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ABSTRACT 

Shade is an important means of protection against harmful effects of sun ultraviolet (UV) exposure, 

but not all shades are identically protective. UV rays scattered by the atmosphere and surroundings 

can reach the skin indirectly. In order to evaluate the relative contribution of the direct, diffuse and 

reflected radiation in UV protection provided by different sizes of shade structure, we used SimUVEx 



 

 

v2, a numeric tool based on 3D graphic techniques and ambient ground UV irradiance. The relative 

UV exposure reduction was expressed by the predictive protection factor (PPF). Shade structures 

were found to predominantly reduce exposure from direct radiation (from 97.1% to 99.9% for the 

upper body areas such as the head and the neck), with greater protection from larger shade 

structures and structures closer above the subject. Legs were the least protected anatomical zone 

from any shade structure above the subject with PPF ranging from 18.5% to 68.1%. Throughout the 

day, except for lower solar zenith angles (SZA), small and high shade structures provide the lowest 

protection (between 20% and 50%), while small and low shade structure show PPF between 35% 

and 65% and large and high shade structures reach PPF higher than 60%. 

INTRODUCTION 

Shade is an important sun protection means, but not all shades are identically protective from 

UV radiation. While the direct UV component is incident on a particular spot, having 

travelled a straight path from the sun, the diffuse and reflected components come from all 

directions since they are scattered by clouds and other elements in the atmosphere, or 

bounced back from UV reflective surfaces (e.g., sand, snow, water). Diffuse radiation 

provides a very large contribution to solar UV exposure on non-horizontal surfaces (such as 

most of the human anatomical zones), explaining about 80% of the cumulative annual 

exposure dose on human body (1). Thus, even if shade reduces direct UV exposure, diffuse 

UV radiation can reach the shaded skin, entering through the side openings of the shade 

structure, leaving people in the shade exposed to indirect UV radiation. The size, the shape, 

the height and the fabric of the shade structure along with the position of the occupant can 

influence the level of UV exposure of anatomical zones. Moreover, the shade projected by 



 

 

the structure changes over the day and when the sun is low (i.e., for higher SZA), the shade 

protection may not be below the shade structure (2). Previous works have shown that 

scattered UV levels under shade structures are sufficiently important to cause sun related 

damage (2-4). Dosimetric measurements show significant decreases in exposure under shade 

structures up to 65% for summer and 57% for winter (5). Nonetheless, even if dosimetric 

studies are valid instruments to quantify the amount of individual UV exposure, 

measurements are strongly related to their specific location, and the orientation of the 

dosimeter. In most cases, they measure the total radiation received, without differentiating the 

relative contribution of each UV component. 

Very few studies have reported measurements for global (direct and diffuse) radiation 

combining radiometer measurements and sky view factor models (6, 7). Furthermore, the 

anatomical geometry of individuals is highly heterogeneous and the incident intensity on 

tilted planes can exceed that on horizontal surfaces in some specific topographical conditions 

(8-10), and nearly doubles on vertical planes (11). In order to quantify anatomical site-

specific UV exposure with respect to the direct, diffuse and reflected components, we 

developed SimUVEx v2 (12, 13), a numerical tool based on 3D graphic techniques and 

human modeling to estimate the exposure of a 3D virtual mannequin. Human modeling that 

combines technology with science is widely implemented in various fields such as medical 

treatment (14, 15), surgery (16), ergonomics (17, 18), film and television (19), and sports (20, 

21). Although several studies have addressed the human body exposure to UV (22, 24), to the 

best of our knowledge, very limited efforts have been brought to the application of human 

modeling and 3D computer graphics for estimating and visualizing UV exposure (25). The 

aims of this research are to predict the UV exposure reduction provided by shade structures 

and evaluate how the reduction is influenced by diffuse and reflected radiation. 
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MATERIALS AND METHODS 

Modelling tool. SimUVEx v2 is a numeric tool that uses 3D graphics techniques to estimate the 

exposure of a virtual mannequin on the basis of postural information, continuous ambient 

radiation datasets and shade factors (headgear, shade structures, sunglasses, etc.). The virtual 

mannequin is depicted as a 3D mesh of connected triangles, whose size density depends on the 

resolution. The irradiance data contains information about the sun position (defined by azimuth 

and zenith angle) and measured direct, diffuse and reflected radiation for every minute of the 

day. Each triangle of the mannequin receives a certain quantity of solar energy depending on the 

body surface orientation to the sun and the shadows from other anatomical zones or eventual 

shading structure. The direct component is described as a parallel source of irradiation varying in 

intensity with time and in direction with the position of the sun, whereas the diffuse and the 

reflected components are considered hemi-spherical isotropic sources with intensities varying as 

a function of time. To account for anisotropy, the diffuse radiation is assumed to decrease 

linearly from an elevation angle of 25° to the horizontal layer. This nearly isotropic 

approximation introduces uncertainties because it is not completely valid in clear-sky situations 

or when there is broken cloud coverage. The result is an overestimation of real exposure by a 

maximum of 4%-6% (26). The total irradiation received from a single triangle is expressed in 

