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Abstract 

 Synthetic biology has emerged as a multidisciplinary field that provides new tools and 

approaches to address longstanding problems in biology. It integrates knowledge from biology, 

engineering, mathematics and biophysics to build – rather than to simply observe and perturb– 

biological systems that emulate natural counterparts or display novel properties. The interface 

between synthetic and developmental biology has greatly benefitted both fields and allowed us 

to address questions that would remain challenging with classical approaches due to the 

intrinsic complexity and essentiality of developmental processes. This Progress Report 

provides an overview of how synthetic biology can help us to understand a process that is 

crucial for the development of multicellular organisms: pattern formation. It reviews the major 

mechanisms of genetically-encoded synthetic systems that have been engineered to establish 
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spatial patterns at the population level. Limitations, challenges, applications and potential 

opportunities of synthetic pattern formation are also discussed. 

 

1. Introduction 

Synthetic biology is a rising interdisciplinary field that adopts and applies concepts 

from engineering, such as modelling, modularity and part standardization to construct novel 

biological systems.[1-3] These systems have the potential to lead to important clinical and 

industrial applications, for example by providing novel approaches to detect and treat diseases 

and to produce fine chemicals, biofuels and smart materials.[4-7] Another major power of 

synthetic biology is that it allows us to construct simplified versions of complex natural systems 

that are amenable to study, thus permitting researchers to infer general underlying principles 

and to build knowledge in a bottom-up manner. When building a synthetic system inspired by 

a natural counterpart, researchers have the freedom to focus on the elements of interest, while 

avoiding confounding factors. This provides a complementary approach to study the 

mechanism, organization, function and evolution of natural biological systems and processes.  

Here, we review how synthetic biology can help to understand pattern formation, which 

is a crucial process during the development of multicellular organisms. Embryonic 

development often consists of three major phases – patterning, differentiation and 

morphogenesis – that generally take place in a sequential manner. First a pattern is established 

by a (non-random) arrangement of gene expression, then cells commit (differentiate) to a given 

state, and finally a particular physical form is created (morphogenesis). Thus, it all starts with 

patterning – the development of differential characteristics within a group of cells that were 

initially genetically and phenotypically homogeneous. Understanding the networks, 

mechanisms and cues underlying biological pattern formation is one of the main challenges of 

developmental biology.  



  

3 

 

Synthetic biology offers researchers a novel approach to tackle this challenge. As 

highlighted by Jamie Davies in his excellent review,[8] a synthetic biology approach applied to 

developmental research allows us to test and discover basic, general principles underlying 

complex embryogenesis processes. Classical developmental biology is of course still needed 

to elucidate the mechanistic details of any given natural developing system, but synthetic 

biology offers unprecedented tools to address the same problematic from a different angle, 

allowing us to generalize specific discoveries into broad concepts and ideas. Even more, the 

construction of synthetic developmental systems allows for the study of ‘roads not taken’ by 

evolution, i.e. solutions that are not found in natural systems. The comparison of different 

solutions for the same problem can be highly informative in terms of selection pressures, 

adaptation and evolutionary constraints. 

 In this Progress Report we provide an overview of recently developed synthetic 

patterning systems and show the varied solutions and approaches that researchers have applied 

to achieve particular spatial arrangements. We focus on patterning at the population level 

driven by genetically-encoded synthetic systems, obviating organization at other scales such 

as intracellular patterning[9] and technology-based ‘external’ patterning platforms such as 

inkjet printing.[10, 11] We also do not cover patterns generated with DNA or proteins only,[12, 13] 

but concentrate our discussion mainly on cell-based patterns with the addition of few patterns 

generated in cell-free expression systems.  

We begin with Lewis Wolpert's ‘positional information’ patterning and in particular 

with the stripe pattern - the spatial pattern most extensively studied by synthetic biologists. We 

then discuss patterning systems based on phase separation, lateral inhibition and mechanical 

forces, before highlighting the efforts made towards building synthetic ‘reaction-diffusion’ 

Turing patterns. Next, we cover spatial patterns induced by temporal oscillations and those that 
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are controlled by light. Finally, we close by highlighting the challenges and opportunities of 

the field, including potential applications of synthetic patterning systems. 

 

2.The French Flag model: patterning in response to a concentration gradient 

Patterning events in embryos are frequently controlled by morphogens, which are molecular 

species, most commonly secreted, that determine cell fate in a concentration- and/or time-

dependent manner.[14-17] The French flag model[18] (Figure 1A) illustrates how the 

concentration of the morphogen can provide positional information that is interpreted across a 

field of cells to trigger different gene expression programs (“blue”, “white” or “red” programs) 

depending on the position of each cell within the gradient. A common pattern in response to a 

morphogen gradient is the stripe pattern (also called band-pass filter), in which expression of 

a specific gene is only triggered at intermediate concentrations of the morphogen, but not at 

low and high morphogen concentrations (Figure 1B). The question of how gene regulatory 

networks produce such stripes in a morphogen gradient is a pivotal one in developmental 

biology. Several computational studies addressed this question and identified gene regulatory 

networks (GRNs) capable of stripe formation.[19-22] Moreover, stripe patterns have been 

successfully recreated in synthetic systems (Figure 1C).  
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Figure 1. The French Flag model of pattern formation in response to a morphogen gradient. 

A) A population of cells that is initially undifferentiated responds to different concentrations 

of a morphogen by activating “blue”, “white” and “red” genetic programs. B) Interpretation of 

a morphogen gradient as a stripe pattern. Only cells subjected to intermediate morphogen levels 

produce a positive response (e.g. green fluorescence), resulting in an off-ON-off (or low-

HIGH-low) spatial pattern. C) Example of stripe formation by a synthetic GRN. A paper disc 

in the center of an agar plate releases the morphogen by diffusion creating a circular gradient 

(top, representation). Engineered E. coli growing on such an agar plate produce GFP only at 

intermediate morphogen concentrations, resulting in a ring of green fluorescence (bottom, 

image). Reproduced with permission.[19] Copyright 2014, Macmillan Publishers Limited.  

 

Amongst the simplest stripe-forming networks identified are the four incoherent feed-

forward loop (IFFL) topologies, I1-I4 (Figure 2A),[23] composed of 3 nodes. We define a node 

as an interaction unit of a GRN where input signal(s) are received, and subsequent output 

signal(s) are generated; thus, a node can correspond to a single or multiple gene(s) (see for 

example I2 in Figure 2C). In feed-forward loops the morphogen-detecting node (N1) directly 

regulates the stripe-producing node (N3), but these two nodes are also connected indirectly 

through an intermediate node (N2). A feed-forward loop is considered to be incoherent when 

the net signs of the two regulation paths (the direct and the indirect paths) are opposite – i.e. 

one is activating and one is repressing.[23]  

 Indeed, most of the synthetic stripe-forming circuits built so far are using one of the 

four IFFL topologies (Table 1). Here, we will describe them one by one in more detail.  
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Figure 2. Synthetic stripe-forming incoherent feed-forward loops (IFFLs). A) Network 

topologies of the four 3-node IFFLs (I1-I4) and the minimal 2-node topology I0. Node 1 (N1, 

red) receives the input morphogen signal, node 2 (N2, blue) provides intermediate regulation, 

and node 3 (N3, green) forms a stripe in a morphogen gradient – i.e. provides the circuit output. 

