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Abstract 

Kir4.1/5.1 heterotetramer participates in generating the negative cell membrane potential in distal 

convoluted tubule (DCT) and plays a critical role in determining the activity of Na-Cl co-transporter (NCC). 

Kir5.1 contains a phosphothreonine-motif at its c-terminus (AA249-252). Co-immunoprecipitation showed 

that Nedd4-2 was associated with Kir5.1 in HEK293 cells cotransfected with Kir5.1 or Kir4.1/Kir5.1. GST-

pull-down further confirmed the association between Nedd4-2 and Kir5.1. Ubiquitination assay showed 

that Nedd4-2 increased the ubiquitination of Kir4.1/Kir5.1 heterotetramer in the cells co-transfected with 

Kir4.1/Kir5.1 but it has no effect on Kir4.1 or Kir5.1 alone. Patch-clamp and western blot also demonstrated 

that co-expression of Nedd4-2 but not Nedd4-1 decreased K currents and Kir4.1 expression in the cells 

cotransfected with Kir4.1 and Kir5.1. In contrast, Nedd4-2 fails to inhibit Kir4.1 in the absence of Kir5.1 

or in the cells transfected with the inactivated form of Nedd4-2 (Nedd4-2C821A). Moreover, the mutation 

of TPVT motif in the C-terminus of Kir5.1 largely abolished the association of Nedd4-2 with Kir5.1 and 

abolished the inhibitory effect of Nedd4-2 on K currents in HEK293 cells transfected with Kir4.1 and Kir5.1 

mutant (Kir5.1T249A). Finally, the basolateral K conductance in the DCT and Kir4.1 expression is 

significantly increased in the kidney-specific Nedd4-2 knockout or in Kir5.1 knockout mice in comparison 

to their corresponding WT littermates. We conclude that Nedd4-2 binds to Kir5.1 at phosphothreonine-

motif of the c-terminus and the association of Nedd4-2 with Kir5.1 facilitates the ubiquitination of Kir4.1 

thereby regulating its plasma expression in the DCT.  
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Introduction 

Kir4.1 (encoded by Kcnj10) is an inwardly-rectifying K channel which interacts with Kir5.1 (encoded by 

Kcnj16) to form a 40 pS K channel in the basolateral membrane of the distal convoluted tubule (DCT)(14; 

18; 28). Because this 40 pS K channel is the only type of K channel in the basolateral membrane of the 

DCT(28; 35), it plays a key role in generating negative membrane potential and handling K recycling. 

Previous studies have demonstrated that the deletion of Kir4.1 completely eliminated the basolateral K 

conductance and depolarized the membrane of the DCT (35).  Kir4.1/Kir5.1 channel activity in the DCT 

plays a key role in determining the expression of Na-Cl cotransporter (NCC) and in mediating the effect of 

dietary K intake on NCC through a Cl-sensitive with-no-lysine kinase (WNK) pathway (2; 4; 19; 35).  Since 

NCC plays a role not only in reabsorption of 5% of the filtered Na load but also in regulating renal K 

excretion (8; 16), the modulation of Kir4.1/5.1 channel activity should have a profound effect on renal Na 

and K handing(5).  

While Kir4.1 is a K-conductive component for the Kir4.1/5.1 heterotetramer (18) , the role of Kir5.1 in 

forming the heterotetramer is not completely understood. It has been demonstrated that Kir5.1 may regulate 

the pH sensitivity of the basolateral K channels in the DCT (17; 18). The analysis of Kir5.1 amino acid 

sequence reveals that Kir5.1 contains a phosphothreonine-motif (TPVT) at its c-terminus (AA249-252) 

which has been shown to bind to E3 ubiquitin ligase Nedd-4 (15). The main isoform of Nedd4-2 E3 ligase 

in the aldosterone-sensitive distal nephron is Nedd4-2(21). Nedd4-2 is a HECT-domain containing E3 

ligase and plays a profound role in regulating ubiquitination of a variety of ion transporters, such as NCC 

and ENaC (21; 22; 36).  Nedd4-2 contains a C2 domain and four WW domains which confer protein 

interaction with the substrate protein.  Nedd4-2 selects and recruits the substrate protein not only by binding 

to canonical PY motif of the substrate protein through its specific WW domain but also to phospho-

threonine/serine motif (1; 15). This study is aimed at exploring whether Kir5.1 is a binding component for 

Nedd4-2 thereby regulating Kir4.1 ubiquitination in the DCT.  
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Methods 

Animals      We used Kcnj16+/+ (Kir5.1 WT), Kcnj16-/- (Kir5.1 knockout) mice with C57bl/6 background, 

inducible kidney-specific Nedd4-2 deletion (Ks-Nedd4-2 KO) and Nedd4lflox/flox (WT control for Ks-Nedd4-

2 KO) mice with C57bl/6 background for the experiments. We have purchased male and female Kcnj16+/- 

mice from Mary Lyon Center (Oxfordshire, UK) for breeding in the animal facility of New York Medical 

College. After genotyping, we used both 8 week-old male or female Kcnj16-/- and Kcnj16+/+ mice for 

experiments. To generate Ks-Nedd4-2 KO mice, mice expressing Pax8-rtTA and tet-on LC-1 transgene 

were crossed with Nedd4lflox/flox mice which were originally generated in O. Staub’s laboratory (22). Nedd4l 

deletion was carried out in 8-week-old male and/or female mice homozygous for floxed Nedd4l gene and 

heterozygous for Pax8-rtTA/LC-1 transgene by providing doxycycline (5mg/ml, 5% sucrose) in the 

drinking water for 2 weeks. This was followed by at least 2 additional weeks without doxycycline treatment 

before performing experiments. Littermate mice of the same age and genetic background and drinking 5% 

sucrose were used as controls (Nedd4lflox/flox). Genotyping confirms the positive strain Nedd4-2cre-flox. 

