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Abstract

& A common notion is that object perception is a necessary
precursor to scene perception. Behavioral evidence suggests,
however, that scene perception can operate independently
of object perception. Further, neuroimaging has revealed a
specialized human cortical area for viewing scenes that is
anatomically distinct from areas activated by viewing objects.
Here we show that an individual with visual form agnosia, D.F.,
who has a profound deficit in object recognition but spared
color and visual texture perception, could still classify scenes
and that she was fastest when the scenes were presented in
the appropriate color. When scenes were presented as black-

and-white images, she made a large number of errors in clas-
sification. Functional magnetic resonance imaging revealed
selective activation in the parahippocampal place area (PPA)
when D.F. viewed scenes. Unlike control observers, D.F.
demonstrated higher activation in the PPA for scenes
presented in the appropriate color than for black-and-white
versions. The results demonstrate that an individual with
profound form vision deficits can still use visual texture and
color to classify scenes—and that this intact ability is reflected
in differential activation of the PPA with colored versions
of scenes. &

INTRODUCTION

Research on high-level visual perception has focused
largely on object recognition. Yet the visual system must
be able to recognize entire scenes, not only individual
objects. The boundary, however, between what is a
scene and what is an object can sometimes depend
more on context than on content. For example, a desk
may be pictured as one of several objects within an
office scene, while at the same time the surface of that
desk might be viewed as a scene in itself, one composed
of various items on its surface—pencils, coffee cups,
paper, books, keyboard, mouse, and monitor (Hender-
son & Hollingworth, 1999). For this reason, defining a
‘‘scene’’ can be a difficult task. Typically, a scene is
defined as visual information about the immediate envi-
ronment, often including a combination of both back-
ground elements and one or more discrete objects
(Henderson & Hollingworth, 1999).

Biederman (1972) was one of the first to ask whether
scene perception depends on the processing of individ-
ual objects or whether more global units or schemata
are used. It certainly used to be commonly believed that
scene perception is simply an extension of object pro-

cessing. According to this bottom-up account, scene
perception unfolds in the following manner: Basic fea-
tures are extracted from the retinal array, individual
objects are constructed from those features, and finally
the objects are combined to deliver our perception of
the overall scene. In other words, scene perception
makes use of the same basic mechanisms used in object
perception.

In contrast to this bottom-up view, other accounts of
scene processing have argued that more global aspects
of a scene are processed prior to or simultaneously with
the identification of the individual objects composing
that scene. Increasingly, evidence seems to support this
view, namely, that scene perception is an independent
process rather than an extension of object recognition.
For instance, if scene perception depended on combin-
ing information from each of the individual objects
within the array, then one might expect reaction times
(RTs) for scene identification to be substantially slower
than RTs for the identification of individual objects.
(This does not exclude the possibility that visual infor-
mation from several nonidentified objects in a scene
might summate in some fashion and give rise to scene
identification in the absence of object identification.)
Moreover, one might also expect scene processing to
occur in the direction of fine-to-coarse spatial scales,
where fine details would be initially extracted to identify
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objects before the coarse scene information could be
used to provide a global impression of the scene. But
neither of these appears to be the case. As it turns out,
scenes can be identified quite rapidly—as rapidly as the
individual objects constituting the scene (Gegenfurtner
& Rieger, 2000). Even more compelling is the fact that
scene perception occurs quite effectively, and some-
times even preferentially, in the coarse-to-fine direction
of processing (Oliva & Schyns, 1997; Schyns & Oliva,
1994, 1997). Indeed, scenes can be identified solely on
the basis of coarse (low spatial frequency) information
from extremely brief (50 msec) presentations, in which
individual objects cannot be differentiated (Schyns &
Oliva, 1994).

The idea that scenes can be identified on the basis of
global properties alone has also received support from
computational models that permit accurate scene clas-
sification without the prior identification of individual
objects (Oliva & Torralba, 2001; Vailaya, Jain, & Jiang
Zhang, 1998). Models that allow fast recognition of
scene gist, without the identification of component
objects, make use of properties such as the spatial
complexity of the scene, visual texture, and color (Oliva
& Schyns, 2000; Oliva & Torralba, 2001). Natural land-
scapes, for example, tend to have zones with undulating
contours and characteristic textures and/or colors,
whereas manmade scenes tend to have straight horizon-
tal and vertical lines without such zones.