Pointed arrows indicate activation and blunt-end arrows denote repression. B) Gene expression 
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levels of each node (color-coded as in panel A) depicted as a function of morphogen 

concentration. Reproduced with permission.[19] Copyright 2014, Macmillan Publishers 

Limited. C) Schematic representation of examples of synthetic stripe-forming circuits 

operating with the corresponding IFFL topologies. In the I1 network by Entus et al. activation 

relies on the RNA polymerase of the T7 bacteriophage (T7-RNAP), while repression is driven 

by the transcriptional repressor MetJ. IPTG was used as a morphogen analogue, which induces 

expression of T7-RNAP from the lac promoter.[24] The I2 circuit by Basu et al. responds to an 

AHL gradient produced by a localized source of sender cells. The AHL-bound transcriptional 

activator LuxR activates the repression-only circuit, which relies on the lambda bacteriophage 

cI repressor, and two versions of the LacI repressor: the wild-type (LacI) and a mutant (LacIM1) 

with a reduced activity.[25] The I3 and I4 networks built by Schaerli et al. respond to a gradient 

of arabinose through the transcriptional regulator AraC of the ara operon.[19] The I3 network 

uses two viral RNA polymerases for activation (SP6-RNAP and T7-RNAP) and LacI for 

repression, whereas the I4 circuit relies on TetR repression and an AND gate implemented 

through a split T7 polymerase (T7 RNAP-N and T7 RNAP-C).[26] In the I0 network built by 

Buetti-Dinh et al. the doxycycline-induced transcriptional factor rtTA displays both activator 

and repressor activities, leading to a stripe expression pattern of the downstream -

galactosidase (-Gal).[27] 

 

Host system Topology Comments Reference 
    

Cell-free Simplified Drosophila gap gene system, including I2 
 

[28] 

E. coli I2 
 

[25] 

E. coli I1 
 

[24] 

S. cerevisiae I2 
 

[29] 

E. coli I3 
 

[30] 

E. coli I3 
 

[31] 

S. cerevisiae I0 
 

[27] 

Mammalian (CHO derivative) I2 
 

[32] 
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E. coli I0 
 

[33] 

E. coli I4 
 

[34] 

Mammalian (HEK-293T) I2, I3 
 

[35] 

E. coli I0, I1, I2, I3, I4 
 

[19] 

E. coli I4 
 

[26] 

Mammalian (hIPSC and hMSC derivative) I3 
 

[36] 

E. coli I4 
 

[37] 
    

E. coli Density-dependent motility arrest in an expanding population Self-organizing [38] 

E. coli Combination of direct self-activation and indirect negative feedback Self-organizing [39] 

E. coli Derived from Payne et al. 2013 Self-organizing [40] 

E. coli Derived from Payne et al. 2013 Self-organizing [41] 

E. coli AND gate with two opposing morphogens 
 

[42] 

 

Table 1. Synthetic stripe-forming systems discussed here.  

 

2.1 Stripe-forming synthetic GRNs with I1 topology 

All stripe-forming IFFLs operate with the same underlying logic: at low morphogen (input) 

concentrations the output is OFF, but as morphogen levels increase the output is activated (ON) 

and further brought down again (OFF) at high morphogen levels. Nevertheless, the specific 

molecular implementation of that logic varies depending on the IFFL topology. For instance, 

in the I1 topology the output node (N3) is not expressed at low morphogen concentration due 

to a lack of activation. At intermediate morphogen concentrations it is highly expressed due to 

the activation by the morphogen receiving node (N1), and at high morphogen concentration it 

is repressed by the intermediate node (N2) that itself is activated by N1 (Figure 1A,B).  

The first synthetic stripe-forming GRNs with an I1 topology were built by Entus and 

co-authors.[24] The circuits were implemented in E. coli, and formed a green fluorescent protein 

(GFP) stripe in a gradient of isopropyl β-D-1-thiogalactopyranoside (IPTG). The circuit 

depicted in Figure 2C relies on protein:DNA interactions, namely transcription factor or RNA 

polymerase binding to operator and promoter regions, respectively. As a proof that other 

molecular interactions also enable band-pass filter construction, two other variants were built 
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in which the repression interaction was achieved through RNA:RNA and protein:protein 

interactions. 

Few years later, Schaerli et al. also implemented an I1 topology in a study that explored 

the design space of 3-node stripe-forming networks. In fact, the authors built all four IFFL 

network topologies, demonstrated their stripe-forming capabilities and characterized them in 

detail.[19] The four GRNs were constructed in E. coli using viral RNA polymerases as activators 

and bacterial transcription factor-driven repression. Importantly, controls were performed to 

discard stripe-like patterns due to metabolic load, i.e. resource limitation for host cell 

metabolism due to (over)expression of heterologous genes.[43-45] While the expression of an 

heterologous gene under the control of an inducible promoter will normally increase in a 

monotonic manner with increasing amounts of the inducer, high levels of expression may 

overwhelm the host’s capacity, resulting in a lower expression of the gene of interest at high 

inducer levels than at intermediate inducer concentrations – that is, a stripe pattern. Therefore, 

it is of great importance that supposedly stripe-forming circuits are controlled for metabolic 

load, since even networks theoretically lacking stripe-forming ability can lead to stripe-like 

patterns if gene expression poses an excessive burden on cell’s capacity.  

 

2.2 The ‘favorite’ I2 topology 

Most synthetic stripe-forming circuits designed so far rely on an I2 topology. This topology 

has the particularity of lacking activation reactions – the computing is fully achieved through 

repression interactions (Figure 2A). Briefly, the output node (N3) is subjected to a double 

repression both at low and at high morphogen concentrations, which leaves an ‘open window’ 

for N3 expression only at intermediate levels of the morphogen (Figure 2B). The logic behind 

N3 expression can be conceptualized as a NOR-gate, which means that the output will only 

exist when neither of the inputs of nodes 1 and 2 are present. 
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The first synthetic circuit capable of displaying a stripe pattern in a population of cells 

was built by Basu and collaborators in 2005 and it was indeed based on an I2 topology.[25] They 

made use of the Vibrio fischeri quorum sensing system to elicit patterning of engineered E. coli 

in response to a chemical concentration gradient. A localized source of ‘sender’ cells produces 

an acyl-homoserine lactone (AHL) signal that diffuses across an agar plate and functions as a 

morphogen analogue. Homogeneously-distributed ‘receiver’ cells interpret the AHL gradient 

to form a low-HIGH-low pattern of a fluorescent reporter (Figure 2C). By modifying the 

responsiveness of the receiver circuit, authors constructed strains that produce stripes at 

different AHL concentrations. Further stripe-forming I2 networks were implemented in E. 

coli[19] and Saccharomyces cerevisiae[29] using the same set of repressors, suggesting that some 

circuit parts may be transferrable to an eukaryotic context after a rapid prototyping in a 

prokaryotic background. 