The primers for genotyping were listed in Table 1. All the procedures were reviewed and approved by the 

Institutional Animal Care and Use Committee (IACUC).  

Preparation of the DCT     Mice were sacrificed by cervical dislocation and the abdomen was opened to 

expose the left kidney. We perfused the left kidney with 2 ml L-15 medium (Life Technology) containing 

Type 2 collagenase (250 U/ml) and then removed the collagenase-perfused kidney. The renal cortex was 

separated and further cut into small pieces for additional incubation in collagenase-containing L-15 media 

for 30-50 min at 37oC. The tissue was then washed three times with fresh L-15 medium and transferred to 

an ice-cold chamber for dissection. The isolated DCT tubules were placed on a small cover glass coated 

with poly-lysine and the cover glass was placed on a chamber mounted on an inverted microscope.  

Cell culture and Gene Transfection      HEK293 cells (ATCC, Manassas, VA) were used for transient 

expression of Kir4.1, Kir5.1 and Nedd4-1 or Nedd4-2. The cells were grown in Dulbecco's modified Eagle 
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medium (DMEM; Invitrogen) supplemented with 10% FBS (Invitrogen) in 5% CO2 and 95% air at 37oC. 

Cells were grown to 50–70% confluence for transfection as described previously (34). Briefly, a cDNA 

cocktail (total 2 µg) was prepared with 200 µl serum free DMEM and 6 µl Turbofect transfection reagent 

(Thermo Fisher Scientific) for the cells in a 35 mm dish. Cells transfected with the empty vector were used 

as  IgG control for immunoprecipitation (IP) and their background currents were subtracted from that of 

the experimental groups for patch-clamp study. After 15 min incubation at room temperature, the mixture 

of the transfection cocktail was applied to the cells followed by additional 24 h incubation before use.  

Co-immunoprecipitation (CO-IP) and Ubiquitination assay         IP was performed as previously 

described(13). Briefly, 200 µg total protein was mixed with 2 µg of the IP antibody in 200 µl of 1% PBST. 

The mixture was incubated with overnight shaking at 4°C and followed by adding 50 µl of protein A agarose 

(Santa Cruz Biotechnology, Dallas, TX) and mixing gently with shaking for an additional hour. The agarose 

was pelleted and ready for SDS-PAGE gel examination.  

For the ubiquitination assay, 2% SDS was added into 200 µg total protein lysate. The sample was incubated 

for 5 min at 95°C and diluted 10 times with lysate buffer before conducting immunoprecipitation (IP). The 

IP antibody was added into the lysate as in the protocol described above.  

Site-directed mutagenesis         The over-lapping PCR-based mutagenesis method was used to generate 

Kir5.1 mutants (UniProtKB-Q9NPI9-Human). Two pairs of complementary primers harboring the mutant 

site Kir5.1T249A or –T249D were phosphorylated by T4 polynucleotide kinase at 37 °C. We used 20 ng 

of pcDNA3-Flag-Kir5.1 as template. A 50 µl PCR reaction was set up routinely, including with LA-Taq 

and DNA ligase. After PCR product was incubated with DpnI for 1 h, 1 µl PCR product was used for 

transformation. Mutant plasmid DNA was verified by sequencing.  

Whole cell recording with patch clamp        Borosilicate glass (1.7-mm OD) (Harvard Apparatus, Holliston, 

MA USA) was used to make the patch-clamp pipettes that were pulled with a Narishige electrode puller 

(Narishige, Long Island, NY, USA). The pipette had a resistance of 2 to 4 MΩ when filled with 140 mM 



6 
 

KCl. The tip of the pipette was filled with pipette solution containing 140 mM KCl, 2 mM MgCl2, 1 mM 

EGTA, and 5 mM HEPES (titrated with KOH, pH=7.4). The pipette was then back-filled with pipette 

solution containing amphotericin B (20 μg/0.1 mL). For measurement of Ba2+-sensitive K currents, the cells 

were incubated with a bath solution containing 140 mM KCl, 2 mM MgCl2, 1.5 mM CaCl2, and 5 mM 

HEPES (titrated with KOH, pH=7.4). After forming a high-resistance seal (>2 GΩ), the membrane 

capacitance was monitored until the whole-cell patch configuration was formed. The cell membrane 

capacitance was measured and compensated. This compensated value indicated the membrane capacitance 

of each cell and it was used for normalizing K currents for each measurement. K currents were measured 

by an Axon 200A patch-clamp amplifier (Molecular Devices, Sunnyvale, CA, USA). The currents were 

low-pass filtered at 1 KHz and digitized by an Axon interface (Digidata 1320, Molecular Devices). Data 

were stored in a Dell PC and analyzed using the pClamp software version 9 at sampling rate of 4K Hz 

(Molecular Devices). K current measured in HEK cells was presented as picoamperes (pA)/30 picofarads 

(pF) while it was pA per DCT cell. 

