

IIP3, AFE. A commonly used
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Figure 1: Illustration of all relevant system parameters for the cell
center scenario (left: strong wanted signal, weak OOB interference, high
SNDR requirement) and cell edge scenario (right: weak wanted signal,
strong OOB interference, low SNDR requirement).

such metric is the signal-to-noise-and-distortion ratio4, which is defined as

SNDR ,
pS

pN + pIM3

=
pS

(1 + αIM3) pN

. (11)

Now we focus our attention on four fundamental receiver design parame-
ters, namely, SNDR and B (the values of which are determined by the par-
ticular application), and pS and pI (which describe the environment and are
generally stochastic). The values of the fundamental parameters define distinct
application-environment scenarios. We structure our analysis around a pair of
such scenarios: an initial (pre-scaling) and target (post-scaling) scenario. An
illustration of the relations between parameters of importance for an example
scenario pair is given in Fig. 1. For each of the two scenarios–under practi-
cal constraints on parameter values–we assume that an analog front end with
minimal power consumption is designed using the procedure described in [3].
Our aim is relating the scaling of fundamental parameter values between the
two scenarios and the scaling of optimal front end power. To this end, we label
variables corresponding to pre-scaling and post-scaling scenarios with indices 1

4 It is commonly assumed that the third-order distortion is the dominant nonlinear impair-
ment in analog systems. Therefore, along with thermal noise, we consider it a determining
factor of system performance. All other possible impairments, such as second-order dis-
tortion, flicker noise, phase noise–either in-band or due to reciprocal mixing–are through
appropriate design assumed to be dominated by thermal noise and third-order distortion in
all scenarios considered.
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and 2, respectively. The scaling of the optimal power consumption is denoted
as

ςP ,
P ∗AFE,2

P ∗AFE,1

. (12)

The scaling factors of bandwidth, SNDR, signal and interference power are
defined analogously to ςP and denoted respectively as ςB, ςSNDR, ςS and ςI. By
using (10) and (11), the scaling of front end power reads

ςP = ϕ δ ςBς
3/2
SNDR ς

3/2
I ς

−3/2
S , (13)

where, for analytical convenience, we have introduced the factors

ϕ ,
FAFE,2

FAFE,1

FAFE,1 − 1

FAFE,2 − 1
(14)

and

δ ,

√
αIM3,1

αIM3,2

(
1 + αIM3,2

1 + αIM3,1

)3/2

. (15)

Expression (13) is a universal tool for calculating front end power scaling
and can be used for all application-environment scenarios, under the condition
that the corresponding front ends are implementable. However, one does need
to use (13) in a careful and structured way due to interdependencies between
the fundamental parameters (SNDR, B, pS, pI) and noise-distortion ratio αIM3,
system-level design parameters (pN, pIM3, pIIP3) and circuit-level parameters
(FAFE, V

2
IIP3). More specifically, for a particular scenario, SNDR, B, pS, pI and

αIM3 will through (6), (8) and (11) yield pN, pIM3 and pIIP3, which through
(4) and (5) result in FAFE and V 2

IIP3. Combining FAFE from pre- and post-
scaling scenarios yields ϕ from (14), noise-distortion ratios αIM3 give the value
of δ from (15), and the values of fundamental parameters result in respective
scaling ratios, all of which is combined in (13) for the final result.

In order to isolate the scaling of power with only one of the fundamental
parameters, we assume that the value of the parameter in question scales be-
tween the scenarios while other parameters remain constant. In this way, we
obtain a restricted set of application-environment scenarios with high practical
relevance, examined in detail in Section 4. Additionally, in all scenarios it is
assumed that pre- and post-scaling αIM3 values are the same, i.e. that input-
referred thermal noise and third-order distortion levels are kept at a constant
ratio. Available literature on systematic receiver design suggests that in prac-
tice, the value of αIM3 is chosen to be small (typically on the order of 0.1) so
that the third-order distortion is much weaker than the thermal noise, with the
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choice being consistent over different application-performance scenarios [15, Ch.
13]. This consistency over scenarios is in line with our constant-αIM3 assump-
tion.

The laws describing the scaling of front end power with fundamental pa-
rameters are given in Table 1, expr. (16)-(19). Each of the four rows of the
table, corresponding to a particular scaling law, also provides a comprehen-
sive list of application-environment constraints (columns 1-4), together with a
list of resulting system/circuit design requirements (columns 4-8) needed for
scaling laws to hold in practical implementations, obtained through (4)-(6), as
discussed above. Note that the constraints on the scaling of B also double as
explicit design requirements.
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The four scaling laws can be stated in dB domain in form of convenient
rules of thumb, as follows:

1. (Power consumption-bandwidth scaling law): For every 1 dB increase/decrease
of system bandwidth, the power consumption of an optimally designed
analog front end increases/decreases by at least 1 dB.

• It is well known that the power consumption of standard analog
blocks scales linearly with bandwidth [2]. This scaling law demon-
strates that the linear power-bandwidth relation extends also to a
chain of analog blocks.

2. (Power consumption-SNDR scaling law): For every 1 dB increase/decrease
of SNDR, the power consumption of an optimally designed analog front
end increases/decreases by at least 1.5 dB.

• This novel scaling law serves as a fundamental relation for analyzing
power-performance tradeoffs in analog receiver design, as analyzed
more in-depth in Sections 4.2 and 4.3.

3. (Power consumption-received power scaling law): For every 1 dB in-
crease/decrease of received wanted signal power, the power consumption
of an optimally designed analog front end decreases/increases by at least
1.5 dB.

• This relation will be useful in analyzing power savings of a front end
that adapts to a fluctuating received signal level while maintaining
constant performance, as will be presented in Section 4.4.

4. (Power consumption-interference scaling law): For every 1 dB in-
crease/decrease of the out-of-band interference power, the power con-
sumption of an optimally designed analog front end increases/decreases
by 1.5 dB.

• By defining the signal-to-interference ratio SIR = pS/pI, this scaling

can be reformulated as ςP = ς
−3/2
SIR , where ςSIR is the scaling of the

SIR. An identical scaling law was presented in [5], where PAFE was
optimized for energy efficiency. Scaling law (19) is of importance
when analyzing the power consumption of a front end that dynami-
cally adapts its linearity to the interference level while maintaining
constant performance. A detailed theoretical analysis of such a front
end will be given in Section 4.5.
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Laws (16) - (18) are characterized by the fact that the underlying scaling
asks for tuning of the noise figure, which in turn makes the parameter ϕ scaling-
dependent. More specifically, for ς∗, where ∗ ∈ (B,SNDR),

ϕ =
FAFE,1 − 1

FAFE,1 − ς∗
, (20)

whereas for ςS we have

ϕ =
FAFE,1 − 1

FAFE,1 − 1
ςS

. (21)

The dependence of ϕ on the scaling parameters is outlined in the last column
of Table 1. The constraint ϕ > 0, i.e. the fact that it is physically impossible
to have a front end with F < 1 imposes theoretical limitations on the values
of scaling ς. Furthermore, dependence of ϕ on ς causes deviations from the
ideal scaling of power (linear with bandwidth or following the 3/2 power law
in case of SNDR and received power). In order to have proper scaling laws,
it is necessary for ϕ to be independent of ς. This condition is approximately
satisfied in two cases:

• FAFE,1 � 1⇒ ϕ ≈ 1;

• ςB, ςSNDR � 1 or ςS � 1⇒ ϕ ≈ FAFE,1−1
FAFE,1

.

At first, it can appear that the set of scenarios in which power scaling laws
(16)-(18) are close to ideal (ϕ ≈ 1) is based on such a restrictive sequence of
assumptions that their practical relevance is questionable. However, a closer
look reveals that all the assumptions we used are commonplace in practice
and/or of high practical interest for low-power design. To start with, FAFE,1 �
1 is typical for worst-case front end designs with a large OOB blocking signal
present [15, Ch. 13], [16]. Moreover, radical scaling down of system bandwidth
(e.g. going from a wideband to a narrowband system), drastic downscaling of
SNDR requirement (due to e.g. use of power-efficient transmission techniques)
or adaptation to wanted signal power that becomes much larger than worst-case
(reference sensitivity) due to fading fluctuations are all use-cases of interest for
low-power applications [17], [18].

4 Ramifications of the scaling laws

The scaling laws presented in the previous section constitute a set of tools which
prove to be very useful in the design of receivers where power consumption is of
high importance. Namely, as the laws in the preceding section formally show,
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the power consumption of the analog front end can be lowered by using one (or
more) of the following techniques:

• Intentionally degrading the bit/symbol error rate (SER), which conse-
quently reduces the SNDR requirement;

• Keeping BER or SER constant while applying some transmission tech-
nique that allows for lower SNDR (e.g. use of error control coding);

• Keeping the SNDR constant while making the AFE reconfigurable so that
it adapts to the changes in the environment (e.g. fading level fluctuations,
OOB interference level).

The scaling laws serve as a basis for estimates of the extent of power savings
that can be achieved in the AFE if the aforementioned techniques are applied.
System designers can then decide on which techniques to incorporate in their
systems, and hardware designers are provided with general guidelines on how
to increase the power efficiency of circuit designs.

4.1 Preliminaries: limitations on hardware relaxation

Throughout the analysis that follows, we consider analog front ends designed
for different target values of noise and distortion. When it comes to realistic
hardware designs, however, it is reasonable to assume that the range of these
values is limited. Naturally, there are fundamental physical constraints on the
minimum noise (or distortion) level that a circuit can deliver, but, equally
important, there are also upper bounds, imposed by either functionality or
technology process constraints [2]. Hence, in line with considerations from the
previous section, we establish a permissible tuning range µ that applies to both
noise figure and IP3. It is defined as the value of scaling of noise/linearity for
which, given all architectural and physical limitations, the following holds:

• The noise figure FAFE can be degraded from the reference value FAFE,1

to a maximum value of FAFE,2 = µFAFE,1,

• It is possible to degrade IP3 from the reference value V 2
IIP3,1 to a minimum

possible value of V 2
IIP3,2 = 1√

µV
2
IIP3,1.

4.2 Power- and energy-efficient AFEs through intentional
degradation of performance, uncoded case

In this section, we focus on systems using M-QAM without any error control
coding. With the aim of saving power, System 2 either uses a lower QAM
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constellation order M or operates at a higher symbol error probability Pe,
formally, M2 ≤ M1 or Pe,2 ≥ Pe,1. As indicated in Section 3, the two systems
are otherwise assumed to use the same bandwidth (and thus the same symbol
rate Rs), are affected by same OOB interference level and experience the same
wanted signal power.

We assume that the classical matched-filter detector is employed at the re-
ceiver. If the thermal Gaussian noise dominates the IM3, i.e. αIM3 � 1, the
matched-filter receiver is optimal in the sense of maximum aposteriori detec-
tion. Under these circumstances, an upper bound on SER for a square M-QAM
(M = 22k, k ∈ N) can be determined [19], which yields the inequality

SNDR ≤ ρ M − 1

3 log2M

[
Q−1

(
Pe

4

)]2

, (22)

where ρ = Rb/B is the spectral efficiency of the uncoded system (Rb is the
information bitrate) and Q−1(·) the inverse of the upper tail probability func-
tion of a unit-variance Gaussian random variable. At high SNDRs, the upper
bound in (22) is tight.

We proceed by constructing a ratio of the upper bounds from (22) that
apply to the two distinct scenarios under analysis. This ratio is given as

ςSNDR ≥
M2 − 1

M1 − 1

[
Q−1 (Pe,2/4)

Q−1 (Pe,1/4)

]2

, (23)

where the fact that B is the same for the two systems is used. Taking into
account the practical limits on noise/linearity scaling, discussed in Section 4.1,
along with law (17), the achievable scaling of front end power, ςP, a, is found
to be

ςP, a < max{ς3/2SNDR, µ
−3/2}. (24)

By combining this together with (23) and the fact that the slack of the SER
upper bound increases with decreasing SNDR, we obtain the upper bound on
the achievable AFE power downscaling:

ςP, a ≤ max

{(
M2 − 1

M1 − 1

)3/2 [
Q−1 (Pe,2/4)

Q−1 (Pe,1/4)

]3

, µ−3/2

}
. (25)

In other words, the AFE power can be decreased by at least the value of the
right hand side of (25). For large SNDRs and large FAFE,1, the bound is tight.

The obtained bound enables the derivation of laws describing the performance-
power consumption tradeoff in systems using uncoded QAM when there are no



Low Power Receiver Front Ends: Scaling Laws and Applications 81

SER increase, Pe,2/Pe,1

100 101 102 103 104

A
F
E

p
ow

er
sa
v
in
g
s,

∆
P
(%

)

0

20

40

60

80

100
Power savings for uncoded M-QAM

Pe,1 = 10−6

Pe,1 = 10−8

Pe,1 = 10−10

M1 = M2

M1 = 16,M2 = 4
µ = 3 dB

µ = 5 dB

Figure 2: Savings in AFE power consumption when symbol error proba-
bility and/or constellation order are degraded, for uncoded square QAM.
For limited flexibility AFEs, the savings cap at values indicated by hor-
izontal dashed lines.

limits on SNDR tuning, µ→∞. In one case, we keep Pe constant but reduce
the number of bits per symbol b = log2M by ∆b = b1 − b2. This yields

ςP <

(
M2

M1

)3/2

= 2−
3
2∆b . (26)

Therefore, the power consumption of an infinitely flexible AFE decreases at
least exponentially with the difference in bits/symbol, or equivalently, with the
difference in raw uncoded bitrate. In another setting, we assume M is the same
between the two systems but target SER is increased from Pe,1 to Pe,2. Using

the bound Q(x) ≤ e−x2/2, we get

ςP ≤

[
Q−1

(
Pe,2/4

)
Q−1

(
Pe,1/4

)]3

≤

(
1− 1.66 log10 Pe,2

1− 1.66 log10 Pe,1

)3/2

. (27)

Assuming additionally that the order of magnitude ωe = log10 Pe of SER is
low enough, we get

ςP ≤

(
ωe,2

ωe,1

)3/2

. (28)
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In other words, we can say that the power consumption of the AFE with infinite
flexibility scales at least as O

(
ω3/2

)
.

For convenience of presenting numerical results, we define the percentage
savings of AFE power

∆P , 100(1− ςP) [%]. (29)

These savings, represented in Fig. 2 imply that, if presented with a choice of
whether to sacrifice bitrate or error rate in order to save power in the receiver,
we should in general opt for the former. Taking into account hardware design
limitations, substantial savings are achievable even when it is possible to scale
down the SNDR by as little as e.g. 3 dB; naturally, in order to harvest the
full potential of the savings, the AFE should be made as flexible as hardware
constraints permit.

In order to provide a completely fair comparison between the systems,
degradation of the performance and reduction of power consumption should
be considered jointly. A joint metric for performance and power consumption
is needed for this task, and one is readily found in the form of energy efficiency

ηAFE ,
Rb

PAFE

[bits/J]. (30)

In the case when constellation size M changes but error rate Pe stays fixed and
with unlimited flexibility, the ratio of the two efficiencies is

ηAFE,2

ηAFE,1

=
1

ςP

Rb,2

Rb,1

≥
(
M1 − 1

M2 − 1

)3/2
log2M2

log2M1
. (31)

From here we can conclude that, for a fixed Pe, ηAFE will always improve
if the size of the square QAM constellation is reduced. As a quick proof, we
consider the fact that for square QAM, M = 22k, k ∈ N and so for any k > 1
we have 22k − 1 > 1. This also means that for any k1 > k2, k1, k2 ∈ N it will
hold that (

22k1 − 1

22k2 − 1

)3/2
k2

k1
> 1. (32)

But the left hand side of (32) is equivalent to the right hand side of (31), which
means that

ηAFE,2

ηAFE,1

≥ 1 (33)

for M2 < M1.
Therefore, the smaller the QAM constellation, the more energy efficient the

AFE of the receiver. We note that, in the case when η is defined with respect
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to transmit signal power, it is a well known fact that the energy efficiency
increases with decreasing QAM constellation size [19]. With (33), however, we
prove that this energy efficiency property of QAM constellations extends to the
case of power consumption of analog receiver hardware.

4.3 Power- and energy-efficient AFEs through use of er-
ror control coding

Error control coding (ECC) techniques are used to improve reliability (error
rate performance) of communication systems when SNDR is kept fixed. Seen
from another angle, when the error rate is constrained to be the same for
uncoded and coded systems, coding can be used to improve the power efficiency
of communication systems as a consequence of relaxed requirements on SNDR.
Here we analyze the case when this potential for increased power efficiency is
used by the receiver (it can also be used by the transmitter, or be distributed
between the two).

Power efficiency gain of coded systems is usually expressed in terms of the
coding gain gc. By assuming that αIM3 � 1, we can approximate the PSD
of the sum of all impairments by additive white Gaussian noise PSD N0 and
define the ratio Eb/N0 of energy per bit Eb and N0. Given the Eb/N0 values
required to achieve the same error probability with and without coding, the
coding gain is defined as

gc ,
(Eb/N0)uncoded

(Eb/N0)
coded

. (34)

For finding the achievable AFE power reduction, we need to connect the
coding gain gc with the SNDR downscaling ςSNDR, where SNDR1 corresponds
to the uncoded system and SNDR2 to the coded one. We do this by assuming
that the system bandwidth is equal for both systems, which is a reasonable
assumption for all applications where bandwidth is a limited resource. Con-
sequently, using ECC will reduce spectral efficiency from ρuncoded to ρcoded =
rcρuncoded, where rc is the coding rate. We additionally use the fact that
Eb/N0 = SNDR/ρ to obtain

ςSNDR =
rc

gc
, (35)

and the associated achievable AFE power reduction (cf. (24)) is then given by

ςP, a < max

{(
rc

gc

)3/2

, µ−3/2

}
. (36)
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Figure 3: Savings in AFE power consumption coming from use of error
control coding. For limited flexibility AFEs, the savings cap at values
indicated by horizontal dashed lines.

The savings function (29) for systems using coding is illustrated in Fig. 3.
An important observation to make here is that a large portion of the power
savings (in absolute power terms) is harvested by low to intermediate coding
gains. Additional absolute power savings that are brought about by employing
stronger codes with larger coding gains are only marginal. This point is further
elaborated in the follow-up.

Numerical example

Here we provide a system design scenario that serves to illustrate the potential
savings of AFE power consumption when ECC is used, and also to give some
system-level design guidelines. We assume a system with passband bandwidth
of 40 MHz, BPSK modulation and single carrier transmission using raised
cosine pulses with roloff of 0.5 over a flat-faded channel. Total receiver power
(AFE + decoder) is calculated for three versions of the system: one uncoded
and two with different types of ECC. If coding is used, the AFE design is relaxed
accordingly. Power consumption values used here are ballpark quantities based
on actual hardware designs. For the decoders, the power numbers obtained
from the designs are modified to match the information bitrate (assuming that a
linear extrapolation of decoder power consumption is possible at lower bitrates)
and scaled to the same process (65 nm CMOS) and voltage (1.2 V).
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System parameters and calculated power numbers are listed out in Table 2.
The use of coding allows for relaxation of the AFE by making it noisier and less
linear, so its power consumption is ideally reduced as per (36). However, the
overhead in power consumption stemming from the channel decoders also needs
to be taken into account in order for the full story to be told. It can be seen that
in the case of the system using convolutional codes (CC), a massive reduction
of AFE power comes with a relatively small power overhead for the decoding.
Using turbo codes allows for further reductions of AFE power compared to the
CC case, but at a cost of a relatively high decoding power overhead, which is due
to the iterative nature of the turbo decoder. Dividing the information bitrate
with total power consumption yields the energy efficiency of the receiver, which
indicates that coding indeed enables an improvement of the receiver energy
efficiency, but the best strategy is to use “light” codes, with moderate coding
gains and simpler decoders.

We note that the relation between error control coding and overall energy
efficiency of the system is a long-standing research topic, examined both em-
pirically and theoretically in, e.g., [24] and [25]. However, these papers analyze
the combination of decoding power and transmit power, whereas we focus on
the total power of the receiver, that is, the sum of decoding power and power
consumed by supporting analog hardware. Here we have only touched upon
this topic of high practical relevance, and a more thorough analysis is left for
future work as it is out of the scope of this paper.

