
TOP-K QUERIES OVER DIGITAL TRACES

YIFAN LI

A THESIS SUBMITTED TO
THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
MASTER OF SCIENCE

GRADUATE PROGRAM IN COMPUTER SCIENCE
YORK UNIVERSITY

TORONTO, ONTARIO
DECEMBER 2018

c© Yifan Li, 2018

Abstract

Recent advances in social and mobile technology have enabled an abundance of

digital traces (in the form of mobile check-ins, WiFi hotspots handshaking, etc.)

revealing the physical presence history of diverse sets of entities. One challenging,

yet important, task is to identify k entities that are most closely associated with a

given query entity based on their digital traces 1. We propose a suite of hierarchical

indexing techniques and algorithms to enable fast query processing for this prob-

lem at scale. We theoretically analyze the pruning effectiveness of the proposed

methods based on a human mobility model which we propose and validate in real

life situations. Finally, we conduct extensive experiments on both synthetic and

real datasets at scale, evaluating the performance of our techniques, confirming

the effectiveness and superiority of our approach over other applicable approaches

across a variety of parameter settings and datasets.

1This thesis focuses on Query-by-Example tasks.

ii

Acknowledgements

First of all, I would like to express my sincere gratitude to my supervisor, Prof.

Xiaohui Yu, for his guidance. In the past two years, Prof. Yu has led and encouraged

me with great patience and experience to explore novel and meaningful research

topics and helped me to understand how to be a researcher.

Besides my supervisor, I would like to thank Prof. Nick Koudas, for his detailed

and excellent advice towards finishing the thesis. Prof. Koudas has influenced me

greatly with his motivation and enthusiasm to research.

I would also like to thanks Prof. Parke Godfrey for reviewing the thesis word

for word and providing lots of valuable comments. The rigorous attitude of Prof.

Godfrey has always inspired me to do better works.

I offer my gratitude to my thesis examination committee members for providing

me with insightful suggestions to improve the thesis.

Last but not least, I would like to thank my parents for taking care of and

supporting me. This work would not have been possible without their endless love

iii

and affection. I would like to dedicate this work with you.

iv

Contents

Abstract ii

Acknowledgements iii

Table of Contents v

List of Tables viii

List of Figures ix

1 Introduction 1

1.1 Motivation . 1

1.2 Application scenarios . 3

1.3 Methodology . 4

1.4 Contributions and outline . 7

2 Literature Review 9

v

2.1 Trajectory query . 9

2.1.1 Nearest neighbor query . 10

2.1.2 Top-k query . 11

2.2 Time series analysis . 13

2.3 MinHash . 14

2.4 Frequent pattern mining . 18

2.5 Digital traces analysis . 19

3 Preliminaries 20

3.1 Terminology . 20

3.2 Problem definition . 25

4 Our Approach 30

4.1 Data representation . 31

4.2 Data organization . 32

4.2.1 Signature . 33

4.2.2 MinSigTree . 36

4.2.3 Incremental update . 40

4.3 Cost of index construction . 40

5 Query Processing 43

5.1 Early termination . 43

vi

5.2 Search algorithm . 45

6 Pruning Effectiveness Analysis 48

6.1 Individual mobility model . 48

6.2 Hierarchical individual mobility model 50

6.3 Analysis of pruning effectiveness . 54

6.4 Scalability . 57

7 Experiments 59

7.1 Settings . 59

7.2 Baseline approach . 64

7.3 Sensitivity to the number of hash functions 66

7.4 Sensitivity to data characteristics 68

7.5 Sensitivity to ADM parameters . 74

7.6 Sensitivity to memory size . 76

7.7 Sensitivity to result size . 78

7.8 Indexing and update cost . 80

8 Conclusions and Future Work 83

8.1 Contributions . 83

8.2 Future work . 84

vii

List of Tables

3.1 Notation table . 24

4.1 Hash table . 34

4.2 ST-cell set sequence . 34

4.3 Signature table . 35

viii

List of Figures

4.1 A sample MinSigTree . 40

7.1 Data distribution . 61

7.1 Data distribution . 62

7.2 Association degree distribution . 65

7.3 PE vs. the number of hash functions 67

7.4 PE vs. data characteristics . 69

7.4 PE vs. data characteristics . 70

7.4 PE vs. data characteristics . 71

7.4 PE vs. data characteristics . 72

7.5 PE vs. ADM parameters . 75

7.6 Search time vs. memory size . 77

7.7 PE vs. result size (k) . 79

7.8 Indexing cost . 81

7.9 Update cost . 82

ix

1 Introduction

1.1 Motivation

The prevalence of mobile devices, social media, ambient wireless connectivity, and

associated positioning technologies have made it possible to record digital traces

at an unprecedented rate. Such traces correspond to location sharing through

social apps, handshaking with WiFi hot-spots (recording the wireless chip’s MAC

address or other characteristics of a device in proximity of a WiFi network 2),

connecting to cellular stations via a mobile device, and many other passive/active

location capturing scenarios. This has given rise to an abundance of digital traces.