Behavioral studies have shown that color can be a
particularly useful cue in the identification of natural
landscapes. For example, Oliva and Schyns (2000)
showed that color facilitates naming latency when
scenes such as forests, deserts, and oceans are pre-
sented, but has no effect on naming latency for nonnat-
ural scenes, such as cities or rooms. They also showed
that naming latency increases for natural scenes when
they are presented with inappropriate coloring or when
all chromatic information is removed, whereas this is not
the case for nonnatural scenes. Oliva and Schyns argued
that color cues do not assist in the recognition of
nonnatural scenes for two reasons: First, color patterns
are less consistent in a nonnatural scene since the
components of rooms and cities vary widely in colora-
tion, and second, the color information that is available
is found for the most part at a fine spatial scale. For
instance, the color in a city scene might consist of the
individual colors of the clothing of pedestrians or of the
merchandise in a store window, or the light and signs
along a street. But this fine-scale spatial information may
not be initially accessible if fast recognition judgments
are based primarily on the coarse-scale scene informa-
tion. Natural scenes, by contrast, are composed of large
regions of nearly uniform color that can be used as a cue
for scene gist when only coarse-scale information is
available. In fact, there is evidence that, in contrast to
the discrimination of even simple geometric shapes,
rapid categorization of scene gist requires little or no

focal attention (Braun, 2003; Li, VanRullen, Koch, &
Perona, 2002). In sum, behavioral testing of models of
scene perception has shown that the scene gist can be
extracted from coarse-scale information without the
prior identification of particular objects in that scene.

Neuroimaging has provided further support that sep-
arate neural mechanisms are involved in object and
scene perception. Functional magnetic resonance imag-
ing (fMRI) has shown that the lateral occipital complex
(LOC) is selectively activated during object processing
(e.g., Grill-Spector, Kourtzi, & Kanwisher, 2001; Malach
et al., 1995), whereas the parahippocampal place area
(PPA) is selectively activated during scene perception
(Epstein & Kanwisher, 1998). In fact, the PPA responds
strongly to scenes but only weakly to objects and it does
not respond to faces (Epstein & Kanwisher, 1998).
Moreover, the PPA shows equal activation for images of
empty rooms (depicting bare spatial layout) and fur-
nished rooms (Epstein & Kanwisher, 1998; Epstein,
Harris, Stanley, & Kanwisher, 1999). Its response to
arrays of objects, such as furniture, without spatial con-
text, is less than half of that for empty or furnished
rooms. In addition, PPA activation is far stronger for
intact rooms and fractured rooms (in which the walls
and floors were separated by spaces but maintain the
same spatial relation to one another) than for rearranged
room elements that did not define a coherent space. In
short, it appears that the PPA response is not due to the
individual components of a scene’s layout (the walls or
the floor) but rather to the spatial layout as a whole.

Patients with damage to the PPA show impaired
discrimination of novel scenes but not novel objects
(Epstein, DeYoe, Press, Rosen, & Kanwisher, 2001).
Patients with topographical agnosia, who show deficits
in their ability to navigate in the environment, also have
damage in this region, either in the PPA itself or in a
region of the lingual gyrus immediately posterior to the
PPA (Habib & Sirigu, 1987). Recent functional imaging
has demonstrated that this lingual ‘‘landmark’’ area or
LLA shows greater signal change for buildings than for
faces or objects (Aguirre, Zarahn, & D’Esposito, 1998).
In fact, differential damage of the PPA and LLA may
explain the variability in the nature of the deficits in
patients with topographical agnosia (see Aguirre &
D’Esposito, 1999 for a review). Epstein et al. (1999) have
suggested that the LLA may be involved in place recog-
nition while the PPA may be more involved in memory
encoding of place information—or alternatively, that
both areas are involved, but in different ways, in the
perceptual analysis of places, while memory for places is
stored elsewhere. But in any case, the neuropsycholog-
ical evidence is clear: Patients with damage to the PPA
have difficulty identifying scenes (and in some cases,
navigating through familiar environments) even though
they have no deficits in recognizing objects.

In the present experiment, we examined an individual
with quite the opposite pattern of deficits and spared
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abilities. We showed that D.F., an individual with pro-
found visual form agnosia, who cannot identify objects
on the basis of their shape, can use her spared color and
texture perception to classify scenes reasonably accu-
rately. Using fMRI, we showed that D.F. had higher
activation in the PPA for scenes presented in their
normal color than for two-tone versions. Control ob-
servers showed the same level of activation in the
PPA for all scene versions. These data provide further
evidence that objects and scenes are processed by
mechanisms that are functionally and anatomically inde-
pendent—and that the identification of scene gist can
take place on the basis of color and texture cues,
without identification of object form.

