

UNIVERSIDADE FEDERAL DE SANTA CATARINA

INE - Departamento de Informática e Estatística
COMPUTER SCIENCE

RICARDO VIEIRA FRITSCHE

RECOMMENDATIONS FOR IMPLEMENTING A

BITCOIN WALLET USING SMART CARD

Florianópolis, Brazil, 2018

1

Ficha de identificação da obra elaborada pelo autor,
 através do Programa de Geração Automática da Biblioteca Universitária da UFSC.

Fritsche, Ricardo Vieira
 Recommendations for implementing a Bitcoin wallet using
smart card / Ricardo Vieira Fritsche ; orientador, Jean E
Martina, coorientador, Lucas M Palma, 2018.
 90 p.

 Trabalho de Conclusão de Curso (graduação) -
Universidade Federal de Santa Catarina, Centro Tecnológico,
Graduação em Ciências da Computação, Florianópolis, 2018.

 Inclui referências.

 1. Ciências da Computação. 2. Hardware wallet. 3.
Bitcoin. 4. Software and hardware integration . 5. Smart
Card. I. Martina, Jean E. II. Palma, Lucas M. III.
Universidade Federal de Santa Catarina. Graduação em
Ciências da Computação. IV. Título.

RICARDO VIEIRA FRITSCHE

RECOMMENDATIONS FOR IMPLEMENTING A
BITCOIN WALLET USING SMART CARD

 Trabalho de Conclusão de Curso sub-
metido ao Curso de Ciências da Com-
putação para a obtenção do Grau de
Bacharelado.

Prof. Dr. Jean Everson Martina
Orientador

Lucas Machado da Palma
Co-orientador

Florianópolis, 20 de outubro de 2018.

3

RICARDO VIEIRA FRITSCHE

RECOMMENDATIONS FOR IMPLEMENTING A
BITCOIN WALLET USING SMART CARD

Este Trabalho de Conclusão de Curso foi julgado aprovado para a obtenção
do Título de “Bacharelado em Ciências da Computação”, e aprovado em sua forma
final pelo Curso de Ciências da Computação.

 Florianópolis, ___ de ________ de 2018.

__
Prof. Dr. Rafael Luiz Cancian

Coordenador do Curso

__

Prof. Dr. Jean Everson Martina
Orientador

__
Lucas Machado da Palma

Co-orientador

__

M.e Lucas Pandolfo Perin
Banca avaliadora

__
Douglas Marcelino Beppler Martins

Banca avaliadora

4

I dedicate this work to everyone who
have lost cryptocurrencies that
weren't held on cold storage.

5

APPRECIATION
I would like to praise my mother, Mara Vieira, who always supported my

decisions, never judging. My father, Julio Cesar, for pointing the way into the
computer science world since I was young. Gustavo Fritsche, my brother, for the
support and brotherhood.

My business partner, Alexandre Augusto, thank you for sharing your thoughts
on the importance of completing the course and your support to maintain the
business while I couldn't deliver full attention to it.

Special thanks to my girlfriend, Lorrana Rezzieri, a very patient angel who
listened to all my complains and annoyance, always supporting and remembering me
that the finish line was close.

My cousin, João Guilherme, thank you for revising this work, studying, and
drinking cold beers together after the exams.

Antônio Fröhlich, thanks for supporting the initial idea of this work and
contributing with your time and insights.

Thank you Jean Martina for quickly accepting to orient this work and your
wisdom. Lucas Palma, your validation and revision was fundamental for this work,
thank you.

To finish I would like to register my acknowledgement to whomever produced
knowledge and code that somehow contributed to my formation.

Ricardo Vieira Fritsche

6

“ Better late than never”

7

ABSTRACT

Bitcoin is a decentralized peer-to-peer electronic cash system that allows any

two willing parties to transact directly without the need for a trusted third party. The

user's funds are protected by private keys that must be kept safe, preferably not on

third party wallet services, but on hardware wallets, which are the best balance

between very high security and ease of use. In this work we made a review on

cryptography, the Bitcoin protocol and secure elements, then we dived into the

project of hardware wallets, discussing different requirements and ways to construct

one. Our proposed device uses an anti tamper Java Card to store the private keys.

We considered variations of the device, one with a dedicated touchscreen and

another with NFC to integrate with a mobile phone. We analyzed security aspects of

the project, made recommendations and described some challenges. Finally, we

implemented our own open source prototype, showing the architecture of the project,

its components, the requirements, the APDU communication protocol and the results.

Keywords: Hardware wallet; Bitcoin; Software and hardware integration;

Smart Card.

8

SUMMARY

APPRECIATION 6
ABSTRACT 8
SUMMARY 9

1. INTRODUCTION 13
1.1. OBJECTIVES 15

1.1.1. MAIN OBJECTIVE 15
1.1.2. SPECIFIC OBJECTIVES 15

1.2. EXPECTED RESULTS 15
1.3. STRUCTURE OF THIS WORK 15

2. FUNDAMENTALS 17
2.1. CRYPTOGRAPHY 17

2.1.1. Cryptographic Hash Functions 17
2.1.2. SHA 17
2.1.3. RIPEMD 18
2.1.4. HMAC 18
2.1.5. PBKDF2 19
2.1.6. Asymmetric cryptography 19
2.1.7. Digital signatures 20
2.1.8. ECDSA 20

2.2. BITCOIN 21
2.2.1. Blockchain and mining 23
2.2.2. Transactions and authentication 24

2.3. KEYS MANAGEMENT, ADDRESSES AND WALLETS 26
2.3.1. Bitcoin wallets 26
2.3.2. Address generation 26
2.3.3. Deterministic generation of wallets 28
2.3.4. Seed phrase for recovering the master key 30
2.3.5. Hot and cold wallets 30
2.3.6. A note on the Bitfi hardware wallet 32

2.4. SECURE ELEMENT 32
2.4.1. Anti-tamper and certification 33
2.4.2. Java Card 34
2.4.3. APDU 35
2.4.4. Global Platform 36

2.5. RELATED WORK 37
2.5.1. Low-Level Attacks in Bitcoin Wallets 37
2.5.2. SRP on Java Card applets 38
2.5.3. Usability analysis on wallets 39

3. DEVELOPMENT 41
3.1. Different possibilities for the hardware wallet 41

3.1.1. Smart Card + Connection 42
3.1.2. Basic requirements 43
3.1.3. Limitations 44
3.1.4. Smart Card + Connection + Microcontroller 44
3.1.5. Smart Card + Connection + Microcontroller + Buttons + Screen 45
3.1.6. Additional basic requirements (smart card) 46
3.1.7. Basic requirements (microcontroller) 47
3.1.8. Limitations 47
3.1.9. Smart Card + Connection + Powerful Microcontroller + Buttons + Big screen +

Internet access 48
3.1.10. Smart Card + Connection (NFC) + Mobile Phone 48
3.1.11. Limitations 49

3.2. Security considerations 49

9

3.2.1. Communication channel 49
3.2.2. PIN entering 50
3.2.3. Device personalization 52
3.2.4. Plausible deniability and wipe PIN 53
3.2.5. Hardware level protection 54
3.2.6. Attestation of genuineness 55

3.3. Prototype 56
3.3.1. Overview of the architecture 56
3.3.2. Main requirements 58
3.3.3. Hardware wallet 58
3.3.4. Connector 59
3.3.5. Wallet User Interface 59
3.3.6. Blockchain API 61
3.3.7. Results 62
3.3.8. Hardware wallet 62

3.3.8.1. APDU commands and responses 65
3.3.9. Connector 70

3.3.10. Wallet User Interface 71
3.3.11. Blockchain API 75
3.3.12. Source code 76

4. CONCLUSION 77
4.1. Future work 77

5. REFERENCES 79
6. APPENDIX I - PAPER 84

10

11

INTRODUCTION

Almost ten years ago Satoshi Nakamoto introduced Bitcoin to the world. His

peer-to-peer electronic cash system allows any two willing parties to transact directly

with each other without the need for a trusted third party [1]. Bitcoin has grown

rapidly, giving birth to a novel industry, involving other cryptocurrencies, blockchain

technology and new economic dynamics [6]. On september of 2018 cryptocurrencies

had a U$ 200 billion market capitalization, of which U$ 112 billion (55%) is Bitcoin [3].

Despite its huge success, one could say that Nakamoto's vision is not yet

fulfilled, as the ecosystem presents signs of centralization, especially with the rapid

growth of third parties companies that hold and manage the user's cryptographic

keys, in other words, the user's funds [8]. In the final months of 2017 those major

cryptocurrency exchanges have added more than 100,000 users per day [13].

Many users might prefer to leave their coins on an exchange or online wallet,

as it seems to be easier and works almost like the current online banking solution [7].

The problem is that unlike banks, these services cannot offer any guarantees on the

user's holdings. In fact, due to hacking, more than U$ 15 billion were lost since 2013

[2]. Beyond that, if the users are not the real owners of their funds, the whole idea of

decentralization is lost, giving space to government censorship, retention of user's

funds and other threats [14, 15].

For one to be the real owner of its coins, he must deal with public-key

cryptography [7]. In the context of Bitcoin "managing, controlling, and using

cryptographic keys are complex tasks, and no clear solution has been proposed" [8].

The best solution we have so far are called hardware wallets:

"Hardware wallets are the best balance between very high security and

ease of use. These are little devices that are designed from the root to

be a wallet and nothing else. No software can be installed on them,

making them very secure against computer vulnerabilities and online

thieves. Because they can allow backup, you can recover your funds if

you lose the device." [16]

12

The main hardware wallets on the market are the Ledger Nano , Trezor,

KeepKey and Digital BitBox [5]. They have limitations on the number of

cryptocurrencies supported and a relative high price, but the main concern is that

they still present some security flaws, like the exposure of the communication

channel [12] and the openness to a Supply Chain and Evil Maid attacks [71]. Despite

that, they are continuously being improved by their manufacturers.

Considering the explosive growth of cryptocurrencies and the endless

possibilities for a better future [17], it is necessary to give users more options to

secure their funds and be independent of third parties. With the mentioned idea in

mind, this academic work hopes to contribute with the cryptocurrency ecosystem by

making a thorough description of some important aspects of managing keys and

addresses, and also listing some important security aspects unique to Bitcoin. Not

only that, but also to develop an open source prototype that might be a starting point

for more robust wallets that are low cost, secure and can be adapted for different

coins.

We analyze different hardware wallet projects possibilities, with and without a

dedicated screen and develop a prototype based on smart card technology, more

specifically on Java Card , the leading platform, with more than 10 billion devices

deployed [19, 20]. These devices are tamper resistant [26] and some of them are

Evaluation Assurance Level (EAL) certified [58]. We explore the solutions to encrypt

the communication channel, preventing Man-in-the-Middle (MitM) attacks [12] by

using password-authenticated secure channel protocol (SRP) [27] and public key

cryptography.

It should be noted that our proposal is not a panacea, as it is based on

technologies that have known flaws [18, 22, 23, 24], but are the best available for the

price and are constantly being enhanced. Our implementation is focused on serving

users that don't hold very large amounts of funds. For a more secure setup, users

should use threshold cryptography [25], that in the future might be incorporated in our

work.

13

OBJECTIVES

MAIN OBJECTIVE

The goal of this work is to provide recommendations for implementing a

secure and low cost Bitcoin hardware wallet using a smart card.

SPECIFIC OBJECTIVES

1. Define the requirements and features for a Bitcoin hardware wallet, analysing

the security aspects involved;

2. Project a general architecture for a Bitcoin hardware wallet and its

communication protocol;

3. Implement a working prototype of a Bitcoin hardware wallet that runs on a

Java Card (following the ISO 7816 standard) and uses web technology.

EXPECTED RESULTS

As mentioned earlier, we want to contribute with the cryptocurrency ecosystem

by providing the development community a rich description of the components

involved in a hardware wallet project, presenting security recommendations,

suggestions for the architecture, the communication protocol and to provide an open

source prototype. We hope this will help Bitcoin to achieve its original goal of a

secure and decentralized system.

STRUCTURE OF THIS WORK

On the Fundamentals chapter we make a revision on the theoretical aspects

of cryptographic (hash functions, message authentication code, key derivation,

asymmetric cryptography), describe the workings of the Bitcoin protocol and detail

the protocols to generate addresses and manage wallets. Then we also review

related works (attacks in Bitcoin wallets, secure channels and usability analysis).

Next, on the Development chapter, we incrementally analyze different

possibilities for the hardware wallet project and make specific security considerations.

14

We then advance to the prototype by defining the architecture and requirements,

concluding with the presentation of how we coded the solution.

Finally on the Conclusion chapter we present the main findings and propose

themes for future works that can be related with this project.

15

FUNDAMENTALS

CRYPTOGRAPHY

In this section we make a brief explanation of the main cryptography concepts

used by the Bitcoin protocol and especially by the Bitcoin Improvement Proposals

(BIPs) related to address generation and management [28].

Cryptographic Hash Functions

A cryptographic hash function takes a variable-length block of data as input

and returns a fixed-size value called hash [30]. Any change in the message will have

a very high probability to produce a distinct hash, allowing to check for data integrity

and various others applications, notably digital signatures [31].

To be considered secure and strong, hash functions must fill some important

requirements [30]:

1. To be deterministic, so the same message always produces the same hash;

2. To be fast to compute for any given message;

3. To be infeasible to find the original message by having only the hash

(preimage resistant);

4. Given message m1 and its hash, it is infeasible to find a message m2 different

from m1 but with the same hash (second preimage resistant);

5. To be infeasible to find two different messages with the same hash (strong

collision resistant).

SHA

The Secure Hash Algorithm (SHA) is a family of widely used hash functions

[30] standardized by the National Institute of Standards and Technology (NIST) as

well as the U.S. Federal Information Processing Standard (FIPS).

The SHA-1 is a 160-bit hash function which resembles the Message Digest

Algorithm 5 (MD5) and since late 2005 was advised not be used anymore, in flavor of

the SHA-2 variants [30], which has some similar characteristics to its predecessor,

but has different block sizes, known as SHA-256 and SHA-512, with 32-bit and 64-bit

16

words, respectively. There are truncated versions of each standard, known as

SHA-224, SHA-384, SHA-512/224 and SHA-512/256. The newest version is called

SHA-3 (formerly Keccak), released in 2015 after a public competition among

non-NSA designers. It supports the same hash lengths as SHA-2, but its internal

structure differs largely from the rest of the SHA family. It is not meant to replace

SHA-2, but to compose the family of SHA with more robust options [29].

The SHA-2 mechanism is very well explained on the FIPS publications,

however it is out of the scope of this work to detail it. What is very important to note is

that SHA-2 is at the heart of the Bitcoin protocol, being used for the Proof-of-work

(PoW) algorithm as well as for generating address [1, 28], both of which will be

detailed further ahead.

