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Abstract—We present a CRC-aided LDPC coding scheme that
can outperform the underlying LDPC code under ordered
statistic decoding (OSD). In this scheme, the CRC is used jointly
with the LDPC code to construct a candidate list, instead of
conventionally being regarded as a detection code to prune the
list generated by the LDPC code alone. As an example we
consider a (128, 64) 5G LDPC code with BP decoding, which
we can outperform by 2 dB using a (128, 72) LDPC code in
combination with a 8-bit CRC under OSD of order t = 3.
The proposed decoding scheme for CRC-aided LDPC codes also
achieves a better performance than the conventional scheme
where the CRC is used to prune the list. A manageable complexity
can be achieved with iterative reliability based OSD, which is
demonstrated to perform well with a small OSD order.

I. INTRODUCTION

In this era, we have witnessed the unprecedented emergences
of new services and applications that require exponentially
growing data and billions of devices in the network. Among
different research and standardization efforts, the design of
fifth-generation (5G) new radio (NR) wireless systems stands
out to address these challenges. Two service categories in 5G,
namely machine-to-machine communications (M2M) and ultra
reliable communication (URC) call for traffic types with short
packet transmission [1]. Hence, the attention to channel codes
at short-to-moderate block lengths with good performance has
been rising again.
Low-density parity-check (LDPC) codes [2] have been se-
lected for data channels in 5G. In designing the LDPC
codes of short lengths, well-established techniques such as
density evolution, which models the asymptotic behavior of
the codes, become less accurate. A detailed bibliography of
improved constructions in designing LDPC codes of short-to-
moderate length can be found in [3], but these constructions
are heuristic.
While the sum-product (SP) algorithm, a sub-optimal iterative
algorithm for decoding LDPC codes, remains appealing due
to its low complexity, maximum likelihood (ML) optimal
decoding may prove itself a feasible solution for short block
length. Ordered statistic decoding (OSD) [4] is capable of
achieving near ML performance for any linear code with a
given generator matrix. The idea of OSD is to build a list of
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codeword candidates based on the most reliable independent
positions (MRIPs), also referred to as most reliable basis
(MRB), and apply an ML search within the list only. The
use of the MRB achieves the smallest list error probability
among all bases [5]. Several improvements [6] – [9] have been
proposed to provide more flexible complexity and performance
trade-offs during the past decade.

Aiming at reducing the complexity, in [10] an iterative relia-
bility based-(IRB-) OSD algorithm was proposed. Compared
to OSD, the list order t in IRB-OSD can be greatly reduced
without compromising the performance. Promising results are
shown for codes of medium and high length.

A cyclic redundant check (CRC) is an error-detecting code to
verify the integrity of raw data. It is applied, for example, in
the data channel of 5G NR [11] [12] to enhance the overall
undetected block error rate (UBLER) of the coding system.
In [13] [14], a remarkable performance is observed for CRC-
aided polar codes under list decoding, where the CRC hereby
is not used for error detection, but contributes directly to a
stronger overall code. This phenomenon is a key element that
helps polar codes to outperform LDPC codes at practical code
lengths. In [15], in addition to polar codes, Gallager’s regular
LDPC codes are found to achieve near optimal performance
for short blocks when combined with a CRC.

Inspired by this observation, in this work we investigate
CRC-aided LDPC coding schemes based on two exemplary
list decoders, namely the OSD as well as the IRB-OSD.
Specifically, in Section II, a coding scheme is introduced
where the CRC is used jointly with the LDPC code to
construct the candidate list in the OSD. A potential coding
gain compared to the conventional scheme is demonstrated. In
Section III the scheme is decoded by IRB-OSD to reduce the
complexity while maintaining a good performance. It turns out
that a CRC-aided 5G LDPC code can achieve a performance
comparable with a CRC-aided polar code with list decoding
at the cost of manageable complexity. With an increased list
order t, IRB-OSD has a competitive performance with a BCH
code, which is quoted in the literature for having the best
performance known at the given length and rate [1].



II. ORDERED STATISTIC DECODING IN CRC-AIDED
CODING SCHEMES

In this section an overview of OSD is firstly given for BPSK
modulated signaling over the AWGN channel. Then two CRC-
aided LDPC coding schemes based on OSD are presented and
compared in terms of the number of candidates in the list that
are valid CRC codewords. It is demonstrated that the scheme
in which the CRC is used jointly with the LDPC code to
construct a candidate list has a better performance as well as
a lower complexity than the other.