As for the energy efficiency of the AFE alone, it can be quickly shown that
it always improves with coding. This is done by setting up the ratio of energy
efficiencies (30) for the coded and uncoded system, which gives

ηcoded

ηuncoded

=
1

ςP

Rb,coded

Rb,uncoded

=
rc

ςP
>
g

3/2
c√
ςP

(37)

in the case of infinite AFE flexibility. But the obtained ratio is always > 1 for
gc > 1 (for a properly designed code operating at a large enough SNDR).

Overall, the results in this section lead to the conclusion that low power
applications that harness error control coding gains for the goal of relaxing
the receiver favor simple codes with modest coding gains and simpler decoders
over more powerful codes that ask for more involved decoding algorithms. An-
other, more general design guideline is that the power budget for the channel
decoder must fit into the margin opened up by relaxing the AFE if the goal
is to reduce the overall receiver power consumption. If we, on the other hand,
consider solely the AFE, it can be shown that coding always improves its energy
efficiency.
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Table 2: System parameters and theoretical power numbers for AFEs and
decoders in systems using error control coding

Inf.
bitrate
[Mbps]

Code rc

gc @
BER = 10−3

[dB]

PAFE
[mW]

Pdec
[mW]

PAFE +
Pdec
[mW]

Total
energy

efficiency
[Gbits/J]

26.7 uncoded - -
35

(ref.
[21])

0 35 0.76

13.35
convolutional

(7, 5)
1/2

3.1
(ref. [22])

4.26
0.56
(ref.
[22])

4.82 2.77

8.89 turbo
N = 6144

1/3
6.1

(ref. [23])
0.82

8.3
(ref.
[23])

9.12 0.96

4.4 Power-efficient AFEs through adaptation to fading

In this section, we assume a single carrier transmission over a frequency flat
wireless channel. Due to fading, received power pS will be time varying and
can be well described as a random process

pS(t) = βφ(t), (38)

where β subsumes the transmit power, transmit and receive antenna gains,
pathloss and large-scale fading, which are all assumed constant in this context.
Additionally, φ(t) = |h(t)|2, where h(t) is a zero-mean unit-variance complex
Gaussian random process, i.e. the small-scale fading adheres to the common
Rayleigh fading model. It is well known that φ(t) has an exponential pdf [20]

fΦ(φ) = e−φ, φ ≥ 0. (39)

A common design parameter for wireless systems is the outage probability
Ω, defined as the probability that the normalized fading power φ falls below
some minimum acceptable level φmin [20],

Ω ,
∫ φmin

0

fΦ(φ)dφ. (40)

In conjunction with φmin, an outage SNDR is usually defined, which represents
the minimum SNDR that provides acceptable performance. Using φmin and
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SNDRmin, a minimum (worst-case) thermal noise level is calculated as

pN, min =
βφmin

(1 + αIM3) SNDRmin

. (41)

Therefore, a minimum noise level pN, min and a minimum third-order distortion
pIM3, min need to be delivered by the AFE at least at the time instants where
φ(t) = φmin. For all practical purposes, however, AFEs are built so that they
deliver minimum noise and distortion all the time. Since the outage probability
Ω is typically chosen to be quite low (for example, on the order of 10−2), this
means that for the vast majority of time, SNDR delivered by these worst-case
designs will be much larger than SNDRmin and performance far better than
the minimum acceptable one.

Figure 4: Illustration of time-varying fading and system parameters for
the fading-adaptive front end design

Unless the variations in SNDR are leveraged for increasing throughput (via
adaptive modulation and coding), having the front end operate in a fixed man-
ner represents a waste of power. If a fixed throughput and error rate are
acceptable for a particular application, front end noise and linearity can be
tuned to track the variations of received power and maintain constant SNDR
(effectively “equalizing” the channel). As indicated by results of Section 3, such
an approach would result in a reduction of power consumed by the front end.
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Table 3: Noise tuning parameters and normalized power consumption of
fading-adaptive front ends with limited adaptation range

Fading level pN(t) PAFE(t)
PAFE, wc

Remark

φ(t) ≤ φmin pN, min = 1 Outage

φmin < φ(t) ≤ µφmin
βφ(t)

(1+αIM3)SNDRmin
<

[
φ(t)
φmin

]−3/2

SNDR = SNDRmin

φ(t) > µφmin µpN, min < µ−3/2 SNDR > SNDRmin

We now turn to quantifying this reduction. Firstly, in line with consid-
erations in Section 4.1, it is reasonable to assume that the noise level in an
adaptive front end can be tuned only in a limited range

(
pN, min, µpN, min

)
while being kept constant at the range boundaries for too small/large values
of φ(t). The same logic extends to adapting the distortion level by means
of tuning the nonlinearity, which yields the allowed range for the distortion
of
(
pIM3, min, µpIM3, min

)
. The adaptation rule for thermal noise in a fading-

adaptive front end with limited adaptation range is given in Table 3, with the
most important parameters of interest illustrated in Fig. 4. Using relations (4)
- (6), αIM3,1 = αIM3,2 and the set of constraints from the third row of Table 1,
these rules can be easily translated to feature circuit design parameters.

We further denote by PAFE, wc the power consumption of the non-adaptive,
worst-case front end architecture, designed to deliver pN, min and pIM3, min

throughout. Taking into account scaling law (18), the power consumption
of the adaptive front end PAFE(t) normalized by PAFE, wc depends on φ(t) and
is given in Table 3. From there, the expected value of power scaling ςP for
the adaptive front end can be calculated by assuming that φ(t) is an ergodic
process (so time averages can be substituted by ensamble averages) as

E {ςP} ≤
∫ φmin

0

e−φ dφ + φ
3/2
min

∫ µφmin

φmin

φ−3/2e−φ dφ+ µ−3/2

∫ ∞
µφmin

e−φ dφ,

(42)
which yields

E {ςP}continuous ≤ 1− e−φmin+ (43)

2

{
φmine

−φmin

(
1− 1
√
µ
e(1−µ)φmin

)
+ φ

3/2
min

[
Γ

(
1

2
, µφmin

)
− Γ

(
1

2
, φmin

)]}
+

µ−3/2e−µφmin ,

where Γ (a, x) denotes the upper incomplete gamma function [26].
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a) Average power savings of
continuous and two-step fading-
adaptive AFEs

b) Average power savings of
two-step interference-adaptive
AFEs

c) Example architecture for
two-step adaptation to fading.
Front end 1 has low noise figure
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noise figure and low IP3.

d) Example architecture for
two-step adaptation to interfer-
ence. Front end 1 has high IP3;
front end 2 low IP3.

Figure 5: Theoretical power savings and conceptual illustrations of
architectures for adaptive receivers

Achieving continuous tuning of noise and linearity can be challenging in
practical implementations. Apart from adapting to the environment, the issue
of random PVT (process, voltage, temperature) variations also needs to be
accounted for. There exist solutions for jointly solving these practical prob-
lems, such as the one presented in [10], where LNAs with orthogonally tunable
noise and linearity are combined with a simple online optimization algorithm,
yielding substantial power savings. An alternative way of tackling this issue
is to form a bank of front ends that are optimally designed for different noise
and linearity settings. During operation, the receiver would switch between
different front ends based on the measured received power, keeping one front
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end active and switching off the rest. In the most basic case, such a bank would
consist of only two front ends. A switching rule for this two-step adaptive front
end that guarantees SNDR ≥ SNDRmin can be defined as

pN =

{
pN, min, φ(t) ≤ µφmin,

µpN, min, φ(t) > µφmin.
(44)

Average power downscaling for the two-step front end is found to be

E {ςP}two-step ≤ 1−
(

1− µ−3/2
)
e−µφmin . (45)

Average power scaling for flexible and two-step front ends is converted to
average savings as per (29) and shown in Fig. 5a). When the tuning range µ is
small, normalized signal power φ(t) is either in outage or above µφ(t) for most
of the time, so continuous and two-step front ends have similar power savings.
As the tuning range increases, more power can be saved, but in the case of
large outage probability, φ(t) is rarely larger than µφ(t). This means that in
the case of the two-step front end, the noisy, nonlinear, low power front end
rarely gets activated and the power savings are significantly lower compared
to continuous adaptation. In any case, the obtained savings are substantial
5, which should serve as a motivation for implementing fading-adaptive front
ends in practice. In the case of two-step adaptation, such implementations can
have an appealing simplicity. As means of illustration, we provide a high-level
conceptual sketch of how they might look like, shown in Fig. 5c). Under the
condition that the channel select filter removes most of the OOB interference,
the wanted signal power can be measured in the baseband by a simple power
detector. This information, properly calibrated to account for in-band gains,
can be used by a logic circuit which will drive the switching between the two
front ends.

4.5 Power-efficient AFEs through adaptation to out-of-
band interference

The analysis of practical implications of the AFE power scaling laws is con-
cluded by looking into how much power can be saved if the AFE adapts its lin-
earity to the OOB interferer level. It is assumed that the wanted signal, whose
level does not change, is accompanied by two interferers with total power pI and
equal, slowly time varying amplitudes, so that they can be well approximated
by two tones.

5 We reiterate that the front end power can be scaled down by at least the values given
by the right hand side of (43) and (45), i.e. Fig. 5a) illustrates a lower bound on possible
savings!
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We analyze a receiver structure that is able to adjust its linearity in two
discrete steps and in doing so, adapt to the fluctuating interference level. To
this end, suppose that we have two analog front end designs at our disposal.
One of them is designed for the worst-case interference level pI, wc (a value
commonly prescribed in communication standards) and its linearity is equal to
pIIP3,wc. On the other hand, the IP3 of the other design has been degraded

down to the limits of implementability and is equal to pIIP3,wc/
√
µ 6. Otherwise,

the bandwidth and noise figure of the two front ends are the same.
The task of the receiver is to track the interference power and switch be-

tween the two front ends so that a minimum performance requirement is always
satisfied, SNDR ≥ SNDRmin, or equivalently, that the intermodulation distor-
tion is always kept below a certain level:

pIM3 ≤ pIM3,wc =
p3

I, wc

p2
IIP3,wc

. (46)

Condition (46) is met by a receiver which will tune its IP3 by switching between
the described front ends in line with the following rule:

pIIP3 =

{
pIIP3,wc,

1
3
√
µpI, wc < pI ≤ pI, wc,

1√
µpIIP3,wc, pI ≤ 1

3
√
µpI, wc,

(47)

with one front end with desired linearity being on and the other one switched
off.

In order to characterize average power savings, it is not necessary to have
the knowledge of the actual distribution of pI. It is sufficient to assume that
the probability of pI > pI, wc is negligible (which is why this case is not covered
by the adaptation rule), and that only the probability δ of interference being
“high” is known, i.e.

Pr

{
1
3
√
µ
pI, wc < pI ≤ pI, wc

}
= δ, (48)

Pr

{
pI ≤

1
3
√
µ
pI, wc

}
= 1− δ.

As in the preceding section, we normalize the power consumption of the adap-
tive receiver with the power consumed by a non-adaptive receiver that utilizes
only the high linearity front end. By using (19), we obtain

PAFE, adaptive

PAFE, fix
=

{
1, 1

3
√
µpI, wc < pI ≤ pI, wc,

1√
µ , pI ≤ 1

3
√
µpI, wc,

(49)

6 This value is chosen in line with considerations from Section 4.1 and provides a fair com-
parison with other results in this section.
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which, combined with (48), yields

E {ςP} = δ +
1− δ
√
µ
. (50)

Average power savings of such a receiver are shown in Fig. 5b). For example,
given that µ = 10 dB, the range of OOB interferer values for which the high
linearity AFE is activated (worst-case interference) is (0.46 pI, wc, pI, wc). If
the interference power is inside this range for 10% of the time, the low linearity
AFE would be used for the remaining 90% of the time and the average power
savings compared to a non-adaptive design are 60%. Taking the ballpark power
numbers for a front end from [21], this signifies a reduction of average front end
power from 35 mW to 14 mW. Paper [21] also suggests a practical implemen-
tation of the interference sensing circuit, consisting of a passband filter and an
energy detector. We include this sensor in the high-level conceptual illustration
of an interference-adaptive receiver, shown in Fig. 5d). The sensor from [21]
consumes 10 mW, which combined with the reduced average AFE power con-
sumption (and neglecting the consumption of the logic circuitry) yields 24 mW,
which is still 30% less than the power consumed by the non-adaptive receiver.

5 Conclusion

Based on a known result from circuit theory that has also been verified in prac-
tice, we determine scaling laws between performance and power consumption of
an analog front end (AFE). The power consumption of the AFE is found to scale

as SIR−3/2 and at least as SNDR3/2. These simple scaling laws can be used
in a wide variety of communication-theoretic contexts, and some of the most
important ones are explored. Namely, the power-SNR scaling law is extended
to find the scaling laws between AFE power consumption and QAM constella-
tion size, symbol error probability for QAM and error control coding gain and
rate. Some general rules for low-power system design can be drawn from these
laws: one example rule is that low-power applications favor “light” channel
codes with moderate coding gains (such as simple convolutional codes) over
more powerful ones, like turbo codes. Moreover, we derive laws that describe
how front end power scales with environment parameters when performance is
kept constant. Combined with fading and out-of-band blocker statistics, this
enables us to determine theoretical average power savings of AFEs that adapt
to the environment. The impressive results (about one order of magnitude re-
duction of power consumption in some cases) indicate that designing the front
end so that it adapts to the environment is definitely a worthwhile effort.
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When are Low Resolution ADCs

Energy Efficient in Massive MIMO?

Massive MIMO (MaMI) is often promoted as a technology that will en-

able the use of low-quality, cheap hardware. One particular component

that has been in the focus of MaMI-related research is the analog-to-

digital converter (ADC), and use of very low resolution ADCs has been

proposed. However, studies about whether this strategy is justified from

an energy-efficiency point of view have largely been inconclusive. In this

work, we choose system setup and models that reflect the hardware imple-

mentation reality as close as possible and perform a parametric analysis of

uplink energy efficiency as a function of ADC resolution. If antenna scaling

and decrease of ADC resolution are considered independently, the energy

efficiency is shown to be maximized at intermediate ADC resolutions, typ-

ically in the range of 4 - 8 bits. Moreover, optimal ADC resolution does

not decrease when more antennas are used except in some specific cases,

and when it does, the decrease is approximately logarithmic in the num-

ber of antennas. In the case when antenna scaling and ADC degradation

are coupled through a constant-performance constraint, it is shown that

energy efficiency cannot improve with reduced bit resolution unless the

power consumption of blocks other than ADCs scales down with the up-

scaling of antennas at a fast enough rate. Altogether it is concluded that

in MaMI, intermediate ADC resolutions are optimal in energy efficiency

sense, and, except in some special cases, scaling up the antennas to very

large numbers does not change this conclusion.

c©2017 IEEE. Reprinted, with permission, from

Muris Sarajlić, Liang Liu and Ove Edfors,
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1 Introduction

Wireless engineers and researchers are increasingly recognizing the potential
of equipping base stations with a large number of antennas. Introduced in [1]
and most often referred to as Massive MIMO (MaMI), this technique promises
substantial increase in system throughput while simultaneously allowing for
reduced radiated power both at the base station and at user terminals [2]. An-
other revolutionary benefit of MaMI is that the use of simple linear processing
in the uplink and downlink becomes asymptotically optimal [3].

MaMI also offers resilience to hardware impairments [4] - [6] and this fea-
ture indicates that the quality of the hardware can be reduced as the number
of antennas is upscaled. A decrease in hardware quality can be utilized to
reduce the power consumption of individual hardware components, since per-
formance and power consumption are tightly connected. However, given that
the number of antennas and corresponding RF chains grows, the overall power
consumption (calculated by taking all hardware components into account) may
decrease, stay the same, or grow, all depending on the exact relation between
the performance and power consumption of individual components. A general
overview of hardware scaling laws in MaMI is given in [6].

One hardware component whose function in MaMI has attracted particular
attention is the analog-to-digital converter (ADC). Such interest is motivated
by the fact that the power consumption of ADCs grows at least linearly with
the sampling rate [26]. Therefore, ADCs might form a power consumption
bottleneck when employed in MaMI systems with large bandwidth. However,
a reduction of ADC power consumption could be achieved by reducing bit res-
olution. Though doing so would introduce additional distortion in the system,
the aforementioned resilience of MaMI to hardware impairments means that
this distortion is anulled. Moreover, reduction in the quality of the ADCs is
followed by a reduction in their individual cost, potentially leading to cheaper
base station receiver systems if the benefits of MaMI are leveraged in the right
way. Following this baseline motivation, some analyses of the impact of reduced
ADC resolution on the performance of MaMI have been performed, a signifi-
cant portion of which focuses on the extreme case of using 1 bit quantization [7]
- [13].

It is not clear, however, whether choosing ADCs with extremely low bit res-
olutions is justified from the point of view of overall energy efficiency of MaMI,
defined as the ratio of system sumrate and power consumption. Moreover, anal-
yses of this important problem are scarce and somewhat contradictory. The
issue is partially analyzed in a generalized setting in [14], where energy efficiency
of a general MIMO receiver is maximized by choosing the optimal distribution
of bit resolutions across receiver chains, in combination with antenna selection.
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For the chosen system setup, the average of optimal bit resolutions decreases
as the number of antennas scales up at low SNRs, while remaining constant at
high SNR. Furthermore, it is shown that with a large number of antennas, very
low average bit resolution can be used at low SNRs (approximately 1.5 bits at
-30 dB of SNR). The connection between bit resolution and energy efficiency
in MaMI is briefly mentioned in [13], where the study concludes that energy
efficiency is maximized when 1-bit ADCs are used. In stark contrast to these
two works, the analysis in [15] concludes that using very low bit resolutions is
not optimal in an energy efficiency sense, and that 4 - 5 bits of ADC resolution
are optimal.

Obviously, differing assumptions on system setup have inevitably led to
variation in conclusions concerning the connection between ADC resolution and
energy efficiency. Hence, there is a need for a structured parametric analysis
that will help reveal the underlying effects that determine the energy efficiency
aspects of ADCs in MaMI, in connection to the most important system param-
eters (number of antennas, number of users, SNR, etc.). Moreover, such an
analysis should employ models of hardware behavior that are realistic enough,
which would help hardware and system designers reach a consensus on the
design goals for ADCs to be used in MaMI base stations.

This contribution, which is an extension of the work presented in [16], em-
ploys such an analysis, offering answers to following important questions:

• Under which conditions does a reduction of ADC resolution lead to im-
proved energy efficiency of the receiver system in the uplink, and which
parameters play a decisive role here?

• In particular, will increasing the number of antennas make low ADC
resolutions more energy efficient?

Principal findings of the work show that

• The value of ADC resolution that maximizes energy efficiency primarily
depends on how much power is consumed by other blocks in the receiver.
Optimal bit resolution increases as other blocks become more power con-
suming;

• As the number of antennas increases, the behavior of optimal ADC res-
olution is determined by what happens with the number of users. If the
number of users is kept constant, then the optimal resolution decreases
with the increase of number of antennas, and this decrease is slow (ap-
proximately logarithmic). If the number of users increases linearly with
antennas, optimal resolution stays constant or even grows, depending on
which linear processing scheme is used;
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• Presence of a poorly filtered out-of-band interferer can drastically affect
the choice of optimal resolution. Namely, for each 10 dB increase of
interference power, optimal resolution increases by approximately one
bit;

• If the antennas are scaled up and simultaneously the quality of all the
receiver hardware (including ADCs) is degraded, a decrease of bit resolu-
tion will not yield an improvement of energy efficiency unless the power
consumption of all receiver blocks other than ADCs is scaled down at a
fast enough rate.

As pointed out previously, an important feature of this analysis is that
the models and system setup are chosen so they are as close as possible to
hardware implementation reality. In particular, the effect of automatic gain
control (AGC) and its dependence on bit resolution are explicitly modeled;
power consumption model for the ADC is based on results from circuit theory;
and the impact of out-of-band interference on the performance is taken into
account.

