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Abstract
Purpose Visceral adipose tissue (VAT) is associated with cardiometabolic risk factors and insulin resistance. The physiological
mechanisms underlying the benefits of Roux-en-Y gastric bypass surgery (RYGB) on glucose metabolism remain incompletely
understood. The impact of RYGB onVATwas assessed among three groups of patients stratified by their glucose tolerance before
surgery.
Methods Forty-four obese women were categorized into normoglycemia (n = 21), impaired glucose tolerance (IGT, n = 18) and
diabetes (n = 5) before surgery. Body composition measured by dual-energy X-ray absorptiometry (DXA) was performed before
surgery, 6 months and 12 months after.
Results The three groups had comparable mean age (mean 38.6 ± SD 9.9) and BMI at baseline (41.9 ± 4.3 kg/m2). After
12 months, total weight loss (mean 35.1% ± 7.5) and excess weight loss (91.1% ± 25.1) were similar between groups. Pre-
surgery mean VAT was significantly higher in diabetes (mean 2495 ± 616 g) than in normoglycemia (1750 ± 617 g, p = 0.02).
The percentage of VAT to total body fat was significantly higher in diabetes (mean 4.4% ± 0.9) compared to normoglycemia
(2.9% ± 0.8, p = 0.003). Twelve months after surgery, VAT loss was significantly greater among patients with diabetes (mean
1927 ± 413 g) compared to normoglycemia (1202 ± 450, p = 0.009).
Conclusions RYGB leads to important VAT loss, and this loss is greater in patients with diabetes prior to surgery. As VAT is
associated with insulin resistance, this reduction may account for the profound impact of this surgery on glucose metabolism.
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Introduction

In recent years, bariatric surgery has been shown to be the
most effective strategy to achieve a significant and
sustained long-term weight loss in severely obese patients
[1]. Obesity is associated with an increased risk of meta-
bolic comorbidities including type 2 diabetes. Bariatric
surgery leads to a clear improvement in type 2 diabetes
[2–4] and lowers the incidence of diabetes [5]. However,
the physiological mechanisms underlying the impact of
bariatric surgery on glucose metabolism are not fully un-
derstood [6]. Caloric restriction, proximal intestinal nutri-
ent exclusion, rapid distal gut nutrient delivery [7], incretin
secretion [8], changes in gut microbiota, and bile acid me-
tabolism [9] are some of the suggested mechanisms in-
volved in diabetes remission after bariatric surgery.

Fat distribution has important associations with diabetes
and the risk of cardiovascular diseases. Abdominal fat has
long been associated with insulin resistance and increased
cardiovascular risk [10, 11]. In contrast, gluteofemoral fat
may be protective for the development of these conditions
[12]. Abdominal fat is composed of abdominal subcutane-
ous fat and intra-abdominal fat, also called visceral fat or
visceral adipose tissue (VAT). This fat compartment pri-
marily consists of omental and mesenteric fat, and directly
drains through portal circulation into the liver [13]. VAT
surrounds the internal organs and is associated with higher
cardiometabolic risk and insulin resistance [14]. It is in-
creased in patients with impaired glucose tolerance (IGT)
or type 2 diabetes compared to patients with normal glu-
cose tolerance [15]. VAT histology has shown cell stress,
degeneration and necrosis in diabetic patients [16]. It has
also been demonstrated that weight loss provides a de-
crease in hepatic and pancreatic fat that is associated with
normalization in insulin sensitivity [17]. Ponti et al. studied
changes in body composition measured by dual-energy X-
ray absorptiometry (DXA) during weight loss programs in
48 obese women [18]. The modest weight reduction of
4.5% over 12 months of follow-up was accompanied by a
marked reduction of 12% in VAT. In their recent article,
Chooi et al. described the effect of a 5% diet-induced
weight loss on body composition in 11 metabolically un-
healthy lean Asian individuals (mean baseline BMI
22.7 kg/m2) [19]. Body composition and VAT were
assessed by magnetic resonance (MR) imaging. The
weight loss achieved in 6 to 16 weeks resulted in a reduc-
tion of total fat mass by 9%, reduction of VAT by 11% and
in an increase in peripheral insulin sensitivity.