The few synthetic stripes achieved in a mammalian system rely on I2 and I3 

networks.[32, 35, 36] The work by Kämpf et al. demonstrates that mammalian cells also offer a 

versatile framework to construct, tune and re-wire complex patterning networks.[35] To achieve 

a stripe pattern, not only inducible gene expression but also inducible protein modification and 

degradation were employed. Connecting multiple stripe-forming networks together and 

exposing them to two morphogen gradients resulted in new spatial patterns, such as a cross 

pattern.  

 

2.3 Networks operating with an I3 topology 

In the I3 topology the input node (N1) activates the intermediate node (N2), which in turn 

activates the output node (N3). The output node is also directly repressed by the input node. 

Therefore, the maximum output expression occurs at medium morphogen concentration where 

there is already activation from node 2, but not yet a high level of repression from node 1 
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(Figure 2A,B). Stripes based on the I3 topology have been built both in prokaryotic[19, 30, 31] and 

eukaryotic systems[35, 36]. Among the bacterial I3 networks, the circuit built by Sohka and 

colleagues employed growth inhibition to attain stripe formation: the morphogen analogue is 

an antibiotic (antibiotic 1) and the output node codes for a resistance gene for a second 

antibiotic present in the medium (antibiotic 2). Consequently, low concentrations of the 

morphogen (antibiotic 1) do not activate output gene expression required for cell survival in 

the presence of antibiotic 2, while high levels of the morphogen (antibiotic 1) are deleterious 

for the cells. Hence, cells are only able to grow at intermediate levels of the morphogen.[30, 31] 

Moreover, one of the promoters is controllable by IPTG allowing  external tunability of the 

stripe position within the morphogen gradient. The placement of multiple sources of the two 

antibiotics and IPTG allowed the authors to create complicated, custom-designed patterns.[30, 

31] 

 

2.4 AND-logic mediated expression: the I4 topology 

 The I4 topology has the particularity that the stripe-forming node (N3) integrates two 

activation interactions with an AND-gate logic, which means that N3 only produces an output 

when both inputs coincide in time and space, but not if only one of them is present. An obvious 

way to achieve an AND-logic is through the reconstitution of a full-length protein from its 

constituent split fragments. The split element can either be the regulator that controls 

expression of the stripe-forming reporter gene (Figure 2C),[19, 26] or the reporter itself.[34] 

Another handy approach to obtain an AND-gate is through cell growth inhibition: a reporter 

gene under the control of a concentration-dependent toxic inducer will only be expressed when 

inducer concentration is sufficiently high AND cells are alive (i.e. the concentration of inducer 

is not high enough to trigger cell death) – the result is a stripe pattern of the reporter.[37]  
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Instead of using an I4-type incoherent feed-forward loop, an AND-based stripe pattern 

can be achieved more simply using two opposing morphogen gradients that induce expression 

of the two halves of a split protein: only when the levels of morphogen 1 AND morphogen 2 

are sufficiently high are both halves co-expressed.[42] However, in this last case, the information 

gain provided by the synthetic network is lower compared to the I4 network, since a richer 

input is needed (two opposing morphogen gradients vs. a single gradient in I4) to achieve the 

same output (a stripe).  

 

2.5 A step further towards simplification: the minimal I0 topology 

The four IFFL topologies discussed above share a common feature: the presence of two 

pathways (an activating and a repressing one) connecting the input node of the network (N1) 

to the output node (N3). As discussed already, one of the pathways is direct while the other 

acts through an intermediate node (N2) that adds an additional layer of regulation and helps 

position the repression and activation thresholds in the correct order. However, in principle no 

intermediate node is necessary if the input node acts as a dual regulator capable of both 

activating and repressing the output node directly (Figure 2).[15] Schaerli et al. termed this 

minimal stripe-forming network I0.[19] 

 Several studies have indeed managed to minimize stripe-forming GRNs down to an I0 

topology.[19, 27, 33] Muranaka and Yokobayashi built an I0 network using riboswitches, which 

are regulatory elements in the 5’ untranslated region of mRNAs that change structure upon 

metabolite binding and consequently regulate the expression of the downstream coding 

sequence.[46] The tandem arrangement of an activating and a repressing riboswitch upstream of 

the coding sequence of GFP resulted in a band-pass response. Importantly, the riboswitches 

conferring the band-pass behavior were contained within ~300 nucleotides upstream of the 

reporter, which makes this construct the most compact stripe-forming system built so far.[33] 
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Another I0 topology based on transcriptional regulation was implemented in the yeast S. 

cerevisiae.[27] A transcription factor acted as activator when bound upstream of the promoter 

TATA box but also as repressor when bound downstream, leading to a stripe expression pattern 

of the downstream gene. Schaerli and colleagues also engineered such a 2-node synthetic 

network, and they further modified it to achieve an ‘anti-stripe’ pattern: by increasing the 

activity of the repressor, its dose-response curve shifted to lower morphogen concentrations 

than that of the activator; given a basal expression of the activator, the final output was a HIGH-

low-HIGH pattern.[19] 

 

2.6 Cell-free stripe patterns 

Although most of the patterns produced by synthetic biologists are using cells as hosts, few 

studies also employ cell-free expression systems. One example is the work by Isalan and 

colleagues. They developed an in vitro patterning system that roughly emulated early 

patterning steps of the Drosophila embryo.[28] The setup consisted of a set of plastic chambers 

containing a transcription-translation mixture and beads coated with custom DNA sequences. 

These sequences, encoding repressors and activators, were delivered to the chambers in a 

homogeneous or gradient distribution. In spite of using a simplified network based on 

fundamentally different components operating in a radically distinct environment, this in vitro 

synthetic system succeeded to crudely reconstruct some of the patterns that arise during early 

fruit fly embryo development. The simplicity of the experimental setup allowed the authors to 

modify the circuit (e.g. implementing protein degradation or mutually-repressive interactions) 

and characterize the emerging properties.  

 

3. Stripe patterns independent of morphogen gradients 
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Most synthetic stripe-forming designs use a morphogen gradient as an initial cue to trigger the 

desired patterning, i.e. they can be roughly categorized as French flag model-based systems. 

The field of synthetic patterning benefits from designs capable of ‘reading’ and transforming 

external cues into bespoke configurations, but the ability to form patterns de novo (without any 

external signal) is also desirable.  

