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About the thesis
Epithelial ovarian cancer affects 1 in 70 women worldwide and is very 
aggressive in its nature. However, epithelial ovarian cancer is also not just 
one cancer, it is five distinct cancers each with their own morphological and 
molecular fingerprint. Ovarian cancer has been nick named: The Silent Killer.

This thesis explores epithelial ovarian cancer using different biomolecular 
approaches aimed at characterizing the cancer further. The combination of 
gene expression analyses, genome sequencing, bioinformatics and in vitro 
models provide a platform from which we can gain further knowledge of this 
heterogeneous disease.

By enhancing our knowledge, we find new targets to treat, or new biomarkers 
with the promise of early detection. The combination of multiple aspects of 
research brings us closer to the ultimate goal. To improve the prognosis of a 
cancer that has not seen improvement for the past 20 years.

About the author:
Nicolai Skovbjerg Arildsen is a molecular biologist who 
has ventured into the field of bioinformatics in a clinical 
setting, and he has managed to combine his part time 
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Thesis at a glance 

Study Question Methods  Results and 
implications 

I Does sex hormone 
receptor expression 
have a prognostic 
value in ovarian 
cancer? And can sex 
hormone receptors 
be used to stratify 
molecular subtypes 
of ovarian cancer? 

 Immunohistochemical 
(IHC) analysis of 
ERα/β, AR and PR in 
118 ovarian cancers. 

 Analysis of 
correspondng mRNA 
levels in molecular 
subtypes of ovarian 
cancer.  

AR+ and PR+ were 
prognostically 
favorable both alone 
and in combination. 

ESR1 and PGR were 
differentially 
expressed beween 
molecular subtypes. 

II Can an integrative 
bioinformatic 
analysis of ovarian 
clear cell cancer 
(OCCC) reveal 
potential treatment 
candidates? 

Is OCCC a distinct 
molecular subtype? 

 Gene expression 
profiling of 67 tumors, 
(15 OCCC). 

 Next generation 
sequencing of 10 
OCCC tumors. 

 IHC of 43 OCCC 
tumors. 

 

OCCC is a distinct 
molecular subtype in 
ovarian cancer. Rho 
GTPases are a 
potential treatment 
candidate in OCCC, 
while HER2 seems not 
to be overexpressed 
despite ERBB2 
overexpression. 

III Are Rho GTPases a 
potential target for 
OCCC treatment 
based on the 
integrative analsyis 
in study II and are 
OCCCs more 
sensitive to the Rho 
GTPase inhibitors 
simvastatin and CID-
1067700? 

 Cell culture assays. 

 Dose response 
assays. 

 Cytoskeletal staining. 

 Cellular response 
assays. 

 FACS. 

 Western blotting. 

  

Simvastatin is more 
potent that carboplatin 
in OCCC. 

Both simvastatin and 
CID-1067700 
interefere with the 
cytoskeleton. 

Cell line specific 
cellular responses to 
treatment indicate 
targeting of Rho 
GTPases and the 
RAS/ERK, 
PI3K/AKT/mTOR 
pathways. 

IV Can we detect TP53 
mutations in 
presymptomatic 
liquid based vaginal 
samples from 
women with somatic 
TP53 mutations in 
HGSOC tumors? 

 Ultrasensitive droplet 
digital PCR (ddPCR); 
IBSAFE™. 

 Next generation 
sequencing. 

 

IBSAFE achieved a 
sensitivity of 75% in 
the diagnostic 
samples, while no 
mutations were 
detected in 
presymptomatic 
samples. IBSAFE 
proved to work in low 
abundance DNA 
samples. 
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Populærvidenskabelig sammenfatning 

Æggestokskræft er en af de største dræbere for kvinder. Omkring 1 ud af 70 kvinder 
vil på et tidspunkt få kræft i æggestokkene, og med øgenavnet ”Den stille dræber” 
er der god grund til at udfordre det behandlingsparadigme som æggestokskræft lider 
under, nemlig at alle typer af æggestokskræft behandles ens. Dette betyder, at 
dødeligheden ikke har sænket sig mærkbart i de seneste 20 år. 

Vi ved nu, at æggestokskræft i hvert fald er 5 histologisk forskellige sygdomme, og 
specielt de serøse adenokarcinomer, som udgør 70% af alle tilfælde, har en dårlig 
prognose. 

Denne afhandling har forsøgt at undersøge æggestokskræft ved hjælp af 
biomolekylære metoder og tankegange. Resultaterne er efterfølgende sat ind i en 
klinisk relevant kontekst, så forskningen kan give det størst mulige udbytte for 
patienterne. 

Det første studie undersøgte de prognostiske værdier, som hænger sammen med 
kønshormonreceptorerne: østrogen receptor α/β, progesteron receptor, androgen 
receptor og overlevelse. Vi fandt, at progesteron og androgen receptor positivitet 
hang sammen med en bedre prognose, både hver for sig og tilsammen. Vi forsøgte 
også at teste dette i et uafhængigt datasæt. Datasættet var baseret på genudtryk, men 
desværre lykkedes det ikke at vise sammenhængen i dette datasæt. Grundene herfor 
kan være mange, dog er det sandsynligt, at der er store forskelle mellem datasættene. 
Det uafhængige datasæt var inddelt i undergrupper baseret på tumorernes 
genudtryk, og i disse undergrupper fandt vi dog en potentiel positiv effekt af 
østrogen α og progesterongenerne. Det vil kræve en yderlige undersøgelse af en 
større gruppe kvinder at klarlægge effekterne af genudtrykkene, men vores 
indledende forsøg viste en potentiel klinisk fordel. 

I studie to undersøgte vi, hvordan man ved hjælp af flere forskellige datasæt med 
både genetisk og cellulær information, samt bioinformatiske metoder, kunne 
generere en hypotese for behandling af klarcellet æggestokskræft. Klarcellet 
æggestokkræft er særlig interessant, idet den er kemoresistent. Vi opdagede, at Rho 
GTPaser spillede en stor rolle igennem hele vores analyse, og derfor var det oplagt 
at teste om man kunne behandle klarcellet æggestokskræft med medikamenter, der 
hæmmer Rho GTPasers aktivitet. 

I studie tre testede vi simvastatin og CID-1067700, to stoffer der rammer Rho 
GTPasers aktivitet, og fandt at begge stoffer kunne hæmme væksten af klarcellede 
æggestokskræftcellelinjer. Dog var simvastatin meget mere effektivt sammenlignet 
med CID-1067700, men også sammenlignet med den almindelige 
chemobehandling. Vi kunne observere, at cellens cytoskelet blev forstyrret, og at 
forskellige cellulære signaleringsveje blev påvirket. Vi konkluderede derfor, at 
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simvastatin var et potentielt nyt middel mod klarcellet æggestokskræft, og da det 
allerede bruges i behandlingen af forhøjet kolesteroltal, kan en behandling være tæt 
på. Dog kræves flere studier. 

Studie IV evaluerede en metode til at diagnosticere æggestokskræft tidligt. De fleste 
kvinder som bliver diagnosticeret med æggestokskræft, har allerede en kraftigt 
spredt sygdom, hvorfor behandlingen er svær. Vi undersøgte derfor 
celleforandringsprøver taget hos ni kvinder for livmoderhalskræft for mutationer i 
genet TP53. Dette gen er ofte muteret i æggestokskræft, og er derfor en oplagt 
kandidat at kigge efter i sådanne prøver. Vi brugte en yderst fintfølende metode som 
bruger bitte små dråber af prøver til at undersøge mutationer. Vi fandt ingen 
mutationer i prøverne taget hos kvinderne før deres diagnoser, men for 75% af 
kvinderne fandt vi mutationer i TP53 i deres prøver taget i forbindelse med 
diagnosen. Derudover virkede vores metode med stor sikkerhed, selv i prøver med 
meget lidt DNA. Vi forsøger nu at udvide forsøget fra de oprindelige ni kvinder til 
omkring 30 kvinder fra hele Sverige. 

Arbejdet i denne afhandling afspejler 4 års arbejde med æggestokskræft, og 
igennem disse år er vores viden om denne kræfttype blevet bedre. Vi er nu klar over 
at undersøgelser, som dem i studie 2 og 3 er nødvendige for de mere sjældne typer 
af æggestokskræft, mens at forsøg som studie 4 kan virke for den primære serøse 
æggestokskræft, da tidlig diagnose her giver en rigtig god prognose. 

De næste år vil de nye teknologier indenfor sekvensering have kortlagt 
æggestokskræft så effektivt, at vi kan begynde at se hvilke grupper af kvinder, der 
skal have hvilke behandlinger, så som det gøres i brystkræft i dag. Derudover vil 
immunterapi og PARP-inhibitorer også komme til at gøre en stor forskel for 
behandlingen indenfor de næste år. 

Det er min tro, at æggestokskræft indenfor en overskuelig årrække er en sygdom 
man dør med og ikke af.  
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Preface 

It is estimated that one in three humans will develop cancer during their lifetime, 
which leads to the conclusion that every human being on earth will at some point 
encounter cancer, either as a patient or as a relative.  

Though cancer is no longer considered just one disease, rather multiple different 
diseases, the paradigm in ovarian cancer is still to treat it as one disease. Although 
much research has been done in e.g. breast cancer, resulting in an a more favorable 
prognosis, ovarian cancer has been at a stalemate for the past 20 years. Its highly 
heterogeneous nature is probably what has made it able to earn its nick-name: The 
Silent Killer. 

The most powerful weapon in the battle against ovarian cancer is knowledge. 
Knowledge through research. And research is just what this thesis is about. This 
thesis is the completion of five years of research in ovarian cancer, and it stands as 
a testimony to my belief that ovarian cancer will become a manageable disease. 

I believe that the use of high throughput methods holds the key to improve ovarian 
cancer prognosis. As we have powerful biomolecular methods at our disposal, it is 
now more than ever a matter of interdisciplinary collaborations in order to gain the 
most benefit of these methods. 

This thesis explores some of the biomolecular approaches available and emphasizes 
the synergy which can be obtained through interdisciplinarity in research. I came 
from a background in molecular biology and drug formulation, and into the world 
of preclinical research. The benefit for me has been that the research in this thesis is 
not only biological in nature, as the individual studies all hold a relevant clinical 
perspective. 

Whether we assessed the prognostic effect of hormone receptors, used multilayered 
‘omics data sets to generate a hypothesis, or evaluated a method for early detection, 
the clinical backbone has been invaluable. Research is all about asking the right 
questions, and in this thesis these questions were those of clinical relevance. 

In my opinion the integrative holistic approach will be taking cancer research into 
the future and provide even better treatments than we have now. 

A future who among others belong to my nephew, who was only possible because 
of the advances in cancer research as my brother is a cancer survivor. 

Frederiksberg, February 2019 
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Introduction 

A historic perspective on cancer 

Cancer has been termed a disease of the old, and although it mainly affects elderly 
people, cancer itself is old. Cancer has existed alongside evolution since the dawn 
of DNA, and these two phenomena are tightly intertwined: One could not exist 
without the other [1, 2]. One of the oldest records of cancer dates to ancient Egypt 
(3,000 BC) and the Edwin Smith Papyrus in which cases of breast cancer are 
described although the word “cancer” is not used. The word “cancer” came into 
existence in ancient Greece, where the “Father of Medicine” Hippocrates (460-370 
BC) described tumors with the word: “carcinoma”. This was later translated by the 
Roman physician, Celsus (28-50 BC) into the modern-day word “cancer”. 

Even though cancer has been recognized for almost 5,000 years, we have only just 
begun to understand the complex dynamics evolving around cancer. The latest 
review by Douglas Hanahan and Robert A. Weinberg on the hallmarks of cancer 
highlighted the current understanding of cancer and expanded their original six 
hallmarks as defined in their paper from 2000, into the ten hallmarks seen in Figure 
1 [3], all evidence of the complex nature of cancer. 

 

Figure 1: Therapeutic Targeting of the Hallmarks of Cancer 
Illustration of the ten hallmarks of cancer and suggested treatment options. Reprinted from Cell, Volume 144 Issue 5, 
Douglas Hanahan and Robert A. Weinberg, Hallmarks of cancer: the next generation, 646-674, 2011, modified with 
permission from Elsevier. 
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Cancer is the second leading cause of death, accounting for 9.6 million deaths 
worldwide in 2018 [4], and the western world has the highest incidence of cancer 
as seen in Figure 2 [5]. However, cancer is not a single disease with one definite 
cause, and through history attempts have been made to identify such underlying 
causes. Bernardino Ramazzini (1633-1714), an Italian physician, observed in 1713 
that nuns had a higher incidence of breast cancer which he attributed to their life of 
celibacy [6]. Interestingly, one of the risk factors of breast cancer is in fact 
nulliparity [7]. 

Despite the grim perspective, we now more than ever, have the possibility to fight 
cancer. With the emergence of chemotherapy in the 1940’s up until the modern-day 
immunotherapy [8], we are taking the battle to the frontline and in fact the latest 
reports are that we see a steady decline in incidence and deaths of cancer [9]. 

Ovarian cancer 

Incidence and mortality 

It is estimated that 1 in 70 women will develop ovarian cancer in her lifetime [9], 
and ovarian cancer is the 7th most common female cancer in the world. There were 
more than 250,000 estimated new cases, and an estimated 143,180 deaths among 
women in 2018 [4]. The median age of onset is 63 years, and the incidence peaks in 
the late 70’s [10]. The incidence of ovarian cancer varies in the world, with the 
highest incidence in Europe and the lowest in Africa [4], which is probably due to 
a significant difference in life-style and environmental factors (Figure 2). 

Ovarian cancer is diagnosed in more than 2,000 women annually in the Nordic 
countries, with 700 and 500 cases in Sweden and Denmark, respectively. Denmark 
has the worst relative 5-year survival rate of 40% [11]. Due to unspecific symptoms, 
or even lack of symptoms, the majority of ovarian cancers are diagnosed in stage III 
or higher [10], with a significantly worse prognosis compared to cancers in stage 
<II. Ovarian cancer is staged by the staging system of the Fédération Internationale 
de Gynécologie Obstétrique (FIGO) [12]. The FIGO staging system evaluates 
ovarian tumors according to their spread, where stage I cancer is localized to the 
ovaries, while stage IV cancer has widespread metastases. Stage I cancer confers a 
5-year survival rate of >90% compared to <30% for FIGO stage III tumors, while 
the overall 5-year survival rate of ovarian cancer is 47% [13]. 