GST pull down           Four WW domains of Nedd4-2 and full length of Kir5.1 were individually inserted 

into pGEX4T-1 vector. C-terminal of Kir5.1 was inserted into pET19b vector. The primers used for the 

procedures were listed in Table 2. The constructs were confirmed by sequencing.  For the induction of 

expression, 10 ml BL21 E. coli containing the transformed plasmid pGEX4T-1-WW domain proteins or 

pET19b-Kir5.1-C-terminus were induced by IPTG (0.2 mM) for 4-5 hr. Cell pellets were lysed with 

BugBuster protein extraction buffer (EMD Millipore, Billerica, MA). Supernatant was taken after 

centrifuging. Total protein concentration was quantified. 200 µg total GST protein was mixed with 50 µl 

of washed Glutathione beads (Thermo Fisher Scientific). After shaking at 4 °C for 2 h, we added 200 µg 

total protein containing flag-tagged-Nedd4-2 obtained from TNT T7 Quick Coupled Translation System 

(Promega, Madison, WI) into GST-proteins for overnight incubation.  The mixture was washed three times 

with 1% PBST and the beads were loaded to PAGE-SDS gel. 
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Immunofluorescent staining             Mice were anesthetized and perfused with 30 mL PBS containing 

heparin (40 unit/mL) followed by 100 mL of 4% paraformaldehyde. After perfusion, the kidneys were 

embedded and cut into 7 μm slices with Leica1900 cryostat (Leica). The slides were washed with 1× PBS 

for 15 min, and permeabilized with 1× PBS buffer containing 0.3% Triton X100, 1% BSA and 0.1% lysine 

(pH = 7.4) for 15 min. Kidney slices were blocked and incubated with primary antibodies (Kir4.1) for 24 h 

at 4 °C. Immunostaining was examined with Olympus inverted microscope DP73.  

Antibodies and reagents           We purchased primary antibodies for HA and Ub4D1 from Covance 

(Dedham, MA), for Nedd4-2 from Cell Signaling Technologies (Beverly, MA, USA), for monoclonal Flag 

from Sigma, for Kir4.1 and Kir5.1 from Alomone Labs (APC-123) (Jerusalem, Israel). We also obtained 

Kir5.1 antibody (repeat and validate the results from APC-123) from Santa Cruz Biotechnology (SC-30151) 

(Dallas, TX) and α-Tubulin and GFP from Rockland (Limerick, PA). We purchased second antibodies 

including IRDye® 800CW Goat anti-Mouse IgG, IRDye® 680RD Goat anti-Rabbit IgG from LI-COR. All 

antibodies were validated by using corresponding genetic modified animals (for Kir4.1 and Kir5.1) or 

previous experimental information.  All chemicals and proteinase/phosphatase inhibitors were purchased 

from Sigma Aldrich (St. Louis, MO) unless otherwise specified.  

Statistics analysis          Student’s t-test (unpaired groups) was used to determine the significance of 

differences between two groups or one-way analyses of variance (ANOVA) was used to determine the 

statistical significance among multiple groups. Holm-Sidak was used as post hoc test. P<0.05 was defined 

as statistical significance. 

Results 

Kir5.1 interacts with Nedd4-2.             We first examined the interaction between Kir5.1 and Nedd4-2 with 

CO-IP in HEK293 cells transfected with HA-GFP-tagged Kir5.1 and Flag-tagged Nedd4-1 or Nedd4-2. We 

used Flag antibody (precipitating either Nedd4-2 or Nedd4-1) for IP and HA antibody (detecting Kir5.1) 

for blotting. Fig.1A shows that Nedd4-2/Kir5.1 interaction (top panel)  was stronger than Nedd4-1/Kir5.1 
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interaction , suggesting that Kir5.1 is mainly associated with Nedd4-2. Fig.1A also shows equal expression 

of Flag-tagged Nedd4-2 or Nedd4-1(middle panel) and HA-GFP tagged Kir5.1 (lower panel). We next 

conducted CO-IP with myc antibody in the cells transfected with myc-his-tagged Kir5.1 and Flag-Nedd4-

2 or –Nedd4-1. Fig.1B is a western blot showing that myc-Kir5.1 was predominantly associated with 

Nedd4-2. After demonstrating that Kir5.1 was able to bind to Nedd4-2, we next examined the binding site 

of Kir5.1 with Nedd4-2. Although Kir5.1 has no typical PY motif, it has a phosphothreonine motif in the 

c-terminus (TPVT from amino acid sequence 249-252) which has been shown to be a binding site for Nedd4 

in M-phase inducer phosphatase 3 (15).  To test the possibility, we conducted CO-IP with flag antibody in 

the cells transfected with Kir5.1T249A in which threonine was mutated to alanine. As shown in Fig. 1C (top 

panel), the mutation (Kir5.1T249A ) decreased the binding of Kir5.1 with Nedd4-2. From 4 separate 

experiments it is calculated that T249A mutation significantly decreased the association between 

Kir5.1/Nedd4-2 from WT control 1.10±0.15 (normalized band density) to 0.50±0.24 (Fig.1E). In contrast, 

mutating Thr249 into Aspartate (D) slightly enhanced association (band density=1.36±0.10) although this 

was not significantly different from (Kir5.1) control (1.10±0.15) (Fig.1E). In contrast, the mutation of Thr252 

to either Ala (1.07±0.11) or Asp (1.18±0.09) did not significantly affect the interaction between Kir5.1 and 

Nedd4-2 (Fig.1D). Thus, the results suggest that TPVT motif of Kir5.1 is a binding site for Nedd4-2. 

To further test for the interaction between Nedd4-2 and Kir5.1 in vitro, we conducted GST pull-down 

experiments using purified GST fusion proteins from prokaryotic cells.  From the inspection of Fig.2A, it 

is apparent that full-length GST-tagged Kir5.1 protein binds to Flag-tagged Nedd4-2 while GST protein 

failed to pull down Nedd4-2. Moreover, GST-pull-down experiments using Nedd4-2 WW domain peptide 

showed that the second WW domain of Nedd4-2 (2nd WW) is critical for binding to Kir5.1 (Fig.2B) 

comparing with the other three WW domains of Nedd4-2. Fig. 2B is a bar graph showing the normalized 

bands density ratio calculated from three separate pull-down experiments demonstrating that the second 

WW domain serves as the main binding site for Kir5.1. The calculated ratio was  1.00±0.07 (1st WW) , 

11.64±0.93 (2nd WW),  0.73±0.02 (3rd WW) and 1.30±0.02 (4th WW), respectively (mean±SD p<0.01 for 
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2nd WW : 1st WW, 3nd WW or 4th WW). Thus, our experiments strongly suggest that Nedd4-2 is a binding 

partner for Kir5.1 or Kir4.1/Kir5.1 and that the second WW domain of Nedd4-2 is a major binding site for 

Kir5.1. 

