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abstract: Understanding selection on intra- and interspecific inter-
actions that take place in dispersal-limited communities is a challenge
for ecology and evolutionary biology. The problem is that local demo-
graphic stochasticity generates eco-evolutionary dynamics that are gen-
erally too complicated to make tractable analytical investigations. Here
we circumvent this problem by approximating the selection gradient
on a quantitative trait that influences local community dynamics, as-
suming that such dynamics are deterministic with a stable fixed point.
The model nonetheless captures unavoidable kin selection effects aris-
ing from demographic stochasticity. Our approximation reveals that
selection depends on how an individual expressing a trait change influ-
ences (1) its own fitness and the fitness of its current relatives and (2)
the fitness of its downstream relatives through modifications of local
ecological conditions (i.e., through ecological inheritance). Mathemati-
cally, the effects of ecological inheritance on selection are captured by
dispersal-limited versions of press perturbations of community ecology.
We use our approximation to investigate the evolution of helping within
species and harming between species when these behaviors influence
demography. We find that altruistic helping evolves more readily when
intraspecific competition is for material resources rather than for space,
because in this case the costs of kin competition tend to be paid by down-
stream relatives. Similarly, altruistic harming between species evolves
when it alleviates downstream relatives from interspecific competition.
Beyond these examples, our approximation can help better understand
the influence of ecological inheritance on a variety of eco-evolutionary
dynamics inmetacommunities, from consumer-resource and predator-
prey coevolution to selection onmating systemswith demographic feed-
backs.
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Introduction

Interactions within and between species are extremely com-
mon innature andprobably connect almost all living organisms
to one another. How such intra- and interspecific interactions
evolve depends on interdependent ecological and evolutionary
processes (Urban 2011; Wagner et al. 2017; terHorst et al.
2018), also known as eco-evolutionary dynamics (for review,
see Lion 2017). One major difficulty in understanding these
dynamics is due to the spatial structuring of communities,
which emerges from the physical limitations of movement
and interactions. This spatial structure is captured by the
notion of a metacommunity, in which individuals of differ-
ent species are divided among small local patches connected
to each other by dispersal (e.g., Hanski andGilpin 1997; Clo-
bert et al. 2001; Urban et al. 2008; Leibold and Chase 2017).
When dispersal among the patches of a metacommunity

is limited, individual reproductive and survival variance gen-
erate local demographic stochasticity. This has two compli-
cating consequences for eco-evolutionary dynamics. First, it
causes genetic stochasticity, whereby allele frequencies fluc-
tuate within and between patches. These fluctuations lead to
the buildup of genetic relatedness between members of the
same species. Genetic relatedness then influences selection
on traits, in particular social traits, which, like helping, are
traits that affect the reproductive success of both their actor
(direct effects) andtheir recipient (indirecteffects; e.g.,Ham-
ilton 1971; Hamilton and May 1977; Taylor 1994; Taylor
and Frank 1996; Frank 1998; Rousset 2004; Lion and van
Baalen 2007b;West et al. 2007; VanCleve 2015). Second, lo-
cal demographic stochasticity results in ecological stochas-
ticity, whereby the abundances of different species fluctuate
within and between patches. As a consequence, multispe-
cies demography in patch-structured populations is signifi-
cantly more complicated that in panmictic populations
(Chesson 1978, 1981; Hubbell 2001; Neuhauser 2002; Cor-
nell and Ovaskainen 2008). As genetic and ecological sto-
chasticity are further likely to influence one another through
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Kin Selection Meets Metacommunities 665
eco-evolutionary feedbacks,understanding selectionon traits
mediating ecological interactions is a major challenge when
dispersal is limited.

In complicated demographic scenarios, fundamental in-
sights into selectioncanbeobtained fromthe long-termadap-
tive dynamics of quantitative traits. These dynamics follow
the gradual changes of traits displayed by a population under
the constant but limited influx ofmutations (e.g., Eshel 1983,
1996; Parker and Maynard Smith 1990; Christiansen 1991;
Grafen 1991; Abrams et al. 1993; Metz et al. 1996; Geritz
et al. 1998; Rousset 2004). One of the main goals of evolu-
tionary analysis is to identify local attractors of such adap-
tive dynamics. These attractors are trait values toward which
selection drives a population under gradual evolution (re-
ferred to as convergence-stable phenotypes; Eshel 1983; Tay-
lor 1989; Christiansen 1991; Geritz et al. 1998; Rousset 2004;
Leimar 2009). Convergence-stable phenotypes can be iden-
tified from the selection gradient on a trait, which is themar-
ginal change in the fitness of an individual due to this indi-
vidual and all its relatives changing trait value. Such analysis
has helped us understand how natural selection molds phe-
notypic traits of broad biological interest, from senescence,
dispersal, mate choice, life history, sperm competition, and
sex ratio to altruism, cumulative cultural evolution, bet hedg-
ing,andoptimal foraging(e.g.,Hamilton1966;Charnov1976;
Schaffer 1982; Taylor 1988a, 1988b; Parker 1990; Frank 1998;
Foster 2004; Gardner and West 2004; Kisdi and Priklopil
2010; Akçay andVan Cleve 2012; Kuijper et al. 2012; Mullon
et al. 2014; Wakano and Miura 2014; Kobayashi et al. 2015;
Weigang and Kisdi 2015; Nurmi et al. 2018).

Gold standard expressions for the selection gradient on
traits that influence thedemographyof a single species,where
all consequences of genetic and ecological stochasticity for
natural selection are taken into account, have been worked
out long ago (Rousset 2004, ch. 11; Rousset and Ronce 2004,
eqq. [23], [24]). In principle, these expressions can be directly
extended to consider multispecies interactions. However,
even under the simplest model of limited dispersal, which
is the island model of dispersal (Wright 1931), the evalua-
tion of the selection gradient on traits affecting a single
specieseco-evolutionarydynamicsremainsdispiritinglycom-
plicated (Rousset and Ronce 2004; Lehmann et al. 2006;
AlizonandTaylor2008;Wild2011).Asa result, the selection
gradient is most often computed numerically as the deriva-
tive of an invasion fitness measure, without the provision
of anybiological interpretationof selectionon the trait under
focus (Metz andGyllenberg 2001;Cadet et al. 2003;Parvinen
et al. 2003; Parvinen and Metz 2008). Only specific demo-
graphicmodels under limited dispersal with finite patch size
have been studied analytically in detail (Comins et al. 1980;
Gandon and Michalakis 1999; Lehmann et al. 2006; Ro-
drigues andGardner2012;Parvinenet al. 2018).Abiologically
intuitive understanding of selection on traits that influence
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metacommunity dynamics is therefore out of immediate
reach when using the exact selection gradient.
To circumvent the difficulty of computing and interpret-

ing the selection gradient under limited dispersal, various
approximations have been proposed. The most prominent
is perhaps the heuristic pair approximation, which has been
used to study intraspecific social evolution and host-parasite
coevolution in lattice-structured populations (e.g., Nakamaru
et al. 1997; van Baalen and Rand 1998; Le Galliard et al. 2003,
2005; Nakamaru and Iwasa 2005; Lion and van Baalen 2007a;
Lion and Gandon 2009, 2010; Débarre et al. 2012). However,
more general multispecies coevolution scenarios have not
been much investigated using pair approximation. This is
presumably becauseanalytical explorations remain complicated
in lattice-structured populations due to the effects of isola-
tion by distance.
In this article, we present a novel heuristic approxima-

tion for the selection gradient on traits that influence eco-
evolutionarydynamics inpatch-structuredpopulations,which
do not experience isolation by distance or heterogeneities in
abiotic factors (i.e., the population is structured according to
the homogeneous island model of dispersal of Wright 1931;
for its ecological counterpart, see Chesson 1981). The crux
of this approximation is that it assumes that local popula-
tion size dynamics are deterministic with a stable fixed point
(i.e., we ignore ecological stochasticity and periodic or cha-
oticpopulationdynamics).Thisassumptionallowsus toreach
key analytical insights, which can be applied to understand
a wide spectrum of multispecies interactions. Importantly,
our approximation provides a biologically meaningful inter-
pretation of selection on traits that influence ecological in-
teractions under limited dispersal. The rest of the article is
organized as follows: (1)We describe a stochastic metacom-
munity eco-evolutionarymodel. (2)Wemotivate an approx-
imation of our model that ignores ecological stochasticity.
(3) Under this approximation, we analytically derive the se-
lection gradient on a trait that influences eco-evolutionary
dynamics through intra- and interspecific interactions. (4) We
use our approximation to study two examples of social and
ecological interactions: evolution of helping within species and
harming between species when these behaviors influence de-
mography.We show that for these examples our approxima-
tion performs well compared to individual-based simulations
in predicting equilibrium strategies and the species abundances
these strategies generate.

Model

Metacommunity Structure

We consider an infinite number of patches that are con-
nected by uniform dispersal (Wright’s [1931] infinite island
model of dispersal). On each patch, a community of up to
S species may coexist. The life cycle events of each species
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666 The American Naturalist
i ∈ f1, 2, ::: , Sg are as follows: (1) Each adult produces a
number of offspring that follows a Poisson distribution (with
a mean that may depend on local interactions within and
between species). (2) Each adult then either survives or dies
(with a probability that may depend on local interactions
within and between species). (3) Independently of one an-
other, each offspring either remains in its natal patch or dis-
perses to another randomly chosen one (the dispersal prob-
ability is assumed to be nonzero for all species but may differ
among species). (4) Each offspring either dies or survives to
adulthood (with a probability that may depend on local popu-
lation numbers, e.g., if space on each patch is a limiting factor).
Evolving Phenotypes and the Uninvadable
Species Coalition

Each individual expresses a genetically determined evolving
phenotype, or strategy, which can affect any event, such as re-
production, survival, or dispersal, in the life cycle of any spe-
cies.We assume that the expression of a strategy and its effects
are independent of age (i.e., noage structure).Wedenote byΘi

the set of feasible strategies for species i (this set is either the set
or a subsetof the real numbers,Θi ⊂ R).When thepopulation
of each species ismonomorphic, themetacommunity (i.e., the
collection of subdivided populations of each species) is de-
scribed by a vector of strategies v p (v1, v2, ::: , vS), where vi
is the strategy expressed by all individuals of species i (i.e., v
denotes a monomorphic resident population).

