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Abstract

In this work, a detailed kinetic analysis of the oxygen reduction reaction (ORR) on 

platinum is performed by applying steady and non-steady state methodologies at stationary 

and rotating disk electrodes, and comparing experimental results to calculated curves via 

digital simulations. Results reveal the existence of a complex chemical-electrochemical-

chemical-electrochemical initial reaction sequence, a CECE-mechanism, and the possible 

contribution of a parallel disproportionation process in acid media during the reaction. Under 

convection-controlled circumstances, the first charge transfer step would be the rate-

determining step (RDS) on bulk electrodes, in agreement with early reports, but at different 

working conditions other initial steps can become the RDS. Additionally, contrary to the 

current accepted view, results support the formation of a soluble intermediate in the initial, 

and fast, chemical reaction, with a short lifetime, compatible with the formation of either the 

hydroperoxyl radical, HO2
*, or superoxide anion, O2

-, followed by a fast protonation. In light 

of present results, possible mechanisms, including the oxidation of H2O2 that could be 

produced either by disproportionation or reduction of HO2
*, and/or O2

-, radicals are 

discussed. This interrelated reaction scheme would be the principal cause of large ORR 

overpotentials but, at the same time, it would open the opportunity for designing alternative 

catalysts beyond fundamental limits imposed by the apparent scaling relations between 

reaction intermediates, such as OHads, Oads, and HO2,ads adsorbates.

Keywords: cyclic voltammetry, reaction mechanism, scan rate study, oxygen reduction, 

digital simulations, mass-transport effects, rotating disk electrodes.
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1. Introduction

The oxygen reduction reaction (ORR) is a cornerstone process in electrochemistry and 

sustainable energy technologies. It is a complex reaction that includes several steps and 

different possible intermediates species. Then, after decades of research, the reaction still 

occurs with large energy losses and molecular details of the mechanism are rather unknown, 

even on platinum, the best pure metal electrocatalyst [1-8]. In this case, it is known that 

oxygen mainly reduces to water both in acid and alkaline solutions, apparently along two 

parallel pathways [1,9,10,11-16]. A direct route, without detection of intermediates species, 

Eqn. (1), and a consecutive, serial path, with hydrogen peroxide as intermediate, Eqn. (2), 

that undergoes a further reduction [14-16], Eqn. (3).

(1)𝑂2 +4𝐻 + +4𝑒 ―  ⇄2𝐻2𝑂

(2, -2)𝑂2 +2𝐻 + +2𝑒 ―  ⇄𝐻2𝑂2

(3)𝐻2𝑂2 +2𝐻 + +2𝑒 ―  ⇄2𝐻2𝑂

A recent study under transient conditions and different timescales in acid media has 

evidenced a more complex scheme, in which both inner- and outer-sphere reactions occur, 

together to the parallel formation of certain amount of H2O2, regardless the main mechanism. 

H2O2 would appear well because of disproportionation, Eqns. (4) and/or (5), or reduction, 

Eqn. (6), of soluble hydroperoxyl radicals, HO2
, intermediates formed in an initial chemical 

step during the ORR on Pt surfaces [17]. Production of adsorbed HO2
, HO2,ads, or 

superoxide, O2,ads
-, radicals during the ORR has been already reported to occur at Pt(111) 

[18-22], and polycrystalline Pt, Pt(poly), electrodes [23-25].

(4)2𝐻𝑂 ∗
2 ⇄𝐻2𝑂2 + 𝑂2

(5)𝑂 ―
2 + 𝐻𝑂 ∗

2 ⇄𝐻𝑂 ―
2 + 𝑂2

(6)𝐻𝑂 ∗
2 + 𝐻 + + 𝑒 ― ⇄𝐻2𝑂2

Additionally, an analysis of the change in ORR peak currents, jp
ORR, in linear sweep 

voltammograms (LSVs) as a function of the scan rate, v, at stationary and rotating disk 

electrodes, RDEs, evidenced a levelling of reduction currents with increasing v beyond a 

threshold value that depends on the rotation rate, ω [17]. Hence, jp
ORR’s are not proportional 

to √v, contrarily to what it is expected from Randles–Ševčík equations for fast, Eqn. (7a), or 

slow, Eqn. (7b), charge transfers [26], or overall n-electron processes with a first electron 

transfer as rate-determining step (RDS) [26-34], as usually reported for the ORR [1,9,10,14-

16,35,36].
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3

(7a)𝑗𝑝 = 0.446𝑛𝐹𝐴𝐶0
𝑂(

𝑛𝑎𝐹𝐷𝑣
𝑅𝑇 )

(7b)𝑗𝑝 = 0.496𝑛𝐹𝐴𝐶0
𝑂(

𝛼𝑛𝑎𝐹𝐷𝑣
𝑅𝑇 )

with n, the total number of transferred electrons; na, the number of transferred electrons 

in the RDS (usually one); F, the Faraday’s constant; A, the electrode geometric area; C0
O and 

D the solubility and the diffusivity coefficient of the reactant in the electrolyte, respectively; 

α, the transfer coefficient; R, the ideal gas constant and T the temperature.

Currents in LSVs independent of v at scan rates faster than a certain threshold value are 

called “kinetic currents” and indicate that the electrochemical reaction is controlled by a 

chemical process instead of a charge transfer [28,31]. The dynamics appears at scan rates 

with an equivalent characteristic time, τv, (i.e. the time during which a stable electroactive 

species can communicate with the electrode [26]) shorter than the magnitude of the time scale 

of the chemical reaction [28,31,33,34]. Hence, reported levelling of reduction currents at fast 

scan rates during the ORR at Pt surfaces would indicated the existence of a chemical step 

between two charge transfers. 

The presence of a chemical reaction between two charge transfers during the ORR has 

also been suggested by studies at nanostructured Pt electrodes that indicate a significant effect 

of mass transfer conditions upon the final product distribution [37-42]. Apparently, the mass-

transport enhancement at nanoparticles [26,39,42] induces a decrease in the effective number 

of transferred electrons, neff, from 4 to 2, and a parallel increase in the amount of  H2O2 

detected, as the size of Pt nanoparticles decreases [37-42]. However, under those conditions, 

the increase in the H2O2 production does not undoubtedly imply the existence of a chemical 

reaction. Stronger adsorption of oxygen containing species at NPs [43,44], or the presence 

of solution impurities in the electrolyte [14,15,45-48] could also account for the change in 

the measured product distribution.

In this work, following our previous study [17], the ORR on Pt(poly) is investigated at 

different time scales at stationary electrodes and RDEs, to gain information about the reaction 

mechanism. Within this goal, LSVs are qualitatively analyzed by plotting experimental 

jp
ORR’s in terms of the current function, Ψ, Eqn. (8) [26-34,49-54], at different v´s, and 

resulting curves are compared to classical diagnostic criteria for typical mechanisms 

involving kinetic complications already reported [26-34,49-54], and equivalent data from 

digital simulations.

(8)𝛹 =
𝑗

𝑛𝐹𝐴𝐶0
𝑂2

𝑛𝑎𝐹𝐷𝑣

𝑅𝑇
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Notice that at j = jp, Ψp from this equation is nothing else but the value of the 

proportionality constant in Eqns. (7), multiplied by  in the case of irreversible 𝛼

electrochemical reactions.

Results expose the existence of two chemical steps in the main ORR route on Pt surfaces 

in acid at high potentials, one before and one after the first charge transfer, shedding light 

over initial mechanistic details of the reaction. Though, contrary to what has been already 

suggested, results also support the production of a soluble species in the first chemical step, 

different to H2O2, but that later may convert to H2O2, either in a subsequent or a parallel 

reaction, or simultaneously through both reaction schemes. Thus, first steps in the ORR 

mechanism would follow a CECE/DISP scheme and comprise both inner- and outer-sphere 

reactions [17]. Inside these results, plausible mechanisms are proposed and the implications 

in current strategies for designing ORR electrocatalysts and improving the durability of 

cathode catalyst layers of fuel cells are discussed.

2. Experimental Section

Electrochemical measurements were conducted at room temperature (RT), ~22 °C, in a 

two–compartment, three electrodes, all–glass cell, using an Autolab (Nova) 

potentiostat/galvanostat equipped with an interchangeable rotating platinum disk electrode 

setup (Pine Instruments). Suprapure perchloric acid (Merck) was used to prepare aqueous 

solutions in ultrapure water (Purelab Ultra, Elga–Vivendi). O2 and Ar (N50, Air Liquid) were 

also employed. All potentials were measured against the Reversible Hydrogen Electrode 

(RHE) and a large, flame cleaned, Pt wire coil was used as a counter electrode. The stability 

of the voltammetric profiles with time was carefully checked to ensure solution cleanliness, 

especially during RDE experiments, due to the forced convection conditions.