A. Overview of OSD

Consider a binary information message sequence u =
[u1, u2, . . . , uk]. It is encoded into v = [v1, v2, . . . , vn] of
length n > k via a k × n generator matrix G. In the
BPSK case, the coded sequence v is mapped to a symbol
sequence x ∈ {−1,+1}n by x = 1−2v and transmitted over
the AWGN channel. The receiver gets the output sequence
y = [y1, y2, . . . , yn] where yi = xi + ni, and ni denotes
the real Gaussian noise with zero mean and variance N0/2.
Define the log-likelihood ratio (LLR) ri = log P (vi=0)|yi)

P (vi=1|yi)
for

i = 1, 2, . . . n. It is a reliability measure of how likely the
transmitted bit vi is equal to 0 or 1.
In OSD, the LLR vector r = [r1, r2, . . . , rn] is sorted in
decreasing order of reliability and the resulting vector is r′,
i.e., r′ = π1(r) with |r′1| > |r′2| > . . . > |r′n|, where π1
is a permutation of the set {1, 2, . . . , n} accounting for the
sorting of LLR values. Let us permute the columns of G
based on π1 into G′ = π1(G). Now form the matrix G′′

as follows: select the k linearly independent columns of G′

with largest LLR values and put them in decreasing order to
form the first k columns of G′′. The remaining n−k columns
of G′, ordered by decreasing reliability, are used to form the
next n − k columns of G′′. Denote by π2 a permutation of
the set {1, 2, . . . , n} corresponding to this column swapping
process, i.e., G′′ = π2(G

′) = π2(π1(G)). Lastly, perform
Gaussian elimination on G′′ to obtain the systematic form
Gsys, where the first k × k submatrix is an identity matrix.
Let r̃ = π2(π1(r)), and ũ be the bitwise hard decisions on
the first k elements of r̃. Then the vector ũ corresponds to the
MRIP of r̃.
During the OSD algorithm, k-bit test error patterns are added
to ũ with increasing Hamming weight ≤ t, where t is also
called order of the OSD. For example, [0 0 . . . 0] is the only
weight-0 test error pattern, and there are k weight-1 test error
patterns which are [1 0 . . . 0], [1 0 . . . 0], . . . ,[0 0 0 . . . 1]
where every single bit in the information position is inverted
at a time. Build a list L of size |L| =

∑t
i=0

(
k
i

)
consisting

of candidate codewords ṽi by re-encoding ũ with test pattern
ei, for i = 1, 2, . . . , |L|, i.e., ṽi = (ũ+ ei)Gsys. Perform an
ML search within the list by choosing ṽ∗ such that 1 − 2ṽ∗

has the closest Euclidean distance with r̃. Finally obtain v̂, the
OSD estimate, from ṽ∗ by the inverse permutation π−11 π−12 ,
i.e., v̂ = π−11 (π−12 (ṽ∗)).
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B. CRC-aided LDPC codes: two coding schemes

A conventional CRC-aided LDPC coding scheme is depicted
in Fig. 1, which we refer to as Scheme 1 in the following.
As Fig. 1 shows, the information sequence u of length k is
first encoded by a CRC of length m as outer code, resulting
in the code sequence s. Then s is encoded systematically
by an LDPC code as the inner code and the resulting code
sequence v of length n is modulated and transmitted over the
channel. Let the vector v = [s p] be composed of the CRC
code sequence s and the LDPC parity sequence p. Also let
v̂ = [ŝ p̂] be the output delivered by the LDPC decoder, and
ŝ(x) be the polynomial representation of ŝ. If gC(x), the CRC
generator polynomial, divides ŝ(x), then it implies that the
errors in ŝ(x) remain undetected, and we say this candidate
passes the CRC test. Otherwise the candidate fails the test and
an error is detected. Given Pu,L, the UBLER of the LDPC
decoder, the UBLER of Scheme 1, Pu, is

Pu = 2−mPu,L. (1)

Equation (1) assumes that each LDPC codeword appears at the
output of decoder with the equal probability. A more detailed
analysis on UBLER taking into account of weight distribution
of the LDPC code is given in [16].
An alternative coding scheme is shown in Fig. 2, which we
refer to as Scheme 2. The encoding process is identical to
that in Scheme 1. In the decoding process, the decoder at the
receiver takes in both GL and gC(x) and delivers û as the
output. Denote by GC , a k by k + m matrix which is the
generator matrix of the CRC. Then define the overall code C,
with the generator matrix G = GCGL. The joint decoding
of CRC code and LDPC code can be equivalently seen as
decoding on C, the overall code and we refer to this system
as Scheme 2.