We define v as an uninvadable coalition if any mutation
ti ∈ Vi, which arises in any species i and which results in a
unilateral deviation ti p (v1, ::: , vi21, ti, vi11, ::: , vS) of the
resident vector, goes extinct. The concept of an uninvadable
coalition is the same as the concepts of a multispecies evolu-
tionary stable strategy (Brown andVincent 1987, p. 68) andan
evolutionary stable coalition (ApalooandButler 2009, p. 640).1
Adaptive Dynamics

Under the above definition of uninvadability, it is sufficient
to consider the fate of a unilateral phenotypic deviation in one
species at a time to determine whether a coalition is unin-
vadable. We can therefore focus our attention on the evolu-
tionary dynamics of a mutant allele, which arises in species i
and codes for phenotype ti, when the resident community ex-
presses v. In the infinite islandmodel of dispersal, the change
Dpi in (appropriately weighted) average frequency pi of such
a mutant allele over one demographic time period (one life
cycle iteration) can be written as

Dpi p pi(12 pi)diSi(v)1 O(d2i ), ð1Þ

1. We here refrain from using the terminology “evolutionary stability,” as

it presumes that such strategies are attractors of the evolutionary dynamics
(Maynard Smith 1982), which is not covered by the concept of uninvadability.
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where di p ti 2 vi is the phenotypic effect of the mutation
(Rousset 2004, pp. 206–207; Rousset and Ronce 2004, p. 129;
with notation here adapted to introduce species-specific al-
lele frequency change). The function Si(v), which depends
on quantities evaluated only in the resident community v, is
the selection gradient on the trait in species i. When selection
is weak (so that jdj ≪ 1 and terms O(d2i ) can be neglected),
the selection gradient Si(v) and phenotypic effect di give the
direction of selection on the mutant at any allele frequency:
selection favors the invasion and fixation of the mutation
when diSi(v) 1 0 and conversely extinction when diSi(v) ! 0.
The selection gradient thus captures directional selection.
The selection gradient Si(v) is useful to derive necessary

conditions for a coalition to be uninvadable. First, a neces-
sary condition for a coalition v* that lies in the interior of the
set of feasible strategies to be uninvadable is that

Si(v
*) p 0   8 i: ð2Þ

Such a coalition v* is said to be singular. The allele fre-
quency change equation (1) also informs us whether a singu-
lar coalition v* will be approached by gradual evolution from
its neighborhood under the constant but limited influx of
mutations, that is, whether it is convergence stable. A singu-
lar coalition is convergence stable when the eigenvalues of
the S#S Jacobian matrix, J(v*), with (i, j) entry,

(J(v*))ij p
∂Si(v)
∂vj

�����
vpv*

, ð3Þ

all have negative real parts (e.g., Débarre et al. 2014, eq. [7a]).
When atmost two alleles can ever segregate in a given spe-

cies, a convergence-stable strategy is also locally uninvad-
able (Débarre and Otto 2016). In that case, the collection of
selection gradients acting in each species is sufficient to es-
tablish whether a coalition is uninvadable.Whenmore than
two alleles can segregate at a locus, establishing local unin-
vadability requires looking into the second-order effects of
selection (i.e., terms of O(d2i ) in eq. [1]; Taylor 1989; Geritz
et al. 1998; Rousset 2004; Leimar 2009). These effects, which
capture disruptive selection, are difficult to analytically char-
acterize under limited dispersal (e.g., Ajar 2003; Mullon et al.
2016; Parvinen et al. 2018). We will therefore focus on the
effects of directional selection in this article.
Selection Gradient in Metacommunities

The selection gradient, Si(v), in a given species i in the is-
land model can be written as a change in the fitness of indi-
viduals experiencing different demographic states, weighted
jointly by reproductive values and relatedness coefficients
(for a single-species demography dynamics, see Rousset and
Ronce 2004, eqq. [26], [27]; for arbitrary demographic states,
see Lehmann et al. 2016, eqq. [E.27]–[E.29]). Reproductive
3.052.133 on November 29, 2018 01:36:57 AM
s and Conditions (http://www.journals.uchicago.edu/t-and-c).



Kin Selection Meets Metacommunities 667
values reflect the fact that individuals residing in different
demographic states contribute differently to the future gene
pool (Rousset and Ronce 2004; Lehmann et al. 2016). Repro-
ductive values thus capture the effects of ecological stochasti-
city on selection. Relatedness, meanwhile, captures the fact
that individuals from the same species that reside in the same
patcharemore likely to carryalleles identical bydescent than
randomly sampled individuals in the population (for text-
book treatments, see Nagylaki 1992 and Rousset 2004). The
relatedness coefficients in the selection gradient thus reflect
the consequences of genetic stochasticity on selection.

In spite of the insights brought by the exact selection gra-
dient onecological andgenetic stochasticity, its usage to study
community evolution under the assumptions of our model
presents two caveats. The first is that owing to the large num-
ber of possible demographic states within patches (all possi-
ble configurations of the number of individuals of all species
on a patch), the necessary computations are not straightfor-
wardandwouldbeextremely expensivenumerically (as shown
by the computations necessary even in the absence of inter-
specific interactions; Rousset and Ronce 2004; Lehmann et al.
2006; Alizon and Taylor 2008; Wild et al. 2009; Wild 2011).
It is possibly due to this computational hurdle that no appli-
cation of the exact selection gradient to the coevolution of
multiple species that experience stochastic demography and
limited dispersal can be found in the literature. The second
caveat is that the expressionof selection in termsof reproduc-
tive values applies to any type of demographic structuring (e.g.,
by age, stage, sex, or environment; Frank 1998; Rousset 2004;
Grafen 2006). As a consequence, without solving reproduc-
tive values explicitly in terms of model parameters, the exact
selection gradient carries little biological information about
how local ecological interactions influence selection.

The goal of this article is to provide a tractable and biolog-
ically informative approximation for the selection gradient in
a metacommunity. We propose to achieve this by assuming
that changes in local population size are deterministic with a
stablefixedpointwhen themetacommunity ismonomorphic
for v. Resident patches will therefore experience neither sto-
chastic ecological fluctuations nor periodic/chaotic dynamics.
As a consequence, it will no longer be necessary to consider all
the possible demographic states that a focal patch can transit
between. Before deriving this approximation, let us first study
resident demographic dynamics (i.e., in a metacommunity
monomorphic for the resident v) to investigate how and when
these dynamics can be assumed to be deterministic.
Resident Community Dynamics

Deterministic Resident Community Dynamics

Our life cycle assumptions (see “Metacommunity Struc-
ture”) entail that we are considering an infinite stochastic
This content downloaded from 130.22
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system, that is, we have an infinite number of interacting
multidimensional Markov chains (each chain describes the
community dynamics on a single patch, and chains interact
with one another through dispersal; Chesson 1981, 1984).
For this system, let us consider the expected number of in-
dividuals (or abundance) of each species in a focal patch at
a given demographic time t, which we denote by nt(v) p
(n1,t(v), n2,t(v), ::: , nS,t(v)), where ni,t(v) is the expected abun-
dance of species i (note that we do not need to label patches
since they are identical on average; e.g., Neuhauser 2002).
This expected abundance can be written as ni,t(v) p
Fi(v,N t21, nt21(v)), for i p 1, 2, ::: , S, where the population
dynamic transition map Fi gives the expected number of in-
dividuals of species i, given the local community stateN t21 p
(N1,t21,N2,t21, ::: ,NS,t21) in the previous demographic time
period (i.e., Ni,t21 denotes the random variable for the num-
ber of individuals of species i in the focal patch at time t 2 1),
and when the global average community state is nt21(v) p
(n1,t21(v), n2,t21(v), ::: , nS,t21(v)) (i.e., ni,t21(v) is the average
number of individuals of species i across all patches at t 2 1;
note that nt21(v) is not a random variable because there is
an infinite number of patches). We have written the transi-
tion map Fi(v,N t21, nt21(v)) such that it also explicitly de-
pends on the vector of phenotypes v of each species in the fo-
cal patch in the previous time period, which will be useful
when we introduce selection.
The basis of our approximation is to assume that the dy-

namics of the abundance of each species in a patch are de-
terministic (in an abuse of notation, N t ≈ E[N t] p nt(v)).
This entails that the ecological dynamics on a focal patch,
which are no longer stochastic, are given by

ni,t(v) p Fi(v, nt21(v), nt21(v)) for i p 1, 2, ::: , S ð4Þ
(Chesson 1981). We further assume that these deterministic
ecological dynamics are such that abundances of all species
converge to a stable fixed point. From the dynamical equa-
tion (4), this ecological fixed point, which we denote as
n̂(v) p (n̂1(v), n̂2(v), ::: , n̂S(v)), solves

n̂ i(v) p Fi(v, n̂(v), n̂(v)) for i p 1, 2, ::: , S: ð5Þ
Local stability of the fixed point n̂(v) entails that it is such

that the local community matrix (e.g., Yodzis 1989; Case
2000)

C(v) p

∂F1(v, n, n̂)
∂n1

����n p n̂

∂F1(v, n, n̂)
∂n2

����n p n̂
:::

∂F1(v, n, n̂)
∂nS

����n p n̂

∂F2(v, n, n̂)
∂n1

����n p n̂

∂F2(v, n, n̂)
∂n2

����n p n̂
:::

∂F2(v, n, n̂)
∂nS

����n p n̂

⋮ ⋮ ⋱ ⋮

∂FS(v, n, n̂)
∂n1

����n p n̂

∂FS(v, n, n̂)
∂n2

����n p n̂
:::

∂FS(v, n, n̂)
∂nS

����n p n̂

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA
,

ð6Þð6Þ
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whose (i, j) entry measures the influence of the abundance
of species j on the abundance of species i over one demo-
graphic time period, has eigenvalues all with absolute value
less than one.
Illustrating Example

To illustrate the transition function (Fi; eq. [4]) and provide
a basis for later comparisons with individual-based simula-
tions, consider two semelparous species whose life cycle is
as follows: (1) Each individual of species i ∈ f1, 2g in a patch
with n p (n1, n2) individuals produces a mean number
f i=(11 gni 1 hnj) of offspring (with j ∈ f1, 2g and j ( i),
where fi is the number of offspring produced in the absence
of density-dependent competition. The denominator 11
gni 1 hnj captures density-dependent competition within
species (with intensity g) and between species (with intensity
h). This model for offspring production can be seen as a spe-
cial case of the Leslie-Gower model of species interaction
(Leslie and Gower 1958, eq. [1.1]). (2) All adults die. (3) In-
dependently of one another, each offspring of species i dis-
perses with probability mi. (4) Finally, all offspring survive
to adulthood.

According to this life cycle, the abundance of species 1
and 2 in the focal patch, conditional on the abundance being
nt21(v) in the previous time period in the focal patch and on
the abundance in other patches being at a stable equilibrium
n̂(v), can be written as

n1,t(v)p (12m1)

�
f 1

11 gn1,t21(v)1 hn2,t21(v)

�
n1,t21(v)1m1n̂1(v),

n2,t(v) p (12m2)

�
f 2

11 gn2,t21(v)1 hn1,t21(v)

�
n2,t21(v)1m2n̂2(v):

ð7Þ

Equation (7) is an example of a so-called coupled map lat-
tice with implicit space (e.g., Ranta et al. 2006, eq. [3.11]).
The first summand in each line of equation (7) is the number
of settled individuals in the focal patch that are born locally.
The second summand in each line is the total number of
offspring that immigrate into the focal patch from other
patches. To better understand this second summand, consider
that when the population is at the resident demographic equi-
librium, an individual produces on average one offspring
(i.e., individual fitness is equal to one), so that the total num-
ber of individuals remains constant. As a consequence, n̂1(v)
and n̂2(v) gives the total number of offspring of species 1 and 2,
respectively, produced in any patch other than the focal one.
Therefore, m1n̂1(v) and m2n̂2(v) in equation (7) give the av-
erage number of offspring immigrating into the focal patch
of species 1 and 2, respectively.