Several attempts have been made to improve diagnostics, e.g. through population-
based screening like in breast cancer. However, two large studies (Prostate, Lung, 
Colorectal, and Ovarian Cancer Screening Trial  (PLCO, US) and UK Collaborative 
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Trial of Ovarian Cancer Screening (UKCTOCS, UK)) have found no evidence that 
population based screenings using currently available methods would increase the 
survival of ovarian cancer patients [14, 15]. 

Epithelial ovarian cancer 

Ovarian cancer constitutes two tumor types: Epithelial and non-epithelial ovarian 
cancer. Epithelial ovarian cancer (EOC) accounts for 90% of all ovarian cancer 
cases while non-epithelial ovarian cancer, mainly germ cell and sex cord-stromal 
cell cancers account for 10%. EOC is further divided by histological appearance 
into five main subgroups: High-grade serous ovarian cancer (HGSOC) (70%), 
ovarian clear cell cancer (OCCC) (10%), endometrioid cancer (10%), low-grade 
serous ovarian cancer (LGSOC) (<5%) and mucinous cancer (3%) [16, 17]. These 
cancer subtypes comprise 95% of EOC, while the rest are of other or mixed 
subtypes, e.g. carcinosarcomas and undifferentiated cancers. Henceforth, the term 
“ovarian cancer” refers to EOC unless otherwise specified. 

 

Figure 2: World wide cancer incidence 
Estimated age-standardized global cancer incidence rates in 2018 [5]. Lighter blue represents lower incidence 
compared to darker blue. 

The dualistic model 

Up until 2004, the absence of malignant precursors and the theory of incessant 
ovulation had led to the belief that ovarian cancer developed de novo [18, 19]. This 
paradigm was challenged in 2004 by Ie-Ming Shih and Robert J. Kurman and their 
theory through which ovarian cancer was divided into type I and type II tumors, 



24 

each with different extra-ovarian origins [20]. The tumor type characteristics are 
outlined in Table 1 following the updated theory by Kurman et al. (2016) [21]. 

Table 1: Characteristics of Type I and Type II tumors 

 Type I Type II 

Behaviour Indolent Aggressive 

Genetic stability Stable Unstable 

TP53-mutation frequency Low High 

BRCA1/2 mutation 
frequency 

Low High 

Proliferativ No Yes 

Histological subtypes OCCC 

Low-grade endometrioid cancer 

Mucinous cancer 

LGSOC 

HGSOC 

High-grade endometrioid cancer 

Precursor lesions Borderline tumors 

Endometriosis 

Serous tubal intraepithelial 
carcinoma (STIC) 

 

Evidence for the dualistic theory of ovarian cancer has been provided by several 
studies in the past decade [16, 22]. The emergence of next generation sequencing 
(NGS) provided the platform for an in-depth analysis of the fallopian tubes as the 
site of origin for HGSOC through the common clonality of serous tubal 
intraepithelial carcinomas (STIC)s and HGSOC [23]. Furthermore, GEX analysis 
including normal tubal epithelium also found evidence supporting the dualistic 
theory, with tumors correlating with extra-ovarian tissue of e.g. the fallopian tube 
[24-26]. 

The theory has proved robust, both genetically and molecularly, and explains the 
difference in proliferation and aggressiveness between the tumor types in the two 
groups. Type I tumors present with a better prognosis following radical surgery, but 
respond less well to chemotherapy, which is probably due to their low proliferation 
(Table 1) [27]. 

The dualistic model could also help explain why early detection methods for ovarian 
cancers have so far proved insufficient [15, 28], since current screening methods 
(transvaginal ultrasound and cancer antigen 125 (CA-125)) are not targeting the 
sites of ovarian cancer initiation. Furthermore, the dualistic model may support that 
prophylactic surgeries can be restricted to salpingectomies, rather than salpingo-
oophorectomies, in order to reduce ovarian cancer risk [29]. 
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Molecular subtypes in ovarian cancer 

Gene expression (GEX) data for molecular subtypes 

Given the importance of GEX based molecular subtypes in e.g. breast cancer, efforts 
have been made in ovarian cancer to identify clinically relevant subtypes [30, 31]. 
The first attempt to identify such molecular ovarian cancer subtypes was published 
by Tothill et al. (2008). In a cohort if primarily HGSOC and endometrioid ovarian 
cancer they identified 6 subgroups: C1: high stroma, C2: high immune signature, 
C3: low-malignant potential, C4: low stromal response, C5: mesenchymal, low 
immune signature and C6: low-grade endometrioid. The names were associated to 
the function of the majority of the genes found in the respective subgroups’ 
molecular classifiers, and the subgroups were associated with clinical outcome.  

The Cancer Genome Atlas (TCGA), analyzing only HGSOC, replicated the 
subgroups of C1, C2, C4 and C5 in their cohort and renamed them into C1: 
mesenchymal, C2: immunoreactive, C4: differentiated and C5: proliferative; 
however they failed to link the subgroups to clinical outcome, while the refined 
nomenclature stayed on [32]. Further attempts have been made to further expand 
and refine the molecular classifiers for the HGSOC subgroups [33-36] or even 
expand the subgroups outside that of HGSOC [37]. 

A recent study by Chen et al. (2018) evaluated the robustness of different molecular 
classifiers for ovarian cancer and found that they rarely performed satisfactorily 
outside of their test data sets [38]. The reasons for the poor performance are 
potentially many, however differences in clinicopathological characteristics, correct 
assessment of histological subtypes and heterogeneity in ovarian cancer are 
probable significant factors [39, 40]. Interestingly, a molecular classifier has not yet 
made it into a clinical setting. 

Integrative approach to subtypes 

Recent methodology for creating classifiers for molecular subtypes has seen the 
need for a more integrative approach as suggested by Bowtell et al. (2015) [41]. The 
concept is to combine data from several different platforms such as genomics, 
transcriptomics and proteomics, to create a multilayered data set which could 
capture the complex biology of ovarian cancer. 

Currently both mutation and copy number signatures are now being explored in the 
predominant HGSOC subtype [42-45], however, some also outside of the HGSOC 
subtype [46, 47]. This could potentially lead to the discovery of complex, but 
clinically relevant subgroups in ovarian cancer. 
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Histopathology and molecular characteristics 

Ovarian cancer is a highly heterogeneous disease, which is evident when looking at 
the tumors through a microscope (Figure 3). The five major subtypes of ovarian 
cancer: HGSOC, OCCC, endometrioid cancer, LGSOC and mucinous cancer 
display clear morphological differences and molecular differences. 

This thesis mainly focuses on HGSOC and OCCC, and therefore these subtypes are 
described in greater detail below. 

 

Figure 3: Photopmicrographs of histological subtypes in ovarian cancer. 
A: High-grade serous ovarian cancer, B: Ovarian clear cell cancer, C: Endometrioid cancer, D: Low-grade serous 
ovarian cancer, E: Mucinous cancer. Published with permission from Anna Måsbäck, Department of Clinical 
Pathology, Skåne University Hospital, Lund. 
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High-grade serous ovarian cancer 

HGSOC and the STIC 

HGSOC is a type II tumor and the most common histological subtype of the ovarian 
cancers (Table 2). It is highly aggressive and is thought to arise from a STIC 
precursor lesion in the fallopian tube (Figure 4) [48]. STIC lesions may initiate 
malignant tumors in either the fallopian tubes or, if cells are shed to the ovaries, in 
the ovaries, and are collectively termed high-grade serous cancers. This is supported 
by the transcriptional resemblance of HGSOC cells with those of the fallopian tube 
epithelium (FTE) [26]. This has been supported by several studies providing a 
genetic link between STICs and HGSOC based on shared TP53 mutations [23, 49-
51]. The hypothesis of premalignant transformation of STICs as a precursor for 
HGSOC remains debated as studies in mice suggested that ovarian surface 
epithelium (OSE) can initiate HGSOC, even if the fallopian tubes are removed [52]. 
Even though HGSOC can develop after removal of the fallopian tubes, this might 
reflect endosalpingiosis, where normal oviductal tissue is displaced to the omentum 
or peritoneum [53]. The tissue can then hypothetically initiate the same malignant 
transformation and subsequently develop into HGSOC. 

Table 2: Differences between the major subtypes of ovarian cancer 

 *: Prognosis in other subtypes are compared to HGSOC 

 HGSOC OCCC Endometrioid Mucinous LGSOC 

Cases 70% 10% 10% 5% <5% 

Stage at 
diagnosis 

Advanced (>III) Early (I or II) Early (I or II) Early (I or II) Early (I or II) 

Suggested 
precursor 

Fallopian tube 
STIC 

Endometriois Endometriois Adenoma, 
teratoma 

Serous 
borderline 

tumor 

Genetic risk BRCA1/2 Lynch syndrome Lynch syndrome Unknown Unknown 

Genetic 
alterations 

TP53 
BRCA1/2 
Genomic 
instability 

HNF-1β 
ARID1A 
PTEN 

PIK3CA 

PTEN 
CTNNB1 
ARID1A 

PIKC3CA 
K-RAS 

K-RAS 
ERRB2 

B-RAF or 
K-RAS 

Response to 
chemotherapy 

Good Poor Poor Poor Poor 

Prognosis* Poor Moderate Good Good Good 

Ovarian 
cancer type 

II I I I I 

 

One of the earliest events preceding STICS is the occurrence of a benign “p53-
signature” in the fallopian tube secretory epithelium cells (FTSEC) (Figure 4) [54]. 
The p53-signature is defined as non-proliferative but shows evidence of DNA 
damage. However, additional genetic mutations can ultimately drive the p53-
signature from its benign state to a malignant one, eventually leading to HGSOC 
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[39, 48, 51]. These events result in a high frequency of TP53 mutations in HGSOC 
(>95%). Recent studies have shown that PAX8, a transcription factor which is 
expressed in FTSEC, might also be involved in HGSOC carcinogenesis. A study by 
Adler et al. (2017) reported that knockdown of PAX8 significantly reduced 
tumorigenicity both in vitro and in vivo [55]; however the role of PAX8 is to be 
further evaluated [41]. 

Half of HGSOCs show homologous recombination deficiency (HRD) 

Approximately 50% of HGSOC tumors have been found to have aberrations in HRD 
associated genes, including BRCA1/2 mutations (15%) [32, 41, 56]. This has led to 
the use of Poly (ADP-ribose) polymerase (PARP)-inhibitors for the treatment of 
HGSOC [57]. 

 

Figure 4: Development of STIC lesions in FTSEC 
The development of STIC lesions in the fallopian tube secretory cells from left to right. The genomic abberations 
incease as the p53-signature transform into STICs. Top panels are hematoxylin and eosin stains. Bottom panels are 
p53 stains. Notice the loss of single cell layers in the last two panels. Adapted by permission from Springer Nature: 
Nature, Nature Reviews Cancer, Rethinking ovarian cancer II: reducing mortality from high-grade serous ovarian 
cancer, David D. Bowtell, Steffen Böhm,[…]Frances R. Balkwill), 2015. [41]. 

The remaining half do not show evidence of apparent HRD defects, but 
amplifications of CCNE1 (Cyclin E1), MYC, PIK3CA and MECOM are frequent 
(>20%), and Cyclin E1 overexpression in FTSEC with a present p53-signature has 
been suggested to drive the transformation of the signature towards STIC [56, 58]. 

HGSOC is often diagnosed in advanced stages, and although initial response to 
platinum-based chemotherapy is often good, 70% of the patients experience relapse 
and development of platinum resistance is common. There are many mechanisms 
responsible for platinum resistance, however, the initial clonal diversity of HGSOC 
might be a contributing factor. The analyses of recurrent tumors and their drivers 
are currently insufficient, but a study by Patch et al. (2018) showed CCNE1 
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amplification and BRCA1/2 reversions in platinum resistant recurrent tumors [59]. 
Other evidence points towards the inhibition of AKT signaling as a potential 
treatment and a phase IB dose-escalation study of Afuresertib (AKT inhibitor) in 
recurrent platinum resistant ovarian cancer is underway [60]. 

Microscopically, HGSOCs have a heterogeneous papillary growth with 
intermediate to highly atypical cells. Immunohistochemical stains for PAX8, Wilms 
tumor protein 1 (WT1), and p16 are positive, while a high nuclear expression of 
Ki67, indicating high proliferation, is also seen [16]. Furthermore, p53 staining is 
generally aberrant (not wildtype). 

Ovarian clear cell cancer 

OCCC is a rare type I tumor accounting for 5-10% of all ovarian cancer cases in 
Europe and North America, while the incidence in Asia is 15-20% [61, 62]. The 
reasons for this remain unknown. Although OCCC is considered chemo resistant 
[63], it often presents as stage I disease and the overall prognosis is generally good, 
with a 5-year survival rate of >85% [64]. Approximately 30% of OCCC patients 
experience a relapse from a primary stage I disease, and following relapse the 
prognosis is even worse than that for HGSOC [65]. 

ARID1A, PIK3CA and endometriosis drives OCCC 

Several studies have linked OCCC carcinogenesis to endometriosis (See Risk 
factors), and OCCC shares similarities in its mutational profile with endometrioid 
ovarian cancer, another endometriosis associated subtype [22]. ARID1A, a gene in 
the SWItch/Sucrose Non-Fermentable (SWI/SNF) complex, and PIK3CA, a gene 
for one of the subunits of phosphatidylinositol 3-kinase of the PI3K/AKT/mTOR 
pathway, are found mutated in 40-50% of all OCCCs [66-68]. Mutations in the 
tumor suppressor gene PTEN and the oncogene KRAS are also frequent [67, 69]. 
Co-occurrence of mutations in ARID1A and PIK3CA are common and are thought 
to drive OCCC carcinogenesis [66, 70, 71]. Interestingly, OCCC patients with 
endometriosis have been associated with improved outcome compared to OCCC 
patients with no endometriosis [72]. The transcription factor Hepatocyte Nuclear 
Factor 1-Beta (HNF-1β) is upregulated in OCCC, which has been associated with 
the unique methylation profile of OCCC compared to the other subtypes of ovarian 
cancer. HNF-1β has been found to methylate several promotors in the estrogen 
receptor α (ERα) pathway [73]. 