Ubiquitination of Kir4.1 by Nedd4-2 requires Kir5.1.                Having demonstrated the interaction between 

Nedd4-2 and Kir5.1, we further examined whether Nedd4-2 is able to ubiquitinate Kir5.1 or Kir4.1/5.1. 

Thus, we conducted ubiquitination assay using HEK293 transfected with Flag-Kir4.1/myc-Kir5.1/HA-

Nedd4-2 or Flag-Kir5.1/myc-Kir4.1/HA-Nedd4-2. We used Flag antibody for immunoprecipitating Kir4.1 

or Kir5.1 and Ub4D1 antibody for detecting ubiquitinated K channels. Fig.3A is a typical Western blot 

from five similar experiments showing that Nedd4-2 was not able to ubiquitinate Kir4.1 or Kir5.1 but it 

stimulated the ubiquitination of Kir4.1/Kir5.1 heterotetramer. Considering that Kir5.1 binds to Nedd4-2, 

we suspected that Nedd4-2 ubiquitinates Kir4.1 only in the presence of Kir5.1. This notion was also 

suggested by ubiquitination assay of Kir4.1 using denatured IP (same procedure described in Fig. 3A except 

for the pretreatment with 2% SDS before adding Flag antibody for IP). Fig. 3B is a representative western 

blot from three separate IP showing that Nedd4-2 enhanced Kir4.1 ubiquitination in the presence of Kir5.1. 

Slightly increased ubiquitination with Kir4.1/Kir5.1, Kir5.1/Nedd4-2 and 4.1/Nedd4-2 may be due to some 

endogenous proteins involving in ubiquitination. Since Kir4.1 is responsible for forming the K-conductive 

pathway of Kir4.1/5.1 (18), Nedd4-2-induced ubiquitination of Kir4.1/5.1 is expected to inhibit K channel 

activity. Thus, we next examined the effect of Nedd4-2 on Kir4.1 using the whole-cell recording in HEK293 

cells transfected with GFP/HA-tagged Kir4.1 and Kir5.1 in the presence or absence of Nedd4-2. Twenty-

four hours after transfection, GFP-positive cells were selected for the patch-clamp experiments. The cells 

were bathed with symmetrical 145 mM K solution (140 mM KCl and 5 M KOH) and the Ba2+ –sensitive K 

currents were measured with step protocol from -60 mV to 60 mV at 20 mV step. Fig.4A and 4B are two 

recordings showing Ba2+-sensitive K currents in the cells transfected with Kir4.1+Kir5.1 and Nedd4-

2+Kir4.1/5.1 respectively. Results from six experiments are summarized in Fig.4C showing that Nedd4-2 

inhibits Kir4.1/5.1 channels and significantly decreased Ba2+-sensitive K currents from 9300±290 pA to 
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5600±110 pA. The effect of Nedd4-2 on Kir4.1 was specific because co-expression of Kir5.1 and Nedd4-

1 did not reduce Kir4.1 activity (9030±160 pA). In addition, dominant-negative Nedd4-2 (Nedd4-2DN, 

Nedd4-2C821A), an enzyme-inactivated form of Nedd4-2, failed to inhibit Kir4.1/5.1 (9250±290 pA) (Fig. 

4C).  

Having demonstrated that Nedd4-2 but not Nedd4-1decreases Kir4.1/5.1 K currents, we next used western 

blot to examine whether the inhibitory effect of Nedd4-2 on Kir4.1/5.1 was due to decreasing the expression 

of Kir4.1. Fig.5A is a western blot showing the expression of Kir4.1 in the cells transfected with 

Kir4.1+Nedd4-2, Kir4.1/5.1+Nedd4-2, Kir4.1+Nedd4-1 and Kir4.1/5.1+Nedd4-1. Fig. 5B is a bar graph 

showing the normalized band density of Kir4.1 expression which was reduced by the coexpression of Kir5.1 

and Nedd4-2. While the expression of Kir4.1 in the cells transfected with Kir4.1 alone was similar to those 

with Kir4.1+Nedd4-2 (data not shown), Nedd4-2 decreased Kir4.1 expression by 55±10% (n=4) in 

comparison to the control (Kir4.1+Nedd4-2). In contrast, Nedd4-1 had no effect on the expression of Kir4.1. 

Thus, the results from western blots are consistent with electrophysiological results supporting the notion 

that the inhibitory effect of Nedd4-2 on Kir4.1 requires Kir5.1. Since TPVT motif on Kir5.1 is critical for 

interacting with Nedd4-2, we next studied the role of TPVT motif of Kir5.1 in Nedd4-2-mediated 

Kir4.1inhibition using patch-clamp technique in HEK293 cells transfected with Kir4.1/Nedd4-2/Kir5.1 or 

Kir5.1 mutants. Results of 6 experiments are summarized in Fig. 5C showing that the expression of 

Kir5.1T249A largely abolished the inhibitory effect of Nedd4-2 on Kir4.1 (Kir4.1/5.1, 9330±250 pA; 

Kir4.1/5.1+Nedd4-2, 5500±170 pA; Kir4.1/5.1T249A + Nedd4-2, 8600±270 pA). However, the expression 

of Kir5.1T249D restored Nedd4-2-induced inhibition of Kir4.1 (5200±280 pA) while Ba2+-sensitive K 

currents in cells transfected with Kir4.1/5.1T249A  (9100±200 pA) or Kir4.1/5.1T249D (9000±270 pA) were 

similar to Kir4.1/5.1 (Fig.5D). This indicates that TPVT motif of Kir5.1 is important for Nedd4-2-induced 

Kir4.1 inhibition. 