2
 as a combination of exposure from the three components. A 3D visualization of UV

exposure on the mannequin is provided to enhance understanding of the results. The principles, 

the performance and the validation of SimUVEx have been described previously (12, 13, 27, 28). 

Ground irradiance data. Erythemally weighted direct, diffuse and reflected UV irradiances are 

measured at the MeteoSwiss Payerne Station (46.815°N, 6.944°E, altitude 491 m) using 

SolarLight SL 501A broadband radiometers with filters mimicking the erythemal response. 

Radiometers measuring direct and diffuse components are mounted on sun-following tracker; the 



 

 

 

one measuring the reflected radiation is turned upside down. Daily quality control procedures are 

performed on the irradiance data using plausibility criteria on the individual data components as 

well as comparing the global UV irradiance to the sum of the direct and diffuse components. In 

addition, the UV radiometers are replaced every year with radiometers that underwent a 

calibration check. The calibration check involves a 4-months comparison at Payerne with three 

reference instruments of the same type (SL501A) that are regularly calibrated (at least one of the 

reference instrument triad is calibrated every year) at the UV section of the World Radiation 

Center at Davos (PMOD/WRC). The 4-months comparison occurs from March to June, when the 

ozone column is most variable. The raw signals of the tested instruments and the reference triad 

instruments are compared to first derive an overall calibration factor valid for a total ozone 

column of 300 DU and a solar zenith angle of 45°. Then it is checked that the ozone and solar 

zenith angle dependence of the calibration factor for the tested instrument can be smoothly 

derived (with a two-dimensional third-order polynomial fit) from the ozone and solar zenith 

angle dependence of the reference triad. This allows deriving both an overall calibration factor 

and an ozone-solar zenith angle matrix that is applied to the tested instrument raw signals for 

deriving UV erythemal irradiance data for the 4-months comparison. For each tested radiometer, 

if more than 5% of the irradiance data disagree by more than 5% from the mean of the 

corresponding irradiance of the reference triad, the tested radiometer is rejected and not used in 

the network. 

Implementation. The virtual mannequin used in this article represents an adult male 1.73 m high 

in the seated south facing position, placed at the center of three different shading protective 

structures of a square shape. The structures were chosen so that a range of differently sized shade 

structures could be investigated. Details of the structures are as follows: 



 

- Shade structure 1 (small/low shade structure): the first shade structure is 1 m wide 

and 40 cm above the top of the head of the seated mannequin; 

-

 

Shade structure 2 (small/high shade structure): the second shade structure is 1 m wide 

and 80 cm above the top of the head of the seated mannequin; 

- Shade structure 3 (large/high shade structure): the third shade structure is 2 m wide 

and 80 cm above the top of the head of the seated mannequin. 

Each anatomical zone is characterized by a different color and the body regions are 

constituted of 7 zones (head, neck, leg right/left, arm right/left, trunk) further divided in 

subregions. 

Simulations were run for a summer cloudless day (17/07/2014) for a seated posture in 

static orientation to the sun without protective clothing. Two exposure scenarios were considered: 

at midday (12PM - 2PM, with a minimum SZA value of 25.65° at solar noon) and for a full day (8AM 

- 5PM). The shade structure was designed as an opaque objet providing full shielding against UV 

radiation. This allowed us to investigate the protection from the shade structure, without taking 

into account arbitrary fabric sun protection factors. The overall relative UV protection provided by 

the shade was expressed in percentage as a predictive protective factor (PPF), calculated according 

to the following equation: 

        
                                    

                   
     (1) 

where UVwithprotection is the erythemal UV in the shade for a specific anatomical zone and 

UVwithoutprotection is the erythemal UV for the same zone without shade. The greater the PPF, the higher 

the relative UV exposure reduction of the shade structure. When the PPF is equal to zero, the 

exposure does not change with or without protection (unprotected zone). 



 

 

RESULTS 

Total erythemal UV exposures received by the main anatomical zones with and without the 

three shade structures are represented in Fig. 1 for changing SZA during a full clear sky day. 