Considering the profound influence of VAT on glucose
metabolism, we aimed to investigate the impact of weight loss
after RYGB on body composition and VAT, as measured by
DXA among patients stratified by their glucose tolerance be-
fore surgery.

Methods

Study Design and Population

After approval by the local institutional review board (deci-
sion 304/15), all consecutive female patients seen in our clin-
ical pathway for RYGB between January 2015 and November
2016 were prospectively invited to participate in this study.
During this period, 67 female patients underwent RYGB at
our hospital, of which 44 (66%) enrolled in this observational
study. Per local health regulations, adult patients were eligible
for RYGB if they had a body mass index (BMI) ≥ 35.0 kg/m2

and had failed in previous conservative attempts at sustained
weight loss. The exclusion criteria were type 1 diabetes, sec-
ondary diabetes or previous bariatric surgery. All patients
were assessed and followed by a multidisciplinary team in-
cluding an endocrinologist, psychiatrist, psychologist, nutri-
tionist and a bariatric surgeon specialized in standardized
management of obese individuals. Patients underwent laparo-
scopic RYGB with creation of a 15–20-ml gastric pouch, a
100–150-cm Roux limb, and a 30–50-cm biliopancreatic
limb.

Clinical and Biological Data

All measurements were made before, 6 months and 12months
after RYGB. Participants were weighed barefoot in light cloth-
ing to the nearest 0.1 kg. Height was measured with a fixed
wall stapediometer. The % excess weight loss (EWL) was
defined as the operative weight minus the follow-up weight,
divided by the excess weight, and multiplied by 100. Excess
weight was the operative weight minus ideal body weight
based on a BMI of 25 kg/m2. The % total weight loss
(TWL) was defined as the operative weight minus the
follow-up weight, divided by the operative weight, and mul-
tiplied by 100.

Standard biological assays on fresh blood samples were
measured at the Clinical Laboratory facility of the Lausanne
University Hospital. Plasma glucose and glycated hemoglobin
(HbA1c) were measured in all patients at baseline and
12 months post-surgery. Fasting insulin and 75-g oral glucose
tolerance test (OGTT) was performed in non-diabetic patients
prior to surgery. Insulin resistance (IR) index was determined
using the homeostasis model assessment on insulin resistance
(HOMA-IR) calculated according to the formula: HOMA-
IR = fasting plasma glucose fasting insulin × 22.5 [20].

Group Stratification

Patients were categorized before surgery into normoglycemia
(reference group), IGT, and diabetes according to the current
ADA definitions [21]. IGTwas defined as fasting plasma glu-
cose (FPG) between 5.6 and 6.9 mmol/L (between 100 and
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125 mg/dL), or as 2-hour plasma glucose after 75-g OGTT
levels between 7.8 and 11.0 mmol/L (between 140 and
199 mg/dL), or HbA1c between 5.7 and 6.4%. Diabetes was
defined as FPG ≥ 7.0 mmol/L (≥ 126mg/dL) or 2-hour plasma
glucose ≥ 11.1 mmol/L (≥ 200 mg/dL) during the 75-g OGTT
or HbA1c ≥ 6.5%.

DXA and Analyses of the VAT Compartment

Whole-body DXA (GE Healthcare Lunar iDXA) was per-
formed before, 6 and 12 months after surgery. The principles
of the DXA methodology provide a 2-compartment measure-
ment of fat and fat-free mass on the molecular level. Because
of the limitation of the scanning area, an automated half-scan
methodology to estimate whole-body composition from a half-
body scan was used in 33 patients (75%) at baseline. This
method has been validated for the analysis of whole-body
analysis for fat mass, non-bone lean mass and percent fat [22].

VAT analysis of the android region was performed by the
CoreScan™ software. For measuring android fat with iDXA,
a region-of-interest was automatically defined between the top
of the iliac crest, and 20% of the distance from the top of the
iliac crest to the base of the skull. This region contains both
subcutaneous and VAT, and is not subject to the half-body
analysis. X-ray attenuation in the iDXA soft tissue image al-
lows to determine the edge of the body and the outer edge of
the abdominal cavity which is lighter due to the lower % of fat
because of the muscles of the abdominal wall. VAT is com-
puted by subtracting subcutaneous fat from the total android
fat mass in the android region [23].