C. Comparing the number of candidates under OSD

The block error rate (BLER) PB in a list decoding algorithm
can be formulated as

PB = Pm + (1− Pm)Pe , (2)

where Pm is the probability that the candidate list misses the
correct codeword, and Pe denotes the conditional probability
that given the correct codeword is in the list, it is not delivered
as the final estimate û by the list decoder, i.e., an error occurs
during the ML search of the list. A list with more candidates
lowers the missing rate Pm. In the following we enumerate
the number of candidates in the list under OSD of order t for
the two CRC-aided decoding schemes.

In Scheme 1, a hard-decision information vector ũ is obtained
through MRIPs based on GL, which takes k + m bits as
input to re-encode, thus the number of codeword candidates
is
∑t

i=0

(
k+m

i

)
. Assume that all LDPC codewords can be re-

encoded in the list with equal probability, then after the CRC
checking there are N1(t) = 2−m

∑t
i=0

(
k+m

i

)
candidates in

the list. While for Scheme 2, the vector ũ is obtained through
MRIPs based on G, which takes k bits as input, it follows
that the number of candidates is N2(t) =

∑t
i=0

(
k
i

)
.

Example 1. If an overall code has information bit length k =
64 and is based on an m = 8 bit CRC, Table I shows the
number of candidates in the OSD list for the two CRC-aided
schemes according to the enumeration Ni(t) for i = 1, 2. For
order t = 2, there are 10.3 candidates in Scheme 1 versus
2080 in Scheme 2, and for order t = 3, the number is 243.2
in Scheme 1 versus 43744 in Scheme 2. Simulations are also
conducted to find the number of candidates passing the CRC
test averaged over all SNRs of interest in Scheme 1, and the
results are very close to the N1(t) for t = 2 and 3. It confirms
the assumption that all LDPC codewords have nearly equal
probability in the OSD list built by the re-encoding process.

TABLE I
Number of candidates in the OSD list for the two schemes

Scheme i Ni(2)
simulated
t = 2

Ni(3)
simulated
t = 3

i = 1 10.3 10.9 243.2 243.6
i = 2 2081 2081 43745 43745

�

Note that having less candidates in the list does not translate
to a lower complexity. In fact, the number of re-encodings
to generate an OSD list is

∑t
i=0

(
k+m

i

)
in Scheme 1, which

is larger than
∑t

i=0

(
k
i

)
in Scheme 2. Also to identify the

MRIPs during the OSD, it consumes more operations on a
generator matrix of larger dimension, which is the case for
GL in Scheme 1 versus G in Scheme 2. In addition, Scheme
2 saves the process of CRC checking, which is needed in
Scheme 1. So we conclude that given the same OSD order,
the complexity of Scheme 1 is larger than that of Scheme 2.
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D. Performance of OSD in CRC-aided coding schemes

Fig. 3 shows a BLER performance comparison between the
two coding schemes. For an order of t = 2, Scheme 2 achieves
a 0.5 dB gain over Scheme 1 at a BLER of 10−4. While for
an order of t = 3, a coding gain of 1 dB is achieved with
Scheme 2 compared to Scheme 1.
In the following, we show the performance of a single 5G
LDPC code versus its CRC-aided counterpart (Scheme 2) to
demonstrate the better performance of the latter one. Specifi-
cally, a single (128, 64) 5G LDPC code [17] is compared with
Scheme 2, where a (128, 72) LDPC code is used together with
a 8-bit CRC. The LDPC code is constructed by taking the first
9 information nodes and 9 parity nodes in the 5G base graph 2
(the first 2 information nodes are punctured and not transmitted
over the channel), then lifting the base matrix with size 8.
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Fig. 4 shows the BLER performance. For reference, the SP
decoding performance of the single (128, 64) 5G LDPC code
is also simulated. In the single LDPC coding scheme, an
improvement of 0.5 dB can be obtained when the OSD order
is increased from 2 to 3 at a BLER of 10−2. At a BLER of
10−4, both get similar performance to that of SP. For Scheme
2, more than 1dB improvement is obtained by increasing the
OSD order, and it outperforms the 5G LDPC code by 0.5
dB and 1.5 dB, respectively, for OSD order t = 2 and 3,
at a BLER of 10−4. The superior performance observed for
Scheme 2 implies that the weight spectrum of the overall code
C is improved by the CRC.