RESULTS

Behavioral Studies of Scene Classification

D.F. is woman of 47 years, who suffered irreversible brain
damage as a result of accidental carbon monoxide poi-
soning at age 34. D.F. shows relatively normal static
perimetry in the central visual field up to 308 eccentricity
with evidence of field loss only in the right lower
quadrant. She has profound visual form agnosia (a deficit
in object recognition based on form), which has been
detailed elsewhere (Milner et al., 1991). D.F. has great
difficulty perceiving the shape, size, and orientation of
objects. Moreover, she is unable to copy line drawings of
objects, although she can draw objects reasonably well
on the basis of long-term memory (Servos, Goodale, &
Humphrey, 1993). D.F. can discriminate among hues and
name colors appropriately (Milner & Heywood, 1989).
Consequently, D.F. can often recognize ‘‘real’’ objects,
particularly natural objects such as fruit and vegetables,
on the basis of surface information such as color and
visual texture (Humphrey, Goodale, Jakobson, & Servos,
1994). For instance, she can correctly identify ‘‘real’’
natural objects such as a green pepper or an apple with
100% accuracy, but when presented with a line drawing
of these objects, her accuracy drops below 10%. Similarly,
she can recognize nearly 70% of ‘‘real’’ colored manufac-
tured objects such as a blue running shoe or a yellow
plastic dustpan but fewer than 10% when presented as a
line drawing. Likewise, ‘‘real’’ achromatic manufactured
metallic objects such as a fork or a camera were recog-
nized with nearly 60% accuracy but line drawings of these
objects resulted in approximately 10% accuracy. Naming
latencies were significantly faster for real natural objects
than latencies for colored manufactured and achromatic
metallic objects which did not significantly differ from
each other.

MRI carried out on D.F. one year after the accident
revealed a distributed pattern of brain damage consis-
tent with anoxia, but the damage was most evident in
the lateral occipital cortex and the medial occipito-
parietal region (Milner et al., 1991). More recent MRI

scans show three distinct lesions, one in the lateral
occipital cortex of each hemisphere and one in the left
hemisphere near the top of the parieto-occipital sulcus
with the primary visual cortex and the fusiform gyrus
spared (see Culham, 2004; James, Culham, Humphrey,
Milner, & Goodale, 2003). Figure 1 shows D.F.’s primary
lesions in a structural MRI. The regions outside the three
primary lesions remain functional despite widening of
the sulci. For example, both D.F. and controls showed
robust activation in the anterior intraparietal sulcus
(AIP) during object grasping (James et al., 2003). The
location in stereotaxic space (Talairach & Tournoux,
1988) of D.F.’s bilateral lateral occipital lesions overlap
almost completely with the lateral occipital cortex (area
LO) as defined by fMRI activation in normal observers
viewing images of objects. In other words, D.F.’s lesions
are localized in the very regions of the occipito-temporal
cortex that have been implicated in the visual processing
of objects in the normal brain.

D.F. and 19 control participants were shown a series
of 600 pictures of common scenes in which images were
presented in three categories of color-diagnostic (natu-
ral) scenes (beach, desert, and forest) and three cate-
gories of color-nondiagnostic (nonnatural) scenes (city,
market, and room). The scene images were presented
in five different formats: (1) normally colored, (2) color-
inverted (i.e., each color was replaced by another color
on the opposite side of color space), (3) grayscale, (4)
black-and-white (i.e., two-tone), and (5) spatial rotation,
in which the normally colored scene was rotated by
1808. Examples of these different images are shown in
Figure 2. D.F. and the control participants were asked to
classify the scenes as quickly and as accurately as
possible.

A two-way within-subjects analysis of variance (AN-
OVA) was carried out on control participants’ vocal RTs

Figure 1. Ventral stream lesions in D.F. D.F.’s brain has been

rendered at the pial surface (outer gray matter boundary) and is shown

in A through C. Lesions were traced on slices that indicated tissue
damage and rendered on the pial surface in dark gray. Arrows indicate

the bilateral LO lesions. (A) Left hemisphere. (B) Right hemisphere. (C)

A ventral view of the underside of the brain. (D) A transverse slice

through the lesions (z = �8).
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for scene category (natural vs. nonnatural) and scene
format (normally colored, color-inverted, grayscale,
black-and-white, and spatial rotation). This revealed a
significant main effect of scene category indicating that,

when averaged across scene formats, nonnatural scenes
(such as cities or rooms) were recognized faster than
natural scenes (such as beaches and forests) [F(1,18) =
35.60, p < .01]. The ANOVA also revealed a significant

Figure 2. Examples of images

depicted in the five different

formats for each of the six
scene categories.

Figure 6. Functional

activation for scene images is
shown in a coronal and

transverse slice as well as on

the pial surface in a ventral
view of D.F.’s brain. PPA

activation is shown by the area

within the black box for each

participant. Talairach
coordinates in the left and

right hemispheres are as

follows: D.F.: �25, �50, �16

and 27, �52, �17; Control 1:
�25, �50, �16 and 27, �61,

�12; Control 2: �26, �49, �4

and 25, �51, �2; Control 3:

�22, �55, �7 and 22, �54, �8.
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main effect of scene format indicating that, when aver-
aged across scene categories, the format of the scene
affected RT [F(4,72) = 54.78, p < .01]. In addition, there
was a significant interaction of scene category with scene
format.