RIPEMD

Research and Development in Advanced Communications Technologies in

Europe (RACE) Integrity Primitives Evaluation Message Digest (RIPEMD) is a family

of functions based on the Message Digest Algorithm 4 (MD4), created by the

academic community [31]. The main used variant is the RIPEMD-160, an improved

version that generates 160 bits hashes. Currently, no successful efficient attacks

against the hash functions are known [33].

HMAC

A Message Authentication Code (MAC) algorithm has two purposes: to verify

the integrity and the authenticity of a message. It takes as input a variable-length

message and a shared secret key and generates an authentication code, that will be

appended to the message and sent. The recipient can use the shared secret key and

the received message to generate an authentication code and compare with the

appended received authentication code [30].

In recent years, the main approach to form a MAC is to combine a

cryptographic hash function, such as SHA-256, in some fashion with a secret key

[30], this is known as Hash-based Message Authentication Code (HMAC). The

security of any MAC function based on an embedded hash function depends in some

way on the cryptographic strength of the underlying hash function. The main strength

17

of HMAC is that it is proven to exist an exact relationship between the strength of the

embedded hash function and the strength of HMAC, so to break the HMAC, one

would have to break the underline hash function [31].

MAC can also be used to generate pseudorandom numbers of fixed length.

This is explored by the Bitcoin protocol to generate deterministic wallets [11, 34].

PBKDF2

A Key Derivation Function (KDF) takes an input (usually a password or

passphrase) and produces a secret key that can fulfil some required format, for

example, a certain length and higher entropy. More than that, it is used to prevent

brute force attacks, as two elements are present in the function: the use of a salt,

avoiding the pre-computation of keys and the usage of iteration, requiring more

computational power to execute the function [36].

In the year of 2000 RSA Laboratories published its Public-Key Cryptography

Standards (PKCS) #5 (version 2.0), defining the Password-Based Key Derivation

Function 2 (PBKDF2) [36], which is not particularly bound to any specific

pseudorandom function and can generate keys of arbitrary sizes.

The PBKDF2-SHA512 variant is used by the BIP-39 to create a binary seed

from the mnemonic code [35].

Asymmetric cryptography

Public-key (or asymmetric) cryptography is any cryptographic system where

encryption and decryption are achieved by using two different keys, one public (that

can be freely distributed) and another private (that should be kept secure) [30, 31].

The strength of public-key cryptography comes from mathematical functions

known as trapdoor one-way functions, which are easy to compute in one direction,

yet the opposite (or inverse), is very hard to be computed without all the needed

parameters. Trapdoor functions are based on problems like prime number

factorisation, the discrete logarithm problem and elliptic curve multiplication [39].

Various mechanisms for asymmetric cryptography were created (e.g. RSA,

Diffie-Hellman, DSS, Elliptic Curve), providing useful encryption services for a wide

18

range of problems, though the most used are digital signatures and the establishment

of symmetric keys used to encrypt the messages in a communication channel [31].

Digital signatures

One of most important instance of public-key cryptography is digital signatures

[31], with applications on a wide range of areas, including secure e-commerce, legal

signing of contracts, secure software updates, online banking and Bitcoin, where a

transaction is securely signed, allowing only the owner of the signing private key to

spend funds associated with a referenced public key [11].

Digital signature is based on mathematics and provides three important

aspects [30, 31]:

1. Authentication: the receiver can verify that the message was created by the

sender;

2. Integrity: the receiver can verify that the message was not altered in transit;

3. Non-repudiation: the sender cannot deny having sent the message.

It is also relevant to note that it should be computationally infeasible to

generate a valid signature for any given message without knowing the private key,

while verifying the signature using the public key should be trivial.

ECDSA

Elliptic Curve Digital Signature Algorithm (ECDSA) is based on elliptic curve

cryptography (ECC). It is used as an alternative to RSA/DSA and other schemes for

digitally signing messages, with the advantage that the same level of security can be

achieved using a much smaller key size. For instance, a 256-bit elliptic curve public

key should provide comparable security to a 3072-bit RSA public key, or a 160-bit

private key in ECDSA compared to 1024-bit on DSA [30, 38, 39].

Bitcoin protocol has chosen the secp256k1 curve parameters defined in the

Standards for Efficient Cryptography (SEC) to make all the ECDSA operations.

Unlike the NIST curves, secp256k1's constants were selected in a predictable way,

which significantly reduces the possibility that it might contain any kind of backdoor

[37].

This scheme is based on the elliptic curve y 2≡ x 3+7 (mod p), defined over a

finite prime field Zp. The private key is a cryptographically secure random unsigned

19

integer and the public key is a point on the curve, representing the multiplication (in

ECC terms) of the generator point (specified on secp256k1) by the private key [39].

Given the public key, it is unfeasible to determine the private key. This is known as

the Elliptic Curve Discrete Logarithm Problem (ECDLP) and is basically what

guarantees the security of ECC [31].

To sign a message using ECDSA, considering n as the order of Zp [30]:

1. Calculate the e as the hash of the message (e.g. using SHA-256);

2. Let z be the Ln leftmost bits of e , where Ln is the bit length of the group order n;
3. Select a cryptographically secure random integer k from [1, n-1] ;
4. Calculate the curve point (x 1, y 1) = k x G.
5. Calculate r = x 1 mod n . If r = 0 , go back to step 3.

6. Calculate s = k -1 (z + rdA) mod n. If s = 0 go back to step 3.

7. The signature is the pair (r , s).
It is really important to choose a different cryptographically random number on

step 3, otherwise the private key can be recovered, as the famous attack on the Sony

PlayStation 3 has shown [40]. Another way to ensure that this integer is unique is by

computing it with a KDF of the private key concatenated with the message.

BITCOIN

Bitcoin is a Peer-to-Peer Electronic Cash System initially developed by

Satoshi Nakamoto in late 2008 to allow any two willing parties to transact directly with

each other without the need for a trusted third party [1]. It is the world’s first

decentralized cryptocurrency, with a market capitalization of U$ 112 billion,

representing a 55% slice from the U$ 200 billion cryptocurrency space [3]. It is built

upon cryptography and peer-to-peer (P2P) technology, has its own currency – called

bitcoin (BTC) – that isn't bounded to any asset on the real world and is completely

open source [41].

Below are summarized the main general characteristics of Bitcoin [1, 5, 42]:

Transactions are public: All Bitcoin transactions are transmitted to the

network to be propagated to all participating nodes (each node is connected only to

some peers, but using the network effect, all nodes will receive the transaction). The

20

nodes maintain a distributed database called blockchain, which is a public ledger with

all the transactions.

Frauds are infeasible : To prevent double spending of coins and reach global

decentralized consensus, the nodes on the network execute a proof-of-work

algorithm based on cryptography hashing.

Coins are secure: To transfer bitcoins to a recipient, one must own the

ECDSA's private key that will sign the transaction and release the funds.

Payment irreversible : Once the owner transfer their Bitcoins, he will no

longer have the power to retrieve them without the recipient's consent.

Cheap and fast: The transactions are designed to be cheap and fast

(disregarding the whole energetic cost to mine coins) as there is not a chain of

intermediates between the sender and the recipient.

Partially anonymous: Although all transactions are publicly known, Bitcoin

uses addresses as pseudonyms, where the addresses are not tied to a person or

company, but to a cryptography public key. It is possible to track and associate all the

addresses using a serie of techniques, so the system is not completely private [7].

Coins are created by miners: The incentive for the nodes (called miners) to

participate on the network comes from the fact that when they check the transactions

and execute the proof-of-work algorithm before all others nodes, they are rewarded

with freshly created bitcoins and the fees from the transactions.

Deflationary currency: Although coins are created on the process of mining,

there is a limitation of total number of coins on the specification of the protocol, only

21 million bitcoins can be created, making Bitcoin deflationary.

Figure 1 shows how the different concepts described are related.

21

Figure 1: General view of the Bitcoin protocol and its participants.

From Miraje Gentilal, et al. (2017) [5]

Blockchain and mining

In the context of Bitcoin, the blockchain is the distributed database containing

all the transactions between the users of the Bitcoin network, it is a public ledger that

is resistant to modification [41]. Satoshi used the terms block and chain to describe

what he calls the Timestamp Server [1], that works by grouping received transactions

from the network into a block. This block will have a unique hash of its contents, a

Unix time timestamp and a reference the previous accepted block, forming a chain of

blocks that will be propagated through the network.

Figure 2: Chain of two blocks forming the blockchain.

NAKAMOTO, Satoshi. (2008) [1]

To prevent double spending of coins and other forms of misuse of the

consensus rules, the nodes of the Bitcoin network must be able to verify the

transactions that goes into the blockchain in a decentralized way. The solution is the

use of a proof-of-work (PoW) system and a form of incentive to keep the nodes

honest [1].

22

After the transactions in a block are validated, the PoW is required to make it

hard to modify a block of transactions and it works by requiring the node to compute

a cryptographic challenge before commiting the block. The header of the block

contains a random nonce, among other information. The node must calculate the

SHA-256 digest of the header and check if the computed hash contains a determined

number of preceding zeros, if not, the node must increment the nonce and redo the

calculation until it fulfils the requirement.

"Once the CPU effort has been expended to make it satisfy the

proof-of-work, the block cannot be changed without redoing the work.

As later blocks are chained after it, the work to change the block would

include redoing all the blocks after it." [1, page 3]

On the Bitcoin protocol, the number of zeros needed is adjusted every 2016

valid blocks to guarantee that the average time to compute a block is 10 minutes [42].

When a node computes the challenge, it can retrieve a reward by generating

new coins for itself and collecting the fees from the transactions on the block. All this

process of validating the blocks, executing the proof-of-work and collecting rewards is

known as mining.

Transactions and authentication

Bitcoin transactions represent the transfer of coins between users of the

network. The transactions are broadcasted and miners register them on the

blockchain if they are valid according to the Bitcoin protocol [41]. To find out how

much bitcoin one owns, it is necessary to check all the chain of transactions relating

to one or more bitcoin address. The transactions have a defined structure, usually

referencing previous transactions outputs as its input and bitcoin addresses with

corresponding values as outputs [44].

A scripting system is used for transactions, making the protocol more versatile,

like allowing to lock the amount for some time or to require multiple signatures to

release the funds. The language of the script is simple, stack-based, and processed

from left to right. It is intentionally not Turing-complete, with no loops [45, 47].

Figure 3 shows the schematic relationship of transactions and public key

cryptography. In essence, to transfer bitcoins to a recipient, one must own the

23

ECDSA's private key that will sign the transaction and release the funds to the

address indicated on the output. But not only that, as shown by Ken Shirriff [47],

there are many details in the process of creating raw transactions with the correct

signatures.

Figure 3: Relation of different Bitcoin transactions.

NAKAMOTO, Satoshi. (2008) [1]

Figure 4 shows an example of a real Bitcoin transaction. The amount referred

in the input (5.31491729 BTC) was collected from 5 addresses and was sent to 3

different output addresses.

Figure 4: Example of Bitcoin transactions with its inputs and outputs [46]

24

KEYS MANAGEMENT, ADDRESSES AND WALLETS

Bitcoin is rooted on the cryptography ground, meaning that users must be able

to deal with public key cryptography in order to use the protocol [41]. Managing

private keys is a complex task and this is one of the biggest challenges for the

widespread adoption of Bitcoin and other blockchain solutions, as shown by Shayan

Eskandar, et al. [8].

To circumvent this situation, the Bitcoin developer's community have invested

a lot of effort to make the operations related to address generation and key

management more simple and user-friendly. In the next topics we explain how Bitcoin

address are generated and how wallets come as a rescue for the ease of managing

user's funds.

Bitcoin wallets

Bitcoin wallets generally refers to the client software used to manage bitcoin

private keys, generate addresses, forge transactions and aggregate balance

information from the Bitcoin network. Wallet may also refer to the data structure used

to store and manage user's keys [43], but we will sticky with the broader definition.

Wallets comes in different formats and flavors, ranging from simple local

storage of keys on a desktop computer, to mobile applications, dedicated hardware

devices, paper wallets or even brain wallets [8]. All of them can be categorized as a

hot or a cold wallet [5]. Further in this chapter we will detail both flavors, but first we

must understand how Bitcoin addresses works.

Address generation

A Bitcoin address is an identifier that represents a possible destination for a

Bitcoin payment and it is deeply related to a set of cryptographic keys from a user, as

it is derived from the public key or from a series of transformations based on the

private key [11, 43, 48, 49].

It contains 26-35 alphanumeric characters and can be generated at no cost by

any user, without the need for an internet connection. Except the newer Bech32 [50]

25

format, all addresses are case sensitive. The addresses are Base58 encoded and

have a checksum to prevent invalid address usage [49].

It is important to note that unlike email address, Bitcoin addresses should not

be used in more than one transaction [48], as this brings serious privacy and security

risks [51]. To prevent this, all software related to address generation should enforce

fresh generated addresses.

There are currently three address formats in the Main network:

● Pay To Public Key Hash (P2PKH) which begin with the number 1, eg:

1BvBMSEYstWetqTFn5Au4m4GFg7xJaNVN2

● Pay To Script Hash (P2SH) type starting with the number 3, eg:

3J98t1WpEZ73CNmQviecrnyiWrnqRhWNLy

● Bech32 type starting with bc1, eg:

bc1qar0srrr7xfkvy5l643lydnw9re59gtzzwf5mdq

Figure 5 shows the necessary steps to generate a Bitcoin address from a

ECDSA public key. Note that to prevent length-extension attacks, hashes are always

applied twice [32].

26

Figure 5: Conversion from ECDSA public key to Bitcoin address version 1 [49]

Deterministic generation of wallets

The first generation of Bitcoin wallets, like the Bitcoin Core Wallet, generates

random keys and store them on the local filesystem, encrypted by a password or not

[8, 43]. This approach presents headaches and serious security exposure. The user

has to constantly backup the keys to other devices and trust that the computer is not

infected by any kind of malware and that no unauthorized person has access to it.

To get around this situation, in the year of 2012 the BIP-32 was introduced,

proposing a new way to generate addresses, know as Hierarchical Deterministic

27

Wallets (HD wallets) [34]. In this kind of wallet, any number of keys can be derived

from a single master key, called seed , forming a hierarchic tree of accounts, each

with its public and private keys, as shown on Figure 6.

Figure 6: Hierarchical Deterministic Wallets with different depths [34]

This scheme has many of advantages over classic non-deterministic wallets

[5, 11, 34, 43]:

Easy to backup : By making a backup of the seed just once, one can recreate

the full tree of accounts at any given time.

Independence of branches: Each child account has its own extended private

and public key, making it possible to share just part of the tree. For example, in a

ecommerce site, it is possible to generate unique receiving addresses for each order

by utilizing the extended public key the external chain of a single account.

Organizational structure: The tree structure can be given meaning, for

example, allowing the headquarter of a business to monitor all the offices addresses

with just one seed, but delegating control to each one of them independently.

Fresh addresses: The receiving and change addresses is always freshly

generated, so it is never used in more than a single transaction.

28

Audit capability: As the full chain of address can be generated using a

extended public key, the key can be handled to external auditors to check the

balance of a tree, for example, when a exchange needs to prove its solvency.