III. ITERATIVE RELIABILITY BASED OSD
IN CRC-AIDED CODING SCHEMES

In Section II, a remarkable performance is achieved with CRC-
aided Scheme 2 under OSD. However, it is at the cost of re-
encoding a vast number of candidates in the list. It is shown in
[4] that the list size is exponentially increasing with the OSD
order t, and the complexity of the algorithm is O(kt). In fact,
OSD is a universal decoder and can be used to decode any
linear code. To reduce the complexity of the CRC-aided LDPC
scheme, IRB-OSD, a list decoding algorithm that exploits the
structure of LDPC codes, is considered in this section. An
overview of IBR-OSD is presented, followed by a performance
and complexity comparison.

A. Overview of IRB-OSD

A flow chart of IRB-OSD is illustrated in Fig. 5. Given
the channel LLR vector r at the receiver, an SP iteration is
performed and at the i-th iteration the decoder delivers f(i),
the a posteriori probability LLRs for each bit. Then reliable
information is sorted based on f(i) and GL, and the k MRIPs
are identified. Denote by I(i) the set of indices corresponding
to the MRIPs and u(I(i)) the hard decision bits from f(i) with
the index set I(i). Then OSD is realized by re-encoding test
patterns and the information set u(I(i)). For each candidate
codeword in the list, find the corresponding Euclidean distance
with respect to the received vector r. If v(i)

j , the j-th codeword

Eb/N0

0 1 2 3 4 5 6 7

B
L

E
R

10
-4

10
-3

10
-2

10
-1

10
0

SP 5G LDPC

SP ARA

IRB-OSD order 1 5G LDPC

IRB-OSD order 1 Scheme 1

IRB-OSD order 1 Scheme 2

SCL (L=32) polar code + CRC-7
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in the list at the i-th SP iteration has the distance d(i)j such
that d(i)j < dopt, where dopt is the minimal Euclidean distance
found so far, set vopt = v

(i)
j and dopt = d

(i)
j . If a maximum

number of SP iterations is reached, then halt the program,
otherwise perform another SP iteration and set i = i+ 1.
A few stopping criteria are also presented in [10] to reduce
the complexity. Denote by v

(i)
f the hard decision estimate from

f(i) and H the parity check matrix of the LDPC code, then if
v
(i)
f HT = 0, where HT denotes the transpose of H, simply

terminate the program without going through the OSD step.
In addition, if dopt keeps unchanged for a consecutive number
of iterations, then vopt will be delivered as the final estimate.
The rationale is that the SP decoder may have reached its
convergence.

B. Performance of IRB-OSD in CRC-aided schemes

Fig. 6 shows the BLER performance of different (128, 64)
coding schemes under SP and IRB-OSD. At this length, we
also compare the SP performance between the 5G LDPC
code and an accumulate-repeat-accumulate (ARA) LDPC code
[18], which has a low decoding threshold as the block length
goes to infinity. At a BLER above 10−2, the 5G LDPC code
outperforms the ARA code, but at a BLER of 10−4, the
ARA code achieves about 1 dB coding gain over the 5G
LDPC counterpart. Note that the 5G LDPC codes are designed
primarily for the enhanced mobile broadband (eMBB) scenario
in 5G for which the target error rate is 10−2. Under the
IRB-OSD of order 1, the performance of the 5G LDPC code
without CRC is not improved upon SP.
The performance of Scheme 1 under IRB-OSD becomes better
than that of SP decoding of the 5G LDPC code below a BLER
of 10−2, but is still worse than the ARA code at a BLER
of 10−4. On the other hand, the performance of Scheme 2
under IRB-OSD outperforms the ARA code and 5G LDPC
code by around 0.6 dB and 1.5 dB at a BLER of 10−4. For
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comparison, the performance of a polar code with 7-bit CRC
under successive cancellation list (SCL) decoding [19] is also
included in this figure, and it has a performance comparable
with Scheme 2 under IRB-OSD.
Fig. 7 shows the average number of iterations in decoding
5G LDPC codes, ARA codes, and CRC aided schemes under
SP and IRB-OSD. The SP decoder terminates as soon as the
hard-decision estimate satisfies the syndrome condition, while
for IRB-OSD, if the optimal list candidates coincide with
each other from two consecutive iterations, then IRB-OSD
terminates. So the minimum number of iterations for IRB-
OSD is 2. For the SP decoder, the ARA code has a better
performance than the 5G code at the cost of a higher iteration
number. The IRB-OSD requires a much smaller iteration
number than SP, namely 8.4 and 4.6 at an SNR of 1 dB
for Scheme 1 and 2, respectively, compared to 15.8 for SP.
The iteration number for SP decreases to 2.4 around 4 dB,
which is very close to that in Scheme 1 and 2. Given the
order t = 1 of IRB-OSD, namely 64 candidates in the list,
the overall complexity of IRB-OSD is manageable, and the
complexity gap to SP is even smaller at low SNR.
The computational cost of IRB-OSD results mainly from the
iterations of SP and the re-encodings in OSD of order t.
Numbers of operations are presented in [10] for a rate 1/2
LDPC code of length n with column weight J decoded
by IRB-OSD. For OSD of order t = 1, it requires nk2