The Scene Category � Scene Format interaction
shown in Figure 3 is consistent with the data from Oliva
and Schyns (2000): Chromatic information did influence
scene categorization latency but not in the same way for
natural and nonnatural scenes [F(4,72) = 25.09, p =
.01]. This effect was revealed by a significant pairwise
interaction between natural versus nonnatural and nor-
mal versus color-inverted (2 � 2 ANOVA) [F(1,18) =
19.18, p< .01]. Specifically, color inversion had a greater
effect on categorization latency of natural than nonnat-
ural scenes. Pairwise comparisons using Newman–Keuls
post hoc tests showed that control observers had much
slower RTs for color-inverted compared with normally
colored natural scenes (t = 9.31, p < .01). This was not
the case for nonnatural scenes (t = 2.55, p > .05).
Additionally, there was a significant interaction (2 � 2
ANOVA) between scene category and color manipula-
tion to black-and-white from the normally colored scene
version [F(1,18) = 44.43, p < .01]. That is, the effect of
making the image black-and-white had a much greater
impact on natural scenes where color was diagnostic
than on nonnatural scenes where color was not diag-
nostic—vocal RTs were much slower for natural than
nonnatural black-and-white scenes (t = 18.05, p < .01).
Tests of the pairwise interaction between the two scene

categories and manipulation to grayscale or spatial
rotation were nonsignificant [F(1,18) = 1.69 and 1.54,
p = .21 and p = .23, respectively]. For natural scenes,
pairwise Newman–Keuls post hoc tests showed vocal
RTs were significantly slower for both grayscale and
spatially rotated versions (t = 3.58 and 5.28, p < .05
and p < .01, respectively) compared with those for
normally colored scene images. Similarly, for nonnatural
scenes, response latencies were significantly slower for
grayscale and spatially rotated versions (t = 4.93 and
7.42, p < .01, respectively) compared with normally
colored scene versions.

Overall, abnormal color information had a greater
influence on scene categorization for natural than for
nonnatural scene categories. To put it another way, the
addition of appropriate chromatic information increases
the speed of categorization for natural scenes, whereas
the addition of abnormal color information slows down
this process. Taken together, these results illustrate that
abnormally colored scenes interfere with the speed of
categorization of natural scenes, where color is diagnos-
tic, but not for nonnatural scenes, where color is not
diagnostic.

We predicted that if scene processing and object
processing are independent, then D.F. should be able
to classify scene images. Further, because D.F. used
color and texture information to recognize natural,
manufactured, and achromatic metallic objects (Hum-
phrey et al., 1994), we hypothesized that D.F. would also
use color and texture information for categorization of
both natural and nonnatural scenes. However, given that
D.F. had greater accuracy for recognizing real (colored)
natural than manufactured or achromatic metallic ob-
jects, we expected similar findings for natural and non-
natural scenes—that accuracy would be best and
latencies shortest for normally colored natural com-
pared to nonnatural scenes. Further, color manipula-
tions such as converting a scene to grayscale or black-
and-white should reduce performance for both scene
categories as did line drawing versions of natural, man-
ufactured, and achromatic metallic objects. Performance
for grayscale versions should nevertheless be better than
that for black-and-white versions because texture infor-
mation is richer in the former versions. The prediction
for color inversion is less clear—Color inversion should
reduce performance for natural scene categories where
color is predictive of scene category but it might also
reduce performance for nonnatural scenes as did line
drawing versions of manufactured objects. If D.F.’s
spared color perception helps to define contours and
boundaries comprising a scene whether color is inverted
or not, color inversion of nonnatural scenes might give
better performance than grayscale versions.

As predicted by a model of independent scene and
object processing, D.F. was able to classify scenes rela-
tively accurately although with much slower vocal RTs
than the control participants (see Figure 4). For each

Figure 3. Mean vocal RTs (msec) for natural and nonnatural scenes in

each of the five image formats averaged across all control participants.
The error bars indicate standard error of the mean.
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condition, missing values were replaced with the mean
so that a repeated-measures ANOVA could be performed
on the complete dataset. This revealed a significant main
effect of scene category [F(1,119) = 44.57, p < .01]. RT
for natural scenes was faster than it was for nonnatural
scenes. The main effect of scene format was significant
[F(4,476) = 37.09, p < .01]—manipulating the color of
the scene significantly slowed D.F.’s RTs whether color
was normally diagnostic or nondiagnostic. The interac-
tion between color category and scene format was
nonsignificant [F(4,476) = 1.98, p = .10]—unlike the
control participants, D.F. showed the same pattern of
RTs with different image formats for both natural and
nonnatural scenes. In fact, her pattern of RTs for both
kinds of scenes was similar to that observed with control
participants viewing natural scenes in that latencies were
longer for color-inverted compared to normally colored
scene versions. These findings suggest that D.F. attemp-
ted to use color information to assist in scene categori-
zation no matter whether it was diagnostic or not.