Deletion of Kir5.1 increases Kir4.1 currents and expression in DCT.                    After demonstrating that 

Kir5.1 plays a key role in mediating the inhibitory effect of Nedd4-2 on the Kir4.1 channel activity in 
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HEK293 cells, we next examined the role of Kir5.1 in the regulation of Kir4.1 in vivo. It is well established 

that Kir5.1 interacts with Kir4.1 to form a 40 pS inwardly rectifying K channel in the basolateral membrane 

of the DCT (18). Since the 40 pS K channel is the only type of K channel in the early part of the DCT 

(DCT1), the whole-cell K currents in DCT1 are equal to Kir4.1 which is responsible for forming K 

conductive pathway of Kir4.1/5.1 heterotetramer. Fig.6A is a trace of Ba2+-sensitive K currents measured 

with RAMP protocol from -100 to 100 mV in DCT1 of WT and Kir5.1-/- mice (Kir5.1KO). It is apparent 

that whole-cell K currents in the DCT1 of Kir5.1-/- mice are larger than those of WT mice. The results from 

seven experiments are summarized in Fig. 6B showing that Ba2+–sensitive K+ currents measured at -60 mV 

were 1300±100 pA (WT) and 2200±280 pA ( Kir5.1-/-), respectively. Since the DCT K currents were 

measured at DCT1 where no ROMK activity was detected, therefore, the whole-cell K currents represent 

Kir4.1 activity(28; 34). Thus, the deletion of Kir5.1 significantly augments the basolateral Kir4.1 activity. 

This notion was also supported by immunoblotting to examine Kir4.1 expression in the kidney from Kir5.1-

/- mice and the WT littermates. Fig. 6C is a western blot showing that the expression of Kir4.1 increased by 

100±11% in Kir5.1-/- mice comparing with WT littermates (normalized with β-actin) (Fig. 6D). We also 

conducted immunofluorescent staining to examine the expression of Kir4.1 in the kidney from both WT 

and Kir5.1-/- mice. From inspection of Fig.6E, it is apparent that the fluorescence intensity of Kir4.1 staining 

is more intensified in Kir5.1-/- mice than WT littermates. Thus, electrophysiology, western blotting and 

immunostaining show that the deletion of Kir5.1 stimulates Kir4.1currents and expression in the DCT. 

Deletion of Nedd4-2 increases Kir4.1currents and activity in DCT.          If the deletion of Kir5.1-induced 

increase in Kir4.1 activity in the DCT depends on Nedd4-2 activity, we speculate that deletion of Nedd4-2 

should mimic the effect of Kir5.1 deletion and increase Kir4.1 activity in the DCT. Thus, we used patch-

clamp technique (Fig.7A), western blot (Fig.7B) and immunostaining (Fig.7C) to examine Kir4.1 in WT 

and kidney-specific Nedd4-2 knockout mice (Ks-Nedd4-2KO). Ks-Nedd4-2 KO mice were generated by 

doxycycline-treatment for two weeks and western blot shows that Nedd4-2 expression was completely 

eliminated in doxycycline-treated mice while it was present in untreated (control) mice. Fig. 7A summarizes 
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the result of 6 experiments in which the Ba2+-sensitive K currents were measured in the DCT of WT and 

Ks-Nedd4-2 KO mice with the whole cell-recording. We observed that the whole-cell K currents measured 

at -60 mV was 1270±150 pA (WT mice) and 1980±250 pA (Ks-Nedd4-2 KO mice), respectively. Having 

shown that deletion of Nedd4-2 increased Kir4.1 currents in the DCT, we then examined the expression of 

Kir4.1 and Kir5.1 by western blot in WT and Ks-Nedd4-2 KO mice (Fig. 7B). It is apparent that the 

depletion of Nedd4-2 significantly increases the expression of Kir4.1 by 90±10% (n=4) but it did not 

significantly change the expression of Kir5.1 in comparing with WT control. In addition, we carried out 

immunostaining to examine Kir4.1 expression in Ks-Nedd4-2 KO mice and WT littermates (Fig.7C). It 

shows that the staining of Kir4.1 is increased in Ks-Nedd4-2 KO mice comparing with WT littermates. 

Thus, deletion of Nedd4-2 stimulates Kir4.1 expression and augments the basolateral K conductance of the 

DCT. 

Discussion 

The main finding of the present study is that Nedd4-2 ubiquitinates Kir4.1/5.1 heterotetramer and decreases 

Kir4.1 currents in the presence of Kir5.1. A similar study has been reported. Ekberg et all have reported 

that C-terminal region of the KCNQ3 subunit is required for the Nedd4-2-mediated ubiquitination of 

voltage-gated K(+) channels KCNQ2/3 and KCNQ3/5 (7). Two lines of evidence suggest that Kir5.1 is a 

binding partner of Nedd4-2: 1) CO-IP experiments showed that Nedd4-2 was immunoprecipitated with 

Kir5.1; 2) GST pull-down experiments demonstrated that Nedd4-2 was associated with Kir5.1. Since Kir5.1 

is known to interact with Kir4.1 (18), it is possible that Kir5.1 plays a role in regulating the ubiquitination 

of Kir4.1/Kir5.1 by Nedd4-2. Nedd4-2 encoded by Nedd4l gene is a member of Nedd4 E3 ubiquitin ligase 

(21). Nedd4-2 has four WW domains which interact with PY motif or phosphor-serine or threonine-based 

motif of the substrate proteins and facilitates their ubiquitination and degradation (11; 15; 27). A large body 

of evidence has demonstrated that Nedd4-2 regulates the ubiquitination of ENaC through the interaction of 

PY motif in the β- and γENaC subunits with WW domains of Nedd4-2 (6; 11; 24; 26). Although Kir5.1 

lacks a typical PY motif, it contains a TPVT motif at its c-terminus (AA 249 to 252). This motif is a 



13 
 

phosphothreonine-based binding motif of Nedd4 which has been shown to interact with M-phase inducer 

phosphatase 3 encoded by Cdc25c (15) and it is also highly preserved in Kir5.1 from humans, rats to mice. 