The You laboratory has developed a synthetic network that makes bacterial colonies 

produce a ring pattern without any pre-existing signal.[39] Their system combines a direct 

positive feedback loop with a delayed negative feedback, which depends on the metabolic 

burden induced by the synthetic network. The result is an mCherry ring at the colony edge, but 

not only: the pattern also develops in the z-direction, giving an mCherry ‘dome’ structure at 

the most elevated surface of the microcolony.  

This study is an excellent example of how a synthetic system conceived as a proof-of-

concept can be further developed and applied to address fundamental biological questions as 

well as to provide practical and innovative solutions. The network described above was used 

as a basis to study space-sensing and scale invariance,[40] but also to construct bacterial pressure 

sensors.[41] To build these sensors the csgA gene from the bacterial curli system, which forms 

extracellular amyloid fibers, was wired to the patterning network, resulting in a colony with a 

dome structure of extracellular fibrils to which gold particles were  selectively attached.[41] 

When two of such colonies facing each other are sufficiently close, the gold-tagged domes 

transmit an electrical current. Even more: a higher pressure over the two colonies against each 

other results in a higher compression of the domes and a concomitant increase in particle-

particle contacts, leading to a rise in electrical conductivity – in other words, engineered 

colonies are capable of sensing pressure.  

 

4. Phase separation: patterning driven by adhesion properties 
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Two cell lines with different adhesion properties separate from each other, in a process that is 

analogous to water and oil separation into different phases (Figure 3A).[47, 48] This patterning 

mechanism plays a role in cell sorting and tissue boundary formation during embryonic 

development.[49] Two main outcomes can be expected from a phase separation: a complete 

segregation, if the sorting is unconstrained, or a complex, unpredictable pattern of patches of 

the different phases if the separation is constrained (e.g. by limited physical space or by 

restricted movement) – analogous to a shallow puddle in which oil forms random patches in 

water due to limited space in the z-direction. Adhesion-driven sorting is fully determined by 

physical interactions between cells, but separation depends on some level of cell mobility.  

 Synthetic phase separation-based systems developed so far in mammalian cells have 

been implemented by coopting cadherins’ ability to drive cell-cell adhesion. Importantly, not 

only different types of cadherins but also different levels of surface cadherins of the same type 

can determine adhesiveness and thus lead to separation (Figure 3B).[48, 50] Cachat and coauthors 

used cadherin-based sorting to achieve incomplete (constrained) separation that resulted in 

random reticular patterns in 2- and 3-dimensions (Figure 3C).[51, 52] Toda et al. also engineered 

complex self-organizing 3D patterns using phase separation and lateral inhibition, as we 

discuss below.[50] In bacteria, a recent work employed surface-displayed nanobody-antigen 

pairs as adhesin analogues to separate cells in different phases depending on their binding 

capabilities.[53] 
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Figure 3. Phase separation-driven patterning. A) The differential adhesion of two cell lines 

determines their separation into two phases. Complete separation occurs when the process is 

unconstrained; if separation is constrained, e.g. by limited space, the sorting will be incomplete, 

creating random patches of the two phases. B) Complete self-sorting of cells into a three-

layered spherical structure. Mammalian cells were engineered with synthetic circuits for 

programmed differentiation and cadherin-driven self-organization based on differential 

adhesion. Reproduced with permission.[50] Copyright 2018, American Association for the 

Advancement of Science (AAAS). C) Two-dimensional self-sorting of two mammalian cell 

lines displaying different surface cadherins. Separation is constrained in the z-direction due to 

cells’ interaction with an adhesive surface; constrained sorting results in a random pattern of 

patches of the two cell types. Reproduced under the terms of the Creative Commons Attribution 

4.0 International License.[51] 

 

5. Lateral inhibition: prevent your neighbors of doing the same as you 

Another way to create patterns is through lateral inhibition. Here, a cell with a particular fate 

prevents its immediate neighboring cells to adopt the same fate.[54] The ligand Delta and the 

receptor Notch are the best known mediators of lateral inhibition occurring in animal 

development, for example for the decision between a neuron or a non-neuron fate in 
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vertebrates.[55] Activation of the Notch receptor by its ligand Delta presented on the surface of 

adjacent cells leads to repression of Delta transcription. Thus, expression of Delta in one cell 

represses its transcription in the neighboring cells.  

Cell fate decision through lateral inhibition has also been re-constructed and studied 

with the tools of synthetic biology in mammalian cells that do not have a native lateral 

inhibition mechanism (Figure 4).[56] A synthetic circuit built by Matsuda and colleagues is 

based on the Delta-Notch interaction and leads to spontaneous bifurcation of a homogenous 

population into patches of Delta-positive and Delta-negative cells.  

A recent seminal publication combined phase separation, programmed cell-cell 

signaling and lateral inhibition mechanisms to generate multi-layered 3D structures 

reminiscent of those occurring during early embryonic development.[50] Custom signaling 

relied on synNotch receptors, a handy synthetic chimera in which the transmembrane core of 

Notch receptors (responsible for the self-cleavage that releases the intracellular domain upon 

ligand binding) can be fused to any desired extracellular (recognition) and intracellular 

(effector) domains.[57] The sorting of two cell populations through cadherin adhesion was 

combined with synNotch signaling at the cell-cell interface, which resulted in the activation of 

downstream “cell differentiation” programs which in turn led to further sorting. The 

orchestrated use of cell sorting and cell-cell signaling modules created programmed self-

organizing multi-layered structures. These exhibit spherical symmetry or asymmetry 

depending on the design, are reversible and show regeneration capabilities after being cut into 

two sections. Even more, by engineering antagonistic synNotch ligand/receptor pairs to 

perform lateral inhibition, a self-organizing 2-layered structure emerged from an initially 

undifferentiated population of isogenic cells.[50] 
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Figure 4. Lateral inhibition driven by the Delta-Notch ligand-receptor pair. A) Matsuda et al. 

developed a synthetic system that emulates natural Delta-Notch lateral inhibition. Binding of 

Delta to Notch triggers the cleavage of Notch and the release of its intracellular domain, which 

acts as a transcription factor that leads to downregulation of Delta and self-upregulation. 

Initially, the two adjacent cells have similar expression levels of the components. Noise-driven 

slight differences in expression levels are amplified by the lateral inhibition circuit, resulting 

in a complete bifurcation of cells into Delta-positive (Notch-negative) and Notch-positive 

(Delta-negative) cells. B) Implementation of the lateral inhibition circuit in mammalian cells 

led to a salt-and-pepper pattern of intermingled red (Delta-positive) and green (Notch-positive) 

cells. Reproduced with permission.[56]  Copyright 2015, Macmillan Publishers Limited. 