This software has been proven to be highly reliable for the
measurement of VAT when compared to CT or MRI. Kaul et
al. [24] studied 124 adults with BMI 18.5–40.0 kg/m2 and

measured their VAT with both CT and DXA. The coefficient
of determination (r2) for regression of CTon DXAvalues was
0.957. Reinhardt et al. [25] compared VAT measurements be-
tween iDXA andMRI in 40 patients and reported a coefficient
of determination (r2) for regression ofMRI on iDXA of 0.948.

Statistical Analyses

Data are presented as mean ± standard deviation (SD) and
were analyzed using Stata software (version 15.1, StataCorp,
College Station, TX). The overall comparisons of continuous
variables across the 3 patient groups were assessed with anal-
ysis of variance (ANOVA) and linear regression, with
normoglycemic patients as the reference group. Due to the
small number of patients, comparisons were not adjusted, un-
less stated otherwise. A two-sided p-value of 0.05 was con-
sidered significant.

Results

Baseline Anthropometric and Metabolic
Characteristics

A total of 44 women within the RYGB clinical pathway be-
tween 2015 and 2017 were enrolled. The mean age at surgery
was not different between those with normoglycemia, IGT,
and diabetes (Table 1). Baseline BMI was lower in patients
with diabetes (mean 39.9 ± 6.4 kg/m2) compared to those with
IGT (mean 41.7 ± 3.5 kg/m2) and normoglycemia (mean 42.5
± 4.4 kg/m2), albeit not significantly. In normoglycemia, base-
line FPGwas 5.0 ± 0.3 mmol/L (90 ± 5mg/dL), 2-hour OGTT
plasma glucose 6.2 ± 1.2 mmol/L (112 ± 22 mg/dL), HbA1c

Table 1 Age, evolution of
weight, and BMI before,
6 months and 12 months post-
RYGB

Mean ± SD Normoglycemia (n = 21) IGT (n = 18) Diabetes (n = 5) P for overall
comparison

Age at surgery 37.2 ± 9.5 38.5 ± 11.2 44.9 ± 3.8 0.30

Weight (kg)

Before surgery 112.6 ± 16.3 110.7 ± 12.4 115.0 ± 20.8 0.84

6 months post-op 80.3 ± 13.5 80.4 ± 13.4 83.3 ± 13.7 0.90

12 months post-op 71.6 ± 15.2 73.4 ± 14.6 77.6 ± 14.1 0.71

BMI (kg/m2)

Before surgery 42.5 ± 4.4 41.7 ± 3.5 39.9 ± 6.4 0.47

6 months post-op 30.3 ± 4.1 30.2 ± 4.0 28.9 ± 4.2 0.78

12 months post-op 27.0 ± 4.9 27.5 ± 4.4 26.9 ± 4.4 0.92

Change in 12 months

Weight loss (kg) 41.0 ± 10.8 37.3 ± 6.9 37.4 ± 8.2 0.41

Excess weight loss (%) 92.1 ± 24.4 88.5 ± 26.3 95.6 ± 28.6 0.83

Total weight loss (%) 36.6 ± 8.2 34.2 ± 7.4 32.5 ± 3.5 0.44

Abbreviations: BMI, body mass index; IGT, impaired glucose tolerance; RYGB, Roux-en-Y gastric bypass
surgery
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5.1% ± 0.4, and HOMA-IR 4.8 ± 1.9. In IGT, baseline FPG
was 5.6 ± 0.7 mmol/L (101 ± 13 mg/dL), 2-hour OGTT plas-
ma glucose 7.8 ± 2.2 mmol/L (141 ± 40 mg/dL), HbA1c
5.4% ± 0.5, and HOMA-IR 6.9 ± 3.2. Patients with diabetes
were all treated with oral antidiabetics at baseline, and two
were additionally on insulin. The group’s mean HbA1c was
7.0% ± 0.4 before surgery.