2 Preliminaries: ADC and AGC

2.1 ADC and AGC: principles of operation and perfor-
mance measures

This work considers scalar Nyquist-rate ADCs having bit resolution b and per-
forming uniform quantization with 2b quantizer output levels. Uniform quan-
tization was chosen because it is commonly encountered in practical ADC de-
signs.

Quantization Q(y) is a nonlinear mapping of y ∈ R to a discrete set that
results in additive distortion

q = Q(y)− y. (1)

The nature of distortion q can be described as twofold, depending on the re-
lation between the magnitude of y and an overload level Yol: if |y| > Yol, we
say that the signal is “clipped” and consequently, q is referred to as clipping or
overload distortion with variance σ2

ol. On the other hand, if |y| ≤ Yol, distortion
q is referred to as granular noise.

Assume that signal y is Gaussian and that its dynamic range is set such that
the overload distortion can be neglected and standard deviation of y is larger
than the width of one quantization bin. For a uniform quantizer operating
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on such input y, distortion q can be well approximated as being uniformly
distributed, uncorrelated with the input and white [18], with

E{q2} ≈ 1

3
Y 2

ol 2−2b , σ2
PQN. (2)

This model is usually referred to as the pseudoquantization noise (PQN) model.
In practical systems, the dynamic range of input signal y is typically ad-

justed by an automatic gain control (AGC) variable gain amplifier that pre-
cedes the ADC. A commonly used design parameter for the AGC is input
backoff µ = Y 2

ol/E{y2}, and various performance criteria are used for deter-
mining values of µ, with practical solutions often targeting to minimize the
effects of overload distortion. In this work, µ is set so that the deviation
δσ2

PQN = |E{q2}− σ2
PQN|/σ2

PQN is equal to some predefined small value (which
can typically be -10 to -20 dB). With µ set in such a way, all the conditions
for applying the PQN model will be satisfied. The resulting µ∗(b), obtained
numerically, is approximated by a chord as

µ∗(b) ≈ µ∗l (b) = θ0 + θ1b. (3)

Deviation δσ2
PQN and input-distortion crosscorrelation

ρyq = E{yq}/
(√

E{y2}
√
E{q2}

)
were obtained by simulations for b ∈ [1, 25] and µ∗l (b) and target δσ2

PQN of -13
dB. The results are shown in Fig. 1 and illustrate how the PQN model applies
well even for very low bit resolutions (1 bit) if AGC backoff is set properly.

Finally, we make a brief comparison of the PQN model with another com-
monly used signal model for ADCs. This model, referred to as additive quan-
tization noise model (AQNM), is employed in [13], among other works. It is
derived under the assumption that the ADC - uniform or nonuniform - is de-
signed to be optimal in MMSE sense. MMSE-optimal ADCs always have a
nonzero correlation between the input and noise [17]. The key step in deriving
the AQNM is then the application of the Bussgang theorem, which results in a
linear model with additive noise that is uncorrelated with the input, but with
a compressive gain factor that effectively depends on input-noise correlation.
Since the ADC considered in this work is designed based on criteria other than
MMSE, the input signal and noise can still safely be assumed to be uncorre-
lated while there is no compressive gain factor involved, and this helps reduce
the computational clutter in the analysis. However, a comparison of the results
from works employing AQNM and nonuniform ADCs and a matching subset
of results from this work reveals that there are no significant differences in the
fundamental conclusions.
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Figure 1: Left: input backoff µ with target deviation from PQN model
of -13 dB. Right: deviation from PQN model and input-distortion cor-
relation when linear approximation µ∗l is used.

2.2 ADC power consumption modeling

When it comes to choosing a model for the power consumption of the ADCs,
we follow the general theme of this work - adopting system models that are
relevant in practice. To this end, we assume a particular type of Nyquist-rate
ADC that is likely to be used in practical base station implementations. We
then perform a minor modification of an existing hardware-theoretic model for
the power consumption of the chosen ADC type, and use this modified model
as a realistic and representative model for the ADC power consumption.

The ADC type chosen for this purpose is the pipeline ADC. Pipeline ADCs
are typically designed for intermediate bit resolutions and medium to high
sampling rates fs, with designs generally having power consumption that is
comparatively superior to other types of ADCs when observed over a wide range
of operating resolutions [21], [22], [23]. Moreover, a comparison of theoretical
bounds on PADC between pipeline and other common types of Nyquist-rate
ADCs - namely, flash and SAR ADCs - in [24] and [25] reveals that 1) flash
ADCs have PADC that can be orders of magnitude higher than that of pipeline
ADCs, and 2) power consumption of SAR ADCs follows the same functional
trends as pipeline, while pipeline has overall lower PADC. These facts further
corroborate the motivation to base the modeling of PADC on pipeline ADCs.

The basis for the model used here is a theoretical bound on power dissipa-
tion of pipeline ADCs presented in [24]. Figure 2 gives a comparison between
this bound and pipeline ADC designs collected in [26], for the same values
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of effective number of bits (ENOB). When it comes to the designs, ENOB is
calculated from the measured SNDR, and for the bound, ENOB is assumed to
be equal to b− 0.5. As the figure clearly shows, functional dependency in the
bound matches the trend exemplified by state-of-the-art pipeline architectures.
Notwithstanding, there is a gap (about two orders of magnitude wide) between
the bound and the designs. Based on this observation, we modify the bound by
applying a multiplicative factor Ω and use this modification as an estimate of
the power consumption of state-of-the-art ADC designs, as illustrated. The
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Figure 2: ADC power consumption model, compared with actual
pipeline ADC designs.

theoretical ADC power consumption model is therefore a modified version of
the bound from [24], formulated as

P th
ADC = Ω

(
c1b+ c2b

2 + c322b + c4b2
2b
)
fs, (4)

where factors c1 through c4 are given for completeness here as c1 = 2CminV
2
FS,

c2 = 12 ln 2 VeffVFSCmin, c3 = 216kT , c4 = 432 ln 2 kTVeff/VFS. In the preced-
ing expressions, Veff is the effective voltage of the CMOS transistor (typically
80 - 100 mV), VFS the full-scale range of the ADC, Cmin the minimum input
capacitance of an inverter (CMOS process dependent, about 1 fF for 90 nm
CMOS) and k and T are Boltzmann’s constant and temperature in Kelvins,
respectively. An important feature of this model is that the behavior of power
consumption for low and intermediate bit resolutions is determined by CMOS
process size through Cmin; the relation between PADC and b in this region
is approximately quadratic. At higher bit resolutions, functional properties of
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power consumption are limited by thermal noise, and in this region of operation
PADC is superexponential in b.

In addition to the model based on circuit theory, we also present a model
for PADC based on the ADC figure of merit (FOM):

PFOM
ADC = FOM const2

2bfs, (5)

with FOM const that is extracted from state-of-the-art designs and assumed to
be independent of b. This type of model is often employed in existing works
on ADCs in MaMI, e.g. [15]. FOM-based model is also illustrated in Fig. 2. It
is introduced in this work on the basis of its popularity and for the purpose of
comparison with P th

ADC; since the latter is based on circuit theory, we consider
it closer to reality and it is given larger weight when conclusions are drawn.

Finally, we note that in both models, PADC is linear in sampling rate fs.
The same trend is observed in actual ADC designs [26] up to very high sampling
rates (on the order of 400 - 500 MHz).

3 System model

As an initial step in the energy efficiency analysis, we formulate the system
model of the MaMI uplink that explicitly includes models of AGCs and ADCs.
System setup assumed in this work is the following:

• Uplink of a single-cell MaMi system with M antennas and K single-
antenna users;

• Narrowband, single-carrier transmission over bandwidth B. The system
model can also represent one subcarrier in a multicarrier system, under
the assumption that the quantization noise between different subcarriers
is independent and has identical properties, and additionally that the
input to the ADC and quantization noise are uncorrelated, as postulated
by the ADC signal model;

• i.i.d. Rayleigh block fading over T symbols;

• Least-squares/maximum likelihood channel estimation performed using
spatially orthogonal pilot sequences of length τ in the uplink. Although
suboptimal, ML channel estimation does not require any knowledge of
channel statistics and is therefore favorable from the point of view of
implementation complexity;

• Linear receiver processing using estimated channels - maximum ratio
combining (MRC) and zero-forcing (ZF) receivers are considered.
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An illustration of the uplink system model, where AGCs precede ADCs and
ADCs are substituted by quantization noise sources based on the PQN, is given
in Fig. 3.

Figure 3: Uplink system model with quantization noise

The PQN model is applied based on the assumption that the input signal
to the ADCs is Gaussian, which holds in the case when the number of users is
large or SNR is low. The complex baseband signal at the input of the digital
processing unit is represented as

z =
√
pu H̃x+ ñ+ q, (6)

where pu is the uplink transmit power, x is the vector of user symbols with
E[xxH ] = IK and q is the quantization noise vector. Furthermore, the com-

posite channel is represented by the matrix H̃ = Γ 1/2HD1/2, where D1/2 =
diag

(√
β1 . . .

√
βK
)

is a diagonal matrix of effective amplitude path gains that
subsumes the effects of geometric pathloss, large scale fading (LSF) and uplink
power control; H is the standard iid small-scale fading (SSF) matrix with unit
variance elements; and Γ 1/2 = diag

(√
γ1 . . .

√
γM
)

is the diagonal matrix of
amplitude AGC gains. Individual AGC power gains are formed by combin-
ing the average received signal power at the input of the AGC with a proper
backoff:

γm =
2

µ∗lm

(
pu
∑K
k=1 βk + pn + pi

) . (7)

The term pi in (7) is the average power of an out-of-band (OOB) interfering
signal that is assumed to be present at the input of the AGC due to limited
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capabilities of analog filtering. The OOB interference signal is typically com-
pletely removed by digital baseband filter and therefore does not form a part
of the digital baseband signal. However, its presence at the AGC input alters
the AGC gain and consequently reduces the dynamic range of the useful signal
at the ADC input. This can drastically affect the performance of the ADC, a
fact that to the best of our knowledge has not been considered in traditional
MaMI system level analyses focusing on the impact of ADCs, although it is all
too familiar to ADC hardware designers. Lastly, ñ = Γ 1/2n, where n is the
thermal noise vector with covariance E[nnH ] = pnIM .

Pilot sequences for channel estimation are contained in matrix Φ =
√
puτΨ ,

with ΨΨH = IK×K ; Φ is optimal for least-squares pilot-based channel estima-

tion [19]. The least-squares channel estimate of H̃ is of the form
̂̃
H = H̃+Ĥε,

with the impact of thermal and quantization noise modeled by Ĥε. Channel
estimates are used to formulate linear processing matrices A for MRC and ZF,
which can be split into a sum of two terms: one based on the actual channel
and the other an error term. The split is exact for MRC and approximate
for ZF, where the approximation holds if the SNR is sufficiently high [20]:

ÂMRC = AMRC +AMRC,ε = H̃+Ĥε, ÂZF ≈ AZF +AZF,ε = H̃†−H̃†ĤH
ε H̃

†.

Finally, the estimate of user symbols is obtained as x̂ = ÂHz.
The decomposition of Â allows for splitting the estimate of xk, pertaining

to the kth user, into a wanted signal term and several noise terms:

x̂k =
√
puakh̃kxk︸ ︷︷ ︸
x
(w)
k

+
√
pu

K∑
j=1,j 6=k

aHk h̃jxj︸ ︷︷ ︸
wIUI

+akñ︸︷︷︸
wn

+ akq︸︷︷︸
wq

+
√
pua

H
k,εH̃x︸ ︷︷ ︸

wIUI,ε

(8)

+ aHk,εñ︸ ︷︷ ︸
wn,ε

+aHk,εq︸ ︷︷ ︸
wq,ε

,

where ak, ak,ε and h̃k are kth columns ofA, Aε and H̃, respectively. Note that
in (8) we have implicitly defined the noise/interference terms, with subscripts
IUI, n and q denoting interuser interference, thermal and quantization noise,
respectively. Additionally, subscript ε denotes that a particular term originated
from imperfect CSI knowledge, and with perfect CSI, these terms are zero.
Finally, assuming that M is large, the central limit theorem applies and all
noise terms can be assumed zero-mean Gaussian.
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4 System sumrate

With the system model well established and described, we move on to the next
step of the energy efficiency analysis, namely, a study of uplink performance as
function of the main system parameters. The metric used for quantifying the
performance is the uplink sumrate.

4.1 Calculating the Sumrate

Using the post-processing noise and interference terms defined in (8), the signal-
to-interference-and-thermal-and-quantization-noise-ratio (SINQR) for the kth
user can be calculated as

SINQRk =
E
{
|x(w)
k |2

}
E {|wIUI|2 + |wn|2 + |wq|2 + |wIUI,ε|2 + |wn,ε|2 + |wq,ε|2}

. (9)

A simple summing up of the powers of noise terms in the denominator of (9)
is possible because the PQN model applies, so data and thermal noise become
uncorrelated with quantization noise. As the next step in sumrate calculation,
we assume that bit resolution and AGC gain are same across all receiver chains,
so bm = b and γm = γ, and that quantization noise is uncorrelated across
receiver chains. The assumption of no correlation across chains applies in all
cases except when the channel is very highly correlated and pre-processing SNR
is extremely high, but we do not consider these particular cases since they
are not of practical interest. Finally, ergodic per-user rates Rk are calculated
by averaging the per-block-and-user rates log2 (1 + SINQRk) over small-scale
fading realizations H. Standard application of Jensen’s inequality and results
from random matrix theory for central complex Wishart matrices [2], [27] yield

Rk = EH {log2 (1 + SINQRk)} ≥ log2

1 +
1

EH
{

1
SINQRk

}
 (10)

with

EH
{

1

SINQRk

}
(11)

=
1

pu
EH

{
E
{
|wIUI|2

}
eff

+ E
{
|wn|2

}
eff

+ E
{
|wq|2

}
eff

+ E
{
|wIUI,ε|2

}
eff

+ E
{
|wn,ε|2

}
eff

+ E
{
|wq,ε|2

}
eff

}
.

Individual terms under the EH operator in (11) are given in Table 1. They
represent the effective contributions of interuser interference, thermal noise,
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etc. after linear processing. Some of these terms are (tightly) bounded by
simpler ones owing to the fact thatM is large, with relation operators indicating
whether the expression is exact or a bound.

Very importantly for this analysis, the effects of quantization noise in Table
1 are represented by the effective quantization noise term (cf. (2), (3) and (7))

p̃q =
1

3

(
pu

K∑
k=1

βk + pn + pi

)
(θ0 + θ1b)2

−2b. (12)

Consequently, effective quantization noise grows linearly with number of users,
thermal noise and OOB interference power.

Since the bound in (10) and bounds in Table 1 have conflicting relation
operators, per-user rates are expressed as approximations, which are very tight
at large M :

RMRC, ZF
k ≈ log2

(
1 + SINQRMRC, ZF

erg,k

)
, (13)

where ergodic SINQR for MRC and ZF is given in Table 2. Finally, sumrate
is calculated as

R =
T − τ
T

K∑
k=1

Rk [bps/Hz]. (14)

The performance model given by (14) aims to give a concise description of
how system sumrate depends on the most relevant parameters. It is also open
to further simplifications, if those are needed for the sake of clarity. One such
simplification is the assumption that all effective amplitude path gains βk are
equal to 1; this effectively means that perfect power control is performed in
the uplink. Since it is reasonable to assume that some form of uplink power
control will be performed in an actual MaMI system as means of boosting the
performance, we apply the perfect power control assumption throughout the
analysis that follows.
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Figure 4: Ergodic sumrate as a function of SNR and ADC resolu-
tion b, simulated and theoretical. λs = 0.1 [users/antenna], λt = 0.01
[users/block], τ = K.

4.2 Model validation and some preliminary observations
regarding sumrate

The proposed model for system sumrate was compared to simulated ergodic
sumrate. In order to reduce the dimensionality of the analysis, two auxiliary
parameters were introduced, namely spatial loading, λs = K/M and temporal
loading, λt = K/T of the system. System parameters of primary interest are
ADC resolution b, number of antennas M and preprocessing SNR, defined as
SNR = pu/pn. In all simulations, SNR and bit resolution during training and
data transmission phases are set to be the same.

Results are shown in Figure 4 and show overall good agreement between
theory and simulations. Interestingly, only 5 - 7 bits of ADC resolution in the
receiver are sufficient to achieve almost full uplink sumrate; this observation is
in line with some recent research [28]. It can be observed that this “saturation
resolution” is not affected by SNR in the case of MRC, whereas it increases
with SNR in the case of ZF. Moreover, it appears to be independent of M when
MRC is used and to increase with M when ZF is used. Independence of the
saturation point from SNR in the MRC case implies that IUI dominates over
thermal noise for the chosen SNRs, and thus the sumrate is primarily influenced
by the relation between IUI and quantization noise. On the other hand, in the
ZF case, IUI is zero (if we neglect the interference leakage term due to use of
imperfect CSI), so the interplay between thermal noise and quantization noise
determines the behavior of the sumrate. The dependence of the saturation
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resolution on SNR and M will be rigorously analyzed in the upcoming sections
of the paper.

5 Energy efficiency analysis

Analysis of the impact of ADC resolution on performance (here represented by
sumrate) tells only a part of the whole story. Namely, reduced ADC resolution
will also lead to reduced power consumption of the entire system, and a com-
prehensive analysis needs to take both performance and power consumption
into account through a scalar metric. A convenient metric is energy efficiency,
which is calculated as

η = BR/Ptot [bits/J ], (15)

where B is system bandwidth, R is the uplink sumrate, calculated as per (14),
and Ptot is total power consumption of the base station receiver. Note that
here the focus is on the energy efficiency of the base station and the uplink
power consumption of the users is left out of the analysis.

A power consumption model for the ADCs was already chosen in Section
2.2. What is left to do in order to obtain the complete Ptot is to model the
power consumption of other receiver blocks, both analog and digital. Finding a
general power consumption model that is both tractable and close to hardware
design reality proves to be a challenging task, due to wide variations between
system architectures, various techniques of practical implementation and a lack
of unifying theoretical analysis. Therefore, a parametric approach is adopted
in modeling Ptot.

To this end, power consumption of all the blocks excluding ADCs, denoted
by Prest, is normalized by PADC, ref - ADC power consumption calculated at a
reference bit resolution bref - summed over all receiver chains. This normalized
version of Prest, denoted as

α =
Prest

2MPADC, ref
(16)

is hereafter referred to as the architecture parameter. The primary goal with
introducing the architecture parameter is to enable a parameterized analysis
that covers a wide range of system architectures. It is given in a normalized
form in order to better illustrate how the power consumption of the ADCs
relates to the power consumption of the rest of the blocks, something that
would be harder to see if we were working with Prest given in absolute terms.
Note that the choice of reference bit resolution bref is arbitrary.



When are Low Resolution ADCs Energy Efficient in Massive MIMO? 117

ADC resolution
2 4 6 8 10 12 14

E
n
er
g
y
effi

ci
en
cy

[b
it
s/
J
ou

le
]

10
4

10
6

10
8

10
10

10
12

MRC

SNR = 10 dB
SNR = -10 dB

α = 1, 10, 102, 103, 104, 105, 106, 107

ADC resolution

2 4 6 8 10 12 14

10
4

10
6

10
8

10
10

10
12

ZF

Figure 5: Energy efficiency as a function of ADC resolution, SNR and
architecture parameter. Channel estimation is performed using τ = K.
M = 100, λs = 0.1 [users/antenna] and λt = 0.01 [users/block]. bref = 2,
Ω = 100.

Total power consumption of the base station receiver in the uplink is there-
fore calculated as

Ptot = 2MPADC + Prest = 2M (PADC + αPADC, ref) [W ]. (17)

The energy efficiency function η, calculated using (14) and (15) is plotted
in Fig. 5, with the goal of gaining an initial insight in the behavior of η in a
subspace of system parameters: ADC resolution b, SNR and architecture pa-
rameter α. Processing using imperfect CSI is taken into account. Additionally,
it was taken that Ω = 100 in the ADC power consumption model, and bref was
set to be equal to 2.