The UV exposures per minute show a general decrease for all anatomical zones as the 

SZA increases. For all the unprotected situations, values range from zero, when the sun is 

, to 5 J/m
2
min when the sun is at its highest elevation (SZA = 25

o
). Each shade structure

reveals different peak periods where the exposure increases. These periods do not arise 

necessary when the sun is at its highest elevation (minimum SZA) and depend on the position 

and size of the shadow below the shade structure. Generally they occur when the sun is lower 

(higher SZA) and the radiation can get in sideways. That means that each anatomical zone is 

shaded at different SZA depending on the position of the sun and the orientation of the 

considered anatomical zone during the day. For example, the head shows a peak period at 

around 45°-60° for the small and low shade structure, at 40°-50° for the small and high shade 

structure and at 40°-55° for the large and high shade structure. Overall, the head and the trunk 

were the most efficiently protected anatomical zones by an overhanging shading structure 

iting the total UV exposures below 2.5 J/m
2
min. The situation is different for the arms and

legs due to the position and the size of the shadow under the shade structure. Noteworthy, 

structures 1 and 2 provide a similar protection for the legs since, in those cases, they are not 

directly covered. The largest shade structure represented as a purple line in Fig. 1 is the most 

protective one, while the smallest shade structure is more protective when located closer 

above the subject (far 40 cm vs 80 cm). The higher and smaller the tent, the more likely the 

shade did not protect all anatomical zones at any time during the day. 
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The relative amount of UV protection provided by each shade structure, expressed as 

PPF, are displayed in Fig. 2 as function of time. Again, the shade structure 2 provides the 

lowest values, especially for the peripheral areas such as the leg (PPF below 20%) and the 

arm (PPF below 30%). For each shade structure, values of PPF were quite constant for every 

hour of the day, except in early morning (before 10AM) where the above-mentioned peak 

periods occur. Except for those periods, PPF range between 35 and 65% for shade structure 1, 

between 20 and 50% for shade structure 2 and reach values above 60% for shade structure 3. 

The erythemal UV levels for each radiation component during a full summer day are 

displayed in Fig. 3 for the three shade structures for the head and the trunk, i.e., the 

anatomical zones that received the lowest exposure estimated when protected. Overall, the 

main effect of shade structure is to decrease the direct radiation, while the amount of diffuse 

and reflected UV present beneath a shade structure are proportionate to the amount of open 

sky visible from the shade. For the head, the reduction of the direct exposure ranges from a 

ximum value of about 2 J/m
2
min to zero for all the situations, for the trunk the reduction is

 always complete. For the shade structure 2, it ranges from 1.8 J/m
2
min to about 0.5

2
min. The largest shade structure is the most protective, while direct radiation for both

arms and legs for shade structure 1 and 2 does not decrease appreciably since these 

anatomical zones are not completely located in the shade. Hence, larger shaded areas provide 

more sun protection for more anatomical zones than smaller shade structures only if the shade 

structure is sufficiently large. 

The PPFs provided by the three structures from 12PM to 2PM are shown in Table 1 

by anatomical zone and UV radiation component (see Table S1 in the Supporting Information 

for a complete overview of each anatomical subregion). The related 3D rendering is shown in 

Fig. 4. 



 

 

PPFs were highest for direct exposure on the upper body areas, such as the head and 

the neck, varying between 97.1% to 100% across the shade structures. There is an asymmetry 

with respect to arm right and left, due to the fact that the chosen time period is not centered 

on solar noon, as shown in Fig. 4. 

In general, having chosen a two-hour exposure after solar noon, when the sun is in the 

western half of the sky, the right arm of the mannequin is more exposed than the left one for 

shade structures 1 and 2, reaching PPF of 20.5% and 55.8%, respectively, in the case of 

lowest protection (shade structure 2). The situation was more homogenous for the third 

structure where both sides were identically protected. The trunk was well protected by the 

shade structure 1 and 3 (PPF of 83.8% and 99.9%, respectively), but the protection was 

remarkably reduced for the small and high shade structure (PPF=60.5%). Results show a 

clear gradient in exposure from top to bottom, for each of the three situations (see Table S1). 

The legs were the most exposed as they are furthest away from the source of shade in the 

shade structures 1 and 2, with PPF ranging from 3.9% to 4.7%. Lower back and feet were the 

highest exposed zones of the lower limbs. Diffuse exposure was moderately decreased by 

shade provision. Higher PPF values (up to about 56%) were only found for the head due to 

the decreased amount of sky view. Reflected exposure did not vary remarkably since the 

experiment used measurements collected over the grass, but this quantity is mainly dependent 

on the surrounding surfaces. For instance, snow can reflect as much as 80% of UV radiation, 

dry beach sand about 15% and sea foam about 25% (29). 