Lynch syndrome, a disease characterized by mutations in DNA mismatch repair 
genes and microsatellite instability, is associated with an increased risk of OCCC 
[74]. Lynch syndrome is also associated with better survival [75]. A report by 
Jönsson et al. (2014) found that Lynch syndrome associated endometrioid, but not 
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OCCC, cancers had a distinct GEX profile [76]. This indicates that OCCCs may 
have a strong histology-related GEX profile, regardless of Lynch syndrome status. 
This is supported by other studies which found that the GEX profile of OCCC is 
unique compared to other ovarian cancer subtypes [77, 78]. A recent integrative 
study of the kinome from tumors from 124 patients with OCCC revealed inhibitors 
of the PI3K/AKT/mTOR and RAS/ERK pathways in combination as potential drugs 
for OCCC [79]. 

OCCCs display large round cells with a clear cytoplasm, hence the name, or hobnail 
cells containing abundant glycogen (Figure 3B) [80, 81]. Immunohistochemical 
stains are positive for Napsin A and HNF-1β and negative for WT1, ER and 
progesterone receptor (PR). 

Endometrioid cancer 

Endometrioid ovarian cancers account for 10% of all ovarian cancers and are often 
associated with endometriosis (Table 3) [16, 22]. Endometrioid cancers usually 
present in early stage, correlating with a good prognosis [82]. The relative 5-year 
survival rate of early stage endometrioid cancer is >80% [64]. 

Endometrioid cancer can be both low- and high-grade, with low-grade endometrioid 
cancer being the most common [16]. Low-grade endometrioid cancer frequently 
harbors mutations in ARID1A and PTEN and these mutations are thought to drive 
carcinogenesis. Evidence suggests that through a common precursor, endometriosis, 
[22, 83] and either a co-occurring PTEN or PIK3CA mutation, either endometrioid 
(PTEN) or OCCC (PIK3CA) cancers can arise [71]. Furthermore, CTNNB1 is 
frequently mutated (40-50%) [16]. High-grade endometrioid cancer resembles 
HGSOC, with frequent TP53 mutations [66]. 

Like OCCC, endometrioid cancers are also linked to Lynch syndrome [74], however 
these cancers express distinct GEX profiles compared to sporadic endometrioid 
cancer [76]. 

Immunohistochemical stainings of endometrioid cancers are positive for PAX8, ER, 
PR and they are p53-wildtype. 

Low-grade serous ovarian cancer 

LGSOC accounts for <5% of all ovarian cancers and corresponds to serous ovarian 
cancers previously classified as grade 1 [17]. LGSOCs are generally diagnosed at 
earlier stages compared to HGSOCs [17], with a good prognosis to follow and a 
relative 5-year survival of >80% [64]. Mutations in KRAS, BRAF, or ERBB2 are 
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mutually exclusive and are collectively detected in approximately 60% of LGSOC 
tumors [16]. As opposed to HGSOC, TP53 mutations are rare. 

Immunohistochemical staining is positive for PAX8, ER, PR and WT1, while wild-
type p53. The Ki67 nuclear expression is low. 

Mucinous ovarian cancer 

Mucinous cancers constitute 5% of all ovarian cancers [16]. These tumors often 
present at stage I but can be composed of large adnexal masses. The overall 
prognosis is favorable, with a relative 5-year survival of >80% [64]. 
Microscopically, mucinous cancers are highly heterogeneous, with the presence of 
both borderline, benign-appearing and invasive components in one tumor. KRAS 
mutations and ERBB2 amplification occur in 40% and 20% of mucinous ovarian 
cancers respectively and are mutually exclusive [84]. Immunohistochemical 
staining is positive for CK7, while other markers such as CK20 and CDX2 can be 
either positive or negative, possibly owing to the heterogenous appearance of the 
tumors. 

Risk factors and prevention 

Risk factors for ovarian cancer are well established [10, 85] and Table 3 lists some 
of them together with their associated relative risk. The relative risk compares the 
risk of disease for people with exposure to the factor to the risk for people with no 
exposure. 

Table 3: Risk factors for ovarian cancer 

*: The relative risk is compared between subjects exposed to the risk compared to people not exposed to the risk 

 Factor Relative risk* 

Increased Risk   

 Familial history 
- First degree relative 
- Second-degree relative 

 
4.3 
2.1 

 Genetic predisposition (BRCA1/2) 11.8 / 5.3 

 Hormone replacement therapy 1.2 

 Excess bodyweight 1.1 

 Endometriois (OCCC and 
endomtrioid) 

1.5 

 Smoking (Mucinous) 1.8 

 Lynch syndrome 1.1 

   

Decreased Risk   

 Tubal ligation 0.7 

 Pregnancy (first birth) 0.6 

 Use of oral contraceptive 0.6-0.8 



32 

As seen in Table 3 the strongest factors for increased ovarian cancer risk are familial 
history and genetic predisposition. Genetic counselling with regards to risk reducing 
surgery is therefore important for ovarian cancer prevention [86]. In contrast, oral 
contraceptives have been shown to decrease ovarian cancer risk but increase breast 
cancer risk [87]. Furthermore, endometriois and Lynch syndrome are associated 
with OCCC and endometrioid cancers [22]. 

Steps should be taken to reduce the risk of ovarian cancer as survival is associated 
with stage at diagnosis for all histological subtypes [64]. Early detection or 
prevention (e.g. through risk reducing surgery) of ovarian cancer are the most cost-
effective opportunities for ovarian cancer patients especially in high risk groups 
such as BRCA1/2 mutation carriers [88]. However, as current screening methods fall 
short [15, 28], new methods are being evaluated. Most of these methods rely on 
NGS and one of the most promising is the PapSEEK method which is based on 
mutational analysis of vaginal samples to detect ovarian cancer [89]. Circulating 
tumor DNA has also been proposed as a means to detect ovarian cancer [90, 91]. 

Ovarian cancer in the clinic 

The treatment modalities for ovarian cancer have not changed much during the last 
20 years. Radical surgery followed by platinum-based chemotherapy treatment 
combined with paclitaxel is the current treatment regardless of histological subtype 
[27, 92]. The ongoing TRUST study [93] aims to evaluate the use of neo-adjuvant 
therapy before surgery as opposed to upfront surgery, while the DESKTOP study 
will evaluate the effect of surgery following relapse [94]. 

CA-125 has been the topic of controversy for its effect in the screening setting with 
a sensitivity of 80% and specificity of 75% [15, 28]. Even though elevated CA-125 
levels are associated with ovarian cancer, the prognostic and predictive value is low 
at best [95-97]. 

Targeted therapies 

Recent years have seen an increase in targeted therapies, some of which have shown 
promise in ovarian cancer. Bevacizumab, an angiogenesis inhibitor targeting the 
VEGF receptor, has proved useful in post-operative treatment after macroscopically 
non-radical surgery and in the case of platinum resistant disease [27]. Its effect on 
overall survival benefit seems modest, rather it may improve the disease-free 
interval [98-100]. 

Olaparib, a PARP-inhibitor, was approved for treatment in BRCA1/2 advanced 
ovarian cancer patients in 2014 in the US and further accepted as a maintenance 
therapy for all chemo-sensitive ovarian cancers in 2018 [101]. Initial results from a 
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Swedish registry study, where olaparib was approved for platinum sensitive 
recurrent BRCA1/2 ovarian cancer patients in 2015, suggests that olaparib is well 
tolerated and initial overall survival is good [102]. 

While the most dominant prognostic markers in ovarian cancer are FIGO stage and 
residual tumor following surgery [12, 64], only one predictive factor currently exists 
in the clinic, the BRCA1/2 status for the use of PARP-inhibitors [50, 103]. The 
reason as to why so few treatment predictive factors have been identified is probably 
the same as why molecular subtyping has failed in ovarian cancer, namely the high 
degree of heterogeneity (See Molecular Subtypes in ovarian cancer). Recent studies 
suggest that integrative analysis of the genomic, transcriptomic and proteomic 
landscape might be able to identify ovarian cancer subgroups that can benefit from 
different treatments. The success of immunotherapy in other tumor types has 
initiated studies into the use of immunotherapy also in ovarian cancer [104, 105]. 

Despite evidence of high ER, PR and androgen receptor (AR) expression in ovarian 
cancer, the use of endocrine therapy has not been proven effective [106-108]. A 
large meta-analysis of endocrine therapy in ovarian cancer by Paleari et al. (2017) 
reported a potential benefit for endocrine therapy in ovarian cancer [109]. However, 
the true effect of endocrine therapy might be obscured by the fact that patients in 
clinical trials are heavily pretreated and sex hormone receptor expression changes 
following treatment are not assessed [110]. 
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Aim 

The aim of this thesis was to improve the understanding of biological events driving 
ovarian cancer, and to translate these events into clinically relevant observations 
using different biomolecular approaches. 

The specific aims of the studies were to: 

Study I 

Investigate the prognostic effect of sex steroid receptor hormone expression and co-
expression in ovarian cancer and their prognostic and potential predictive value. 

Study II  

Find potential treatment candidates in OCCC using integrative bioinformatics based 
on multilevel ‘omics data from OCCC tumors. 

Study III 

Evaluate the potential treatable candidate of study II in OCCC cell lines, to assess 
whether integrative analyses for the discovery of potential treatment candidates 
would be of benefit in OCCC. 

Study IV 

Evaluate the use of high sensitivity ddPCR for screening of TP53 mutations in a 
small cohort of women with vaginal samples collected pre-symptomatically, for the 
potential early detection of ovarian cancer. To our knowledge, this is may be one of 
the first studies of its kind. 
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Experimental and methodological 
considerations 

An overview of the materials and methods used in this thesis is found in Table 4. 
The following section provides a brief outline of the main methods and the 
experimental and methodological considerations of the studies. For a detailed report 
on methods and experimental setups please refer to the appended papers. 

Table 4: Overview of the materials and methods used in studies I-IV 

Study Design Materials Methods 

I Cohort study Tissue micro array (TMA) with 87 serous and 
31 endometrioid tumors 
 
GEX data from an external independent 
dataset of 246 serous malignant, 20 
endometrioid, 18 low-malignant potential 
serous and 1 adenocarcinoma 

- Immunohistochemical staining and 
evaluation of ERα/β, PR and AR 
expression 
- Analysis of corresponding mRNA 
expression profiles in the 
independent dataset 
- Survival analyses 
 

II Integrated 
multilayered 
In silico 
study 

Cohort 1: GEX data from 31 HGSOC, 18 
endomtrioid cancer, 15 OCCC and 3 
mucinous cancers  
 
Cohort 2: DNA from 10 Formalin-fixed paraffin 
embeded (FFPE) samples from OCCC 
patients 
 
Cohort 3: TMA with 43 OCCC tumors 

- Significance analysis of microarray 
(SAM) 
- Targeted DNA sequencing of a 60 
gene panel 
- Integrative bioinformatics analyses 
of GEX data and sequencing data 
-Immunohistochemistry (IHC) 
 

III In vitro study Three OCCC cell lines: JHOC-5, OVMANA 
and TOV-21G 
 
One HGSOC cell line: Caov3 

- Dose-response assays for single 
and combination treatments 
- Fluorescent imaging 
- Cell response analysis by FACS, 
immuno-blotting 
 

IV Cohort study Cohort of 9 ovarian cancer patients with 
prediagnostic (presymptomatic) and 
diagnostic vaginal samples  

- Targeted sequencing using the 
INVIEW OncoPanel 
- Droplet digital polymerase chain 
reaction (ddPCR) 
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Patient cohorts 

Biological and clinical composition 

One of the most crucial steps applying to all experimental designs is the selection 
of cohorts or models to best represent the problem. It can be difficult to design an 
optimal study, especially when working with cancers with a distinct biological 
distribution of subtypes, such as in ovarian cancer. For ovarian cancer, the general 
guidelines for classification of tumors are issued by the World Health Organization 
(WHO) and the classifications are under constant revision [17]. Reclassifications 
have the potential to alter conclusions significantly. Therefore, when evaluating 
findings from other and older studies, such considerations should be corrected for. 
This follows for studies using old data sets as well. 

For comparisons between groups one should strive for an equal sample size of each 
group. But biology can complicate matters. There can be biological or 
clinicopathological differences for which it is impossible to correct for when 
designing a study, e.g. age distributions between subgroups. Such factors must be 
corrected for in later analyses. 

The cohorts used in study I, II and IV are outlined in Table 5. 

Table 5: Overview of the cohorts included in study I, II and IV 

GEX: Gene expression, TMA: Tissue microarray, FFPE: Formalin-fixed paraffin embedded. 

 Study 

 I I II II II IV 

 Cohort 1 Tothill et al. [25] Cohort 1 Cohort 2 Cohort 3 Cohort 1 

Origin of data TMA - 
Protein 

GEX – mRNA 
(GSE9899) 

GEX – mRNA 
(GSE37394) 

FFPE tumor - 
DNA 

TMA - 
Protein 

Fresh 
frozen 
tumor - 
DNA 

Number of patients 118 285 67 10 43 9 

Median age (years) 58 59 51 48 63 57 

Range 26-83 22-80 27-78 34-60 41-90 50-70 

Histology (%)       

Serous 87 (74) 246 (86) 31 (46)   9 (100) 

Endometrioid 31 (26) 20 (7) 18 (27)    

Clear cell   15 (22) 10 (100) 43 (100)  

Mucinous   3 (5)    

Serous, low-malignant 
potential 

 18 (6)     

Adenocarcinoma  1 (1)     

Stage (%)       

I 15 (13) 24 (8) 28 (46) 7 (78) 27 (63)  

II 16 (14) 18 (6) 9 (15) 1(11) 6 (14) 3 (33) 

III 70 (59) 217 (76) 20 (33) 1(11) 9 (21) 2 (22) 

IV 17 (14) 22 (8) 4 (7)  1 (2) 4 (44) 

Missing  4 (1)  1 (11)   

Blood samples    0  8 
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The tissue microarray (TMA) from study I lacked information on residual tumor 
following surgery, which is a strong prognostic factor in ovarian cancer [111]. 
Information regarding chemotherapy was also missing for a subset of patients 
(21%). The missing information was subsequently handled in the analyses of the 
study when possible. Furthermore, a GEX data set from a study by Tothill et al. 
(2008) was available online (GSE9899, Table 5) [25]. 

The three cohorts used in study II were a result of optimizing the number of samples 
for the integrative approach. GEX data from patients from cohort one were available 
online (GSE37394, Table 5) [76]. DNA from tumors in cohort 2 of study II was 
derived from formalin-fixed paraffin embedded (FFPE) tissue. DNA from FFPE 
samples has a lower quality and care should be taken when analyzing data from such 
samples. The TMA of 43 OCCC patients in cohort 3 is interesting because of the 
low occurrence of OCCC and provides a basis for further studies in OCCC. There 
was an overlap of two patients between cohort 1 and 2. The lack of overlap between 
samples is a limitation to the study; however, with so few OCCC cases such 
limitations are common. One way of overcoming such a problem is through 
collaborations, but problems with data and sample sharing can complicate things. 