Changes of Weight and Glucose Metabolism After
Surgery

The overall weight loss and decrease in BMI after surgery
were similar across groups, with EWL ranging from 35 to
139%, and TWL from 17 to 52% (Table 1). While those with
normoglycemia had no change in their HbA1c levels

Table 2 Body composition compartments from derived DXA indices, before and 12 months after RYGB

Mean ± SD Normoglycemia (n = 21) IGT (n = 18) Diabetes (n = 5) P for
comparisons*

Before surgery 12 months Before surgery 12 months Before surgery 12 months

Total

FM (kg) 59.78 ± 10.43 24.78 ± 10.18 57.07 ± 8.73 26.07 ± 9.94 57.31 ± 14.73 23.91 ± 8.05

LM (kg) 49.08 ± 6.96 44.11 ± 6.78 50.46 ± 6.92 44.36 ± 6.43 56.22 ± 5.57 49.55 ± 4.58 0.12 / 0.04

Fat proportion (%) 54.8 ± 3.5 34.9 ± 8.3 53.0 ± 4.3 36.0 ± 8.9 49.9 ± 5.0 31.8 ± 5.8 0.05 / 0.02

Trunk

FM (kg) 31.14 ± 6.36 11.38 ± 5.31 29.95 ± 5.01 12.49 ± 5.30 34.95 ± 7.60 12.53 ± 4.32

LM (kg) 22.26 ± 2.96 21.55 ± 3.14 22.31 ± 3.14 20.95 ± 3.46 26.30 ± 2.81 24.98 ± 2.02 0.03 / 0.01

Fat proportion (%) 58.0 ± 3.7 33.1 ± 10.5 57.2 ± 3.6 36.1 ± 10.5 56.7 ± 4.0 32.6 ± 7.0

Android

FM (g) 5963 ± 1372 2086 ± 1576 5699 ± 1154 2110 ± 1023 6755 ± 1709 2156 ± 852

LM (g) 3617 ± 475 3567 ± 843 3632 ± 552 3199 ± 635 4361 ± 616 4015 ± 499 0.02 / 0.007

Fat proportion (%) 54.4 ± 4.4 37.6 ± 7.9 52.5 ± 5.2 37.5 ± 8.9 49.1 ± 3.3 34.5 ± 5.0 0.07 / 0.03

VAT mass (g) 1750 ± 617 548 ± 283 1940 ± 601 502 ± 257 2495 ± 616 568 ± 268 0.06 / 0.02

VAT volume (cm3) 1784 ± 555 581 ± 299 1990 ± 591 532 ± 272 2645 ± 653 603 ± 284 0.02 / 0.005

SAT mass (g) 4213 ± 1046 1538 ± 1410 3759 ± 956 1608 ± 838 4260 ± 1346 1587 ± 617

Gynoid

FM (g) 10,446 ± 1784 4412 ± 1759 9482 ± 1994 4353 ± 1773 8631 ± 3249 3809 ± 1535

LM (g) 7960 ± 1375 6785 ± 1210 8065 ± 1367 6565 ± 1053 8826 ± 1250 7470 ± 957

Fat proportion (%) 56.7 ± 3.8 38.4 ± 7.8 53.8 ± 5.5 38.7 ± 8.9 48.3 ± 7.3 32.8 ± 6.5 0.005 / 0.002

Arms

FM (g) 6113 ± 1110 2723 ± 1041 6731 ± 1406 3060 ± 1263 5847 ± 943 2714 ± 790

LM (g) 5164 ± 1120 4368 ± 676 6033 ± 1048 4805 ± 752 6026 ± 411 4385 ± 1529 0.03 / 0.10

Fat proportion (%) 54.4 ± 4.5 37.3 ± 7.6 52.5 ± 5.2 37.6 ± 9.3 49.1 ± 3.3 34.7 ± 4.9

Legs

FM (kg) 21.62 ± 4.70 9.91 ± 4.15 19.46 ± 4.68 9.71 ± 3.94 15.52 ± 6.59 7.86 ± 3.49 0.05 / 0.02

LM (kg) 18.72 ± 3.32 15.42 ± 3.04 19.09 ± 2.94 15.69 ± 2.57 20.68 ± 2.44 16.68 ± 2.07