 

 

DISCUSSION 

The amount of UV protection provided by a structure depends on various elements such as the size 

of the structure, its distance from the subject, its orientation to the sun, the solar position, the 

degree of cloud cover and the reflection of the surface. UV exposures estimated in this research 

illustrate the relative contribution of the components of UV radiation for three shade structures 

differing in size and height above the subject. Although shade structures attenuated the variability in 

UV exposure across the whole body, our results show that in many situations open shade provide 

inadequate sun protection since it is susceptible to intrusion by scattered and reflected UV radiation. 

Large decreases in UV exposure were found for the direct radiation from 97.1% to 99.9% for upper 

body areas such as the head and the neck. On the contrary, the amount of diffuse radiation that hits 

the skin depended on the amount of open sky visible from each anatomical zone in the shade. The 

results pointed to the importance of the exposure to diffuse UV radiation that decreased far less 

than the exposure to direct radiation in presence of shade structures, and tended to never approach 

zero. Indeed, the UV exposures in the shade shown in Table 1 ranged from approximately 140 to 230 

J/m2, or roughly 1 MED. This shows that a subject wearing a bathing suit with no further means of 

sun protection under a sun umbrella would be exposed in 2 hours (12 PM- 2PM), in summer, to 

sufficient diffuse UV exposure to induce a sunburn (30). It should be emphasized that irradiance 

measurements for an ordinary surface (i.e. grass) were used for this study. Except for the sand and 

the snow, the albedo of the Earth surface is nearly dark in the UV part of the spectrum with values 

typically between 3 and 5% (31) so that a very small component of the UV radiation is reflected 

upwards and consequently reflected radiation has negligible influence on the results presented here. 

Our results support that not all shade structures provide adequate protection against 

damaging UV radiation for changing SZA and that effective sun protection requires the combination 

of several means of protection. The most effective shading is the one that cuts as much as possible 

the visible sky from the different body parts, namely the largest and highest shade structure. 



 

 

However, its effectiveness depends on the sun position and the considered skin zone. For example, 

the lower legs and the feet were the most exposed zones of the lower limbs for any shade structure. 

These areas are particularly susceptible to sunburn since they also tend to be forgotten when 

applying sunscreen (32, 33). 

The results presented in our research are in line with previous studies on solar protections 

based on dosimeters placed vertically (34) or horizontally at the center of a shade structure (2, 3, 5, 

35), or worn at the wrist (36), or sky obstruction geometrical model (7). Previous studies generally 

measure the total UV radiation without quantifying diffuse and reflected radiation separately and 

without taking into account non-horizontal surfaces which are essential for a correct evaluation of 

UV exposure on anatomical zones. Indeed, shade structures can provide reasonable protection on 

horizontal surface, but do protect poorly on vertical surfaces (34). The large variability of the shade 

over the whole body (see Table S1), shows that provision of only a single protection value, regardless 

of the anatomical region, is inaccurate. Poor protections were found at larger SZA (lower sun) while 

a better protection was found at lower SZA, i.e., around midday, whether in our modelling study or 

in dosimetric studies (2, 5, 34). In (5) UV radiation decreases by up to 87% in the first case and up to 

30% in the second case. This observation is confirmed in our research by the shape of direct 

radiation (blue line) in Fig. 3. 

To our knowledge, very limited efforts have been brought to the application of human 

modeling and 3D computer graphics for estimating UV exposure (25, 37-39) and none of them refers 

to sun protection specifically. In this study, all results were obtained with SimUVEx, an inexpensive 

tool that estimates individual UV exposure distribution over the human body. SimUVEx has been 

validated by CIE erythemally weighted Spore film dosimeters (BioSense, Bornheim, Germany) in real 

on- field measurements (27) which includes measurements of total irradiance. The dosimeters used 

for the model validation were positioned on an articulated foam mannequin for individual exposure 

measurements. The validation took into account shade from other body parts and the orientation of 



 

 

 

all surfaces. The seated posture of an adult subject located under the center of the shade structure 

was chosen since it represents one of the most typical positions taken under a shade structure (i.e., 

a sun umbrella or a tent). Production of the same analysis for other postures, morphologies (female, 

child, overweight person) or sun orientation is possible with SimUVEx (12) as well as the application 

of a simple sun reduction factor, such as the SPF, in order to investigate precisely the protection of 

any shade structure, based for instance on its fabric, rather than assuming an opaque object 

blocking 100% of direct UV radiation. The outcomes from the three shade structures can be 

generalized to other structures of similar size, solar orientation, sky view fractions and no 

surrounding surfaces of high reflectivity. The same analysis was run for a cloudless spring day 

(09/04/2014), i.e. when it could be common to use a shade structure to protect oneselves from the 

sun. Results (not shown) were also linked to the geometry of the protections and overall similar to 

those discussed in this work. 