The equilibrium abundance of both species is found by sub-
stituting equation (7) in equation (5) (i.e., putting n1,t(v) p
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n1,t21(v) p n̂1(v) and n2,t(v) p n2,t21(v) p n̂2(v)) and solv-
ing for n̂1(v) and n̂2(v) simultaneously. Doing so, we find that
the unique positive equilibrium (i.e., n̂1(v) 1 0 and n̂2(v) 1 0)
reads as

n̂1(v)p
( f 1 2 1)g2 ( f 2 2 1)h

g2 2 h2
,

n̂2(v) p
( f 2 2 1)g2 ( f 1 2 1)h

:

ð8Þ
g2 2 h2

This reveals that for the two species to coexist, it is necessary
for intraspecific competition to be stronger than interspecific
competition (g 1 h), which is a classical result (Case 2000).

Comparing Deterministic and Stochastic Dynamics

To assess when ecological stochasticity can be ignored (i.e.,
when eq. [4] accurately reflects the true stochastic dynamics),
we compared the deterministic community dynamics of the
Leslie-Gower model (eq. [7]) with individual-based simula-
tions of the full stochastic model (see app. A for a description
of the simulation procedure; apps. A–C are available online).

Ecological Stochasticity. We find that there is a good quali-
tative match between the deterministic equilibrium abun-
dance given by equation (8) and the average number of in-
dividuals of each species in a group observed in stochastic
individual-based simulations (fig. 1, top row). As predicted
by theory (Chesson 1981; Neuhauser 2002), the determinis-
tic equilibrium systematically deviates from the observed av-
erage (fig. 1, top row). However, these deviations are small
provided dispersal is not too weak (roughly no less than 0.1),
and competition is such that deterministic abundance on
a patch is greater or equal to 10 individuals (fig. 1, middle
row). This suggests that under such demographic situations
ecological stochasticity can be ignored.
When fecundity is low and competition is weak, onemight

expect that ecological stochasticity is too important to be
ignored, as forces stabilizing the ecological equilibrium are
weaker. Strikingly, even when fecundity is extremely low
(barely above one, which is the threshold for the population
to be maintained), it is still true that as long as dispersal is
greater or equal to 0.1 and competition is such that determin-
istic abundance on a patch is greater or equal to 10 individ-
uals, deterministic ecological dynamics are a very good ap-
proximation of the stochastic process (fig. 1, left column).
The mitigating effects of dispersal on ecological stochasticity
are further illustrated by the observation that in stochastic
simulations variation in abundance among patches rapidly
becomes vanishingly small as dispersal increases (fig. 1, bot-
tom row).
Why dispersal mitigates the effects of ecological stochasti-

city can be understood as follows. Local population dynam-
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ics depend on the balance between two processes: (1) a local
process at the patch level (i.e., dependence on N t21), which
has a strong stochastic component when patches have few
individuals, and (2) a global process at the metacommunity
This content downloaded from 130.22
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level (i.e., dependence on nt21(v)), which has a weak stochas-
tic component when the number of patches is large (in fact,
as the number of patches grows infinite, patches affect each
other deterministically; Chesson 1981). As dispersal increases,
K
e
y

Figure 1: Stochastic dynamics of local abundance and their deterministic approximation (eq. [7]) for the Leslie-Gower model with two species.
Different columns correspond to different levels of baseline fecundity (i.e., fecundity in the absence of density of competition). The first column
has extremely low baseline fecundity ( f 1 p 1:1, f 2 p 1:095), the second has intermediate fecundity ( f 1 p 2, f 2 p 1:955), and the third has
high fecundity ( f 1 p 5, f 2 p 4:955). Top row: deterministic dynamics (straight line, determined from eq. [7], with n̂ p nt21) and stochastic dy-
namics (dots, with 1,000 patches [for details on simulations, see app. sec. A1, available online], withm1 p m2 p 0:01, 0:05, 0:1, 0:2, 0:5—see key
on right-hand side—and competition parameters g and h chosen so that the deterministic equilibrium given by eq. [8] is n̂1 p 20 and n̂2 p 10—
see table 1 for values). Middle row: comparisons between the deterministic (X-axis, from eq. [8]) and stochastic (Y-axis) number of individuals
of species 2, averaged over 1,000 generations starting at deterministic equilibrium in each patch (error bars give the standard deviation of the sto-
chastic value, withm1 p m2 p 0:001, 0:01, 0:1, 0:5—see key on right-hand side—and competition parameters (g, h) chosen so that the determin-
istic equilibrium given by eq. [8] is n̂1 p 20 and n̂2 p 2, 5, 10, 14, 18—in general, competition parameters decrease as fecundity decreases and
patch size increases; see table 1 for the parameter values we used, which span two orders of magnitude, from 0.001 to 0.1). Departures from the
diagonal indicate deviations between the exact process and the deterministic approximation. Bottom row: from the same simulations described
in the middle row, these graphs show the coefficient of variation Cv of abundance of species 2 across patches according to dispersal level (i.e.,
Cv is the ratio of the average number of individuals of species 2 per patch to its standard deviation, averaged over 1,000 generations, shown here
for different values of n̂2—see key on right-hand side—error bars give the standard deviation of Cv over 1,000 generations).
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local population dynamics increasingly depend on the global
process and less on the local one. As a result, local population
dynamics become increasingly deterministic.

Genetic Stochasticity. The above analysis suggests that eco-
logical stochasticity can be ignored when dispersal values
are roughly above 0.1 and demographic parameters are such
that equilibrium abundance within species is greater or equal
to 10 (fig. 1). This raises the question of whether genetic sto-
chasticity can also be ignored for such parameter values. The
consequence of genetic stochasticity for selection can be ig-
nored when relatedness coefficients are very small. The stan-
dard relatedness coefficient in the island model is the prob-
ability ri(v) that two individuals from the same species i, which
are randomly sampled in the same patch, carry an allele that
is identical by descent when the population is monomorphic
for v (also referred to as pairwise relatedness; Frank 1998;
Rousset 2004). Let us consider this probability when the com-
munity has reached its (deterministic) demographic equilib-
rium n̂(v) (given by eq. [8]). Owing to our assumption that
fecundity is Poisson distributed, pairwise relatedness satisfies
the relationship

ri(v) p (12mi)
2

�
1

n̂i(v)
1

�
12

1
n̂i(v)

�
ri(v)

�
, ð9Þ

which can be understood as follows. With probability
(12mi)

2, two randomly sampled individuals of species i
are both of philopatric origin (i.e., they were born in the fo-
cal patch). Then, with probability 1=n̂i(v), these individuals
descend from the same parent, so their relatedness is one.
With complementary probability 12 1=n̂i(v), they descend
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from different parents, so their relatedness is ri(v). The solu-
tion to equation (9) is

ri(v) p
(12mi)

2

11 [12 (12mi)
2](n̂i(v)2 1)

, ð10Þ

which is equivalent to the standard FST quantity (when indi-
viduals are sampled without replacement; e.g., Rousset 2004;
Hartl and Clark 2007). Note, however, that in contrast to
most mathematical treatments of FST, the number of indi-
viduals n̂(v) here is endogenously determined by an explicit
demographic process (eqq. [7], [8]).
Inspection of equation (10) reveals that relatedness can

build up to significant values, even when dispersal is within
a range under which we can legitimately approximate mean
abundance by the deterministic model (e.g., local population
size must be greater than 422 for relatedness to be less than
0.01 when dispersal is equal to 0.1). This shows that there
exists a demographic regime under which ecological stochas-
ticity can be neglected but genetic stochasticity cannot (which
is in line with the fact that genetic stochasticity can lead to sig-
nificant levels of relatedness even when patch size is constant
and there is no ecological stochasticity; Rousset 2004; Hartl
and Clark 2007). We will therefore take into account the ef-
fects of genetic stochasticity when deriving our approxima-
tion for the selection gradient. It is noteworthy that we find
an excellent match between pairwise relatedness observed
in individual-based simulations and pairwise relatedness cal-
culated from the deterministic ecological approximation (i.e.,
eq. [10] with eq. [8]; fig. 2). This lends further support to the
usefulness of the deterministic ecological approximation to
study populations at ecological equilibrium (eq. [5]).
Table 1: Competition parameters used in simulations to generate figure 1
Equilibrium abundance
of species 2—n̂2
Low fecundity
( f 1, f 2) p (1:1, 1:095)
3.05
s and
Intermediate fecundity
( f 1, f 2) p (2, 1:955)
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High fecundity
( f 1, f 2) p (5, 4:955)
2:

g
 .00457071
 .0456818
 .182045

h
 .00429293
 .0431818
 .179545
5:

g
 .00406667
 .0406
 .1606

h
 .00373333
 .0376
 .1576
10:

g
 .0035
 .0348333
 .134833

h
 .003
 .0303333
 .130333
14:

g
 .00328431
 .0325
 .120735

h
 .00245098
 .025
 .113235
18:

g
 .00381579
 .0369737
 .115921

h
 .00131579
 .0144737
 .0934211
Note: Values are found by solving eq. (8) for g and h with n̂1 p 20, n̂2 given in the left column, and fecundities f1 and f2 given in the
top row.
:57 AM
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Evolutionary Analysis

Wenow specify the (approximate) selection gradient on a trait
expressed in species iwhen the effects of ecological stochastic-
ity are neglected. First, we characterize ecological dynamics
when they can be influenced by the presence of geneticmutants.
Mutant Community Dynamics