In general, control observers made few errors in
categorizing scenes (mean = 1.5%), although more
errors were made for color-inverted (2.5%) and black-
and-white (5.0%) versions of the natural scenes. D.F.’s
correct performance was well above chance (chance
correct = 17%, chance incorrect = 83%) across all
stimulus manipulations. She, however, made a large
number of errors (mean = 17.3%), particularly for the
black-and-white versions (27% for natural scenes and

53% for nonnatural scenes). Figure 5 shows error rates
for controls and D.F. for each scene category and
version. It is of note that D.F. made a great many errors
of color misattribution—a kind of error rarely made by
control observers. For example, D.F. routinely mistook
color-inverted desert scenes (where sand becomes blue
in the foreground; see Figure 2) for beach scenes (39%),
and color-inverted beach scenes (where yellow becomes
the predominant color; see Figure 2) for desert scenes
(7.5%).

fMRI Investigations of Scene Categorization

During fMRI, D.F. viewed visual images of normally
colored scenes, grayscale versions, black-and-white ver-
sions, faces, or a fixation stimulus by itself. As Figure 6
shows, like the three control participants we tested, D.F.
showed significant activation in an area corresponding to
the PPA when she viewed scenes as compared to when
she viewed faces, a common contrast for defining activa-
tion in PPA (e.g., Epstein & Kanwisher, 1998). This was
true for all versions of the scenes that were presented.
The stereotaxic coordinates of the focus of activation in
D.F.’s PPA were comparable to those seen in earlier
studies of scene processing (Epstein & Kanwisher, 1998;
Kanwisher, McDermott, & Chun, 1997).

Figure 4. Mean vocal RTs (msec) for natural and nonnatural scenes in
each of the five image formats for D.F. The error bars indicate standard

error of the mean.

Figure 5. Categorization error rates for control participants and for
D.F. for each scene type and image format. Chance is an error rate of

83.3%. The error bars indicate standard error of the mean for the

control participants, some of which are too small to depict.
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To compare differences in signal change between
stimulus manipulations for each subject, we calculated
the absolute difference in percent signal change for the
contrasts between normally colored versus grayscale,
normally colored versus black-and-white, grayscale ver-
sus black-and-white. We determined 95% confidence
intervals around the mean of the three participants in
the control group. The percent signal change for the
normally colored versus black-and-white contrast for
D.F.’s falls outside the 95% confidence interval of the
mean of the controls. In other words, D.F. appears to
show higher activation for normally colored versions of
scenes than for black-and-white versions, unlike this
group of control observers (see Figure 7).

DISCUSSION

The pattern of results from the behavioral testing of
D.F., an individual with profound visual form agnosia,
lends further support to the notion that scene percep-
tion can operate independently of object perception. In
other words, the fact that she can classify scenes with
considerable accuracy demonstrates that bottom-up ob-
ject processing is not a necessary precursor to scene
perception. Moreover, when D.F. was presented with
scene images in the magnet, she showed robust activa-
tion in her PPA, an area that is thought to play a special
role in scene analysis—despite the fact that she has large

bilateral lesions in the lateral occipital area (area LO) of
the LOC, an area implicated in object processing.

In the behavioral tests, D.F. was able to classify the
majority of normally colored scene images correctly. It is
possible that her performance may have been enhanced
by her a priori knowledge of the six scene categories—
but the same could be said for the control participants as
well. In any case, she quite easily classified both natural
and nonnatural scene categories and was even able to
classify some of the black-and-white images correctly
even though only limited visual texture information was
available. In earlier studies, D.F. has also demonstrated
that she is able to appreciate the visual texture and other
surface features of objects such as specularities. When
she is presented with real manmade objects, she often
accurately describes their surface features and the ma-
terial from which they are made—even though she
cannot identify them or describe their shape (Humphrey
et al., 1994). For example, when D.F. was shown a cheap
flashlight sitting on a table, she said (correctly) that it
was made of aluminum and red plastic, but guessed
(incorrectly) that it was ‘‘some sort of kitchen utensil.’’
As soon as it was placed in her hand, of course, she
identified it as a flashlight. D.F. is also able to draw some
of the textural features of objects when copying draw-
ings, even though she does not render the overall shape
of the object correctly and has no idea what it is she is
copying (Milner & Goodale, 1995). It is likely that, if
asked, D.F. would also be able to describe the colors and
visual textures in scene images. It certainly seems likely
that she is using such information to classify the scenes.
The fact that natural scenes contain more predictable
color, texture information, and spatial structure, than
nonnatural scenes (Oliva & Torralba, 2001; Burton &
Moorhead, 1987), may help to explain why she was able
to classify natural scene versions faster than their com-
parable nonnatural scene versions.