As of 2018, practically all wallet client software supports HD wallets. The

implementation details can be seen on the BIP-32 specification [34].

Seed phrase for recovering the master key

Another important improvement added to wallets is the ability to use seed

phrase for generating deterministic keys (BIP-39) [35]. A seed phrase is easier to

handle instead of raw binary or hexadecimal representations of a wallet seed. The

sentence can be written on paper, spoken over the telephone (not adviced) or even

registered on resistant metal cards and locked in traditional bank safes.

It is important to note that whomever has access to the seed phrase has full

control over all the balance associated with the addresses derived. To mitigate the

risk of exposing the funds, it is possible to extend the seed phrase with an additional

password [52]. This also provides plausible deniability, because every password will

generate a valid wallet.

The seed phrase is generated from a random number that is converted to a

phrase with 12, 15, 18, 21 or 24 words from a standard wordlist, allowing different

wallet software to generate compatible seed phrases. With 12 words the generated

entropy is 128 bits and with 24 words the entropy is 256 bits. The order of the words

matter and the phrase contain a checksum [35]. To make a HD wallet from a seed

phrase, the words are used to derive a longer seed through the use of the

key-stretching function PBKDF2 with HMAC-SHA512 [43].

Hot and cold wallets

All wallets can be subdivided in two main categories: hot, which is connected

to the internet and cold , which isn't. Usually hot wallets are associated with everyday

usage on desktop and mobile phone, providing more convenience over cold wallets,

which were created for long-term storage of larger amounts of cryptocoins [5, 7, 10,

41].

29

All the facility from using a hot wallet comes with a major price: the risk of

losing all the funds to hackers or the third parties responsible for the wallet service

[8]. The Bitcoin history is full of such cases, in fact more than U$ 15 billion were lost

since 2013 due to hacking [2]. It is important to remember that online exchanges are

included in the category of hot wallets, despite holding most of its funds under cold

storage, the final user is anyhow exposed to the mentioned risk.

Cold storage comes in different forms, here are some [53]:

Paper wallets : The keys are printed or written on paper.

Engraved in metal: The keys are engraved, etched, ablated or stamped in a

piece of metal.

Stored digitally on data devices : The keys are recorded on a USB drive or

other data storage medium.

Brainwallet: The seed phrase of a wallet is stored on one's own mind by

memorizing it.

Dedicated hardware device: The keys are generated and stored in a secure

hardware device designed from the root to be a wallet and nothing else [16].

We will focus on the hardware wallets, as they offer the best balance between

very high security and ease of use. Besides storing the keys, these devices are

capable of signing the transactions on its dedicated secure enclave, like a smart

card, so the keys never leave the device. The main hardware wallets on the market

are the Ledger Nano, Trezor, KeepKey and Digital BitBox [5]. All of them have a

companion mobile or desktop application, usually are open source and support

different cryptocoins [54].

Most of them have a dedicated screen and buttons, so that the user can check

the transactions before confirming, copy the seed phrase securely and input

additional password or other information without being exposed to malware on the

computer that the wallet is connected [12].

Hardware wallets have a great track record but are not silver bullets [12, 54],

they can be prone to hardware and software bugs, have insecure Random Number

Generator (RNG), be exposed to a compromised production or shipping process and

many others [54]. In this work we will approach some of this factors further ahead.

30

A note on the Bitfi hardware wallet

There is a new hardware wallet on the market called Bitfi, released in July of

2018 [55]. The creators of the wallet claims that it is unhackable, because "there is

nothing to be hacked", as the seed phrase is never stored on the device, but instead,

it is inputted by the user when he needs to sign a transaction, derivating the private

keys on the fly. Although the device seems not to store the keys when turned off,

there might be some kind of exploitable aspect on the communication channel or

some other part of the device. They recommend the users to generate the seed

words using the Diceware method [56] and store them on their own mind. This

approach might be interesting, but we must consider that the general advice from

community is that one should not rely on human mind to be the only storage place of

such an important information [57]. As this kind of hardware wallet needs further

investigation by the community, we will not consider this approach for our

implementation and will focus on the requirement that the device keeps the keys on

its secure memory. We must also take into consideration that if a greater level of

security is required, the way to go should be threshold cryptography [25], that can be

latter incorporated in our implementation.

SECURE ELEMENT

According to GlobalPlatform, a non-profit industry association focused on

making specifications and certifications for the security field:

"A SE is a tamper-resistant platform (typically a one chip secure

microcontroller) capable of securely hosting applications and their

confidential and cryptographic data (for example cryptographic keys) in

accordance with the rules and security requirements set by

well-identified trusted authorities." [61, page 2]

Secure elements comes in different flavors, depending on the requirements of

the project. They can be embedded and integrated SEs, SIM/UICC, smart microSD

as well as pocket-sized smart cards. With the exception of Trezor, the majority of the

hardware wallets available employs a Secure Element (SE) in its design [54].

In this chapter we will give a brief overview of this technology.

31

Anti-tamper and certification

SEs are designed to be tamper resistant, not allowing an attacker to retrieve or

modify information in the its secure memory [62]. Although it is getting harder to

tamper with them, there are known flaws [18, 21, 22, 23, 24, 26] and different levels

of security. However SEs still represent the best available practical solution for the

price and are being constantly enhanced.

Kömmerling, O. and Kuhn M. [26] distinguish four major attack categories in

SEs:

Microprobing can be used to access the chip surface directly, thus one can

observe, manipulate, and interfere with the integrated circuit.

Software attacks use the normal communication interface of the processor

and exploit security vulnerabilities found in the protocols, cryptographic algorithms, or

their implementation.

Eavesdropping techniques monitor, with high time resolution, the analog

characteristics of all supply and interface connections and any other electromagnetic

radiation produced by the processor during normal operation.

Fault generation techniques use abnormal environmental conditions to

generate malfunctions in the processor that provide additional access.

As there are many possible attacks and different ways of engineering a SE

chip, it is hard to say that a chip is really anti-tamper or at least that the cost to

tamper it is too high. The solution for that comes in the form of certification from

external auditors. There are two main certificates in this area:

CC EAL: Common Criteria (CC) Evaluation Assurance Level (EAL), which has

7 levels, 1 being the most basic (and therefore cheapest to implement and evaluate)

and 7 being the most rigorous (and most expensive) [63]. The Ledger Nano S has a

CC EAL5+ certification [58].

FIPS 140-2 : An NIST standard with the requirements for a secure

cryptographic module containing 4 levels of certification, being 4 the highest level of

security [64] .

32

Java Card

Java Card is a platform released in 1996 to simplify the development of

software for smart cards by offering portability and security [18, 19]. It is the leading

platform, with more than 10 billion devices deployed [19, 20], mainly Subscriber

Identity Module (SIM) chips for mobile phones and credit cards for the banking

industry. Java Card products are based on the Java Card Platform specifications,

which allows a Java Card applet to be written once and run on different smart cards

running a virtual machine on top of its operational system (Figure 7).

Figure 7: Software Stack of a Java Card [19]

Palma L. and Sousa L. highlight the main advantages of the platform:

Easy of use : Developers can focus on the application code rather then be

concerned about hardware aspects of the smart cards.

Security : Java cards employ different layers of security to guarantee the

isolation of the applets on the card, not allowing an applet to access its neighbor

memory and storage.

Hardware independence : Applets can be compiled once and deployed on

different compatible cards with the targeted Java Card API version.

Multiple applets : Different applets with completely independent functionality

can coexist on the same card.

Compatibility : Java Cards are based on the ISO 7816 international standard

for smart cards, managed jointly by the International Organization for Standardization

(ISO) and the International Electrotechnical Commission (IEC).

Java Card applets are developed in a tiny subset of the Java language with

many of restrictions [66]. There is no support for char, double, float, long,

33

multidimensional arrays, dynamic class loading, threads, object cloning and there are

different limitations on Java core API classes. Yet many of the familiar features of a

Java application are available: including objects, inheritance, packages, dynamic

object creation, virtual methods, interfaces, and exceptions. The smart card vendors

can provide additional functionality by extending the default Java Card API.

Each applet on a card is uniquely identified by an Application ID (AID) (as

specified in the 7816-5 ISO) and must extend the Applet abstract base class, which

defines the methods used by the Java Card Runtime Environment (JCRE) to control

the applet life-cycle (Figure 8). First the applet is downloaded to the card and the

JCRE invokes the applet's static Applet.install() method, and the applet registers

itself with the JCRE by invoking Applet.register(). When the applet is installed and

registered, it is in the unselected state, available for selection and processing by

responding to custom commands.

Figure 8: The Java Card Applet Life-Cycle Methods [66]

APDU

Beyond developing the application that runs on the smart card, one must

implement an application that communicates with the applet using a card reader,

USB interface or some wireless communication protocol [19, 22, 65, 66]. Those two

pieces of software exchange information using the Application Protocol Data Unit

(APDU), conforming with the ISO 7816-3 and 7816-4 (Figure 9). There are two kinds

of APCU: command and response.

34

Figure 9: Communicating Using the Message-Passing Model [66]

The command APDU is sent by the reader to the card with a mandatory 4-byte

header with the type of the command, command and parameters (CLA, INS, P1, P2)

(Figure 10). A response APDU is sent by the card to the reader containing from 0 to

65.536 bytes of data, and 2 mandatory status word bytes (SW1, SW2) (Figure 11).

Figure 10: Structure of a command APDU [66]

Figure 11: Structure of a response APDU [66]

Global Platform

GlobalPlatform is a non-profit association driven by over 100 member

companies, from chip manufacturers to the communication industry [67]. The

GlobalPlatform specifications consists of three parts [19]:

Card: Defines the personalization process and standard ways for customizing

the card after it has been issued, also providing the card issuer with tight control of

the card and of the process of loading new applications onto it.

35

Device: Also called terminal specification, focuses on the standardization of

stand-alone payment terminals.

System : It is the latest addition to the family of specifications covering

infrastructure, processes, and systems required to manage a multi-application card

and its content.

The main components include the Runtime Environment consisting of a

secure multi-application card runtime; the GlobalPlatform API which provides

services like a secure channel for communication, the verification of the cardholder

and personalization of the card; the Card Manager containing the ability to perform

application installation and selection, command dispatching, card content

management and Personal Identification Number (PIN) support; the Security

Domains enabling the applications of various providers to share space on a card

without compromising the security of any particular provider.

GPShell , GlobalPlatformPro and OpenSC-Tool are tools that implement the

GlobalPlatform specification and allow the interaction with the Java Cards.

RELATED WORK

In this section we detail three related papers that were important for the

development of this work and the collection of additional references.

Low-Level Attacks in Bitcoin Wallets

Gkaniatsou A., Arapinis M. and Kiayias A. released a paper in 2017 [12] where

they bring to attention that the use of EAL5+ certified smart cards on a dedicated

hardware wallet doesn't guarantee its security, as the low-level communication

protocol can be exploited. They focus on the Ledger Nano S [58], by

reverse-engineering the APDU communication protocol and mounting a series of

MitM attacks (Table 1) to demonstrate the vulnerabilities.

a. Direct wallet attacks b. Transaction attacks c. Account privacy attacks

a.1 Access to the master

private key;

b.1 Tamper the payment

amount;

c.1 Account traceability.

36

A.2 Access to the keypool

encryption key;

a.3 Unauthorised access to the

wallet;

A.4 Alter the wallet security

properties.

b.2 Tamper the payment

address;

b.3 Denial of service.

Table 1: Attacks demonstrated by Gkaniatsou A., et al. [12]

The attacks are really serious and serve as a reminder of the risks of sending

clear text data through an insecure channel. The authors propose to secure the

communication channel selectively, by using symmetric cryptography only on pieces

of data that must be confidential. They suggest the use of the Password

Authenticated Key Exchange (PAKE) by Juggling protocol (j-PAKE) [59] which

"allows bootstrapping high entropy keys from the low-entropy user’s PIN. In that way,

we avoid storing secret data API side, ensure that fresh keys are used in each

session and guarantee the user’s presence at that session" [12].

Their solution can be applied to any hardware wallet and will be considered in

our implementation.

SRP on Java Card applets

As shown by Gkaniatsou A., et al. [12], having a secure communication

channel is a crucial requirement for a hardware wallet device. With that in mind we

investigated different possibilities to deploy this on a smart card and found the work

of Hölzl, M., et al. (2015) [27] to be very enlightening. The authors design, implement

and evaluate the use of the password-authenticated secure channel protocol (SRP)

to protect the communication of a mobile application to a Java Card applet running

on a smart card.

The SRP protocol is an augmented password-authenticated key agreement

(PAKE) protocol, specifically designed to work around existing patents. It allows one

party (client) to demonstrate to another party (server) that he knows the password,

without actually sending the password, nor any other information from which the

password can be retrieved, accomplishing what is known as zero-knowledge

password proof [60]. The authors choose SRP-6a over other possibilities because it

37

is based on Diffie-Hellman key exchange, which is has a wider support on Java Card

3.0, but end up also presenting the SRP-5 elliptic curve variant [27].

The referred work presents a really high level of detail and effort in the

optimization of the algorithms. The resulting performance of the SRP-6a variant is

1,600 ms on an external smart card, while the SRP-5 variant runned in 526 ms. The

values might seem high, but it is important to note that most of the computation

happens on the key agreement phase, which runs simultaneously with the password

or PIN entry.

Usability analysis on wallets

One of the objectives of this work is to provide an implementation of a Bitcoin

wallet, which will inevitably include a client user interface to serve as a glue between

user's needs, the Bitcoin network and the secure hardware. Beyond our informal

research on current wallets products, we selected an academic paper by Eskandari

S., et al. [8] where the main wallets solutions until the year of 2015 are mapped,

studied and compared, mainly in the point of view of usability and user experience.

Table 2: A comparison of key management techniques for Bitcoin. Modified from Eskandari S., et al. [8]

The authors elaborate a framework composed of ten security, usability and

deployability criterias to enable direct comparison of different key management

solutions (Table 2). Then they define four main tasks (configure, spend coins, spend

38

coins on a secondary device, recovery of wallet) and comprehensively walkthrough

the defined talks on six different wallet clients, evaluating the usability based on

predefined heuristics.

Table 2 has received an additional last line with our solution to allow

comparison with the others proposals. As the keys are stored on a secure element,

which cannot be tampered, we gave Malware Resistant a full point (●). On the

Resistant to Physical Theft aspect, we gave our solution the half point (○) as the

device can be stolen but no keys can be extracted. Finally, on the No New User

Software we also gave our solution the half point (○), considering that the user will

access the wallet through a web interface, but it is necessary to install the Connector

(described in the development chapter) software or at least an extension to the web

browser.

Additionally, the authors conclude that "the metaphors and abstractions used

in the surveyed clients are subject to misinterpretations, and that the clients do not do

enough to support their users." [8], which is a very important indicative that in order to

make a successful wallet solution, extra attention should be given to the user

interface design, including the choice of texts, metaphors and additional help content.

