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N-acetylcysteine add-on treatment leads to
an improvement of fornix white matter
integrity in early psychosis: a double-blind
randomized placebo-controlled trial
Paul Klauser1,2,3, Lijing Xin4, Margot Fournier2,3, Alessandra Griffa5,6, Martine Cleusix2,3, Raoul Jenni2,3, Michel Cuenod2,
Rolf Gruetter4,5, Patric Hagmann3,5, Philippe Conus1,3, Philipp S. Baumann1,2,3 and Kim Q. Do 2,3

Abstract
Mechanism-based treatments for schizophrenia are needed, and increasing evidence suggests that oxidative stress
may be a target. Previous research has shown that N-acetylcysteine (NAC), an antioxidant and glutathione (GSH)
precursor almost devoid of side effects, improved negative symptoms, decreased the side effects of antipsychotics,
and improved mismatch negativity and local neural synchronization in chronic schizophrenia. In a recent double-blind
randomized placebo-controlled trial by Conus et al., early psychosis patients received NAC add-on therapy (2700 mg/
day) for 6 months. Compared with placebo-treated controls, NAC patients showed significant improvements in
neurocognition (processing speed) and a reduction of positive symptoms among patients with high peripheral
oxidative status. NAC also led to a 23% increase in GSH levels in the medial prefrontal cortex (GSHmPFC) as measured by
1H magnetic resonance spectroscopy. A subgroup of the patients in this study were also scanned with multimodal MR
imaging (spectroscopy, diffusion, and structural) at baseline (prior to NAC/placebo) and after 6 months of add-on
treatment. Based on prior translational research, we hypothesized that NAC would protect white matter integrity in the
fornix. A group × time interaction indicated a difference in the 6-month evolution of white matter integrity (as
measured by generalized fractional anisotropy, gFA) in favor of the NAC group, which showed an 11% increase. The
increase in gFA correlated with an increase in GSHmPFC over the same 6-month period. In this secondary study, we
suggest that NAC add-on treatment may be a safe and effective way to protect white matter integrity in early
psychosis patients.

Introduction
Mechanism-based treatments for schizophrenia are

needed, given that the available treatments have limited
efficacy and are often associated with serious side effects.
Several lines of evidence show that redox dysregulation

and oxidative stress may be a common final pathway in
the pathophysiology of psychosis1. Abnormalities in other
systems are also involved, including NMDA receptor
hypofunction, neuroinflammation, and dopamine dysre-
gulation, all of which interact in a feedforward process2.
These mechanisms are thought to belong to a central
pathophysiological hub in which an imbalance in any of
these systems can lead to microscale (parvalbumin
interneurons) and macroscale (white matter tracts) circuit
alterations underlying disconnectivity and psychopathol-
ogy3,4. Although some patients may lack primary redox
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dysregulation, any point of entry (NMDA receptor
hypofunction, neuroinflammation, or dopamine dysregu-
lation) can favor oxidative stress, which may be a common
consequence of distinct etiologies (see review by Steullet
et al.2).
Oxidative stress results from an imbalance between

reactive oxygen/nitrogen species and antioxidants,
resulting in macromolecular damage. Indeed, the brain is
particularly vulnerable to oxidative stress given its high
oxygen consumption and high content of oxidizable
polyunsaturated fatty acids. Convergent evidence sup-
ports the role of oxidative stress in schizophrenia:5 con-
sequences of oxidative stress, including decreased
phospholipids and increased lipid peroxidation, as well as
the decline of antioxidant defence systems in both the
periphery and the central nervous system, were repor-
ted6,7. Critically, glutathione (GSH), the major non-
enzymatic antioxidant and redox regulator, was
decreased in the cerebrospinal fluid and prefrontal cortex
in vivo8 and in postmortem tissue samples9 and was
associated with negative symptoms10 in schizophrenia.
Genetic evidence includes association with polymorph-
isms and copy number variations of genes related to GSH
synthesis and metabolism1,2,11,12.
In vitro studies revealed that GSH deficit led to