Wenow assume that two alleles segregate in the focal species i:
a rare mutant that codes for phenotype ti and a resident for vi.
We focus on a focal patch in which both alleles are present,
while other patches are considered to be monomorphic for the
resident v, and at their ecological equilibrium, n̂(v) (eq. [5]).
In this focal patch, we assume that the number of individuals,
nj,t(ti), of species j at time t is given by

nj,t(ti) p Fj(t i,t21, nt21(ti), n̂(v)) for j p 1, 2, ::: , S, ð11Þ
where Fj is the map introduced in “Deterministic Resident
Community Dynamics” (eq. [4]) but the first argument of
this map is now t i,t21 p (v1, ::: , vi21, t i,t21, vi11, ::: , vS), which
is a vector collecting the average phenotypes expressed in
each species in the focal patch at demographic time t 2 1
(in species j ( i other than the focal, this average is simply
the resident vj; in the focal species i, this average is denoted
by ti,t). Since the average phenotype in the focal species, ti,t ,
depends on the number of genetic mutants, the first argu-
ment of Fj in equation (11) captures the effect of the genetic
state on local abundance. The dependence of Fj on the aver-
age phenotypeapproximates possiblymore complicated rela-
tionships between genetic state and abundance to the first
order, which is sufficient to evaluate the selection gradient
(Rousset 2004, p. 95). Themap Fj also depends on nt21(ti) p
(n1,t21(ti), ::: , nS,t21(ti)), which is the ecological state of the
focal patch at time t 2 1, and on the equilibrium n̂(v), which
is the ecological state of other patches.
Because we take genetic stochasticity into account, the

number of mutants, and hence the average phenotype in
the focal species, ti,t , fluctuate randomly and should be con-
sidered as random variables. As a result, the abundance nj,t(ti)
at time t given by equation (11) is also a random variable.
Importantly, this stochasticity in abundance is due only to
genetic stochasticity in our approximation. When the average
phenotype ti,t is fixed (e.g., for the resident, ti,t p vi), ecolog-
ical dynamics are fully deterministic and given by the re-
currence equation (11). In other words, our approximation
ignores the influence of ecological stochasticity on ecologi-
cal dynamics (for further details, see app. sec. B3).
Inclusive Fitness Effect for the Interactive Community

To derive our approximation for the selection gradient, we use
the basic reproductive number as an invasion fitness proxy
species 1

species 2
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Figure 2: Relatedness and average local abundance under stochastic
individual-based simulations and their deterministic approximation.
The top two graphs show the relatedness for species 1 and 2, respectively,
under the Leslie-Gower demographic model (see “Illustrating Exam-
ple”). Relatedness values obtained from the deterministic approximation
are shown in solid lines (i.e., obtained from eq. [10] with the ecological
equilibrium derived from the deterministic approximation, eq. [8], pa-
rameter values f 1 p 2, f 2 p 1:8, g p 0:07, and h p 0:01). Related-
ness computed from individual-based simulations are shown as points,
with standard deviation shown by error bars (time average of popula-
tion mean over 5,000 generations after burn-in of 5,000 generations
with 1,000 patches, with m p 0:01, 0:05, 0:1, 0:3, 0:5, 0:65, 0:8, 0:9; for
details on calculations of relatedness, see app. sec. A1, available online).
The bottom graph displays the average local abundance of species 1 (in
black) and 2 (in gray). Full lines are for the deterministic approximation
(eq. [8]). Points are results obtained from stochastic individual-based
simulations (time average of population mean over 5,000 generations
after burn-in of 5,000 generations, with m p 0:01, 0:05, 0:1, 0:3, 0:5,
0:8, 0:9). Error bars show standard deviation.
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(e.g., Stearns 1992; Charlesworth 1994; Case 2000; Metz and
Gyllenberg 2001; Lehmann et al. 2016). This allows us to dras-
tically simplify our calculations and equivalently characterize
directional selection (i.e., the first-order effects of selection
on allele frequency change). These points are further detailed
in appendix B, where we show that the selection gradient on
an evolving trait in species i in a v community can be approx-
imated as

Si(v) ≈ ϵ(v)si(v), ð12Þ
where ϵ(v) 1 0 is a factor of proportionality that depends
on v only (see eqq. [B3]–[B19]), and

si(v) p sw,i(v)1 se,i(v) ð13Þ
is the approximate selection gradient. Since ϵ(v) 1 0, si(v) is
sufficient to ascertain singular trait values and their conver-
gence stability (by replacing Si(v) with si(v) in eqq. [2] and
[3]). The approximate selection gradient, si(v) (eq. [13]), con-
sists of the sum of two terms. The first term, sw,i(v), captures
selection owing to the trait’s intratemporal effects (effects
within a demographic period). The second term, se,i(v), cap-
tures selection owing to the trait’s intertemporal effects (ef-
fects between demographic periods), which emerge as a re-
sult of ecological inheritance (i.e., modified environmental
conditions passed down to descendants; Odling-Smee et al.
2003; Bonduriansky 2012). We detail the two components
of selection, sw,i(v) and se,i(v), in the next two sections.

Selection on Intratemporal Effects. The first term of equa-
tion (13) can be expressed as

sw,i(v) p
∂wi(t•,i,~t i, n, n̂)

∂t•,i

���� ti p vi
n p n̂

1
∂wi(t•,i,~t i, n, n̂)

∂~t i

���� ti p vi
n p n̂

⋅ ri(v)

ð14Þ

(for derivation, see app. sec. B3.4), where wi is the individual
fitness of a focal individual of species i (i.e., the expected num-
ber of successful offspring produced over one life cycle itera-
tion by the focal, including itself if it survives). Individual
fitness, wi(t•,i, ~ti, n, n̂), is written as a function of four vari-
ables: (1) the phenotype t•,i of the focal individual, (2) the
vector~t i p (v1, ::: , vi21,~t i, vi11, ::: , vS) of average phenotypes
of neighbors in the focal patch (where ~ti is the average phe-
notype among the neighbors of species i of the focal individ-
ual), (3) the vector of abundances in the focal community n,
and (4) the vector of average abundance across themetacom-
munity, which is at its equilibrium n̂(v) (explicit examples
of such a fitness function are given later when we apply our
method; see eqq. [23], [36], and [C1]). Note that individual
fitnessmay also depend on the phenotype expressed in patches
other than the focal, which is the resident v, but we have chosen
not to write this dependency explicitly.

ð14Þ
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The two derivatives in equation (14), which are evaluated
in the resident population (i.e., with resident phenotype
ti p vi and resident ecological equilibrium n p n̂(v)), cap-
ture different fitness effects of the trait. The first derivative
represents the change in the fitness of a focal individual of
species i resulting from this individual switching from the
resident to the mutant phenotype (i.e., the direct effect of
the trait). The second derivative can be interpreted as the
change in the fitness of the whole set of same-species patch
neighbors resulting from the focal individual switching
from the resident to the mutant phenotype (i.e., the indirect
effect of the trait). This second derivative is weighted by the
neutral relatedness coefficient, ri(v), which gives the proba-
bility that any same-species neighbor also carries the muta-
tion in the monomorphic resident.

Selection on Intertemporal Feedback Effects due to Ecolog-
ical Inheritance. We now detail the second term of the se-
lection gradient, se,i(v), which captures selection on a trait’s
intertemporal effects.
Feedback between local ecology and evolution. We find

that the second term of equation (13) can be written as

se,i(v) p
XS

jp1

∂nj

∂ti

���� ti p vi
n p n̂

⋅
∂wi(t•,i,~t i, n, n̂)

∂nj

���� ti p vi
n p n̂

ð15Þ

(for details, see app. sec. B3.5, eq. [B28]), where ∂nj=∂ti is
the effect of the mutation on the local abundance of species j
experienced by a mutant of species i that is randomly sam-
pled from its local lineage (i.e., the lineage of carriers of themu-
tant trait ti that reside in the focal patch in which the mutation
first appeared). The second derivative in equation (15) is the ef-
fect that this abundance change of species j has on the fitness of
a focal individual of species i. By multiplying these two effects
and summing them over all species j of the community, equa-
tion (15) therefore captures how selection depends on the
feedback between local community ecology and evolution.
Lineage-centered perspective on the ecological influence of a

trait. The feedback effect captured by equation (15) reveals
that a phenotypic change will be selected when such a change
results in local ecological conditions that are favorable for
the lineage of those that express the change (i.e., when
∂nj=∂ti ⋅ ∂wi(t•,i,~t i, n, n̂)=∂nj 1 0). This brings us to the
question of what is the nature of the influence of a local lin-
eage on its own ecology, which is captured by the derivative
∂nj=∂ti. We find that this derivative can be expressed as

∂nj

∂ti

���� ti p vi
n p n̂

p
XS

kp1

Wk,i(v)
X∞

hp1

Kjk,h(v)[n̂i(v)ri,h(v)] ð16Þ

(for details, see app. sec. B3.5, eq. [B36]). To understand
equation (16), consider a focal individual from species i ex-
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pressing the mutant allele who lives at a demographic time
that we arbitrarily label as time zero (t p 0; see star in fig. 3).
The first term of equation (16),

Wk,i(v) p
1

n̂i(v)
∂Fk(t i, n, n̂)

∂t i

���� ti p vi
n p n̂

, ð17Þ

is the effect that a trait change in the focal individual has on
the abundance of species k in the focal patch at the next de-
mographic time, that is, at t p 1 (solid gray arrows in fig. 3).

The second term in equation (16), Kjk,h(v), is given by
the ( j, k) element of the matrix

Kh(v) p C(v)h21, ð18Þ
where C(v) is the community matrix given in equation (6).
Equation (18) reveals that Kjk,h(v) in equation (16) is the ef-
fect that a change in the abundance of species k at time
This content downloaded from 130.22
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t p 1 has on the abundance of species j at time t p h. Im-
portantly, this effect takes into account the influence that
species have on one another’s abundance, cumulated over
h2 1 demographic time periods (as indicated by the expo-
nent h2 1 in eq. [18]; e.g., dashed gray arrows in fig. 3).
Finally, the term in square brackets in equation (16) can be

interpreted as the expected number of carriers of identical-
by-descent copies of the mutant allele (number of “relatives”
of the focal individual) that live in the focal patch at time
t p h ≥ 1 in the future (and that therefore experience the
mutant-modified ecological conditions at time h; e.g., gray
disks in fig. 3). Indeed, this term consists of the product of
the equilibrium abundance, n̂i(v), with

ri,h(v) p (12mi(v))
h

�
1

n̂i(v)
1

n̂i(v)2 1
n̂i(v)

ri(v)

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ri(v)

, ð19Þ
Figure 3: Intertemporal effects of a focal individual. As an example, consider a local community of three species, labeled 1 (circle), 2 (square),
and 3 (triangle). We consider the effect of a mutation in species 1. A focal carrier of a mutation t1 in species 1 living at time t p 0 (denoted by a
star) first directly influences the population dynamics of species 1, 2, and 3 at time t p 1 according to W1,1(v), W2,1(v), and W3,1(v) (solid gray
arrows; eq. [17]). This change in abundance at time t p 1 affects the abundance of the other species through time due to ecological interac-
tions. For example, a change in abundance of species 2 at time t p 1 influences the abundance of species 1, 2, and 3 at time t p h according
to K12,h(v), K22,h(v), and K32,h(v), respectively (dashed gray arrows; eq. [18]). These changes are experienced by n̂1(v)r1,h(v) relatives of the focal
individual at time t p h (gray circles; eq. [19]).
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which is the relatedness between two individuals of species i
that are sampled h demographic time periods apart in the
focal patch in the resident population (i.e., the probability
that these two individuals share a common ancestor that re-
sided in the focal patch; for a formal definition, see also
eq. [B35]). Note that in general mi(v) is the backward prob-
ability of dispersal, which is defined as the probability that a
randomly sampled individual of species i in the resident pop-
ulation is an immigrant. This will of course be influenced
by dispersal behavior but also by other organismal aspects
depending on the life cycle (e.g., on adult survival from one
time period to the next).