Such traces reveal the presence history of diverse sets of entities—depending on

the application—which includes humans, devices, etc. At a high level, any digital

trace takes the form of a tuple, 〈entity, location, timestamp〉, recording that an

entity (e.g., a person) was present at a physical location (e.g., a restaurant) for the

2The WiFi protocol reveals to the access points the MAC address of any WiFi enabled device
in the vicinity of the network, even if the device is not connected to the network.

1

indicated timestamp. Typically location corresponds to physical locations which

exhibit a hierarchical structure that is known a priori (e.g., city - district - street

- building), and the timestamp is discretized to a tunable atomic unit such as an

hour or a minute, depending on the application. For example, the tuple 〈Tom, W

London, 10 a.m.〉 represents the fact that Tom was at the W London hotel during

the hour starting at 10 a.m.

A challenging task is to identify the entities that are closely associated with a

given query entity using their digital traces. Intuitively two entities are associated

if there exists a large overlap between their digital traces. Numerous definitions

for what constitutes an overlap are possible; for example, a large overlap in the

locations followed by an overlap (proximity) of associated timestamps. Thus, if

two entities were present at W London at 10 a.m., they are associated. Similarly if

two entities are present at W London, one at 10 a.m. and the other at 11 a.m., they

are still associated but possibly less so than the previous two entities. Alternatively,

one may take into account the spatial proximity of locations to define association in

addition to the timestamps. Thus, if two entities are present in the same postal code

at the same time, they are associated as well, but probably less so than two entities

appearing at the same specific location, say a restaurant, at the same time. It is

evident that there are numerous ways to define the degree of association between

entities given their digital traces, which are probably application dependent. As

2

such, we adopt a generic approach and define a class of functions that have generic

properties to quantify association. All our subsequent developments in this work

hold for this generic class of functions sharing such properties (see Section 3.2).

1.2 Application scenarios

Given a suitable function to quantify association, we are interested to identify the

top-k associated entities to a given query entity. Supporting efficient processing of

such queries over a large volume of digital traces enables a variety of applications.

For example, this assists law enforcement authorities to identify individuals closely

related to a person of interest. In most cases, the behavior patterns of the criminals

before, during, and after the crime are highly different from those of ordinary

people. Therefore, given a target person, we may be able to identify the criminal

gang by finding those people having a large overlap in digital traces with this

person. Also, the techniques developed herein can help to build location-based

recommender systems using user associations. A large overlap in the digital traces

of two people implies that they either know each other very well, or share very

similar living patterns. Therefore, we can make recommendation and promotion to

a certain user based on the choices of his/her associated users, which will highly

improve advertising precision.

This research is motivated by our work with authorities enabling post-crime

3

investigation using location data collected from mobile devices. Such information

is crucial to prove the joint presence of suspects at crime scenes and also their

association before and after the crime. For this specific reason, the main interest

is to assess association across large sets of digital traces, corroborating the asso-

ciation before and after specific events. For example, in our ongoing work with

a large national telecommunications provider on this problem, we work with a

dataset involving 30M individual devices with an average of 650K detections by

WiFi hotspots each; in addition, each device is present, on average, at 500 loca-

tions during the time ranges of interest for the queries being asked. In a different

context, the techniques developed herein enable marketers to identify groups of in-

dividuals with related behavior in the physical world for more effective advertising.

As an example, marketers may use associated behavior inside a shopping center

(as reported by triangulated WiFi signals of mobile devices) to identify families or

couples who are of prime interest for specific types of location-based marketing.

Once again association across a large collection of traces enforces a closer bond

between the entities involved as opposed to chance encounters.

1.3 Methodology

In the target applications we engage with, the number of entities is in the multiple

millions while the number of digital traces is in the billions. As such, techniques

4

that compare the query entity to all other entities are inefficient.

Aiming to provide fast query response times, we propose a suite of indexing

structures and algorithms for this problem. At a high level, we consider entities as

points in a high-dimensional space with 〈location, timestamp〉 pairs of each entity

corresponding to a dimension. The basic idea of our approach consists of two parts:

(1) transforming an entity’s digital traces into a lower-dimensional space for more

efficient computation; this lower-dimensional representation also allows the ordering

of entities along each dimension, making it possible to build an index structure; (2)

constructing an index that groups the entities in a hierarchical fashion using this

lower-dimensional representation, so that associated entities tend to appear in the

same group, enabling effective pruning.

We adopt MinHash [6], a widely-employed technique for duplication detection,

to compute a signature for each entity (details of MinHash can be found in Section

2.3). When a spatial hierarchy over locations is present we do so at each level of

the spatial hierarchy, resulting in a list of signatures for each entity. The size of

each signature depends on the number of hash functions used and can be consid-

ered as the dimensionality of this lower-dimensional space. It may be tuned for a

performance/cost trade-off. The list of signatures for each entity are subsequently

indexed with a tree structure. The guiding principal of this index is to group the

entities based on their signatures at each level such that for a given query entity,

5

only a small portion of the branches in the tree have to be explored; the remaining

branches are guaranteed not to contain the top-k results and can thus be safely

discarded. This is made possible by assessing a signature for each group of entities

at a tree node, which serves as the basis for estimating bounds on the associa-

tion between the query entity and the entities in the subtree rooted at this node.