Tissue Microarray 

In study I and II we used TMAs to analyze several protein expression levels in 
tumors from patients (Figure 5). The history of the TMA dates to 1986 when H. 
Battifora developed a multi-tumor tissue block with more than 100 tissue samples 
[112]. This was later refined by Kononen et al. (1998) and named the Tissue 
microarray [113]. The TMA can contain hundreds of 0.6-2 mm cylindrical cores 
taken from FFPE tumor blocks. This allows for analyses of DNA and RNA levels 
using in situ hybridization and protein expression using conventional 
immunohistochemistry (IHC) across multiple samples simultaneously. Besides the 
advantage of analyzing multiple samples, the TMA allows for a series of 
advantageous methodological considerations, such as experimental uniformity, 
decreased assay volume and preservation of the original FFPE blocks from which 
the TMA is constructed. 

However, a limitation of the TMA is the limited size of the cylindrical core. 
Especially for highly heterogenous tissues such as ovarian cancer this provides a 
challenge [114]. Therefore, careful consideration should be taken when constructing 
a TMA such that the scientific question asked can be answered. Furthermore, when 
designing a study using a pre-existing TMA, the quality of the associated patient 
information should be carefully examined as this will determine the usefulness of 
the TMA for the study in question. However, if such problems are considered, a 
TMA can provide information which is in concordance with corresponding studies 
of full size sections [115]. 
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Figure 5: Illustration of the principle of a TMA. 
A: The construction of a TMA starts with a series of FFPE blocks with the tissues of interest. These are marked for 
area of interest, and a cylindrical core (TMA core) is taken from the marked area and transferred to the TMA. B: A 
tissue microarray slide. Figure is adapted from the work of Nazar M.T. Jawhar (2009) [114]. 

Immunohistochemistry 

The history and basis of IHC 

In 1876, Wissowzky (1876) described the use of hematoxylin and eosin to visualize 
blood cells from mammals [116] and in 1941 Coons et al. (1941) reported the first 
use of an antibody conjugated with a fluorescent probe [117]. This provided the 
basis for IHC and its use in everything from classification of tissues to evaluation 
of protein expression. This changed the morphologists into pathologists and the use 
of IHC is a cornerstone in modern day medical science [118]. 

IHC is a technique often used for the evaluation of protein expression in FFPE tumor 
sections of around 3-5 μm in thickness. TMAs are often used for IHC staining, while 
cell lines can also be used (immunocytochemistry). 



41 

The most commonly used technique (indirect) evolves around the binding of an 
antibody to the protein of interest. After the binding, a secondary antibody is then 
added which binds to the first antibody. The secondary antibody is conjugated with 
an enzyme, usually horseradish peroxidase. Horseradish peroxidase can catalyze the 
oxidation of substrates such as 3,3'-diaminobenzidine, which then turns brown. The 
brown color can then be analyzed as a readout of protein expression. 

Several factors affect the results from IHC, such as antibody clonality, affinity, 
stability and specificity, while the tissue itself is also a factor [119, 120]. 

The use of IHC in study I and II 

We used indirect IHC in the TMAs of study I and II to assess different protein 
expression levels. To assess the protein expression, the scores from blinded 
assessments by at least two readers were averaged. We used predefined cut-off 
values for positivity in study I. Samples were positive if > 10% of the cells were 
positive for protein expression of ERα/β, PR or AR. This approach dichotomizes 
the response variable. For study II dichotomizing cut-offs were also used. This 
approach ensures the least bias from subjectivity, however also tends to 
overestimate effect size [121]. Overestimation can be countered by several readers 
evaluating the expression independently, and subsequently averaging the scores. 
Ideally, samples should be blinded to ensure the least bias when evaluating the 
expression of the target protein. Differences between cut-off values and sample 
preparation between studies are a major factor for discrepancies in studies 
evaluating such effects. Efforts should therefore be made to use standard cut-off 
values or take these factors into consideration when interpreting results. 

High throughput methods 

Next Generation Sequencing 

A brief overview and basis of NGS 

Since the sequencing of the first protein coding gene, that of the coat protein of 
bacteriophage MS2 by Walter Fiers' laboratory in 1972, DNA sequencing has 
evolved [122]. With the introduction of the chain-termination sequencing by Sanger 
et al. (1977) [123], sequencing speeds increased significantly. First generation 
sequencers followed, which allowed for a fully automated approach. The 
publication of the polymerase chain reaction (PCR) method by Mullis et al. (1987) 
by which DNA could be multiplicated [124] paved the way for NGS by 
pyrosequencing in 1996 [125]. Pyrosequencing functions by emitting light when a 
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known DNA base is added by DNA polymerase during the sequencing. The 
principle of pyrosequencing is thus called sequencing-by-synthesis; if there is a 
flash of light, then a base has been added. 

The 454 GS 20 was the first automated high throughput machine and was released 
by 454 Life Sciences in 2005 [126]. Subsequent systems followed, with Illumina 
systems currently dominating. Common for the next generation systems are that 
they monitor DNA-sequencing while it happens, through a combination of PCR and 
variants of pyrosequencing. Illumina systems use different colored fluorescently 
labelled DNA bases with unique colors for each DNA base. The color of the light 
emitted when the base is added during sequencing translates into a base. 

NGS now allows for a precise (1/1000 error) sequencing of thousands of DNA 
samples in parallel, but the method does have its limitations. The importance of a 
study design has never been more important as the amount of information obtained 
through NGS is astronomical. The choice of method, whether whole genome 
sequencing, whole exome sequencing or a subset of genes through a targeted panel, 
requires careful consideration depending on the question to be investigated. Study 
designs for cancer research should strive to always include paired samples of normal 
and tumor from patients, in order to evaluate somatic and germline mutations. 

Moreover, the NGS platform has evolved and more specialized applications are 
developed each year, and now not only DNA but also RNA can be analyzed by 
sequencing. Yet another method of great potential is the single cell sequencing 
method [127], by which we in the future can expect our knowledge of e.g. the effects 
of immunotherapy to greatly increase [128]. 

The use of NGS in studies II and IV 

In studies II and IV we employed NGS to analyze tumor DNA from either FFPE 
tumors or fresh frozen tumors (Table 5). For study II we wanted to search for 
somatic mutations in DNA from FFPE OCCC tumors. This approach has its 
limitations due to the degraded state of the DNA, while our samples also lacked a 
paired blood sample to act as a control. We therefore chose to sequence the samples 
using the SureSeq™ Solid Tumour Panel (Oxford Gene Technology, UK) with 
reported success using DNA from FFPE tissue. Subsequently the results were 
screened with various parameters such as minor allele frequencies (MAF) to 
decrease the possibility of detecting germline mutations. Also comparing results to 
various online databases decreases such a risk. Furthermore, our group recently 
discovered significant differences in variance calls related to the combination of 
aligners and mutation callers (unpublished data), thus such combinations should be 
accounted for as well. 

In study IV we chose the INVIEW Oncopanel All-in-one from (GATC, Germany), 
as we were primarily interested in sequencing TP53. The choice of panel in this case 
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was economical; however, we had paired blood samples from 8 of 9 patients, which 
greatly increased the value of the sequencing results. 

Gene expression (GEX) analysis 

A brief overview and basis of GEX arrays 

The understanding of RNA was forever changed in 1954 with the introduction of 
the central dogma of molecular biology: DNA turns into RNA, and RNA into 
Protein [129]. The importance of RNA in the process led to a new platform of 
research called GEX studies. The GEX studies were used to detect and quantify 
messenger RNA (mRNA) levels of a specific gene. In 1977 the further development 
of the RNA-based GEX methods resulted in the Northern Blot by Alwine et al. 
(1977) [130]. The GEX microarrays which allow for the simultaneous evaluation of 
multiple genes under multiple conditions was published in 1996 by Shalon et al. 
[131]. However, currently with the emergence of NGS, RNA sequencing has 
become the golden standard for transcriptome analysis [132]. 

The principle of the GEX microarray assays is to extract mRNA, convert it into 
complimentary DNA (cDNA) and label the cDNA with biotin. The cDNA is then 
hybridized to the microarray, on which probe sets with known sequences (genes) 
hybridize to the cDNA. The subsequent binding of a readable conjugate to biotin 
then allows for the assessment of GEX by imaging of the array [132]. 

There are some concerns regarding the use of GEX microarrays that should be 
considered when analyzing data. Signal saturation and high background signal 
limits the detection rates, and it is difficult to compare results between arrays (batch 
effect). Furthermore cross-hybridization between probe sets of similar sequences 
also presents a significant problem. This is due to different probe sets hybridizing 
to different positions in the cDNA and hence can have sequences that identify 
multiple genes. 

The use of GEX arrays in studies I and II 

In study I we used an external GEX dataset from an online repository (Table 5). We 
followed the methods described in the original study for preparation of the data set, 
and subsequently identified the probe set with the highest possible consensus 
sequence with the target gene of interest. 

In study II we used GEX data from the whole genome cDNA-mediated Annealing, 
Selection, extension, and Ligation (WG-DASL, Illumina) arrays, which make it 
possible to analyze 24,000 targets (genes) in 8 samples simultaneously. As we 
retrieved the collected data from an online repository (Table 5) most of the quality 
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control parameters had been evaluated. Therefore, the combined set of collected 
batch corrected raw data could be evaluated in our pipeline. 

The raw data were quantile normalized, log2 transformed and subjected to a 
presence filter of 80% across probes, with a detection p-value ≤0.01, leaving 12,747 
genes. We then analyzed genes for which multiple probe sets were present and chose 
the probes with the highest variance. This resulted in precisely 10,000 genes to be 
analyzed out of the starting pool of 24,000 (42%). We made sure that the data set 
was still normally distributed, and the subsequent analysis could continue. 

As evident we chose two different approaches when analyzing the two GEX data 
sets. This represents one of the key concerns when evaluating results and comparing 
between studies. One approach cannot be ruled superior to the other, and as evident 
in the Results and discussion section, the choice of probe set can greatly impact a 
study, such as study I in our case. Ultimately, considerations for study design such 
as those for NGS are also appropriate in the GEX setting. 

In silico studies, bioinformatics and statistics 

A brief overview and basis of GEX and NGS analysis 

Computers have existed in biology since the 1940’s and bioinformatics as a term 
appeared in a Dutch article in 1970 [133]. However, the need for bioinformaticians 
increased after the completion of the human genome. An interesting notion was 
raised by Vincent et al. (2015) in their paper: “Who qualifies to be a 
bioinformatician?” [134]. They state that two branches exist in bioinformatics: 
computational biology and analytical bioinformatics. They continue to state that 
there exist both users of bioinformatics and experts in bioinformatics, and that most 
researchers (within the biological field) are users of bioinformatics and hence not 
bioinformaticians. 

As high throughput methods generate large amounts of data, the downstream 
analyses of such data sets can be predefined by a good study design. Thus, the prime 
importance of bioinformatics for a biologist is to reduce huge amounts of data 
loosely associated to biology into smaller data sets that can form a stronger 
association with biology. 

The availability and usability of bioinformatic tools for analyzing data is high and 
the online tools such as those presented by the Broad Institute (MA, US) are a prime 
example. They offer tools for the analysis of external data sets; however, they also 
provide online portals in which a scientist can explore pre-analyzed datasets. The 
TCGA recently launched the online platform: “Pan Cancer Atlas” (2018) (the 
conclusion of TCGA project by 27 papers in April 2018) also provides an example 
of how multilayered information becomes available through online platforms [135]. 
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The online portals and databases can give a researcher a reliable overview of the 
current data in the field, and furthermore provide the basis for using bioinformatics 
to create initial hypotheses. One such data base was used in study II with great 
success. The Ovarian cancer database of Cancer Science Institute Singapore, is a 
transcriptomic microarray database of 3,431 human ovarian cancers with a simple 
online set up [136]. 

One of the strengths of bioinformatics is also one of its flaws. The data sets are often 
created to be explorative. Thus, the analysis of data is explorative, and therefore not 
testing a specific hypothesis rather than generating it. Furthermore, the quality of 
the sample input influences the results, and considerations of the ratio between 
tumor vs normal/stromal tissue should be taken into account [137]. 

The use of SAM in study II 

In study II we used a commonly used method for comparing GEX data: the 
significance analysis of microarrays (SAM) developed by Tusher et al. (2001) 
[138]. Very simplified it is a modification of a t-test, accounting for the multiple 
testing by using permutation tests. SAM can be used to explore up- and 
downregulated genes between two or more groups. 

In study II we used the free software Multiple Experiment Viewer (MEV, 
http://mev.tm4.org) tool box for the GEX SAM. The advantage of MEV is that it 
integrates multiple analyses alongside the SAM, e.g. subsequent hierarchical 
clustering. The resulting gene list of ~500 up and downregulated genes was 
analyzed by both online databases and by locally installed R software packages. 
Multiple analyses of a gene list can yield different results due to differences in 
algorithms. A comparison of the results from such analyses for overlap between two 
or more outputs will give indications of the robustness and functionality of the genes 
in the list. 

However, the results should always be compared to other studies and their reported 
findings if available, so as to evaluate correlations between findings. 

Premade pipelines for NGS analysis in study II and IV 

For study II and IV we also evaluated NGS data from various tumor settings (Table 
2). 

Several different pre-made analysis pipelines are available for NGS data, and we 
chose the bcbio-nextgen (https://github.com/bcbio/bcbio-nextgen) pipeline for 
analyses of the sequencing data. 

The advantages of bcbio-nextgen is the simultaneous use of multiple variant callers 
in the data. The GEnome MINIng (GEMINI) is also integrated [139], and is used 
for evaluating the results from an NGS experiment with the use of several reference 
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databases. Furthermore, the overlapping mutation calling allows to screen multiple 
callers with multiple aligners, thus accounting the difference between their 
algorithms. 

The use of statistics in study I 

The use of survival analysis and Kaplan Meier plots in study I was to evaluate the 
prognostic effect of ERα/β, PR and AR.  Endpoints were progression free survival 
(PFS) and overall survival (OS). Hazard ratios (HRs) were calculated with 95% 
confidence intervals (CI) using both univariable and multivariable Cox regression. 
Multivariable Cox regression is used to adjust for factors known to affect the 
endpoints. In our case such factors included e.g. age, histopathological subtype and 
the presence of BRCA1/2 mutations. Such corrections are important for assessing 
the strength of a potential prognostic variable. However, lack of information, such 
as information on residual tumor burden in our case, needs to be considered when 
evaluating the results. 