The above considerations (eqq. [17], [18]) show that the
influence of a local lineage on the abundance of its own or
another species j (eq. [16]) can be intuitively understood as
the effect of a trait change in a focal individual on the abun-
dance of species j, which is experienced by all its down-
stream relatives residing in the focal patch (for a diagram,
see fig. 3; for mathematical details, see app. sec. B3.5).

Evolutionary press perturbations. To evaluate equation (16)
explicitly, we can use the fact that under our assumptions
that patches are not totally isolated from one another (i.e.,
mi(v) 1 0) and that the resident community is at a stable
fixed point (i.e., C(v) has eigenvalues with absolute value
less than one), the infinite sum in equation (16) converges.
This leads to the following expression (for details, see app.
sec. B3.5, eq. [B37]):

∂nj
∂ti

���� tip vi
np n̂

p
XS

kp1

Wk,i(v)n̂i(v)Ljk,i(v)(12mi(v))ri(v), ð20Þ

where ri(v) is the relatedness between two individuals sam-
pled with replacement in the same patch (for definition, see
eq. [19]) and Ljk,i(v) is given by the ( j, k) entry of the matrix

Li(v) p (I2 [12mi(v)]C(v))
21: ð21Þ

The term Ljk,i(v) in equation (20) captures the effect of a
change in the abundance of species k on the abundance of
species j, experienced by all individuals of species i descend-
ing from a single ancestor in the focal patch. Interestingly,
as dispersal goes to zero in the focal species (mi(v) → 0),
the matrix Li(v) (eq. [21]) tends to the matrix of press per-
turbations of community ecology (i.e., Li(v) → (I2 C(v))21).
The entries of this matrix measure how a constant and per-
sistent change in the abundance of one species influences
the equilibrium abundance of another through multispecies
interactions (e.g., Yodzis 1989; Case 2000). The correspon-
dence between equation (21) and press perturbationmatrices
reflects that as mi(v) → 0, the mutant lineage may persist
locally forever and thus experience persistent changes in the
abundance of other species. But as dispersal mi(v) increases,
the mutant lineage will spend fewer time periods locally,
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which means that its experience of changes in local species
abundance will last fewer time periods (and so Li(v) ap-
proaches the identity matrix as dispersal becomes complete,
i.e., Li(v) → I as mi(v) → 1).

Connections with Previous Results on Selection Gradients
and Ecological Feedback. The selection gradient we have
derived is closely connected to existing gradients in the lit-
erature. To see these connections, consider first the case
when dispersal is complete (mi(v) p 1 so that ri(v) p 0).
In this case, the selection gradient reduces to

si(v) p
∂wi(t•,i,~ti, n, n̂)

∂t•,i

���� ti p vi
n p n̂

, ð22Þ

which embodies the classical ecological feedback considered
in evolutionary analyses (e.g., Michod 1979; Charlesworth
1994; and see in particular eq. [29] of Lion 2017): the inva-
sion of a rare mutant depends on resident-set ecological
conditions only (i.e., on v and n̂(v) only), and if the mutant
invades it becomes the resident and thereby modifies these
conditions. The simplicity of equation (22) reflects the fact
that when dispersal is complete a globally rare mutant is
also always locally rare. As a consequence, the selection gra-
dient depends only on the effect that a mutant carrier has
on its own individual fitness.
When dispersal is limited (mi(v) ! 1), however, a glob-

ally rare mutant may become locally common and remain
so overmultiple demographic time periods. This has two im-
plications that are important for the way selection targets
this mutant. First, mutants living in the same time period
interact directly with one another. This effect is captured
by the relatedness-weighted fitness effect of neighbors in
sw,i(v) (i.e., the second summand of eq. [14]). In fact, sw,i(v)
(eq. [14]) is equivalent to the standard selection gradient
in the island model with constant demography (Taylor and
Frank 1996; Frank 1998; Rousset 2004). But in contrast to
the selection gradient under constant demography, abun-
dance in sw,i(v) (eq. [14]) is endogenously determined and
evaluated at the resident ecological equilibrium, n̂(v). As
such, sw,i(v) approximates the exact selection gradient in a
demographically structured population when the trait has
no demographic effect (denoted as Sf; Rousset and Ronce
2004, eq. [26]; Lehmann et al. 2016, eq. [E-28]). The main
difference between the approximation and the exact expres-
sion is that the latter depends on reproductive values while
the approximation sw,i(v) (eq. [14]) does not. This is because
we ignore stochastic demographic fluctuations here and thus
do not need to consider fitness effects in all possible demo-
graphic states.
The second implication of limited dispersal for the way

selection targets a mutant is that a rare mutant can modify
the demographic/ecological conditions experienced by its
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own lineage. Put differently, mutants living at different time
periods interact indirectly through heritable ecological mod-
ifications. Selection due to these indirect interactions is cap-
tured by the second term of the selection gradient, se,i(v)
(eq. [13]). With constant demography in the focal evolving
species, the ecological inheritance term se,i(v) is consistent
with the selection gradient on intertemporal within-species
altruism (Lehmann 2007, eq. [9]; Sozou 2009, eq. [4.11])
and niche construction traits affecting the abundance of a
local abiotic resource (Lehmann 2008, eq. [A39] in the ab-
sence of isolation by distance). With fluctuating demogra-
phy, se,i(v) (eq. [13]) approximates the part of the exact se-
lection gradient that captures selection on a trait due to its
demographic effect on the focal species only (sometimes
denoted as SPr; Rousset and Ronce 2004, eq. [27]; Lehmann
et al. 2016, eq. [E-29]).
Summary

In summary, we have shown that the selection gradient on
a trait, si(v), depends on how a trait change in a focal in-
dividual affects (1) its own fitness and the fitness of its cur-
rent relatives through intratemporal interactions (sw,i(v);
eq. [15]) and (2) the fitness of its downstream relatives liv-
ing in the focal patch through heritable modifications of
the ecological environment (se,i(v); eqq. [16], [17]). This
reveals that under limited dispersal, selection on intra-
and interspecific interactions can generally be interpreted
in terms of intertemporal inclusive fitness effects, that is,
in terms of the effect that a trait change in a focal individ-
ual has on the fitness of this focal and of all its relatives
(current and downstream). Such a perspective allows for
an intuitive understanding of selection on ecological inter-
actions that take place in dispersal-limited communities. In
particular, our approximation highlights the nature of inter-
temporal effects and their roles in the molding of functional
traits. We illustrate more concretely the potential importance
of intertemporal effects when we apply our approximation to
specific models in the next section.
2. Code that appears in The American Naturalist is provided as a conve-
nience to the readers. It has not necessarily been tested as part of the peer re-
view.
Applications

Here we use our approximation to study the evolution of
two traits that underlie intra- and interspecific interactions
under limited dispersal. The first is the evolution of help-
ing within species, which has received considerable atten-
tion. This will allow us to contextualize our approach to
study intraspecific interactions when such interactions in-
fluence demography. The second example is the evolution
of harming between species, which has so far not been in-
vestigated under limited dispersal. Analytical calculation
checks of these examples, as well as the codes for the asso-
ciated individual-based simulations, are available in a zip
This content downloaded from 130.22
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file containing a Mathematica Notebook (available on-
line).2
Helping within Species

Biological Scenario. We focus on a single species and study
the evolution of a social trait or behavior that increases the
fitness of patch neighbors but comes at a fitness cost to self.
We consider the following life cycle: (1) Adults reproduce.
A focal individual has mean fecundity f (t•, ~t)=(11 gn),
where f (t•, ~t) is its fecundity in the absence of density-
dependent competition. The latter has intensity g. Maximal
fecundity f (t•, ~t) decreases with the level t• of helping of the
focal individual but increases with the average level ~t of help-
ing among its neighbors in the focal patch (∂f (t•,~t)=∂t• ! 0
and ∂f (t•,~t)=∂~t 1 0). (2) All the adults die. (3) Each off-
spring independently disperses with a probability m. (4) All
offspring survive to adulthood (i.e., no competition for space
among offspring).
Our assumptions for the life cycle can be biologically

interpreted as individuals competing locally to acquire ma-
terial resources, and the transformation of these resources
into offspring depends on the level of helping within the
patch (e.g., because individuals share resources).

Necessary Components. We first specify the components
necessary to compute the selection gradient (i.e., the terms
that appear in eqq. [13]–[20]). According to the life cycle
assumptions for the model of helping, the fitness of a focal
individual that expresses a level of helping t• in a patch of
size n when its average neighbor expresses level ~t is

w(t•,~t , n, n̂(v)) p
f (t•, ~t)
11 gn

: ð23Þ

Note that here fitness does not depend on species abun-
dance in patches other than the focal (i.e., it does not depend
on n̂(v)). This is because we have assumed that competition
occurs locally for material resources (for an example of a fit-
ness function that depends on n̂(v), see eq. [C1]). Following
the same argument used to derive equation (7), we find that
the population dynamic (i.e., the abundance in the focal
patch after one iteration of the life cycle, given that the aver-
age level of helping in the patch is t, that abundance at the
previous time period was n, and that other patches are at
equilibrium n̂(v)) can be written as

F(t, n, n̂ (v)) p (12m)

�
f (t, t)
11 gn

�
n1mn̂(v): ð24Þ
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The equilibrium population size n̂(v) in the resident popu-
lation is found by solving n̂ p F(v, n̂, n̂) for n̂, which yields

n̂ (v) p
f (v, v)2 1

g
: ð25Þ

This equilibrium population size further allows us to obtain
the pairwise relatedness r(v), which is given by substituting
equation (25) into equation (10), that is,

r(v) p
(12m)2

11 [12 (12m)2][( f (v, v)2 1)=g2 1]
: ð26Þ

This shows that pairwise relatedness increases as intraspe-
cific competition g increases because this leads to smaller
patch size (eq. [25]). As expected, relatedness increases as
dispersal becomes limited (m → 0). From here it is straight-
forward to obtain the other necessary relatedness coefficient,
r(v) (for definition, see eq. [19]).

Selection on Helping. We now proceed to calculate the se-
lection gradient on helping under our scenario. Note that
the selection gradient on a single trait in a single species can
be written as s(v) p sw(v)1 se(v), where sw(v) captures the
intratemporal effects and se(v) the intertemporal effects.