The index naturally supports incremental updates. We then develop algorithms to

process top-k queries using the index.

We also develop and present a model for mobility which we validate against

real data at scale. using this model, we subsequently present a thorough analysis

of the pruning effectiveness of the proposed method. Our results reveal that the

proposed technique has strong pruning capabilities, limiting the scope of search

to only a small portion of all available entities. We also validate our model for

pruning effectiveness against real mobility traces and demonstrate its accuracy both

analytically and experimentally.

Experiments are conducted on both synthetic and real datasets at scale to (1)

compare the performance of the proposed method against that of baseline meth-

ods, and (2) conduct a sensitivity analysis of the proposed method with respect

to varying parameters of interest (e.g., number of hash functions, data characteris-

tics). Our results demonstrate orders of magnitude performance improvement over

a designed baseline approach.

6

1.4 Contributions and outline

In summary we make the following contributions:

• Motivated by real-life applications with telecommunications providers, we for-

mally define the problem of top-k query processing over digital traces. To the

best of our knowledge, our work is the first to address this important problem.

• We develop a suite of novel data transformation and indexing techniques as

well as the corresponding search methodologies, which demonstrate strong

pruning capabilities, allowing us to focus the search only on a small portion

of the space.

• We analytically and experimentally quantify the pruning effectiveness of our

methods using models of human mobility patterns.

• We perform extensive experiments on both real and synthetic data at scale

to study thoroughly the performance of the proposed method, confirming its

effectiveness and superiority over other approaches across a variety of settings.

The rest of the paper is organized as follows. Chapter 2 provides an overview of re-

lated work, including querying trajectory, time series analysis, hashing techniques,

frequent pattern mining, and research regarding digital traces. Chapter 3 formally

defines the problem of top-k query over digital traces and other assist terms. Chap-

7

ter 4 describes the approach, including the data transformation principle, the data

organization technique, and the complexity of indexing. In Chapter 5, we prove

the early termination condition of the proposed approach and give the search al-

gorithm. In Chapter 6, we analytically quantify the pruning effectiveness of the

approach. In Chapter 7, we present experiment results across a variety of settings,

and Chapter 8 concludes this paper.

8

2 Literature Review

In this chapter, we give brief introduction of works in the communities of: trajectory

query, which deals with real world trajectories produced by human, vehicle, etc.;

time series analysis, which focuses on knowledge discovery from temporal data;

MinHash, which is widely employed in duplication detection tasks; frequent pattern

mining, which aims to find frequently co-occurred items; and digital traces analysis,

which deals with digital traces produced by human as this thesis does.

2.1 Trajectory query

Querying trajectories, as querying digital traces, deals with the spatio-temporal

data produced by human in daily activities. Both works focus on the movement

and presence of real world objects and reveal potential relations among these objects

from their trajectories/digital traces. There are two branches of existing research

on querying trajectories, namely, nearest neighbor queries [1, 3, 4, 7, 8, 9, 13, 16,

20, 24, 26, 30, 32, 36, 39], and top-k queries [2, 12, 27, 31, 35, 37, 40, 43, 44, 46, 47].

9

We give detailed introduction of both branches together with some representative

works in the following.

2.1.1 Nearest neighbor query

Similar to the problem proposed in this paper, nearest neighbor query finds trajec-

tories and objects in proximity, and thus spatial distance is one of the dominant

factors in determining the similarity/association between objects and trajectories

in nearest neighbor search. In this section we introduce some influential works in

the area of nearest neighbor query on trajectories, and differentiate our work from

trajectory similarity query.

Guting et al. [16] propose 3D-R-Tree for efficient k-nearest neighbor search over

moving objects, which is built to obtain coverage function and thus enable effective

pruning. The authors then design a filter-and-refine algorithm to evaluate kNN

query.

Tang et al. [39] investigate the problem of k Nearest Neighboring Trajectories

(kNNT) search, which finds the k trajectories with the minimal aggregated distance

to a set of query points. The authors use a structure called global heap to retrieve

candidate trajectories and design a candidate-generation-and-verification strategy

to facilitate efficient and scalable searching.

Fang et al. [13] study the problem of kNN join; i.e., given two sets of trajectories

10

R and S, for each trajectory in R, return its k nearest neighbors in S. The authors

propose a parallel solution framework and a novel bounding technique to accelerate

query processing.

Sharifzadeh et al. [36] propose VoR-Tree, a combination of R-Tree and Voronoi

diagram, which demonstrate high effectiveness in both locating and exploring search

region. VoR-Tree improves the efficiency of solving various Nearest Neighbor queries

by reducing the I/O complexity to a large extent.

Works on kNN search on trajectories mainly focus on spatial closeness, with-

out considering the influence of spatial topology, such as hierarchy, on measuring

the association among trajectories and the corresponding entities. Consequently

they lack the ability of inferring the association degree between entities from their

trajectories.

2.1.2 Top-k query

Different from nearest neighbor search which finds kNN for all objects, top-k queries

on trajectories deal with a particular query object, which is more relevant to the

task defined in this thesis. In addition to spatial distance, metrics used in Top-

k queries also consider other factors such as duration, activity type, etc., which

facilitate quantifying the association between entities from multiple aspects as is

desired in our problem. Here we summarize several pieces of work most related to

11

our problem.