A platinum disk (5 mm diam., 0.196 cm2), polished to a mirror finish before each 

experiment (0.3 μm alumina, Buehler), was employed. The electrode was left in concentrated 

sulfonitric solution at least 24 h before each experiment and later generously washed with 

ultrapure water. Inside the cell, the electrode was electrochemically treated by several 

consecutive anodic and cathodic pulses (60 s each) at 1.4 and -0.25 V, respectively, followed 

by voltammetric cycles between -0.25 and 1.15 V at 0.1 V s-1. This pretreatment was 

performed as many times as required until a stable and typical cyclic voltammogram (CV) 

was obtained between 0.05 and 1.15 V after the treatment, similar to the one given in Figure 

S1B. The electrode roughness factor, i.e. the ratio between the electrochemical active surface 
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area and the geometric area of the electrode, was between ~1.2 and 1.3, calculated from the 

CV in Ar-saturated 0.1 M HClO4 solutions and by considering one adsorbed monolayer being 

equal to ~0.200 mC cm-2 [55,56].

Besides, because transient experiments are very sensitive to initial conditions [17], a 

conditioning program before each experiment, similar to previous studies [17,57,58], was 

applied to the electrode in order to get quantifiable and reproducible data. The procedure is 

given in Figure S1A, and it comprised sweeping the electrode between 1.15 and -0.05 V at 

0.5 V s-1 five times, beginning from the open circuit potential (OCP) in a O2-saturated 0.1 M 

HClO4 solution, ~1.02 V, in the positive-going direction. This procedure assures that the 

electrode surface is in a similar state before every measurement.

In situ iR drop corrections were made to compensate the electrolyte resistance when 

necessary [26], and the quality of the iR compensation was assessed by following the position 

of the characteristic peaks corresponding to the hydrogen adsorption/desorption in the CVs. 

It is known that the position of these peaks is practically constant up to scan rates as high as 

10 V s-1 [59]. Initially, the value of the uncompensated resistance, Ru, was determined by 

using a current interruption procedure at each v in O2 free solutions. Then, the value was 

refined by employing the positive feedback procedure and taking CVs at increasing values 

of Ru until the current signal began to oscillate, in an iterative, trial-and-error approach. 

During measurements, the compensated resistance was usually set to about 85-95% of the 

estimated value of Ru (the value of Ru just before the systems began to oscillate, ~10 < Ru < 

25 Ω depending on v). Finally, the solution was saturated with O2 and CVs were taken by 

employing the same Ru value than in O2-free solutions at each v. Under these conditions, the 

maximum expected error in the value of the half-peak potential of the ORR, Ep/2
ORR, at 10 V 

s-1 is ~ 5 mV, and at 5 V s-1 ~ 3 mV. Lower values are expected at slower v, because this 

error decreases proportionally to the value of Ep/2
ORR.

Additionally, to provide a qualitative understanding of experimental results, LSVs at 

stationary electrodes and RDEs of discussed mechanisms in the text were calculated by 

digital simulation with the general-purpose, commercial software COMSOL Multiphysics 

5.1. For this purpose, both reversible and irreversible charge transfers were considered and 

proposed reaction schemes included chemical reactions inside the description. Details 

regarding the implementation can be found in the software’s reference manual and modules’ 

user guides. 
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6

For mathematical simplicity, model simulations at RDEs consider diffusion equations 

based on the Nernst model and the resulting system was solved numerically for describing 

LSVs [60-64]. Under this model, all transient processes are assumed to take place within a 

thin layer bonded to the electrode surface, the Nernst diffusion layer, with a thickness δdiff. 

Outside this layer, a fixed concentration for all species is assumed: C (x = δdiff) = 0 for all 

products, and C (x = δdiff) = C0
O for the reactant. The thickness of the steady-state diffusion 

layer at any rotation rate was calculated by employing the Levich approximation [26,65], and 

it is given by

(9)𝛿𝜔 = 1.612𝐷
1

3ʋ
1

6𝜔
―1

2

where  is the kinematic viscosity of the electrolyte, which for 0.1 M HClO4 it has a value ʋ

of = 0.01009 cm2 s-1 [45]). ʋ 

Simulations have been performed with successive mesh refinement until no appreciable 

changes in the LSVs were calculated. Additionally, because of the existence of thin reaction 

layers close to the electrode surface when including chemical reaction into the mechanism 

[66], two unequal intervals were employed to describe the geometry of the system, each one 

simulated with a different mesh size. The first interval, adjacent to the electrode surface had 

the smallest grid, and goes from x = 0 to x = 10 m, while the second one comprises the 

length from x = 10 m to x = δdiff, to guarantee the precise resolution of the phenomena close 

to the surface. Besides, for improving convergence, the Jacobian was updated on every 

iteration, the maximum number of iterations increased until 25 and a tolerance factor of at 

least 0.1 set (for a minimum relative tolerance of 0.001), when necessary. Details regarding 

the mathematical structure of the model, as well as employed boundary conditions are given 

as supporting information. In addition, data related to the implementation of the model in 

COMSOL Multiphysics 5.1 are also provided.

The induced error by considering the Nernst model instead of rigorously solving the 

convective-diffusive equations has been already calculated and reported to be not greater 

than 4%, when peak currents in LSVs of single reversible, irreversible, or quasi-reversible 

electron transfers are estimated at RDEs [67]. In addition, as reported previously [17], 

simulated curves at stationary and RDE electrodes for all analyzed mechanisms superimpose 

if all participating species have equal diffusion coefficients, supporting the idea regarding a 

low induced error by applying the Nernst model for describing transient curves at RDEs. 
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3. Results and Discussion

Once the cleaning procedure was performed, the electrode was characterized in Ar-

saturated 0.1 M HClO4, and then the solution was saturated with O2. Next, right after applying 

the conditioning procedure for each scan rate, cyclic voltammograms (CVs) at different scan 

rates at stationary electrodes and RDEs were taken. In these experiments, the upper limit 

potential, Eup, was set to 1.15 V, a value that guarantees a constant electrochemical surface 

active area (ECSA) [56,68], and a surface coverage only composed by OHads and/or Oads, 

instead of a true oxide phase [68], as it has been previously discussed [17].

3.1. Steady and non-steady state polarization curves for the ORR on Pt surfaces

Figure 1 shows linear voltammetry scans (LSVs), after background subtraction, under 

steady-state and transient conditions for the oxygen reduction reaction on Pt(poly) at two 

different rotation rates, ω = 1000 and 1600 rpm. Measured voltammetry data without 

background subtraction, are given in Figure S2. As commonly reported, ORR steady-state 

polarization curves at bulk electrodes are characterized by sigmoidal, S-shaped curves, 

typical for convection-driven electrochemical processes, reaching a limiting current, jlim, 

once the reaction is controlled by the mass-transfer, at E < ~0.75 V, curves a to c in Fig. 1. 

In absence of any kinetic complications, the value of jlim is proportional to square root of ω, 

and it can be theoretically calculated by employing the Levich equation, Eqn. (10), 

[26,28,30,61-65,67,69], 

Figure 1: Background-subtracted negative-going scans at 1000 (A) and 1600 rpm (B) for 

the oxygen reduction on Pt(poly) in O2-saturated 0.1 M HClO4 solutions after conditioning 
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the electrode and two subsequent cyclic voltammograms. Scan rates are a) 0.1; b) 0.5; c) 

0.8; d) 1.0; e) 1.5; f) 2.0; g) 3.0; h) 5.0; i) 7.0; j) 10 V s-1. Arrows indicate increasing scan 

rates.

(10a)𝑗𝑙𝑖𝑚 = 𝑛𝑒𝑓𝑓𝐹𝐴𝐶0
𝑂2

𝐷
𝛿𝜔

where δω can be described by Eqn. (9). Then,

(10b)𝑗𝑙𝑖𝑚 = 0.62𝑛𝑒𝑓𝑓𝐹𝐴𝐷
2

3ʋ
―1

6𝐶0
𝑂2𝜔

1
2

From polarization curves at different ω, and the plot of jlim vs. ω½ (a Levich plot), as it is 

seen in Figure S3, the ORR at Pt(poly) follows Eqns. (10), as usually reported [1-10,18-

21,34-38,45,46,70-75]. Classical kinetic analysis of these polarization curves evidences a 

change in the Tafel slope in the positive-going scan from ~120 to ~60 mV at high and low 

current densities, respectively [1-10,18-21,34-38], calculated from a plot of the logarithm of 

kinetic currents as function of the applied potential, as it is seen in Fig. S3A. Additionally, 

this analysis also indicates a first-order dependence relative to the O2-concentration, as 

suggested by the good lineal fitting of the Levich plot, shown in Fig. S3B. 

Differences at low (E < 0.35 V) and high potentials (E > 0.7 V) between direct and reverse 

scans in Fig. S3 are typical of the ORR at Pt surfaces [9-11,20,45,57]. At E < 0.35 V, the 

difference appears due to the adsorption/desorption of hydrogen in this region (non-

background subtracted CVs), besides the parallel detection of H2O2. Because of that, it has 

been classically assumed that Hads either inhibits the O – O bond scission, or blocks reactive 

surface sites [14,15,18,45]. Recently, it has been shown that this inhibition of H2O2 reduction 

can be better explained by considering the interface water reorganization and the potential of 

zero free charge of the metal surface [76]. At E > 0.7 V, differences between positive- and 

negative-going scans are typically explained in terms of different ORR mechanisms in oxide-

free and oxide-covered Pt surfaces [9-11,45]. The lower ORR activity in the negative-going 

scan, relative to the positive-going direction, has been attributed to a poisoning role of 

oxygen-containing species adsorbed on the Pt surface [2-5,37,45,57,70,71].