Intratemporal effects of helping. Let us first study se-
lection on helping according to its intratemporal effects
(i.e., by looking at sw(v); eq. [14]). These effects can be ex-
pressed as

sw(v)p
∂w t•,~t, n, n̂ð Þ

∂t•
1

∂w t•,~t, n, n̂ð Þ
∂~t

r(v)

1 ∂f t•, ~tð Þ ∂f t•,~tð Þ� � ð27Þ

p

f (v, v) ∂t•
1

∂~t
r(v) ,

where we used equations (23) and (25). Note that since help-
ing is individually costly but increases the fecundity of neigh-
bors, the direct and indirect fitness effects of helping are nega-
tive andpositive, respectively (i.e., ∂w=∂t• ! 0 and ∂w=∂~t 1 0).
Hence, the helping trait in our model is altruistic sensu evo-
lutionary biology (e.g., Hamilton 1964; Rousset 2004; West
and Gardner 2010). Equation (27) shows that altruistic helping
is favored by high relatedness. From the relatedness equa-
tion (26), we therefore expect limited dispersal and intraspe-
cific competition to favor the evolution of helping, owing to
its intratemporal effects. However, selection on helping also
depends on its intertemporal effects, which we investigate in
the next paragraph.

Intertemporal effects of helping. When a single species is
under scrutiny, selection on intertemporal effects (i.e., se(v);
eq. [15]) can be expressed as

se(v) p
∂n
∂t

⋅
∂w(t•,~t , n, n̂)

∂n
: ð28Þ
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Using equation (20), the effect of helping on the lineage-
experienced equilibrium abundance can be written as

∂n
∂t

p
∂F t, n, n̂ð Þ

∂t
12 (12m)

∂F t, n, n̂ð Þ
∂n

� �21

(12m)r(v)

p r(v)
[ f (v, v)2 1]=g

f (v, v)2 (12m)2
∂f t•, ~tð Þ

∂t•
1

∂f t•,~tð Þ
∂~t

� �
:

ð29Þ
Wewill assume that ∂f (t•,~t)=∂t• 1 ∂f (t•,~t)=∂~t 1 0, so that
helping increases equilibrium abundance (i.e., ∂n=∂t 1 0).
In turn, this increase in abundance feeds back negatively
on the fitness of downstream individuals according to

∂w t•,~t, n, n̂ð Þ
∂n

p 2
g

f (v, v)
! 0 ð30Þ

(using eq. [23]). This is because greater abundance leads to
stronger intraspecific competition (according to g). As a re-
sult, the selective intertemporal fitness effects of helping,

se(v)p2
r(v)
f (v, v)

�
f (v, v)21

f (v, v)2 (12m)2

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

pb(v)10

∂f t•,~tð Þ
∂t•

1
∂f t•,~tð Þ

∂~t

� �
! 0,

ð31Þ

are negative (found by substituting eqq. [29] and [30] into
[28]).
Balance between intra- and intertemporal effects. Sum-

ming equations (27) and (31), we find that the selection
gradient is proportional to

s(v) ∝
∂f t•, ~tð Þ

∂t•
1 k(v)

∂f t•,~tð Þ
∂~t

, ð32Þ

where

k(v)p
(12m)2

n̂(v)f (v, v)2 (12m)2(n̂(v)21)
p r(v)

12 b(v)
12 r(v)b(v)

ð33Þ
is a scaled relatedness coefficient, which decreases with dis-
persal (m; for the definition of b(v) 1 0, see fig. 4 and
eq. [31]). This scaled relatedness can be understood by
looking at the right-hand side of equation (33). There the
relatedness coefficient r(v) in the numerator reflects selec-
tion on helping due to its positive intratemporal indirect ef-
fects (eq. [27]). This positive effect, however, is discounted by
a factor [12 b(v)]=[12 r(v)b(v)] ! 1, due to the negative
intertemporal indirect effects of helping (eq. [31]). Scaled re-
latedness coefficient k(v) thus reflects how selection on help-
ing depends on the balance between the positive intratem-
poral indirect effects of helping and its negative intertemporal

ð31Þ
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indirect effects owing to increased competition for relatives
living in the future.

To better understand the balance between intra- and in-
tertemporal effects, it is noteworthy that relatedness among
individuals decreases with the number of generations that
separate them (eq. [19]). As a result, selection on fitness ef-
fects becomes increasingly weak over generations. This is
reflected in the fact that the scaled relatedness coefficient is
nonnegative (i.e., k(v) ≥ 0; eq. [33]; fig. 4). In fact, provided
r(v) 1 0 (so that k(v) 1 0), altruistic helping can evolve in
our model. This can be seen more explicitly if we further as-
sume that maximal fecundity is given by

f (t•,~t) p f b ⋅ (12 Ct2• 1 B~t), ð34Þ
where f b is a baseline fecundity;C is the cost of helping, which
increases quadratically with the investment of the focal into
helping; and B is the benefit of helping, which results from
one unit invested into helping. Substituting equation (34)
into equations (32) and (33) and solving s(v*) p 0 allows us
to find the singular strategy v*. When both C and B are small
(of the order of a parameter ϵ ≪ 1), the singular strategy v*

can be found by solving a first-order Taylor expansion of the
selection gradient about ϵ p 0. Doing so, we obtain a simple
expression for the convergence-stable strategy,

v* p
B
2C

k(0) p
B
2C

⋅
1

11 n̂(0)

�
f b

(12m)2
2 1

� ≥ 0:

ð35Þ
Equation (35) makes it straightforward to see that helping
can evolve in spite of its negative intertemporal indirect ef-
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fects. It further shows how the equilibrium level of helping,
v*, decreases with dispersalm and local abundance in the ab-
sence of helping, n̂(0) p ( f b 2 1)=g.
More generally, by solving equations (32) and (33) with

equation (34) numerically, we find that predictions gener-
ated from our approximation fit qualitatively and quanti-
tatively well with observations from individual-based sim-
ulations, as much for the value of the convergence-stable
level of helping v* (fig. 5, top panel) as for the concomitant
equilibrium group size n̂(v*) this generates (fig. 5, bottom
panel).

Connections to Previous Results on Altruism Evolution.
Our finding that altruism decreases as dispersal and local
abundance increase is a standard result of evolutionary bi-
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Figure 4: Scaled relatedness for the evolution of social interactions
within species. Equation (33)with equation (25) plotted against dispersal
with strong (g p 0:2, black), intermediate (g p 0:1, dark gray), and
weak (g p 0:05, light gray) levels of competition. Other parameters:
f (v, v) p 2. Scaled relatedness therefore decreases with dispersal and
patch size (since smaller values ofg lead to larger equilibriumpatch size).
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Figure 5: Convergence-stable level ofwithin-species helping and the con-
comitant local abundance it generates. Solid lines are the convergence-
stable strategies (top graph) and concomitant local abundance (bottom
graph) obtained from the selection gradient (obtained by finding the v*

value solving eq. [32]) under weak (black, g p 0:07) and strong (gray,
g p 0:1) intraspecific competition (other parameters: B p 0:5, C p
0:05, f p 2). Points are the results obtained from individual-based sim-
ulations (time average over 40,000 generations after 10,000 generations
of evolution; error bars show standard deviation). Parameters for sim-
ulations: 1,000 patches; m p 0:1, 0:3, 0:5, 0:65, 0:8, 0:9; probability of
a mutation p 0:01; standard deviation of the quantitative effect of a
mutation p 0:005 (for details on simulations, see app. sec. A1, avail-
able online).
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ology. However, our model of altruism and its results de-
part in two ways from the literature on this topic (e.g.,
Taylor 1992; van Baalen and Rand 1998; Taylor and Irwin
2000; Gardner and West 2006; Lehmann et al. 2006; Leh-
mann 2007; El Mouden and Gardner 2008; Johnstone and
Cant 2008; Lion and Gandon 2009, 2010; Sozou 2009; Wild
2011; Bao and Wild 2012; Johnstone et al. 2012; Kuijper
and Johnstone 2012; Ohtsuki 2012; Rodrigues and Gardner
2012). First, the vast majority of previous analyses assume
that density-dependent competition occurs for space after
dispersal (i.e., space or “open sites” is the limiting factor;
e.g.,Tilman 1982, ch. 8). In this case, intratemporal kin com-
petition effects strongly inhibit the benefits of interacting
among relatives. Here we have assumed that competition
occurs for resources before dispersal. In this situation, we
found that intratemporal kin competition effects do not
abate the selective advantage of interacting with relatives
(this can be seen from eq. [27], which depends only on pair-
wise relatedness). Rather, by increasing abundance, altruism
increases kin competition for future generations (eq. [31]).
This also hinders the evolution of altruism but only moder-
ately so, because relatedness between individuals of different
generations is on average lower than individuals of the same
generation.

A second important difference between our model and
previous models of social evolution with endogenous
patch dynamics is that the latter had to exclusively rely
on numerical approaches to compute the selection gradi-
ent (in the island model of dispersal; e.g., for models of al-
truism evolution: Lehmann et al. 2006; Alizon and Taylor
2008; Wild et al. 2009; Wild 2011; for models of dispersal
evolution: Metz and Gyllenberg 2001; Cadet et al. 2003;
Parvinen et al. 2003; Rousset and Ronce 2004). This reli-
ance on numerical analysis makes it more difficult to un-
derstand how scaled relatedness k and selection on altru-
ism vary with demographic parameters (e.g., Lehmann
et al. 2006, eq. [12]). Here our approximation yields a
simple and intuitive expression for the selection gradient
(eq. [32]), which nonetheless fits well with simulation re-
sults (fig. 5).