impairments in the proliferation and maturation of oli-
godendrocyte precursors13. Transgenic mice with a GSH
deficit (GCLM-KO) present a decrease in mature oligo-
dendrocytes and myelin-associated proteins in the ante-
rior cingulate at peripuberty13. In another translational
study from our group, we observed a decrease in frac-
tional anisotropy in the fornix–fimbria bundle in an ani-
mal model of redox dysregulation14. Accordingly, we also
found reduced generalized fractional anisotropy (gFA) in
the fornix of early psychosis patients (EPP)15. Interest-
ingly, in early psychosis, volume loss in the hippocampus
correlated positively with fractional anisotropy in the
fornix15, indicating that the integrity of these two struc-
tures is closely linked in disease. Further, smaller hippo-
campal volume was associated with higher blood
glutathione peroxidase (GPx) activity15, which reflects
high central oxidative status (low brain GSH), at least in
male EPP16.
Collectively, these findings indicate that GSH and redox

regulation have a central role in myelination and white
matter maturation. Given that white matter alteration is a
core feature of schizophrenia, these observations may lead
to new, innovative treatments for use in early psychosis
intervention6,13.
Taken together, the evidence appears to show GSH

deficits and oxidative stress as promising targets in schi-
zophrenia. Given that GSH is poorly transported across
the blood-brain barrier, agents such as N-acetylcysteine

(NAC) have attracted great interest as potential ther-
apeutic tools to normalize brain GSH levels and/or redox
systems. In particular, NAC, an antioxidant and precursor
of GSH, is a promising candidate because it is available
over the counter and almost devoid of side effects.
In a proof-of-concept clinical trial, supplementation of

NAC in chronic schizophrenia patients (N= 140) led to
improvements of negative symptoms17, auditory mis-
match negativity18, and local neural synchronization in
electroencephalography (EEG)19 as well as decreased side
effects of antipsychotics17. Improvement in negative
symptoms and total Positive and Negative Syndrome
Scale (PANSS) score was replicated in three independent
studies20–22 and two studies showed improvement in
cognition in chronic schizophrenia22,23. Building upon
this prior research, a recent double-blind randomized
placebo-controlled add-on trial with NAC was carried out
in EPP (n= 63) by Conus et al.24. Patients showed
improved cognition (processing speed factor), and a
subgroup of patients with a high baseline for peripheral
oxidative status also improved in positive symptoms.
However, there was no improvement in negative symp-
toms, potentially owing to the low rate of negative
symptoms in this group. Moreover, in a subgroup of
patients in the same study who underwent EEG, NAC
supplementation led to improved auditory evoked
potentials, known to be impaired in schizophrenia25.
Despite the mounting evidence that NAC may be a

sustainable strategy to restore GSH deficiency and fight
against oxidative stress in schizophrenia, the targets
engaged in the brain by NAC have not been elucidated26

and have not been tested in vivo in EPP.
Recently, in vivo measurement of GSH in humans has

been demonstrated on a 3-T clinical MRI scanner using
short-TE 1H magnetic resonance spectroscopy (1H-
MRS)16,27. Therefore, an essential step was achieved in the
trial by Conus and colleagues24. In EPP who agreed to
participate (n= 24), 1H-MRS was applied and revealed
that NAC supplementation for 6 months actually led to an
elevation of medial prefrontal GSH levels by 23%24.
No research has investigated whether this increase in

brain GSH levels owing to NAC supplementation is
accompanied by restoration/protection of white matter
integrity in early psychosis6. Given the limited sample size
of our study, we decided to focus specifically on the effect
of NAC on the white matter integrity of the fornix bundle,
which has been shown to be vulnerable to oxidative stress
early in the time course of the illness. Moreover, we
studied whether the changes in fornix integrity were
linked to the changes in medial prefrontal GSH
(GSHmPFC) levels and explained the changes in processing
speed.
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Patients and methods
Clinical trial protocol and study medication
The EPP in the present study (N= 20), representing a