Skin cancer prevention messages should focus more on the important but still largely 

underestimated contribution of indirect UV radiation in the total UV exposure received (31). 

Prevention strategies should also sensitize the general public to the potential limitations of a single 

means of protection, such as shade, in the effectiveness of sun protection. A tool like SimUVEx can 

contribute to improve our understanding of exposure patterns and identify some potential 

shortcomings in current sun protection recommendations. It could be used, for example, to design 

shade structures with the purpose to exclude as much sky radiation as possible, setting different 

heights or sizes, responding to the need for appropriate creation of structural shade (33). Future 

developments could consider more complex shade situations such as trees and natural vegetation, 

where movement of canopy leaves and branches could lead to large fluctuations in UV exposure, or 

combination of different shade structures, where the sky view can be critically reduced. The degree 

of protection would depend on the density and location of the closest structures. 
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SUPPLORTING INFORMATION 

Additional Supporting Information is available in the online version of this article: 

Table S1. Predictive protection factor (PPF, in %) of three shade structures for main anatomical 

regions between 12 PM and 2 PM. 
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FIGURE CAPTIONS 

Figure 1. Total UV exposure per minute received beneath shade structures during a full clear sky 

day (8AM - 5PM) as function of SZA for different anatomical zones (arm left, leg left, head and 

trunk). 

Figure 2. Predictive Protection Factors (PPF [%]) as function of the hour for different anatomical 

zones (arm left, leg left, head and trunk). Each PPF was calculated considering total erythemal UV 

radiation for a whole hour. 

Figure 3. Direct, diffuse and reflected exposure during a clear sky summer day (17/07/2014) for 

shade structure 1 (a), shade structure 2 (b) and shade structure 3 (c), considering the head and 

trunk. 

Figure 4. 3D rendering for fixed simulations from 12PM to 2PM (17/07/2014) for a male 

mannequin with a) small/low shade structure, b) small/high shade structure, c) large/high shade 

structure. In the small frame the morphologies of the male mannequin for the three shade 

structures are displayed. The different colors refer to different anatomical subzones. 



 

TABLES 

Table 1. Predictive protection factor (PPF, in %) of three shade structures for main anatomical 

regions between 12 PM and 2 PM. 

 

 

Without protection Shade Structure 1 Shade structure 2 Shade structure 3 

Diffuse Direct Reflected Diffuse Direct Reflected Diffuse Direct Reflected Diffuse Direct Reflected 

Head 
PPF % - - - 44.4 99.9 3.3 29.1 99.9 3.2 55.8 99.9 3.1 

Dose (J/m2) 323.6 224.9 5.4 180.1 0.1 5.3 229.5 0.1 5.3 143.1 0.1 5.2 

Neck 
PPF % - - - 25.4 100 8.9 16.7 97.1 8.9 39.7 99.9 8.9 

Dose (J/m2) 304.7 195.1 5.9 227.1 0 5.3 253.5 5.6 5.3 183.2 0.2 5.3 

Arm Left 
PPF % - - 22.9 69.3 8.2 18.9 55.8 7.9 38.9 99.9 7.7 

Dose (J/m2) 260.9 180.2 5.8 200.9 55.3 4.8 211.5 79.6 4.8 159.4 0.1 4.8 

Arm Right 
PPF % - - - 22.3 33.6 8.1 18.5 20.5 7.7 38.1 99.9 7.5 

Dose (J/m2) 263.3 227.8 5.3 204.5 151.2 4.8 214.7 181.2 4.8 162.9 0.1 4.9 

Trunk 
PPF % - - - 26.1 83.3 14 21.9 60.5 13.8 37.5 99.9 13.6 

Dose (J/m2) 260.7 174.4 6.7 192.7 28.2 5.8 203.7 68.9 5.8 162.9 0.17 5.8 

Leg Left 
PPF % - - - 20.3 4.4 11.4 18.7 3.9 11.2 28.9 69.1 11 

Dose (J/m2) 252.4 194.7 6.4 201.3 186.1 5.7 205.3 187.2 5.7 179.3 60.1 5.7 

Leg Right 
PPF % - - - 21.7 18.7 12.9 19.9 18.5 12.7 30.9 68.1 12.5 

Dose (J/m2) 253.7 213.1 6.4 198.6 173.2 5.5 203.1 173.7 5.6 175.2 67.9 5.6 





 

 



 



 

 