In contrast, as recently highlighted [17], the analysis of non-steady state LSVs reveals a 

different picture. Simple one-electron transfers, or overall n-electron processes with a first 

electron transfer as RDS [26-34] as typically accepted for the ORR [1,9,10,14-16,35,36], 

under transient conditions are characterized by current peaks, jp, proportional to √v, Eqns. 

(7), regardless the electrode hydrodynamic condition, stationary or RDE [60-64,67,69]. 

However, transient LSVs in Fig. 1 are characterized by current peaks, jp
ORR, around ~ 0.7 to 
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9

0.8 V depending of the scan rate, whose magnitude increases by increasing ω. Compare for 

example jp
ORR’s at 1000 and 1600 rpm at a fixed v in Fig. 1.

The dependence of jp
ORR on ω is clearly evident in a plot of the normalized peak current 

density, ip
ORR/nFAC0

O2√DO2 against the normalized square root of the scan rate, , as it (
𝑛𝑎𝐹𝑣

𝑅𝑇 )

is shown in Figure 2A. This figure was calculated by considering the DO2 = 1.93x10-5 cm2 s; 

C0
O2 = 1.26 mM; and n = na = 1. Besides, for the sake of comparison, theoretical curves for 

simple one, n = 1, and four, n = 4, fast and slow (α = 0.5) total electron transfers are also 

given. Note that the value of the normalized jp
ORR at stationary electrodes is rather constant 

with v, and much lower than expected for a 4-electron transfer. Instead, at RDEs jp
ORR 

strongly depends on v and ω, and after a threshold value of the scan rate is reached, current 

peaks practically become constant with v, but not ω, and lower than for a 4-electron transfer. 

Figure 2: Normalized peak currents, jp/nFAC0
O2√DO2, against the square root of the 

normalized scan rate, , for continuous LSVs during the oxygen reduction at Pt(poly) at 
𝑛𝑎𝐹𝑣

𝑅𝑇

RDEs: 70 (▲); 1000 (●); 1600 (◀); 2000 (▶); and 2500 rpm (▼), and stationary electrodes: 

(■), and after the potential was held at 1.02 V for 150 s before taking the LSV (ж) [17] (A). 

Variation of the peak current function, Ψp
ORR, with v (σ > 10). Data were taken from 

background-subtracted, negative-going LSVs after conditioning the electrode and two 

subsequent CVs, as in Fig. 1 (B). Theoretical curves for simple reversible (dashed) and 

irreversible, α = 0.5, (dotted) charge transfers (n = 1 and 4), Ψp
0, and for E1CE2- (n =2) and 

E1CE3- mechanisms (n = 4), Ψp
E1CE3, in stationary electrodes are also given.
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10

Contrarily, according to Eqns. (7) for transient systems, a plot of normalized peak current 

density against the normalized square root of the scan rate, as the one in Fig. 2A, for a simple 

electron transfer reaction at stationary electrodes without any kinetic complication should 

follow a straight line, with a zero intercept (dashed lines in Fig. 2A). The value of the slope 

of this plot depends on the reversibility degree of the charge transfer and it is given by the 

proportionality constant in Eqns. (7): 0.446, or 0.351 (α = 0.5) for simple fast, Eqn. (7a), or 

slow, Eqn. (7b), charge transfers, respectively [26-33,49,54].

Analogously, at RDEs under transient conditions numerical simulations have shown that 

jp
ORR is close to the value reached by stationary electrodes, at normalized scan rates equivalent 

to a time scale, at least, ten times lower than the characteristic time at RDEs, given by  [26], 
𝛿2

𝜔

𝐷

regardless ω [61-64,67,69]. This condition can be better described in terms of the parameter 

, given by Eqn. (11),

 > 10 (11)𝜎 =
𝑛𝑎𝐹𝑣𝛿2

𝜔

𝑅𝑇𝐷

with δω described by Eqn. (9). Theoretical and experimental slopes in this case are 

between 0.395 to 0.446 for fast (reversible) and 0.302 to 0.351 (α = 0.5) for slow 

(irreversible) electron transfers, depending on the mathematical approximation employed to 

solve the set of differential equations for describing electrochemical systems at RDE’s [61-

64,67,69]. For  < 10, the system is controlled either by convection or by mixed convection-

diffusion, and curves either lack of a current peak, i.e. S-shaped curves, or normalized current 

peaks are slightly larger than at stationary electrodes [61-64,67,69]. 

As previously discussed [17], the constant value of jp
ORR regardless v in Fig. 2A reveal the 

existence of a chemical reaction inside the ORR mechanism that controls the process at those 

values of v. Under this condition, the experiment finishes before the chemical reaction could 

take place at full extent and currents are lower than expected for a 4e- transfer, and 

independent of v. Nevertheless, if the electrode potential is initially held for enough time at 

a potential higher than the reaction onset, Eonset
ORR, the system behaves like an almost 4e- 

transfer process at slow v, as it is evidenced by (ж) points in Fig. 2A at 0.05 and 0.1 V s-1. 

Additionally, it appears that the dynamic of the chemical reaction depends on ω, because a 

constant jp
ORR regardless v is reached at smaller values of v at slow ω’s.

The complex ORR dynamics just described is easily evidenced by presenting the data in 

terms of the current function, ΨORR, as a function of v Eqn. (8), at different rotation rates, as 

it is given in Figure 3. From this graph, it is clear that the magnitude of ΨORR decreases at 
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11

faster v, and this change also varies with ω. Curves were calculated by considering DO2 and 

C0
O2 values given above, and n, and na = 1.

Figure 3: Current function from background-subtracted negative-going voltammograms at 

70 (A) and 2500 rpm (B) for the oxygen reduction on Pt(poly) in O2-saturated 0.1 M HClO4 

solutions after conditioning the electrode and two subsequent cyclic voltammograms.

A qualitatively analysis of curves in Fig. 3 can be performed by considering only the 

change in current peaks, Ψp
ORR, with v, as it is shown in Fig. 2B, and comparing experimental 

data to diagnostic criteria for complex mechanisms described in the literature [26-33,49-54]. 

In Fig. 2B, only data from curves for RDEs at scan rates and ω values for which σ > 10 are 

presented, since only fo  these conditions a similar change in ΨORR with v at stationary and 

RDEs has been confirmed, Eqns. (8) [61-64,67,69]. Curves in Fig. 2B were calculated by 

considering DO2, C0
O2, n, and na = 1 as described before. Dashed and dotted horizontal lines 

in this figure correspond to expected Ψp
0 values at stationary electrodes calculated from Eqns. 

(7). For simple reversible and irreversible charge transfers, Ψp
0 is equal to 0.446 and 0.351, 

considering α = 0.5 (0.496√0.5), respectively, which are independent of v. At RDEs reported 

Ψp
0 are between 0.395 to 0.446 and 0.302 to 0.351 for reversible and irreversible electron 

transfers, respectively [61-64,67,69]. 

From Fig. 2B it is clear that Ψp
ORR’s are not constant with v. At slow v, Ψp

ORR at stationary 

electrodes and RDEs are close to Ψp
0’s for a 2e- and 4e- charge transfer, respectively, but, as 

v increases, Ψp
ORR decreases and can reach values even lower than Ψp

0 for a 1e- charge transfer 

at stationary electrodes, and RDEs at slow ω. Under this circumstance, ΨORR curves become 

more spread out in the potential axis, but still share the same Eonset
ORR until a threshold value 

of v is reached, depending on ω, as it is seen in Fig. 3. With an additional increase in v, ΨORR’s 
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12

curves shift toward less positive potentials even more, not having now the same Eonset
ORR, and 

drawn out even further, practically losing the peak potential, Ep
ORR, at the fastest scan rates 

in Fig 3B. This is the point in which Ψp
ORR’s in Fig. 2B reach values even smaller than Ψp

0 

for a 1e- charge transfer. 

3.2. A chemical step before the first charge transfer

As it was recently discussed [17,18,20], the ω-dependence of jp
ORR in Figs. 1, 2 and 3 is 

consequence of kinetic effects in the ORR mechanism, which can only be explained by 

considering the existence of a diffusion layer close to the electrode surface dictated by a 

chemical instead of an electrochemical reaction. As demonstrated by digital simulations, at 

least two soluble species with different diffusion coefficients co-exist during the reduction 

of O2 [17]. Otherwise, if only one soluble species is present, or different ones with equivalent 

diffusion coefficients, changes in ω would result in comparable changes in δω, Eqn. (9), and 

identical concentration profiles determined by the magnitude of D under diffusional control, 

are anticipated [26]. Similarly, if all diffusion layers were governed by an electrochemical 

reaction, jp
ORR’s would only depend on v and not on ω under transient conditions [17], and 

jp
ORR’s at RDEs and stationary electrodes would coincide, which it is not the case as 

evidenced in this work [60-64,67,69].