The discussion of statistics is like the discussion of bioinformatics. Are biologists 
also statisticians or are they users? One key problem concerning many studies is that 
of choosing the right statistical test [140], especially when sample groups are small. 
As most biologists are only users, collaborations with statisticians are pivotal and 
such a collaboration has greatly improved the results of the studies in this thesis. 

In vitro 2D Experimental Models 

Cell cultures and drug screens 

A brief overview and basis of cell culture analysis and drug screens 

In vitro modelling of complex biological problems using cell cultures was first 
reported by Harrison (1907) [141]. Since then, cell cultures have been a cornerstone 
for experimental models for all kinds of scientific questions. Whether an established 
cancer cell line or a primary cell culture, these experimental models provide a 
glimpse of the underlying biology driving that system. Thus, changes to the system 
can be monitored, evaluated and extrapolated to the in vivo setting. These thoughts 
are derived from the principle of the three Rs, replace, reduce and refine outlined by 
Russell and Burch (1959) in their book: “The Principles of Humane Experimental 
Technique” [142]. Replacement concerns the idea of always trying to replace an 
experimental model with something of lower status, such as tissue cultures. They 
conclude that tissue cultures are an inexpensive and potentially fast solution for e.g. 
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drug screens. However, there are limitations such as the loss of the complex 
relationship of biology in vivo [142]. 

When screening the effect of a drug using in vitro models, the most used assay is 
that of a dose response curve. Adding drug formulations in a serial dilution will 
allow for an assessment of the drug sensitivity. One such variable is termed the half 
maximal inhibitory concentration (IC50) and is often used for comparing 
sensitivities between drugs. The development of the colorimetric sulforhodamine B 
(SRB) assay [143] laid the foundation for the high throughput screening method 
using 60 cell lines described by Monks et al. (1991) [144].  

Recent advances in cell culturing have included the development of 3D assays, in 
which cells can mimic the behavior of an in vivo system to a higher degree than in 
more conventional 2D cell culture assays (refinement) [145]. 

Further analysis of molecular responses can also be assessed in cell lines and the 
characteristics of most ovarian cancer cell lines have been studied thoroughly [146, 
147]. The methods to evaluate cellular responses are many and diverse, and 
considerations should be done as to assess the best method for evaluating drug 
effect. 

The use of cell cultures to evaluate drug response in study III 

In study III we used three OCCC cell lines and one HGSOC cell line for the 
comparison of drugs targeting Rho GTPases. Carboplatin was used as a comparison 
to the effect of standard treatment. SRB assays were used for creating dose-response 
curves, both for single drug treatments and combinations. Although reproducibility 
is high, optimization is required for SRB assays to function optimally. We chose 
three-day assays to evaluate IC50 concentrations of single and combination 
treatments using a 96 well plate setup. Furthermore, we used the methods suggested 
by Chou (2010) for the design of the combination studies [148]. 

The methods to evaluate the effect of the drugs should also be considered with 
regards to the hypothesis. We decided to evaluate the integrity of the cytoskeleton 
and migration using fluorescent microscopy in a 96 well plate setting. This was done 
to mimic the dose response assay setting in the best possible way. 

Immunoblotting (western blotting) and fluorescence activated cell sorting (FACS) 
are commonly used methods for evaluation cellular response following treatments. 
We used FACS to assess cell cycle phase distribution, and western blotting to 
evaluate the effects of intra cellular signaling on the protein level. 

The use of such methods should be evaluated carefully as the choice of experimental 
setup and design affects the outcome of the experiment. We chose an endpoint 
method for both the western blot and FACS analyses. Serial methods using different 
time points could potentially be used to evaluate the effect through the cells’ life 
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cycle and the underlying biology. However, for the testing of our hypothesis, end 
point analysis was enough. Furthermore, the underlying biology is important, as 
illustrated by the western blot experiments; the cell lines responded differently, and 
conventional loading controls for western blots such as glyceraldehyde 3-phosphate 
dehydrogenase (GAPDH) were not useful. 

Droplet Digital Polymerase Chain Reaction (ddPCR) 

The PCR method was published in 1987 by Mullis et al. [124] and the method was 
further developed during the next decade. The concept of copying DNA by the aid 
of specially designed primers laid the foundation for digital PCR (dPCR), with the 
publication by Vogelstein and Kinzler (1999) [149]. The main difference between 
PCR and dPCR is the partitioning of the PCR sample into multiple wells of a 384 
well plate. Subsequently, the use of a Poisson distribution allows for the calculation 
of an absolute concentration, without the use of a standard curve such as in 
quantitative PCR (qPCR). 

The improvement of the dPCR assays led to the introduction of Droplet dPCR 
(ddPCR). Whereas dPCR requires the portioning of the sample into multiple wells, 
ddPCR splits the sample into multiple droplets, each one a unique PCR reaction. 
The principle is outlined in Figure 6. The use of primers and fluorescently labelled 
probes designed to detect mutations can then be used to quantify mutations in 
individual samples. The advantage is that the ddPCR method is highly sensitive as 
the individual droplets are analyzed separately. 

Limitations include that of both quality and quantity of the DNA used. The 
sensitivity is directly linked to the amount of DNA, with 100 ng of genomic DNA 
being the equivalent of 28,000 DNA molecules. Thus, a sensitivity of up to 1 in 
10,000 can be achieved with 100 ng input, due to mathematical and experimental 
(signal to noise) limitations. 

The use of ddPCR in study IV 

In study IV we evaluated the use presymptomatic liquid based vaginal samples 
obtained from women prior to their HGSOC diagnosis. We evaluated the detection 
of TP53 mutations found in the patients’ tumors, in the vaginal samples using 
IBSAFE™, an improved ddPCR method developed by SAGA Diagnostics. 

IBSAFE has a greatly increased signal to noise ratio, allowing for an increased 
specificity for accurate estimation of mutant/minor allele frequencies (MAF) at 
exceedingly low concentrations (~0.001% MAF), whereas Bio-Rad ddPCR assays 
suffer from false-positive noise below 0.1% MAF. Confidence in low abundance 
quantification is critical for early detection, although the available amount of DNA 
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in our samples is still a limitation of the study. A sensitivity can never be higher than 
that of the corresponding number of DNA molecules detected. 

 

Figure 6: Principle of ddPCR 
A: The sample is prepared as regular PCR, however with the addition of fluorescently labelled probes targeting the 
mutation of interest. The sample is then split into smaller droplets, amplified and each droplet is then measured. 
Figure is adapted from Verheul et al. (2016) [150]. B: The result of a ddPCR measurement of a vaginal smear sample 
from study IV. Each droplet is plotted according to both wildtype and mutation signal. Notice the smear in the bottom 
part of the figure. Blue: Mutation only droplets, Green: Wildtype only droplets, Orange: Mutation and wildtype positive 
droplets, Black: Empty droplets. The cutoff values for drop characterization are visualized by the pink lines. 
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Results and Discussion 

Study I: Sex steroid hormone receptors and molecular 
subtypes in ovarian cancer 

Sex hormones play a role in cancer – biomarker and targeted therapy 

Sex steroid hormone receptors (hereafter referred to as hormone receptors) are 
expressed in the normal tissue of the female reproductive system [151]. Although 
hormone receptor functions remain a topic of discussion, their role in cancer 
progression within the reproductive organs of both males and females is established 
[152-155]. Hormone receptors have been studied extensively in breast cancer [156-
158], and notably, the ERα expression displays distinct GEX patterns [159]. ERα 
expression also dictates the use of endocrine therapy treatment, as well as outcome 
in breast cancer [160-162]. The intrinsic molecular breast cancer subtypes 
demonstrated by Perou et al. (2000) [30], was elaborated by Sørlie et al. in 2001 
with the finding that ERα positive tumors could be divided into two molecular 
subtypes with different clinical outcomes [31]. These findings have provided the 
basis for multigene tests such as Prosigna®, Oncotype DX® and MammaPrint®, 
which are used for clinical decision making with regards to adjuvant systemic 
therapies [163-167]. 

Six molecular subtypes in ovarian cancer 

As previously stated in the introduction, the first attempt to identify molecular 
subtypes in HGSOC was reported by Tothill et al. (2008). They identified six 
molecular subtypes (C1-C6) based on GEX data in a cohort of mainly HGSOC and 
endometrioid cancers. The six molecular subtypes were named based on their 
distinct GEX profiles which led to the names: C1: High stroma, C2: High immune 
signature, C3: Low-malignant potential, C4: Low stromal response, C5: 
Mesenchymal, low immune signature and C6: Low-grade endometrioid. Tothill et 
al. found that HGSOC predominantly clustered into clusters C1, C2, C4 and C5, 
while endometrioid and low malignant tumors clustered into clusters C3 and C6 
[25]. The reported subtypes were associated with outcome. Among the HGSOC 
clusters, C2 and C4 had a better prognosis than C1 and C5. The C1, C2, C4, and C5 
subtypes were later supported by the TCGA project in their analysis of 489 
HGSOCs. According to their classifications, the TCGA named the four subtypes: 
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Differentiated (C4), Immunoreactive (C2), Mesenchymal (C1) and Proliferative 
(C5) [32]; however the TCGA did not find any association between the subgroups 
and survival. A possible explanation could be the difference in tumor histology 
between data sets, with TCGA having only HGSOC. 

Can hormone receptor expression improve prognostication?  

Although similarities between breast and ovarian cancer have been reported [168-
170], the prognostic effect of hormone receptors in ovarian cancer remains unclear. 
Therefore, we aimed to further characterize hormone receptor expression and their 
prognostic value in ovarian cancer in study I. 

Hormone receptor positivity in study I 

In a TMA cohort of 118 ovarian cancers (87 high-grade serous and 31 endometrioid 
ovarian cancers) the hormone receptor status of AR, ERα, ERβ and PR was 
evaluated using IHC. The prognostic value was then analyzed by survival analysis 
and by both uni- and multivariable Cox regression. Multivariate Cox regression was 
adjusted for clinicopathological factors such as grade, age and stage as these factors 
can predict prognosis independently [171]. We found AR positivity in 44% 
(52/118), ERα positivity in 44% (52/118), ERβ positivity in 82% (102/117) and PR 
positivity in 31% (36/118) tumors. While AR, ERβ and PR expression levels were 
comparable to previous findings, ERα expression was lower. However, ERα 
expression levels have been shown to vary greatly across studies [106, 108, 172, 
173]. A review from 2016 by Voutsadakis reported positivity for ERα between 32% 
and 81% across seven studies [174]. 

AR and PR positivity are beneficial in ovarian cancer 

We found that AR and PR positivity, either alone or in combination, were associated 
with lower grade, increased 5-year PFS and OS (Table 6), and these associations 
remained significant after adjusting for stage, grade, age at diagnosis, BRCA status 
and histology. The findings of PR positivity associated with improved outcome are 
in line with several studies of PR status in ovarian cancer [106, 107, 175]. The 
findings of AR positivity associated with improved outcome were in contrast to two 
previous studies [175, 176], while another study confirmed our findings [108]. 
Studies evaluating the prognostic effect of co-expression of hormone receptors are 
limited and have been centered around PR and ER expression [106, 177]. These 
studies show a positive effect on outcome. This was not found in our study, but 
instead a combination of AR and PR positivity was associated with better outcome. 
The interaction between hormone receptors is still unclear, but recent evidence 
suggests a complex interaction mechanism with feedback loops controlling each 
hormone receptor [152, 178]. 
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Table 6. Key findings of study I. 

Results from analyses of hormone receptor status and their association with clinical characteristics. *: Analyses were 
done using Fisher’s exact test, **: Analyses were done using univariable Cox regression. HR: Hazard ratio, CI: 
Confidence interval. 

Variable Association p-value HR 95% CI 

AR+ vs AR- Grade* 0.025    

 Age at diagnosis* 0.017    

 5 year progression free survival ** 0.001 0.48 0.30 0.75 

 5 year over-all survival ** <0.001 0.38 0.23 0.63 

Erβ+ vs Erβ- Grade* 0.016    

PR+ vs PR- Stage* 0.006    

 Grade* 0.001    

 5 year progression free survival ** 0.001 0.42 0.24 0.71 

 5 year over-all survival ** <0.001 0.34 0.19 0.62 

AR+/PR+ vs PR- and/or 
AR- 

5 year progression free survival ** 0.001 0.29 0.15 0.59 

 5 year over-all survival ** <0.001 0.21 0.092 0.49 

 

ERα and ERβ disagreements 

ERβ positivity was associated with lower stage, which is supported by previous 
findings [179-181], however a recent study suggests that the specificity of ERβ 
antibodies is questionable. The interpretations of ERβ stains should therefore be 
considered carefully [119, 182]. We did not find any association between ERα levels 
and clinicopathological markers. The individual expression of ERα and its 
association to outcome are contradictory [173, 176, 177], while recent meta-
analyses have reported that ERα does not correlate with outcome in ovarian cancer, 
supporting our findings [106, 183]. 

Sex hormone GEX is (not) prognostic in molecular subtypes 

Next, we investigated the GEX levels of AR, ESR1, ESR2 and PGR in the molecular 
subtypes in the Tothill dataset (Figure 7) [25].  

We found that PGR and ESR2 were upregulated in subtypes C3 - Low-malignant 
potential and C6 - Low-grade endometrioid, while ESR1 was upregulated in 
subtypes C2 - Immunoreactive, C4 - Differentiated and C6 (Figure 7). These 
findings were consistent with the more favorable outcomes in the C2, C3, C4 and 
C6 subtypes as reported by Tothill et al. Using the median expression of the 
hormone receptors, we divided the subgroups into high and low expressing groups. 
We found no significant associations between 5-year outcome and hormone 
receptor high vs low GEX, either in in the full dataset or within the molecular 
subtypes. This might be explained by the already improved outcomes in subgroups 
with increased ESR1 and PGR expression, thus removing the effect of further 
stratification, or it may be the relatively small size of the subgroups. 
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Figure 7: Gene expression of sex hormone receptors in C-signature subtypes. 
GEX of sex hormone receptors in C-signature subtypes from Tothill et al. [15]. Red: C1 - Mesenchymal, Yellow: C2 - 
Immunoreactive, Green: C3 - Low-malignant potential, Light blue: C4 - Differentiated, Dark blue: C5 – Proliferative, 
Purple: C6 - Low-grade endometrioid. p-values were calculated using a Kruskal-Wallis test across all C-signatures. 