Paradoxically, despite being a disruptive innovation, Bitcoin borrowed

concepts from the old financial order, like wallet, that brought confusion to users, as

these concepts actually have different meanings on the traditional system.

39

DEVELOPMENT

In this chapter we will effectively dive into the details of a Bitcoin hardware

wallet project.

A hardware wallet can be constructed in many different ways, bringing unique

security advantages, implementation challenges and costs of production for each

version. In the first part of this chapter, we will analyze those differences. Next, we

advance to a discussion of security aspects of the project. Finally, we will detail the

planning and implementation of a working prototype using Java Card and a web user

interface to interact with the device and the Bitcoin network.

Different possibilities for the hardware wallet

As previously mentioned, a hardware wallet can be built in many different

ways, as shown by some products on the market: the Ledger HW.1 [84] is a smart

card that fits a USB port, the Ledger Nano S [58] is a version with a smart card, a

little monochrome screen and two buttons, the TREZOR Model T [85] has a little full

color touch screen but no secure element and the Ledger Blue [86] has an even

bigger screen and more powerful processor.

As we've seen in the first chapter, it is really important that the private keys are

kept on a secure element, making the smart card (Java Card) the basic requirement

in our analysis. Another general precondition is the communication with an external

computer (desktop, notebook or even an mobile phone), so the wallet can interact

with the Bitcoin network and the user, usually through an user interface (web,

desktop or mobile). This connection can be done with a smart card reader, an USB

port, Near Field Communication (NFC) or even Bluetooth. We will generalize the term

connection and detail when needed. This relationship is shown on Figure 12.

40

Figure 12: Relationship between the device, the user interface and the Bitcoin network.

When we talk about requirements, we will list the most basic ones.

Requirements related to more advanced security aspects, like the encryption of the

communication channel to prevent eavesdropping and MiTM attacks, will be detailed

further in the second part of the chapter.

Smart Card + Connection

This is the most primitive and cheap version of the wallet, even though it will

be able to perform the basic requirements of a Bitcoin wallet. One should choose a

Java Card that can perform ECC natively to gain better performance.

Figure 13: Simple smart card with the USB smart card reader.

41

If the Java Card doesn't have an USB interface, one must use a smart card

reader to interact with it, making the project more expensive (Figure 13).

Example : NXP JCOP J3D081 EV1

Cost: U$ 10 (for small quantities)

Implementation: It is necessary to define all the commands available for the card, its

different states and to develop the Java Card Applet using one specific version of the

SDK.

Basic requirements

1. SETUP

1.1. To define/change a PIN to access the device;

1.2. To generate the initial master private key of the device using a True

Random Number Generator (TRNG) and the seed words for recovery

(BIP-39) ; 1

1.3. To recover a wallet by defining the master private key using the seed

words;

1.4. To verify that the seed words generates the master private key stored

on the device.

2. ADDRESS GENERATION

2.1. To generate deterministic BIP-32 address (public/private keys).

3. SIGN TRANSACTIONS

3.1. To sign Bitcoin transactions using the keys of a BIP-32 path;

3.2. To validate transaction details before signing (optional, adds more

security).

4. INTERACTION

4.1. To validate the user PIN;

4.2. To take actions based on PIN policies, like to wipe the device if the PIN

is wrong for 5 consecutive times.

1 The seed words should be sent to the user only once, when the seed is generated.

42

Limitations

Exposure of the PIN and the seed words : This is the main limitation of this

simplified version, as the user must interact with it using the screen and keyboard of

a computer, which might be infected with viruses, keyloggers and other malware that

can trick the user into signing a forged transaction, leak the wallet's seed words or

the device PIN.

User confirmation can only be done by PIN : As the device has no buttons

or touch screen, the user can only confirm to sign a transaction by entering the PIN

on the computer device.

Firmware update restricted: To update the Applet on the card, one would

have to have access to the deployment keys configured for that card, making the

update only possible on the manufacturer.

Smart Card + Connection + Microcontroller

The lack of a screen introduces a big security flaw in the wallet, making it

impractical for real world usage. As we couldn't find a smart card on the market that

has a screen integrated and we must only use easily available parts to build our

device, we need to make the integration with a screen ourselves. For that, we need a

microcontroller that will be able to make the interconnection between the smart card,

the screen, the optional buttons and the communication channels (like USB,

Bluetooth, etc.).

This will increase the cost of the device and make the development more

complex, but it is an unavoidable requirement, as we cannot trust a third party device

screen (computer, notebook or even a mobile phone with Secure Enclave). An

example is shown on Figure 14, the Ledger Nano S hardware wallet.

43

Figure 14: Integration of the hardware components of the Ledger Nano S using a microcontroller unit

(MCU) [71].

We will need to write the code for the microcontroller, which can be done in

many different ways, usually divided in two parts: a bootloader and the firmware. As

this microcontroller is not a secure element, it will have to authenticate itself with the

smart card to prevent malware on the code of the microcontroller. This is a complex

topic that we will discuss on the Security Considerations section, further in this

chapter. An important point for the project is that if we can find a process to validate

that the code on the microcontroller has not been tampered with, then we can move

some code that deal with Bitcoin transactions and address generation from the Java

Card (which is hard to code and debug) to the firmware (which can be easier to

program, debug and validate).

Smart Card + Connection + Microcontroller + Buttons + Screen

This configuration is the most common among the hardware wallets, as it

allows one to safely store the private keys on the secure element and to offer a

trusted screen and buttons.

44

Figure 15: Example of a bitcoin wallet asking for the confirmation before sending bitcoins.

The screen will be used to show important information for the user, for

example the destination address and amount of a transaction that it is going to sign

(see Figure 15), the seed words on the first setup, etc.

It is recommended at least two buttons, one to confirm and the other to cancel

operations. It is possible to include number buttons (0 to 9) to allow the user to enter

the PIN on the device itself or to use the screen to display random positions for the

numbers so the user can enter the PIN on a untrusted computer without revealing it

(more on this on the Security Considerations chapter).

Example :
- Secure Element: NXP JCOP J3D081 EV1: U$ 10 (for small quantities)

- Microcontroller and screen: STM32F429I (includes de STM32F429ZIT6 MCU

and a 2.4' LCD screen): U$ 20 (for small quantities)

Cost: U$ 30.

Implementation: Beyond developing the Applet for the Java Card, a new

requirement is the coding of the bootloader and the firmware of the microcontroller.

There are open source solutions that can be used as a starting point, like the one

found on the micropython board [69], the Coldcard [68], Trezor and Ledger wallets.

Additional basic requirements (smart card)

1. INTERACTION WITH THE MICROCONTROLLER

45

1.1. To verify authenticity of the firmware;

1.2. To establish an encrypted connection with the microcontroller

(optional);

1.3. To respond with the details of the transaction that it is going to be

signed;

1.4. To respond with random positions for PIN entry.

Basic requirements (microcontroller)

1. BOOTLOADER

1.1. To load and verify the firmware code;

1.2. To manage the memory of the microcontroller;

1.3. To make services available to the firmware, like USB access, screen

access, buttons access, smart card access, etc.;

1.4. To validate itself with the smart card;

1.5. To validate and upgrade the firmware code.

2. FIRMWARE

2.1. To interact with the smart card, bridging the requests from the user side

to the smart card side;

2.2. To display different information on the screen and deal with buttons

interaction;

2.3. To upgrade the smart card Applet code.

Limitations

Still requires the user side computer : Although this version is more robust

and complete, it requires the connection with a computer to access the Bitcoin

Network and manage the wallet, as the processing power of the microcontroller is

limited and the screen size is really small.

Introduces a big challenge on the validation of the code on the

microcontroller : With the introduction of the microcontroller proxy, in addition to

adding more code to the project, one must find a clever way to validate the code that

runs on the firmware, so we can prevent Evil Maid and Supply Chain attacks.

46

Smart Card + Connection + Powerful Microcontroller + Buttons + Big screen + Internet

access

If we add a bigger screen to the device, a better microcontroller and access to

the internet through wireless connection, then we can offer the user a full experience

with a Bitcoin wallet on the device itself, allowing a user to create and sign

transactions, see the accounts balance and more.

This seems like a really good option, but there is a catch: we start to open

differente of attack vectors as the software and hardware on the device gets more

complex and fully exposed to the internet. Because of this we will not enter in the

details of this version, but leave it as a provocation for the reader. Maybe there is a

way to do it securely?

Smart Card + Connection (NFC) + Mobile Phone

This version is an alternative to the simplory version of just the smart card

without any display screen or buttons. It could use NFC (that comes natively in a

great number of smart cards) to interact with the user on the mobile phone screen.

With the advance of the ARM’s TrustZone™, others Trusted Execution Environment

(TEE) solutions and the concept of Trusted User interface (TUI) [70] we could

securely display the user seed words and require confirmations on the users mobile

phone.

Figure 16: Smart card with NFC enabled and mobile phone as the interface.

This solution is really appealing, as the cost can be very small and the user

interface can be natively mobile and easy to use.

47

Example : Java Card JCOP J3D081, from NXP EV1

Cost: U$ 10 (for small quantities)

Implementation: Would be necessary to make some changes on the Applet to

support sending data via NFC and to wait for the user confirmation of actions. The

user interface on the mobile phone would also need to be developed.

Limitations

Need to trust the user mobile phone : We must trust the user mobile phone,

which is hard to do specially on the Android platform, where applications have more

freedom to access the system resources without asking for specific permission.

Security considerations

In this section we discuss some specific security aspects of the project,

presenting possible solutions.

Communication channel
As we've seen on the first chapter, it is really important to guarantee that the

information flow is secure and encrypted, preventing MiTM attacks and its variations.

The first solution is to use the work of Hölzl, M., et al. (2015) [27], which

executes a password-authenticated SRP, where the password is the user's PIN.

The second possibility is to use Elliptic Curve Diffie-Hellman (ECDH) with

fresh public keys to establish a session shared-secret to encrypt the channel,

ascertaining the integrity and authentication for each APDU. This solution is used by

the Status Wallet [72]. The general steps would be as follows:

1. The client selects the application on card and the application responds with a

public EC key.

2. The client sends a command to open a secure channel with its fresh session

public key. The ECDH algorithm is used by both parties to generate a shared

256-bit secret.

3. The generated secret is used as an AES key to encrypt all further

communication. Cipher Block Chaining (CBC) mode is used with a random IV

48

generated for each APDU and prepended to the APDU payload. Both

command and responses are encrypted.

4. The client sends a command to verify that the keys are matching and thus the

secure channel is successfully established.

This solution will do a good job, but won't prevent a well equipped hacker to

intercept the communication bus between the client and the smart card, listening to

the initial exchange of public keys.

PIN entering

One important aspect of the hardware wallet is the PIN protection, as it will be

required to allow the signing of transactions and even to establish a secure channel.

In our implementation we use the OwnerPIN class from the Java Card API. This

class protects against attacks based on program flow prediction and is resilient to

side channel attacks.

The snippet below demonstrates how to store and validated the PIN.

// Initialize the PIN class
OwnerPIN walletPin = new OwnerPIN(WALLET_PIN_MAX_ATTEMPTS, WALLET_PIN_MIN_SIZE);

// Store a new PIN on setup the the wallet
Util.arrayFillNonAtomic(scratch256, (short) 0, WALLET_PIN_SIZE, (byte) 0xff);
Util.arrayCopyNonAtomic(buffer, offset, scratch256, (short) 0, walletPinSize);
walletPin.update(scratch256, (short) 0, WALLET_PIN_SIZE);
walletPin.resetAndUnblock();

// Check if PIN is valid
if (buffer[ISO7816.OFFSET_LC] != walletPinSize) {
 ISOException.throwIt(ISO7816.SW_WRONG_LENGTH);
}
Util.arrayFillNonAtomic(scratch256, (short)0, WALLET_PIN_SIZE, (byte)0xff);
Util.arrayCopyNonAtomic(buffer, ISO7816.OFFSET_CDATA, scratch256, (short)0,
walletPinSize);
if (!walletPin.check(scratch256, (short)0, WALLET_PIN_SIZE)) {
 if (walletPin.getTriesRemaining() == 0) {
 reset();
 }
 ISOException.throwIt(ISO7816.SW_SECURITY_STATUS_NOT_SATISFIED);
}

// Check if PIN is already validated
if (!walletPin.isValidated()) {
 ISOException.throwIt(ISO7816.SW_SECURITY_STATUS_NOT_SATISFIED);
}

49

Note that the reset() method is called when there is no more tries remaining,

effectively doing a hard reset on all the variables containing sensitive information, like

the private key, the device key and the PIN.

Another relevant aspect of PIN entering is to try to prevent it from being

captured by malware software on the user side. We've seen on the previous chapter

that a device might have buttons and a screen. If it has two buttons and a screen, the

user might use the buttons to cycle between the numbers and enter the PIN on the

device itself. It might even have buttons for each number or a touch screen, also

allowing the entering on the device itself.

In contrast, if we do not have a touch screen, we might reproduce a clever

scheme created by Trezor [73] that does not expose the PIN even if the user screen

is being captured. Each time the user must enter the PIN, the device generates a

random position for the numbers and show them on the device screen. The user

must look at the device and click on the dot positions shown on the user interface.

Figure 17 shows this mechanism.

50

Figure 17: Entering the PIN on the device without revealing it to screen recorders.

Device personalization

Imagine an Evil Maid attack where someone steals your device and replaces it

with a replica that can send data over the internet. Next time you start your device

(which will be the replica) you will be asked to enter the PIN, which you will do, as

you cannot differentiate the replica from your real device. Just after that, the replica

will send your PIN though the internet to the attacker. Now he can use your PIN on

the real device and steal your funds.

To prevent this scenario, we recommend that the hardware wallet can allow

personalization, as show on Figure 18. If the device has a screen, a user can define

a name or even an image for it, that will be show after the correct PIN is entered. If

the user enters the PIN and the device doesn't show the correct name or image, the

user can know that his original device is stolen and quickly use the recovery seed

words to restore the wallet on another device and transfer the funds.

Figure 18: Device personalized with the name Richard and a Lion image.

Another possibility is to divide the PIN in two parts. The first part (2 digits)

would be used to show two mapped words from the BIP-39 wordlist. The user enters

the first part of the PIN and check the words, if they differ from the usual words, the

device has been replaced. Note that the words are unrelated with the seed words.

51

Plausible deniability and wipe PIN

There is a famous hypothetical attack known as the 5 dollars wrench attack,

show in figure 19.

Figure 19: 5 dollars wrench attack.

To prevent against this kind of attack without using threshold cryptography, a

user could have two – or more – Bitcoin wallets. One would be used to hold most of

the user's funds and the other would have a smaller amount of coins. If someone

asks for the password with a 5 dollars wrench attack, the user could inform the

password that reveals the second account.

This password would be an additional 25th word of the seed recovery phase.

This word should be memorized by the user and would be asked every time the

device is turned on. The idea is that every word entered would load a valid wallet,

allowing the user to set up two or more accounts for his funds. This is also known as

plausible deniability, which can be useful different scenarios, like a government

seizure.