It is noteworthy that the selection gradient we have de-
rived for this example (eq. [32]) applies to any type of so-
cial interactions within the life cycle given in “Biological
Scenario.” In fact, the selection gradient equation (32) can
be adjusted to study other social behaviors simply by chang-
ing the fecundity function (e.g., eq. [34]). Such selection
gradients written in terms ofmarginal fecundity effects of be-
havior have also been derived for lattice-structured popula-
tions using the pair approximation (Lion and Gandon 2009,
eq. [14]; Lion and Gandon 2010, eq. [19]). Comparing these
expressions with ours would be interesting, in particular to
investigate the effects of isolation by distance (which are ig-
nored here).
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Coevolution of Helping and Dispersal. Our social evolution
model assumes that dispersal is fixed. Dispersal, however, is
likely to be an evolving trait. Because dispersal determines
whether individuals interact and compete with relatives, dis-
persal evolution is important for selection on social behavior
(e.g., Le Galliard et al. 2005; Purcell et al. 2012; Mullon et al.
2018). Dispersal evolution can also influence demography,
in particular when individuals compete for space (e.g., when
offspring survival after dispersal depends on local abundance;
Metz and Gyllenberg 2001; Cadet et al. 2003; Parvinen et al.
2003; Rousset and Ronce 2004).
To test whether our approximation could capture the in-

terplay between social behavior, dispersal, and demogra-
phy, we used it to study a model of the coevolution between
altruistic helping and dispersal when offspring compete for
space following dispersal. We assumed that dispersal is
costly, with offspring surviving dispersal with a probability
s ! 1. Details on this model and its analysis are given in ap-
pendix C.
We find that dispersal increases as survival during dis-

persal, s, increases (fig. 6, top panel, gray curve). This in
turn selects for lower levels of helping (fig. 6, top panel,
black curve), in line with previous models of helping-
dispersal coevolution that assume that demography is con-
stant (e.g., Mullon et al. 2018). Here we further find that as
survival during dispersal s increases, the resulting collapse
in helping and increase in dispersal leads to fewer individ-
uals populating each patch (fig. 6, bottom panel). The pre-
dictions derived from our approximation agree well with ob-
servations we made from individual-based simulations for
the equilibria of the two traits and the concomitant abun-
dance these equilibria generate (fig. 6). This supports the idea
that the approximate selection gradient (eqq. [13]–[16]) can
be used tomodel dispersal evolution, in particular when local
demography, genetic structure, and social traits feed back
on one another. Our approximation, however, cannot be used
to investigate disruptive selection, which can emerge when
helping and dispersal coevolve (e.g., Purcell et al. 2012; Mul-
lon et al. 2018). Such an investigation would require study-
ing the second-order effects of selection, which is beyond the
scope of this article.
Harming between Species

Biological Scenario. To illustrate how the approximate se-
lection gradient can be applied to study ecological inter-
actions among species, we now model the evolution of an-
tagonistic interactions among two species, species 1 and
species 2. Specifically, we model the evolution of a trait in
species 1 that is costly to express and that harms individuals
of species 2. Our two species go through the following life
cycle: (1) Individuals reproduce. A focal individual of spe-
cies 1 has mean fecundity f 1(t•,1)=(11 gn1 1 hn2), which
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decreases with intra- and interspecific competition (respec-
tively measured by parameters g and h). The maximal fe-
cundity of a focal individual of species 1, f 1(t•,1), decreases
with its investment t•,1 into harming (i.e., f 01(t•,1) ! 0). A fo-
cal individual of species 2 has mean fecundity f 2=(11 gn2),
where f2 is the maximal fecundity of species 2 and g is the
level of intraspecific competition. Note that only species 1
experiences interspecific competition. This would occur,
for instance, because species 2 is a generalist consumer while
species 1 is a specialist. (2) Adult individuals of species 1 kill
offspring of species 2 in amount D(t1) per capita, which
increases with the average t1 level of harming in the focal
patch (i.e., D 0(t1) 1 0). Costly interspecific harming could
for instance occur through the release of chemicals into the
environment that suppress the growth and establishment
This content downloaded from 130.22
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of offspring (i.e., through allelopathy; Lankau 2008). (3) All
adults of both species die. (4) Surviving offspring of species 1
and 2 disperse with probability m1 and m2, respectively.
(5) All offspring survive to adulthood.

Necessary Components. We first specify the components
necessary for deriving the selection gradient on interspe-
cific harming. According to the above, a focal individual
from species 1 that invests t•,1 into harming in a patch with
n p (n1, n2) individuals of species 1 and 2, respectively, has
fitness

w1(t•,1, n, n̂ (v)) p
f 1(t•,1)

11 gn1 1 hn2

: ð36Þ

The abundances of both species in the focal patch after one
iteration of the life cycle, given that (1) the average level of
harming in the patch is t1, (2) the abundance at the previ-
ous generation was n p (n1, n2), and (3) other patches are
at equilibrium n̂(v) p (n̂1(v1), n̂2(v1)), are given by

F1(t1, n, n̂(v)) p (12m1)

�
f 1(t1)

11 gn1 1 hn2

�
n1 1m1n̂1(v1),

F2(t1, n, n̂(v)) p (12m2)

�
f 2

11 gn2

2 D(t1)
n1

n2

�
n2

1m2n̂2(v1):

ð37Þ

The resident ecological equilibrium, which is found by
solving n̂(v) p (F1(v1, n̂(v), n̂(v)), F2(v1, n̂(v), n̂(v))) simul-
taneously, is too complicated to be presented here for the
general case. Note however that when the resident level v1
of harming is small, a first-order Taylor expansion of the
resident ecological equilibrium around v1 p 0 gives

n̂1(v1)p n̂1(0)1
v1

g

�
f 2

f 2 2 1
n̂1(0)hD0(0)2 ch(0)|ffl{zffl}

2f 01(0)

�
1O(v21),

n̂2(v1)p n̂2(0)2 v1

�
f 2

f 2 2 1
n̂1(0)D0(0)

�
1 O(v21),

ð38Þ

where

n̂1(0)p
f 1(0)2 1

g
2

h

g
n̂2(0),

n̂2(0)p
f 2 2 1
g

ð39Þ

are the abundances in the absence of harming (assuming
that D(0) p 0). Equation (38) reveals that harming of spe-
cies 2 reduces its abundance (i.e., n̂2(v1) ≤ n̂2(0)). The abun-
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Figure 6: Coevolutionary convergence-stable level of helping and dis-
persal and the concomitant local abundance it generates. Solid lines
are the convergence-stable strategies (top graph) for helping (black)
and dispersal (gray) and concomitant local abundance (bottom graph)
obtained from the selection gradient (eq. [C7], with B p 0:5,C p 0:05,
f p 2, g p 0:05). Points are the results obtained from individual-based
simulations (time average over 40,000 generations after 10,000 genera-
tions of evolution; error bars show standard deviation). Parameters for
simulations: 1,000 patches; survival during dispersal s p 0:1, 0:3, 0:5,
0:65, 0:8, 0:9, 0:95, 0:99; probability of amutation p 0:01; standard de-
viation of the quantitative effect of a mutation on each trait p 0:005;
and no covariance (for details on simulations, see app. sec. A1, available
online).
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dance of species 1, n̂1(v1), depends on the balance between
two opposite effects of harming. On one hand, by reducing
the abundance of species 2, harming increases the abun-
dance of species 1 due to interspecific competition (this is
captured by the first summand within brackets on the first
line of eq. [38]). On the other hand, abundance decreases
with the cost of harming (which is captured by ch(0) p
2f 01(0) 1 0 in eq. [38]). The final component necessary to
derive the selection gradient is the relatedness coefficient
for species 1. It is given by equation (10), with the resident
ecological equilibrium for species 1, n̂1(v1), which is defined
by equation (37).

Selection on Harming.We now detail the selection gradient
on harming, according to the intra- and intertemporal ef-
fects of this behavior.

Intratemporal effects. Substituting equation (36) into
equation (14), we obtain that selection on the intratem-
poral effects of harming,

sw,1(v1) p 2
ch(v1)
f 1(v1)

! 0, ð40Þ

where ch(v1) p 2f 01(v1) 1 0, is always negative. This is be-
cause harming is intratemporally costly to express at the
individual level and does not provide any intratemporal in-
direct fitness benefits. Hence, the only way for harming to
evolve in this model is if this cost is compensated by future
benefits received by downstream relatives, which we inves-
tigate below.

Intertemporal effects. Selection on harming due to its ef-
fects on the fitness of downstream relatives is captured by the
intertemporal part of the selection gradient equation (15).
Substituting equations (36)–(38) into equations (15) and
(20), we find that selection on harming due to its intertem-
poral effects is given by

se,1(v1) p
12m1

f 1(v1)

�
(12m1)

ch(v1)
f 1(v1)

g1 (12m2)D0(v1)h

�
1 O(ϵ4), ð41Þ

where ϵ is such that O(12m1) eO(12m2) eO(ϵ). From

equation (41), we see that overall, intertemporal effects favor
the evolution of interspecific harming (i.e., se,1(v1) 1 0 since
ch(v1) p 2f 01(v1) 1 0 and D0(v1) 1 0). This is due to two
intertemporal effects of harming. First, as captured by the
first summand within brackets of equation (41), harming
benefits downstream relatives that remain philopatric be-
cause by paying the cost of harming, a focal individual pro-
duces less offspring and thus diminishes local intraspecific
competition. Accordingly, this first effect scales with the ten-
dency to remain philopatric in the harming species, 12m1,
the cost of harming, ch(v1), and the strength of intraspe-
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cific competition, g. The second way that harming benefits
downstream relatives is by reducing the local abundance of
the harmed species (species 2, as captured by the second
summand within brackets of eq. [41]), which reduces inter-
specific competition. In line with this, harming is favored
when the effect of harming,D0(v1), and the intensity of inter-
specific competition, h, are large and when dispersal is lim-
ited in both species (in species 1 to ensure that relatives ben-
efit from the reduction of interspecific competition and in
species 2 since otherwise the local abundance of species 2
in downstream generations depends only on the process
of immigration and not on local harming; eq. [37]).
Convergence-stable equilibrium of harming. To explic-

itly test the effect of limited dispersal on the evolution of
harming, we assumed that the fecundity of an individual
of species 1 that expresses a level t•,1 of harming is

f 1(t•,1) p f 1,b ⋅ (12 Ct2•,1), ð42Þ

where f1,b is a baseline fecundity in species 1 and C is the
individual cost of harming. We further assumed that an in-
dividual of species 2 that is in a patch in which the average
harming level is t1 suffers a fecundity cost given by

D(t1) p at1, ð43Þ

where a is a parameter tuning the deleteriousness of
harming. The convergence-stable level of harming, which
is found by solving s1(v

*
1) p sw,1(v

*
1)1 se,1(v

*
1) p 0 for v*1,

is shown in figure 7 as a function of dispersal.
In line with equation (41), we find that individually

costly harming does not evolve when dispersal is complete
(fig. 7, top and middle panels). This is because in that case,
downstream relatives can never benefit from a decrease of
interspecific competition owing to harming. As dispersal
becomes limited in both species, this intertemporal benefit
increasingly goes to relatives so that harming evolves (fig. 7,
top and middle panels). This evolution in turn causes a sig-
nificant reduction in the abundance of species 2 and an in-
crease of species 1 (fig. 7, bottom panel). These results were
confirmed using individual-based simulations, further sup-
porting the goodness of fit of our approximation (fig. 7,
middle and bottom panels).

Discussion

Due to the physical limitations of movement, a community
of species is typically structured in space to form ametacom-
munity (e.g., Tilman 1982; Clobert et al. 2001; Urban et al.
2008; Leibold and Chase 2017). Understanding selection in
such a metacommunity is challenging due to the feedback
between local ecology and trait composition that emerges
when dispersal is limited and local demography is stochastic.
3.052.133 on November 29, 2018 01:36:57 AM
s and Conditions (http://www.journals.uchicago.edu/t-and-c).