 

6. When mechanical forces determine patterning 

The expansion of a confluent population of cells generates mechanical forces that can suffice 

to produce tree-like or fractal patterns (Figure 5A), as observed during airway branching or 

villi formation in the gut.[58, 59] This patterning mechanism fully relies on physico-mechanical 

forces and properties. Thus far, synthetic examples of such pattern formation based on 

mechanical forces were limited to a rather descriptive approach: labeling a growing population 

of rod-shaped bacteria with different fluorescent reporters was enough to obtain complex 



  

19 

 

stochastic fractal patterns of the differentially labelled sub-populations (Figure 5B).[60, 61] The 

overall pattern could be modified by using cells with different morphologies due to mutations 

in a cytoskeletal (MreB)[61] or a cell wall protein (RodA).[60]. Rather than starting with multiple 

cells carrying different fluorescent reporters, this patterning mechanisms can also be started 

from a single founder lineage,[60, 62] namely by exploiting the stochastic segregation of plasmids 

carrying distinct reporter proteins into different daughter cells.[60, 62] This simple form of spatial 

patterning might have potential in engineering more stable or productive synthetic microbial 

communities.[63] 

 

Figure 5. Formation of fractal patterns by mechanical forces in a population of rod-shaped 

bacteria. A) Top view of a monolayer of bacterial cells. Instabilities arising from cell growth 

and geometry are amplified over time as the confluent population expands leading to fractal 

patterns. B) Surface growing E. coli labelled with three different fluorescent reporters form 

fractal patterns at the boundaries between confluent populations of cells. Reproduced with 

permission.[60] Copyright 2013, American Chemical Society. 

 

7. The elusive Turing patterns 
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In his seminal article of 1952, the father of computation Alan Turing proposed a 

theoretical model of biological pattern formation in which repetitive patterns such as 

dots, stripes and labyrinths could emerge in the absence of any pre-existing cue.[64] Two 

decades later, Gierer and Meinhardt further contributed to this model of self-

organizing pattern formation.[65] The classical ‘Turing’, ‘Gierer-Meinhardt’ or 

‘reaction-diffusion’ model of pattern formation involves two diffusible species – one 

activator and one repressor. The activator favors the production of both itself and the 

repressor, while the repressor inhibits the production of the activator (Figure 6A). 

Small molecular fluctuations causing slightly higher levels of the activator in some cells 

will thus lead to higher levels of the activator and the repressor. A key necessary 

condition of this classical model is that the diffusion rate of the repressor needs to be 

considerably higher than that of the activator.[65, 66] The positive feedback of the 

activator coupled to its low diffusivity subsequently drives its accumulation in local 

patches or islands, while the fast-diffusing repressor prevents the formation and 

coalescence of islands too close from each other.  

The Turing mechanism is highly attractive for pattern formation since a simple genetic 

network is able to produce de novo complex periodic patterns that self-repair when 

perturbed and in which the number of repeated motifs scales in response to changes in 

the tissue size. Turing systems have been proposed to play a role in the embryonic 

development of structural patterns (e.g. for limbs, hair follicles and palate) as well as in 

animal coat patterns and skin pigmentation.[67-72] 

Interestingly, the high difference in diffusion rates between the two morphogens of the 

classical model is difficult to achieve in biological systems, and the parameter space (i.e. 

the number of parameter combinations) that allows for classical Turing patterns is 

extremely narrow, practically unrealistic.[73, 74] This is in apparent contradiction with 
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the high number of Turing mechanisms proposed to underlie natural patterns, and may 

also explain why the construction of synthetic Turing patterns has remained elusive 

thus far despite the growing interest of synthetic biologists in pattern formation.[8, 75-77]  

Recently, Karig and colleagues engineered a self-organizing synthetic system in which 

an isogenic population of bacteria produced a two-dimensional pattern of red 

fluorescent patches in a background of green fluorescence.[78] The responsible synthetic 

network topology consists of a two-node network in which two differentially diffusing 

homoserine lactones operate as an activator and a repressor and is thus reminiscent of a 

classical Turing network. However, this network does not function as a classical Turing 

system but rather as a “stochastic Turing system”[73] that produces patterns lacking 

many of the characteristic features of a classical Turing pattern, such as regularity in 

spot size, shape, intensity and intervals. Indeed, these “stochastic” patterns cannot be 

captured by a deterministic Turing model, but require stochastic simulations.[73] 

The recent work by Sekine et al. represents another notable effort towards the goal of 

engineering a synthetic Turing pattern.[79] Their synthetic network implemented in 

mammalian cells employs the well-characterized Nodal-Lefty pathway. The binding of 

Nodal to its receptor promotes the expression of both Nodal and Lefty, while Lefty 

inhibits Nodal signaling. Moreover, the diffusion of Nodal is significantly slower than 

that of Lefty. Thus, the proteins Nodal and Lefty satisfy the requirements for a classic 

Turing pattern. Indeed, the engineered (HEK) cells spontaneously display a pattern of 

Nodal-positive patches surrounded by Nodal-negative cells. However, the periodicity of 

this reaction-diffusion system is low, indicating that it is probably not a classical Turing 

pattern. Despite the indubitable significance of these two recent studies and their 

contribution to the advancement in the field, the engineering of a genuine Turing 

system remains yet to be achieved.  
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However, recent theoretical studies have suggested that more network topologies than 

previously thought can produce Turing patterns[68, 80-82] and that the differential 

diffusivity requirements may be relaxed (or even disappear) under certain conditions, 

for example with increased cooperativity or when additional species are added to the 

classical two-species model.[66, 68, 74, 82] While Alan Turing only considered 2-node 

systems, networks with more than two nodes can generate Turing patterns through a 

mechanism that is analogous to the original 2-node case, and therefore these more 

complex systems are widely considered to be Turing systems.[68, 74, 80, 82] For example, 

Marcon et al. predict that the addition of extra immobile (non-diffusing) nodes leads to 

Turing networks that do not require differential diffusivity and increases the number of 

topologies with the potential to create Turing patterns.[68] Furthermore, Diego et al. 

uncovered how network topology determines diffusivity constraints and provide a 

general mechanism for the removal of such constraints.[74] Together, these recent 

theoretical studies provide new frameworks to identify natural Turing patterns and to 

finally engineer synthetic systems displaying genuine Turing patterns. 

 

 

Figure 6. Turing pattern formation through a reaction-diffusion mechanism. A) The classical 

Turing model implies two diffusing species, a slow-diffusing activator and a fast-diffusing 

repressor.[64, 65] The activator is subjected to a direct positive feedback loop, and an indirect 
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negative feedback-loop trough the action of the repressor. The diffusion coefficients of the two 

species are very different, which guarantees that clusters of the self-activating activator are 

surrounded by the repressor. Recent theoretical studies suggested that the inclusion of an 

additional immobile (non-diffusing) species may relax (or even suppress) the differential 

diffusivity requirement and allow for many more topologies (additional interactions 

represented as dotted lines).[68, 74, 80, 82] B) Turing systems produce self-organizing (i.e. 

autonomous, independent of any external cue) regular patterns such as spots, stripes and 

labyrinths. To date, no synthetic biological system has achieved genuine Turing patterns.  