Ma et al. [27] design p-distance to measure the dissimilarity between uncertain

trajectories which are common in real world, and define top-k similarity query

(KSQ) on uncertain trajectory. The authors design a grid-based data structure

called UTgrid to index uncertain data and develop algorithm on UTgrid which

facilitates effective pruning.

Frentzos et al. [14] consider both spatial distance and duration when measuring

the similarity between trajectories and propose definite integral based metrics for k-

Most Similar Trajectory (k-MST) search over moving object databases. The metrics

used in the paper, as the authors argued, are computationally heavy, and thus they

propose a R-Tree based approximation approach for efficient query processing.

Wang et al. [44] study Exemplar Trajectory Query (ETQ) which takes the in-

put of a set of locations and an activity description, and return k trajectories with

highest spatial and textual similarity to the query conditions. The authors intro-

duce an incremental pruning baseline and design a two-level gap-based optimization

algorithm to reduce computational cost.

Metrics used in top-k query on trajectories are mostly based on sequence dis-

tance (e.g., Longest Common SubSequence [42]), or Time Series distance (e.g.,

Dynamic Time Warping [34]), which either ignore time dimension or assume tra-

jectories are aligned in time, which are not guaranteed to satisfy the constraints

12

proposed for association degree measures in Section 3.2.

2.2 Time series analysis

Time series analysis focuses on knowledge discovery from time-oriented data, giving

birth to a direction of studies which quantifies the similarity/association between

entities from their temporal overlap patterns. Time series analysis benefits our

research as the temporal co-occurrence is considered as one of the dominant factors

in determining the association between entities. In this section we briefly discuss

the metrics commonly used in time series analysis and how we can import such

metrics to define association degree between entities given their digital traces.

Bozkaya et al. [5] modify traditional Longest Common SubSequence (LCSS)

metric to support distance measure between sequences with different length and

design an index which is built on the length the sequences and relative distances

between sequences to accelerate query processing. The major drawback of the

metric is that it depends on exact equality match on real values and is thus not

suitable for similarity search in real world environment.

Chen et al. [7] propose a novel distance function, Edit Distance on Real Se-

quence (EDR), which is robust to noise such as sensor failures, disturbance signals,

and different sampling rates. The main idea of the metric is quantizing the dis-

tance between a pair of elements to 0 and 1 and define distance on the minimal edit

13

operations to transfer one sequence to another. The metric, as argued in the pa-

per, demonstrate superior robustness and accuracy for similarity search on moving

objects.

Dynamic Time Warping (DTW) is another popular distance metric in time series

analysis. Vlachos et al. [41] use DTW as rotation invariant distance measures for

trajectories, which is robust under the transformation operations desired in the

paper and very efficient to compute. Little et al. [25] use path and speed curves to

represent the motion trajectories and use DTW to measure the distance between

trajectories extracted from video.

Time series distance metrics, although provide plenty of ways to quantify the

similarity between the evolving patterns of trajectories, do not give enough consider-

ation to the characteristics of moving objects in a hierarchical spatial environment,

which limits the chance of direct employment of time series metrics to measure the

association between entities in our task.

2.3 MinHash

We also investigate duplication detection problems over image [10] and web [28]

datasets, which seem not closely related to the topic but do provide a means to

address the problem. The basic detection strategy is to model an image/document

as a set and pixels/words as tokens, and employ token-based hashing functions to

14

map sets into a hashing space where similar sets are placed closer to each other.

The technique is preferred in our problem for its efficiency to deal with large volume

data. In this section, we introduce MinHash, a widely-adopted hashing technique

for duplication detection under Jaccard Similarity.

The MinHash technique uses a family of m hash functions to assign each set a

signature, with each signature consisting of m hash values. The similarity between

two sets is estimated by comparing the corresponding signatures.

Suppose we use m hash functions h1, h2, · · · , hm to do MinHash. For a set

S = {e1, e2, · · · , en}, the signature of S, SIGS, is calculated in a following way.

1. Initialize SIGS as an m-length array, with each value set to positive infinity.

2. For each element e ∈ S, do the following.

• For each hash function hi (1 ≤ i ≤ m), if hi(e) < SIGS[i], SIGS[i] :=

hi(e); else, do nothing.

We use an example to illustrate the process [21]. Assume four sets S1 = {0, 3},

S2 = {2}, S3 = {1, 3, 4}, S4 = {0, 2, 3}, and two hash functions h1 = x+ 1 mod 5,

h2 = 3x+ 1 mod 5. Initially, we set the table as follows.

S1 S2 S3 S4

h1 ∞ ∞ ∞ ∞

h2 ∞ ∞ ∞ ∞

15

First, we consider the column of S1. The first element in S1 is 0, we have h1(0) =

(0 + 1 mod 5) = 1 < ∞,and h2(0) = (3 × 0 + 1 mod 5) = 1 < ∞, so we update

the table to the following.