Fat proportion (%) 53.4 ± 4.5 38.1 ± 7.4 50.1 ± 6.7 37.1 ± 8.6 41.5 ± 8.8 31.0 ± 8.1 0.001 / <0.001

Indices

AFM/GFM 1.09 ± 0.07 0.86 ± 0.19 1.14 ± 0.11 0.95 ± 0.23 1.26 ± 0.13 1.04 ± 0.21 0.004 / 0.001

TFM/TLM 1.22 ± 0.18 0.56 ± 0.21 1.14 ± 0.19 0.59 ± 0.19 1.01 ± 0.20 0.48 ± 0.12 0.06 / 0.03

FMI (kg/m2) 23.1 ± 4.3 9.5 ± 3.8 21.8 ± 3.1 10.0 ± 3.6 20.2 ± 4.7 8.4 ± 2.7

ALMI (kg/m2) 9.1 ± 1.0 7.5 ± 0.9 9.5 ± 1.1 7.8 ± 0.9 9.4 ± 0.9 7.7 ± 1.0

VAT/SAT mass 0.42 ± 0.15 0.64 ± 0.62 0.56 ± 0.26 0.36 ± 0.23 0.62 ± 0.20 0.35 ± 0.11

Abbreviations: AFM, android fat mass; ALMI, appendicular lean mass index (Appendicular lean mass / squared height); DXA, dual-energy X-ray
absorptiometry; FM, fat mass; FMI, fat mass index (total body fat / squared height); GFM, gynoid fat mass; IGT, impaired glucose tolerance; LM, lean
mass (excluding bone); Post-op, Post-operative (12 months after surgery); Pre-op, Pre-operative (before surgery); RYGB, Roux-en-Y gastric bypass
surgery; SAT, subcutaneous adipose tissue; TFM, total body fat mass; TLM, total body lean mass; VAT, visceral adipose tissue

*The first p-value is the P for overall comparison across all groups, followed by the P for comparison between diabetes and normoglycemia. All
comparisons were made with pre-op values. For legibility, non-significant p-values are not shown
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12 months after surgery, a small but statistically significant
change was found in the HbA1c levels in IGT (mean
−0.36% ± 0.48, p = 0.01 compared to normoglycemia). As ex-
pected, HbA1c was markedly decreased among patients with
diabetes (mean 5.6% ± 0.2 after 1 year). Clinicians could
therefore stop diabetes medication in all but one patient at
3 months, and after 10 months in the remaining one.

Changes in Body Composition After Surgery

Body composition was measured with DXA at baseline,
6 months and 12 months after surgery (Table 2), except for
six patients with normoglycemia who missed their appoint-
ment to the 6-month DXA. There was a marked reduction in
total FM (−33.2 ± 8.8 kg) and regional body fat from baseline
to 12-month follow-up for all patients, with no significant
difference between groups. The average loss of LM over
12 months was 5.63 ± 2.66 kg across all groups, in addition
to a limited decrease of bone mineral content (0.11 ± 0.17 kg).

Fat mass in the trunk was delineated by the software to
separate the android and gynoid regions. In patients with dia-
betes, fat mass was disproportionally distributed within the an-
droid region compared to the gynoid region (A/G ratio 1.26 ±
0.13 in diabetes vs 1.09 ± 0.07 in normoglycemia, p < 0.001).

The changes in VAT over time were then specifically ana-
lyzed (Table 3). Pre-surgery VATmass was significantly higher
in diabetes (mean 2495 ± 616 g) than in normoglycemia (mean
1750 ± 617 g; overall p for comparison = 0.059, diabetes vs
normoglycemia p = 0.02, Fig. 1). After surgery, VAT decreased
across all groups to 531 g ± 266 after 12 months: VAT loss was
significantly higher among patients with diabetes (mean
1927 g ± 413) compared to normoglycemia (mean 1203 g ±