 

8. Temporal patterns producing spatial patterns  

In addition to the spatial patterning discussed so far, there exists another, perhaps less obvious 

but no less important form of biological patterning: temporal pattern formation. Oscillations 

constitute one of the most important forms of temporal patterns, being present in a myriad of 

biological systems and processes, such as the cell cycle, the circadian clock, energy 

metabolism, hormone secretion, cardiac function or respiration.[83-85] Importantly, temporal 

rhythms can also produce (periodic) spatial patterns induced for example by spatially varying 

signals (morphogens).[86] Prominent examples include segmentation in developing short-germ 

insects[87] and somitogenesis in vertebrate embryos.[88] During the latter, an oscillating GRN 

(“segmentation clock”) is thought to be responsible for the sequential subdivision of the 

growing vertebrate embryo axis into segments (somites) which develop into the vertebral 

column. The “clock and wavefront” model is the dominant framework to explain this 

conversion of a temporal signal into a spatial pattern: the segmentation clock produces 

synchronized oscillations in the tissue and the morphogen “wavefront” travels through the 

tissue and arrests the oscillations as it advances.[89] 
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Since the landmark study of Elowitz and Leibler who built the first synthetic oscillator 

(the repressilator),[90] many synthetic oscillators with different designs and improved properties 

have been constructed. This body of work has already been extensively reviewed and we refer 

the reader to this literature.[91, 92] Instead, we focus here on the (surprisingly) few studies in 

synthetic biology who looked at how temporal signals can lead to spatial patterns. 

 The repressilator connected the repressors TetR, cI and LacI in a ring-like architecture 

giving rise to a ‘closed’ cascade of repressing interactions.[90] The original version suffered 

from irregular oscillations that were displayed by only ~40% of the engineered E. coli cells. 

Improved versions of the circuit addressed the main limitations of the original design to achieve 

robust oscillations that maintained population-level synchronous oscillation after initial 

synchronization without any form of cell-cell communication.[93, 94] Oscillations of the 

repressilator are arrested when the E. coli cells slow down growth and enter stationary phase.[90] 

This happens presumably due to a decrease of available “housekeeping” sigma factor σ70 in 

stationary phase, which is required for RNA polymerase binding to the promoters of the 

repressilator.[92] Potvin-Trottier and co-authors took advantage of this feature to produce a 

spatial pattern at the scale of bacterial colonies: growing colonies of bacteria containing the 

improved repressilator circuit form a concentric multi-ring pattern of the fluorescent proteins 

used to visualize the expression dynamics of each network node (Figure 7). Cells at different 

radii of the colony enter stationary phase and arrest oscillations at different points of the 

oscillation phase. One could argue that the repressilator is working as a segmentation clock, 

while the transition to the stationary phase is playing the role of the wavefront (Figure 7). 

Similarly, a synthetic circuit based on density-dependent motility built by Liu et al. also 

produces ring patterns in an growing colony.[38] The network is composed of two modules: a 

density-sensing module produces AHL and a motility-control module responds to high cell 

density (i.e. high AHL) by switching off chemotaxis-driven motility. Thus, as the colony grows 
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AHL is produced and causes the cells to tumble and accumulate in place. Since AHL diffusion 

is limited, a few cells manage to escape the motility arrest, swim away and begin the process 

again. The result is a pattern of concentric rings alternating bright (high cell density) and dark 

(low cell density) stripes. 

 

Figure 7. Temporal patterns translate into spatial arrangements. A population of cells with 

oscillating gene expression can form a periodic spatial pattern if a travelling wavefront 

‘freezes’ the clock at a given state as it advances (‘clock and wavefront’ model).[89] A) 

Schematics showing a bacterial population with oscillatory gene expression of ‘green’, ‘blue’ 

and ‘red’ genes. As the colony expands, growing cells in the colony edge continue to oscillate, 

while cells in the colony center enter stationary phase, which ceases oscillations. The growth 

arrest here acts as a travelling wavefront, resulting in a periodic multi-ring patterns as the 

colony grows. B) Oscillatory expression of green, blue and red genes as a function of time. C) 

Representation of the repressilator,[90] a synthetic oscillator. In the repressilator version of 

Potvin-Trottier et al.,[93] the expression of TetR, LacI and cI repressors is monitored through 

CFP, RFP and YFP fluorescent reporters, respectively. D) E. coli cells carrying the Potvin-

Trottier repressilator form colonies with a tree-like ring pattern as a consequence of growth-
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driven clock arrest as the colony expands. Reproduced with permission.[93] Copyright 2016, 

Macmillan Publishers Limited. 

 

While a delayed negative feedback as in the repressilator suffices to create oscillations, 

a network of interlinked negative and positive feedbacks can produce more robust and tunable 

oscillatory dynamics,[95] as well as other dynamical responses like bistability.[96] Various such 

“dual feedback” synthetic oscillators have been built by the Hasty group.[97-100] In order to 

synchronize oscillations in a population of cells, Danino and colleagues complemented the dual 

feedback topology with quorum-sensing elements.[98] However, due to the relatively slow 

diffusion of AHL, the synchronization of oscillations with this circuit is limited to cells grown 

in the same microfluidic chamber (utilized to keep the cells continuously growing in 

exponential phase) with dimensions of about 100 x 100 µm2. This scale limitation of 

synchronization leads to very interesting spatiotemporal dynamics over large (millimeter) 

scales: travelling waves emerge spontaneously due to small perturbations in the central 

chambers and propagate outwards to cells growing in neighboring chambers of the microfluidic 

device.[98] 

To extend the synchronization to centimeter-length scales the local intra-colony 

quorum sensing signaling was combined with inter-colony communication by fast-diffusing 

H2O2 vapor.[99] In addition to producing completely synchronized oscillation over cm-scale 

surfaces (up to 2.9 cm2), this system is also capable of generating more complex spatiotemporal 

behaviors such as anti-phase synchronization between neighboring colonies simply by 

manipulating the geometry of the microfluidic device harboring the cells, e.g. the distance 

between the individual chambers. 

 The group of Bar-Ziv employed another elegant approach to study how oscillatory 

reactions can produce spatial patterns: a cell-free transcription-translation system was set up 
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on a microfluidic device in which compartments containing immobilized DNA were 

interconnected via diffusion.[101, 102] Spatial patterns of alternating low and high GFP 

expression are generated if one of the genes of the oscillator network is expressed in a 

concentration gradient (achieved by localized DNA immobilization). Plotting these expression 

levels against time reveals checker-board spatiotemporal patterns. Additionally, spontaneous 

spatiotemporal patterns can also be induced by fluctuations in the absence of a concentration 

gradient. As in the microfluidic array of compartments for long-range synchronous 

oscillations,[99] in this setup the dynamic system can also be controlled by the geometry of the 

microfluidic device, which influences the coupling between the oscillating compartments.  