Digital simulations of LSVs for simple reaction schemes, with parameters similar to the 

experimental conditions, have suggested a possible mechanism for explaining the 

dependence of jp
ORR on ω in Figs. 1, 2 and 3. It has been shown that this experimental result 

only can be reproduced by a mechanism considering a fast surface chemical reaction of a 

soluble reactant preceding a first charge transfer, a Cs
fastE-mechanism as represented by Eqns. 

(12a) to (12c), giving rise to a soluble species with a lower diffusion coefficient than the 

reactant [17]. Note that the fact that this first chemical step is a surface reaction highlights 

the important electrocatalytic role of the surface, as suggest many year ago by Yeager 

[77,78]. An initial chemical step, Eqn. (12a), in the ORR mechanism is also evidenced by the 

decrease in Ψp
ORR to values smaller than expected for a 1e- charge transfer in Fig. 2B, and the 

parallel disappearance of the peak current and the shift in Eonset
ORR to lower potentials at the 

fastest scan rates in Fig. 1A and Fig. 3.

(12a)𝑍 + 𝑀
𝐾

𝑀 ― 𝐴𝑎𝑑s

(12b)𝑀 ― 𝐴𝑎𝑑s
𝐾

𝑀 + 𝐴

(12c)𝐴 + 𝑛1𝑒 ― ⇄𝐵
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13

Simulated curves for the mechanism given by Eqns. (12a) to (12c), considering a slow 

first charge transfer, and different diffusion coefficients between reagents and products at 

stationary electrodes and RDEs were calculated and results are given in Figures 4A and 4B. 

For the sake of comparison with experimental results in Fig. 2, changes in the normalized jp, 

ip/nFAC0
O2√DO2, against the square root of the normalized scan rate, , and the peak 

𝑛𝑎𝐹𝑣
𝑅𝑇

current function, Ψp
CsfastEirrev, as a function of v are given in Fig. 4A and 4B, respectively. All 

curves were calculated by considering α = 0.5. For other values of α peak currents change 

proportional to √α, as dictated by Eqn. (7b), along with the proportional change in simulated 

Tafel slopes.

Figure 4: Normalized peak currents, jp/nFAC0
O2√DO2, against the square root of the 

normalized scan rate, , from simulated linear sweep voltammograms (LSV’s) of a first 
𝑛𝑎𝐹𝑣

𝑅𝑇

slow charge transfer at stationary and rotating disk electrodes. Symbols are the same as in 

Fig. 2. (A) An irreversible surface chemical reaction of a soluble reactant producing a 

soluble species, kforward = 1x107 M-1 s-1, preceding a four-electron transfer, a Cs
fastE4

irrev-

mechanism. (C) A first-order chemical reaction, k = 1x102 s-1, between a first 1e- and a 
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second 3e- charge transfers with E1° < E2° (only one peak in the LSV), an E1
irrevCE3-

mechanism. (E) A combination of (A) and (B) mechanisms, a Cs
fastE1

irrevCE3-mechanism. 

(B), (D) and (F) represent the variation of the peak current function, Ψp, with v (σ > 10) for 

the Cs
fastE4

irrev-, E1
irrevCE3-, and Cs

fastE1
irrevCE3-mechanisms, respectively. Theoretical 

curves (Ψp
0) for simple reversible and irreversible, α = 0.5, (dashed) charge transfers with n 

= 1, 2 and 4, in stationary electrodes are also given. In simulations, Dreactant = DO2 = 

1.93x10-5 cm2 s and Dproducts = 1.0x10-5 cm2 s.

Similar curves for this mechanism, but with a first fast charge transfer, are given in Figures 

S4A and S4B. In these simulations, system parameters, Dz, C0 and , were chosen to be equal ʋ

to analogous parameters for dissolved oxygen in 0.1 M HClO4, given in previous paragraphs, 

DO2 and C0
O2, and the concentration of surface active sites was assumed constant. A value of 

1.0x10-5 cm2 s was selected for both DA and DB, and its magnitude was chosen to be an 

intermediate value between DO2 and the diffusion coefficient for H2O2 in 0.1 M HClO4, 

reported to be 0.87 x10-5 cm2 s [79]. A decrease in diffusion coefficients is expected between 

molecules of similar mass but different magnitude of the charge and/or number of hydrogen 

bonds with the solvent [80].

The dependence of jp on ω in a Cs
fastE-mechanism producing a soluble species only can 

be evidenced by comparing LSVs under transient conditions at different scan rates at 

stationary electrodes and RDEs. Only in this way two different δdiff could be established under 

certain working conditions: one determined by ω, δω, and one dictated by diffusion of the 

electroactive species. If the initial surface chemical reaction is fast enough to originate a δdiff 

larger than δω at an accessible rotation rate, then currents in nonstationary LSVs at that 

rotation rate are going to be affected by the magnitude of ω, and different from the ones at 

stationary electrodes, as it is seen in Figs. 4A and 4B. In contrast, when convection 

predominates over diffusion, as in steady-state RDEs measurements, δdiff = δω for both 

species and typical sigmoidal, S-shaped curves of convective systems are recorded. 

For other reaction schemes, such as simple multi-electron transfers, a chemical reaction 

following multi-electron transfers (an EC-mechanism), or EC-mechanisms followed by a 

first- or second-order disproportionation (a DISP-mechanism), changes in jp with v are not 

affected by ω, and jp at stationary electrodes and RDEs under non-steady state conditions 

superimpose, as confirmed by digital simulations [17,60-64,67,69]. Contrary to the Cs
fastE-

mechanism, this result holds true even in those cases when different diffusion coefficients 
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for reagents and products are considered. As an example, Figs. 4C and 4D illustrate simulated 

changes in the normalized jp and the peak current function, Ψp
E1CE3, as a function of  and 

𝑛𝑎𝐹𝑣
𝑅𝑇

v for a first-order chemical reaction between two charge transfers with a first slow charge 

transfer, and E1° < E2° (an E1
irrevCE3-mechanism), respectively. Similar curves for this 

mechanism but with a first fast charge transfer are given in Figs. S4C and S4D. Simulations 

conditions were similar to the ones employed for the Cs
fastE-mechanism just described above.

3.3. A chemical step after the first charge transfer

A clear difference concerning curves in Fig. 2A and Fig. 4A is the leveling in jp
ORR’s at 

increasing scan rates in Fig. 2A, compared to the continuous increase in jp with √v in Figs. 

4A, as expected from Eqn. (7). Besides, while Ψp
ORR’s at RDEs in Fig. 2B practically 

superimpose for ω ≥ 1000 rpm, simulated Ψp
CsfastE curves in Fig. 4B shift to higher values of 

v by increasing ω. These differences among experimental and calculated curves suggest the 

presence of another chemical reaction in the ORR mechanism, one between two charge 

transfers, not accounted by simulations in Figs. 4A and 4B. Kinetic effects due to an initial 

chemical reaction before the first charge transfer comprise the dependence of jp on ω, if the 

formed species in the chemical reaction is soluble as explained above, and a decrease in jp at 

scan rates faster than the time scale of the chemical reaction, instead of approaching a 

constant value as in Fig. 2A. 

As it can be appreciated in Figs. 4C and 4D, a leveling on jp’s values at increasing v is a 

characteristic feature of an ECE- mechanism, Eqns. (12c) to (12e). In this case, the product 

of the chemical step, C in Eqn. (12d), is electrochemically more reactive than the species in 

the initial charge transfer, A in Eqn. (12c), EC/D
0 >> EA/B

0 [26-30,33,49-51,53-54]. Otherwise, 

if EC/D
0 << EA/B

0, a second reduction wave, if C is a soluble species, or a peak before or after 

the main reduction peak, if C is an adsorbed state, should appear in the CV [26,33,50]. As 

this is not the case in LSVs in Fig. 1, the sigmoidal decrease in Ψp
ORR as v increases in Fig. 

2B indicates that an ECE-mechanism, Eqns. (12c) to (12e), follows the initial surface 

chemical reaction, Eqns. (12a) and (12b).

(12d)𝐵⇄𝐶

(12e)𝐶 + 𝑛2𝑒 ― ⇄𝐷

Now, because Ψp
ORR’s in Fig 2B continuously decrease with v to the point where Ψp

ORR is 

smaller than Ψp
0 for a 1e- charge transfer, only one electron is passed in the first charge 

transfer, Eqn. (12c), before the chemical reaction, Eqn. (12d), while the other remaining three 
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electrons should occur in the second charge transfer process, Eqn. (12e). The existence of an 

E1CE3-mechanism implies a gradual transition in the LSV from a Ψp characteristic of a 

combined response of the two electrochemical steps, n1+n2 in Eqns. (12c) and (12e), to one 

Ψp corresponding to the first electron transfer, n1 in Eqn. (12c), at increasing v. This transition 

takes place because at fast v´s the experiment is finished before Eqn. (12d) could occur at 

full extent and so, Eqn. (12e) cannot make a significant contribution to the total current [26-

30,33,50,51,53-54]. 

An E1CE3-mechanism can be identified only when the time scale of the experiment is 

comparable to the half-life, τ½, of the chemical reaction between the two charge transfer, Eqn. 