A related feature would be to allow a user to set up a wipe PIN, that when

entered would reset the device memory to random bits, making it impossible to

restore the wallet without the seed words.

52

Hardware level protection
To integrate a screen and optional buttons on the device we must include a

microcontroller into the project. This requirement brings us out of the tamper proof

world of smart cards and puts us in a condition where we must consider the hardware

security aspects of the microcontroller and its integration with other components. It is

out of the scope of this work to provide details on how to protect this additional

hardware components from attacks, nevertheless we will quickly cite some basic

possibilities (most of them will increase the cost of the project):

Disable debug interfaces: It is a good practice to disable the Joint Test

Action Group (JTAG) or similar interface of the integrated microcontroller if it is

included. This will help prevent unauthorized write access to the bootloader's

memory area.

Active and passive intrusion detection: This mechanisms are found in

some Hardware Security Modules (HSM), the idea is to continuous monitor the

voltage, temperature, light, proximity, magnetic field and other aspects and

acting on the detection of an anomaly, like clearing the memory associated

with the private keys.

Protective shield on the integrated circuit: Active and passive shield

mashes can be used to protect the probing of the microcontroller memory.

Hardware potting: An optional practice is to fill the device with a solid or

gelatinous compound, improving the resistance to shock, vibration, moisture

and corrosive agents. Usually epoxy is used.

Dust and water resistant: Although not related to protection against attacks,

it is a interesting feature to provide at least IP67 (Ingress Protection) for a 2

commercial hardware wallet, fully protecting against dust and immersion, up to

1m depth, for 30 seconds. This will increase the lifetime of the device,

protecting the internal hardware components.

2 The Ingress Protection Code (IEC standard 60529) classifies and rates the degree of protection
provided against intrusion, dust, accidental contact, and water by mechanical casings and electrical
enclosures. The standard aims to provide users more detailed information than vague marketing terms
such as waterproof.

53

Attestation of genuineness
To prevent Evil Maid and mainly Supply Chain attacks, it is an important

feature to be able to verify the authenticity of the device. One option is to generate a

attestation key pair on the secure element on the manufacture process, recording the

public key of the device on the database of the company making the device or even

on the Bitcoin blockchain (our proposition). To check for the authenticity of the secure

element, the user interface would send a challenge for the device to sign with the

private attestation key, then it would check if the signature matches with the public

key stored on the manufacturer database or the blockchain. If the device is not

genuine, the user interface would warn the user about that.

Another aspect related to genuineness, is to check the integrity of the

bootloader and the firmware of the microcontroller on devices that contains a screen

and optional buttons. This is a big challenge and there seems to be no definitive

solution. One option is to record the bootloader on a read only memory upon

manufacturing and making it responsible for providing a writable memory space for

the firmware, making the software updateable. The bootloader should communicate

with the secure element and send a SHA-256 hash of a full memory read with the

provided signature of the firmware. The secure element can then check if the

signature matches with the manufacturer public key and the provided hash, and

inform the bootloader about the result, that could be written to the device screen.

54

Prototype
As we've seen in the previous sections, a hardware wallet is a complex

project, encompassing different software and hardware components. To go beyond

the theoretical knowledge, we developed a functional prototype using a real smart

card. The prototype didn't have a dedicated screen or buttons and didn't use a secure

channel on its communication, although it checks for the attestation of the

genuineness of the smart card.

Overview of the architecture
Figure 20 shows an overview of the general architecture of the project. There

are four main pieces of software that should be written to support the full experience

of the user with the wallet. These pieces will be detailed in the next section.

Figure 20: Overview of the architecture of the project.

The user flow would be as follows:

1. Acquire a new device : The manufacturer (the author of this work, in this

case) will install the compiled Java Card Applet (.cap format) on a new smart

card and lock the device to prevent the installation of additional Applets. Then

55

the manufacturer will access the smart card and ask for the public attestation

key generated for the device upon the Applet first run (install() method). This

key will be recorded in the Bitcoin blockchain (as previously proposed).

2. Install the Connector software : The user will navigate to the wallet website

and be asked to install the Connector software.

3. Access the wallet web interface : After installing the Connector, the user will

be able to access the smart card and proceed with the wallet setup. In this

step the wallet user interface will check if the device is genuine.

4. Setup or recovery wallet's accounts : As the wallet has no account

configured, the user will be asked to setup a new account (where he will asked

to write down the new seed words) or recovery using previous generated

backup seed words. Here he will also define a PIN to access the wallet.

5. Sees the balance and history of transactions: After entering the correct

PIN, the user will be able to see all the transactions that happened in the

account and the current balance. The interface will interact with the Bitcoin

network and the smart card (asking for addresses), following the BIP-44

account discovery protocol [74].

6. Generate new receiving addresses: If the user wants to receive new funds

from someone else, he can generate a fresh address.

7. Transfer funds to other addresses: The user can also send Bitcoins to other

users, by defining the amount and destination address. The transaction will be

generated and sent to the smart card to be signed after the correct PIN

entering. The signed transaction can then be propagated to the Bitcoin

network by the web interface.

To accommodate this flow we must define the detailed requirements for each

of the four main components, which is done in the next section.

56

Main requirements

Hardware wallet

The main basic requirements of the wallet were defined in the start of this

chapter. In addition to that, we will need to generate the attestation keys upon

installation and to sign requests for attestation validation.

1. SETUP

1.1. To define the PIN to access the device;

1.2. To change the PIN; (PIN required)

1.3. To generate the initial master private key of the device using a TRNG

and the seed words for recovery (BIP-39) ; (PIN required) 3

1.4. To recover a wallet by defining the master private key using the seed

words; (PIN required)

1.5. To verify that the seed words generates the master private key stored

on the device; (PIN required)

1.6. To generate the attestation of genuineness keys using a TRNG.

2. ADDRESS GENERATION

2.1. To generate deterministic BIP-32 address (public/private keys). (PIN

required)
3. SIGN TRANSACTIONS

3.1. To sign Bitcoin transactions using the keys of a BIP-32 path; (PIN required)

4. INTERACTION

4.1. To validate the user PIN;

4.2. To take actions based on PIN policies, like to erase the device if the

PIN is wrong for 5 consecutive times;

4.3. To sign a challenge (SHA-256 hash) with the genuineness private key;

4.4. To respond with the genuineness public key of the device;

4.5. To erase the device if request by the user. (PIN required)

3 The seed words should be sent to the user only once, when the seed is generated.

57

Connector

The user interface will be served as a web site on the user's browser. We

must find a way to allow the browser to access the smart card. In order to

communicate with an USB device (in our case the smart card reader), we have three

options: use the WebUSB API [75], write an extension to Chrome or Firefox or use a

custom piece of software, which is our choice.

We will develop a middleware called Connector that will make the bridge

between the USB smart card reader and the browser, by making it run a local web

server on the client computer. This software will have to be installed, but it offers a

more generic solution that can later receive new features, like establishing a secure

channel, simulate a smart card or to serve a desktop interface.

Table 3 shows the HTTP commands that should be supported by the

Connector API. All requests uses HTTP POST and return JavaScript Object Notation

(JSON) responses.

url method parameters result type description

/ping "knox" Returns the string "PONG"

/list

 Array<{path: string,
session: string |
null}>

Lists devices. If session is null, nobody else
is using the device; if it is string, it identifies
who is using it.

/lock/PATH

PATH: path of
device

{session: string} Locks the device at PATH.

/unlock/SESSION SESSION: session
to unlock

{} Unlocks the device with the given session.

/call/SESSION

SESSION: session
to call

request body: the
command

{response: string} Sends a command to the device and returns
the answer.

Table 3: API specification of the Connector component.

Wallet User Interface

As mentioned, this will be a web interface running on any modern browser. It

will support the steps 2 to 7 from the architecture view section. It will interact with the

Bitcoin network through the Blockchain API and with the device through the

Connector API. Figure 21 shows the main actions that the interface should support in

a workflow format.

58

Figure 21: Workflow of navigation on the wallet user interface.

Figue 22 shows the workflow for setting up a new device.

59

Figure 22: Workflow to setup a new device.

Blockchain API

The wallet web interface needs a way to communicate with the Bitcoin

network. More than that, it needs a mechanism to quickly gather information about an

address, like the transactions associated with it and the current balance. Given the

actual Bitcoin's blockchain size of 173GB [76], this isn't an easy task.

The Blockchain API component should provide an Representational State

Transfer (REST) HTTP interface with different endpoints that will be used by the web

user interface. This Blockchain API should be served in fixed web domains and be

maintained by the wallet manufacturer. In a real product there should be at least 2

completely independent deployments of this service (in different world regions) to

provide additional redundancy.

We will use a widely adopted open source solution called Insight-API,

maintained by BitPay [77]. Table 4 shows some of the endpoints available and Figure

23 an API response in JSON format.

60

url method description

/insight-api/txs/?address=ADDR Returns all the transactions related to an address

/insight-api/addr/[:addr] Returns the details about an address, like the total balance.

/insight-api/tx/[:txid] Returns the details about a transaction.

/insight-api/utils/estimatefee[
?nbBlocks=2]

Returns the estimated fee required to make the transaction be included in the
next nbBlocks.

/insight-api/tx/send Broadcasts a transaction to the Bitcoin network.

Table 4: Some endpoints available on the Blockchain (Insight) API.

{
 "addrStr": "1FhNPRh1TxVidoKkWFEpdmK5RXw9vG1KUb",
 "balance": 5.0,
 "balanceSat": 5000000000,
 "totalReceived": 55.86,
 "totalReceivedSat": 5586000000,
 "totalSent": 50.86,
 "totalSentSat": 5586000000,
 "unconfirmedBalance": 0,
 "unconfirmedBalanceSat": 0,
 "unconfirmedTxApperances": 0,
 "txApperances": 4
}

Figure 23: JSON API response of an address endpoint.

Results

Hardware wallet

As the secure element we selected the NXP J3D081 EV1 smart card. It is a

contact and contactless interface Java Card 3.0.1 running on Global Platform 2.2.1

with 80K of EEPROM. Table 5 shows the full specification.

Feature Details

EEMemory 80KB

Javacard version 3.0.1

CC certification
CC EAL

6+

Gobal Platform version 2.2.1

Delegate Management Yes

61

DES/3DES (bit) 56/112/168

AES (bit) 256

RSA (bit) 2048

SHA (bit) 512

MD5 Yes

ECC Yes

SSCD Type3 CC EAL Yes

Flex with Plus (incl.Classic)
and Desfire EV1

Yes

Table 5: Full specification of the J3D081 Java Card [78].

To load the Applet into the smart card we used the GlobalPlatform Pro [79]. In

addition to that, we used a library called jCardSim [80] to simulate a smart card,

making the development phase faster, as the simulator can be integrated in the unit

tests. Our implementation was based on previous work by Ledger [58],

SatoChipApplet [81], Status Wallet [83], IsoApplet [82].

We used unit tests to guarantee that the Applet is behaving according to the

specification in the simulator and on the real card. The tests also helped us to map

the command flow between the Connector and the smart card. Figure 24 shows the

result of the tests running:

62

Figure 24: Unit tests running on the Applet.

At the manufacturer the Applet is installed and the setup method is called to

put the wallet into normal (or development, used for tests) mode. Then the wallet

goes to the final user that will plug it into the smart card reader and start to use,

defining the PIN and generating the seed , where he will receive the recovery seed

words (just once). After that the wallet is ready to be used. If it is erased or the PIN is

entered incorrectly more than 5 times, the wallet clears the memory and returns to

the setup state. Figure 25 shows this flow.

63

Figure 25: Possible states of the Applet.

APDU commands and responses

It was necessary to define and code the full list of commands and responses

that the Applet should support. We followed the ISO 7816 as much as we could. The

specification is shown in this subsection.

INSTALL

This is the first command to be called (only once). It will initialize the Applet instance

and generate and the genuineness key.

CLA INS P1 P2 Lc Data Le

80 E6 00 00 00 -- 00

SETUP

This is the second command to be called, it will setup the wallet. If the mode is

development, the BIP-39 seed and PIN must be provided (this mode is used for unit

testing and debugging).

CLA INS P1 P2 Lc Data Le

64

E0 22 00 00 var

Mode: 0x01 normal, 0x08 development
bitcoinNetworkKeyVersion: 1 byte
bitcoinNetworkKeyVersionP2SH: 1 byte
PIN length: from 0x04 up to 0x20
PIN: var
BIP-39 Seed: 64 bytes

00

Response data SW 1, 2

-
Setup already done or mode is development and seed/PIN is not provided:
SW_CONDITIONS_NOT_SATISFIED
Mode, seed or PIN invalid: SW_DATA_INVALID

CHANGE_PIN

This is called to set or change the the wallet PIN. The verify method must be called

again after change.

CLA INS P1 P2 Lc Data Le

E0 4B 00 00 var PIN length: from 0x04 up to 0x20
PIN: var 00

Response data SW 1, 2

-
Setup not done or old PIN is not entered correctly:
SW_CONDITIONS_NOT_SATISFIED
New PIN not provided: SW_DATA_INVALID

PREPARE_SEED

This is called to generate a new random BIP-39 seed recovery words, that will be

used by the client to generate the BIP-39 seed that should be set on this command. If

the client already has the backup seed words, they can be set here, skipping the first

step. It can only be called once with the final BIP-39 seed. When generating the

words, the data returned is actually a sequence of 16-bit big-endian integers with

values ranging from 0 to 2047.

CLA INS P1 P2 Lc Data Le

E0 4C 00: generate random words
80: set the wallet seed 00 var If P1 is 80:

BIP-39 seed: 64 bytes var

Response data SW 1, 2

65

The seed words indexes (If
P1 is 00): var

Seed already set or PIN not set/checked:
SW_CONDITIONS_NOT_SATISFIED
Seed invalid: SW_DATA_INVALID

VALIDATE_SEED_BACKUP

This is called to check if the user recovery seed words match the seed generated on

the device.

CLA INS P1 P2 Lc Data Le

E0 52 00 00 var BIP-39 Seed: 64 bytes var

Response data SW 1, 2

-
Seed not set or PIN not set/checked:
SW_CONDITIONS_NOT_SATISFIED
Seed does not match: SW_DATA_INVALID

VERIFY_PIN

This command is used to unlock the device using the PIN or to check the remaining

attempts. After 5 invalid PIN submitted in a row, the device data is erased.

CLA INS P1 P2 Lc Data Le

E0 22
00 : verify PIN
80 : get remaining
attempts

00 var PIN 00

Response data SW 1, 2

-
Pin incorrect or setup not done: SW_CONDITIONS_NOT_SATISFIED
Pin length invalid: SW_WRONG_LENGTH
Remaining attempts: 1 byte

GET_GENUINENESS_KEY

This is called to get the genuineness public key.