The results show a general trend of degradation of η at very low and very
high bit resolutions for α = 10 and larger. Degradation at low b is due to sum-
rate being degraded when extremely low bit resolutions are used: on the other
hand, η degrades at high bit resolutions due to the increase of PADC. Optimal
bit resolutions have been obtained using a simple linear search: for most of the
cases, intermediate bit resolutions (4 - 10 bits) are optimal. Generally, as Prest

becomes comparatively closer to power consumption of all the ADCs, lower
ADC resolutions should be chosen to optimize total energy efficiency.

The initial results shown in Fig. 5 call for a more thorough and rigorous
analysis of the dependence of η on b over the subspace of the most important
system parameters - M , SNR, α and K. Two different system setups are of
particular interest:
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• M scales up, but there are no constraints on the effective contribution of
thermal and quantization noise post-processing, i.e. the quality of hard-
ware is not directly coupled with the increase of the number of antennas;

• Antennas scale up and the hardware quality is intentionally degraded so
that the effective influence of thermal and quantization noise before and
after scaling remains the same.

Both of the described setups are commonly encountered in existing work an-
alyzing different aspects of low-resolution ADCs in MaMI. The first setup is
employed in works that aim to find particular values of ADC resolution that
either give a satisfying performance or maximize energy efficiency, such as [15].
On the other hand, the second setup is used in works that look into how ADC
resolution (or hardware quality in general) scales with antennas when perfor-
mance is fixed, e.g. [6]. As pointed out before, here we build upon this existing
body of work by covering a wider range of system parameters with the aim of
providing a more general analysis.

5.1 Hardware quality not coupled to scaling of M

In this section, we analyze how the optimal bit resolution in energy efficiency
sense,

bopt = argmax
b

η, (18)

behaves as a function of M , SNR, α and K. Although bopt can be found
numerically, such an approach does not provide much insight in its behavior.
Rather, we choose to use the properties of constituent functions of η - sumrate
R and power consumption Ptot - to find a tight approximation of η. By way of
a rigorous mathematical analysis of this approximation, we find the lower and
upper bounds of its optimum and in this way provide some valuable insights
on the behavior of the optimum of the original energy efficiency function. The
bounding approach will also yield some interesting side results on the behavior
of sumrate as a function of ADC resolution (hints of which were seen in Section
4.2), which can serve as system design guidelines on their own.

General assumptions: we assume the variable b to be continuous instead
of discrete. Additionally, we consider that CSI is perfectly known, so all terms
in sumrate R that stem from channel estimation errors are 0. The perfect
CSI assumption is introduced for the sake of improving the tractability of
the analysis, and as it will soon be shown, the observations made using this
assumption are valid also in the case of imperfect CSI.
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Given these simplifying assumptions, the lower bound on sumrates for MRC
and ZF is given compactly as

RMRC, ZF > R̃MRC, ZF
b , K log2 SINQRMRC, ZF

pCSI (M,K, pu, pn, pi, b), (19)

where

SINQRMRC, ZF
pCSI (M,K, pu, pn, pi, b) = (20)

pu(M −K1−IMRC)

IMRCpu(K − 1) + pn + 1
3 (puK + pn + pi)(θ0 + θ1b)2−2b

and IMRC is an indicator function

IMRC =

{
1, MRC,

0, ZF.
(21)

Having established the approximation of the sumrate, we now start the
analysis by examining general properties of the sumrate and power consumption
functions. In the sequel, energy efficiency in (15) is analyzed as a product of
the sumrate and the reciprocal of power consumption; representing η in this
manner will add to the clarity of the analysis.

Observation 1: Sumrate lower bound R̃MRC, ZF
b is monotonically increas-

ing in b. Reciprocal of total power consumption, 1/Ptot, is monotonically de-

creasing in b. Moreover, both R̃MRC, ZF
b and 1/Ptot exhibit saturating behavior,

i.e. become practically constant for b > χR (in case of R̃MRC, ZF
b ) or b < χP

(in case of 1/Ptot), where χR and χP are some conveniently chosen values of
ADC resolution.

Proof of Observation 1: The monotonical increase of R̃MRC, ZF
b is shown

by first establishing that the function pq, ker =
(

1 + θ1
θ0
b
)

2−2b is monotonically

decreasing for b ≥ 1 and all θ1
θ0
> 0 and then by using the fact that a function

of the form a/(b + f(x)) is monotonically increasing if f(x) is monotonically
decreasing. Monotonical decrease of 1/Ptot is quickly proved by noting that

Ptot = 2MΩ
(
c1b+ c2b

2 + c322b + c4b2
2b
)
fs + Prest (22)

is monotonically increasing with b and that its reciprocal is in turn monoton-
ically decreasing. The saturating behavior of R̃MRC, ZF

b is formally proved by
showing that limb→∞ pq, ker = 0. Hence, for a large enough χR and b > χR,

R̃MRC, ZF
b ≈ K log2

[
pu(M −K1−IMRC)

IMRCpu(K − 1) + pn

]
, R̃MRC, ZF

const . (23)
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Figure 6: Illustration of sumrate R, reciprocal of Ptot and energy effi-
ciency η, shown together with saturation points χR and χP as well as
bopt for the case χR < χP

To see that 1/Ptot saturates, it suffices to observe from (22) that for large
enough Prest and small enough χP ,

1/Ptot ≈ 1/Prest, b < χP . � (24)

The energy efficiency function from (15), where R is substituted by

R̃MRC, ZF
b , is shown together with its constituent functions BR̃MRC, ZF

b and
1/Ptot in Fig. 6. It is clear that the shape of the energy efficiency function
follows the saturating shapes of its two constituent functions. This enables us
to define a very useful approximation of η.

Observation 2: Assume that the values χR and χP are given. Conditioned
on their relative order, two piecewise approximations of the energy efficiency
function η can be defined (symbols↗,↘ and− represent monotonical increase,
monotonical decrease and constant behavior of a function, respectively):

• For χR < χP :

η̃(MRC,ZF) =


R̃

(MRC,ZF)
b

1
Prest

, b ≤ χR (↗)

R̃
(MRC,ZF)
const

1
Prest

, χR < b < χP (−)

R̃
(MRC,ZF)
const

1
P̃tot

, b ≥ χP . (↘)

(25)
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• For χP < χR:

η̃(MRC,ZF) =


R̃

(MRC,ZF)
b

1
Prest

, b < χP (↗)

R̃
(MRC,ZF)
b

1
P̃tot

, χP ≤ b ≤ χP (↗ ×↘)

R̃
(MRC,ZF)
const

1
P̃tot

, b > χP . (↘)

(26)

Proof of Observation 2: Expressions (25) and (26) follow from establish-
ing the relative order of χR and χP and then applying (19) and (22), together
with their respective approximations (23) and (24) to (15). �

Values χR and χP prove to be of essential importance to the analysis of the
behavior of bopt as various parameters change. Both of these terms will now
be formally defined, and their properties examined.

Definition 1: Let ∆R ∈ (0, 1) denote the normalized deviation

R̃MRC, ZF
const − R̃MRC, ZF

b

R̃MRC, ZF
const

= ∆R. (27)

Additionally, let ∆P ∈ (0, 1) be the normalized deviation

1/Prest − 1/Ptot,b

1/Prest
= ∆P . (28)

The saturation point for the sumrate, χMRC, ZF
R is defined as the value of

b at which the normalized deviation of R̃MRC, ZF
b from R̃MRC, ZF

const is equal to
some arbitrarily chosen value. Likewise, the saturation point for the power
consumption, χP is defined as the value of b at which the normalized deviation
of 1/Ptot,b from 1/Prest is equal to an arbitrarily chosen value.

Remark: Point χR is of great interest in practical system design since it
tells us explicitly how many bits of resolution are sufficient if we can tolerate
some level of normalized sumrate degradation ∆R. Its properties and depen-
dence on the most important system parameters, together with the properties
of χP , are given in the following

Observation 3: Define φ(b) , c1b+ c2b
2 + c322b + c4b2

2b. The saturation
point χP is found as a solution of the transcendental equation

φ(b) =
∆P

1−∆P
αφ(bref). (29)

Assume that pi = 0 and M and K are large. Saturation points χMRC
R and

χZF
R are then found as solutions of the following transcendental equations:

MRC : (θ0 + θ1b)2
−2b = 3

(
M

K + 1
SNR

)∆R
− 1, (30)
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ZF : (θ0 + θ1b)2
−2b = 3

(M −K)∆R

K
SNR∆R−1. (31)

With regards to χR, the following important trends can be observed:

• For practical values of SNR, χMRC
R is independent of SNR, whereas χZF

R

increases with increasing SNR;

• When spatial loading λs is kept constant as the number of antennas
M increases, χMRC

R is independent of M , whereas χZF
R increases with

increasing M ;

• When number of users K is kept constant as M increases, both χMRC
R

and χZF
R decrease with increasing M .

Additionally, the saturation point χP is observed to increase with increasing
α.

Proof of Observation 3: The transcendental equation in (29) results
directly from (22), (24) and (28). Likewise, (30) and (31) follow from plugging
in (19) and (23) into (27) and applying the large-M , large-K assumption.

To prove the observed behavior of χR with SNR, we examine the right hand
sides (RHS) of the equations in (30) and (31), labeled here as RHSMRC and
RHSMRC. When K � 1/SNR, RHSMRC is essentially independent of SNR.
On the other hand, RHSZF ∝ SNR∆R−1, which decreases with SNR because
∆R < 1. Now, taking into account the fact that left hand sides (LHS) of
equations in (30) and (31) are decreasing functions of b, we can conclude that
χR as the argument of LHSs is essentially independent of SNR in the case of
MRC, whereas it increases with SNR when ZF is used.

For the case λs = const., we note that limM→∞RHSMRC ≈ 3
(
1/λ∆Rs − 1

)
,

which does not depend on M , and that RHSZF ∝ M∆R−1, which decreases
with M . Therefore, we can conclude that χR stays constant as M increases in
case of MRC, and increases with M in case of ZF. On the other hand, when
K = const., directly from (30) and (31) we see that RHSMRC and RHSMRC

grow with M for both MRC and ZF, so then both χMRC
R and χZF

R decrease with
M .

Finally, to show that χP indeed grows with α, it suffices to notice that φ(b)
increases with b. As the RHS of the equation in (29) increases with α, χP as
the argument of φ(b) then also has to increase with α. �

In practical systems, the choice of adequate ADC resolution is heavily influ-
enced by the level of unfiltered out-of-band (OOB) interference pi, as illustrated
by the following

Observation 4: define the signal-to-interference ratio SIR = pu/pi. As-
suming M � 1, K � 1 and a SIR � 1 (so that OOB interference dominates
over the useful signal), χR for both MRC and ZF grows as SIR decreases.
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Proof of Observation 4: By plugging (19) and (23) in (27) and applying
the assumptions, χR for MRC and ZF is found as the solution of transcendental
equations

MRC : (θ0 + θ1b)2
−2b = 3 SIR K

[(
M

K + 1
SNR

)∆R
− 1

]
, (32)

ZF : (θ0 + θ1b)2
−2b = 3 SIR

[
SNR∆R(M −K)∆R

]
. (33)

Both RHS in the equations in (32) and (33) decrease as SIR decreases, and
since the LHS decrease with b, χR as the argument of the LHS increases with
the decrease of SIR. �

Although saturation points are important for system analysis on their own,
they also serve a convenient purpose of bounding bopt. This means that the
behavior of bopt in conjunction with important system parameters is directly
determined by how χR and χP behave. These important facts are formally
stated in

Observation 5: The value of ADC resolution that maximizes the approx-
imate energy efficiency η̃, denoted by b̃opt, is always found between saturation
points χR and χP , formally:

min{χR, χP } ≤ b̃opt ≤ max{χR, χP }. (34)

If it is assumed that χP is independent of M and that M and K are large,
then the following properties hold:

• For χR < χP , b̃opt decreases with decreasing α;

• In the case when ZF is used and χR < χP , b̃opt increases with increasing
SNR.

Additionally, the following behavior of b̃opt with increasing M is observed,
depending on how K relates to M :

• If λs = const., b̃opt cannot decrease with increasing M ;

• If K = const., b̃opt cannot increase with increasing M .

Finally, it can be observed that b̃opt cannot decrease with decreasing SIR.
Proof of Observation 5: For the case χR < χP , we refer to (25) and find

that η̃ is maximized for χR < b < χP , and therefore all b ∈ (χR, χP ) maximize
η̃. On the other hand, when χP < χR, we can refer to (26) and focus on the
case χP ≤ b ≤ χR. As η̃ is continuous, the extreme value theorem applies for
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χP ≤ b ≤ χR, and therefore η̃ will have a local maximum b̃∗ ∈ [χP , χR]. Since
η̃ is increasing for b < χP , η̃(b̃∗) > η̃(b), ∀b < χP . On the other hand, since
η̃ decreases for b > χR, η̃(b̃∗) ≥ η̃(b), ∀b > χR. Therefore, b̃∗ maximizes η̃
over the entire range of b. Overall, we conclude that b̃opt can always be found
between χR and χP , regardless of their positions relative to one another. 7

As for the behavior of b̃opt with different parameters, we start by noting

that in the case χR ≤ b̃opt ≤ χP , b̃opt must grow as its lower bound grows
and, likewise, must decrease if its upper bound decreases. Since χP decreases
with α and χR increases with SNR (in the case when ZF is used), as shown in
Observation 3, b̃opt needs to follow their decrease/increase accordingly.

Before we carry on to the final and most important observations on the
connection between b̃opt and M , we first turn our attention to the assumption
that χP is independent of M . From (29), we see that this claim is equivalent to
saying that α is independent of M , and from (16) this in turn implies that Prest

is linear in M . A deeper look on the power consumption model for MaMI base
stations presented in [29] shows that the dominant part of base station power
consumption indeed scales linearly with M , which serves as a confirmation of
our linearity assumptions.

Case 1 (λs = const.): χR was shown in Observation 3 to either remain
constant (in case of MRC) or increase with M (in case when ZF is performed).
Therefore, when χR ≤ b̃opt ≤ χP , b̃opt cannot decrease with M . Likewise,

when χP ≤ b̃opt ≤ χR and χP is assumed to not change with M , b̃opt cannot
decrease with M since it would otherwise conflict with its lower bound.

Case 2 (K = const.): when χR ≤ b̃opt ≤ χP , b̃opt cannot increase with
M since it would eventually conflict with its upper bound. On the other hand,
when χP ≤ b̃opt ≤ χR, b̃opt must decrease with M since its upper bound is
decreasing with M .

Dependence of b̃opt on SIR can be proven using the same arguments as
dependence on M . �

Numerical results: as an illustration of the analysis presented in Obser-
vations 1 to 5, bopt have been found numerically for both the perfect-CSI and
estimated-CSI cases. In the first set of results, M changes, and K either scales
linearly with M or remains constant (illustrated in Figures 7 and 8, respec-
tively), whereas in the second set, presented in Figure 9, different values of
SIR are tested. Values of saturation points χR and χP were calculated nu-
merically as well for the value of normalized deviation ∆P = ∆R = 5 · 10−3.

The value of bref was again taken to be 2. Using the model from [29], and

7 It needs to be noted that this proof tacitly neglects the fact that η̃(b) is not smooth exactly
at χP and χR. However, since η̃(b) is smooth in the limit as ∆ approaches zero, the proof is
valid in this limit.
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Figure 7: Bit resolution that maximizes receiver energy efficiency, to-
gether with saturation points, for varying M and λs = const. Chan-
nel estimation performed using τ = K. SNR = 0 dB, λs = 0.1
[users/antenna] and λt = 0.01 [users/block]. bref = 2, Ω = 100.

Architecture factor α

1 10
2

10
4

B
it
re
so
lu
ti
o
n

0

2

4

6

8

10

12

MRC

M = 100

M = 500

perfect CSI

estimated CSI

estimated CSI,

FOM-based model

χP

bopt
χR

typical α

Architecture factor α

1 10
2

10
4

B
it
re
so
lu
ti
o
n

0

2

4

6

8

10

12

ZF

typical α

χR

χP

bopt

Figure 8: Bit resolution that maximizes receiver energy efficiency, to-
gether with saturation points, for varying M and K = const. Channel
estimation performed using τ = K. SNR = 0 dB, K = 10 and λt =
0.01 [users/block]. bref = 2, Ω = 100.
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assuming P th
ADC with Ω = 100, typical values of α corresponding to bref = 2

were calculated, and they turn out to be ≈ 104 for wide ranges of different
system parameters. On the other hand, it is not unreasonable to assume that in
the future, base station hardware will be implemented using integrated CMOS
techniques. If we use known power consumption values for user equipment
receiver chains implemented in CMOS and assume that similar power numbers
might hold also for future MaMI base stations, then the base station power
consumption might go down by one or two orders of magnitude compared to the
model in [29]. Overall, admitting the fact that changes in technology, advances
in hardware design etc. can change the initial result obtained from [29], we
assume that values in the range 102 − 104 can be considered “typical” for α.

In Observation 5, behavior of approximate optimum b̃opt was analyzed,
whereas the results shown in Figures 7 - 9 present the true optimum, bopt.
Nevertheless, numerical results are in perfect accordance with the theoretical
analysis. Non-infinitesimal values of ∆R and ∆P can be accounted for the fact
that χP and χR do not “sandwich” bopt exactly around their crossing point,
but this will not impact the results of the analysis in any significant way.

The architecture factor α can be identified as the primary influence on
which values of b will maximize energy efficiency. As predicted by theory, bopt

decreases with increasing M only in the case K = const, and this decrease is
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slow (approximately logarithmic, as deduced from (30) and (31)). Therefore,
considering a large-but-finite-M regime and for practical values of α, interme-
diate ADC resolutions (3 - 8, depending on scenario) are optimal in energy
efficiency sense.

It is also of interest to analyze the values of χR: they span the range 4
- 7 bits, which coincides with the values suggested in some works on ADC
in MaMI (e.g. [28]) for ADC resolutions that could be used in MaMI with
acceptable performance degradation. However, as with bopt, we see that any
possible reductions of χR introduced by scaling up M to very large values are
minuscule.

On the other hand, a very practical concern when deciding on a proper
ADC resolution is poorly filtered OOB interference. As seen in Fig. 9, OOB
interference can have a detrimental impact on bopt; when its power increases
by 10 dB, bopt increases by roughly 1 bit at lower values of α.

Finally, we can shortly reflect on the influence of the model for PADC on
bopt. In Figs. 7 and 8, bopt was calculated using the FOM-based model for
the ADCs but with the same Prest as for the theoretical model, to allow for
a fair comparison. General trends of bopt are invariant to the choice of ADC
power consumption model, but using P th

ADC proves important if choice of the
ADC resolution needs to be fine-tuned; this choice would be off (under- or over-
estimated, depending on α) if it were based on the more simplistic FOM-based
model.

Discussion and main takeaways: Observation 5 brings forth the main
message of this subsection and one of the main messages of the entire work.
Namely, in the case when spatial loading λs is kept constant, increasing the
number of antennas alone does not make ADCs with lower bit resolutions op-
timal in energy efficiency sense. ADCs with a very low resolution sometimes
do maximize overall energy efficiency, but the reason for this is not the fact
that a very large number of antennas is being used; rather, it is either due to
preprocessing SNR or power consumption of other blocks. The prerequisite for
making ADCs with low bit resolutions optimal by increasing the number of an-
tennas is that the number of users remains constant as the number of antennas
is increased. Even then, the decrease of bopt with M is only logarithmic.

Furthermore, as shown in Observation 4, any potential decrease of optimal
ADC resolution that could have been harvested by increasing the number of
antennas can be reversed by the presence of a poorly filtered out-of-band inter-
ferer. This behavior is explained by the linear increase of effective quantization
noise with OOB interference power.

The analysis in this subsection also produced a valuable side result re-
garding the values of “good enough” ADC resolution for acceptable sumrate
degradation due to low precision ADC. This quantity may be of interest for
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system designs where the net information flow from all the ADCs to the digital
processing block should be reduced as much as possible without damaging the
performance. Results in Observation 3 show that scaling up the antennas to
very large numbers will not allow for the use of lower bit resolutions, unless
the number of users is kept constant as antennas scale.