In summary, synthetic biologist have started to build systems that use temporal patterns 

to generate spatial patterns and can be used to reveal the underlying design principles. 

However, there is still a lot of work ahead of us until we can rival natural spatiotemporal 

patterning systems. 

 

9. Pattern formation controlled by light 

Optogenetics, i.e. the use of light to precisely control molecular events, constitutes a valuable 

tool for synthetic pattern formation. Light-controlled patterning systems often allow for a great 

complexity of the output pattern. Importantly, the studies presented below differ from the 

patterning forms discussed above in that they reproduce (rather than produce) a pattern, i.e. 

the complex output is a reflection of an equally complex input. This lack of self-organization, 

however, does not hamper their utility: the high spatial and temporal resolution of light 

excitation provides a level of induction accuracy that is hardly achievable with chemical 

inducer signals, and photoactivated molecular changes are commonly reversible upon light 

source removal.[103, 104]  
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The Voigt lab has pioneered the interfacing of light-detecting modules with 

downstream networks that allow bacterial populations to adopt color patterns in response to 

(pre-patterned) light cues. In 2005, they developed a chimeric photoreceptor that repressed the 

downstream production of a black pigment upon red light excitation. When using a non-

homogeneous (‘patterned’) light source for excitation, a 2D population of the engineered 

bacteria was able to capture the details of the input light signal as a black & white biological 

‘photograph’.[105] Few years later, they modified the aforementioned dark sensor to re-purpose 

it for edge-detection.[106] Basically, the new design connected dark detection to the production 

of two antagonistic molecules: AHL, which diffuses across cells and activates pigment 

synthesis, and the cI repressor, which blocks pigment production intracellularly in cells grown 

in the dark. Therefore, only cells within the light-exposed region but close enough to the dark 

area were able to synthesize the pigment induced by AHL. Interestingly, while in silico edge-

detection algorithms suffer from linearly increasing computation times with increasing number 

of pixels, the bacterial edge-detection system implements a parallel computation that is 

independent of image size. Recently, they took light-dictated patterning a step further and 

developed a complex (18-gene) circuit that generates colored bacterial ‘photographs’ in 

response to red, green and blue light (Figure 8A).[107] 
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Figure 8. Light-controlled patterns. A) Complex RGB (‘red, green, blue’) bacterial ‘picture’ 

as a result of patterned incident light (inset) that triggers pigment production in a population of 

engineered E. coli cells. Reproduced with permission.[107] Copyright 2017, Springer Nature. B) 

A projected image on a population of E. coli designed to swim in a light-dependent manner 

modifies their local density such as to create ‘grayscale’ dynamic patterns that mirror the 

incident image. Shown is the time-averaged density profile over 6 minutes. Reproduced under 

the terms of the Creative Commons Attribution 4.0 International License.[108] 

 

Instead of using light to pattern a homogeneous layer of cells, optogenetic control can 

also be employed to modulate the patterned adhesion of cells to a surface. Light can for 

example be used to control receptor-ligand dimerization or adhesin gene expression. 

Photoswitchable cell adhesion systems have been developed in bacteria and eukaryotes to 

control surface attachment of cells in a pattern.[109-111] A dynamic version of light-dictated 

spatial cell arrangment is that of photokinetic E. coli. These minimally engineered bacteria 

produce proteorhodopsin, a proton pump that contributes to the electrochemical gradient across 
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the inner membrane upon light exposure. In swimming bacteria, where the proton motive force 

powers the rotation of the flagellar motor, cells swim more rapidly in light-exposed areas and 

accumulate in dark regions, which allows the formation of complex dynamic spatial patterns 

just by controlling local cell density through differential illumination of the field (Figure 

8B).[108, 112] 

 

10. Conclusions and Perspectives 

Synthetic biology adopts an engineering approach to build artificial systems based on 

natural counterparts. ‘Classical’ research in biology applies a top-down, reverse engineering 

strategy: different parts of a complex system are perturbed to deduce their function; the sum or 

combination of complementary pieces of evidence allow researchers to infer a general picture 

of the system as a whole. Conversely, synthetic biology relies on a bottom-up, forward 

engineering approach in which, starting from basic constituent parts, more or less simple 

systems are assembled together to (roughly) mimic a natural system or to explore non-natural 

solutions.  

 The use of a synthetic biology approach to build and study patterning systems has 

proven greatly successful so far. Yet, exciting challenges remain that will likely be addressed 

in the short- or mid-term. One of the missing pieces in the synthetic patterning toolbox that 

might be added in the near future is that of a synthetic Turing pattern. While Turing patterns 

have been achieved in purely chemical systems,[113-118] a synthetic implementation of a genuine 

Turing pattern in a biological system is yet to come. The Weiss and the Ebisuya labs have 

recently published self-organizing systems that are reminiscent of a canonical Turing system 

but lack some of its distinctive features.[78, 79] As opposed to the classical conception of the 

Turing mechanism, which depicted a very limited parameter space allowing for patterning, 

recent theoretical studies suggest that Turing patterns may not actually be so demanding, 
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especially in network designs with more than two nodes.[68, 74, 82] Therefore, future attempts to 

engineer biological Turing systems may not focus on two-node networks with high parameter 

sensitivity, but will presumably explore the recently proposed more complex and robust 

network topologies.[68, 74, 80, 82] 

More complex patterns than those achieved so far are also desirable. Pattern complexity 

does not necessarily correlate with GRN complexity – Turing systems, for example, generate 

complex patterns out of fairly simple underlying networks. However, complex patterning can 

also be achieved by combining simple patterning modules into a higher-order network. For 

instance, a theoretical study on patterning network connectivity showed that the output (stripe 

pattern) of stripe-forming networks can be used as input by a downstream stripe-forming 

network, giving rise to a multi-stripe pattern.[119]  

Multifunctional GRNs may provide another route towards controlling complex 

spatiotemporal patterns, while keeping the synthetic circuit small. Multifunctional circuits are 

capable of exhibiting qualitatively different behaviors depending on the conditions.[120-123] For 

example, the AC-DC circuit[124, 125] is a combination of the toggle switch[126] and the 

repressilator[90] and owes its name to its ability to exhibit oscillatory (AC: alternate current) 

and multi-stable switch-like (DC: direct current) expression patterns. This combination results 

in emergent properties not displayed by any of the two subnetworks, such as fast on/off 

switching of synchronous oscillations and the spatial propagation of signals.[122]  

 Ideally, a prospective higher level of pattern complexity should not be accompanied by 

an increase in the complexity of the input signal(s). Not all patterning mechanisms allow for 

the same degree of autonomy (Turing patterns are self-organizing, i.e. input-independent, while 

French flag-based systems require an input gradient), but patterns with highly complex inputs 

provide poor information gain: much of the complexity of the final pattern is already encoded 

in the input signal.  
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 Another source of novel and more complex patterns may emerge from combining 

different patterning mechanisms. In natural systems, the boundaries between different 

patterning mechanisms are presumably loose, even though for the sake of conceptualization 

and analysis researchers try to delimit patterning modules within a defined category. For 

example, the digit patterning in the mouse embryo is controlled by a combination of an early 

gradient of the sonic hedgehog morphogen, which establishes the antero-posterior polarity of 

the limb bud,[127] and a subsequent three-node Turing network (involving BMP, Sox9 and 

WNT) that positions a periodic digit pattern.[67] While most synthetic patterning designs rely 

on a single mechanism, Toda and colleagues combined two patterning mechanisms (phase 

separation and lateral inhibition),[50] and we believe that in the future other studies will follow 

the same direction, which may allow us to better emulate natural processes and to broaden the 

synthetic patterning palette. 