Interestingly, D.F. demonstrated slower classification
latencies for both natural and nonnatural scenes when
they were inappropriately colored. This pattern of re-
sponding was quite different from that seen in our
control observers for whom inappropriate scene color-
ing interfered more with classification latency of natural
than nonnatural scenes. This suggests that, because D.F.
has spared color perception, she makes use of color for
scene categorization even when it is not always diagnos-
tic for the scene. Thus, in nonnatural scenes, she may
use color to parse the scene to some extent. Indeed,
taken together, the results suggest that both global and
local color may be important for D.F.; in other words,
she makes use of color at a global scale in natural scenes
and color at a local scale in nonnatural scenes. The
importance of color at a coarse spatial scale for D.F.’s
analysis of natural scenes is further supported by the
pattern of specific errors that she made. Inappropriately
colored desert and beach scenes were frequently con-
fused for one another, probably because the color

Figure 7. Difference in percent signal change for the contrasts

between normal versus grayscale, normal versus black-and-white, and

grayscale versus black-and-white. Squares show the controls’ mean
difference condition contrast and error bars represent the limits of the

95% confidence interval around the mean. Diamonds show D.F.’s

percent signal change difference for each condition contrast.
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inversion caused the large predictable blue region in a
beach scene to become yellow and conversely, the large
yellow expanse of sand in a desert scene to become
blue. D.F.’s poor performance with black-and-white
scenes underscores the fact correct classification of
these images depends heavily on the perception of form
and contour information, a visual ability that is pro-
foundly disturbed in D.F.

Functional imaging of visual areas in D.F.’s brain
during passive viewing of scenes revealed that her PPA
is still functional despite lesions encompassing area LO.
In fact, D.F. appears to show more PPA activity for
colored than for black-and-white scenes, a finding that
is consistent with her performance in the scene classifi-
cation task. This difference in activation between col-
ored and black-and-white scenes was not present in our
small population of normal control observers, a finding
that is also consistent with their behavioral performance
in the earlier scene classification task. The spatial aspects
of form and color have been shown to be processed in
separate, parallel neural pathways in the early stages of
cortical visual processing (reviewed by Van Essen, An-
derson, & Felleman, 1992). D.F.’s scene categorization
performance is certainly less than normal, likely due to
the disruption of some of the parallel pathways driving
higher visual areas. Damage to one or more of these
parallel pathways may impair higher-level visual func-
tions but remaining parallel pathways may still drive
these areas. Particularly because D.F. has retained nor-
mal color perception, inputs from color channels may
drive these relatively larger changes in PPA response
when viewing colored stimuli possibly as a result of a
loss of other parallel channels coding more basic spatial
structure. The fact that spatial form information plays a
more important role in the classification of black-and-
white scenes may explain why D.F. has much more
trouble with these versions of the scene – and why her
PPA tends to show relatively lower activation when she
views black-and-white scene images. After all, she has
large bilateral lesions of the object processing area LO
and has great difficulty discriminating simple shapes or
even telling vertical from horizontal lines (Milner &
Goodale, 1995).

But the fact that the PPA shows at least some activation
for the black-and-white scenes that D.F. had been unable
to classify in the earlier behavioral task suggests that this
region may be activated by the image of a scene even
when it is not classified correctly. In fact, some investi-
gators have argued that the PPA is not only involved in
scene recognition per se, but may also play a more critical
role in encoding local space into memory. Support for
this argument comes from patients with damage to the
PPA who show memory problems for spatial layout
information and have difficulty navigating in an unfamiliar
environment (Epstein, DeYoe, Press, Rosen, & Kanw-
isher, 2001). D.F.’s PPA activation for black-and-white
scenes is consistent with this hypothesis; in other words,

she might have been trying unsuccessfully to encode the
black-and-white scenes into memory. However, a conclu-
sive test of this hypothesis would require a correlation of
PPA activation with behavioral data during the scanning
session as well as a comparison of PPA activation for
black-and-white scenes with other nonscene objects
which activate PPA but to a lesser degree than scenes
(Epstein & Kanwisher, 1998). We can say, at least, that
D.F.’s PPA activity correlates well with scene recognition
in that fewer black-and-white scenes were recognized.