subsample of those in the original study trial24, have
consented to be assessed with multimodal brain imaging.
The flow diagram is shown in supplementary figure 1. A
detailed description of the main 6-month, randomized,
placebo-controlled, double-blind NAC add-on trial; the
patient cohort; the study design; the sample size calcula-
tion and assessment procedures; the side effects; the
efficacy; and the outcome measures has been published
elsewhere24.
In brief, NAC (2700mg/day) or placebo was adminis-

tered to each EP patient for 6 months following a double-
blinded randomized placebo-controlled design. As pre-
viously shown17,28, tolerability was excellent, with NAC
patients showing no more side effects on the UKU scale29

compared with placebo24.
Diffusion spectrum imaging (DSI), T1 structural ima-

ging (T1), and 1H-MRS were performed before NAC/
placebo intake (baseline measurements) and after
6 months of NAC/placebo intake (follow-up). Symptoms
were assessed with the PANSS. The processing speed
factor (verbal fluency and the trail making A test, symbol
coding) was extracted from the MATRICS Consensus
Cognitive Battery (MCCB)30,31, which was administered at
baseline and follow-up. Antipsychotic doses at the time of
the study were converted to chlorpromazine (CPZ)
equivalents in milligrams32 for each patient.
Following their recruitment, patients were given ID

numbers, and both patients and investigators were blin-
ded until the time of analysis, when data pooling neces-
sitated unblinding. The hypothesis for the current study
was recorded in a statistical plan prior to unblinding. The
study was registered at Swiss Medic (2008DR2308) and at
ClinicalTrials.gov (NCT01354132).

Participants
The study was conducted from 2009 to 2014. All

patients were recruited from TIPP (the Treatment and
Early Intervention in Psychosis Program, University
Hospital, Lausanne)33, a 3-year program specializing in
the treatment of early-phase psychosis. Out of the 63
patients who participated in the original study trial, 20
patients (14 men; aged 25 ± 6.7 years) agreed to undergo
DSI/T1, and 17 agreed to DSI/T1/1H-MRS scanning. The
inclusion criteria were as follows: (1) male or female, aged
18–38 years; (2) having a psychotic disorder, defined by
the “Psychosis threshold” subscale on the Comprehensive
Assessment of at Risk Mental States scale (CAARMS);34

(3) having received under 12 months of treatment for
psychosis; (4) capability to provide informed consent; (5)
sufficient stability to participate in the study. The exclu-
sion criteria were: (1) presence of clinically significant

medical illnesses (including peptic ulcers), (2) organic
mental disease/organic psychosis, (3) severe cerebral
trauma, (4) mental retardation (intelligence quotient <
70), (5) pregnancy or lactation, (6) allergy to NAC, (7)
current treatment with antioxidants, (8) poor command
of French, (9) and substance-induced psychosis. All par-
ticipants provided written informed consent, and the
procedure was approved by the Ethics Committee of
Lausanne University (10th July 2008).
NAC and placebo were kindly provided by Bioadvantex

Pharma Inc. (Mississauga, Ontario, Canada) and pro-
duced under Good Manufacturing Practice conditions.
All participants were randomized (by blocks of four,
according to randomization lists known only to the
pharmacist) in a 1:1 allocation ratio and assigned to take
either effervescent NAC tablets (900 mg) at a dosage of
2700 mg/day (morning: 1800 mg; evening: 900 mg) or
matching placebo tablets before meals.

Multimodal imaging acquisition and analysis
gFA measured by MRI
MRI sessions were performed on a 3-Tesla scanner