(12d) [27-30,33,49-51,53-54]. Then, data in Fig. 2B can be used to get a first approximation 

of the value of τ½ during the ORR, by using the sweep rate at which Ψp
ORR has risen to half 

of its maximum value in [81]. If data at ω ≥ 1000 rpm are employed, when curves become 

practically independent of ω, the scan rate at which Ψp
ORR reaches the expected value for a 

transference of two electrons is between 12 to 20 V s-1, depending on the degree of 

reversibility of the first charge transfer. The equivalent time constant for these scan rates is 

around 1 to 2 ms [26], and so, τ½ is ~1 to 2 ms for the chemical reaction represented by Eqn. 

(12d). Nevertheless, within this criterion, it appears that τ½ would depend on ω since at lower 

ω and stationary electrodes Ψp
ORR curves in Fig. 2B are shifted toward slower scan rates.

An species with a τ½ of ~2 ms would diffuse an average distance of ~ 3 μm before reacting, 

calculated as √(2Dτ½) [26]. This value would be outside the detection capability of a rotating 

ring disk electrode (RRDE) set up, for which a τ½ of the order of 10 ms or larger has been 

predicted to be required if the existence of an intermediate is going to be demonstrated by 

the ring after a potential step [82]. Indeed, larger τ½ times should be experimentally required, 

considering that digital simulations of RRDEs have evidenced a lack of response in the ring 

below 7 ms, and calculated typical transit times of ~ 30 ms at 1000 rpm for a rather narrow 

gap [26,83,84]. The transit time of a given RRDE set up is defined as the time required for 

an species to travel the gap from the outside of the disk to the inside edge of the ring 

[26,83,84].

Instead, the presence of this intermediate could be detected by scanning electrochemical 

microscopy (SECM) experiments by using the substrate-generation/tip-collection mode. In 

this case, oxidation currents during the ORR at Pt(poly) have been already reported at the Pt 

ultramicroelectrode probe (UME) [85,86]. For potential steps from a potential Ei > Eonset
ORR 

to a potential in the mass-transport controlled region, oxidation currents are measured right 
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after a step but only within the first 0.25 s, and at small distances from the surface, ~ 4 to 12 

μm [85]. This result was interpreted in terms of H2O2 production during the ORR, but it can 

also be compatible with the existence of a short-lived intermediate species.

Similarly, experimental conditions under high mass transport coefficients that allow the 

formation of thin diffusion layers smaller than 3 μm could be also useful to detect the 

participation of this species in the ORR mechanism. This is the case of working, for example, 

either with microelectrodes with diameters smaller than 5 μm [26,42], or with spare arrays 

of nanoparticles with a particle size small enough to achieve conditions equivalents to ω > 

40000 rpm [87-92]. In agreement, ORR studies at nanostructured Pt electrodes in acid [39], 

and Pt microelectrodes in neutral and alkaline solutions [93] have independently reported 

effective electron-transfer numbers lower than 4 and an elevated production of H2O2 under 

this conditions.

On the other hand, a τ½ of ~2 ms for a first-order chemical reaction would be equivalent 

to a rate constant of ~350 s-1 [26]. Considering this value, LSVs profiles for an E1CE3- 

mechanism with E1° < E2° were calculated. However, from this simulation, it was realized 

that slower reaction rates are required to represent the decrease in jp
ORR’s in Figs. 2A. Figs. 

4C and 4D show simulated normalized jp’s and current functions against normalized scan 

rates for this E1CE3- mechanism for a first slow charge transfer and a rate constant rate of 

100 s-1 for the first-order chemical reaction between the charge transfers, Eqns. (12d). 

Analogous curves for a first fast charge transfer are given in Fig. S4C and S4D. From these 

curves, it is clear that the decrease in jp
ORR’s at fast scan rates in Fig. 2 can be qualitatively 

well described by this mechanism, especially for curves at RDEs with ω ≥ 1000 rpm.

Here it is worth mentioning that the leveling in jp
ORR’s in Fig. 2A could be, in principle, 

also described by a DISP-mechanism in which C in Eqn. (12d) undergoes a 

disproportionation reaction with B or with itself to partially regenerate the initial reagent, Z, 

as represented by Eqns. (12f) and (12g) [27,30,49,51,90]. If this were the case, similar 

simulated curves to those ones in Figs. 4C and 4D for an ECE- mechanism would be obtained 

for a DISP-mechanism if the chemical step is the RDS, a DISP1-mechanism 

[27,30,49,51,90]. Therefore, it would be not possible to differentiate between these two 

mechanisms from the experimental data in Fig. 1. The possible occurrence of any of these 

mechanisms, together with the possibility that both mechanisms can simultaneously occur, 

is commonly referred in the literature as an E1CE3/DISP1-mechanism, to indicate the 
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possibility that the second electron could be provided either by the electrode (E1CE3) or by a 

homogeneous electron transfer of B, or C in the solution (DISP1).

(12f)𝐵 + 𝐶⇄𝐷 + 𝑍

(12g)2𝐶⇄𝐷 + 𝑍

3.4. Initial steps in the ORR on Pt surfaces 

When a fast chemical reaction takes place before a charge transfer, the system dynamics 

at scan rates with an equivalent characteristic time larger than the timescale of the initial 

chemical reaction becomes the one dictated by the subsequent controlling steps. Accordingly, 

first steps in the ORR mechanism on Pt surfaces would follow a Cs
fastE1CE3 scheme, Eqns. 

(12a) to (12e), with n1 = 1 in Eqn. (12c), and n2 = 3 in Eqn. (12e). Figs. 4E and 4F show 

simulated changes in the normalized jp and the peak current function, Ψp
CsfastE1CE3, as a 

function of  and v for a Cs
fastE1

irrevCE3-mechanism with a first slow charge transfer, 
𝑛𝑎𝐹𝑣

𝑅𝑇

calculated by combining parameters employed in simulations in Figs. 4A to 4D. Similar 

curves for this mechanism but with a fast first charge transfer are given in Figs S4E and S4F.

As it can be appreciated, curves in Figs. 4E and 4F and S4E and S4F qualitatively capture 

main features of experimental data given in Fig. 2, i.e. the dependence of jp
ORR’s with ω and 

its levelling as v increases. This is especially true if it is considered that the first electron 

transfer is slow, as in simulations in Fig. 4F where Ψp
CsfastE1CE3’s at RDEs approach a value 

close to 2 at fast scan rates, as experimentally measured. 

Nevertheless, some important characteristics cannot be still described by this mechanism. 

The most noticeable difference being the faster experimental decrease in jp
ORR’s at increasing 

v at stationary and rotation electrodes at slow ω (70 rpm) seen in Fig. 2, relative to simulated 

curves in Figs. 4E and 4F. In addition, as it can be seen in Figure S5, simulated curves of the 

Cs
fastE1

irrevCE3-mechanism at steady state have smaller jlim’s than those expected for a four-

electron transfer, predicted by the Levich equation, Eqn. (10), and as experimentally 

measured in Fig. S3, and the magnitude of this difference between simulated and 

experimental jlim’s increases at faster rotation rates.

A faster decay in currents under transient conditions in an E1CE3 scheme can only be 

achieved by assuming a smaller value than 100 s-1 for the rate constant of the chemical 

reaction between the charge transfers, Eqn. (12d). However, in this case, even lower jlim’s at 

steady state than those ones in Fig. S5 would be reached. Contrarily, jlim’s comparable to the 

experimental ones can only be obtained in an E1CE3 scheme by employing a larger value 
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than 100 s-1 for Eqn. (12d). Therefore, there is an apparent dichotomy between experiments 

and simulated curves at transient and steady-state conditions. While a lower rate constant for 

Eqn. (12d) is required for obtaining a faster decay in currents at increasing v in simulated 

curves at transient conditions, a faster rate constant would be needed for simulated jlim at 

RDEs to be similar to the ones experimentally measured at steady state conditions.

This fact implies that there is still an important piece missing from the ORR mechanism 

in the picture described above. This contradictory situation can be brought together by 

considering the existence of competing, parallel reaction(s) besides the main Cs
fastE1CE3-

mechanism. In this regard, it has been reported that the occurrence of chain processes in the 

diffusion layer because of the presence of additional parallel competing reactions inside a 

main ECE-mechanism may cause a faster current decay than the one found in a simple ECE-

scheme without this complication. This is the case, for example, of electrochemically induced 

chemical reactions [94]. This dynamics may appear when the product’s redox couple has a 

standard potential positive to that of the reactant’s redox couple, EProduct
0 > EReactant

0, and it 

should be considered to occur always that a crossing between the positive- and negative-

going scans is measured in LSVs [94].

In the case of the ORR at Pt surfaces, the condition EProduct
0 > EReactant

0 can be fulfilled if 

either HO2
* radicals or H2O2 were intermediate species in the reaction, and it could also 

explain the well-known crossing between the positive- and negative-going scans close to 

Eonset
ORR during the reaction, evidenced in Fig. S3 [9,10,18], commonly attributed to an 

inhibiting role of O-containing species. If this were the case, the rate constant of ~350 s-1 

calculated from data in Fig. 2 would not correspond to the one of Eqn. (12d) that should have 

a higher order of magnitude, but it would represent the time constant of the global scheme, 

including the effect of the competing reaction(s).