Kin Selection Meets Metacommunities 681

This content downloaded from 130.22
All use subject to University of Chicago Press Term
To better understand these eco-evolutionary dynamics, we
derived in this article an approximation for the selection gra-
dient on a quantitative trait that influences local ecology in
the island model of dispersal.
The basis of our approximation is to neglect ecological

stochasticity and to assume that the resulting deterministic
ecological dynamics have a single fixed point (i.e., we do
not consider periodic or chaotic dynamics). We nonethe-
less take into account the consequences of genetic sto-
chasticity for selection. We found that this approximation
works well qualitatively for all models and conditions that
we studied. We further found that it is quantitatively accu-
rate in predicting ecological and evolutionary dynamics
as long as dispersal is not excessively weak. As a rule of
thumb, effective dispersal rate should be no less than 0.1
when patches are small (with fewer than 10 individuals;
figs. 1, 5–7). Such demographic regime leads to an FST well
within the range of FST values that have been estimated across
a wide spectrum of taxa (whenmi(v) p 0:1 and n̂i(v) p 10,
eq. [10] gives FST p 0:30 for haploids; for diploids, eq. [6.23]
of Hartl and Clark 2007 gives FST p 0:20; equivalently, this
regime entails onemigrant per demographic time period; i.e.,
n̂i(v)mi(v) p 1; for empirical estimates, see Barton 2001,
p. 334; Hartl and Clark 2007, p. 302). This suggests that our
approximation takes into account dispersal levels that are
relevant to many species (Bohonak 1999).
The simplicity of our approximate selection gradient

allows us to investigate convergence-stable species coa-
litions and to intuitively understand community evolution
under limited dispersal. In particular, our selection gradi-
ent reveals that selection can be decomposed into intra-
temporal (eq. [14]) and intertemporal (eqq. [15], [16]) ef-
fects. Intertemporal effects reflect the interaction between
kin selection and local eco-evolutionary dynamics. This
interaction can be understood by considering that when
a focal individual perturbs species abundance locally, this
perturbation leads to changes in community composition
in the future due to ecological interactions (eq. [16]; fig. 3).
These changes then feed back on the fitness of individuals
living in the future, who potentially carry genes that are
identical by descent to the focal (i.e., who are relatives). In
other words, intertemporal effects emerge because individuals
inherit not only their genes but also an ecological environment
that has been transformed by their ancestors (Odling-Smee
et al. 2003; Bonduriansky 2012). By considering the effects of
such ecological inheritance on multispecies interactions, our
model generalizes previous models of local ecological interac-
tions in the presence of relatives that ignored trait-induced
changes in abundance (either altogether [Frank 1994; Foster
and Wenseleers 2006; Wyatt et al. 2013; Akçay 2017] or in
the evolving species [Lehmann 2008]).
Interestingly, the eco-evolutionary, intertemporal feed-

backs that emerge in our model are captured mathemati-
Figure 7: Convergence-stable level of between-species harming and the
concomitant local abundance it generates. Solid lines are the convergence-
stable strategies (top and middle graphs) and concomitant local abun-
dance (bottom graph) in species 1 (black) and 2 (gray) obtained from
the selection gradient (eqq. [13]–[20] along with eqq. [36]–[43], with
C1 p 0:0085, f 1 p 2:2, f 2 p 2, g p 0:055, h p 0:025, a p0:24;
top: dispersal in species 2,m2 p 0:1 (solid), 0.5 (dashed), 0.9 (smaller
dashed); middle and bottom: dispersal in species m2 pm1 p m.
Points are the results obtained from individual-based simulations
(time average over 40,000 generations after 10,000 generations of evo-
lution; error bars show standard deviation). Parameters for simula-
tions: 1,000 patches; m p 0:1, 0:2, 0:3, 0:5, 0:65, 0:8, 0:9; probability
of a mutation p 0:01; standard deviation of the quantitative effect of
a mutation p 0:005.
3.052.133 on November 29, 2018 01:36:57 AM
s and Conditions (http://www.journals.uchicago.edu/t-and-c).



682 The American Naturalist
cally by analogues of press perturbations (eqq. [20], [21]).
These are central notions of classical community ecology.
Press perturbations traditionally measure how a persistent
change in the abundance of a given species alters the equi-
librium abundance of another due to ecological interactions
(Yodzis 1989; Case 2000). In our model, the change in
abundance is initiated by a phenotypic change in a focal in-
dividual, and its persistence is measured over the time it is
evolutionarily significant from the perspective of the focal,
which is the time the focal’s lineage of relatives experiences
it (fig. 3). Because this time increases as dispersal becomes
more limited, intertemporal effects are more important for
selection when individuals remain in philopatry (i.e., when
dispersal is limited). This can also be understood from a
gene-centered perspective: because limited dispersal ties in
the fate of a trait-changing mutation with its intertemporal
ecological effects, these effects become more important for
how selection targets this mutation.

We applied our model to the evolution of two behav-
ioral traits with demographic and ecological consequences.
First, we studied the evolution of altruistic helping within
species. Our model follows a rich literature on this topic
(see “Connections to Previous Results on Altruism Evolu-
tion”), which traditionally assumes that local patch size re-
mains constant and that competition occurs for space after
dispersal. In this case, the benefits of helping relatives are
offset or partially offset by the intratemporal cost of kin
competition (e.g., Taylor 1992; Gardner and West 2006;
Lion andGandon2009). By contrast, ourmodel assumes that
competition occurs for material resources before dispersal
and that helping increases baseline fecundity, thereby in-
fluencing patch size dynamics. As a result, the costs of kin
competition are delayed and paid by downstream relatives.
Because these intertemporal costs are weaker than intra-
temporal ones, we found that selection favors intraspecific
altruism for a large range of parameters, in particular when
dispersal is limited (fig. 5). Our results therefore suggest that
altruistic traits are more likely to be found in species in which
competition occurs for material resources rather than for
space.

Second, we studied the evolution of individually costly
harming between species. We found that harming evolu-
tion strongly depends on intertemporal effects. Specifi-
cally, we found that harming evolves when it alleviates
interspecific competition for downstream relatives by re-
ducing the other species’ abundance, which requires that
dispersal is limited in both interacting species. Our analy-
sis thus makes the empirical prediction that antagonism is
more likely when dispersal is limited (fig. 7). Previous the-
ory has focused on understanding how “altruism” or mu-
tualism between species can evolve in the presence of
relatives (Frank 1994; Foster and Wenseleers 2006; Wyatt
et al. 2013; Akçay 2017). These studies have highlighted
This content downloaded from 130.22
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the fact that the evolution of mutualism is facilitated by
among-species genetic correlations, which emerge when
dispersal is limited. Here our model reveals that antago-
nism between species can also evolve in this case, which
raises the interesting question of whether mutualistic or
antagonistic interactions are more likely to evolve under
limited dispersal. Presumably, this would depend on the
degree of interspecific competition.
Beyond the examples presented here, our analysis helps

identify the conditions under which selection on a trait in
one species depends on intertemporal effects that arise from
the effects of this trait on the demographic dynamics of other
species. First, when expressed in a focal individual, a change
in this trait should have a large influence on the local commu-
nity over one demographic time period (i.e., Wk,i(v) should
be large; eq. [17]). We expect this to be the case for traits that
are directly involved in interspecific interactions—such as
defenses against predators, traits that attract mutualists, or
resource-extraction strategies—especially when expressed by
keystone or dominant species (i.e., species with large effects
on communities). Our analysis further reveals that there are
more opportunities for selection on intertemporal effects
when the local abundances of the different species that are
part of the community are interdependent (so that [1] fitness
in the focal species depends on community composition,
∂wi=∂nj ( 0; [2] the community matrix C(v) is nonsparse;
and [3] evolutionary press perturbations Li(v) are large;
eq. [21]). This ensures that the ecological perturbation initi-
ated by a focal individual has multiple downstream effects
through indirect ecological interactions (e.g., focal trait in
species 1 increases the abundance of species 2, who is a com-
petitor of species 3, who itself is a competitor of species 1; e.g.,
terHorst et al. 2018). Multiple downstream effects of a per-
turbation by a focal individual then increase the likelihood
that this perturbation feeds back on the fitness of down-
stream relatives of the focal. This leads to the broad predic-
tion that communities that are tightly interconnected are
more likely to show traits whose intertemporal ecological ef-
fects are under selection.
One crucial condition for intertemporal ecological ef-

fects to be under selection is that dispersal is limited. This
needs to be the case in the focal species to ensure that
relatives experience trait-driven ecological changes, but
also in other species of the community so that the effect
of local interactions on abundance is not swamped by im-
migration. In our example of harming between species, for
instance, we found that harming did not evolve if either
the harming or the recipient species showed full dispersal
(fig. 7, top panel). Plant communities would be ideal to
test the notion that traits within spatially limited commu-
nities are more likely to have intertemporal effects that
have been shaped by selection. For instance, many plants
are engaged in interspecific chemical warfare, with lasting
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effects on soil composition (for review, see Inderjit et al.
2011). In light of our results, it would be interesting to
study how these intertemporal effects of allelopathy vary
with the degree of dispersal (or gene flow, which can be
estimated from FST values). In particular, we expect alle-
lopathy to be most adapted among competitors that show
interspecific genetic correlations.

Of course, the approximate selection gradient derived here
cannot be applied to all evolutionary scenarios. It should
generally be supplemented with simulation checks, in partic-
ular when dispersal is severely limited and patches are very
small (e.g., when populations are close to extinction). In fact,
it would be useful to analyze our model with greater mathe-
matical rigor to obtain a sharper understanding of the condi-
tions under which ecological stochasticity can be neglected
(e.g., by generalizing the results of Chesson 1981). Onemajor
limitation to our approach is that it relies on the assumption
that ecological dynamics converge to a fixed point. This as-
sumption, which allowed us to improve the understanding
of selection on traits affectingmetacommunity stochastic de-
mography, precludes the consideration of limit cycles or spa-
tiotemporal fluctuations in abundance, which are thought
to be prevalent in many ecological systems (e.g., Yodzis 1989;
Case 2000). It would therefore be very relevant to extend
our approach to derive the selection gradient under more
complicated ecological dynamics. Another assumption we
have made is that reproduction occurs as a discrete time pro-
cess. It would thus be relevant to derive the selection gradient
under continuous time, but this is unlikely to change our
main qualitative results (as this essentially requires replacing
sums by integrals and individual fitness by individual growth
rates and by calculating intertemporal relatedness coefficients
in continuous time; e.g., Sozou 2009).

To conclude, our heuristic approximation is a step fur-
ther toward the integration of multispecies ecological theory
and kin selection theory. Owing to its simplicity and intuitive
interpretation, the approximate selection gradient we have
derived can provide a useful guide to answer questions that
lie at the intersection of ecology and evolution. In particular,
it can be straightforwardly applied to study plant-pollinator,
host-parasite, or predator-prey coevolution under limiteddis-
persal or the eco-evolutionary dynamics of sex-specific dis-
persal. These and other applications should help explain how
selection molds intra- and interspecific interactions when
dispersal is limited.
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