S1 S2 S3 S4

h1 1 ∞ ∞ ∞

h2 1 ∞ ∞ ∞

The next element in S1 is 3, we have h1(3) = 4, which is larger than the current h1

value of S1, so the value remains unchanged; Similarly, we have h2(3) = 0 < 1, so

we update h2 value of S1 to 0. The signature table is now

S1 S2 S3 S4

h1 1 ∞ ∞ ∞

h2 0 ∞ ∞ ∞

We repeat the process for each set, and finally obtain the signature table

S1 S2 S3 S4

h1 1 3 0 1

h2 0 2 0 0

We can now estimate the Jaccard similarity between sets using the signature table.

Consider S1 and S4 as an example. Since h1(S1) = h1(S4) = 1, h2(S1) = h2(S4) = 0,

the similarity between S1 and S4 is thus estimated as 1, while their true Jaccard

Similarity is 2/3.

16

Although signature table helps to accelerate calculating the Jaccard Similarity

between two sets, to find duplication sets to a given query set still requires estimat-

ing the Jaccard Similarity between the query set and each other set. To further

reduce computation cost, the signature table is partitioned into bands by rows. As-

sume that we use m hash functions to build the signature table, and the table is

partitioned into b bands, then each band contains m/b consecutive rows. Let Bi(Sq)

(i ∈ [1, b]) be the list of hash values of set Sq at rows contained by band i (values

are ordered by row number), then set Sp becomes a candidate of duplication sets

to Sq iff ∃j ∈ [1, b], s.t. Bj(Sq) = Bj(Sp).

In above example, assume that we partition the signature table into 2 bands,

then each band contains one row. When finding duplication sets to S1, we only

retrieve sets S3 and S4 as candidates as S2 equals to S1 in neither bands.

Assume that the real Jaccard Similarity between set Sp and the query set is s,

then the probability of Sp becoming a candidate is 1− (1− sm/b)b. Generally, the

more hash functions, the lower the false positive, and thus the more efficient the

algorithm.

MinHash estimation is guaranteed to be (d1, d2, 1− d1, 1− d2)− sensitive [21];

i.e. satisfies the following properties:

• If 1− J(Sp, Sq) ≤ d1, then the probability that Sp becomes a candidate is at

least 1− d1;

17

• If 1− J(Sp, Sq) ≥ d2, then the probability that Sp becomes a candidate is at

most 1− d2,

where Sq is the query set, J(Sp, Sq) denotes the Jaccard Similarity between Sp and

Sq, d1, d2 ∈ [0, 1].

Multiple variants of MinHash have been proposed to improve the efficiency

and accuracy [18, 19, 22, 23, 45]. However, as is clear from above discussion,

MinHash techniques are mainly used in the approximation task and are restricted

to Jaccard-based metrics. In our approach, we modify the strategy of building and

comparing signatures to provide exact answers and also generalize the technique to

other similarity measures. Details are given in Section 4.2.

2.4 Frequent pattern mining

Frequent pattern mining aims to discover frequently co-occurred items from trans-

action database. Researchers have also imported frequent pattern based techniques

to trajectory analysis tasks; e.g., Giannotti et al. [15] define trajectory pattern

to analyze the trajectory of moving objects, Monreale et al. [29] mine trajectory

patterns for next location prediction. Although techniques like FP-growth can be

borrowed as a grouping approach of entities, the digital traces among population,

as will be discussed in Section 7.2, show low degree of frequent patterns, which

limits the pruning effectiveness of frequent pattern based approaches.

18

2.5 Digital traces analysis

A few pieces of work in recent years also deal with digital traces of human beings [17,

33]. Digital traces in their context, however, mainly refer to the records produced

by digital devices on the Internet, such as emails, twitter posts, which are not

associated with spatial-temporal presences and thus share little semantic similarity

with the digital traces proposed in this paper.

19

3 Preliminaries

In this chapter, we define the terms that are required for the subsequent discussion,

and formally define the problem of top-k query processing over digital traces.

3.1 Terminology

The locations we consider are spatial and thus exhibit a hierarchical structure (e.g.,

city - district - street - building). We assume that a description of the hierarchical

structure of locations is available via a tree structure (referred to as sp-index) that

organizes locations from coarsest to finest. Nodes in this tree are referred to as

spatial units.

To ease notation, we assume that the spatial units at the same level of the

sp-index are non-overlapping. We label the levels of spatial units from 1 (for the

root of the tree) to m (for the lowest level in the tree). For a spatial unit l, we use

parent(l) to denote the parent unit of l on the sp-index.

At the lowest level of the tree are base spatial units, the atomic locations in

20

digital traces at which entities can be present. Examples of a base spatial unit

include supermarkets, restaurants. All base spatial units form a set L.

We assume that timestamp is discretized in base temporal units (e.g., hour).

The combination of a base temporal unit and a base spatial unit is referred to as

a spatial-temporal cell (or ST-cell). We use the associated base temporal unit and

base spatial unit to denote an ST-cell; e.g., t1l1. An ST-cell is the atomic unit

where entities can be present. All possible such combinations form an ST-cell set

S.

We formally define a digital trace associated with entity e to make it suitable

for the environment of sp-index.