Despite evidence of a strong effect of PR and AR positivity on improved PFS and 
OS in our TMA cohort, this was not captured in the independent external dataset 
when evaluating the entire cohort. Furthermore, individual GEX levels of the 
hormone receptors did not show any association with improved outcome either. This 
was surprising, as others have reported both PGR and ESR1 GEX to have a 
prognostic effect, correlating with improved survival in ovarian cancer [184, 185]. 
Differences in the histological composition between studies might account for this, 
as prognosis is associated with histological subtype [106, 184, 185]. However, other 
factors such as residual tumor burden, grade and stage might affect the cohort as 
well. A study by Chan et al. (2006) of ovarian cancer survival associated with 
optimal surgery from 1988-2001 reported it to increase from 76.1% (1988-1992) to 
87.9% (1998-2001) [186]. Although the residual tumor burden was evaluated in the 
Tothill dataset, 43% (125/285) of tumors lacked this information which is a critical 
prognostic factor.  

Differences between probe sets provide an explanation 

Although care should be taken when correlating mRNA and protein levels, several 
reports have indicated that there exists a high correlation between GEX and 
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corresponding protein abundance for the hormone receptors [187-190], and a study 
by Nagaraj et al. (2011) reported the correlations when using high throughput 
methods [191]. 

 

Figure 8: Correlation between probe sets for the hormone receptors. 
Pearson correlation plots of probe sets from the GeneChip™ Human Genome U133 Plus 2.0 Array,  identifying 
hormone receptor ESR1, ESR2, PGR and AR genes expression levels in an independent data set of 285 ovarian 
cancers [25]. 

The lack of association in the independent dataset could be due to the choice of 
probe set used for GEX. Probe sets are short DNA sequences targeting a short region 
of a transcript for a gene. They are used to detect the presence of nucleotide 
sequences through hybridization. The probe sets can therefore be used to evaluate 
GEX (See Experimental and methodological considerations). Several probe sets 
recognized the same gene and as seen in Figure 8, the correlation between probe 
sets is highly variable, in particular in relation to ESR1. The correlation between the 
nine probe sets ranged from 0.14 to 0.92. Furthermore, the resulting survival 
analysis was also affected, and the nine probe sets produced p-values ranging from 
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0.01-0.67. This variation underlines the importance of choosing the most 
appropriate probe set.  

The choice of probe set significantly impacts variability across samples and steps 
are taken to select the most appropriate probe. In the present study, we chose the 
probe set with the highest degree of similarity to the target gene (ESR1) using the 
Basic Local Alignment Search Tool (BLAST). If we had established other criteria 
for choosing probe sets, e.g. the most variable across samples or the mean/median 
of all probe sets, then the interpretation of the results may have been different. In 
our case, the most variable probe set across samples was also the one with the lowest 
score in the BLAST analysis, and therefore the variance was probably due to noise 
from cross-hybridization, rather than true biological sample variance. 

The robustness of molecular subtypes in ovarian cancer 

The findings that the choice of probe set can greatly impact results was no surprise. 
However, if we continue the line of thought into the context of molecular subtypes, 
some interesting observations can be made. Although the choice of probe sets is 
critical for analysis of array-based GEX levels, the sampling method is just as 
crucial. The amount of tumor tissue can vary in samples, which should also be taken 
into consideration when evaluating assays. Tothill et al. (2011) made efforts to 
mitigate these challenges by evaluating the tumor percentages. By comparing the 
GEX of normal tissue to their samples, they concluded that the tumor percentages 
did not significantly affect the GEX analysis. 

Several other groups have attempted to discover molecular subtypes or elaborate on 
existing classifiers. Verhaak et al. (2013) elaborated on the four subtypes from the 
TCGA. They further found that tumors might be classified into several subgroups 
and not just one [33]. Konecny et al. (2014) also identified four subtypes [34], while 
Way et al. (2016) reported only three subtypes [35].  

A recent report by Chen et al. (2018) analyzed the above listed classifiers and found 
that they lacked robustness, and stated that most of the proposed classifiers 
performed well, if they were allowed to leave out ambiguous samples [38]. In fact, 
only 25% of HGSOC could readily fit into a single cluster. A comment by Waldron 
et al. (2014) on the work by Konecny et al. (2014), stated that although the subtypes 
were becoming increasingly significant, they lacked clinical relevance [192]. Since 
then the classifiers have been discussed and they remain debated.  

One explanation may be found in a recent publication by Schwede et al. (2018). The 
report highlighted that most of the molecular subtypes identified can be explained 
by the extent of stromal tissue and other non-tumor tissue in the samples [137]. They 
further concluded that single cell analysis will be necessary in order to classify 
ovarian cancer into clinically relevant molecular subgroups. 
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Are molecular subtypes only a result of gene expression? 

With the considerations that molecular subtypes derived from GEX of bulk tumor 
tissue might be biased due to normal tissue contamination, other attempts have been 
suggested to increase prognostication for ovarian cancer patients. Recent work from 
Dr. James Brenton’s group by Macintyre et al. [42] proposed the use of DNA copy 
number alterations and suggested seven copy number subtypes that correlated with 
survival. A large collaboration (Zhang et al. 2016) added proteomic data to the 
HGSOC TCGA data set and correlated this to copy number alterations [193]. These 
results emphasize the need for integrated multilayered analyses for the discovery of 
clinically relevant subgroups in HGSOC. Tools for analysis are currently being 
developed [194, 195], and data is becoming available through online repositories 
such as the TCGA Genomics Data Commons Data Portal. 

Hormone receptors in ovarian cancer should be targeted for further study 

In conclusion, we found strong effects of PR and AR positivity on outcome in 
ovarian cancer patients, which has also previously been reported by others. We also 
investigated the effect of co-expression and found that patients with combined PR 
and AR positivity had a significantly better outcome. Our data suggests that 
hormone receptors do have a role, potentially for stratification of patients, and these 
findings provide a basis for further studies. A recent meta-analysis of 2,490 cases 
evaluating the effect of endocrine therapy in ovarian cancer reported an overall 
summarized benefit rate of 41% (34%-48%) for ovarian cancer patients [109]. 
Although promising, the studies in the meta-analysis suffered from the fact that most 
patients did not receive endocrine therapy as first-line treatment, rather as second-, 
third- or fourth-line treatment. However, before undertaking such a study the 
underlying mechanisms of the hormone receptors need to be better understood 
through e.g. multilayered analyses of ‘omics data.  

Study II: Identifying treatment candidates in OCCC 

Introduction 

With the emergence of computers in biology in the 1940’s and the development of 
computational biology and bioinformatics in the 1960’s, research prospects changed 
forever [196, 197]. In 1955, after ten years of work, Frederick Sanger sequenced 
insulin, and established the basis for sequencing and high-throughput sequencing 
[198]. In 2003, after 13 years of work, the human genome was sequenced [199]. In 
2017 the National Institutes of Health reported the cost of a whole genome 
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sequencing to be $1,0151, while the cost for whole exome or targeted sequencing is 
already below the $1,000 mark [200]. The speed at which we generate sequencing 
data has increased tremendously. In 2015 the output was one zetta-bases (1021) 
annually, with storage requiring up to 40 exa-bytes (1018) [201], hence the setup of 
the framework for doing computational research needs to be considered closely 
[202]. 

These huge amounts of data have made it possible to perform genome wide 
association studies, and with companies such as deCODE genetics (Reykjavik, 
Iceland) which are dedicated to analyzing sequencing data from the Icelandic 
population, many markers for different diseases have been discovered [203, 204]. 

We now have the power to discover correlations and markers in the genome, 
transcriptome, epigenome and proteome, though these methods are highly 
explorative. The combination of such data sets allows for the creation of hypotheses. 
However, generating a hypothesis is worthless if it cannot be adequately tested. 
Therefore, considerations should be given before undertaking a hypothesis 
generating experiment, as to the relevance of the question asked, e.g. does it contain 
any clinical perspective [205, 206]. 

Aim 

The combination of study II and III describes two joined experimental setups that 
led to a potential treatment strategy for OCCC. The hypothesis was generated in 
study II, and it was tested in study III. In study II, we characterized OCCC using 
multilayered ‘omics data from three patient cohorts. The motivation for a 
multilayered approach in ovarian cancer comes from the discussion regarding 
molecular subtypes. One type of data is not enough in ovarian cancer to fully 
evaluate its biology. By exploring OCCC on multiple levels for potential treatment 
candidates, a potential overlap between approaches could be discovered. Such an 
overlap could lead to a hypothesis for a treatment candidate in OCCC. 

OCCC background 

OCCC has been shown to have distinct clinical and morphologic features compared 
to other ovarian cancer subtypes. OCCCs share similarities with renal clear cell 
cancer [24, 77, 78, 81, 207], and the tumors are often resistant to chemotherapy [63]. 
The genomic landscape of OCCC is dominated by co-occurrence of mutations in 
ARID1A and PIK3CA, activation of the PIK3CA/AKT/mTOR pathway and MET 
and HNF1B amplification and PTEN loss [62, 68, 70, 208-210]; however treatment 
options are limited if patients experience chemoresistance [211]. A study from 
Jönsson et al. (2014) investigated Lynch syndrome associated ovarian cancer and 
                                                      
1 https://www.genome.gov/27565109/the-cost-of-sequencing-a-human-genome/ (accessed January 

2019) 
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reported that OCCC clustered together in an unsupervised hierarchical clustering 
regardless of Lynch syndrome status. 

Methods 

We characterized OCCC through integrative analysis of genomic alterations, and 
gene and protein expression using three different cohorts. For a detailed description 
of the cohorts, refer to the appended study or the Experimental and methodological 
considerations section. 

We analyzed the transcriptome of 67 ovarian cancer cases (Cohort 1: HGSOC: 31, 
Endometrioid: 18, OCCC: 15 and Mucinous: 3) (WG-DASL assay), the genomic 
landscapes in a cohort of ten tumors (Cohort 2: targeted sequencing), and the 
proteome using a cohort of 43 tumors (Cohort 3: IHC). 

OCCCs have a distinct gene expression profile 

A supervised hierarchical clustering of the histological subtypes based on the GEX 
data from a microarray of cohort 1 is shown in Figure 9A. The gene clusters were 
based on 505 differentially expressed genes and revealed that OCCCs have a distinct 
GEX profile compared to the other histological subtypes. To test whether the effect 
was due to supervision of samples, i.e. having fixed groups for the samples based 
on histology, we also performed an unsupervised test. The unsupervised test 
revealed that OCCC samples do have a distinct GEX profile when compared to 
endometrioid and HGSOC tumors, as they clustered tightly together (data not 
shown). There was an overlap of 217 genes between the two analyses. Gene set 
enrichment analysis revealed pathways controlling the extra-cellular matrix, MAPK 
cascades and TFAP2A transcription pathways to be enriched in OCCC compared to 
the other subtypes as seen in Table 7. This lines with previous findings [24, 77]. 

Biological relevance of ERBB2 in OCCC 

In depth analysis of the data revealed both ERBB2 and the transcription factor 
TFAP2A to be differentially expressed (Figure 9B). Both ERBB2 and TFAP2A have 
been linked to OCCC in previous studies [77, 207]. 

As ERBB2 is a treatable target in breast cancer, we further investigated the relevance 
of ERBB2 in OCCC. We analyzed the protein expression of HER2 (corresponding 
protein of ERBB2) and found only one of 43 tumors overexpressing HER2 in 
correlation with amplification of ERBB2. The lack of HER2 protein expression in 
OCCC has been reported in other studies [212, 213]. The result from a GEX module 
score evaluating the activity of ERBB2 signaling [214], revealed an ERBB2 score 
not significantly different from zero indicating no ERBB2 pathway activity. A recent 
study by Koopman et al. (2018) reported wide spread inconsistencies in 
HER2/ERBB2 evaluation by IHC and in situ hybridization in OCCC. Their 
conclusion was that the discordance between reports of HER2/ERBB2 
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overexpression in OCCC can be explained by the difference in IHC antibodies for 
HER2 assessment [215]. 

 

Figure 9: Key findings of study II. 
A: Gene expression heatmap of the 505 most significant differentially expressed genes between four ovarian cancer 
subtypes. Red: Clear cell (OCCC), Yellow: Endometrioid (EM), Blue: Mucinous (MUC), Black: High-grade serous 
(HGSOC) (n=67). B: Differentially expressed genes between subtypes (n=67). C: Overview of genomic alterations 
(mutations) in ten OCCC tumors. Blue: Inframe Indel, Black: Truncating mutation, Green: Missense mutation, Red: 
Splice site mutations, Yellow: Previously unreported variant. Modifed from [216]. 
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Table 7: Differentially expressed pathways between in OCCC 

Select results from GEX and genomic analyses from study II 

Gene expression Pathway q-value 

No variance filter   

 Extracellular matrix organization 0.026 

 Axon Guidance 0.045 

Variance filter   

 Transcriptional regulation by the AP-2 (TFAP2) family of transcription factors 0.017 

 Extracellular matrix organization 0.017 

 Axon guidance 0.039 

 Signaling by GPCR 0.039 

 RAF/MAP kinase cascade 0.039 

 MAPK family signaling cascades 0.039 

 Signalling to RAS 0.045 

Mutations   

 Wnt signaling  

 P53 associated signaling  

 EGR receptor signaling  

 PIK3CA/KRAS signaling  

 Angiogenesis  

 

The lack of HER2 protein in our study suggests that HER2 does not play a 
significant role in OCCC as a treatment candidate. Contradicting this, two meta-
analyses of HER2 in ovarian cancer suggested that increased levels of HER2 
correlated with worse survival [107, 217], although the lack of sufficient 
histological stratification limits these studies. However, a recent integrative study 
by Caumanns et al. (2017) found that although the ERBB2 pathway was not directly 
active, the family of ERBB signaling seemed active to some extent [79]. A thorough 
evaluation of HER2 in ovarian cancer histological subtypes is needed to fully 
understand its role in OCCC. 

OCCC and Rho GTPases 

Further analysis revealed that Rho GTPases such as CDC42 and RhoB were 
differentially expressed between subtypes, and they were found to be involved in 
many of the pathways listed in Table 7.  