Inside this view, by including the existence of parallel reactions in simulations a faster 

rate constant than 100 s-1 for Eqn. (12d) can be employed and it would give rise to both jlim’s 

comparable to the experimental ones and a faster decay in currents at increasing v than the 

one in Figs. 4C to 4F. Nevertheless, at this point the exact nature of these competing reactions 

it is unknown, and more work is still required to validate or reject this analysis. Here, it could 

be proposed as possible parallel competing reactions the disproportionation of HO2
* radicals, 

Eqns. (4) and (5), and/or the oxidation of H2O2, Eqn. (-2), as previously suggested from a 

preliminary analysis [17].
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Additional information regarding a reaction mechanism can be gained by analyzing the 

rate at which either the peak potential, Ep, or the whole wave shifts along the potential axis 

as v and ω are changed [26-32,49,51-53,90,91], as in Figure 5. In this figure, because some 

voltammograms do not exhibit a peak but S- shaped curves, and in order to minimize the 

possible influence of the uncompensated resistance between the reference and the working 

electrodes, the half-peak, Ep/2, and half-wave Eω/2 were used instead of Ep. As it has been 

validated before, the analysis of Ep/2 and Eω/2 gives exactly the same information than the 

analysis of Ep’s [26,32].

Figure 5: Variation of the half-peak, or half-wave, potential for the oxygen reduction in O2-

saturated solutions on Pt(poly) as a function of the scan rate at different ω’s (main figure), 

same symbols as in Figs. 2 and 4, and of the rotation rate at different v’s (inset). 0.05 (●); 

0.1 (▲); 0.5 V s-1 (■) for data in negative-going LSVs, and 0.1 V s-1 (▼) for data in positive-

going LSVs.

From Fig. 5, it is found that Ep/2
ORR varies linearly by ~-26.3 to -29.4 mV in the negative 

direction of the scan for a tenfold increase in log v, equivalent to a Tafel slope twice of this 

change, i.e. ~-52.6 to -58.8 mV [26-32,49,51-53,90,91]. This result is compatible with a main 

ECE-mechanism in which the chemical reaction following the first electron transfer, Eqn. 

(12d), is the RDS [27-31,33,51-54]. In addition, considering that ORR studies at different 
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concentrations of O2 at Pt(poly) have suggested a first order reaction relative to C0
O2 as RDS, 

then a first-order chemical reaction would be the RDS [35,45]. In contrast, Eω/2
ORR changes 

by ~-59.6 mV for a tenfold increase in ω, equivalent to a Tafel slope of ~-119.2 mV, as it is 

seen in inset to Fig. 5, [26], compatible with a first charge transfer as RDS, Eqn. (12c).

The difference in calculated Tafel slopes from changes in Ep/2
ORR with log v and Eω/2

ORR 

with ω is similar to the change in Tafel slopes at Pt(poly) reported by analyzing steady-state 

polarization curves at low and high current densities, as in Fig. S3A. In this case, the change 

in Tafel slopes is typically explained as a consequence of a change from Temkin to Langmuir 

adsorption conditions of ORR intermediates when decreasing the potential, because of 

desorption of O-containing species adsorbed on the Pt surface [9,10,14-16,34-36,45]. 

However, in light of result discussed above, this result could be equally interpreted as 

consequence of a change in the RDS from the chemical reaction between the charge transfer, 

Eqn. (12d), to the first charge transfer step, Eqn. (12c), when going from high to low 

potentials [26-33,51-54], considering the existence of competing oxidation reactions at high 

potentials.

Similar curves to those in Fig. 5 but from simulated LSVs for the Cs
fastE1CE3-mechanism 

are given in Figure S6. Here, data for both first fast and slow charge transfers are given, Figs. 

S6A and S6B, respectively. In these cases, both Ep/2
ORR vs. v and Eω/2

ORR vs. ω present the 

same dependence, being ~ 29.5 to 34.3 mV and 69.5 to 71 V for the first fast and slow charge 

transfers, respectively. Therefore, the change in slopes in Fig. 5 during the ORR cannot be 

explained by the main Cs
fastE1CE3-mechanism, and it could be either a consequence of 

Temkin adsorption conditions for ORR intermediate, or because of the presence of competing 

reaction(s) in the mechanism, as discussed above. In this sense, Tafel slopes close to 60 mV 

have been reported for both the oxidation and reduction of H2O2 on Pt surfaces [75], and it 

may indicate this reaction as a possible competing step during the ORR, as suggested in a 

previous work [17].

On the other hand, notice that in both Figs. 5 and S6 there is an inversion in the tendency 

of how Eω/2
ORR, or Ep/2

ORR, changes with v at RDEs. Initially Eω/2
ORR from S-shaped curves 

moves toward more positive potentials as v increases but later, once a threshold value of v is 

reached, the tendency reverses, and Ep/2
ORR from peak-shaped curves shifts now to less 

positive potentials with a further increase in v. This inversion in the tendency of how Eω/2
ORR, 

or Ep/2
ORR, changes with v is a consequence of the change in the mass-transport controlling 

mode, as suggested before from digital simulations of simple reversible and non-reversible 
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charge transfer at RDEs [67]. Initially, the system is at steady-state, and it is controlled by 

the convection of species toward the surface but later, as v increases, it shifts to a diffusional 

control at transient conditions. Only in this later case, changes in Ep/2
ORR are dictated by the 

reaction mechanism of the system under study [26-33,51-54].

Experimental ORR studies at RDEs have also reported a positive change of Eω/2
ORR with 

v, but, contrarily, results in those works were interpreted as consequence of an inhibiting role 

on the reaction of the amount of oxide formed on Pt surfaces [70,71], which also decreases 

upon increasing v [56,68,70,71]. However, digital simulations in Figs. 5 and S5 confirm that 

the positive change of Eω/2
ORR with v before the appearance of the peak, indicative of 

diffusional control [61,67,69], is more likely caused by a convective process under non-

steady state than because of an inhibiting role of O-containing species, a process not included 

on those simulations.

3.5. A proposed mechanism for the ORR on Pt surfaces 

Despite insightful results discussed in the past section, a complete quantitative treatment 

of the electrochemical data to extract reliable kinetic parameters for the ORR on platinum 

surfaces cannot be realized yet, since some aspects are not fully understood so far. 

Nevertheless, results allowed to identify the CECE structure of the first steps in the ORR 

mechanism and this enables to propose a possible set of initial reactions that fulfill the 

qualitative features exposed along the analysis.

Classically, investigations about the mechanism of the ORR have considered two main 

possible reaction schemes: the “dissociative” and the “associative” mechanisms. In the first 

case, the rupture of the O-O bond either precedes the reduction and protonation, or takes 

place in the first electron transfer, as in Eqn. (13) [11,12,74,95-97]. In the second case, one 

(or two) reduction step(s) precedes the bond breaking, as in Eqns. (14) or (15) [9,10,14-16,34-

36,96].

(13)𝑃𝑡𝑂2,𝑎𝑑𝑠 +𝑃𝑡𝐻2𝑂𝑎𝑑𝑠 + 𝐻 + + 𝑒 ― ⇄𝑃𝑡𝑂𝑎𝑑𝑠 +𝑃𝑡𝑂𝐻𝑎𝑑𝑠 + 𝐻2𝑂

(14)𝑃𝑡𝑂2,𝑎𝑑𝑠 + 𝐻 + + 𝑒 ― ⇄𝑃𝑡𝐻𝑂 ∗
2,𝑎𝑑𝑠

(15)𝑂2 +2𝑃𝑡𝐻2𝑂𝑎𝑑𝑠⇄𝑃𝑡𝑂𝐻𝑎𝑑𝑠 +𝑃𝑡𝐻𝑂 ∗
2,𝑎𝑑𝑠 + 𝐻2𝑂

From results described above, the O-O bond dissociative mechanism should be discarded 

as an operative path on Pt in acid at high potentials since neither Oads nor OHads could fulfill 

the requirement of the formation of a soluble species with a τ½ ~ 2ms, in agreement with 

early studies [9,10,14-16,34-36]. Hence, only an associative mechanism could explain 
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experimental data and the rupture of the O-O bond should take place either in the second 

chemical reaction after the first electron transfer, Eqn. (12d), or after this step, Eqn. (12e). In 

this framework, the first step in the mechanism should be a chemical reaction between O2 

and the surface. A step that should not consist of a direct displacement of H2Oads by O2, but 

should comprise the interaction of O2 with the Oads/OHads/H2Oads network on the Pt surface 

[18], formed through the reduction/oxidation surface process of Pt, Eqns. (-16) or (-17), as 

suggested by theoretical calculations [97]. 