461; overall p = 0.009 for comparison, diabetes vs
normoglycemia p = 0.003). VAT loss was associated with
HbA1c reduction across all groups (linear regression p =
0.02). VAT loss occurred relatively quickly within the first
6 months after surgery (mean 1142 ± 370 g), while this effect
seemed to slow frommonths 7 to 12 (mean 262 ± 204 g) across
all groups (all p ≤ 0.003). VAT in proportion to total body fat
was significantly increased in diabetes (mean 4.4%± 0.9) com-
pared to normoglycemia (mean 2.9% ± 0.8; overall p for com-
parison = 0.007, diabetes vs normoglycemia p = 0.002). Pre-
surgery VAT mass was correlated with HbA1c (Pearson rho =
0.32), fasting insulin (Pearson rho = 0.35) and HOMA-IR
(Pearson rho = 0.37; linear regression: unadjusted p = 0.03,
age and BMI-adjusted p ≤ 0.01).

Discussion

In this study of VAT evolution over 12 months after bariatric
surgery, the impact of RYGB was larger among those with
diabetes compared to those with IGT or normoglycemia.
The three groups had comparable mean age and BMI at base-
line, while pre-surgery VAT mass was significantly higher
among patients with diabetes. The majority of VAT loss oc-
curred rapidly within the first 6 months after surgery, while the
effect slowed during months 7–12. Interestingly, VAT after
12 months was comparable across all groups, even in diabetes
where they started with a large excess of VAT prior to surgery.
This may relate to the better control of diabetes in this group
where diabetes medications could be stopped in all but 1 pa-
tient at 3 months, although these observational data cannot
conclude a causal link.

Table 3 Evolution of VAT before, 6 months and 12 months post-RYGB

Mean ± SD Normoglycemia (n = 21) IGT (n = 18) Diabetes (n = 5) P for overall
comparison

IGT vs
normoglycemia

Diabetes vs
normoglycemia

VAT (g)

Before surgery 1750 ± 617 1940 ± 601 2495 ± 616 0.059 p = 0.34 p = 0.02

6 months post-op* 749 ± 281 787 ± 344 916 ± 533 0.65

12 months post-op 548 ± 283 502 ± 257 568 ± 268 0.83

VAT/total body fat (%)

Before surgery 2.90 ± 0.80 3.45 ± 1.08 4.43 ± 0.90 0.007 p = 0.08 p = 0.002

6 months post-op* 2.28 ± 0.55 2.42 ± 0.86 2.98 ± 1.04 0.23

12 months post-op 2.28 ± 0.95 1.93 ± 0.84 2.33 ± 0.79 0.42

Changes in 12 months

VAT loss (g) 1202 ± 450 1438 ± 470 1927 ± 413 0.009 p = 0.11 p = 0.003

VAT change (%) −69.2 ± 11.1 −74.6 ± 10.4 −78.0 ± 7.6 0.14

VAT/total body fat (%) −0.63 ± 1.09 −1.52 ± 0.67 −2.09 ± 0.60 0.001 p = 0.003 p = 0.002

Abbreviations: DXA, dual-energy X-ray absorptiometry; IGT, impaired glucose tolerance; RYGB, Roux-en-Y gastric bypass surgery; VAT, visceral
adipose tissue

*VATwas assessed in only 15 patients with normoglycemia at the 6-month DXA due to missed appointment
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Overall weight loss and decrease in BMI after surgery were
similar across groups, with EWL ranging from 35 to 139%,
and TWL from 17 to 52%. These results are consistent with
other reports on EWL and TWL 12 months post RYGB [26,
27]. Some studies showed that patients with diabetes lost less
weight after bariatric surgery [28, 29]. Our study included
only five patients with diabetes and their TWL was not sig-
nificantly different from the other groups. The study sample
size is too small to draw conclusions.

Few studies reported changes in body composition assessed
by DXA after bariatric surgery. Tamboli et al. [30] studied 29
subjects before and up to 12 months after RYGB and showed

that LM loss contributed to 10.2% of total weight loss during the
first year after surgery, with this loss occurring primarily in the
first post-operative month. Vatier et al. [31] also reported body
composition changes assessed by DXA in 86 obese patients up
to 12 months after RYGB. However, VAT mass and glucose
metabolism parameters were not reported in these two studies.