CLA INS P1 P2 Lc Data Le

E0 4D 00 00 00 - var

Response data SW 1, 2

Uncompressed genuineness public key (EC): 65 bytes -

66

PROVE_GENUINENESS

This is called to check the genuineness of the device, by asking it to sign a challenge.

CLA INS P1 P2 Lc Data Le

E0 4F 00 00 20 Challenge: 32 bytes random challenge to be signed var

Response data SW 1, 2

The signed challenge: var Challenge length invalid: SW_WRONG_LENGTH

GET_FIRMWARE_VERSION

This will return the version of the Applet running on the device.

CLA INS P1 P2 Lc Data Le

E0 C4 00 00 00 - 03

Response data SW 1, 2

Firmware major version: 1 byte
Firmware minor version: 1 byte
Firmware patch version: 1 byte

-

GET_STATE

This will return the current state of the device (reference on Figure 24).

CLA INS P1 P2 Lc Data Le

E0 56 00 00 00 - 01

Response data SW 1, 2

Device state: 1 byte
 STATE_INSTALLED = 0x00
 STATE_SETUP_DONE = 0x11
 STATE_PIN_SET = 0x22
 STATE_READY = 0x33

-

CHANGE_NETWORK

This is called to change the Bitcoin network parameters.

CLA INS P1 P2 Lc Data Le

67

E0 50 00 00 02 bitcoinNetworkKeyVersion: 1 byte
bitcoinNetworkKeyVersionP2SH: 1 byte 00

Response data SW 1, 2

- -

ERASE

This will erase the device memory.

CLA INS P1 P2 Lc Data Le

E0 58 00 00 00 - 00

Response data SW 1, 2

- PIN not set/checked: SW_CONDITIONS_NOT_SATISFIED

GET_PUBLIC_KEY

This is called to get the EC public key of a BIP-32 path.

CLA INS P1 P2 Lc Data Le

E0 40 00 00 var

Number of BIP-32 derivations (max 10): 1 byte
First derivation index (big endian): 4 bytes
...
Last derivation index (big endian): 4 bytes

var

Response data SW 1, 2

Public Key length: 1 byte
Uncompressed public key (EC): var
Base58 bitcoin address length: 1 byte
Base58 encoded bitcoin address: var
BIP-32 Chain code: 32 bytes

PIN not set/checked:
SW_CONDITIONS_NOT_SATISFIED
Path params invalid: SW_DATA_INVALID

SIGN_TRANSACTION

This is called to sign a bitcoin transaction using the public key derived from a BIP-32

path. It will actually sign the 32 bytes SHA256 double hash for the transaction, that

should be prepared outside.

CLA INS P1 P2 Lc Data Le

E0 54 00 : prepare message
80 : sign message 00 var Number of BIP-32 derivations

(max 10): 1 byte var

68

First derivation index (big
endian): 4 bytes
...
Last derivation index (big
endian): 4 bytes
Hash: 32 bytes hash to be
signed

Response data SW 1, 2

The signed hash: var Path params invalid: SW_DATA_INVALID
Hash length invalid: SW_WRONG_LENGTH

Connector

This component starts a local HTTP server on port 28281 and listens to calls

made from whitelisted domains or localhost. Java 1.8 was used for listening and

responding to HTTP requests. The interaction with the smartcard was done using

pcsc and direct access to the simulator.

The Connector is a simple proxy, it reads commands sent from the web user

interface, send to the smart card and send back the response. We designed an

abstract Transport class and an concrete implementation called TransportUsb that

actually interacts with the smart card reader. Figure 26 shows the server running and

intercepting commands on the debug mode.

Figure 26: Connector running on localhost.

A class called SecureDevice was coded to abstract the interaction with the

device, offering high level methods that can be used with different transports, like the

69

TransportUsb or the TransportHTTP (which is used by the web user interface to

communicate with the Connector). This class can be used on the Nodejs context or

on the browser. The methods supported are shown on Figure 27.

Figure 27: Methods supported by the SecureDevice class.

On a real product context, we would package the Connector into an software

installer that would install and run the program as a background task upon the

initialization of the operational system.

Wallet User Interface

The interface is a Single Page Application (SPA) developed using a modern

set of web libraries:

● React to define the components and its behaviours;

● MobX for state management of the application;

● Material-ui for the Material Design components;

● Webpack for bundling the assets;

● Yarn for dependence management;

● Jest for running the unit and integration tests.

Before implementing the components, mockups of the interface were drawn

using the workflow of the requirements section as a reference. Figures 28 to 32

shows some of the screens. Note on Figure 29 that we try to educate the user with

important information regarding the seed words. Knox is the fictional name of the

wallet.

70

Figure 28: Setup screen giving two options for the user.

71

Figure 29: Educating the user about the importance of the recovery seed words.

Figure 30: Dashboard with two Bitcoin accounts.

72

Figure 31: Send funds to an Bitcoin address.

Figure 32: Generating fresh addresses to receive funds.

73

The user interface is easily extensible to deal with more robusts wallet

versions, like the one with its own screen and buttons. It could also support more

than one cryptocurrency, specially the ones compatible with the Bitcoin protocol.

Blockchain API

As previously mentioned, we used the Insight-API [77] as the Blockchain API

component. Besides the API, we installed the Insight blockchain explorer, show on

Figure 33. On the first run of the Insight-API, it will connect to Bitcoin nodes and start

to download and sync the blockchain data, which can take a few hours to complete.

After that, the url endpoints are fully accessible. To download and start the

component, one should run the commands bellow:

npm install -g bitcore@latest
bitcore create mynode
cd mynode
bitcore install insight-api
bitcore install insight-ui
bitcore start

Figure 33: Insight blockchain explorer fully synced.

74

Source code

The source code of this project is publicly available at GitHub on the following

repository: https://github.com/ricardovf/knox-wallet. Be advised that this project is

only a prototype and isn't ready to be used in a real product.

Our Java Card Applet was based on open source code. We register our

gratitude for the authors of the following projects:

1. Ledger Java Card Applet [58]

2. Status Wallet [83]

3. SatoChipApplet [81]

4. IsoApplet [82]

75

https://github.com/ricardovf/knox-wallet

CONCLUSION

In this academic work we explored the exciting and novel world of Bitcoin,

focusing on the problem of storing the user's private keys that give access to the

funds, while providing the best balance between very high security, ease of use and

independence of third parties, fulfilling Satoshi Nakamoto's vision of a decentralized

peer-to-peer electronic cash system.

After making a review on cryptography used on Bitcoin, the Bitcoin protocol

and secure elements, we dived into the project of hardware wallets, discussing

different requirements and ways to construct a device. The device uses an anti

tamper Java Card to store the private keys. We considered variations of the device,

one with a dedicated touchscreen and another with NFC to integrate with a mobile

phone. We analyzed security aspects of the project, made recommendations and

described some challenges. Finally, we implemented our own open source prototype,

showing the architecture of the project, its components, the requirements, the APDU

communication protocol and the results.

The prototype constructed is limited in contrast to the more complete versions

discussed, with a dedicated screen and an encrypted communication channel, but it

can be further developed to accommodate the full requirements and be deployed into

the world as a complete product.

Hardware wallets projects are complex, involving integrated circuits and

software that must communicate and integrate securely, considering different attack

vectors, without letting out the importance of the final cost and usability.

Nevertheless, we must constantly encourage the enhancement of the current

solutions and develop novel approaches, making cryptocurrencies a practical

everyday solution to contrast with the traditional financial system.

Future work

As we concluded, the project of a real, secure and fully functional hardware

wallet is very complex, embracing topics in different areas of computer science. We

76

believe there is a rich set of possibilities for future work related to this project, most of

them on the practical side of extending and validating the security of the wallet:

1. Build prototype of the wallet with an integrated touchscreen;

2. Build a prototype using a contactless smart card (NFC) and a mobile phone as

the device screen;

3. Systematically attack the wallet to find vulnerabilities and propose corrections;

4. Run usability test with real users to improve the wallet friendliness;

5. Implement the support for multiple cryptocurrencies, including ones not directly

derived from Bitcoin Core;

6. Implement the support for multisignature scheme;

7. Find solutions to securely guarantee the genuineness of the integrated

microcontroller;

8. To write an updated book on Java Card development utilizing open source

libraries and tools, as the materials on the topic are very fragmented and

diffuse.

77

REFERENCES

[1] NAKAMOTO, Satoshi. Bitcoin: A peer-to-peer electronic cash system . 2008.

[2] NEURON. List of cryptocurrency exchange hacks . Available at:

<https://rados.io/list-of-documented-exchange-hacks/>. Accessed on may 29, 2018.

[3] COINMARKETCAP. Global Charts . Available at: <https://coinmarketcap.com/charts/>. Accessed

on sep 14, 2018.

[4] BARIVIERA, A.F., BASGALL, M.J., HASPERUÉ, W. & NAIOUF, M. 2017. Some stylized facts of

the Bitcoin market. Physica A: Statistical Mechanics and its Applications 484:82–90.

[5] GENTILAL, M., MARTINS, P. & SOUSA, L. 2017. TrustZone-backed bitcoin wallet. Proceedings

of the Fourth Workshop on Cryptography and Security in Computing Systems - CS2 ’17.

[6] Monopoly without a Monopolist: An Economic Analysis of the Bitcoin Payment System

[7] CONTI, M., E, S.K., LAL, C. & RUJ, S. 2018. A Survey on Security and Privacy Issues of

Bitcoin. IEEE Communications Surveys & Tutorials :1–1.

[8] ESKANDARI, S., BARRERA, D., STOBERT, E. & CLARK, J. 2015. A First Look at the Usability

of Bitcoin Key Management. Proceedings 2015 Workshop on Usable Security.

[9] BAMERT, T., DECKER, C., WATTENHOFER, R. & WELTEN, S. 2014. BlueWallet: The Secure

Bitcoin Wallet. Lecture Notes in Computer Science :65–80.

[10] VAN DER HORST, L., CHOO, K.-K.R. & LE-KHAC, N.-A. 2017. Process Memory Investigation

of the Bitcoin Clients Electrum and Bitcoin Core . IEEE Access 5:22385–22398.

[11] COURTOIS, Nicolas T.; VALSORDA, Filippo; EMIRDAG, Pinar. Private Key Recovery

Combination Attacks: On Extreme Fragility of Popular Bitcoin Key Management, Wallet and

Cold Storage Solutions in Presence of Poor RNG Events . 2014.

[12] GKANIATSOU, A., ARAPINIS, M. & KIAYIAS, A. 2017. Low-Level Attacks in Bitcoin Wallets .
Information Security :233–253.

[13] YOUNG, Joseph. Exponential Growth: Cryptocurrency Exchanges Are Adding 100,000+

Users Per Day . Available at:

<https://cointelegraph.com/news/exponential-growth-cryptocurrency-exchanges-are-adding-100000-us

ers-per-day>. Accessed on may 29, 2018.

[14] MAY, Timothy. The Crypto Anarchist Manifesto. Available at:

<https://www.activism.net/cypherpunk/crypto-anarchy.html >. Accessed on may 29, 2018.

[15] WIKIPEDIA. Crypto-anarchism . Available at: <https://en.wikipedia.org/wiki/Crypto-anarchism>.

Accessed on may 29, 2018.

[16] BITCOIN. Securing your wallet. Available at: <https://bitcoin.org/en/secure-your-wallet>.

Accessed on may 29, 2018.

[17] SEETHARAMAN, A., SARAVANAN, A.S., PATWA, N. & MEHTA, J. 2017. Impact of Bitcoin as a

World Currency . Accounting and Finance Research 6:230.

78

https://rados.io/list-of-documented-exchange-hacks/
https://coinmarketcap.com/charts/
https://cointelegraph.com/news/exponential-growth-cryptocurrency-exchanges-are-adding-100000-users-per-day
https://cointelegraph.com/news/exponential-growth-cryptocurrency-exchanges-are-adding-100000-users-per-day
https://www.activism.net/cypherpunk/crypto-anarchy.html
https://en.wikipedia.org/wiki/Crypto-anarchism
https://bitcoin.org/en/secure-your-wallet

[18] BARBU, Guillaume. On the security of Java Card platforms against hardware attacks . 2012.

Tese de Doutorado. Telecom ParisTech.

[19] HANSMANN, Uwe et al. Smart card application development using Java . Springer Science &

Business Media, 2012.

[20] ATKINS, Steve. JCF celebrates 15 year anniversary in Singapore – 10 billion Java Cards

deployed worldwide . Available at:

<https://contactlessintelligence.com/2012/09/21/jcf-celebrates-15-year-anniversary-in-singapore-10-bill

ion-java-cards-deployed-worldwide/>. Accessed on may 29, 2018.

[21] GKANIATSOU, Andriana et al. Getting to know your card: reverse-engineering the smart-card

application protocol data unit. In: Proceedings of the 31st Annual Computer Security Applications

Conference . ACM, 2015. p. 441-450.

[22] BOZZATO, Claudio et al. APDU-level attacks in PKCS# 11 devices . In: International

Symposium on Research in Attacks, Intrusions, and Defenses. Springer, Cham, 2016. p. 97-117.

[23] DE KONING GANS, Gerhard; DE RUITER, Joeri. The smartlogic tool: Analysing and testing

smart card protocols . In: Software Testing, Verification and Validation (ICST), 2012 IEEE Fifth

International Conference on. IEEE, 2012. p. 864-871.

[24] HOGENBOOM, Jip; MOSTOWSKI, Wojtek. Full memory attack on a Java Card. 2009.

[25] GOLDFEDER, Steven et al. Securing Bitcoin wallets via a new DSA/ECDSA threshold

signature scheme . 2015.

[26] KÖMMERLING, Oliver; KUHN, Markus G. Design Principles for Tamper-Resistant Smartcard

Processors . Smartcard, v. 99, p. 9-20, 1999.

[27] HÖLZL, Michael et al. A password-authenticated secure channel for App to Java Card applet

communication. International Journal of Pervasive Computing and Communications , v. 11, n. 4,

p. 374-397, 2015.

[28] GITHUB. Bitcoin Improvement Proposals . Available at: <https://github.com/bitcoin/bips> Bitcoin

Improvement Proposals. Accessed on oct 10, 2018.

[29] WIKIPEDIA. SHA-2 . Available at: <https://en.wikipedia.org/wiki/SHA-2 >. Accessed on jun 5, 2018.

[30] WILLIAM, Stallings. Cryptography and network security: principles and practice .
Prentice-Hall, Inc, p. 23-50, 1999.

[31] PAAR, Christof; PELZL, Jan. Understanding cryptography: a textbook for students and

practitioners . Springer Science & Business Media, 2009.

[32] STACKEXCHANGE. Why does Bitcoin use two hash functions (SHA-256 and RIPEMD-160)

to create an address?. Available at:

<https://bitcoin.stackexchange.com/questions/9202/why-does-bitcoin-use-two-hash-functions-sha-256-

and-ripemd-160-to-create-an-ad >. Accessed on jun 5, 2018.