Definition 1 (Presence Instance). A presence instance (PI) p of an entity is char-

acterized by a four attribute tuple, p = 〈e, tid, path, level, pd〉, where

• e is the associated entity to p,

• tid is the id of the sp-index where p belongs (tid is necessary when multiple

sp-index trees exist),

• level is the level in the sp-index where p exists,

• path = [node1, node2, · · · , nodelevel] is the list of nodes in the sp-index on the

path from the root to the node that reflects the location associated with p, and

21

• pd is a continuous time period associated with p; it is in the format [start time,

end time].

Evidently |path| denotes the level where the presence instance exists in sp-

index tid, which is denoted as p.level in sequel. Typically start time is the same

as timestamp. In some applications, such as WiFi proximity sensing of MAC

addresses, end time is obtained by the time of the last probe of the device MAC

address to the WiFi network. In some other applications, such as social media

check-ins, the end time is estimated based on the average time individuals spend

in the venue (obtained from services such as Google Maps).

Definition 2 (Digital Trace). The set of PIs associated with entity e forms the

digital trace of e, Pe.

The overlap between the digital traces of two entities, Adjoint Presence Instance,

is defined as follows:

Definition 3 (Adjoint Presence Instance). Given two PIs, pa = 〈ea, tida, patha, levela,

pda〉, pb = 〈eb, tidb, pathb, levelb, pdb〉, if tida = tidb, pda ∩ pdb 6= ∅, then ea and eb

form an adjoint presence instance (AjPI) pab = 〈{ea, eb}, tidab, pathab, pdab〉, where:

• tidab = tida = tidb,

• pathab = patha ∩ pathb, which is the set of common ancestors of the two PIs,

and

22

• pdab = pda ∩ pdb, the intersection of the two time periods.

pathab denotes the set of common ancestors of the two PIs, and thus |pathab|

equals to the level of AjPI pab in the sp-index tidab, which is denoted as pab.level in

sequel.

Each pair of entities, say ea and eb, form a set of AjPIs denoted as Pab, where

0 ≤ |Pab| ≤ |Pa| · |Pb|. The definition can be naturally extended to adjoint presence

instances of multiple entities.

An AjPI specifies a spatio-temporal co-occurrence of two entities, and thus

reveals a potential association between the entities. Such an association is defined

as a function over the domain of the corresponding presence instances and adjoint

presence instances of each entity pair, as outlined in the next section.

We give the following notation table to ease review.

23

Notation Meaning
m level of sp-index
ea an arbitrary entity
E all entities
lx an arbitrary base spatial unit
L all base spatial units
lxty an arbitrary ST-cell
S all ST-cells
pa a presence instance associated with entity ea
Pa all presence instances associated with entity ea
pab an adjoint presence instance between entity ea and entity eb
Pab all adjoint presence instances between entity ea and entity eb

deg(ea, eb) the association degree between entity ea and entity eb
nh the number of hash functions
hu an arbitrary hash function
seqa the ST-cell set sequence of entity ea
seqla the l-th set in seqa
siga the signature list of entity ea
sigia the i-th signature in siga
N an arbitrary node on the MinSigTree

SIGN the signature of node N
PS pruned set
PPS partial pruned set
PE pruning effectiveness

Table 3.1: Notation table

24

3.2 Problem definition

One important but challenging task is to discover all entities that are closely associ-

ated with a given entity. Since there may exist many ways to quantify association,

we define a generic class of scoring functions that share commonly desired proper-

ties. While the particular choice of the function varies depending on the application,

our approach would apply as long as the function exhibits these generic properties.

For an arbitrary AjPI pab, the scoring function f(pab) has the following proper-

ties.

• Normalization; i.e., f(pab) ∈ [0, 1].

• Total order; i.e., f(pab) ≥ f(pac) if

I(I1(pab.pd.length, pac.pd.length), I2(pab.level, pac.level)) ≥ δ,

and f(pab) < f(pac) otherwise,

where I ∈ [0, 1] is a function monotonically increasing on I1 and monotonically

decreasing on I2, I1 ∈ [0, 1] is a function monotonically increasing on pab.pd.length

and monotonically decreasing on pac.pd.length, I2 ∈ [0, 1] is a function monotoni-

cally increasing on pab.level and monotonically decreasing on pac.level, δ ∈ [0, 1] is

a threshold. Basically, the second property gives AjPIs at finer spatial units and

for longer durations a higher score. A direct conclusion from the second property

is:

25

• ∀ec, f(pab) ≥ f(pac) if pab.pd.length ≥ pac.pd.length ∧ pab.level ≥ pac.level.

These properties capture the intuition that the association between two entities is

higher when corresponding digital traces match closely at locations (i.e., appear at

finer levels of the sp-index, say, at the same restaurant rather than just in the same

city) or their temporal co-occurrence is longer.

Let Pab be the set of AjPIs formed by ea and eb. The overall score for this set

is defined as

F (Pab) =
∑

pab∈Pab

f(pab), (3.1)

which has to be further normalized to take into consideration the individual be-

haviors of ea and eb. It is evident that the AjPI involving an entity with many PIs

is less interesting than that with an entity having few PIs. Therefore, we define a

scoring function for individual PI pa, which is considered as a special case of the

AjPI score; i.e., f(pa) = f(paa). The score for the set of PI Pa is:

F (Pa) =
∑
pa∈Pa

f(pa) (3.2)

Clearly, ∀ea,∀eb, F (Pa) ≥ F (Pab), F (Pb) ≥ F (Pab).