(Magnetom TrioTim, Siemens Medical Solutions, Erlan-
gen, Germany) equipped with a 32-channel head coil.
Each scanning session included a magnetization-prepared
rapid acquisition gradient echo (MPRAGE) T1-weighted
sequence with 1-mm in-plane resolution and 1.2-mm
slice thickness, covering 240 × 257 × 160 voxels. The
repetition (TR), echo (TE), and inversion (TI) times were
2300, 2.98, and 900 ms, respectively. The DSI sequence
included 128 diffusion-weighted images with a maximum
b-value of 8000 s mm−2 and one b0 reference image. The
acquisition volume was made of 96 × 96 × 34 voxels with
2.2 × 2.2 × 3mm resolution. TR and TE were 6800 and
144ms, respectively.
White matter diffusion properties were estimated using

gFA computed from DSI as described by Tuch35. Each
gFA map was normalized to MNI (Montreal Neurological
Institute) standard space using nonlinear registration
procedures and smoothed with a Gaussian kernel of SD=
1mm in FSL 5.0.8 (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/).
Quality control included manual inspection of each gFA
image for abnormalities or registration failure. The region
of interest for the fornix was extracted from the JHU
(Johns Hopkins University) white matter atlas36.

GSHmPFC levels measured by in vivo 1H-MRS
The 1H-MRS method was described in detail in the

original study trial24 and previous works27,37. In brief, the
levels of GSHmPFC were assessed by localized 1H-MRS
measurements performed on a 3-T MR scanner (Mag-
netom TimTrio, Siemens Healthcare) with a transverse
electromagnetic (TEM 3000) head coil (MR Instruments,
Inc., Minneapolis, MN, USA). The magnetic field
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homogeneity was optimized by adjusting first- and
second-order shims using FAST(EST) MAP. Single-voxel
1H MR spectra were acquired from a volume of interest
(VOI= 20 × 20 × 25 mm3) in the medial prefrontal cortex

using a short-TE spin-echo full-intensity acquired loca-
lized single voxel spectroscopy technique (SPECIAL) with
the following scan parameters: TE/TR= 6/4000 ms,
acquisition bandwidth= 2 kHz, number of averages=
148, vector size= 2048. Outer volume suppression and
water suppression with variable pulse power and opti-
mized relaxation delays were applied prior to the SPE-
CIAL localization sequence. GSHmPFC concentrations
were quantified by analyzing water suppressed in vivo 1H
MR spectra using LCModel (Stephen Provencher, Inc.,
Oakville, ON, Canada) with a basis set consisting of
20 simulated individual metabolite spectra and an
experimentally measured macromolecule baseline.
Unsuppressed water 1H NMR spectra were used as an
internal reference. The spectral range for analysis was set
to 0.2–4.2 ppm, and the Cramer-Rao bounds for
GSHmPFC were 10 ± 3% (mean ± s.d.).

Statistical analysis
Statistical analyses for demographic and clinical data

were performed in Prism for Mac OS X (Version 7.0c,
March 1, 2017). Differences between the NAC and pla-
cebo group were assessed with t tests or Fisher’s exact
test. A paired t test was used to test for interactions
between time and treatment status (NAC or placebo) in
each white matter voxel within the fornix. gFA was the
dependent variable, whereas treatment and time were the
independent variables. Age and gender were set as nui-
sance factors in the general linear model. Correction for
multiple comparisons across all white matter voxels in the
fornix was performed using a non-parametric cluster-
based procedure, namely, “threshold-free cluster
enhancement” with “Randomise” in FSL 5.0.8, which
avoids inflation of false positives38. The corrected p value
for the cluster was calculated from 10,000 permutations,
and a p value < 0.05 was considered significant.

Results
Demographics, clinical characteristics, and longitudinal
clinical changes
Among the 20 patients, 10 were part of the group that

received NAC, whereas 10 received placebo. Clinical and
demographic characteristics were not different between
the 2 groups (Table 1). Patients treated with NAC had
lower baseline GSH levels than those treated with
placebo.