[33] WIKIPEDIA. Hash function security summary . Available at:

<https://en.wikipedia.org/wiki/Hash_function_security_summary>. Accessed on jun 6, 2018

79

https://contactlessintelligence.com/2012/09/21/jcf-celebrates-15-year-anniversary-in-singapore-10-billion-java-cards-deployed-worldwide/
https://contactlessintelligence.com/2012/09/21/jcf-celebrates-15-year-anniversary-in-singapore-10-billion-java-cards-deployed-worldwide/
https://github.com/bitcoin/bips
https://en.wikipedia.org/wiki/SHA-2
https://bitcoin.stackexchange.com/questions/9202/why-does-bitcoin-use-two-hash-functions-sha-256-and-ripemd-160-to-create-an-ad
https://bitcoin.stackexchange.com/questions/9202/why-does-bitcoin-use-two-hash-functions-sha-256-and-ripemd-160-to-create-an-ad
https://en.wikipedia.org/wiki/Hash_function_security_summary

[34] GITHUB. BIP32 . Available at: <https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki >.

Accessed on jun 6, 2018

[35] GITHUB. BIP39 . Available at: <https://github.com/bitcoin/bips/blob/master/bip-0039.mediawiki >.

Accessed on jun 6, 2018

[36] KALISKI, Burt. PKCS# 5: Password-based cryptography specification version 2.0 . 2000.

[37] CERTICOM, Standards for Efficient Cryptography. SEC 2: Recommended Elliptic Curve

Domain Parameters . Version 2.0. 2010.

[38] BITCOIN. Secp256k1 . Available at: <https://en.bitcoin.it/wiki/Secp256k1 >. Accessed on jun 11,

2018.

[39] MISTRY, M.. An Introduction to Bitcoin, Elliptic Curves and the Mathematics of ECDSA .
2015

[40] WIKIPEDIA. Elliptic Curve Digital Signature Algorithm . Available at:

<https://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_Algorithm>. Accessed on jun 11, 2018.

[41] ANTONOPOULOS, Andreas M. Mastering Bitcoin: unlocking digital cryptocurrencies .
O'Reilly Media, Inc.. 2014.

[42] WANG, Di. Secure Implementation of ECDSA Signature in Bitcoin. Information Security at

University College of London. 2014.

[43] ANTONOPOULOS, Andreas M. Mastering Bitcoin: Programming the open blockchain.
O'Reilly Media, Inc. 2017.

[44] BITCOIN. Transaction. Available at: <https://en.bitcoin.it/wiki/Transaction >

[45] BITCOIN. Script. Available at: <https://en.bitcoin.it/wiki/Script>

[46] BLOCKCYPHER. Bitcoin Address. Available at:

<https://live.blockcypher.com/btc/address/112EGg2MRchxD1E2ELoMGUgFzpycxM2gSU/>. Accessed

on oct 10, 2018.

[47] SHIRRIFF, Ken. Bitcoins the hard way: Using the raw Bitcoin protocol. Available at:

<http://www.righto.com/2014/02/bitcoins-hard-way-using-raw-bitcoin.html >. Accessed on oct 10, 2018.

[48] BITCOIN. Address . Available at: <https://en.bitcoin.it/wiki/Address>. Accessed on oct 10, 2018.

[49] BITCOIN. Technical background of version 1 Bitcoin addresses . Available at:

<https://en.bitcoin.it/wiki/Technical_background_of_version_1_Bitcoin_addresses>. Accessed on oct

10, 2018.

[50] GITHUB. BIP173 . Available at: <https://github.com/bitcoin/bips/blob/master/bip-0173.mediawiki >.

Accessed on oct 10, 2018.

[51] BITCOIN. Address reuse . Available at: <https://en.bitcoin.it/wiki/Address_reuse >. Accessed on

oct 10, 2018.

[52] BITCOIN. Seed phrase . Available at: <https://en.bitcoin.it/wiki/Seed_phrase >. Accessed on oct

10, 2018.

[53] BITCOIN. Cold storage . Available at: <https://en.bitcoin.it/wiki/Cold_storage >. Accessed on oct

10, 2018.

80

https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0039.mediawiki
https://en.bitcoin.it/wiki/Secp256k1
https://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_Algorithm
https://en.bitcoin.it/wiki/Transaction
https://en.bitcoin.it/wiki/Script
https://live.blockcypher.com/btc/address/112EGg2MRchxD1E2ELoMGUgFzpycxM2gSU/
http://www.righto.com/2014/02/bitcoins-hard-way-using-raw-bitcoin.html
https://en.bitcoin.it/wiki/Address
https://en.bitcoin.it/wiki/Technical_background_of_version_1_Bitcoin_addresses
https://github.com/bitcoin/bips/blob/master/bip-0173.mediawiki
https://en.bitcoin.it/wiki/Address_reuse
https://en.bitcoin.it/wiki/Seed_phrase
https://en.bitcoin.it/wiki/Cold_storage

[54] BITCOIN. Hardware wallet. Available at: <https://en.bitcoin.it/wiki/Hardware_wallet>. Accessed

on oct 10, 2018.

[55] BITFI. Bitfi cryptocurrency wallet. Available at: <https://bitfi.com>. Accessed on oct 10, 2018.

[56] WIKIPEDIA. Diceware . Available at: <https://en.wikipedia.org/wiki/Diceware >. Accessed on oct

10, 2018.

[57] BITCOIN. Brainwallet. Available at: <https://en.bitcoin.it/wiki/Brainwallet>. Accessed on oct 10,

2018.

[58] LEDGER. Ledger Nano S. Available at: <https://www.ledger.com/products/ledger-nano-s>.

Accessed on oct 10, 2018.

[59] HAO, Feng; RYAN, Peter. J-PAKE: authenticated key exchange without PKI. In: Transactions

on computational science XI. Springer, Berlin, Heidelberg, 2010. p. 192-206.

[60] WIKIPEDIA. Secure Remote Password_protocol. Available at:

<https://en.wikipedia.org/wiki/Secure_Remote_Password_protocol >

[61] GLOBALPLATFORM. Introduction to Secure Elements . Available at:

<https://globalplatform.org/wp-content/uploads/2018/05/Introduction-to-Secure-Element-15May2018.p

df>. Accessed on oct 10, 2018.

[62] WIKIPEDIA. Tamper resistance . Available at: <https://en.wikipedia.org/wiki/Tamper_resistance >.

Accessed on oct 10, 2018.

[63] WIKIPEDIA. Common Criteria . Available at: <https://en.wikipedia.org/wiki/Common_Criteria >.

Accessed on oct 10, 2018.

[64] WIKIPEDIA. FIPS 140-2 . Available at: <https://en.wikipedia.org/wiki/FIPS_140-2 >. Accessed on

oct 10, 2018.

[65] PALMA, Lucas, HENRIQUE, Luiz. Adição de funções de criptografia simétrica em um applet

de código aberto com suporte via middleware OpenSC . 2017.

[66] ORACLE. An Introduction to Java Card Technology - Part 1 . Available at:

<https://www.oracle.com/technetwork/java/javacard/javacard1-139251.html >. Accessed on oct 10,

2018.

[67] GLOBALPLATFORM. Welcome to GlobalPlatform . Available at: <http://globalplatform.org/>.

Accessed on oct 10, 2018.

[68] COLDCARD. Coldcard wallet. Available at: <https://coldcardwallet.com/>. Accessed on oct 10,

2018.

[69] MICROPYTHON. MicroPython. Available at: <https://micropython.org/>. Accessed on oct 10,

2018.

[70] DYKE, Rob. The Benefits of Trusted User Interface . Available at:

<https://www.trustonic.com/news/blog/benefits-trusted-user-interface/>. Accessed on oct 10, 2018.

[71] RASHID, Saleem. Breaking the Ledger Security Model. Available at:

<https://saleemrashid.com/2018/03/20/breaking-ledger-security-model/>. Accessed on oct 10, 2018.

[72] STATUS. Status hardwallet. Available at: <https://hardwallet.status.im/>. Accessed on oct 10,

81

https://en.bitcoin.it/wiki/Hardware_wallet
https://bitfi.com/
https://en.wikipedia.org/wiki/Diceware
https://en.bitcoin.it/wiki/Brainwallet
https://www.ledger.com/products/ledger-nano-s
https://en.wikipedia.org/wiki/Secure_Remote_Password_protocol
https://globalplatform.org/wp-content/uploads/2018/05/Introduction-to-Secure-Element-15May2018.pdf
https://globalplatform.org/wp-content/uploads/2018/05/Introduction-to-Secure-Element-15May2018.pdf
https://en.wikipedia.org/wiki/Tamper_resistance
https://en.wikipedia.org/wiki/Common_Criteria
https://en.wikipedia.org/wiki/FIPS_140-2
https://www.oracle.com/technetwork/java/javacard/javacard1-139251.html
http://globalplatform.org/
https://coldcardwallet.com/
https://micropython.org/
https://www.trustonic.com/news/blog/benefits-trusted-user-interface/
https://saleemrashid.com/2018/03/20/breaking-ledger-security-model/
https://hardwallet.status.im/

2018.

[73] TREZOR. Entering your PIN . Available at:

<https://doc.satoshilabs.com/trezor-user/enteringyourpin.html >. Accessed on oct 10, 2018.

[74] GITHUB. BIP44: Account discovery . Available at:

<https://github.com/bitcoin/bips/blob/master/bip-0044.mediawiki#Account_discovery>. Accessed on

oct 10, 2018.

[75] GITHUB. WebUSB API. Available at: <https://wicg.github.io/webusb/>. Accessed on oct 10, 2018.

[76] STATISTA. Size of the Bitcoin blockchain from 2010 to 2018, by quarter (in megabytes).
Available at: <https://www.statista.com/statistics/647523/worldwide-bitcoin-blockchain-size/>.

Accessed on oct 10, 2018.

[77] GITHUB. The bitcoin blockchain API powering Insight. Available at:

<https://github.com/bitpay/insight-api >. Accessed on oct 10, 2018.

[78] CARDLOGIX. NXP JCOP J2A080 v2.4.1 Rel 3 Java Card 80K . Available at:

<https://www.cardlogix.com/product/nxp-j2a080-java-card-80k-2-4-1-rel-3-jcop/>. Accessed on oct 10,

2018.

[79] GITHUB. GlobalPlatformPro. Available at: <https://github.com/martinpaljak/GlobalPlatformPro >.

Accessed on oct 10, 2018.

[80] GITHUB. jCardSim . Available at: <https://github.com/licel/jcardsim>. Accessed on oct 10, 2018.

[81] GITHUB. SatoChipApplet. Available at: <https://github.com/Toporin/SatoChipApplet>. Accessed

on oct 10, 2018.

[82] GITHUB. IsoApplet. Available at: <https://github.com/philipWendland/IsoApplet>. Accessed on

oct 10, 2018.

[83] GITHUB. Status hardware wallet source code . Available at:

<https://github.com/status-im/hardware-wallet/>. Accessed on oct 10, 2018.

[84] AMAZON. Ledger HW1 . Available at:

<https://www.amazon.com/Ledger-HW-1-HW-1/dp/B015N9Z4DU >. Accessed on oct 10, 2018.

[85] TREZOR. Trezor Hardware Wallet. Available at: <https://trezor.io >. Accessed on oct 10, 2018.

[86] LEDGER. Ledger Blue . Available at: <https://www.ledger.com/products/ledger-blue >. Accessed

on oct 10, 2018.

82

https://doc.satoshilabs.com/trezor-user/enteringyourpin.html
https://github.com/bitcoin/bips/blob/master/bip-0044.mediawiki#Account_discovery
https://wicg.github.io/webusb/
https://www.statista.com/statistics/647523/worldwide-bitcoin-blockchain-size/
https://github.com/bitpay/insight-api
https://www.cardlogix.com/product/nxp-j2a080-java-card-80k-2-4-1-rel-3-jcop/
https://github.com/martinpaljak/GlobalPlatformPro
https://github.com/licel/jcardsim
https://github.com/Toporin/SatoChipApplet
https://github.com/philipWendland/IsoApplet
https://github.com/status-im/hardware-wallet/
https://www.amazon.com/Ledger-HW-1-HW-1/dp/B015N9Z4DU
https://trezor.io/
https://www.ledger.com/products/ledger-blue

APPENDIX I - PAPER

83

Recommendations for implementing a Bitcoin wallet using

smart card

Ricardo V. Fritsche, Lucas M. Palma, Jean E. Martina

Departamento de Informática e Estatística – Universidade Federal de Santa Catarina
(UFSC)

Campus Universitário Trindade Cx.P. 476 / CEP 88040 – Florianópolis – SC – Brazil

ricardo@grad.ufsc.br, lucas.palma@posgrad.ufsc.br, jean.martina@.ufsc.br

Abstract. On the Bitcoin peer-to-peer electronic cash system the user's funds

are protected by private keys that must be kept safe. In this work we made a

review on cryptography, the Bitcoin protocol and secure elements, then we

dived into the project of hardware wallets, discussing different requirements

and ways to construct one. Our proposed device uses an anti-tamper Java

Card to store the private keys. We considered variations of the device, one

with a dedicated touchscreen and another with NFC to integrate with a mobile

phone. We analyzed security aspects of the project, made recommendations

and described some challenges. Finally, we implemented our own open source

prototype, showing the architecture of the project, its components, the

requirements, the APDU communication protocol and the results.

1. Introduction

Bitcoin is a peer-to-peer electronic cash system that allows any two willing parties to
transact directly with each other without the need for a trusted third party [1]. Bitcoin
has grown rapidly, giving birth to a novel industry, involving other cryptocurrencies,
blockchain technology and new economic dynamics [2]. Many users might prefer to
leave their coins on an exchange as it seems to be easier and works almost like the
current online banking solution [3]. The problem is that if the users are not the real
owners of their funds, the whole idea of decentralization is lost, giving space to
government censorship, retention of user's funds and other threats [7].

The viable alternative for the users is to use hardware wallets, devices that offers
the best balance between very high security and ease of use [23]. The main wallets on
the market have limitations on the number of cryptocurrencies supported and a high
price, but the main concern is that they still present some security flaws, like the
exposure of the communication channel [6] and the openness to a Supply Chain and
Evil Maid attacks [21].

In this academic work we did a thorough description of some important security
aspects of managing keys and Bitcoin addresses. Not only that, we developed an open
source prototype that might be a starting point for more robust wallets that are low cost,
secure and can be adapted for different coins. We analyzed different hardware wallet
projects possibilities, with and without a dedicated screen. We explore the solutions to
encrypt the communication channel, preventing Man-in-the-Middle (MitM) attacks [6]

by using password-authenticated secure channel protocol (SRP) [12] and public key
cryptography.

2. Fundamentals

In this chapter we make a brief explanation of the main cryptography concepts used by
the Bitcoin protocol. We also detail the protocol itself, explore Java Cards and related
works.