Intuitively, closely associated entities are those who have a large presence in-

stance overlap; i.e., more adjoint presence instances and fewer total presence in-

stances for either entity. Thus we define the association degree between two entities

26

ea and eb as deg(ea, eb), which satisfies the following constrains.

• Normalization; i.e., deg ∈ [0, 1].

• Monotonicity; i.e., ∀ec, deg(ea, eb) ≥ deg(ea, ec) if Pc ⊆ Pb ⊆ Pa.

• Total order; i.e., deg(ea, eb) ≥ deg(ea, ec) if

J(J1(F (Pab), F (Pac)), J2(F (Pb), F (Pc))) ≥ δ′,

and deg(ea, eb) < deg(ea, ec) otherwise,

where J ∈ [0, 1] is a function monotonically increasing on J1 and monotonically

decreasing on J2, J1 ∈ [0, 1] is a function monotonically increasing on F (Pab) and

monotonically decreasing on F (Pac), J2 ∈ [0, 1] is a function monotonically decreas-

ing on F (Pb) and monotonically increasing on F (Pc), δ′ ∈ [0, 1] is a threshold. A

direct conclusion from the third constraint is:

• ∀ec, deg(ea, eb) ≥ deg(ea, ec) if F (Pb) ≤ F (Pc) ∧ F (Pab) ≥ F (Pac).

The digital traces of an entity are modeled as a set of PIs in this context, and

thus the association degree between entities can be considered as a type of set

similarity. The association degree measure, deg, is proposed as a generalization of

a large family of set similarity functions; e.g., Jaccard similarity, Dice similarity,

F-score. By introducing function F which flexibly maps an AjPI into [0, 1], we are

able to simulate different scenarios where the association degree between entities

27

grows linearly, super-linearly, or sub-lineraly with respect to their real set similarity

(regarding digital traces). Therefore, deg is applicable in most applications which

use the overlap of digital traces to measure the association between entities.

However, the measure proposed herein is not without limitation. First, the mea-

sure cannot be naturally extended to discover “following patterns” between entities;

e.g., when entity ea visits the same set of base spatial units as eb, but with unknown

and varying time lags. Second, the measure does not give full consideration to the

characteristics of spatial units in deciding the association degree between entities.

For example, AjPIs at a restaurant might be more important than at a shopping

mall in measuring the association between entities. In this thesis, we focus on

the general case of digital trace overlapping and will address the aforementioned

limitation in our future work.

Let E be the set of all entities. The problem of identifying the k most associated

entities (entities with the highest association degree) to a given query entity is

defined as follows.

Definition 4 (Top-k Query over Digital Traces). Given a query entity ep and

association degree measure deg, the top-k query over digital traces is to return the

set of entities Qk such that Qk ⊆ E − {ep}, |Qk| = k and ∀eq ∈ Qk, ∀et ∈

(E − {ep} − Qk), deg(ep, eq) ≥ deg(ep, et), where 1 ≤ k < |E|.

Without loss of generality, we assume that the value of k is in a proper range

28

such that for any entity eq in the result set, deg(ep, eq) > 0; i.e., all returned

entities must have formed AjPI(s) with the query entity. Otherwise we arbitrarily

complement the result.

29

4 Our Approach

A brute-force approach to answer top-k queries involves computing the association

degree between the query entity and all other entities. Clearly, the cost can be

prohibitive, as the number of entities are often in the millions and the number

of digital traces in billions in our target applications. As such, we introduce a

data structure, called the MinSigTree, that indexes entities based on their presence

instances, facilitating efficient pruning of entities to be examined during the search

for top-k answers.

As a high-level overview, we first organize the PIs of each entity as a sequence

of ST-cell sets. Then we construct a list of signatures for each entity which can be

considered as summaries of the entity’s PIs. Subsequently, we construct the Min-

SigTree that groups closely associated entities together based on their signatures.

30

4.1 Data representation

Digital traces have varying representations and formats. For example, raw WiFi

logs representing device presence are highly different than social media check-ins.

The first step is to organize the data by entity so that the presence instances of

an entity at each sp-index level and the resulting association degree between entity

pairs can be computed efficiently.

We build a sequence of ST-cell sets for each entity, where the length of the

sequence equals the height of the sp-index, m. The sequence of sets for entity ea is

denoted as seqa, and the i-th set in seqa, i ∈ [1,m], corresponding to the level i of

the sp-index, is denoted as seqia.

seqma , for the lowest level of the sp-index, can be obtained directly from ea’s

digital trace; i.e., for an ST-cell s, s ∈ seqma iff ea is present at s. For other levels,

ST-cell set seqia, i ∈ [1,m) is built from set seqi+1
a . For an ST-cell s = tzlx, s ∈ seqia

iff ∃s′ = tzly, s.t. s′ ∈ seqi+1
a and lx =parent(ly).