Taken together, our behavioral and imaging data lend
further support to the notion that objects and scenes are
processed quite independently. It is particularly inter-
esting to note in this regard that PPA activation in D.F.,
unlike what happens in healthy observers, is modulated
by the presence of color in the scene. This finding
supports the idea that the PPA operates at a high,
‘‘categorical,’’ level of processing, transcending the spe-
cific visual channels that provide it with relevant infor-
mation. At a practical level, D.F.’s apparently intact PPA,
and thus relatively spared place perception, may explain
why she does not suffer from topographical agnosia.
That is, her PPA seems able to cope with the limited
amount of information it receives to put together a
sufficiently complete cognitive map to enable her to
get around her environment effectively.

This work also provides a compelling example of how
studying visual processing in an individual with disor-
dered vision can contribute to the identification of
submodalities and independence in visual processing.
In addition, combined behavioral and functional neuro-
imaging data from individuals with well-localized cortical
lesions can shed light on the possible roles that different
visual areas play in cognitive and perceptual processes.

METHODS

Scene Classification Task

Participants

D.F. and 19 male and female control participants, rang-
ing from 19 to 53 years of age (mean age = 27 years;
SD = 10.5 years), participated. All the control partici-
pants had normal or corrected-to-normal vision.

Stimuli

The stimuli consisted of three categories of natural or
color-diagnostic scenes (beach, desert, and forest) and
three categories of nonnatural or color-nondiagnostic
scenes (city, market, and room). Twenty different scene
images per category were taken from a CD photo image
library. These 120 scene images were then each pre-
sented in five different formats for a total of 600 images:
(1) normally colored: a true-to-life version of the scene;
(2) color-inverted: Color hues were inverted by 1808 in
color space using Adobe Photoshop image software
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(inverting the color hues produced the same color trans-
formations as the code used by Oliva & Schyns, 2000, in
CIE color space); (3) grayscale: The chromatic compo-
nent of the image was discarded leaving a grayscale only
image; (4) black-and-white: The contrast of the grayscale
images was adjusted to 100%, which rendered a scene
image where all regions were either black or white; and
(5) spatial rotation: Normally colored scene images were
spatially rotated by 1808. The size of all images was 256�
256 pixels, subtending 4.38 � 4.38 when viewed from
150 cm. They were presented on an LCD panel display
using a Macintosh G3 computer.

Apparatus and Procedure

Images were presented in 10 blocks consisting of 60
trials each. Within each, 12 scenes, two from each of the
six categories (beach, desert, forest, city, market, or
room), were shown in random order in each of five
formats (normally colored, color-inverted, grayscale,
black-and-white, and spatial rotation). A trial consisted
of a 500-msec presentation of a red fixation dot (0.38)
followed by a 150-msec presentation of a blank screen
followed in turn by the scene image. The scene re-
mained visible until the participant responded. Trials
were self-paced. Participants were instructed to name as
quickly and as accurately as possible the category to
which the scene belonged. Participants were given the
category names before the experiment began. Verbal
RTs were measured with a microphone that triggered
the offset of the scene image. The experimenter coded
the accuracy of each scene categorization without feed-
back to the participant. Participants were given a short
practice run which showed only normally colored im-
ages. They were told before the first experimental run
that they would be presented with images similar to the
ones they had just seen as well as other images that
could look a little ‘‘different.’’ No feedback about per-
formance was given throughout the experiment. For
both control observers and D.F., only latencies for
correct responses were included in the analyses.

Functional Neuroimaging Experiment

Participants

D.F. and three normal healthy control participants (con-
trol 1: male, age 34 years; control 2: female, age 46 years;
and control 3: male, age 30 years) participated.

Stimuli

D.F. was presented with visual images of normally
colored scenes, grayscale scenes, black-and-white
scenes, faces, or a fixation stimulus alone. During the
presentation of the scene images, free viewing was
allowed. We especially wanted to examine activation

for the condition in which D.F. had shown the worst
performance: black-and-white versions of the scenes. We
expected that D.F. might show differential activation for
these scenes compared with those that she had correctly
classified. Thus, the black-and-white images for the fMRI
experiment were selected from the subset of black-and-
white images that she had misclassified in earlier behav-
ioral testing. The face stimuli consisted of color images
of famous faces, eight men and eight women, seen from
a frontal viewpoint on a black background. Faces sub-
tended approximately the same retinal image size as the
scene images (128). (The face data are not presented
here—see Steeves et al., 2003.) Each stimulus epoch
lasted 16 sec, during which 16 different images were
presented for 1 sec each. Each stimulus condition was
repeated four times within each run (with a fixation
period every fifth epoch) in pseudorandom order. The
same 16 images were shown each time an epoch condi-
tion was repeated. Two runs were obtained on D.F.
Because we had limited time to test this patient, we
were unable to do an independent localizer scan to
identify the areas that showed a greater response to
scenes (places) than to faces or to include other con-
ditions of interest (color-inverted or spatial rotation
scenes). In order to maintain attention, both D.F. and
the neurologically intact participants were asked to
press a button when they perceived a ‘‘forest’’ scene.
All participants, including D.F., completed the behav-
ioral scene categorization experiment before the imag-
ing session. They therefore would all have been exposed
to the scene images before imaging and hence had a
similar level of familiarity with the images.