We conclude that, in the case when antenna scaling and ADC resolution
decrease are not coupled, scaling up the antennas to very large numbers does
not make a significant impact on the choice of ADC resolution. However, it
is of interest to also investigate what happens when antenna and ADC scaling
are coupled through a fixed-performance constraint, and this investigation is
performed in the next subsection.

5.2 Hardware quality coupled with scaling of M

We now consider the case where the number of antennas is scaled up from M1

to M2 and, simultaneously, the quality of receiver chain hardware is degraded.
Increasing the number of antennas allows for higher levels of pre-processing
noise and distortion coming from lower quality hardware, because noise and
distortion are effectively “averaged out” by signal processing, as indicated by
the terms in Table 1. Higher levels of pre-processing distortion are expected
to result in lower cost/power consumption of individual hardware components,
and this is the reason why MaMI is promoted as being friendly to low-cost,
low-power-consumption hardware [4] - [6]. However, the number of receiver
chains also grows, so using low-quality hardware per receiver chain does not
guarantee that the overall cost/power consumption will be reduced; also, there
is possibly a residual impact on the performance. Again, the energy efficiency
metric should be used to join together the performance and power consumption
parts of the story.

The initial step of the analysis is establishing some simplifying assumptions.
Again it is taken that all βk = 1 and that the CSI is perfectly known. Ad-
ditionally, it is assumed that antennas and hardware scale such that the total
effective postprocessing noise/distortion remains the same before and after the
scaling, formally (from Table 1)

EH
{
E
{
|wn|2

}
eff

}
(M1) + EH

{
E
{
|wq|2

}
eff

}
(M1) = (35)

EH
{
E
{
|wn|2

}
eff

}
(M2) + EH

{
E
{
|wq|2

}
eff

}
(M2).

In order to further simplify the analysis, the condition (35) is substituted by a
set of sufficient conditions pertaining individually to quantization and thermal
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noise:

EH
{
E
{
|wq|2

}
eff

}
(M1) = EH

{
E
{
|wq|2

}
eff

}
(M2), (36)

EH
{
E
{
|wn|2

}
eff

}
(M1) = EH

{
E
{
|wn|2

}
eff

}
(M2).

The constraints in (36) can be written out explicitly for MRC and ZF as

p̃q2
p̃q1

MRC, ZF

=
pn2

pn1

MRC, ZF
=
M2 −K1−IMRC

M1 −K1−IMRC
. (37)

We further define the antenna scaling factor

ρM = M2/M1. (38)

Given a value of ρM and initial bit resolution b1 and using (12) and (37), the
post-scaling bit resolution b2 can be obtained, which through PADC can reveal
how much the power consumption of individual ADCs changed after the scaling.
Further, by assuming that pn subsumes the impact on the performance of all
the blocks excluding the ADCs, antenna scaling ρM should be connected with
the change in power consumption of the other blocks, Prest. For this we need
an explicit relation between pn and Prest through the use of some intermediate
per-block parameter(s), in analogy with how b connects ρM with PADC. This
connection is typically difficult to find. We therefore directly assume that the
constant-performance constraint induces a scaling of architecture factor α that
follows a power law

α2/α1 = ρξM , (39)

where ξ is a free scaling parameter. By referring to (16), we see that the law (39)

results in power consumption of “other” blocks scaling as Prest2/Prest1 = ρξ+1
M .

A power-law scaling of power consumption under the constant-performance
constraint proves to be a valid behavioral model for receiver blocks that intro-
duce additive distortion whose variance also scales with M following a power-
law, and which are designed such that their figure of merit stays constant
regardless of their quality [6].

In the analysis that follows, we observe the ratio of energy efficiencies
η2/η1 after and before the antenna/hardware scaling. Total power consumption
model is given by (17). By taking all the relevant assumptions into account
(with an additional assumption that bref = b1), the ratio of energy efficiencies
before and after the scaling is given by the general expression

η2
η1

MRC, ZF
=
K2

K1

log2

[
1 + SINQRMRC, ZF

pCSI (M2,K2, pu, pn2, b2)
]

log2

[
1 + SINQRMRC, ZF

pCSI (M1,K1, pu, pn1, b1)
] 1

ρM

1 + α1

PADC2
PADC1

+ α1ρ
ξ
M

.

(40)
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In cases where this ratio is larger than 1, it can be concluded that an-
tenna/hardware scaling is beneficial from energy efficiency point of view. Sim-
ilarly to the analysis in Section 5.1, we consider two fundamentally different
cases:

• Spatial loading is kept constant as antennas scale, λs = const.,

• Number of users is kept constant as antennas scale, K = const.

Case 1 (λs = const.): we start with an important observation, valid irre-
spectively of use of MRC or ZF.

Observation 6: Assume that M and K are large and constraint (36) is
satisfied. It can be shown that, in order to satisfy the said constraint, ADC
resolution must remain unchanged, i.e. b1 = b2.

Proof of Observation 6: For the case of MRC, we write out the first
equation in (37) as

M1 − 1

M2 − 1

puλsM2 + pn2

puλsM1 + pn1

(θ0 + θ1b2)2−2b2

(θ0 + θ1b1)2−2b1
= 1, (41)

while the second equation in (37) gives

M1 − 1

M2 − 1

pn2

pn1
= 1. (42)

By assuming a large number of antennas, we have M1− 1 ≈M1 and M2− 1 ≈
M2. Combined with the previous two equations, this allows us to write the
entire constraint for postprocessing quantization noise when MRC is used as

1 =
EH

{
E
{
|wq|2

}
eff

}
(M2)

EH
{
E {|wq|2}eff

}
(M1)

≈ (43)

1

ρM

SNR1λsρMM1 + ρM
SNR1λsM1 + 1

(θ0 + θ1b2)2−2b2

(θ0 + θ1b1)2−2b1
=

(θ0 + θ1b2)2−2b2

(θ0 + θ1b1)2−2b1
,

which is satisfied by b1 = b2. As for the case of ZF, using the property M−K =
M(1 − λs), the approximation in (43) becomes an equality, and therefore the
conclusion is the same as for the case of MRC. �

Remark: Observation 6 tells us that when K scales linearly with M , ADCs
remain the same irrespectively of how the antennas scale. This behavior is
explained by the effects of the AGC: equivalent quantization noise p̃q is pro-
portional to received signal power and thermal noise, and both these quantities
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grow as the number of antennas grows. Therefore, linear growth of p̃q with M
and the 1/M factor in E

{
|wq|2

}
eff

will cancel each other.
Next step in determining η2/η1 entails looking into what happens with the

sumrate. When MRC is used and constraints (37) are active, effective interuser
interference term 1

M−1pu(λsM−1) determines the ratio of sumrates before and
after the scaling. By assuming that M and K are large, this term can be taken
to be approximately equal before and after the scaling, so the sumrates for
MRC can also be taken to be approximately equal. On the other hand, in the
case of ZF and perfect CSI, interuser interference is 0, so the sumrates before
and after the scaling are equal.

In summary, for the case when K scales linearly with M , the ratio of post-
and pre-scaling energy efficiencies is given from (40) as

η2

η1

MRC, ZF
=

1 + α1

1 + α1ρ
ξ
M

. (44)

This indicates that the behavior of energy efficiency with antenna scaling in
this particular case does not depend on the ADC resolution. Moreover, it is
easy to show from (44) that η2/η1 > 1 for ρM > 1 if and only if ξ < 0.

Case 2 (K = const.): in contrast to what was observed when K scaled
linearly with M , when K is kept constant during the scaling, it is possible to
degrade the ADC resolution and compensate for the degradation by increasing
M .

Observation 7: Assume that K = const., that M is large and that ADC
resolutions before and after the antenna scaling are chosen such that the con-
straint (36) is satisfied. Given an initial ADC resolution b1 and a degrada-
tion of ADC resolution ∆b < 0 such that the ADC resolution after scaling is
b2 = b1 +∆b, antenna scaling needed to keep the pre- and post-scaling thermal
and quantization noise levels the same can be calculated as

ρM =
ζ1

ζ2 + ζ1ζ2 − 1
, (45)

where ζ1 = SNR1K and ζ2 = θ0+θ1(b1+∆b)
θ0+θ1b1

22∆b. Additionally, only the solu-
tions of (45) where ρM > 1 are taken into account, otherwise scaling is not
performed.

Proof of Observation 7: By employing all the listed assumptions together
with (12) and (37), the following fixed-point equation connecting ∆b and ρM
is obtained, valid for both MRC and ZF cases 8:

∆b =
1

2
log2

[
SNR1K + ρM

ρMSNR1K + ρM

θ0 + θ1(b1 +∆b)

θ0 + θ1b1

]
. (46)

8 The relation is only approximate but here it is represented as equality for convenience.
This approximation is tight for large M .
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Using elementary algebra, this relation can be reformulated as a closed-form
equation for ρM as given by (45). �
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Figure 10: Antenna scaling vs. initial bit resolution, for ∆b = −1. No.
of users K = 10.

Antenna scaling as a function of initial bit resolution b1 is illustrated in
Fig. 10, for two different values of SNR1. The singled out data point serves
as an example how the plot is interpreted: for SNR1 = 10 dB, degrading the
ADC resolution from b1 = 6 bits to b2 = b1 +∆b = 5 bits asks for an increase
of number of antennas of 3.5 times, if we want to maintain the same level
of postprocessing thermal and quantization noise. It is easily seen that the
elementary case ∆b = −1 can be used to describe any arbitrary degradation of
b, since the overall antenna scaling for arbitrary ∆b is the cumulative product
of elementary, unitary-step scalings. Therefore, it is possible to degrade the
ADC resolution from an arbitrary binit to bfinal = 1 and still maintain the same
performance - provided that the number of antennas is scaled accordingly -
indicating that with MaMI, using 1-bit ADCs is feasible. This particular feature
of MaMI systems is analogous to traditional temporal domain oversample-and-
filter systems which also enable the use of very coarse quantization, but with
an interesting distinction: in MaMI, oversampling and filtering is performed in
spatial domain.

The process of calculating η2/η1 for the case K = const. differs between
systems using ZF and MRC. When ZF is used, pre- and post-scaling sumrates
are the same; on the other hand, with MRC, the scaling affects the effective
interuser interference, so sumrates before and after the scaling will not be the
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same. To simplify the calculation somewhat, we assume that at the onset of
scaling, p̃q = pn. From the system design perspective, this means that if one of
the sources of noise (thermal or quantization) is dominant, there is no reason
for the other source to have a smaller impact since performance will be limited
anyway. With additional employment of the usual large-M assumption, (40)
for the case of constant K becomes

η2

η1

MRC, ZF
=


log2

[
1 + M1SNR1

1
ρM

SNR1(K−1)+2

]
log2

[
1 + M1SNR1

SNR1(K−1)+2

]


IMRC

1

ρM

1 + α1

PADC2

PADC1
+ α1ρ

ξ
M

. (47)

The analysis of energy efficiency ratio in this case is challenging because it
involves 6 and 7 free parameters for ZF and MRC, respectively. Parameters
b1, ∆b, K and SNR1 are first used to determine the antenna scaling ρM from
(45); thereafter, α1 and ξ (and M1 in the case of MRC) are used to completely
determine the behaviour of η as per (47). In order to enable successful illustra-
tion of the impact of different parameters on the behavior of η, the parameters
have been divided into two groups: “secondary” parameters (K, SNR1, ∆b and
M1) are given typical fixed values, while the primary ones (b1, α1 and ξ) are
swept.
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Figure 11: Ratio of energy efficiency values after and before the antenna
scaling for MRC and ZF processing, in the case K = const. Secondary
parameter values: K = 10, SNR1 = 10 dB, ∆b = −1, M1 = 100.

Numerical results are shown in Fig. 11, where only P thADC has been used.
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The results reveal a strong influence of how the power consumption of other
blocks relates in magnitude to ADCs (reflected through α1), as well as how this
power consumption scales with M (represented by exponent ξ). Some energy
efficiency gains are possible only in the case when ξ = −1.5. In effect, this

means that Prest needs to scale as ρ
−1/2
M if we want to improve energy efficiency

by degrading the ADC resolution and simultaneously scaling up the antennas.
For other tested values of scaling exponent, no gains in energy efficiency are
possible when the system scales. Furthermore, as the power consumption of
the ADCs becomes more prominent (lower α1), the gains in energy efficiency
with scaling become smaller, or even disappear when ZF is used.

Discussion and main takeaways: overall, we can conclude that the up-
scaling of M and simultaneous degradation of ADC resolutions yield gains in
energy efficiency only if the power consumption of the rest of the hardware
scales down fast enough. Another deciding factor is the relation of power con-
sumption of other blocks to PADC. Interestingly, in the case when K grows
linearly with M , changes of η with system scaling are independent of bit reso-
lution.

6 Conclusion

A parameterized analysis of the relation between ADC resolution and the uplink
energy efficiency in a MaMI system has been performed. In one characteristic
use case, we assume that upscaling of antennas is directly coupled to the degra-
dation of ADC resolution and analyze whether reducing the number of bits will
improve overall energy efficiency. The answer is affirmative only in the case
when the number of users is kept constant during the process of scaling, quality
of other blocks is also degraded and their power consumption scales down (at
a particular rate) with the number of antennas. In another characteristic use
case, we decouple the increase in the number of antennas and degradation of
ADCs and observe which bit resolutions maximize the overall energy efficiency,
and how these optimal bit resolutions behave with the number of antennas.
The results show that the condition for energy-optimal bit resolutions to de-
crease as antennas are scaled up is that the number of users remains constant.
Moreover, in this use case and for practical values of the most important system
parameters, intermediate ADC resolutions (4 - 8) maximize energy efficiency.
On a practical hardware design note, these values will increase if out-of-band
interference is present in the system, with approximately 1 bit added for every
10 dB increase of OOB interference. The overall conclusion of the work is that
using ADCs with intermediate bit resolutions is an optimal strategy from the
energy efficiency point of view, and, except in some special cases, this strategy
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does not change when antennas are scaled up.
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Modified Forced Convergence Decoding

of LDPC Codes with Optimized

Decoder Parameters

Reducing the complexity of decoding algorithms for LDPC codes is an

important prerequisite for their practical implementation. In this work

we propose a reduction of computational complexity targeting the highly

reliable codeword bits and show that this approach can be seamlessly

merged with the forced convergence scheme. We also show how the mini-

mum achievable complexity of the resulting scheme for given performance

constraints can be found by solving a constrained optimization problem,

and successfully apply a gradient-descent based stochastic approximation

(SA) method for solving this problem. The proposed methods are tested

on LDPC codes from the IEEE 802.11n standard. Computational com-

plexity reduction of 55% and a 75% reduction of memory access have been

observed.
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1 Introduction

Low Density Parity Check (LDPC) codes, introduced in [1] have recently be-
come a part of a number of communication standards, like WiMAX (IEEE
802.16e), IEEE 802.11n, 802.11ad and other [2]. The primary benefit of LDPC
codes lies in their excellent error correcting properties that allow the systems
using them to approach the information transmission capacity of the commu-
nication channel.

High complexity of the original decoding algorithm for LDPC codes, the it-
erative belief-propagation/sum-product (BP/SP) algorithm [1] has driven con-
tinuous research efforts targeting the reduction of its complexity while keeping
the ensuing performance degradation at a tolerable level. Basic complexity
reduction schemes [3] use mathematical approximations of the functions of the
original algorithm. In a number of early termination schemes (e.g. [4]), the it-
erations stop as soon as some stopping criterion is met. Finally, a per-bit early
termination scheme, referred to as forced convergence [5], employs a per-bit
stopping criterion for the individual codeword bits.

In [6] it has been shown how the tunability of certain parameters of reduced-
complexity decoding can be exploited to find the values of the parameters that
minimize the decoding complexity while maintaining satisfactory performance,
for given channel conditions. This paper is the continuation of work presented
in [6] with:

1. A modification of the original forced convergence (FC) algorithm that
yields a larger complexity reduction with the same performance degrada-
tion as the original FC;

2. The use of an iterative gradient descent-like algorithm that tries to find
the optimum values of the decoder parameters for given channel condi-
tions.

2 Background

2.1 General considerations

LDPC codes [1] are linear block codes with codeword length N described by
a sparse parity check matrix H with dimensions M ×N . Their structure can
be represented in the form of a bipartite graph [7] where codeword bits are
represented by bit (variable) nodes and parity checks by parity (check) nodes,
with the interconnections between variable and check nodes mapped from the
parity check matrix.
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The decoding process for LDPC codes can be viewed as an iterative ex-
change of messages between adjacent variable and check nodes. In this work,
a low-complexity approximation of the BP/SP algorithm, the offset min-sum
(OMS) algorithm [3] is used in the analysis.

The order in which messages are exchanged between variable nodes and
check nodes (message passing scheduling) has a direct impact on both the
performance of the decoding algorithm and on the complexity of its implemen-
tation. In the so-called layered scheduling scheme [4], [8], which is used in
the decoding algorithm in this work, c-nodes and their adjacent v-nodes are
grouped in layers, and the exchange of messages between v-nodes and c-nodes
is done for each layer separately, in a sequential fashion.

2.2 Forced convergence: theoretic background

Each v-node has an associated aposteriori LLR value, commonly denoted as Qv.
The sign of Qv maps to bit values 0 and 1. The magnitude of Qv corresponds
to the amount of “confidence” that the v-node has in its sign. As the iterations
of the decoding algorithm progress it can be observed how (for SNRs after
the “turbo cliff”) the magnitudes of Qv evolve towards +∞ or −∞. This
indicates that the nodes become increasingly confident that they are a 0 or a
1 as iterations progress.

It can then be reasonable to stop the updating of Qv for the very confident
nodes, i.e. the nodes for which the magnitude of Qv crosses some predefined
threshold θ. Value of Qv is therefore held at some fixed Qv,frozen for the re-
mainder of the decoding process. This is referred to as forced convergence.
Depending on the value of θ, forced convergence will result in certain perfor-
mance degradation, but will also introduce a complexity reduction. By tuning
the value of θ, the performance can therefore be finely traded for complexity.

3 Modified offset min-sum algorithm with lay-
ered scheduling and forced convergence

In this work, a modification of the original layered OMS algorithm with FC is
introduced. To explain the nature of the modification, a concise overview of
the message passing activities in the original algorithm will be given first.

One layer is assumed to be the group of v-nodes connected to one c-node.
The set of v-nodes connected to c-node c is denoted by N(c). Then, at iteration
i, for each layer c and each v-node v belonging to this layer, the following three
operations are performed:
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1. Qtemp calculation: Q
(i)
temp,vc = Q

(i)
v −R(i−1)

cv

2. Rcv calculation:

R(i)
cv =

 ∏
v′∈N(c)\v

sign(Q
(i)
temp,v′c)

×max

{
min

v′∈N(c)\v
|Q(i)

temp,v′c| − ω, 0
}

3. Qv update: Q
(i)
v = Q

(i)
temp,vc +R

(i)
cv

The Qtemp,vc can be seen as the message in which v informs c about its own
sign and how confident it is that this is the actual value of its sign. On the other
hand, Rcv is the total knowledge that other v-nodes in the layer have about
the sign of v. It can be seen from the above expressions that the value of Rcv
is influenced by Qtemp values in the layer that have the smallest magnitudes.
V-nodes that are strongly convinced about their sign will send “strong” Qtemp
messages of large magnitude that will not influence the value of Rcv. Therefore,
the Qtemp messages for these “confident” nodes can be approximated by some
constant value which is large enough.

Since the forced convergence approach also targets the “confident” v-nodes,
it is natural to combine it together with the Qtemp approximation that was
just described. The modified Qtemp calculation rule can then be formulated as
follows:

Q
(i)
temp,vc =

{
Qv,frozen if v is frozen

Q
(i)
v −R(i−1)

cv otherwise
(1)

The complete pseudocode formulation of the modified algorithm is given in
Algorithm I. The completed notation is as follows: Pv are the apriori v-node
LLRs (obtained from symbols received from the channel), ω is the offset value,
a standard part of the offset min-sum algorithm. X(·) is a hard bit decision
operator (converting Qv to 0 or 1), Q = [Q1 Q2 . . . QN ] is the codeword LLR
vector and GF2{·} denotes operations in Galois field over {0, 1}.