Six-month longitudinal gFA changes in the fornix: NAC vs
placebo
There was no significant difference in mean baseline

gFA between NAC (0.1669 ± 0.01044) and placebo
(0.1911 ± 0.01893). There was a group × time interaction,
which reached significance (corrected p < 0.04) in the
body of the fornix (size of the cluster= 10 voxels). gFA

Table 1 Demographic and clinical characteristics of early
psychosis patients (NAC vs placebo) at baseline (if not
specified otherwise)

NAC

(n= 10)

Placebo

(n= 10)

P value

Age (years) 25.3 ± 5.7 24.8 ± 7.9 0.3622

Gender (M/F) 9/1 5/5 0.1409

Mean CPZ, mg/day (baseline) 264.5 ± 69.29 307.8 ± 64.45 0.6531

Mean CPZ, mg/day (follow-up) 271.2 ± 65.04 418.4 ± 80.27 0.1711

PANSS baseline: positive

symptoms

13.8 ± 4.8 18.0 ± 6.8 0.1249

PANSS baseline: negative

symptoms

14.6 ± 4.6 18.6 ± 6.7 0.1377

PANSS baseline: total 32.6 ± 8.5 39.4 ± 9.8 0.1152

Duration of illness (days) 981.6 ± 810.2 663.9 ± 665.3 0.3743

Diagnosis

Schizophrenia 6 6

Schizoaffective disorder 2 1

Bipolar disorder 1

Major depression with

psychotic features

1

Brief psychotic episode 1 1

Psychosis not otherwise

specified

1

Antipsychotic medication

Quetiapine 5 3

Clozapine 1

Aripiprazole 1 2

Amisulpride 2

Risperidone 1 2

Olanzapine 1 1

No medication 1

GSHmPFC n = 9 n = 8

Baseline (mM) 0.8432 ±

0.0708

1.144 ±

0.06967

0.0087

Follow-up (mM) 1.013 ±

0.08315

1.096 ±

0.07635

0.4803

If not otherwise specified, the mean ± SD is provided. CPZ chlorpromazine
equivalents, GSHmPFC glutathione concentration in the medial prefrontal cortex,
NAC N-acetylcysteine, PANSS Positive and Negative Syndrome Scale
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values for the subjects of each group (NAC and placebo)
at baseline and follow-up are plotted (Fig. 1). Placebo
subjects exhibited a decrease in mean gFA values (mean
difference=− 0.02063; % change=mean difference gFA/
baseline gFA × 100=−10,795%), whereas NAC subjects
showed an increase (mean difference= 0.01932; %
change=+ 11.576%).

Correlation between gFA changes and GSHmPFC changes
over a 6-month period
Correlation analysis (Fig. 2) revealed a positive rela-

tionship between longitudinal change in gFA in the
identified cluster in the fornix and longitudinal change in
GSHmPFC in the whole group (NAC and placebo; r= 0.67;
p= 0.0031). When the treatment (NAC) group and the
control (placebo) group were analyzed separately, the
NAC group remained significant (r= 0.76; p= 0.0186),
whereas the placebo group did not (r= 0.48; p= 0.2245).
When gFA was averaged over the whole fornix (sup-

plementary figure 2), the relationship between change in

gFA and change in GSHmPFC in the whole sample (NAC
and placebo combined) reached trend-level significance
(r= 0.4623; p= 0.0617) but was nonsignificant when
analyzed separately in the NAC group (r= 0.5254; p=
0.1463) and the placebo group (r= 0.2307; p= 0.5825).
There was no significant correlation between long-

itudinal change in average gFA extracted from the iden-
tified cluster in the fornix and longitudinal change in
blood cell GPx (r= 0.195; p= 0.4101) in the whole sam-
ple (NAC and placebo combined) or in the groups ana-
lyzed separately (NAC group: r= 0.297; p= 0.4069;
placebo group: r= 0.3476; p= 0.3224).

Correlation between changes in gFA and processing speed
over a 6-month period
Correlations between longitudinal change in processing

speed and gFA were nonsignificant in the whole group (r
= 0.2771; p= 0.2989), in the NAC group (r= 0.5476; p =
0.1710) and in the placebo group (r=− 0.511; p=
0.1956). (Supplementary figure 3).