2.1. Cryptography

Cryptographic hash function takes a variable-length block of data as input and
returns a fixed-size value called hash [13]. Any change in the message will have a very
high probability to produce a distinct hash, allowing to check for data integrity and
various others applications, notably digital signatures [14]. They present different
properties: deterministic, fast to compute, preimage resistant, second preimage resistant
and strong collision resistant [13]. The Secure Hash Algorithm (SHA) is a family of
widely used hash functions that is present in the Bitcoin protocol.

Message Authentication Code (MAC) algorithm has two purposes: to verify
the integrity and the authenticity of a message [13]. To form a MAC one can use a
cryptographic hash function, such as SHA-256, combined with a secret key, this is
known as Hash-based Message Authentication Code (HMAC) [13]. They also can be
used to generate pseudorandom numbers of fixed length, which is explored by the
Bitcoin protocol to generate wallets.

Key Derivation Function (KDF) takes an input (usually a password or
passphrase) and produces a secret key that can fulfil some required format, for example,
a certain length and higher entropy. More than that, it is used to prevent brute force
attacks, as two elements are present in the function: the use of a salt, avoiding the
pre-computation of keys and the usage of iteration, requiring more computational power
to execute the function [16].

Digital Signatures are one of most important instances of public-key
cryptography [14], with applications on a wide range of areas, including secure
e-commerce, legal signing of contracts, secure software updates, online banking and
Bitcoin, where a transaction is securely signed, allowing only the owner of the signing
private key to spend funds associated with a referenced public key [5]. They present
three important aspects: authentication, integrity and non-repudiation. It should be
computationally infeasible to generate a valid signature for any given message without
knowing the private key, while verifying the signature using the public key should be
trivial.

Elliptic Curve Digital Signature Algorithm (ECDSA) is used as an alternative
to RSA/DSA and other schemes for digitally signing messages, with the advantage that
the same level of security can be achieved using a much smaller key size [13]. Bitcoin
protocol has chosen the secp256k1 curve parameters defined in the Standards for
Efficient Cryptography (SEC) to make all the ECDSA operations [17].

2.2. Bitcoin

Bitcoin is a Peer-to-Peer Electronic Cash System initially developed by Satoshi
Nakamoto in late 2008 to allow any two willing parties to transact directly with each
other without the need for a trusted third party [1]. All Bitcoin transactions are
transmitted to the network to be propagated to all participating nodes forming a
distributed database called blockchain. To prevent double spending of coins and reach
global decentralized consensus, the nodes on the network execute a proof-of-work
algorithm based on cryptography hashing. To transfer bitcoins to a recipient, one must
own the ECDSA's private key that will sign the transaction and release the funds. The
transactions are designed to be cheap and fast (disregarding the whole energetic cost to
mine coins). Bitcoin uses addresses as pseudonyms, where the addresses are not tied to
a person or company, but to a cryptography public key. When miners execute the
proof-of-work algorithm before all others nodes, they are rewarded with freshly created
bitcoins and the fees from the transactions. There is a limitation of total number of coins
on the specification of the protocol, only 21 million bitcoins can be created, making
Bitcoin deflationary [18].

2.3. Bitcoin wallets

Bitcoin wallets generally refers to the client software used to manage bitcoin private
keys, generate addresses, forge transactions and aggregate balance information from the
Bitcoin network. Wallets comes in different formats, ranging from simple local storage
of keys on a desktop computer, to mobile applications, dedicated hardware devices,
paper wallets or even brain wallets [4].

The first generation of Bitcoin wallets, like the Bitcoin Core Wallet, generates
random keys and store them on the local filesystem, encrypted by a password or not [4,
18]. This approach presents headaches and security exposure. The user has to constantly
backup the keys to other devices and trust that the computer is not infected by any kind
of malware and that no unauthorized person has access to it. Hierarchical Deterministic
Wallets (HD wallets) [15], on the other hand, represent a better solution. In this kind of
wallet, any number of keys can be derived from a single master key, called seed,
forming a hierarchic tree of accounts, each with its public and private keys. To be able
to backup the wallet, the seed phrase is generated from a random number that is
converted to a phrase with 12, 15, 18, 21 or 24 words from a standard wordlist, allowing
different wallet software to generate compatible seed phrases. With 12 words the
generated entropy is 128 bits and with 24 words the entropy is 256 bits. The order of the
words matter and the phrase contain a checksum [24]. To make a HD wallet from a seed
phrase, the words are used to derive a longer seed through the use of the key-stretching
function PBKDF2 with HMAC-SHA512 [18].

2.4. Java Card

Secure elements (SE) are hardware parts designed to be tamper resistant, not allowing
an attacker to retrieve or modify information in the its secure memory [20]. They are
resilient to microprobing, software attacks, eavesdropping and fault generation [11].

Java Card is a SE platform released in 1996 to simplify the development of
software for smart cards by offering portability and security [8, 9]. Java Card products
are based on the Java Card Platform specifications, which allows a Java Card applet to
be written once and run on different smart cards running a virtual machine on top of its
operational system.

2.5. Related work

Gkaniatsou A., Arapinis M. and Kiayias A. released a paper in 2017 [6] where they
reverse-engineer the APDU communication protocol of the Ledger Nano S hardware
wallet [19], mounting a series of attacks to demonstrate the vulnerabilities. The attacks
are really serious and serve as a reminder of the risks of sending clear text data through
an insecure channel.

With that in mind we investigated different possibilities to deploy a secure
channel on a Java Card and found the work of Hölzl, M., et al. (2015) [12]. The authors
design, implement and evaluate the use of the password-authenticated secure channel
protocol (SRP).

Beyond our informal research on current wallets products, we selected an
academic paper by Eskandari S., et al. [4] where the main wallets solutions until the
year of 2015 are mapped, studied and compared, mainly in the point of view of usability
and user experience. Table 1 show our proposal as an additional last line to allow
comparison with the others categories. As the keys are stored on a secure element,
which cannot be tampered, we gave Malware Resistant a full point (●). On the Resistant
to Physical Theft aspect, we gave our solution the half point (○) as the device can be
stolen but no keys can be extracted. Finally, on the No New User Software we also gave
our solution the half point (○), considering that the user will access the wallet through a
web interface, but it is necessary to install the Connector (described in the Development
chapter) software or at least an extension to the web browser.

Table 1: A comparison of key management techniques for Bitcoin. Modified from Eskandari S., et

al. [4]

3. Development

In this chapter we explore different possibilities to build a hardware wallet, discuss
relevant aspects considerations and present our open source prototype.

3.1. Different possibilities for the hardware wallet

A hardware wallet can be constructed in many different ways, bringing unique security
advantages, implementation challenges and costs of production for each version. As we
have seen in the first chapter, it is really important that the private keys are kept on a
secure element, making the smart card (Java Card) the basic requirement in our
analysis. Another general precondition is the communication with an external computer
(desktop, notebook or even a mobile phone), so the wallet can interact with the Bitcoin
network and the user.

The most basic version does not include a screen, although it has the lowest cost.
To make it more secure, we must include a screen. For this we need a microcontroller
that will be able to make the interconnection between the smart card, the screen, the
optional buttons and the communication channels (like USB, Bluetooth, etc.). This will
increase the cost of the device and make the development more complex, but it is an
unavoidable requirement, as we cannot trust a third-party device.

3.2. Security considerations

Independent of the different constructed wallet, there are common security
considerations that must be taken care of:

1. Protect the communication channel using SRP or other method;
2. Protect the device with a PIN using the Java Card PIN SDK;

3. Allow to enter the PIN on an untrusted device without revealing it by showing
the keyboard numbers in a random fashion on the device;

4. Allow the personalization of the device to prevent Evil Maid attacks;

5. Make it possible to use plausible deniability by allowing any PIN to generate a
valid wallet;

6. Protect the hardware against attacks by disabling debug ports, monitoring the
components actively and passively and potting of device;

7. Be able to verify the genuineness of the SE by recording its unique public key
on the Bitcoin blockchain.

3.3. Prototype

To go beyond the theoretical knowledge, we developed a functional prototype using a
real smart card (Java Card). The prototype did not have a dedicated screen or buttons
and did not use a secure channel on its communication, although it checks for the
attestation of the genuineness of the smart card. Figure 1 shows an overview of the
general architecture of the project.

Figure 1: Overview of the architecture of the project.

The secure element selected was the NXP J3D081 EV1 smart card. It is a
contact and contactless interface Java Card 3.0.1 running on Global Platform 2.2.1 with
80K of EEPROM. All the requirements (Figure 2) were implemented and tested with
unit and integration tests. All the APDU commands and responses were documented.

Figure 2: Requirements of the hardware device.

Figure 3: Possible states of the Applet.

We developed a middleware called Connector that makes the bridge between the
USB smart card reader and the browser, by making it run a local web server on the
client computer. This component starts a local HTTP server on port 28281 and listens to
calls made from whitelisted domains or localhost. Java 1.8 was used for listening and
responding to HTTP requests.

Figure 4 shows the main actions that the interface should support in a workflow
format. These actions were used to draw and then implement the web interface (see
Figure 5) as a Single Page Application (SPA). To communicate with the Bitcoin
blockchain we used a widely adopted open source solution called Insight-API ,
maintained by BitPay [22].

The source code of this project is publicly available at GitHub on the following
repository: https://github.com/ricardovf/knox-wallet . Be advised that this project is only
a prototype and isn't ready to be used in a real product.

Figure 4: Workflow of navigation and setup on the wallet user interface.

Figure 5: Setup, send funds, dashboard and receive funds screens.

4. Conclusion

We dived into the project of hardware wallets, discussing different requirements and
ways to construct a device that uses an anti-tamper Java Card to store the private keys.
We considered variations of the device and analyzed the security aspects of the project,
making recommendations and describing some challenges. Finally, we implemented our
own open source prototype, showing the architecture of the project, its components, the
requirements, the APDU communication protocol and the results. The prototype
constructed is limited in contrast to the more complete versions discussed, with a
dedicated screen and an encrypted communication channel, but it can be further

developed to accommodate the full requirements and be deployed into the world as a
complete product.

Hardware wallets projects are complex, involving integrated circuits and
software that must communicate and integrate securely, considering different attack
vectors, without letting out the importance of the final cost and usability. Nevertheless,
we must constantly encourage the enhancement of the current solutions and develop
novel approaches, making cryptocurrencies a practical everyday solution to contrast
with the traditional financial system.

We believe there is a rich set of possibilities for future work related to this
project, most of them on the practical side of extending and validating the security of
the wallet:

1. Build prototype of the wallet with an integrated touchscreen;

2. Build a prototype using a contactless smart card (NFC) and a mobile phone as
the device screen;

3. Systematically attack the wallet to find vulnerabilities and propose corrections;

4. Run usability test with real users to improve the wallet friendliness;

5. Implement the support for multiple cryptocurrencies, including ones not directly
derived from Bitcoin Core;

6. Implement the support for multisignature scheme;

7. Find solutions to securely guarantee the genuineness of the integrated
microcontroller;

8. To write an updated book on Java Card development utilizing open source
libraries and tools, as the materials on the topic are very fragmented and diffuse.

References

[1] NAKAMOTO, Satoshi. Bitcoin: A peer-to-peer electronic cash system . 2008.
[2] Monopoly without a Monopolist: An Economic Analysis of the Bitcoin Payment System
[3] CONTI, M., E, S.K., LAL, C. & RUJ, S. 2018. A Survey on Security and Privacy Issues of

Bitcoin. IEEE Communications Surveys & Tutorials :1–1.
[4] ESKANDARI, S., BARRERA, D., STOBERT, E. & CLARK, J. 2015. A First Look at the

Usability of Bitcoin Key Management. Proceedings 2015 Workshop on Usable Security.
[5] COURTOIS, Nicolas T.; VALSORDA, Filippo; EMIRDAG, Pinar. Private Key Recovery

Combination Attacks: On Extreme Fragility of Popular Bitcoin Key Management, Wallet

and Cold Storage Solutions in Presence of Poor RNG Events . 2014.
[6] GKANIATSOU, A., ARAPINIS, M. & KIAYIAS, A. 2017. Low-Level Attacks in Bitcoin

Wallets . Information Security :233–253.
[7] MAY, Timothy. The Crypto Anarchist Manifesto. Available at:
<https://www.activism.net/cypherpunk/crypto-anarchy.html >. Accessed on may 29, 2018.
[8] BARBU, Guillaume. On the security of Java Card platforms against hardware attacks .
2012. Tese de Doutorado. Telecom ParisTech.
[9] HANSMANN, Uwe et al. Smart card application development using Java . Springer
Science & Business Media, 2012.
[10] ATKINS, Steve. JCF celebrates 15 year anniversary in Singapore – 10 billion Java

Cards deployed worldwide . Available at:

https://www.activism.net/cypherpunk/crypto-anarchy.html

<https://contactlessintelligence.com/2012/09/21/jcf-celebrates-15-year-anniversary-in-singapore
-10-billion-java-cards-deployed-worldwide/>. Accessed on may 29, 2018.
[11] KÖMMERLING, Oliver; KUHN, Markus G. Design Principles for Tamper-Resistant

Smartcard Processors . Smartcard, v. 99, p. 9-20, 1999.
[12] HÖLZL, Michael et al. A password-authenticated secure channel for App to Java Card
applet communication. International Journal of Pervasive Computing and

Communications , v. 11, n. 4, p. 374-397, 2015.
[13] WILLIAM, Stallings. Cryptography and network security: principles and practice .
Prentice-Hall, Inc, p. 23-50, 1999.
[14] PAAR, Christof; PELZL, Jan. Understanding cryptography: a textbook for students and

practitioners . Springer Science & Business Media, 2009.
[15] GITHUB. BIP32 . Available at:
<https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki>. Accessed on jun 6, 2018
[16] KALISKI, Burt. PKCS# 5: Password-based cryptography specification version 2.0 .
2000.
[17] CERTICOM, Standards for Efficient Cryptography. SEC 2: Recommended Elliptic Curve

Domain Parameters . Version 2.0. 2010.
[18] ANTONOPOULOS, Andreas M. Mastering Bitcoin: Programming the open blockchain.
 O'Reilly Media, Inc. 2017.
[19] LEDGER. Ledger Nano S. Available at: <https://www.ledger.com/products/ledger-nano-s>.
Accessed on oct 10, 2018.
[20] WIKIPEDIA. Tamper resistance . Available at:
<https://en.wikipedia.org/wiki/Tamper_resistance>. Accessed on oct 10, 2018.
[21] RASHID, Saleem. Breaking the Ledger Security Model. Available at:
<https://saleemrashid.com/2018/03/20/breaking-ledger-security-model/>. Accessed on oct 10,
2018.
[22] GITHUB. The bitcoin blockchain API powering Insight. Available at:
<https://github.com/bitpay/insight-api>. Accessed on oct 10, 2018.
[23] BITCOIN. Securing your wallet. Available at: <https://bitcoin.org/en/secure-your-wallet>.
Accessed on may 29, 2018.
[24] GITHUB. BIP39 . Available at:
<https://github.com/bitcoin/bips/blob/master/bip-0039.mediawiki>. Accessed on jun 6, 2018