Rho GTPases are a part of the Ras small GTPase superfamily (Rho, Ras, Rab, Ran, 
Arf). Together they link extracellular signals to intracellular signaling networks, 
thereby exerting their roles as both mediators and regulators in the cell [218, 219]. 
Rho GTPases have been studied as targets for cancer treatment due to their role in 
regulating key cellular functions including the maintenance of cytoskeletal integrity, 
axon guidance, cell migration, proliferation, metastasis and progressive disease in 
many cancer types [220-225]. Furthermore, Rho GTPases have been implicated in 
carboplatin resistance in HGSOC cell lines [226]. 
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Although GEX analyses of OCCC compared to other histological subtypes are 
limited, two reports support our findings. Although not identifying Rho GTPases 
directly, Zorn et al. (2008) reported ARAP3 and SRGAP2, genes of the Rho GTPases 
signaling pathways, as part of a gene set of 171 genes able to distinguish OCCC 
from other ovarian cancer histological subtypes. Schaner et al. (2003) identified 
ARHGAP8 and RAP1GA1, two other genes of the Rho GTPases signaling pathway, 
but also RHOB as genes able to distinguish between ovarian cancer histological 
subtypes [77]. 

ARID1A and PIK3CA mutations dominate OCCC and activate the 
PI3K/AKT/mTOR pathway 

Further studies of the genomic alterations of OCCC were performed in cohort 2. 
Ten FFPE OCCC tumors were sequenced using a gene panel of 60 genes commonly 
mutated in solid tumors. We found inactivating ARID1A and activating PIK3CA co-
occurring mutations in three of ten tumors, in line with both previous and more 
recent findings [67, 68, 80, 227, 228]. The loss of ARID1A and activation of the 
PI3K/AKT/mTOR pathway has been shown as a key driver element in OCCC [70]. 

The immunohistochemical evaluation in cohort 3 supported this, with AKT 
expression in 53% (23/43) of the tumors. Analysis of mTOR and PTEN was 
previously done in a subset of tumors of cohort 3. mTOR was reported to be 
overexpressed in 58% (7/12) of the tumors, while PTEN was lost in 66% (8/12) 
[76]. Inhibitors of the PIK3CA/AKT/mTOR pathway have been suggested in OCCC 
[79, 229, 230], while drugs such as Dasatinib (a SRC kinase inhibitor) have been 
shown to be synthetic lethal in ARID1A mutated OCCC cell lines [231, 232]. There 
are currently two ongoing phase 2 clinical trials investigating, respectively 
Dasatinib [233] and TAK228 (a dual TORC1/2 inhibitor) [234] for the treatment of 
patients with recurrent OCCC. 

A potential non-canonical pathway for Wnt signaling in OCCC 

Through pathway analyses of the detected mutations we found that Wnt signaling 
was affected. Studies by Bodnar et al. (2014) and Gamallo et al. (1999) suggested 
that Wnt-signaling in ovarian cancer might be through non-canonical pathways 
because β-catenin was absent in the cell nuclei of the tumors [235, 236]. The 
canonical pathway for Wnt-signaling is through the activation of β-catenin 
(CTNNB1). Although we found no mutations in CTNNB1, the planar cell polarity 
(PCP) pathway is one of the non-canonical Wnt-pathways acting through Rho 
GTPases, activating JNK and subsequently AP-1 meditated transcription, leading to 
cytoskeletal rearrangements [237-239] (Figure 10). These findings indicate that Rho 
GTPases could play a pivotal role throughout the OCCC cells, linking both genomic 
alterations with GEXs and protein functions. 
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Figure 10: Overview of canonical and non-canonical Wnt signaling. 
A: Canonical Wnt-signaling with binding of Wnt to Fzd receptors and LRP co-receptors leading to activation of β-
catenin. B: Non-canonical pathways for Wnt signaling, Wnt/PCP and Wnt/Ca2+ where Wnt binds to the ROR-Frizzled 
receptor complex which leads to cytoskeletal rearrangements through RHOA and JNK or CDC42 and NFAT. Figure is 
adapted from Zahn et al. (2017) [239]. 

Limitations and considerations 

Although study II suffered from the use of different cohorts and a small number of 
samples in each of the cohorts, we were able to utilize a multilayered ‘omics 
approach and to combine results into reasonable interpretations. Furthermore, our 
findings were in line with those of other groups, while also providing new insight 
into the pathogenesis of OCCC. Our findings support Rho GTPases as potential 
targets of treatment in OCCC. We therefore proposed the hypothesis that drugs 
targeting Rho GTPase activity or intracellular levels may be a promising strategy 
for treating OCCC. This was further investigated in study III. 

Study III: Simvastatin in OCCC 

Introduction 

In study III, we tested the hypothesis generated in study II, that drugs targeting Rho 
GTPases would be a promising strategy for the treatment of OCCC. However, 
targeting Rho GTPases directly can be difficult and methods as those outlined in 
Figure 11 are potential strategies [240-243]. 
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Figure 11: Different strategies to interfere with the Rho-GTPase signaling pathway. 
A: Reduce isoprenoid precursors using statins or inhibition of farnesyl-transferases and geranylgeranyl transferases 
interfering with the prenylation of Rho GTPases, regulating spatial localization of the GTPase proteins. B: Activation 
cycle inhibition, by interfering Rho-GEF interaction. C: Interfering Rho-nucleotide binding. D: Direct inhibition of Rho 
GTPase effectors. Figure is adapted from Cardama et al. (2017) [241]. 

We chose two different drugs (CID-1067700 and simvastatin), each with a different 
targeting strategy, for the in vitro studies. CID-1067700 is a pan-GTPase designed 
as a molecular probe on which compounds for targeting Rho GTPases could be 
attached; however, the probe itself also inhibits the activity of Rho GTPases (and 
other small GTPases). The mechanism of action is not yet understood but it is 
suggested to bind either directly to or near the GTP binding site thus preventing Rho 
GTPase activation [244]. 

The other drug chosen was simvastatin, an FDA approved cholesterol lowering drug 
targeting HMG-CoA reductase in the mevalonate pathway [245]. By inhibiting 
HMG-CoA simvastatin prevents the synthesis of the isoprenoid intermediates 
farnesylpyrophosphate and geranylgeranyl pyrophosphate (GGPP) (Figure 11, 
section A) [246]. GGPP is used for the translocation of Rho GTPases to the 
membrane for them to elicit their effect, and thus Rho GTPase activity is prevented 
by the depletion of GGPP by simvastatin [240]. Simvastatin exhibits 
antitumorigenic properties in many cancer cell lines [247-252], and has been 
evaluated in clinical trials either alone or in combination therapies with varying 
success, despite promising preclinical studies [253-255]. Simvastatin has also been 
evaluated in in vitro studies in ovarian cancer, although mostly in the HGSOC 
subtype [247, 256, 257]. A study by Matsuura et al. (2011) reported anticancer 
effects of simvastatin in two OCCC cells lines and showed increased survival in 
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mice with xenografted OCCC tumors following simvastatin treatment [258]. The 
rationale for their study was the overexpression of osteopontin in OCCC and its role 
in metastasis and invasiveness, which simvastatin was shown to inhibit [259]. 
Although the use of statins as an anticancer agent in ovarian cancer is debated, some 
recent evidence suggests a correlation with increased survival in humans [260, 261]. 
A study by Habis et al. (2014) even reported that patients with ovarian cancer other 
than HGSOC, had improved survival with statin use [262]. 

The following section describes results from the appended manuscript (Study III), 
however it also presents new data not yet described in the manuscript. 

Methods 

We evaluated the sensitivity to simvastatin and CID-1067700 in three OCCC cell 
lines (JHOC-5 [263], OVMANA [264]  and TOV-21G [265]) and one HGSOC cell 
line (Caov-3). We compared the sensitivity to that of carboplatin, a heavily used 
chemotherapy in ovarian cancer treatment [27, 266]. We also evaluated the effect 
of the treatments on the cytoskeletal integrity and the migration of the cells using 
fluorescent microscopy. Lastly, we evaluated the cellular responses to the 
treatments using western blotting and cell cycle analysis by FACS. 

OCCC cell lines are most sensitive to simvastatin 

We first evaluated the sensitivity of the three drugs individually. The findings are 
shown in Figure 12. Simvastatin was the most potent of the drugs in OCCC cells, 
with similar potency in all the OCCC cell lines, while the potency was lower in the 
HGSOC cell line Caov3 (Figure 12A). However, the sensitivity to CID-1067700 
was lower than to simvastatin in all cell lines, possibly reflecting the fact that CID-
1067700 is a pan-GTPase inhibitor and not specific for Rho GTPases, and therefore 
targets small GTPases in a dose-dependent competitive manner (Figure 12B) [244]. 
Both patients from whom the JHOC-5 and OVMANA cell lines were derived had 
received platinum based chemotherapy, which could explain their increased 
resistance to carboplatin compared to the more sensitive HGSOC cell line Caov3 
and the untreated OCCC cell line TOV-21G (Figure 12C) [263-265, 267]. Still, 
chemotherapy resistance is common in OCCC, with 30-50% of patients lacking a 
response to first-line platinum-based treatments [65, 268, 269]. 
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Figure 12: Dose response curves and isobolograms. 
Top panels: Dose response curves for single treatment with A: Simvastatin, B: CID-1067700, C: Carboplatin. Lower 
panels: Normalized isobolgrams for combination therapies in D: JHOC-5, E: OVMANA, F: TOV-21G and G: Caov3. 
Red: 3:1 ratio, Blue: 1:1 ratio, Green: 1:3 ratio. Ratios are linked to the prewritten combination therapy. Circles: 
Carboplatin + Simvastatin, Upward triangles: Carboplatin + CID-1067700 and Downward triangles: Simvastatin + CID-
167700. 
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Table 8: Drug combinations and their effects in Study III 

CI: Combination index 

 

Synergy is limited in combination treatments 

We also evaluated the effect of dual combination of the drugs and found cell line 
specific differences (Table 8, Figure 6D-G). Notably, only combinations between 
simvastatin and CID-1067700 were synergistic (Figure 12D-G, Downward 
triangles). A perspective report by Chou (2010) highlighted the importance of 
evaluating CI values across the entire dose-range [148]. We observed a synergistic 
effect with increasing dose (and effect) between carboplatin and simvastatin in 
JHOC-5 and OVMANA cells for treatments with a high simvastatin ratio, while an 
increase in sensitivity with increase in simvastatin ratio in treatments with 
simvastatin (see appended study). 

Both simvastatin and CID-106770 affect cytoskeletal integrity 

Further investigation revealed that both simvastatin and CID-1067700 affected the 
cytoskeleton. After 72 hours of treatment we observed a significant loss of 
cytoskeletal integrity with disorganized actin filaments at the cell borders (Figure 
13), which correlated with an inhibition of migration (see appended study). Despite 
the lack of synergy, almost all treatments with simvastatin and/or CID-1067700 
were able to disorganize the cytoskeleton, as well as inhibit migration in all cell 
lines. This is in line with several other studies of statins in different cancer cell lines 
[256, 257, 270-273]. The effect, however, is much less studied in OCCC and the 
pathways in which statins work are not yet fully understood. In fact, Robinson et al. 
(2013) raised the question of several mechanisms at large, as they reported increased 

   
Individual drug dose (μM) 

 

 Ratio IC50 (µM) Carboplatin Simvastatin CID-
1067700 

CI-value 

JHOC5 
      

Carboplatin + Simvastatin 1:3 34.1 ± 2.7 27.04 7.06 
 

0.94±0.05 

Carboplatin +  
CID-1067700 

3:1 105.6 ± 8.7 85.41 
 

20.19 0.99±0.01 

Simvastatin + CID-1067700 3:1 27.6 ± 1.2 
 

20.17 7.43 0.99±-0.08 

       

OVMANA 
      

Carboplatin + Simvastatin 1:3 36.8 ± 2.3 29.31 7.49 
 

1.39±0.06 

Carboplatin +  
CID-1067700 

1:3 137.3 ± 9.8 23.09 
 

114.21 1.15±-0.03 

Simvastatin + CID-1067700 3:1 31.8 ± 2.5 
 

0.58 31.22 0.32±0.01 

       

TOV21G 
      

Carboplatin + Simvastatin 1:3 9.8 ± 0.8 5.04 4.76 
 

1.13±0.05 

Carboplatin +  
CID-1067700 

1:3 114.2 ± 11.2 4.86 
 

109.34 1.09±-5.32 

Simvastatin + CID-1067700 3:1 46.3 ± 3.0 
 

0.64 45.66 0.46±0.01 
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levels of both LC3A/B and P62 following simvastatin treatment [256]. LC3A/B is 
a marker for autophagy, while P62 is an inhibitor. In support of this, increased levels 
of Rho GTPases have been shown after treatment with statins [274], while others 
have reported decreased p-AKT levels [275]. The similar effects of simvastatin and 
CID-1067700 in our study suggests that Rho GTPase activity is in fact being 
targeted; this was confirmed by the addition GGPP, which inhibited cell death in 
simvastatin containing treatments, but not in CID-1067700 treatments (data not 
shown). 

 

Figure 13: Effects of single treatment on the cytoskeleton.  
Cells were treated for 72 hours with single treatments of IC50 doses. Actin was then stained with phalloidin and cell 
nuclei with DAPI and fluorescenct signals were captured. Images have been background corrected to the controls to 
better illustrate the loss of actin staining. White scale bar is 50 μm. 
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Cell cycle arrest is cell line specific 

Next, we analyzed the effects of treatments on cell cycle phase distribution and 
found that all treatments caused a G1 arrest in JHOC-5 and TOV-21G cells, while 
this was not the case for OVMANA cells (see appended study). The differences 
between the cell lines became more profound when we analyzed protein 
expression based on the reported effects of simvastatin (Figure 14). 

 

Figure 14: Cellular response to treatments for all cell lines 
Immunoblots of key proteins reported to be targets of simvastatin, as well as key regulators in OCCC. 

Simvastatin reduces c-MYC expression 

We found an increased expression of p21, a marker for cell cycle arrest, following 
single treatment with carboplatin (Figure 14). A modest increase in p21 levels was 
observed when carboplatin was used in combination with CID-1067700. 
Interestingly JHOC-5 cells showed a significant increase in p21 for the combination 
of simvastatin and CID-1067700. Another common denominator was the decreased 
levels of c-MYC after simvastatin treatments (Figure 14). CID-1067700 also 
decreased c-MYC expression in OVMANA and TOV-21G cells. c-MYC is 
frequently overexpressed in OCCC and has been described as a potent oncogene 
and therefore a promising target [276]. Furthermore c-MYC has been reported to 
cross-talk with RhoA and regulate the cytoskeleton, which the lack of c-MYC in 
OVMANA and TOV-21G cells after treatment with CID-1067700 might reflect 
[277], and c-MYC expression is linked to the Wnt-pathway [278]. 