binary additions and k2 real additions, while 11nJ − 9n real
multiplications, n(J + 1) real divisions and n(3J + 1) real
additions are required for one iteration of SP.
Tables II and III list the number of operations for Scheme 2
under IRB-OSD and the 5G LDPC code under SP at an SNR
of 1 dB. The iteration numbers for IRB-OSD, 4.6, and 15.8
for SP are extracted from Fig. 7 and used in Table II and III,
respectively. We also assume an average column weight of
J = 3.22 in Table II and J = 3.27 in Table III.
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As Tables II and III show, the number of binary additions is
2.4×106 for IRB-OSD. The number of real additions in IRB-
OSD, 2.5 × 104, is about the same as 2.2 × 104 in SP. The
SP requires 8.6× 103 and 5.5× 104 real multiplications and
divisions, respectively, which are three times as many as for
IRB-OSD. This is because SP iterates three times as much as
IRB-OSD at 1dB.
We also compare the two algorithms at 4 dB, where both the
IRB-OSD and SP take 2 iterations. Then the IRB-OSD has
an extra computational cost compared to that of SP, which is
two times of OSD re-encodings. As Table IV shows, it takes
1.1× 106 binary additions and 8.2× 103 real additions. From
Fig. 6 the extra complexity in IRB-OSD achieves a BLER of
10−4, which is about 20 times smaller than that of SP at 4dB.
As the last example, Fig. 8 shows the performance of Scheme
2 under IRB-OSD for different orders t. Since we mainly focus
on the ML performance of the overall code, complexity is not
the concern in this case. At order t = 2, it outperforms the
order t = 1 counterpart by more than 0.5 dB at a BLER of
10−4. At order t = 3, a competitive performance is shown

TABLE II
Number of operations under IRB-OSD for Scheme 2 at SNR=1dB

OSD SP IRB-OSD
Binary addition 2.4× 106 0 2.4× 106

Real addition 1.9× 104 6.3× 103 2.5× 104

Real multiplication 0 2.5× 103 2.5× 103

Real division 0 1.6× 104 1.6× 104

TABLE III
Number of operations under SP for (128, 64) LDPC code at SNR=1dB

SP
Real addition 2.2× 104

Real multiplication 8.6× 103

Real division 5.5× 104



TABLE IV
Number of OSD operations under the IRB-OSD for Scheme 2 at SNR=4dB

OSD
Binary addition 1.1× 106

Real addition 8.2× 103

between Scheme 2 and a (127, 64) BCH code under OSD of
order t = 4. The BCH code is one of the codes known to have
the best performance at this length [1]. Fig. 8 also includes a
Polyanskiy-Poor-Verdú (PPV) bound [20] which characterizes
the maximal achievable channel coding rate at a given block
length and error probability. At an SNR of 1, 1.5, and 2 dB,
the corresponding simulated BLERs are on top of the PPV
bound.

IV. CONCLUSION

In this work we improve short 5G LDPC codes by introducing
CRC-aided LDPC coding schemes of equal overall length and
rate. The resulting overall codes show an excellent perfor-
mance under near-ML OSD decoding, which demonstrates that
the improvements that can be observed for CRC-aided coding
schemes are not unique to polar codes with list decoding. A
competitive performance is observed if the CRC is used jointly
with the 5G LDPC code to construct candidate the list in the
OSD. With the IRB-OSD, the performance can be achieved at
manageable complexity.
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