The observation that the expression of Kir5.1T249A largely attenuated while the expression of Kir5.1T249D 

enhanced the association between Kir5.1 and Nedd4-2 strongly suggests the critical role of TPVT sequence 

in the interaction between Nedd4-2 and Kir5.1. Moreover, the results from GST-pull-down further confirm 

that the second WW domain of Nedd4-2 is a major binding site for Kir5.1-Nedd4-2 association. Also, the 

observation that Nedd4-1 failed to mimic the effect of Nedd4-2 on Kir4.1 suggests that Nedd4-2 is the E3 

ubiquitin ligase regulating Kir4.1/Kir5.1. 

Although Nedd4-2 binds to Kir5.1, it is unlikely that Nedd4-2 facilitates the ubiquitination of Kir5.1 protein 

since coexpression of Nedd4-2 and Kir5.1 failed to change Kir5.1 ubiquitination. This notion is also 

supported by the finding that the deletion of Nedd4-2 had no effect on Kir5.1 expression in the kidney. 

Several lines of evidence suggest that the interaction of Nedd4-2 with Kir5.1 plays a key role in regulating 

Kir4.1 activity by ubiquitination. First, Nedd4-2 stimulates the ubiquitination of Kir4.1/Kir5.1 while it had 

no effect on Kir4.1 ubiquitination in the absence of Kir5.1.  Second, Nedd4-2 decreases Kir4.1 expression 

and Kir4.1 currents only in the presence of Kir5.1. Third, deletion of either Kir5.1 or Nedd4-2 stimulates 

the basolateral K conductance and increases Kir4.1 expression in the native DCT. Our observation that the 

deletion of Kir5.1 increased the basolateral K conductance in the DCT is consistent with the report that 

Kir5.1−/− mice displayed an increased basolateral K channel activity in the DCT(17). Although it is possible 

that reduced pH-sensitive may also contribute to the stimulation of Kir4.1 activity in Kir5.1-/- mice, the 

observation that Kir5.1T249A abolished the inhibition effect of Nedd4-2 on Kir4.1 implies that Kir5.1/Nedd4-

2 interaction plays a role in regulating Kir4.1. This notion was also strongly supported by the observation 

that basolateral K conductance and Kir4.1 expression were increased in the DCT of Ks-Nedd4-2 KO mice. 

Fig. 8 is a scheme illustrating the mechanism by which Nedd4-2 interaction with Kir5.1 regulates Kir4.1. 

Nedd4-2 binds to TPVT motif of Kir5.1 thereby facilitating the ubiquitination of Kir4.1. The model of 

recognition in trans via an ancillary protein in ubiquitination system has been previously studied (7; 9). The 
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ubiquitinated Kir4.1 is expected to be endocytosed and degraded thereby decreasing the basolateral K 

channels in the DCT. The finding that deletion of Nedd4-2 did not alter the Kir5.1 expression suggests the 

possibility that Kir5.1 could be recycled and reused in forming Kir4.1/Kir5.1 heterotetramer. Thus, the 

inhibitory effect of Nedd4-2 on Kir4.1 mainly depends on the interaction between Nedd4-2 and Kir5.1. 

Kir4.1 is expressed in the basolateral membrane of the late thick ascending limb (TAL), the DCT, 

connecting tubule (CNT) and cortical collecting duct (CCD)(4; 29; 33). Although Kir4.1 can form a low 

conductance (12-20 pS) homotetramer K channel in the absence of Kir5.1 (17; 18), it is well-documented 

that under physiological conditions, Kir4.1 interacts with Kir5.1 to form a 40 pS inwardly-rectifying K 

channel expressed in the basolateral membrane of TAL, DCT, CNT and CCD(3; 4; 12; 14). However, 

unlike in the TAL and in the CCD, this 40 pS K channel is the only type of K channel in the basolateral 

membrane of the DCT and plays a key role in generating negative membrane potential and K recycling(4; 

34). Our previous experiments have demonstrated that Kir4.1 plays a dominant role in determining the 

basolateral K conductance in the DCT because disruption of Kir4.1 almost completely eliminates 

basolateral K conductance(4).  

The physiological significance of our finding is to illustrate the role of Kir5.1 and Nedd4-2 interaction in 

regulating the basolateral Kir4.1 conductance of the DCT. DCT is responsible for reabsorption of 5% of 

the filtered sodium load and plays a key role in regulating renal K excretion in the aldosterone-sensitive 

distal nephron (ASDN) (8; 16). Recently, a large body of evidence suggests that thiazide-sensitive Na-Cl 

cotransporter (NCC) plays a key role in regulating renal K excretion (20; 23; 25; 31). For instance, 

hyperkalemia-induced decrease in NCC activity should increase sodium and volume delivery to the latter 

part of ASDN thereby stimulating K excretion. Conversely, hypokalemia-induced stimulation of NCC 

activity should decrease sodium and volume delivery to the ASDN thereby inhibiting K excretion in ASDN. 