For the control participants, we used an independent
localizer scan to identify the scene area. The localizer
run presented blocks of 16 sec of a fixation period
alternating between blocks of either 16 face images or
16 scene images, presented for 1 sec each and repeated
for four cycles. Each control participant was scanned
during two or three experimental runs containing 16-sec
epochs of the different scene conditions. Each run
consisted of a 16-sec fixation epoch followed by blocks
of 16 scene images (presented for 1 sec) in each of the
five versions from the earlier scene classification task
(normally colored, color-inverted, grayscale, spatial ro-
tation, and black-and-white scenes) in three cycles.
Sixteen different scenes were presented each time an
epoch scene condition was repeated. Although D.F. saw
fewer scene images and thus would have experienced
greater fMR adaptation (Grill-Spector, & Malach, 2001),
this cannot affect the interpretation of our data. That is,
she showed PPA activation regardless of any adaptation
and the degree of adaptation would have been equal
across all conditions. Scene versions were presented in a
quasi-counterbalanced order. Again, free viewing of
scenes was allowed.

The stimuli were presented using a Macintosh G4
computer and a NEC VT540 projector at 800 � 600
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resolution. Participants viewed the stimuli back pro-
jected on a screen through a mirror placed approxi-
mately 10 cm in front of the eyes.

Data Acquisition

Scans were conducted with a 4-T Siemens-Varian whole-
body MRI system at the Robarts Research Institute using
blood oxygenation level dependent (BOLD) imaging and
a head coil for functional images. A series of sagittal T1-
weighted scout images were acquired to select 16
contiguous, 5-mm-thick functional slices in a quasi-cor-
onal orientation, sampling the occipital and posterior
temporal cortex. Each functional volume was acquired
using a navigator echo-corrected, slice-interleaved multi-
shot (two shots) echo-planar imaging (EPI) pulse se-
quence with a 64 by 64 matrix size and a total volume
acquisition time of 2 sec (TE = 15 msec, flip angle = 458,
FOV = 19.2 cm). Each imaging run consisted of 140
consecutive acquisitions of the selected brain volume.
Within the same imaging session, high-resolution inver-
sion-prepared 3-D T1-weighted anatomical images were
acquired (64 slices, 256 � 256, 0.75 � 0.75 � 3 mm voxel
size, TR = 9.8 msec, TE = 5.2 msec). In another session,
participants were scanned using a cylindrical quadrature
birdcage-style radio-frequency (RF) coil. Functional im-
ages were manually realigned to high-resolution ana-
tomical images (1 � 1 � 1) that sampled the whole brain
in order to obtain full-brain anatomical images to allow
computation of stereotaxic coordinates (Talairach &
Tournoux, 1988).

Image Analysis

Analyses were carried out using Brain Voyager 4.6
software (Brain Innovation, Maastricht, The Nether-
lands). Functional images underwent linear trend re-
moval, spatial smoothing (gaussian filter, FWHM =
4 mm), and a correction for serial correlations. General
linear model analyses were performed with separate
predictors for each stimulus condition. Contrasts be-
tween predictors were used to identify regions of inter-
est (e.g., + places, � faces). In control participants, a
contrast between places and faces in the localizer scan
was used to identify the PPA. Areas were defined as all
contiguous activated voxels in the vicinity of the appro-
priate anatomical area that met a minimum threshold of
p < 10�6, uncorrected, p < .05 after a Bonferroni cor-
rection for multiple comparisons. Because no localizer
scans in D.F. were available, we defined the PPA using
the contrast between all three scene stimuli and the face
stimuli. This contrast selected place-specific areas but
did not bias subsequent analyses toward higher activa-
tion in any one of the scene conditions than the others.
The map of the region of interest (PPA) from the
independent localizer run was overlaid onto the exper-
imental runs with different scene conditions in the con-

trols. Once regions of interest were defined, time courses
were extracted from each run and the percent signal
change was calculated using the fixation periods as a
baseline. The activation levels for each condition were
computed for each participant by averaging the percent
signal change across all epochs within the condition.
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