Discussion
We observed for the first time that the administration of

NAC, a precursor of GSH, to EPP increases white matter
integrity in the fornix as measured by gFA. Furthermore,
longitudinal change in GSHmPFC (i.e., the difference
between baseline and 6 months of NAC/placebo add-on
treatment) correlates with the change in gFA along the
fornix bundle in NAC patients and in NAC and placebo
patients pooled together. These results suggest that a
GSH increase through NAC supplementation may
improve/protect white matter integrity, at least in the
fornix. Thus, our findings highlight that fornix integrity
may improve and could represent a valid target for early
psychosis intervention. The lack of significance when the
whole fornix was analyzed may be linked to the decrease
in sensitivity with this approach as well as the small
sample size, which is the main limitation of this very
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Fig. 1 Six-month longitudinal changes in gFA: NAC vs placebo. Coronal, sagittal, and axial views (scalar gFA map) show voxel-wise analysis results
indicating location (body of the fornix) of the group × time interaction, which reached significance (corrected p value < 0.04) (red cluster). Size of the
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demanding study for EPP in terms of scanning (multi-
modal MRI), design, and duration (6 months).
In the current study, we focused on the fornix bundle

because its implication in schizophrenia as well as in early
psychosis is well documented15,39–41. The fornix, as a
major output of the hippocampus, has important role in
cognitive processing, especially memory41. Notably, the
hippocampus is the brain structure most robustly impli-
cated in schizophrenia42. In addition, the fornix was listed
among the most affected white matter tracts in a recent
meta-analysis including 2000 patients with schizo-
phrenia43. Progressive dysfunction in two hippocampal
areas, which give rise to the fornix bundle (i.e., CA1 and
subiculum), has been also very recently highlighted44.
Data from a GCLM-KO mouse model (with low GSH

levels, a consequence of gene inactivation of the mod-
ulatory subunit of glutamate–cysteine ligase, the rate-
limiting enzyme of GSH synthesis) was an additional
strong incentive. A study by Corcoba et al.14 revealed a
reduction in FA in the fornix–fimbria in peripubertal
GCLM-KO mice, which remained so throughout adult-
hood. Furthermore, in the same KO mice, the conduction
velocity of the fornix bundle was reduced in the slow-
conducting fibers. This indicates that the fimbria–fornix is
particularly vulnerable to GSH deficit-induced oxidative
stress.
The role of redox control in white matter integrity and

oligodendrocyte development has been previously docu-
mented in several ways (see review by Monin and col-
leagues6). One proposed mechanism is that redox balance
regulates oligodendrocyte maturation and the switch
between proliferation and differentiation6,13,45. Interest-
ingly, in a mouse model, GSH deficit conditions led to
impairments of proliferation and maturation of
oligodendrocytes13.
GSH deficit is not the only mechanism that can gen-

erate oxidative stress. Indeed, it can be triggered by the
perturbation of a variety of systems known to be impli-
cated in schizophrenia, which include the redox, neu-
roimmune, glutamatergic, and dopaminergic systems1,2.
As mentioned previously, these different systems do not
function in isolation but interact reciprocally in a feed-
forward process, leading to a vicious cycle2. Notably,
inflammatory pathways are activated by oxidative stress
and vice versa2, and both are implicated in schizophrenia
and may lead to impairment of myelination and white
matter development.
NAC, as a molecule with multifaceted functions28, may

restore or protect white matter integrity by several
mechanisms. The most apparent mechanism is that NAC
acts as a cysteine donor, which can be used to synthesize
and replenish GSH, which, in turn, acts as a free radical
scavenger. Anti-inflammatory properties have also been
described for NAC, probably conferred at least in part by

its antioxidant properties2. In preclinical models, NAC
attenuates white matter injuries following a maternal
immune challenge46. In clinical studies, NAC was added
to other putative neuroprotective compounds in infantile
neuronal ceroid lipofuscinosis47 or traumatic brain
injury48. However, the absence of a randomized placebo-
controlled design with NAC alone prevented the specific
effects of NAC from being highlighted in these studies. An
alternative hypothesis is that NAC may limit potential
side effects of antipsychotic medication, which may
impact white matter integrity49.
In the current study, we used a DSI sequence, char-