Thus, the regulation of NCC is important for proper regulation of renal K excretion and K homeostasis. A 

high NCC activity has been shown to be related to Familial Hyperkalemic Hypertension while a low NCC 

activity has been demonstrated to be responsible for hypokalemia in Gitelman’s syndrome (10; 23; 30). Our 
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previous study has demonstrated that Kir4.1 plays a key role in mediating the effect of dietary K intake on 

NCC activity (32). We have demonstrated that hyperkalemia-induced inhibition of the basolateral Kir4.1 is 

essential for the down-regulation of NCC while hypokalemia-induced stimulation of the basolateral Kir4.1 

plays a critical role in stimulating NCC(32). It is most likely Cl-sensitive With-No-Lysine kinase (WNK) 

links the basolateral Kir4.1 activity to apical NCC activity (2; 19). Because Kir4.1 plays a role in regulating 

NCC, it is conceivable that Kir5.1 and Nedd4-2 interaction may play an important role in mediating the 

effect of dietary K intake on the basolateral K conductance in the DCT. This notion is supported by the 

report that NCC activity is upregulated in Kir5.1 KO mice and Ks-Nedd4-2 KO mice (17; 22). Our study 

also raises the possibility whether dietary K intake may also regulate the expression of Nedd4-2 thereby 

affecting NCC. However, further experiments are needed to explore this possibility. Thus, the modulation 

of Kir4.1 mediated by Nedd4-2/Kir5.1 interaction should expand our understanding the mechanism by 

which Kir4.1 regulates NCC function and K excretion. We conclude that Nedd4-2 ubiquitinates Kir4.1 

through binding to Kir5.1 at TPVT motif and that the interaction between Kir5.1 and Nedd4-2 regulates 

basolateral Kir4.1 channel activity in DCT.  
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Figure legends 

Fig. 1 Nedd4-2 interacts with Kir5.1. (A) Co-immunoprecipitation experiments (Co-IP) show the 

interaction of Kir5.1 with Nedd4-2 or Nedd4-1 in HEK293 cells transfected with HA-GFP-Kir5.1 and Flag-

tagged Nedd4-2 or Nedd4-1 (top panel). Middle panel shows the equal amount of Flag-Nedd4-2 and –

Nedd4-1 used for Co-IP. Lower panel shows the input of HA-GFP-Kir5.1. (B) Co-IP shows the interaction 

of Nedd4-2 or Nedd4-1 with Kir5.1 in HEK293 cells transfected with myc-Kir5.1 and Flag-tagged-Nedd4-

2. Lower panel shows the equal amount of myc-Kir5.1 used for Co-IP. An unspecific band is indicated by 

a star. Cells transfected with myc-Kir5.1 are used as negative control (Labelled as Kir5.1). (C) Co-IP shows 

that interaction of Nedd4-2 and Kir5.1/mutants in HEK293 cells transfected with Flag-tagged-Nedd4-2 and 

HA-GFP-Kir5.1 or mutants (Kir5.1T249A or Kir5.1T249D) (Top panel). Middle panel shows the equal amount 

of Flag-Nedd4-2 and –Nedd4-1 used for Co-IP. Lower panel shows the input of HA-GFP-Kir5.1. Cells 

transfected with empty vector are used as IgG control (labelled as IgG). Cells transfected with Flag-Nedd4-

2 are used as negative control (Labelled as Nedd4-2). (D) Co-IP shows that interaction of Nedd4-2 and 

Kir5.1/mutants in HEK293 cells transfected with Flag-tagged-Nedd4-2 and HA-GFP-Kir5.1 or mutants 

(Kir5.1T252A or Kir5.1T252D) (Top panel). Middle panel shows the  amount of Flag-Nedd4-2 used for Co-IP. 

Lower panel shows the input of HA-GFP-Kir5.1. (E) A bar graph illustrates the normalized band density 

for the results of CO-IP. 

Fig. 2 The second WW domain of Nedd4-2 interacts with Kir5.1. (A) Glutathione agarose gel shows 

that flag-tagged Nedd4-2 is pulled down by GST-Kir5.1 (Top panel).  GST-Kir5.1 and GST are indicated 

in middle panel and lower panel shows the input of Flag-tagged-Nedd4-2. Flag-Nedd4-2 (200µg) obtained 

from TNT T7 Quick Coupled Translation System was added for the experiments. GST protein was mixed 

with 50 µl of washed Glutathione beads. (B) GST-pull-down experiments using Nedd4-2-WW domain 

peptide show that His-Kir5.1-C-terminus containing TPVT motif (AA 249 to 252) prefers to interact with 

Nedd4-2 2nd WW domain peptide.  Each of four WW domains of Nedd4-2 (Table 2) was cloned into 

pGEX4T-1 vector by PCR. A bar graph summarizing the above results is shown in the bottom panel.  
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Fig. 3 Kir 5.1 is required for Nedd4-2-mediated ubiquitination of Kir4.1. (A) Ubiquitination assay 

shows ubiquitinated K channel in HEK293 cells transfected with flag-tagged Kir4.1 or Kir5.1, 

Kir4.1+Nedd4-2, Kir4.1+Kir5.1, Kir5.1+Nedd4-2 and Kir4.1/5.1+ Nedd4-2, respectively. Flag antibody 

was used to immunoprecipitate Flag-tagged Kir4.1 or 5.1 and ubiquitin (Ub) antibody was used to detect 

ubiquitinated K channels (indicated by a bracket). (B) Ubiquitination assay with SDS pretreatment shows 

ubiquitinated K channels in HEK293 cells transfected with Flag-tagged Kir4.1, Kir4.1+Nedd4-2 and 

Kir4.1/5.1+Nedd4-2. Lower panel shows the expression of Kir4.1 used for IP. 