As highlighted above, synthetic biology allows us to tackle longstanding biological 

questions from a new angle, thus providing a valuable complementary approach to classical 

top-down research. While the classical biological research informs us about how particular 

natural phenomena work, the construction of synthetic counterparts of complex natural systems 

can be extremely informative with respect to the underlying regulatory networks and general 

design principles. This is also true for synthetic systems emulating natural patterning processes. 

A beautiful example is found in a recent work from the Elowitz group, in which the 

reconstitution of the Hedgehog gradient showed that the design of the natural pathway 

accelerates gradient formation and increases robustness to variations in ligand levels.[128] In 

another work, Delta-Notch driven lateral inhibition was studied using a minimal network that 

showed, for instance, that bifurcation into Delta-positive and Delta-negative cells is 

spontaneous, robust and static rather than dynamic, and that Lunatic fringe (Lfng) participates 
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in a sub-circuit that causes bimodal distribution even when the main Delta-Notch inhibition is 

absent.[56]  

Synthetic systems have also been used to demonstrate that a specific network or 

mechanism is capable to generate a pattern of interest. For example, all four IFFLs have been 

built synthetically and shown to form a stripe in a concentration gradient.[19, 24-37] However, to 

the best of our knowledge, only I1 and I2 have so far been observed in natural stripe-forming 

systems.[21] Natural systems using the I3 and I4 networks might be discovered in future, or a 

synthetic system might be used to unveil properties that make them less likely to appear in the 

repertoire of natural stripe-forming networks. Similarly, the work of Cao and co-workers using 

a morphogen-independent artificial system suggests a potential mechanism for pattern 

generation and scaling in nature.[40] Finally, the understanding of how physico-chemical laws 

determine patterning (for example during bacterial colony formation, or in adhesion-driven 

phase separation) has also benefitted from the building and examination of controllable 

synthetic systems.[48, 51, 52, 60-62] 

 The ability to build, understand and modify synthetic patterns may enable their use as 

a tool to study, with a new perspective, not only patterning events but also other varied 

biological problems. For instance, stripe-forming networks have recently been employed to 

address questions of GRN evolution.[129] Two incoherent feed-forward loops (I2 and I3) 

producing the same phenotype (a stripe) through different regulatory mechanisms were used 

to study mutations that cause novel phenotypes. Experimental measurements, mathematical 

modelling and DNA sequencing were combined to show that the regulatory mechanism of a 

network restricts the possible phenotypic variation upon mutation. 

 Although most of the work discussed here is basic research, synthetic patterns also have 

potential applications, for example in tissue engineering. Tissue engineering aims to create 

tissues and organs outside the developing embryo. The thus obtained structures are interesting 
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disease and drug-screening models and can be used to repair or replace damaged tissues and 

organs in regenerative medicine.[130] Controlling patterning and cell differentiation is one of 

the main challenges of tissue engineering. Traditionally, tissue engineers rely either on the 

intrinsic self-organizing properties of the (stem) cells employed and/or on templated structures 

(e.g. obtained by 3D printing) seeded with living cells to obtain a specific arrangement.[131] 

The combination of these approaches with the tools of synthetic biology to control cell 

differentiation and pattern formation promises to provide unprecedent control for programming 

the generation of complex tissues and organs. For example, Guye and coauthors obtained a 

complex liver-bud-like structure from a genetically engineered human induced pluripotent 

stem cells (hiPSC) expressing different levels of a transcription factor (GATA6).[132] Similarly, 

hiPSC were guided through sequential differentiation steps up to an insulin-secreting beta-like 

phenotype by a synthetic network engineered to respond to input levels of the food additive 

vanillic acid and translate this signal into a precise temporal control of gene expression.[36] The 

excitement for this “synthetic tissue development” or “synthethic morphogenesis” is reflected 

by a row of recent reviews to which we refer to.[133-138] 

Another field that can greatly benefit from controllable patterning capabilities to create 

non-homogeneous products is that of bio-derived material production.[139] For example, 

bacterial curli fibers, involved in biofilm formation, are suitable carriers for surface display of 

custom molecules due to their simple secretory mechanism.[140] The labelling of curli with 

conductive elements, e.g. gold nanoparticles, provides colonies with electrical conductance and 

allowed to build bacterial pressure sensors.[41] Finally, biotechnological processes may also 

take advantage of spatiotemporal patterns, which could facilitate the channeling of reaction 

intermediates through the production flux.[141, 142] 

 So far, the majority of synthetic patterning systems used bacterial host cells. The 

possibility to use unicellular organisms to understand the underlying principles of multicellular 
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organism development is one of the advantages of the synthetic biology approach. However, 

in the light of applications in tissue engineering, synthetic patterning of eukaryotic cells[32, 35, 

36, 48, 50-52, 56, 79, 132, 143] promises to gain in relevance in the following years. Most tissue 

engineering applications will likely require 3D patterns[50] rather than 2D configurations, and 

therefore efforts should be made in the third dimension.  

Despite the excitement and indubitable potential of synthetic patterning, the field 

suffers from the same limitations that synthetic biologists face in general: the particularities 

and complexity of life makes that desirable goals such as predictability, standardization, 

robustness or modularity are difficult to achieve to the same extent as in other engineering 

disciplines.[144, 145] Nevertheless, intrinsic challenges of the field should not discourage 

synthetic biologists, and efforts should be made that bring us as close as possible to these goals. 

During the 2000s and the 2010s synthetic biology has experienced a remarkable boom both in 

basic and applied research.[1-7] In future further advances are expected, also boosted by 

technological progress such as CRISPR[146] and optogenetics,[147] or dropping costs in DNA 

synthesis.  

The combination of synthetic and developmental biology is proving to be a fruitful 

partnership.[8, 77, 134, 135] As showcased in this Progress Report the application of synthetic 

biology to patterning has already produced promising results. In the future, the synergistic 

combination of cutting-edge technology and engineered cell-organization control promises to 

deliver exciting fundamental insights into the principles of pattern formation and their 

applications in market-ready products. 
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