acterized by strong diffusion weighting and high angular
resolution. DSI is thought to be more sensitive and spe-
cific than classical diffusion tensor imaging to white
matter microstructure, crossing fibers and the slow dif-
fusion compartment50,51. Although it is tempting to
conclude from this imaging study that NAC improves
myelination, no firm conclusions can be drawn regarding
the exact mechanisms. We can only speculate that
“myelin maintenance and repair”52 is influenced by NAC.
Reduction of FA may not be specific to changes in myelin
content; other factors such as axonal size and coherence
and changes in the volume of water spaces surrounding
axons are also important53. Interestingly, reduction of FA
may also result from inflammation54.
The effectiveness of NAC in early psychosis was studied

by Conus et al.24 in the whole cohort included in the two-
center trial. NAC was demonstrated to have a significant
effect on neurocognition (processing speed) but not on
negative symptoms. Given the efficacy of NAC in
improving processing speed, we studied its relationship
with gFA in the fornix; this relationship was positive,
although not statistically significant.
In the study by Conus et al.24, subgroup exploration

revealed that patients who showed improvements in their
positive symptoms had higher baseline blood GPx activity
than those whose positive symptoms did not improve. In
other words, patients with high peripheral oxidative status
benefited the most from NAC. In this context, it is
interesting to note that in a previous study, high blood
GPx activity was associated with small hippocampal
volume15 and with low prefrontal GSH levels16. High GPx
activity and/or antioxidant/redox system dysregulation
may thus be a marker of response to NAC as well as a
marker of small hippocampal size, which is relevant to the
current study given the anatomical relationship between
the fornix and the hippocampus. We thus studied the
relationship between the change in GPx and the change in
gFA in the fornix but did not find a significant effect.
Given the small sample size, it is difficult to draw any final
conclusions on this matter.
The limited sample size of the current study deserves

further consideration. First, despite the absence of
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statistically significant difference, the two groups were not
well-matched regarding sex (i.e., one female only in the
NAC group) and disease severity. Second, an excess sig-
nificance bias has been reported in voxel-based studies55

and especially in small samples56. This is partly owing to
the wide use of parametric tests for cluster-based statis-
tics56. Parametric tests rely on the assumption of a normal
distribution of the data, which is often not the case when
sample size is limited57. Here, we used non-parametric
testing that does not rely on data normality and that has
been shown to limit the rate of false positives in neuroi-
maging studies38. Nevertheless, these findings need to be
interpreted with caution and replication in a larger ran-
domized controlled trial is needed.
One further limitation that must be mentioned is that

GSHmPFC was measured in the medial prefrontal region,
whereas gFA was measured in the fornix; there may be
differences in GSH concentrations between brain regions.
Nevertheless, we measured a longitudinal change in GSH
levels, which is more likely to be proportional across brain
regions. In addition, we cannot rule out the possibility
that a spontaneous increase in brain GSH contributed to
the observed effect in NAC-treated patients, as their basal
levels were lower than those of the placebo group.
Although it is recognized that white matter anomalies

are a hallmark of schizophrenia present before initiation
of treatment, it has been suggested that antipsychotic
medication may contribute to brain atrophy, including
changes in white matter49. Haloperidol or olanzapine
administered to macaque monkeys resulted in a tendency
toward a 12.9% decrease in oligodendrocyte count58. In
the current study, CPZ equivalents were stable in the
NAC group, whereas there was a nonsignificant increase
in the placebo group. Previous findings regarding the
putative effects of antipsychotics on FA in patients are
heterogeneous and even contradictory, with studies
reporting a positive59, negative60, or null effect61 of anti-
psychotics on white matter integrity. Nevertheless, we
cannot exclude that the observed effect was driven by the
nonsignificant group difference in CPZ equivalents.
NAC add-on treatment is safe24,28 and if this pre-

liminary study is confirmed, NAC may prove to be effi-
cient in promoting white matter integrity in EPP, even
with a mere 6 months of treatment. Further diffusion MRI
studies investigating white matter changes to monitor
NAC treatment response are warranted.
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