We found a remarkable 72% reduction in VATat 12months
post-surgery (−69% in normoglycemia, −75% in IGT, and
−78% in diabetes). These results are in agreement with others
studies which reported VAT loss assessed either by MR imag-
ing or DXA. Toro-Ramos et al. reported a 77% VAT loss as
measured by MR imaging 12 months after different types of
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bariatric surgery in 23 men and women [32]. Nine obese
women studied by Johansson et al. experienced a mean VAT
reduction of 73% 12 months after bariatric surgery (MR im-
aging) [33]. Bazzochi et al [34] showed a 65% reduction in
VAT (DXA) (from 2660 ± 1560 g to 880 ± 730 g) among 29
women followed for 1 year after RYGB. The baseline meta-
bolic characteristics of the patients were not reported in these
studies. To our knowledge, the present study is the first to
characterize body composition changes assessed via DXA
with respect to glucose tolerance before surgery.

Not all obese individuals are insulin resistant, and fat mass
per se is not the sole determinant of insulin resistance. Body
fat distribution is recognized as an important predictor and
modifier of the adverse health consequences of obesity such
as T2DM, and VAT has been previously reported to be more
prominent in patients with type 2 diabetes than in patients
without [14, 35]. The present data report the same correlation
with a higher VAT in proportion of EW in type 2 diabetes
patients at baseline. Interestingly, the VAT mass in absolute
terms and in proportion to the total fat mass was clearly greater
in diabetes than in normoglycemia before surgery. This differ-
ence was not apparent 12 months after RYGB. This compar-
ison should be repeated in other studies according to glucose
tolerance before bariatric surgery.

While the changes in VAT were clear across groups, no
other significant difference in the changes of fat mass distri-
bution across body compartments was observed. In this pres-
ent study, LM decreased by 11% after RYGB. This is compa-
rable with reports of a 10% decline in initial LM [34] and 14%
[31], but lower than in another study reporting 19% decline in
LM post-surgery [30]. As previously described, the loss of
LM occurred mostly during the first 6 months after RYGB
(mean loss 5.37 ± 2.12 kg) [30, 34]. During months 7–12,
the LM decreased only slightly (mean 0.43 ± 1.35 kg) with
no significant differences observed across the groups.

Interestingly, Kashyap et al. [36] compared the body com-
position evolution of 18 subjects who underwent RYGB and 19
sleeve gastrectomies for 24 months. They observed that despite
a similar weight loss, the loss of trunk fat was greater in the
RYGB versus the sleeve gastrectomy group. However, VAT
was not assessed in their study. It would be of interest to further
compare RYGB and sleeve gastrectomy concerning this partic-
ular point, as sleeve gastrectomy has recently become the most
commonly performed procedure in several countries [37–39].

Limitations/Strengths

The present study was deliberately limited to women, due to
the low number of men in our clinical pathway. However, this
allowed a decreased heterogeneity of fat mass distribution,
which has been well described between both sexes [40].
Given the small population size and the low number of pa-
tients with diabetes before surgery, the results of this study

should be regarded as preliminary. Future studies are needed
to increase the number and strengthen the suggestion that VAT
loss may contribute to the improvement of glucose metabo-
lism after RYGB. Moreover, this study was conducted in
white European patients and precludes the generalization to
other populations in order to determine ethnicity-specific dif-
ferences in VAT evolution after RYGB.

Conclusions

Adipose tissue plays a central role in the pathogenesis of
obesity-induced insulin resistance [41]. The mechanisms un-
derlying the profound impact of RYGB on glucosemetabolism
are not yet fully understood, and a reduction in VAT may
account for a crucial role. The amount of weight loss after
bariatric surgery is not different between patients with diabetes
and normoglycemia, but this study demonstrated that the re-
duction in VAT was significantly larger in diabetes. Because
metabolic comorbidities may occur at different BMI thresholds
based on ethnic, sex and genetic characteristics, adopting a
strictly BMI-based criterion for bariatric surgery has been chal-
lenged in recent years. As the assessment of VAT by DXA
involves a small radiation dose and is not costly, it may become
an important criterion for metabolic surgery in the future.
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