4 Optimizing the LDPC decoder parameters

4.1 Problem formulation

It has been shown in [6] that, for a general vector ρ of environment settings
(such as SNR or fading properties) and minimum performance requirement
FERc (expressed in terms of the frame error rate FER), the value of the
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Algorithm 1 Layered OMS with FC and extrinsic message simplification

1: for all v-nodes v and c-nodes c do . Initialization
2: Rcv ← 0
3: Qv ← Pv
4: end for
5: Inact = ∅
6: for iterations i to Imax do
7: for all c do
8: for all v ∈ N(c) do . Qtemp calculation
9: if v ∈ Inact then

10: Qtemp ← Qv
11: else
12: Qtemp ← Qv −Rcv
13: end if
14: end for
15: Qmin1 ← min

v∈N(c)
{|Qtemp,vc|} . Rcv calculation

16: Qmin2 ← min
v∈N(c),
v 6=vmin1

{|Qtemp,vc|}

17: Qmin1 ← max{Qmin1 − ω, 0}
18: Qmin2 ← max{Qmin2 − ω, 0}
19: S =

∏
v∈N(c)

sign(Qtemp,vc)

20: for all v ∈ N(c) AND v /∈ Inact do
21: if v = vmin1 then
22: Rcv ← sign(Qvc) · S ·Qmin2

23: else
24: Rcv ← sign(Qvc) · S ·Qmin1

25: end if
26: Qv ← Qtemp,vc +Rcv . Qv update and thresholding
27: if |Qv| > θ then
28: |Qv| ← θ
29: v :∈ Inact
30: end if
31: end for
32: end for
33: if GF2{H ·X

(
QT
)
} = 0 then

34: stop iterations
35: end if
36: end for
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threshold θ that minimizes the computational complexity C(θ,ρ) of the decod-
ing algorithm is found by solving the general optimization problem

minimize
θ

C(θ,ρ)

subject to FER(θ,ρ) ≤ FERc

(2)

In order to achieve optimum complexity reduction, the optimum value of θ
should be found and applied for any value of the current environment settings.
Put in simple terms, it should be adapted to the channel.

This work uses an analytical model of the computational complexity that is
drawn from the algorithm structure. In the derivation of the model, tilde (˜)
will be used to denote random terms. Layers will be indexed by l, decoding
algorithm iterations by i and individual decoded blocks (different runs of the
decoding algorithm) by b. The number of active v-nodes (nodes that have not

yet been frozen) in layer l (and at iteration i and block b) is denoted by ñ
(b,i,l)
a .

The total number of v-nodes adjacent to the c-node in layer l and the total
number of c-nodes in the code (both deterministic and following from the code
construction) are denoted by n(l) and |c|, respectively. Number of iterations
performed in the decoding of block b is denoted by Ĩ(b).

It should be pointed out that the number of active nodes ñ
(b,i,l)
a and the

number of iterations Ĩ(b) are discrete random variables; the randomness of

ñ
(b,i,l)
a is the consequence of applying FC, and Ĩ(b) is random due to the early

termination (parity check at the end of each iteration). Probability mass func-

tions fN (ñ
(b,i,l)
a ; θ,ρ) and fI(Ĩ

(b); θ,ρ) are parameterized by θ and ρ. Owing
to the inherent complexity of the LDPC code structure and the nonlinearity of
the decoding algorithm, these pmfs are in general case extremely hard (if not
impossible) to obtain in closed form.

As in [6], the complexity is given in the number of additions (assumed equiv-
alent in complexity as comparisons) performed per decoded block. Complexity
analysis of the decoding algorithm is based on the complexity analysis for a
single layer l:

• Complexity of the Qtemp calculation section in one layer is

C̃
(b,i,l)
Qtemp

= ñ(b,i,l)
a (3)

• Complexity of the Rcv calculation section depends on the number of dif-
ferent |Qtemp,vc| values among which the two minimum elements are cho-

sen. This number is denoted by ñ
(b,i,l)
x . The set of values of |Qtemp,vc|

from which the two minimum elements are picked is formed by |Qtemp,vc|
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from active nodes, and a single θ value representing all the frozen nodes.
Therefore

ñ(b,i,l)
x = min{ñ(b,i,l)

a + 1, n(l)} (4)

and the complexity of this section is

C̃
(b,i,l)
Rcv

= ñ(b,i,l)
x + dlog2 ñ

(b,i,l)
x e+ 2, (5)

derived from the optimum complexity of finding two minimum elements
in an unsorted array [9] and the four additions in lines 17 and 18.

• Finally, the complexity of the Qv update and thresholding section is

C̃
(b,i,l)
Qv

= 2ñ(b,i,l)
a (6)

Total complexity of decoding one layer is

C̃(b,i,l) = 3ñ(b,i,l)
a + ñ(b,i,l)

x + dlog2 ñ
(b,i,l)
x e+ 2, (7)

and the complexity of decoding one block is then

C̃(b) =
Ĩ(b)∑
i=1

|c|∑
l=1

C̃(b,i,l) (8)

Finally, a sample mean of C̃(b) over a window of W blocks is taken as an
estimate of the complexity C(θ,ρ):

Ĉ(θ,ρ) = C̃ =
1

W

W∑
b=1

C̃(b) =
1

W

W∑
b=1

Ĩ(b)∑
i=1

|c|∑
l=1

C̃(b,i,l) (9)

If environment conditions ρ are assumed constant over W blocks and if
additionally there is no dependence between noise or decoded data between
different blocks, C̃(b) can be assumed to be an i.i.d. random variable coming
from an unknown discrete pmf. Then, from the central limit theorem it follows
that the distribution of Ĉ(θ,ρ) is approximately

N
(
C(θ,ρ), σ2

C(θ,ρ)
)
, (10)

with C(θ,ρ) = E[Ĉ(θ,ρ)]. Note that C(θ,ρ) is not available in closed form; it
is only possible to obtain its (noisy) estimate Ĉ(θ,ρ).

In order to solve the optimization problem (2), FER(θ,ρ) needs to be ob-
tained as well. Similar to C(θ,ρ), FER(θ,ρ) is not known in closed form and



Modified Forced Convergence Decoding of LDPC Codes with Optimized
Decoder Parameters 151

has to be estimated. This can be done in the usual way of counting block errors
over a window of W blocks and then dividing by W. Formally,

F̂ER(θ,ρ) =
1

W

W∑
b=1

1
(b)
err, (11)

where 1
(b)
err is an indicator function equal to 1 when block b is in error, and

0 otherwise. Values of the indicator function are Bernoulli distributed, and

it is well known [10] that for a large enough W , F̂ER(θ,ρ) is approximately
distributed as

N
(

FER(θ,ρ),
FER(θ,ρ)(1− FER(θ,ρ))

W

)
(12)

We can therefore conclude that, instead of the cost and constraint functions
from (2), in practice we can only obtain their noisy estimates:

Ĉ(θ,ρ) = C(θ,ρ) + η, (13)

F̂ER(θ,ρ) = FER(θ,ρ) + ε, (14)

where, following from (10) and (12), η and ε are approximately zero-mean
Gaussian with pdf parameterized by ρ and θ.

Optimization of θ is then performed using the noisy function estimates and
is formulated as

minimize
θ

Ĉ(θ,ρ)

subject to F̂ER(θ,ρ) ≤ φc,
(15)

with φc being the new value of the constraint that accounts for the random

nature of F̂ER and introduces a “safety margin”.

4.2 Problem solution

A family of optimization methods, known collectively as stochastic approxima-
tion methods is known to be applicable to optimization problems in which the
cost function is not known and can only be observed through its noisy estimates
(measurements), like in (15). The first stochastic approximation (SA) method
was proposed by Kiefer and Wolfowitz in [11] and has been followed by a host
of similar methods (e.g. simultaneous perturbation SA by Spall, [12]).

SA methods are based on the classic gradient descent algorithm, in which a
starting point is chosen and the optimum is approached iteratively by following
the direction of the negative gradient. The difference between the deterministic
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gradient descent and SA is that SA uses a noisy estimate of the gradient instead
of its actual value.

For the constrained problem (15), the iterates have to be confined to the set
of feasible points; this is modeled by a projection operator ΠΘ that projects
the iterates back onto the feasible set Θ. The recursive expression for SA with
feasible set projection, applied to the optimization problem (15) is given by

θk+1 = ΠΘ

{
θk − ak

∂̂

∂θ
C(θk,ρ)

}
, (16)

with the “gradient estimate” ∂̂
∂θC(θk,ρ) calculated as

∂̂

∂θ
C(θk,ρ) =

Ĉ(θk + ck,ρ)− Ĉ(θk − ck,ρ)

2ck
(17)

The SA-based iterative algorithm with feasible set projection for estimating
θ∗ that solves (15) at a given environment setting ρ is given by Algorithm II.

Algorithm 2 Stochastic approximation with feasible set projection

1: Initialize θ0

2: for k from 0 to Imax − 1 do
3: ak = a

(k+1)α , ck = c
(k+1)γ

4: if (θk − ck) < 0 OR F̂ER(θk − ck,ρ) > φc then
5: stop iterations
6: end if
7: ∂̂

∂θC(θk,ρ) = Ĉ(θk+ck,ρ)−Ĉ(θk−ck,ρ)
2ck

8: θk+1 = θk − ak ∂̂
∂θC(θk,ρ)

9: end for
10: if F̂ER(θk,ρ) ≤ φc AND θk ≥ 0 then

11: θ̂∗ = θk
12: else
13: θ̂∗ = θk−1

14: end if

Some practical information regarding the optimization algorithm:

• Feasible set Θ is defined as

Θ =
{
θ ≥ 0 | F̂ER(θ) ≤ φc

}
(18)

Negative values of θ produce undefined behaviour of the OMS-FC algo-
rithm, hence the nonnegative constraint imposed on θ.
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Figure 1: System diagram and output timeline

• Projection Πθ is implemented in lines 4-6 and 10-14 of the algorithm.

• Initial point θ0 and the finite difference step θ0 − c0 are considered to be
in Θ.

• Following the practical advice given in [13], the parameters α, γ, a and c
of the sequences ak and ck are chosen as follows:

– α = 0.602, γ = 0.101

– At the first iteration, a is set to ∆θ0∣∣∣ ∂̂∂θC(θ0,ρ)
∣∣∣ where ∆θ0 is the desired

step in the first iteration.

– Value of c is set to the estimated value of the standard deviation of
Ĉ(θ,ρ).

• The new value of the constraint φc is determined from confidence intervals

for F̂ER(θ,ρ) from property (12). It is the value that, when chosen
as the constraint, guarantees with a certain probability that the actual
FER(θ,ρ) will be smaller or equal than the original constraint FERc.

Fig. 1 shows the block diagram of the complete system for the optimization
of LDPC decoder parameters, together with the timeline of the decoder outputs
(naturally, averaged over the entire duration of one slot). From this diagram it
is evident that this is a “black box” optimization method in which a controller
unit, implementing Algorithm II, chooses the inputs to the system, estimates
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the gradient of the cost function from the observed system outputs and decides
on the new input values based on the gradient estimate.

5 Simulation and results

The described reduced complexity decoding algorithm and the optimization
algorithm were tested in three different setups, based on three different LDPC
codes from the IEEE 802.11n standard [2], with code rates and blocklengths
given in Table 1.

Table 1: LDPC codes used in the simulations

Code 1 R = 1/2, N = 1944

Code 2 R = 1/2, N = 648

Code 3 R = 3/4, N = 648

The selected channel is AWGN and the modulation for all three setups is
QPSK. The rates of the codes determine their operational SNR ranges. Codes
1 and 2 are suitable for use at low SNRs, whereas code 3 is better suited for
use in the mid-SNR range. Different values of SNR are chosen as different
states of the environment setting ρ. Three decoders are compared in terms of
complexity:

1. The plain OMS decoder, without FC

2. A “lazy” (that is, non-adaptive) OMS FC decoder with extrinsic message
simplification that uses one value of θ over the entire tested range of
SNR values. This value of θ is selected as minimum θ that satisfies
the performance requirement for all SNRs, while yielding a complexity
reduction compared to plain OMS.

3. An “optimized” OMS FC decoder with extrinsic message simplification
using the estimated optimum value of the threshold, θ̂∗ (provided by the
SA algorithm) at each SNR point.

Averaging window length W in the optimization is set to 1000. At each SNR
point, optimization is run for 10 different random seeds, and the final value is
the sample mean of the results obtained from these different runs. Performance

constraint FERc is set to 10−2, and forW = 1000 and Pr(F̂ER ≤ FERc) = 0.95
this translates to φc = 5.4 · 10−3.

In Fig. 2 the values of θ̂∗ at each SNR are given together with FER(θ̂∗)
(averaged over 50 000 blocks and therefore considered the “true” value). The



Modified Forced Convergence Decoding of LDPC Codes with Optimized
Decoder Parameters 155

Eb/N0(dB)
2 3 4 5 6 7 8 9

θ̂
∗

0

5

10

15

Estimate of optimum θ

code 1
code 2
code 3

Eb/N0(dB)
2 3 4 5 6 7 8 9

F
E
R
(θ̂

∗
)

0

0.005

0.01

FER at optimum θ

code 1
code 2
code 3

FERc

Figure 2: Estimate of optimum θ and FER at θ̂∗

obtained values of FER confirm that the performance constraint FER ≤ 10−2

is satisfied at every θ̂∗. It was observed that, at high SNRs, θ̂∗ for code 3 do not
follow the same trend of decrease with SNR as in the two other codes due to a
limited number of optimization iterations (set to 100). With a larger number

of iterations it is possible to attain smaller values of θ̂∗ at these SNRs.
The complexity, normalized by the maximum number of iterations and the

number of information bits in the block, and the savings of lazy and adaptive
schemes compared with the plain OMS scheme are shown in Fig. 3. Complexity
C(θ) for all three decoders is averaged over 50 000 blocks and is therefore con-
sidered the “true” value. The results lend themselves to a comparison with the
results in [6], since the same code (IEEE 802.11n, R=1/2, N=648) is analyzed
in both works. In [6], optimum θ (found by a grid search) yielded maximum
complexity savings of 35% compared to plain OMS for this particular code and
the original OMS FC algorithm. In this work, the modified OMS FC algo-
rithm achieves a 53% complexity reduction at the same SNR point, thereby
confirming that the simple extrinsic message modification in (1) can result in
significant savings of computational complexity. It can also be observed that
the channel-adaptive decoder can bring in additional 5 - 12% of complexity re-
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Figure 3: Comparison of complexities for different decoders and codes

duction compared to the “lazy” decoder, emphasizing the general notion that
adapting the system to its environment is beneficial for system performance.
It should be noted that the controller in Fig. 1 is of negligible complexity
compared to the decoder.

In actual hardware implementations of decoders, a large part of total energy
consumption is due to memory access activities [14]. It is therefore beneficial
to estimate the reduction in memory access when analyzing decoding schemes
with reduced complexity. Although this heavily depends on the actual imple-
mentation and memory design, some conclusions can be drawn from the struc-
ture of the algorithm. It can be identified that most memory access activity
(reading/writing) will occur in “Qtemp calculation” and “Qv update” sections
of the decoding algorithm. Since both of these sections are performed when the
v-node is active, it can then be safely assumed that the reduction in memory
access will be proportional to the reduction of the number of active nodes. The
node activity of the channel-adaptive OMS FC algorithm (at θ̂∗) is therefore
compared to the plain OMS and the corresponding reduction is presented in
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adaptive decoding
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Figure 5: Convergence behaviour of the SA optimization algorithm at
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Fig. 4. A very high (up to 75%) decrease of v-node activity suggests that
the presented complexity reduction scheme can be expected to yield a highly
energy efficient hardware implementation, both in terms of computations as
well as memory access.

Finally, we shortly turn to practical implications of using the SA algorithm
to find the optimum θ. Fig. 5 shows the rate of convergence of the optimiza-
tion algorithm for two single runs (i.e. without averaging over different seeds)
at different values of SNR. At the lower SNR value, the iterations stop after
approximately 50 000 decoded blocks because the performance constraint is
violated; at the higher SNR, they continue until the maximum number of iter-
ations is exhausted, but the process can be seen to converge after around 100
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000 decoded blocks. To put this into time perspective, we assume information
bitrate of 100 Mbps. Given that one block of code 2 has 324 information bits,
the convergence times for the two described cases are then ≈ 0.16s and ≈ 0.32s,
respectively. That indicates that SA can be used to tune the decoder to the
optimum value of θ in real-time, provided that the channel is static or with very
low mobility. The benefit of this approach lies in the fact that the optimization
algorithm is of negligible complexity compared to the decoding algorithm and
also in the fact that it does not need any channel information (conversely, θ̂∗

produced by the algorithm implicitly contains a channel estimate).

6 Conclusion

This work proposes a modified rule for calculating the extrinsic messages in
the LDPC decoding algorithm, in which the extrinsic messages correspond-
ing to highly reliable bits can be simply approximated with the aposteriori
LLRs, thereby reducing the computational complexity. It is additionally pro-
posed that this modification is merged with the forced convergence scheme.
It has been shown how the computational complexity of the resulting decod-
ing algorithm can be modeled analytically, and how a gradient-descent based
optimization scheme can be successfully applied to this model to find the max-
imum complexity reduction that the algorithm can achieve under some prede-
fined performance constraints. The overall results show significant reduction
of computational as well as memory access complexity, indicating high energy
efficiency of a possible hardware implementation of the algorithm. Finally, it
is shown that maximum complexity reduction is achieved if the parameters of
the decoder are adapted to the environment.
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MIMO Systems

We analyze the downlink of a massive multiuser multiple input, mul-

tiple output (MIMO) system where antenna units at the base station are

connected in a daisy chain without a central processing unit and only

possess local channel knowledge. For this setup, we develop and ana-

lyze a linear precoding algorithm for suppressing interuser interference.

It is demonstrated that the algorithm is close to zero-forcing precoding

in terms of performance for a large number of antennas. Moreover, we

show that with careful scheduling of processing across antennas, require-

ments for interconnection throughput are reduced compared with the fully

centralized solution. Favorable tradeoff between performance and inter-

connection throughput makes the daisy chain a viable candidate topology

for real-life implementations of base stations in MIMO systems where the

number of antennas is very large.
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1 Introduction

Massive multiple input, multiple output (MIMO) [1] is a technique whose ben-
efits in multiuser mobile systems, such as superb spectral efficiency, have been
confirmed by practical implementations ([2] and [3], among others). These
works have, however, revealed an inherent weakness of centralized massive
MIMO (MaMI) base station (BS) architectures: a prohibitively high through-
put requirement for the links between the central processing unit (CU) and
the remote antenna units (AUs) [4–6]. For the purpose of illustration, we
assume a LTE-like multicarrier MaMI system identical to the one described
in [3], with Nused data-carrying subcarriers and w bits representing one com-
plex sample. In a centralized MaMI BS with M antennas, shown in the left-
hand side of Fig. 1, the required throughput on the bus connecting AUs and
CU is Rcentral = MwNused/TOFDM, where TOFDM is the OFDM symbol dura-
tion. Linear scaling of Rcentral with M severely limits the scalability of the
centralized system, prohibiting it from becoming truly “massive”.

A proposed remedy to this challenge is a partial or full decentralization
of baseband processing in the BS. Partially decentralized structures rely on
a careful division of processing tasks between the CU and AUs [5, 6], which
still entails substantial shuffling of overhead data between units. On the other
hand, in fully decentralized structures [2, 5, 6], CU is eliminated and AUs are
joined into smaller groups that perform baseband processing independently
of each other, in a parallel fashion. Finally, the structure described in [4] dis-
penses with a CU and has semi-independent groups of AUs exchange consensus
information, with a negligible performance penalty compared to a fully central-
ized implementation but with the latency of information exchange limiting the
throughput.