Fig.4 Nedd4-2 but not Nedd4-1 inhibits Kir4.1/Kir5.1 channels. Whole-cell recording shows Ba2+-

sensitive K currents measured from -60 mV to 60 mV at -20 mV step in HEK293 cells transfected with 

Kir4.1+Kir5.1 (A) or with Kir4.1/5.1 +Nedd4-2 (B). The symmetrical 145 mM K solution was used for 

both bath and pipette.  (C) A bar graph summarizes the results of experiments (n=6) in which Ba2+-sensitive 

K currents were measured with whole-cell recording in HEK293 cells transfected with Kir4.1, 

Kir4.1+Nedd4-2, Kir4.1/5.1, Kir4.1/5.1+Nedd4-2, Kir4.1/5.1+Nedd4-1 and Kir4.1/5.1+dead Nedd4-2. The 

patch-clamp experiments were performed 24 hr after the transfection and the positive transfected cells were 

identified by GFP fluorescence.  

Fig.5 Mutation of TPVT motif of Kir5.1 abolishes Nedd4-2-mediated inhibition of Kir4.1/5.1. (A) A 

western blot shows the expression of Kir4.1 in HEK293 cells transfected with Ki4.1+Nedd4-2, 

Kir4.1/5.1+Nedd4-2, Kir4.1+Nedd4-1 and Kir4.1/5.1+Nedd4-1. The expression of Nedd4 was shown in 

the middle panel. (B) The normalized band density of Kir4.1 expression is shown in a bar graph. (C) A bar 

graph summarizes the results of experiments in which Ba2+-sensitive K currents were measured (at -60 mV) 

with whole-cell recording in HEK293 cells transfected with Kir4.1/5.1, Kir4.1/5.1+Nedd4-2, 

Kir4.1/5.1T249A+Nedd4-2 and Kir4.1/5.1T249D +Nedd4-2, respectively (n=6). (D) Ba2+-sensitive K currents 

measured at -60 mV with whole-cell recording in HEK293 cells transfected with Kir4.1/5.1, Kir4.1/5.1T249A 

and Kir4.1/5.1T249D (n=6).  The patch-clamp experiments were performed 24 hr after the transfection and 

symmetrical 145 mM K was used for the pipette and the bath solution.  
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Fig. 6 Deletion of Kir5.1 stimulates the basolateral Kir4.1 in the DCT. (A) A whole-cell recording 

showing Ba2+-sensitive K currents in the DCT of the WT or Kir5.1 KO mice. The K currents were measured 

with a ramp protocol from -100 to 100 mV using symmetrical 145 mM K solution in the bath and pipette. 

(B) A bar graph summarizes the results of experiments in which Ba2+-sensitive K currents of the DCT were 

measured at -60 mV from the WT and Kir5.1 KO mice (n=6). Western blot shows the expression of Kir4.1 

in WT and Kir5.1 KO mice (C) and a bar graph summarizes normalized band density of Kir4.1 (D). (E) 

Immunostaining of Kir4.1 in kidney from WT and Kir5.1 KO mice. The treatment for the kidney slides was 

identical. 

Fig. 7 Deletion of Nedd4-2 increases Kir4.1 expression. (A) A bar graph summarizes the results of 

experiments in which Ba2+-sensitive K currents of the DCT were measured at -60 mV from the WT and 

Ks-Nedd4-2 KO mice (n=6). (B) Western blots showed the expression of Kir4.1 and Kir5.1 in WT and Ks-

Nedd4-2 KO mice. A bar graph summarizes normalized band density of Kir4.1 and Ki5.1 (right panel). (C) 

Immunostaining of Kir4.1 in kidney from Ks-Nedd4-2 KO mice and WT control (without doxycycline 

treated). 

Fig. 8 A scheme illustrating the role of Kir5.1 as a binding partner in mediating Nedd4-2 E3 ligase 

dependent degradation of Kir4.1 in the DCT. A part of Kir5.1 sequence (from AA241 to 260) including 

TPVT motif is shown on the top.  
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Table 1 Primers used for genotyping. 

Kir4.1 Flox Forward TGATGTATCTCGATTGCTGC 
 

Reverse CCCTACTCAATGCTCTTAAC 

Nedd4-2 Flox Nedd4-2 Forward TGAGCTCATTGCTTCACTTCC 
 

Nedd4-2 Reverse TTCATGCTCGAAGCCTTAGC 
 

Flox Reverse TTTGTGAGGACAGCCTCTAGC 

Pax8 Forward CCATGTCTAGACTGGACAAGA 
 

Reverse CTCCAGGCCACATATGATTAG 

Cre Forward TCGCTGCATTACCGGTCGATGC 
 

Reverse CCATGAGTGAACGAACCTGGTCG 
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Table 2 Primers used for cloning WW domains of nedd4-2 (Uniprot_Q96PU5) and C-terminal 
peptide of Kir5.1 (Q9NPI9_ AA168-418). 

 

1WW  Forward 5'-ACGCGGATCCACCATGGGGTGGGAAGAAAAAGTGGAC 
( 81bp)  Reverse 5'-AGGGCTCGAGTTATGGTCTGTGCCACTGAGTG 
2WW  Forward 5'-ACGCGGATCCACCATGCTGCCTTCAGGCTGGGAAG 
( 90bp)   Reverse 5'-AGGGCTCGAGTTAAGGTCGAGTCCAAGTTGTG 
3WW  Forward 5'-ACGCGGATCCACCATGCCACCCGGCTGGGAAATG 
( 93bp)  Reverse 5'-AGGGCTCGAGTTACAAACGTGGATCTTCCCAG 
4WW  Forward 5'-ACGCGGATCCACCATGCCCCTTCCTCCTGGCTGG 
( 99bp)  Reverse 5'-AGGGCTCGAGTTACAGTCTTGGGTCTTCCCAC 
Kir5.1-C-ter Forward 5'-AAAACATATGACCATG GCCTTGGCCAAAATGGCAACTGCTC 
(756bp) Reverse 5'- AAAGGATCCCATTTGGGATTCTACAGAG 
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