The roles of p-ERK and p-AKT are cell line specific 

The reported effects of a dual mechanism of both autophagy initiation and inhibition 
was evident in JHOC-5 and TOV-21G, while P62 expression was increased in 
OVMANA following single treatment with CID-1067700 (Figure 14). 
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Combinations of carboplatin/simvastatin and simvastatin/CID-1067700 increased 
expression of the autophagy markers LC3A/B. 

Expression of p-AKT was decreased in all cell lines following simvastatin 
treatment. For JHOC-5 and TOV-21G cells this was due to loss of phosphorylation, 
whereas in OVMANA cells it was caused by a decrease in total AKT. An inverse 
correlation was seen in p-ERK levels between OVMANA and both JHOC-5 and 
TOV-21G cells. Simvastatin increased phosphorylation of ERK in JHOC-5 and 
TOV-21G, while a decrease in OVMANA cells followed a decrease in total ERK. 
The distinct expression profiles of p-ERK and p-AKT suggest different 
dependencies in the cell lines. A possible role for the increase in p-ERK could reflect 
the huge number of cells arrested in G1, as p-ERK activity is required for the 
transition to S-phase [279]. However, the lack of p-ERK in OVMANA cells in 
response to simvastatin suggests an alternate pathway here, reflecting the absence 
of G1 arrest in these cells (data not shown). Also, cross-talk between the Ras-ERK 
and PIK3CA/AKT/mTOR pathways is established, although our study did not 
evaluate this [280, 281]. 

The contradicting effects in the cell lines are probably due to the differences in geno- 
and phenotypes, highlighting the notion of tumor heterogeneity which may exist in 
OCCC depending on the co-existence of ARID1A and PIK3CA mutations [70, 71]. 
Despite the contradictions we have shown that drugs targeting Rho GTPases are 
potent in OCCC, and while their effects are cell line dependent, they are effective, 
nonetheless. Simvastatin emerged as a promising candidate and our study has 
warranted further investigations into the use of statins in OCCC. 

Conclusion 

We successfully integrated multiple datasets into a hypothesis and subsequently 
tested the hypothesis using cell cultures as experimental models. A larger but 
similarly designed study published by Caumanns et al. (2017), concluded that drugs 
targeting both the Ras-ERK and PIK3CA/AKT/mTOR pathways could be a 
promising strategy for OCCC treatment [79]. They evaluated the kinome from 17 
OCCC cell lines and 70 tumors from patients, and their results correlate well with 
our findings, although the initial hypothesis was different [79]. Our results 
correlated with the previous studies of simvastatin as an anticancer agent. However, 
it was evident that although simvastatin and CID-1067700 both targeted the 
cytoskeleton, their roles on a cellular level were different, thus supporting the idea 
of multiple mechanisms of action by simvastatin. 
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Study IV: Detection of TP53 mutations for early 
diagnosis in HGSOC 

Introduction 

Ovarian cancer is termed “The Silent Killer”, and while the incidence and mortality 
of cervical cancer have decreased radically since the introduction of the 
Papanicolaou test [282-284], overall survival from ovarian cancer has not changed 
substantially over the past 20 years [285]. Despite approaches aimed at early 
detection, including the use of serum CA-125 and transvaginal ultrasound, neither 
has been successfully applied in a screening setting due to limited specificity and 
sensitivity [28, 286, 287]. Although several prognostic factors have been identified 
in ovarian cancer, one of the strongest being stage [288-290], the majority of ovarian 
cancers are diagnosed in late stages (FIGO stage >III) with poor prognosis [291, 
292]. Early detection therefore presents as a critical option for impacting survival in 
ovarian cancer, especially HGSOC. 

TP53 as a potential biomarker  

Through sequencing of HGSOC, TP53 has emerged as a biomarker candidate for 
early detection [32, 293] as it is mutated in more than 95% of HGSOC cases. A 
recent study showed a shared TP53 mutation in matched pre-cancerous and 
cancerous lesions (p53 signatures, Serous Tubal Intraepithelial Carcinoma lesions 
(STICs) and invasive carcinomas) from nine patients with HGSOC. These findings 
provide support for the possibility of discovering tumor driving mutations in early 
stages of the disease [23]. 

NGS represents a powerful tool for mutation detection and several techniques based 
upon NGS have emerged in recent years. These can detect mutations of low 
abundance in many types of samples such as blood, urine, cyst fluid and vaginal 
samples [90, 91, 294-297]. The most promising development in early detection of 
ovarian cancer to date occurred in 2013, when Kinde et al. showed that somatic 
mutations in DNA shed from endometrial and ovarian cancers could be detected in 
standard liquid-based Pap test specimens by NGS [298]. The PapSEEK method 
assays 18 genes for alterations commonly found in endometrial and ovarian cancers. 
PapSEEK is highly sensitive for endometrial cancer, however less sensitive for 
ovarian cancer. A recent study reported a sensitivity for PapSEEK alone of 33%, 
however with a specificity of 99%, although the addition of plasma samples 
increased the sensitivity to 63% [89]. 

ddPCR, an alternative to NGS 

While NGS is becoming less expensive each year, there is still a long way until NGS 
can be applied in a population based diagnostic screening setting, although it could 
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be applicable for high risk patient groups such as BRCA mutation carriers [299, 
300]. An at least as sensitive alternative to NGS is ddPCR, which has a fast turnover 
and ease of use [301]. Analysis of circulating tumor DNA using ddPCR has shown 
great potential for prognostication and monitoring of treatment response in several 
tumor types including gynecological cancers [302, 303]. 

Most of the previous studies evaluating the sensitivity of detection or early markers 
of disease originate in samples collected at the time of diagnosis. This may be too 
late for ovarian cancer as described above. The MaNiLa study (Mats, Nicolai, Laura, 
the original PhD students in the study) at Lund University aims to evaluate ddPCR 
as a platform for HGSOC screening and has enrolled 187 women with suspected 
ovarian cancer (Figure 15). A subset of these patients was found to have archival 
vaginal samples available from the cervical cancer screening program (n=9). These 
archival samples were taken four to seven years prior to the diagnosis of HGSOC 
and allow for an initial evaluation of the window of opportunity proposed by Labidi-
Galy et al. (2017) [23]. 

Aim 

In study IV we therefore aimed to evaluate the potential window of opportunity 
using the presymptomatic archival liquid based vaginal samples from 9 patients with 
HGSOC. The goal was to discover whether TP53 mutations present in tumors could 
be detected in archival vaginal samples. 

Methods 

We analyzed both the archival vaginal samples as well as vaginal samples collected 
at the time of diagnosis from nine women diagnosed with HGSOC, using the ultra-
sensitive ddPCR IBSAFE™ technology developed at Lund University by Saga 
Diagnostics. To our knowledge the analysis of liquid vaginal samples from pre-
symptomatic women has, not been done before.  

We used targeted sequencing of matched tumor and blood samples from each patient 
to detect possible TP53 mutations, and then assessed the archival and diagnostic 
vaginal samples using ddPCR.  
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Figure 15: Flowchart of patients included in study IV. 
A total of 187 patients were enrolled in the MaNiLa study. A total of 9 patients had both presymptomatic liquidbased 
vaginal samples and diagnostic vaginal samples, while also tumor tissue. 

Results 

IBSAFE™ identified 75% of the somatic TP53 (6/8) mutations found in the 
patients’ tumors in the corresponding diagnostic sample, including 66% (2/3) of 
patients with low stage tumors (FIGO stage <IIB). Early diagnosis of low stage 
tumors is a desirable feature for screening methods and PapSEEK currently holds a 
sensitivity of 50% for both early and late stage ovarian cancer [89].  

Unfortunately, we were not able to detect any of the tumor occurring TP53 
mutations in the archival samples. One patient (patient 1) had a germline mutation 
that was not filtered out (Figure 16). Despite this, we found that IBSAFE™ was 
able to perform in samples with very limited DNA (0.17 ng). Other ddPCR assays, 
such as the Bio-Rad assays, are optimized for 100 ng input (detection rate of 
1:10,000), while less input can be used at the cost of sensitivity [301]. 
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Figure 16: Tumor minor allele frequencies (MAF) for diagnostic vaginal samples from study IV 
MAFs (%) listed for diagnostic vaginal samples for IBSAFE™ (Green) and Bio-Rad (Purple). FIGO stage at time of 
diagnosis is listed below each patient number. Note the logarithmic scale bar. 

Conclusion 

Even though we failed to detect any TP53 mutations in the archival samples, we are 
currently investigating the possibility of evaluating ultra-sensitive ddPCR in a larger 
cohort, with serial archival vaginal samples obtained closer to the time of diagnosis, 
e.g. 1-3 years prior. 

Study IV highlights the before mentioned effects of collaborations between clinical 
and preclinical researchers. With clinicians following and collaborating actively in 
a study, the road from the laboratory to the clinic is much shorter. I, as a non-
clinician have learned to appreciate the knowledge clinicians hold, and the studies 
in this thesis have been driven by an ever-present clinical perspective. 
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Conclusions and Future Perspectives 

The studies in this thesis explore different biomolecular approaches, which can 
ultimately be used for improving patient outcome. The secondary effect of these 
studies is a deeper understanding of the pathogenesis of ovarian cancer. The strong 
synergy which can be obtained when combining biology, pre-clinical and clinical 
research was pivotal for the creation of this thesis. This is supported by the study 
conclusions, which hence are presented here as a context. 

Sex hormone receptors 

Study I was an explorative study aiming to evaluate the effect of co-expression of 
hormone receptors. Although limited in size the association of AR/PR expression 
with improved outcome is promising, but it needs further evaluation. We failed to 
show the effect in an independent data set, albeit through mRNA expression. The 
need for a better understanding of hormone receptor function in the ovaries and in 
ovarian cancer is warranted. Furthermore, the study highlighted the need for better 
stratification of patients. This is both in general terms, however, also to assess the 
effect of hormone receptors, both as predictive and prognostic markers. Recent 
results suggest that integrative analysis of multilayered data could provide a future 
use for endocrine therapy in ovarian cancer based on hormone receptor status. This 
could lead to clinical studies of the effect of endocrine treatment in less heavily 
pretreated patient groups.  

Finding a way aided by computers 

Study II was also an explorative study, although in OCCC, a rare histological 
subtype of ovarian cancer. The study demonstrated that integrative analysis of data 
from multiple platforms could provide information that led to the discovery of 
potentially actionable treatment candidates. Although a limited study, where three 
different cohorts were used due to the rarity of the tumor subtype, the results 
correlated well with previous findings on all levels. The findings also suggest that, 
although OCCC might not be as homogenous as suggested by subtype comparisons, 
common treatment candidates can be discovered. Rho GTPases have been 
extensively researched for their roles in cancer and in this study, Rho GTPases are 
suggested as potential treatment candidates in OCCC. Essentially, we used a 
hypothesis generating method to create a hypothesis of treatment candidates in 
OCCC. The use of integrated analyses in patient samples and cell lines is becoming 
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the standard exploratory tool in this context, and information about rare tumor types 
such as OCCC should be made readily available to enhance sample size across 
borders. 

OCCC can be targeted with simvastatin 

Study III elaborated on the hypothesis generated in study II, that Rho GTPases 
would be treatment candidates in OCCC.  

We assessed the sensitivity to simvastatin and CID-1067700 in three OCCC cell 
lines and found that OCCC cell lines were more sensitive to simvastatin than to 
carboplatin. The cytoskeleton became disorganized and migration was inhibited. 
Further analysis of the molecular events suggested involvement of multiple 
pathways leading to cell death, however there was also evidence of differences 
between cell lines. Our findings indicated involvement of both the 
PI3K/AKT/mTOR and RAS/ERK pathways, but this remains to be further 
investigated. 

Despite the limitations of an in vitro 2D model assay for potential in vivo 3D effects, 
we found evidence to support further evaluation of statins in OCCC. The future 
perspective for clinical trials, however, is limited as it is a rare subtype, with only a 
few cases a year. One approach could be to use registry research and correlate statin 
use to the incidence of OCCC in a retrospective study. But with only a limited 
number of cases a year in a small country the study would have low power. Hence 
the need for collaborations across borders. E.g. a study similar to our approach was 
recently published by Caumanns et al. (2017), in which an impressive 124 tumors 
were collaboratively analyzed using integrated analyses. 

Ultrasensitive ddPCR holds promise for vaginal samples 

Study IV evaluated the use of ultrasensitive ddPCR (IBSAFE™) for TP53 testing 
of presymptomatic liquid based vaginal samples from women with HGSOC. 
Despite the success of IBSAFE™ in samples with low abundance of DNA, we did 
not detect any of the tumor associated TP53 mutations in the presymptomatic 
vaginal samples. However, we did detect the tumor associated mutations in the 
diagnostic samples, with a sensitivity of 75%, and also providing support for further 
investigation of IBSAFE™ in vaginal samples, which often contain low amounts of 
DNA. 

Although we were only able to test a total of 9 patients, the evaluation of 
presymptomatic samples has not been shown previously. The identification of these 
patients was made possible only due to the unique registries and biobanks in Sweden 
and through an extensive collaboration with both clinicians and pathologists, and 
thus represents a unique opportunity for further studies. 
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This approach is as close as we can come to designing a prospective study, without 
the need to account for the timeframe for cancer initiation. The use of the IBSAFE™ 
method warrants further investigation and we are currently trying to identify 
additional patients nationwide in Sweden who have the combination of a diagnostic 
and a presymptomatic vaginal sample(s) as well as tumor tissue available. Initial 
investigations are currently promising, and we expect to test more patients within 
the next two years. 

The ease of use and fast turnover of IBSAFE™ and the potential of multiplexing 
for evaluating multiple mutations in the same sample, is in favor of this method, as 
opposed to the NGS approach, which, although able to detect multiple mutations in 
a sample, lacks the sensitivity of the IBSAFE™ method. 

Concluding remarks 

There is no question in my opinion that clinically relevant molecular subtypes will 
be discovered in HGSOC, and it is not a matter of time more than it is a matter of 
collaboration. As more advanced methods become readily available so does the need 
for specialists but also mediators. In my opinion the scientific community will see 
an increase in the demand for these mediators i.e. interdisciplinary researchers. We 
have gained so much knowledge of the cancer biology, that the time has now come 
to integrate that knowledge and take a proactive role in the fight against cancer. 

Collaboration, integration and interdisciplinarity will be the keywords that will 
mediate the next breakthrough in cancer research. 
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