In this work, we take a fresh look on fully decentralized structures for MaMI
BSs. Namely, we investigate a decentralized antenna array topology that has
not been analyzed in this context before: a daisy chain of single-antenna AUs
without a CU. We focus on developing an algorithm for suppressing interuser
interference (IUI) that takes into account the limitations of the daisy chain
topology. Additionally, we theoretically analyze the mechanisms of operation
of this algorithm. The new algorithm is shown to get close in performance to
ZF for a very large number of BS antennas. Moreover, with proper schedul-
ing of calculations, the interconnect throughput between system parts can be
substantially reduced compared with the centralized solution.
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2 Problem setup and system model

We analyze the downlink (DL) of a single-cell system with M collocated BS
antennas and K single-antenna users, where M � K � 1 and antenna-user
channels are narrowband and flat-faded. The system employs TDD transmis-
sion where channel reciprocity is assumed. Based on the uplink channel state
information (CSI) estimates, the BS formulates a linear precoder which is ap-
plied to the data intended for the users and transmitted in the downlink. For
simplicity of analysis and exposition, we assume the ideal case of perfect CSI
and perfectly reciprocal radio channels.

Figure 1: MaMI array implementation diagrams. Left: centralized pro-
cessing with a shared bus. Right: fully decentralized processing, daisy
chain topology. Dashed links: channel estimation/precoder formulation

phase, full links: precoding phase. Ĥ denotes channel estimate. Other
variables of relevance defined in (1) and (3). Uplink transmission phase
not illustrated.

In contrast to conventional BS architectures, we assume there is no cen-
tral unit aggregating the CSI and formulating the precoded signal. Instead,
precoding is formulated and executed locally at BS antennas, in a fully decen-
tralized manner. More specifically, each antenna of the BS array, together with
associated analog and digital hardware, is considered to form a low complexity,
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cheap antenna processing block (APB), and adjacent APBs are connected us-
ing unidirectional links, forming a daisy chain. The mth APB in the chain only
possesses knowledge of the local baseband channel between the corresponding
array antenna and all the users, represented by hm ∈ CK×1. The local channel
vector, together with side information passed from the preceding APB, is used
by the mth APB to formulate the local precoder vector wm ∈ CK×1. Antenna
units thus formulate their precoders in a sequential fashion. The data intended
for users, represented by x ∈ CK×1, is broadcast to APBs, which subsequently
apply their precoders in parallel. A conceptual diagram of the described setup
is given on the left hand side of Fig. 1.

The received complex baseband signal for all users, is a K × 1 vector

r = αHWHx︸ ︷︷ ︸
y

+n, (1)

where H = [h1 h2 . . .hM ] and W = [w1 w2 . . .wM ]. It is assumed that
E
{
xxH

}
= IK and E

{
nnH

}
= N0IK . Factor α is used for adjusting the

total transmit power.
The design of the precoderWH is governed by various performance criteria.

In this work, we investigate WH that will suppress IUI. Such a precoder can
be found as a solution of the optimization problem

minimize
WH

||HWH − IK ||2F . (2)

It should be noted that the pseudoinverse H† = HH(HHH)−1 is the solution
of (2) with smallest Frobenius norm when H has full row rank, yielding the
well-known ZF solution that completely eliminates IUI. However, knowledge
of the entire matrix H is required for finding H†, which in practical BS im-
plementations means that H must be made available to a CU. This option is
ruled out in the setup we consider and approximate solutions of (2) tailored to
fit the daisy chain topology need to be sought.

3 Fully decentralized approximate zero-forcing

In this section, we derive a greedy algorithm for finding an approximate solution
of (2). As means of guaranteeing that total and per-antenna power constraints
are met, we additionally impose norm constraints on the local solutions. The
operation of the algorithm is analyzed by performing a closed-form statistical
analysis in the regime where M,K � 1.
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3.1 Algorithm development

To start with, we define the partial channel and precoder matrices Hm ,
[h1 h2 . . . hm] and Wm , [w1 w2 . . . wm]. The partial equivalent channel
matrix at mth APB, defined as

Em ,HmW
H
m =

m∑
j=1

hjw
H
j (3)

will contain complete information about the IUI created by precoding at an-
tennas 1 through m. This matrix is central to the proposed algorithm, which
represents a greedy approach to solving problem (2). The algorithm is in form
of a sequence of M steps, where at the mth step, the mth APB in the chain

1. receives Em−1 from the preceding APB;

2. uses Em−1 and local CSI hm to find a local precoder wH
m. The goal is

to “force” the equivalent channel matrix after the current step, Em, to
be as close as possible to an identity matrix in Frobenius norm sense by

minimizing ||Em − IK ||
2
F =

∣∣∣∣Em−1 + hmw
H
m − IK

∣∣∣∣2
F

;

3. calculates Em using the newly formulated wH
m and passes it on to the

next APB.

Due to practical considerations, the precoder formulation algorithm should
include a mechanism for controlling the total expected transmit power

Ex{||WHx||22} = ||WH ||2F .

The precoder WH is built up row by row, with every APB having only one
“go” at determining its contribution wH

m. A reasonable strategy for establish-
ing power control in such a setting is to prescribe that all antennas have the
same expected transmit power, equal to ε2. This is equivalent to imposing
the constraint ||wm||22 = ε2, ∀m. Additional tuning of transmit power can be
achieved by multiplying all per-antenna precoders with factor α after the pro-
cess of formulating the precoder is finished 9. Total expected transmit power
is thus equal to α2Mε2. The described approach simultaneously solves the
total and per-antenna power control problems, both being of high practical
relevance, in a decentralized way.

9 The need for a two-step adjustment of transmit power is clarified in Section 3.2.
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Algorithm 3 Fully decentralized calculation of an approximate zero-forcing
precoder with per-antenna power constraints

1: Input: H = [h1 h2 . . . hM ]
2: E0 ← 0K×K
3: for antennas m = 1 to M do
4: wm ← ε (IK−Em−1)Hhm

||(IK−Em−1)Hhm||
2

5: Em ← Em−1 + hmw
H
m

6: end for
7: Output: W = [w1 w2 . . . wM ]

Taking into account the aforementioned considerations, the central opera-
tion at each step of the algorithm consists of solving the constrained optimiza-
tion problem

minimize
wm

∣∣∣∣(Em−1 − IK) + hmw
H
m

∣∣∣∣2
F

subject to ||wm||22 = ε2.
(4)

The solution to (4) can conveniently be found in a closed form:

wm,opt = ε
(IK −Em−1)

H
hm

|| (IK −Em−1)
H
hm||2

. (5)

This can be shown in standard fashion by formulating a Lagrangian L (wm, λ) =∣∣∣∣(Em−1 − IK) + hmw
H
m

∣∣∣∣2
F

+ λ
(
||wm||22 − ε2

)
, finding its stationary point

wm,opt which is plugged back to the constraint and finally solving a quadratic
equation for λ with only one admissible solution, which altogether results in
(5). The complete pseudocode of the proposed scheme is given in Algorithm
3.

3.2 Algorithm analysis

Interference-suppressing performance of the proposed method manifests depen-
dence on ε, and in this section we aim at providing insight into this dependence.
Equivalent channel matrixE = [ekl] = HWH lies in the focal point of the anal-
ysis since the signal-to-interference ratio (SIR) for the kth user is found as

SIRk =
|ekk|2∑K

j=1,j 6=k |ekj |2
. (6)
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For clarity of exposition, we introduce the shorthand Φi , hih
H
i and further

define

w̃i , (IK −Ei−1)
H
hi, (7)

ε̃i , ε/ ||w̃i||2 . (8)

From the recursions of Algorithm 3 we get

E =

M∑
m=1

ε̃mΦm −
M∑
n=2

n−1∑
m=1

ε̃nε̃mΦnΦm (9)

+

M∑
p=3

p−1∑
n=2

n−1∑
m=1

ε̃pε̃nε̃mΦpΦnΦm − . . . (−1)M+1
1∏

m=M

ε̃mΦm.

Statistical analysis of SIRk is intractable due to complicated dependencies be-
tween the terms in (9). We now introduce a series of simplifications of (9)
that will help us gain insight in the behavior of SIRk. Firstly, we limit the
analysis to independent and identically distributed (iid) channel coefficients
hkm ∼ C N (0, 1). We also make use of

Definition 3.1 (channel hardening, [7]) Given a K × 1 random vector ψ,

we say that ψ experiences “hardening” when ||ψ||22/E
{
||ψ||22

} P→ 1 as K →∞,

where
P→ denotes convergence in probability. Moreover, ψ hardens iff

lim
K→∞

Var
{
||ψ||22

}
(E {||ψ||22})

2 = 0.

As a consequence of channel hardening, the approximation

||ψ||22 ≈ E
{
||ψ||22

}
(10)

can be used for K � 1.

In the simplified analysis, we consider values of ε such that

ε�
√

EH {|hkm|2} = 1, (11)

and recall that K � 1. The analysis proceeds as follows.

1. Expression (9) is truncated by neglecting the impact of higher
order terms when ε� 1:
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(a) Random ε̃i (8) is substituted with a constant deterministic value.
This is done by discarding from ||w̃i||22 = ||hi||22−hHi (Ei−1 +EH

i−1−
Ei−1E

H
i−1)hi all terms depending on ε, where we take into account

(11). Subsequently, the hardening argument is invoked, which by
employing (10) yields ||w̃i||22 ≈ ||hi||22 ≈ E

{
||hi||22

}
= K, ∀i. Now,

in conjunction with (8) we get

ε̃i ≈ ε̃ , ε/
√
K. (12)

(b) By using (12) and again invoking (11), we discard from (9) all terms
depending on εn, n ≥ 3.

These manipulations yield the truncated equivalent channel matrix

Ê = [êkl] = ε̃

M∑
m=1

Φm − ε̃2
M∑
n=2

n−1∑
m=1

ΦnΦm. (13)

2. The SIR metric (6), averaged over channel realizations, is calcu-

lated for Ê:

• Hardening applies to êkk. Namely, by use of the identity

[ΦnΦm]ij = hin

(
K∑
l=1

h∗lnhlm

)
h∗jm,

we note that êkk can be decomposed as êkk = êkk,s + êkk,IUI, where

êkk,s = ε̃

M∑
m=1

|hkm|2 − ε̃2
M∑
n=2

n−1∑
m=1

|hkn|2|hkm|2

and

êkk,IUI = −ε̃2
M∑
n=2

n−1∑
m=1

hkn

 K∑
l=1,l 6=k

h∗lnhlm

h∗km.

Importantly, EH{êkk,IUI} = 0 and EH{êkk,sêkk,IUI} = 0. Now we

test whether limM→∞
EH{|êkk|2}
(EH{êkk})2 = 1, which is analogous to the

hardening test in Definition 3.1. The decomposition of êkk allows

for writing EH{|êkk|2}
(EH{êkk})

2 =
EH{|êkk,s|2}
(EH{êkk,s})2

+
EH{|êkk,IUI|2}
(EH{êkk,s})2

, and with some

straightforward calculations it can be shown that the first fraction
on the right-hand side of the equality sign tends to 1 and the second
to 0 as M →∞.



172 PAPER V

The presented considerations enable us to write EH{|êkk|2} ≈ (EH{êkk})2
,

resulting in

EH

{
|êkk|2∑K

j=1,j 6=k |êkj |2

}
≈

EH
{
|êkk|2

}∑K
j=1,j 6=k EH {|êkj |2}

(14)

≈ (EH {êkk})2∑K
j=1,j 6=k EH {|êkj |2}

=
∆k

Ωk
, ς.

3. The dependence of “average received power” ∆k and “average
IUI power” Ωk on M and K is analyzed. In the process, we use
straightforwardly provable identities (i 6= j 6= k):

EH{Φi} = EH{ΦiΦj} = IK ,

EH
{

Tr
(
Φ2
i

)}
= EH

{
Tr
(
ΦjΦ

2
i

)}
= K(K + 1),

EH {Tr (ΦiΦjΦiΦj)} = 2K(K + 1),

EH {Tr (ΦiΦjΦk)} = K.

By noting that all êkl are iid and recalling that êkk hardens, after some
calculations we get

∆k = ε̃2M2 [1− ε̃(M − 1)/2]
2
, (15)

Ωk ≈
1

K
EH

{
Tr
(
ÊÊH

)}
−∆k = κ2ε̃

2 − κ3ε̃
3 + κ4ε̃

4,

where κ2 = MK, κ3 = 2MK(M − 1) and κ4 = MK(M − 1)(2M +K − 2)/2.
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Figure 2: Comparison of simulated EH {SIRk} for the original algo-
rithm and metric ς from (14). M = 256, K = 16.

Finally, ς from (14) is compared with the simulated EH {SIRk}, as shown
in Fig. 2. Notwithstanding the discrepancy between ς and EH {SIRk} at
larger ε which is due to truncation of (9) and approximations in (14), both
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Figure 3: Comparison of channel-averaged BER for the proposed
scheme (Algorithm 1), ZF and MRT. Modulation: QPSK.

metrics are observed to follow a similar trend, where average SIR is maximized
by some value of ε̃ (or ε, cf. (12)). For the approximation (14) it can be
shown that with M >> 1, this value is asymptotically equal to ε̃ that minimizes
ergodic IUI Ωk, with both being asymptotically equal to ε̃∗ = 1/M . Using
this fact, we can conjecture why and how the performance of the proposed
algorithm depends on ε by observing the behavior of Ωk. At large M , Ωk ≈
MKε̃2−2M2Kε̃3+M3Kε̃4 and for ε̃ = 1/M the contributions of even- and odd-
order terms in Ωk cancel out, resulting in zero ergodic IUI. Due to related forms
of (9) and (13), it can be extrapolated that similar canceling of interference
terms at optimal ε occurs in the original algorithm.

The choice of ε therefore has a decisive impact on the performance of the
proposed algorithm. A properly chosen ε maximizes IUI suppression. On the
other hand, if we simply let ε→ 0+, all higher order terms in (9) can be ne-
glected, yielding E ≈ ε̃HHH . In this case, the algorithm is asymptotically
equivalent to maximum ratio transmission (MRT) (WH = HH) where perfor-
mance is limited by IUI. Dependence of performance on ε makes clear why a
two-step adjustment of transmit power is needed: the choice of ε determines
the performance, and α tunes the transmit power to the desired value.

4 Performance of the proposed algorithm. Im-
plementation considerations

Uncoded bit error rate (BER), averaged over channel realizations, has been
simulated for the proposed algorithm, ZF and MRT for iid hkm. Total average
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transmit power for all schemes is set to PTK, and different values of M , K and
SNR , PT/N0 are tested. The SIR-maximizing value of ε, found numerically
for each (M,K) is applied. The results, shown in Fig. 3, demonstrate that the
SNR gap between the method and ZF for a very large M = 512 stays essentially
constant (≈ 1 dB at BER = 10−6) as K doubles. Moreover, the smaller the
M , the more drastic the increase of this SNR gap with the doubling of K.
Hence, the proposed method is capable of removing essentially all of the IUI
at extremely large M , with the capability decreasing as M decreases.

Figure 4: Timing diagram of precoder formulation. Toy example sys-
tem with 3 antennas and 4 coherence blocks (CB).

In order to completely assess the viability of the daisy chain topology in
MaMI BS, two implementation aspects need to be investigated. One is the pro-
cessing latency of the precoder formulation, the other - required throughput of
intra-chain links. To this end, we assume a multicarrier setting as in Section
1, with the channel coherence bandwidth spanning Ncoh subcarriers and with
Nbl = dNused/Ncohe coherence blocks (CB). By exploiting channel coherence,
the same precoder wm,b is used at antenna m for all the subcarriers in the
CB b. Computational tasks of formulating wm,b and precoding are scheduled
based on dividing each OFDM symbol into Nbl time slots, one for each CB.
The formulation of wm,b is then pipelined over time and antennas as illus-
trated in Fig. 4, with precoding done in an analogous pipelined fashion. Total
latency of calculating all wm,b for one CB is Λ = MTOFDM/Nbl. Taking into
account that Em,b contains K2 complex samples and by neglecting the time
needed to perform the actual computation of wm,b, the required throughput
of intra-chain links is Rdaisy = NblK

2w/TOFDM, which yields (cf. Section 1)
Rdaisy/Rcentral ≈ K2/(NcohM). Presented results indicate that using the daisy
chain is beneficial (reduced interconnect throughput with small performance
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degradation compared to ZF) when M/K2 is large. Moreover, when M < Nbl,
latency Λ is less than the duration of one OFDM symbol.

5 Conclusion

We have developed and analyzed an algorithm for suppressing interuser in-
terference in the downlink of a massive MIMO system where the BS lacks a
central processing unit and antennas are connected in a daisy chain topology,
having knowledge of the local channel only. For a very large number of BS
antennas, the algorithm performs close to ZF, while having reduced require-
ments on interconnection throughput. These insights indicate that daisy chain
is the topology of choice for the implementation of MIMO BSs with a very
large number of antennas.
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Impact of Relay Cooperation on the

Performance of Large-scale Multipair

Two-way Relay Networks

We consider a multipair two-way relay communication network, where

pairs of user devices exchange information via a relay system. The com-

munication between users employs time division duplex, with all users

transmitting simultaneously to relays in one time slot and relays sending

the processed information to all users in the next time slot. The relay

system consists of a large number of single antenna units that can form

groups. Within each group, relays exchange channel state information

(CSI), signals received in the uplink and signals intended for downlink

transmission. On the other hand, per-group CSI and uplink/downlink

signals (data) are not exchanged between groups, which perform the data

processing completely independently. Assuming that the groups perform

zero-forcing in both uplink and downlink, we derive a lower bound for

the ergodic sumrate of the described system as a function of the relay

group size. By close observation of this lower bound, it is concluded

that the sumrate is essentially independent of group size when the group

size is much larger than the number of user pairs. This indicates that a

very large group of cooperating relays can be substituted by a number

of smaller groups, without incurring any significant performance reduc-

tion. Moreover, this result implies that relay cooperation is more efficient

(in terms of resources spent on cooperation) when several smaller relay

groups are used in contrast to a single, large group.
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Muris Sarajlić, Liang Liu, Fredrik Rusek, Farhana Sheikh and Ove Edfors,

“Impact of Relay Cooperation on the Performance of Large-scale Multipair Two-way

Relay Networks,”

to appear in Proceedings of the IEEE Global Communications Conference (GLOBE-

COM) 2018, Abu Dhabi, UAE, 2018.





Impact of Relay Cooperation on the Performance of Large-scale Multipair
Two-way Relay Networks 183

1 Introduction

Multipair two-way relay systems have attracted significant attention in the
research community, due to their inherent ability to overcome the halving of
system sumrate (stemming from half-duplex operation), with essential doubling
of sumrate compared to ordinary one-way relaying [1]. Much of the research
efforts regarding these systems were focused on developing signal processing
algorithms at the relays that are tailored to fit a certain target objective, e.g.
interference cancellation or sumrate maximization [1], [2]. Recently, multipair
two-way relaying systems with a large number of relays/relay antennas were
considered [3–8]. By employing a large-scale relay network, system performance
is boosted via the channel hardening effect, thus either improving system sum-
rate or increasing coverage compared to relay systems that operate on a smaller
scale.

Previous work on large-scale multipair two-way (LS–MTW) relay systems
is limited to two extreme scenarios. In the first scenario, a large number of
non-cooperating single-antenna relays processes the data in a fully decentral-
ized fashion. Such a setup is described in [3], where individual single-antenna
relays perform amplify–and–forward processing of the data on the bidirectional
links, based only on their local CSI. No data or CSI is exchanged between the
relays, and their sheer large number is relied upon to deliver satisfying perfor-
mance. On the other end of the spectrum is the scenario where a single relay
with a large number of antennas performs the uplink and downlink processing.
Theoretical performance characterization for this setup was analyzed in [4–8],
where the relay is assumed to employ simple linear processing (maximum ratio
combining/transmission and zero forcing).

To the best of our knowledge, there is no prior analysis of LS–MTW relay
networks with an arbitrary degree of cooperation among relays. By “degree
of cooperation” we here refer to the number of relays that will exchange data
and channel state information inside a closed group, with no exchange occur-
ring between groups. The number of closely cooperating relays directly trades
system performance against data exchange cost, and is therefore an important
design parameter for practical implementations of LS–MTW networks. An
illustration of a MTW network with grouped relays is shown in Fig. 1.