(16, -16)𝑃𝑡𝑂𝐻𝑎𝑑𝑠 + 𝐻 + + 𝑒 ― ⇄𝑃𝑡𝐻2𝑂𝑎𝑑𝑠

(17, -17)𝑃𝑡𝑂𝑎𝑑𝑠 + 𝐻 + + 𝑒 ― ⇄𝑃𝑡𝑂𝐻𝑎𝑑𝑠

Then, it is proposed that the formation of adsorbed superoxide, O2,ads
-, without a direct 

charge transfer, Eqn. (18), is the initial chemical reaction, coupled with the immediate 

reduction of the formed OHads, Eqn. (17). The influence of the surface on the pKa of adsorbed 

species would stabilize O2
-
,ads on the surface [98,99], despite a pKa ~ 4.8 for this species in 

solution, and O2 reduction would be promoted by adsorbed O-containing species, probably 

OHads. 

(18)𝑂2 +𝑃𝑡𝑂𝐻𝑎𝑑𝑠/𝐻2𝑂𝑎𝑑𝑠⇄𝑃𝑡𝑂𝐻𝑎𝑑𝑠/𝑂𝐻𝑎𝑑𝑠 ―𝑂 ―
2,𝑎𝑑𝑠 + 𝐻 +

The formation of the superoxide ion would be followed by its protonation and this step 

would be the second chemical reaction in the mechanism, Eqn. (12d), which can occur 

thought either a heterogeneous or a homogeneous reaction. Considering data in Table S1, the 

homogeneous protonation is expected to be faster than the heterogeneous one, which agrees 

with theoretical calculations that have suggested that O2 does not directly accept protons 

during reduction steps [97]. Thus, O2
-
ads would desorb and go to the solution, where it would 

be immediately protonated to HO2
*, Eqn. (19), and this step would be the RDS under 

diffusion controlled conditions, as discussed above.

(19)𝑂 ―
2 + 𝐻 + ⇄𝐻𝑂 ∗

2

It could be also possible however, that the first chemical step in the mechanism would be 

the production of HO2
*
,ads, Eqn. (20), and the concerted reduction of OHads the first 

electrochemical step, Eqn. (17). Next, the dissociation of HO2
*
,ads into Oads and OHads, or two 

OHads, in a chemical reaction, Eqns. (21a) or (21b), would be the second chemical reaction 

in the mechanism, due to the instability of HO2
*
,ads on the surface at high potentials [6,100]. 

This step would be the RDS at high but not at low potentials, since HO2
*
,ads dissociation 

strongly depends on the number of Pt free sites on the water, or H2Oads/OHads, covered 

surface, relative to the bare electrode [101], explaining the change in Tafel slopes. 
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Theoretical calculations have shown that this step would only occur with a small barrier if 

there is one empty site on the surface, but barrierless if two empty sites are available [101].

(20)𝑂2 +𝑃𝑡𝑂𝐻𝑎𝑑𝑠/𝐻2𝑂𝑎𝑑𝑠⇄𝑃𝑡𝑂𝐻𝑎𝑑𝑠/𝑂𝐻𝑎𝑑𝑠 ―𝐻𝑂 ∗
2,𝑎𝑑𝑠

(21a)𝑃𝑡𝐻𝑂 ∗
2,𝑎𝑑𝑠 +𝑃𝑡⇄𝑃𝑡𝑂𝑎𝑑𝑠 +𝑃𝑡𝑂𝐻𝑎𝑑𝑠

(21b)𝑃𝑡𝐻𝑂 ∗
2,𝑎𝑑𝑠 +2𝑃𝑡⇄3𝑃𝑡𝑂𝐻𝑎𝑑𝑠 +2𝐻2𝑂

The nature of the second electrochemical step cannot be precisely known as it is located 

after the RDS and it would depend on which one of these two proposed mechanisms takes 

place during the ORR. In the first case, the subsequent reduction of HO2
*, Eqn. (6), can be 

proposed, considering that the reduction potential of this step is expected to be more positive 

than E0 of Eqn. (16), Table S1. Once H2O2 is formed, next steps in the ORR mechanism 

should be the cleavage of the O-O, giving rise to two OH* species [102], and their reduction 

to H2O, probably following Eqn. (16), as reported for the reduction of H2O2 in Pt surfaces 

[75]. In the second mechanism, next steps would be the reduction of Oads and OHads though 

Eqns. (16) and (17).

Notice that the production of HO2
* as intermediate species in both mechanisms opens the 

possibility of several parallel subsequent reactions. For example, the second electron could 

be transferred by the disproportionation of HO2
* giving rise to H2O2, Eqns. (4) to (5), instead 

of involving an electrochemical step. But even if this is not the case, these reactions would 

be always possible competing reactions for the HO2
* radical. Therefore, first steps in the 

ORR mechanism would be described by a CECE/DISP mechanism, and the participation 

extent of the ECE- and/or the DISP- schemes cannot be determined from data in Fig. 1, 

because in that case the chemical reaction between the two charge transfers is the RDS. 

However, an increase in the contribution of the DISP-scheme is expected to occur at 

increasing pH’s [21]. 

Table 1 summarizes the possible two ORR mechanisms discussed above. Inside any of 

these mechanisms, the increase in E0
O2/O2- from ~-0.33 V [80,103,104], to potentials close to 

Eonset
ORR on Pt would be explained by the fast protonation that follows the reduction of O2 to 

O2
-, as it has been proposed in the case of the ORR in aprotic solvents [80,95]. Additionally, 

the interaction of O2 with adsorbed O-containing species on Pt surfaces that would mediate 

the O2 reduction, and the reactivity of Pt toward the reduction of H2O2 [75] would also 

contribute to the reactivity of this metal. A simplified scheme for the reaction mechanism 

proposed to take place close to ORR reaction onset at Pt surfaces, is given in Figure 6.
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Table 1: Summary of the ORR mechanisms on Pt surfaces discussed in the text
Mechanism General representation Possible physical interpretation

C

𝑍 + 𝑀 + 𝐹
𝐾

𝑀 ― 𝐴𝑎𝑑s + 𝐵

𝑀 ― 𝐴𝑎𝑑s
𝐾

𝑀 + 𝐴

𝑂2 + 𝑃𝑡𝑂𝐻𝑎𝑑𝑠/𝐻2𝑂𝑎𝑑𝑠⇄𝑃𝑡𝑂𝐻𝑎𝑑𝑠/𝐻2𝑂𝑎𝑑𝑠 ― 𝑂2,𝑎𝑑𝑠
𝑃𝑡𝑂𝐻𝑎𝑑𝑠/𝐻2𝑂𝑎𝑑𝑠 ― 𝑂2,𝑎𝑑𝑠⇄𝑃𝑡𝑂𝐻𝑎𝑑𝑠/𝑂𝐻𝑎𝑑𝑠 ―𝑂 ―

2,𝑎𝑑𝑠 + 𝐻 +

𝑃𝑡𝑂𝐻𝑎𝑑𝑠/𝑂𝐻𝑎𝑑𝑠 ―𝑂 ―
2,𝑎𝑑𝑠⇄𝑃𝑡𝑂𝐻𝑎𝑑𝑠/𝑂𝐻𝑎𝑑𝑠 +  𝑂 ―

2 + 𝐻 +

E1 𝐵 + 1𝑒 ― + 𝐻 + ⇄𝐹 𝑃𝑡𝑂𝐻𝑎𝑑𝑠/𝑂𝐻𝑎𝑑𝑠 + 𝐻 + + 1𝑒 ― ⇄𝑃𝑡𝑂𝐻𝑎𝑑𝑠/𝐻2𝑂𝑎𝑑𝑠

C 𝐵⇄𝐶 𝑂 ―
2 + 𝐻 + ⇄𝐻𝑂 ∗

2

xE1 𝐶 + 1𝑒 ― + 𝐻 + ⇄𝐷 𝐻𝑂 ∗
2 + 𝐻 + + 1𝑒 ― ⇄𝐻2𝑂2

(1-x)DISP  ou𝐵 + 𝐶 + 𝐻 + ⇄𝑍 + 𝐷
2𝐶⇄𝑍 + 𝐷

2𝐻𝑂 ∗
2 ⇄𝐻2𝑂2 + 𝑂2

𝑂 ―
2 +  𝐻𝑂 ∗

2 ⇄𝐻𝑂 ―
2 + 𝑂2

𝐻𝑂 ―
2 + 𝐻 + ⇄𝐻2𝑂2

C 𝐷⇄2𝐵 𝐻2𝑂2⇄2𝑂𝐻 ∗

E2 𝐵 + 1𝑒 ― + 𝐻 + ⇄𝐹 𝑃𝑡𝑂𝐻𝑎𝑑𝑠 + 𝐻 + + 1𝑒 ― ⇄𝑃𝑡𝐻2𝑂𝑎𝑑𝑠

Mechanism 1 𝑍 + 4𝑒 ― + 4𝐻 + ⇄2𝐹 𝑂2 + 4𝑒 ― + 4𝐻 + ⇄2𝐻2𝑂

C

𝑍 + 𝑀 + 𝐹
𝐾

𝑀 ― 𝐶𝑎𝑑s + 𝐵

𝑀 ― 𝐶𝑎𝑑s
𝐾

𝑀 + 𝐶

𝑂2 + 𝑃𝑡𝑂𝐻𝑎𝑑𝑠/𝐻2𝑂𝑎𝑑𝑠⇄𝑃𝑡𝑂𝐻𝑎𝑑𝑠/𝐻2𝑂𝑎𝑑𝑠 ― 𝑂2,𝑎𝑑𝑠
𝑃𝑡𝑂𝐻𝑎𝑑𝑠/𝐻2𝑂𝑎𝑑𝑠 ― 𝑂2,𝑎𝑑𝑠⇄𝑃𝑡𝑂𝐻𝑎𝑑𝑠/𝑂𝐻𝑎𝑑𝑠 ― 𝐻𝑂 ∗