This work provides a comprehensive analysis of the effects of relay cooper-
ation in an LS–MTW relay system where zero-forcing processing is used. We
derive a lower bound for ergodic system sumrate that is tight at high SNR.
Furthermore, we make use of this bound to analyze the behavior of system
performance as the number of closely cooperating relays changes. Finally, we
reflect on the choice of the degree of relay cooperation that maximizes the
cost-effectiveness of cooperation.
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Figure 1: Multipair bidirectional relay network with an arbitrary degree
of relay cooperation

2 System setup

In this paper, we analyze the multi-pair bidirectional symmetric relay network,
where M relays serve to connect two separate groups of K user units, as illus-
trated in Fig. 1. Each user from group A is connected in a pairwise fashion
with a corresponding user in group B, with K pairs formed in total. It is as-
sumed that there is no direct link between the users in a pair, so the pairwise
connections are established solely via the relays. Moreover, the information
flow between the two users in a pair is assumed symmetric.

The exchange of information is split in two phases, uplink and downlink,
observed from the perspective of the relays, which occur in alternating time
slots. In the uplink phase, all 2K user units simultaneously transmit to the
relays. The relays process the received signal and send the processed informa-
tion to the users in the downlink phase, with the direction of information flow
swapped compared to the uplink phase (processed information that came on
the uplink of channel H is transmitted on the downlink of channel G, and vice
versa).

Furthermore, we assume that it is only the relays that have knowledge of
the channels H and G. In practice, the channels can be estimated in the
uplink by transmission of orthogonal pilot sequences from the user units, and
downlink channels are then automatically obtained assuming that radio channel
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reciprocity holds and that reciprocity calibration is performed at the relays. In
this sense, the analyzed relay system is equivalent to collocated or distributed
massive MIMO (MaMI) systems working in time division duplex (TDD), and
channel estimation and reciprocity calibration methods developed for TDD
MaMI readily apply [9–11]. However, for clarity of analysis, in this work we
assume perfect channel knowledge and channel reciprocity.

The focus of investigation in this work is the impact of cooperation between
the relays on the overall system performance. The level of inter-relay coopera-
tion is the parameter that trades off network performance with cost of backhaul
information exchange. To this end, we assume the following hierarchical struc-
ture of the relay system:

• The relays are assumed to be divided in equally-sized groups, each con-
taining N relays. Inside the group, channel state information (CSI),
symbols received in the uplink phase and symbols to be transmitted in
the downlink phase are shared mutually among all relays. Moreover, the
relays inside the group are assumed to be time and frequency synchro-
nized. The data is congregated and processed for uplink and downlink in
a central group processor (CGP). One of the relays can take on the role of
the CGP, and is referred to as the group master (represented by • in Fig.
1). Most importantly, no data or CSI information is exchanged between
the groups, and each group performs data processing independently of
others.

• Groups (or equivalently, group masters) are assumed to be synchronized
in time and frequency, and this is the only form of inter-group coopera-
tion.

The two-tier hierarchy of cooperation enables us to cover the entire space
of cooperative networks that lies in between the two extreme cases:

• For N = 1 we have the fully decentralized multipair relaying scenario,
where single-antenna relays use their local CSI to process and relay the
received data without exchanging any CSI or received data information
with other relays. Such a scenario was analyzed in [3].

• The case of N = M represents the perfectly centralized relaying sce-
nario where all CSI and received data is available at a central point that
performs data processing. Usually this setup is cast in the form of one
(massive) MIMO relay, as in [4].

In general, there are no constraints on the geographical distribution of re-
lays in a group, which can be collocated or distributed. Likewise, the type of
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connections between the relays in a group is arbitrary and can be wireless or
wired. We note, however, that a group of N collocated users can be observed
as a single MIMO relay with N antennas. We also note that the stratification
of relay cooperation enables the design of a layered and scalable synchroniza-
tion protocol. Instead of synchronizing all the relays to a common beacon,
synchronization can be done first on the group level and then among the group
masters, resulting in a completely decentralized synchronization scheme. For
the sake of simplicity, we assume that the intra- and inter-group synchroniza-
tion is perfect, and leave the analysis of the impact of synchronization errors
as a subject for future work.

3 System model

We start the description of the system model by denoting with

L =
M

N
(1)

the total number of relay groups. In each channel use, transmitted user sym-
bols are represented by the 2K × 1 complex vector x with covariance matrix

E
{
xxH

}
= I2K . The user symbol vector can be represented as x =

[
xTA x

T
B

]T
,

where xA and xB are symbols transmitted from the left-hand-side and right-
hand-side groups of users, illustrated in Figure 1, respectively.

Focusing on the ith relay group, we build the system model step by step,
following the uplink - downlink flow of information. First, we denote by

Ξu,i = [Hi Gi]N×2K (2)

the composite uplink channel between the ith relay group and all the users.
Received signal vector at the ith relay group is then

yi =
√
PUΞu,ix+ nR,i, (3)

where nR,i is an N × 1 zero-mean circularly symmetric complex Gaussian

(ZMCSCG) vector of thermal noise with covariance matrix E
{
nR,in

H
R,i

}
=

N0,RIN and PU is the uplink transmit power per user, assumed to be same for
all users.

The received signal in the uplink is linearly filtered with Wu,i to yield the
estimates of user data symbols:

x̂i = Wu,iyi =
√
PUWu,iΞu,ix+Wu,inR,i. (4)
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After uplink filtering, the downlink precoder Wd,i is applied to symbol
estimates, together with a scaling factor αi ensuring proper transmitted power.
We assume that the user power allocation in the downlink is uniform.

The uplink/downlink linear processing can be compactly represented by a
general complex gain matrix

Wi = Wd,iWu,i. (5)

Altogether, the transmit signal vector from the ith relay group is

ti = αiWd,ix̂i (6)

= αi
√
PUWiΞu,ix+ αiWinR,i.

The power scaling coefficient αi is determined so that the transmitted power
per group averaged over data and noise realizations equals PR,i. For the heav-
ily restricted decentralized setup considered here, a practically implementable
strategy of power allocation between relay groups is that all groups have the
same transmit power, so PR,i = PR,∀i. Overall, we have

Ex,n
{
||ti||2

}
= PR, (7)

which readily yields

αi =

√
PR

PU ||WiΞu,i||2F +N0,R ||Wi||2F
. (8)

We define the composite downlink channel between the ith relay group and
all the users as

ΞT
d,i = [Gi Hi]

T
N×2K (9)

The contribution of the ith relay group to the received signal at the users,
zi, is thus

zi =

[
zB,i
zA,i

]
= ΞT

d,iti (10)

= αi
√
PUΞ

T
d,iWiΞu,ix+ αiΞ

T
d,iWinR,i.
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The total received signal vector at the users is hence

z =

L∑
i=1

zi + nU (11)

=
√
PU

(
L∑
i=1

αiΞ
T
d,iWiΞu,i

)
x

+

L∑
i=1

αiΞ
T
d,iWinR,i + nU ,

where nU is the N × 1 ZMCSCG vector of thermal noise at the users, with
covariance E

{
nUn

H
U

}
= N0,UI2K .

For the benefit of further analysis, we define the uplink and downlink SNRs
as

SNRu =
PU
N0,R

, and SNRd =
PR
N0,U

. (12)

The overall system model (11) can be expanded for the received symbol at a
particular user, say kth user from group A. This reveals that the performance
in the general case is limited by four distinct impairments: self-interference,
interuser interference, precoded thermal noise at the relays and thermal noise
at the users:

zA,k =
√
PU

(
L∑
i=1

αih
T
k,iWigk,i

)
xB,k︸ ︷︷ ︸

wanted information, xW,k

(13)

+
√
PU

(
L∑
i=1

αih
T
k,iWihk,i

)
xA,k︸ ︷︷ ︸

self-interference, νSI,k

+
√
PU

L∑
i=1

αi

K∑
j=1,
j 6=k

hTk,iWi

(
hj,ixA,j + gj,ixB,j

)
︸ ︷︷ ︸

interuser interference, νIUI,k

+

L∑
i=1

αih
T
k,iWinR,i︸ ︷︷ ︸

precoded noise from relays, νPN,k

+ nA,k︸︷︷︸
thermal noise at users

.
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In the follow-up, we consider the case when zero-forcing is chosen as the linear
processing scheme at individual relay groups and analyze system performance,
averaged over channel realizations. The goal of the analysis is to determine the
closed-form dependence of system performance (quantified by ergodic system
sumrate) on relay group size N .

4 Ergodic system sumrate calculation with per-
group zero-forcing

If zero-forcing (ZF) is chosen for linear processing, the uplink and downlink
processing matrices at each relay group are calculated as

Wu,i =
(
ΞH
u,iΞu,i

)−1
ΞH
u,i, and (14)

Wd,i = Ξ∗d,i
(
ΞT
d,iΞ

∗
d,i

)−1
.

Back-to-back ZF processing will completely eliminate self- and interuser inter-
ference, leaving the precoded noise from relays and noise at the user terminals
as sources of impairment. A strong requirement for total interference elimina-
tion is that N > 2K.

In order to gain some insight in the connection between system performance
(quantified by system sumrate) and system parameters M and N , we assume
that SNRu is high. Typically, a high SNR would mean that the geographical
distances between users and relays are small, and that the relays are used to
boost the system sumrate (in contrast to e.g. a range extension scenario).

Under the high-SNR assumption and additionally assuming that Hi and
Gi are well-conditioned, the influence of precoded thermal noise at the relays
can be neglected, so the system model (11) simplifies to

z =
√
PU

L∑
i=1

αix+ nU . (15)

A basis for performance evaluation is the per-user SNR, defined for the
kth user in group A as the ratio of powers of the information signal part and
impairments from (13), which, due to all interference being eliminated and the
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high-SNR assumption, becomes

SNRA,k =
Ex
{
|xW,k|2

}
N0,U

=
PU
N0,U

(
L∑
i=1

αi

)2

(16)

a)
=

PR
N0,U

 L∑
i=1

1√
||WiΞu,i||2F

2

b)
=

PR
N0,U


L∑
i=1

1√
Tr

[(
ΞT
d,iΞ

∗
d,i

)−1
]


2

,

where a) follows from (8), with the assumption of high-SNR at the relays, and
b) from (5) and (14).

Instantaneous per-user performance is characterized by user rate:

RA,k = log2

(
1 + SNRA,k

)
[bps/Hz] , (17)

and overall system performance by ergodic system sumrate, calculated as

R = EH,G

{
1

2

(
2

K∑
k=1

RA,k

)}
=

K∑
k=1

EH,G {RA,k} . (18)

The factor of 2 accounts for the fact that the information flow in the system
is symmetric, so members of the kth user pair have the same information
transmission capacity. The factor of 1/2, on the other hand, stems from half-
duplex operation. From here, the benefit of the symmetric multi-pair setup
compared with ordinary relaying schemes becomes clear: simultaneous and
symmetric transmission from both user groups manages to (approximately)
compensate for the halving of the capacity due to TDD splitting of uplink and
downlink.

We proceed with calculating (18), and in the process, we make use of

Lemma 1 Let Ψ = [Ψ1 Ψ2 . . . ΨN ] be a vector of nonnegative random vari-
ables Ψi, with ψi denoting realizations of Ψi. Then

EΨ log2

1 +

(∑
i

1√
ψi

)2
 > log2

(∑
i

1√
EΨψi

)2
 .
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Proof : The proof is given in Appendix A.
We employ Lemma 1, assuming in the process that PR/N0,U = 1 without

loss of generality, to obtain a lower bound on the ergodic information rate of
the kth user as

EH,G

{
RA,k

}
> log2

 PR
N0,U

(
L∑
i=1

1√
EH,G {ζi}

)2
 , (19)

where, for sake of clarity, we introduce the ZF precoding scaling factor

ζi = Tr
[(
ΞT
d,iΞ

∗
d,i

)−1
]
. (20)

Now we assume that Hi and Gi are iid Rayleigh fading channels with
pathloss and shadowing, modeled as

Hi = H̃iD
1/2
A,i and Gi = G̃iD

1/2
B,i . (21)

The entries of N ×K matrices H̃ and G̃ are iid ZMCSCG with unit variance,
and the diagonal matrices

D
1/2
A,i = diag

(√
βA,1,i,

√
βA,2,i, . . .

√
βA,K,i

)
and (22)

D
1/2
B,i = diag

(√
βB,1,i,

√
βB,2,i, . . .

√
βB,K,i

)
are used to model propagation losses and large-scale fading. In order for chan-
nel matrices to be decomposable as in (21), the propagation amplitude gain√
β(A,B),k,i > 0 needs to be the same from user k to all relays in group i,

which implies that the relays of that group are assumed to be collocated and
experience the same large scale fading in relation to user k. These conditions
are readily satisfied if a relay group is implemented in form of a single MIMO
relay with a compact form factor. Otherwise, they can be met by applying an
appropriate relay grouping scheme, which is an interesting research problem in
itself, but falls outside of the scope of this paper.

Using well-known results from random matrix theory [12] and the identity
Tr(AB) = Tr(BA), it can be shown that

EH,G {ζi} =
γi

N − 2K
, (23)

where

γi =

K∑
k=1

(
1

βA,k,i
+

1

βB,k,i

)
. (24)
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Combining (23) with (19) yields the lower bound on per-user rate

EH,G

{
RA,k

}
> log2

[
PR
N0,U

(N − 2K)δ

]
, (25)

with

δ =

(
L∑
i=1

1
√
γi

)2

. (26)

For convenience of exposition, in the follow-up we will refer to γi and δ as power
imbalance factor and array gain degradation factor, respectively.

Overall, the lower bound on system sumrate for the multipair two-way relay
system with relay grouping and ZF processing at high SNR is given from (18)
and (25) by

R > max

{
0,K log2

[
PR
N0,U

(N − 2K) δ

]}
. (27)

5 Analysis and discussion

In order to have a fair comparison between systems, we assume that the pathloss
and shadowing power gains are normalized so that

Tr (DA,i) = Tr (DB,i) = K, ∀i, (28)

which implies E
{
||Hi||2F

}
= E

{
||Gi||2F

}
= NK,∀i. Given the constraint (28),

it is easy to show that power imbalance and array gain degradation factors are
lower (respectively, upper) bounded as

γi ≥ 2K and δ ≤ L2

2K
, (29)

where equality holds in the case DA,i = DB,i = IK . In other words, the
lower bound on system sumrate from (27) is maximized when there are no
pathloss/shadowing power imbalances between users. In practical system de-
ployments, such imbalances will invariably exist and the resulting degrada-
tion of sumrate can be combatted by either performing waterfilling-based user
power weighting in the downlink, or by employing advanced user scheduling
techniques. Analysis of the effects of these approaches is beyond the scope of
this work.

For a fair comparison between relay systems with differing M and N , we
need to assume that the amount of transmit power allocated to the entire relay
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system is fixed, and we denote this power by PT . As mentioned previously,
due to limited coordination, it is reasonable to assume that the total power
allocated to relays is distributed equally among relay groups, so PR = PT /L.

By taking into account (29), we can write δ = L2

2K ε, ε ≤ 1, which yields the
lower bound on sumrate that allows for a fair comparison between different
relay systems:

R > max

{
0,K log2

(
PT
N0,U

M

N

N − 2K

2K
ε

)}
. (30)

Now we can consider the case when N � 2K. Even for a large number of
user pairs, this case is feasible due to the fundamental assumption of a large
number of relay units, M � 1. The array gain term from (30) then becomes

M

N

N − 2K

2K
ε ≈ M

2K
ε, (31)

that is, the array gain becomes independent of N . This insight is of fundamen-
tal importance for practical deployments of LS-MTW systems. What it implies
is that, in the regime with a large number of relays M , tight cooperation in
information processing between all M relays is not necessary. Instead, small,
independent groups of tightly cooperating relays can be formed, and such a
setup experiences only a marginal degradation of system sumrate compared
to the case when all relays are cooperating. If we substitute the notion of a
tightly cooperating relay group with a more specific notion of a MIMO relay,
we can conclude that a single massive MIMO relay performing ZF can be sub-
stituted with several simpler and cheaper MIMO relays with smaller numbers
of antennas, with a negligible reduction in system performance.

The presented observations are corroborated by simulations, results of which
are presented in Fig. 2, where the lower bound (30) is compared to simulated
system sumrate, averaged over channel realizations. It is assumed that the
total transmit power in the system, which we denote by Ptot , is split between
users and relays in two equal parts, so PU = Ptot/4K and PR = Ptot/2L.
The results show an excellent match between the theoretical lower bound (30)
and simulations. Moreover, it is clearly demonstrated how substituting one
large group (N = M) with several smaller and independent groups of relays
introduces only a slight degradation of sumrate (in the most extreme cases,
sumrate degrades by 10.5% to 12.5% for the setups considered).

In order to gain deeper understanding of tradeoffs encountered in the de-
sign of LS-MTW systems, in addition to sumrate, we also need to take into
account the cost of enabling cooperation between the relays. This cost, which
we denote by C, quantifies the resources spent (e.g. energy, bandwidth) or
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Figure 2: Theoretical and simulated ergodic sumrate of a LS-MTW
system with ZF in uplink and downlink. Markers: simulation results,
full and dashed lines: theoretical lower bounds. Minimum theoretical
relay group size = 2K + 1, maximum = M . SNRu = SNRd = 10 dB
and no power imbalance assumed.

penalties in system performance incurred (e.g. latency) when CSI and up-
link/downlink data are exchanged inside a relay group. In particular, we focus
on resources that can be reused between groups. An example system setup
would feature relays inside a group exchanging CSI and data with the CGP
over dedicated short-range wireless links and employing frequency division mul-
tiplexing (FDM). With enough physical separation between individual groups,
the short range of intra-group backhaul links would mean that the bandwidth
dedicated for cooperation can be reused between groups. Moreover, the use of
FDM implies that this bandwidth is proportional to the group size:

C = cBWN [Hz], (32)

where cBW is the bandwidth of the frequency slot allocated for one user-CGP
link. As discussed previously, for N � 2K, sumrate is independent of N .
Therefore, the cooperation efficiency of the described system,

η =
R

C
, (33)

increases for decreasing N when N is large.
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Figure 3: Relative cooperation efficiency with reusable cooperation re-
sources. SNRu = SNRd = 10 dB, M = 256.

Relative cooperation efficiency function η̃ = η/max {η} is shown in Fig. 3,
where N ∈ N but the constraint L ∈ N is relaxed. These results support the
notion that using one large cooperating group is a suboptimal strategy from
the point of view of cooperation efficiency, especially for low values of K.

6 Conclusion

We have analyzed a multipair two-way relay system with a large number of
relays. The relays are assumed to form groups inside which data and channel
state information is exchanged, and processing is done independently from
other groups. Assuming that the groups perform zero-forcing and that the
SNR is large, we derive a closed-form expression for a tight lower bound on
the system sumrate. An asymptotic analysis of the bound shows that the
sumrate is essentially independent from group size N when N � 2K. This
implies that one large group of cooperating users can be substituted with several
smaller groups, with no significant impact on performance. We extend this
result to take into account the efficiency of information exchange that supports
relay cooperation. It is shown that using several smaller relay groups is more
efficient than the use of a single large group, if the resource used for intra-group



196 PAPER IV

information exchange is reusable between groups.
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Appendix A: Proof of Lemma 1

By taking into account Jensen’s inequality

Ef(X) ≥ (≤) f (EX) ,

f(X) convex (concave), we can form a chain of (in)equalities

E log2

1 +

(∑
i

1√
ψi

)2
 > 1

ln 2
E ln

(∑
i

1√
ψi

)2


=
2

ln 2
E ln

(∑
i

e−
1
2 lnψi

)
a)

≥ 2

ln 2
ln

(∑
i

e−
1
2E lnψi

)
b)

≥ 2

ln 2
ln

(∑
i

e−
1
2 lnEψi

)
= log2

(∑
i

1√
Eψi

)2
 ,

where inequality a) follows from convexity of ln
∑
i e
yi on Rn, so

E ln
∑
i

eyi ≥ ln
∑
i

eEyi .

Inequality b) follows from concavity of ln() and from the fact that e−z is mono-
tonically decreasing, which yields

e−
1
2E lnψi ≥ e− 1

2 lnEψi .
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