2,𝑎𝑑𝑠

𝑃𝑡𝑂𝐻𝑎𝑑𝑠/𝑂𝐻𝑎𝑑𝑠 ― 𝐻𝑂 ∗
2,𝑎𝑑𝑠⇄𝑃𝑡𝑂𝐻𝑎𝑑𝑠/𝑂𝐻𝑎𝑑𝑠 + 𝐻𝑂 ∗

2

E1 𝐵 + 1𝑒 ― + 𝐻 + ⇄𝐹 𝑃𝑡𝑂𝐻𝑎𝑑𝑠/𝑂𝐻𝑎𝑑𝑠 + 𝐻 + + 1𝑒 ― ⇄𝑃𝑡𝑂𝐻𝑎𝑑𝑠/𝐻2𝑂𝑎𝑑𝑠

xC  ou𝐶⇄𝐸 + 𝐵
𝐶 + 𝐹⇄3𝐵

𝑃𝑡𝐻𝑂 ∗
2,𝑎𝑑𝑠 + 𝑃𝑡⇄𝑃𝑡𝑂𝑎𝑑𝑠 + 𝑃𝑡𝑂𝐻𝑎𝑑𝑠

𝑃𝑡𝐻𝑂 ∗
2,𝑎𝑑𝑠 + 𝑃𝑡𝐻2𝑂𝑎𝑑𝑠 +  𝑃𝑡⇄3𝑃𝑡𝑂𝐻𝑎𝑑𝑠

(1-x)DISP 2𝐶⇄𝑍 + 𝐷 2𝐻𝑂 ∗
2 ⇄𝐻2𝑂2 + 𝑂2

C(
1 ― 𝑥

2 ) 𝐷⇄2𝐵 𝐻2𝑂2⇄2𝑂𝐻 ∗

E3
𝐸 + 1𝑒 ― + 𝐻 + ⇄𝐵
𝐵 + 1𝑒 ― + 𝐻 + ⇄𝐹

𝑃𝑡𝑂𝑎𝑑𝑠 + 𝐻 + + 1𝑒 ― ⇄𝑃𝑡𝑂𝐻𝑎𝑑𝑠
𝑃𝑡𝑂𝐻𝑎𝑑𝑠/𝑂𝐻𝑎𝑑𝑠 + 𝐻 + + 1𝑒 ― ⇄𝑃𝑡𝑂𝐻𝑎𝑑𝑠/𝐻2𝑂𝑎𝑑𝑠

Mechanism 2 𝑍 + 4𝑒 ― + 4𝐻 + ⇄2𝐹 𝑂2 + 4𝑒 ― + 4𝐻 + ⇄2𝐻2𝑂

Figure 6. Simplified reaction mechanism proposed to occur close to ORR reaction onset at 

Pt surfaces. 

From this proposed reaction scheme, it can be seen that surface platinum oxides not 

necessary would be inhibiting species, as commonly accepted [1-5,9,10,45,46,70,71,105]. 

Instead, the balance between OHads/Oads species on the surface may determine the principal 

reaction occurring at the electrode, either reduction, oxidation, or surface catalyzed 

decompositions of HO2
*, Eqns. (6), (22) to (25), and/or of H2O2, Eqns. (-2), (3) [75], and (22) 
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and (26) [106-110]. This dual dynamics of O-containing species can be the reason for 

differences in reduction currents between positive- and negative-going scans during the ORR 

in Fig. S3, and the lack of current at Ei > Eonset
ORR [17].

(22)𝑃𝑡𝑂𝐻𝑎𝑑𝑠 + 𝐻2𝑂2⇄𝐻2𝑂 + 𝑃𝑡𝐻𝑂 ∗
2,𝑎𝑑𝑠

(23)𝑃𝑡𝑂𝐻𝑎𝑑𝑠 + 𝐻𝑂 ∗
2 ⇄𝑃𝑡𝑂𝑎𝑑𝑠 + 𝐻2𝑂2

(24)𝑃𝑡𝑂𝐻𝑎𝑑𝑠 + 𝐻𝑂 ∗
2 ⇄𝑃𝑡𝐻2𝑂𝑎𝑑𝑠 + 𝑂2

(25)𝑃𝑡𝑂𝑎𝑑𝑠 + 𝐻𝑂 ∗
2 ⇄𝑃𝑡𝑂𝐻𝑎𝑑𝑠 + 𝑂2

(26)𝑃𝑡𝐻𝑂 ∗
2,𝑎𝑑𝑠 + 𝐻2𝑂2⇄𝑂2 + 𝐻2𝑂 + 𝑃𝑡𝑂𝐻𝑎𝑑𝑠

In this scheme, neither the direct reduction nor disproportionation of O2
- in acid are 

expected to be important steps in the overall reduction, because the protonation of O2
-, Eqn. 

(19), is expected to be under diffusion-limited regime, Table S1, and both, the O2
- 

disproportionation, Eqn. (27), and reduction, Eqn. (28), would be comparatively slow 

[80,95,103,104], Table S1,

(27)2𝑂 ―
2 + 2𝐻 + ⇄𝐻2𝑂2 + 𝑂2

(28)𝑂 ―
2 + 𝐻2𝑂 + 𝑒 ― ⇄𝐻𝑂 ―

2 + 𝑂𝐻 ―

Unfortunately, from the current data, it is not possibly to distinguish between the reaction 

schemes proposed in Table 1, and possible from others that could be formulated, which one 

could be the actual ORR mechanism, if indeed there is a single one. It is possible that more 

than one mechanism is operative and the dominant path changes from one to another 

depending on the potential, the coverage of O-containing species, among other. More work 

is still necessary in order to understand the molecular details of the ORR mechanism on Pt 

surfaces. However, results discussed above certainly give valuable information to accomplish 

this objective.

Finally, it is important to highlight that the fact that HO2
* radical and H2O2 would be 

always produced during the ORR on Pt would seriously influence the stability of Pt-based 

materials in fuel cell operando conditions, and it should be taken into account in the design 

of new materials. Accordingly, in order to improve the performance of ORR electrocatalysts, 

the search for better materials should focus not only in the enhancement of the 

electrocatalytic activity but, on the other side, in the development of strategies that allow 

minimizing the effects of HO2
* radicals and H2O2 in the durability of the cathode catalyst 

layers. 

Besides, the combination of inner- and outer-sphere reactions in the global reaction path, 

opens the opportunity of designing new catalysts beyond fundamental limits imposed by the 
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apparent scaling relations between probable reaction intermediates, such as OHads, Oads, and 

HO2,ads adsorbates. In this sense, it would be possible in principle to improve the reduction 

of HO2
* and H2O2, or its decomposition to O2 and water by selecting appropriate surrounding 

conditions, without altering electrocatalytic properties of electrode materials, or by finding a 

proper balance between surface properties and reacting media. For example, the design of 

composites that can modify the extension of disproportionation equilibriums, Eqns. (4) and 

(5), could help to increase the reaction onset, as already reported by the use of ionic liquids 

in the catalytic layer [7]. 

4. Conclusions

In this work, the oxygen reduction reaction on platinum surfaces has been characterized 

at different time scales and by employing diagnostic criteria for common reaction schemes 

and digital simulations that include chemical processes inside the mechanistic pathway. 

Results evidence the presence of kinetic complications during the ORR that have been 

explained by considering the occurrence of an initial Chemical-Electrochemical-Chemical-

Electrochemical sequence of steps, coupled to a disproportionation reaction (a CECE/DISP 

scheme). Under steady-state situations at bulk electrodes, the first charge transfer process is 

the rate determining step (RDS) but, at diffusion-controlled conditions, the second chemical 

reaction becomes the RDS at high potentials. In addition, results suggest that dissolved 

oxygen reacts at potentials higher than the reaction onset, despite the lack of current, and the 

process occurring at those potentials would control the value of peak currents at lower 

potentials. Finally, the possible occurrence of some reported reaction steps is analyzed in 

light of these ideas, and two probable mechanisms are proposed. Although results from this 

study offer new valuable information, more work is still necessary in order to derive the full 

ORR mechanism.

Associated content

Supporting information 1: Additional supporting electrochemical characterization, 

calculated LSV curves for simple reaction schemes by numerical simulation, and estimated 

thermodynamic and kinetic parameters for the reaction steps discussed through the text 

(PDF)
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Supporting information 2: Details regarding the mathematical structure of models 

discussed in the text, as well as employed boundary conditions and data related to the 

implementation of the model in COMSOL Multiphysics 5.1 (PDF)
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