Example 4.1.1. Let L1, L2, L3, and L4 be four base spatial units, and parent(L1)=

parent(L2)=L5, parent(L3)=parent(L4)=L6, m = 2. Assume that entity ea has

presence in base spatial unit L3 at time T1, and L1 at time T2, then seq2a =

{T1L3, T2L1}. Since T1L3 ∈ seq2a and L6 =parent(L3), T1L6 ∈ seq1a, similarly,

T2L5 ∈ seq1a. Finally we have seq1a = {T1L6, T2L5}.

31

The ST-cell set sequence not only records the PIs of a single entity at any level

of the sp-index, but reflects the AjPI between entities as well. If entities ea and eb

form AjPIs at level i, then seqia ∩ seqib 6= ∅.

4.2 Data organization

Although ST-cell set sequences facilitate the direct retrieval of PIs of each entity

at any level, a brute-force approach would have to explore the whole search space

of all entities to identify the top-k answers, which is still too expensive. We thus

propose to group entities based on their common ST-cells to allow efficient prun-

ing of the search space. Note that the number of ST-cells in which an entity is

present could vary vastly from entity to entity (e.g., one short occurrence vs. fre-

quent and prolonged visits to multiple locations). If we consider each ST-cell as

a dimension, conceptually all entities can be considered as bit vectors in a very

high-dimensional space where each bit indicates whether that entity is present in

the ST-cell. However, if they are physically treated as such, the storage and com-

putation cost would be prohibitive when the number of ST-cells is large. To enable

more effective indexing, we employ a family of hash functions to map ST-cell sets

into a lower-dimensional space. This is achieved by assigning each entity a signature

at each level, with each value in the signature acting as a summary of the entity’s

PIs, and then grouping entities by their signatures.

32

4.2.1 Signature

We use nh hash functions to map an ST-cell set into a vector in a nh-dimensional

space, where each element of the vector is a hash value in range [0, |S| − 1]. Since

each entity is associated with an ST-cell set sequence of length m, for an arbitrary

entity ea ,we obtain m vectors, which form a list of signatures, siga, and we use

sigia to denote the i-th signature in siga (corresponding to level i in the sp-index),

and sigia[u] to denote the u-th hash value in sigia, where u ∈ [1, nh].

The way we compute signatures for each entity is similar to that for MinHash

[6]. A hash function hu maps each ST-cell to a value in the range [0, |S| − 1]. The

u-th value in the signature sigia corresponds to the minimal hash value produced

by hu across all ST-cells in seqia; i.e., sigia[u] = ⊥iu = min({hu(s)|s ∈ seqia}).

The hash functions employed above should satisfy that, for ST-cell s = tzlx

and s′ = tzly, if lx =parent(ly), then hu(s) ≤ hu(s
′). A simple implementation of

this constraint is achieved by hashing ST-cells at level-m first and assign values to

ST-cells at higher levels accordingly: let Cx be the child spatial unit set of lx, the

above constraint is satisfied by assigning hu(tzlx) = min({hu(tzlc)|lc ∈ Cx}). The

constraint guarantees the following property which makes signatures at different

levels comparable.

Theorem 1. For any entity e ∈ E, sigie[u] ≤ sigi+1
e [u] always holds.

33

The proof follows from above constraint and is omitted for brevity.

Example 4.2.1. Consider the following hash table:

T1L1 T2L1 T1L2 T2L2 T1L3 T2L3 T1L4 T2L4

h1 2 8 5 1 4 6 7 3
h2 8 3 6 5 4 1 2 7

Table 4.1: Hash table

Assume that the four base spatial units follow relations indicated in Example

4.1.1. Let ea, eb, ec and ed be four entities with the following ST-cell set sequence:

We first build sig2a given seq2a = {T1L2, T2L1}. Since h1(T1L2) = 5, h1(T2L1) = 8,

ea 〈{T1L5, T2L5}, {T1L2, T2L1}〉
eb 〈{T1L5, T2L5}, {T1L1, T2L2}〉
ec 〈{T1L6, T2L5}, {T1L3, T2L1}〉
ed 〈{T1L6, T2L6}, {T1L4, T2L4}〉

Table 4.2: ST-cell set sequence

we have sig2a[1] = 5; similarly, since h2(T1L2) = 6, h2(T2L1) = 3, we have sig2a[1] =

3. Therefore, sig2a = 〈5, 3〉. Subsequently, we build sig1a given seq1a = {T1L5, T2L5}.

Since L5 = parent(L1) =parent(L2), h1(T1L5) = min{h1(T1L1), h1(T1L2)} = 2;

similarly we have h1(T2L5) = 1, h2(T1L5) = 6, h2(T2L5) = 3. Therefore, sig1a =

〈1, 3〉. We build signatures for all entities and finally obtain the following signature

table.

34

ea 〈〈1, 3〉, 〈5, 3〉〉
eb 〈〈1, 3〉, 〈1, 5〉〉
ec 〈〈1, 2〉, 〈4, 3〉〉
ed 〈〈3, 1〉, 〈3, 7〉〉

Table 4.3: Signature table

As each value in a signature is obtained by hashing all ST-cells in the corre-

sponding set to a certain domain, it can be considered as a summary of the ST-cell

set. Hash values sigia enables us to determine certain facts regarding the ST-cells

contained in the set seqia.

Theorem 2. For signature sigia (i ∈ [1,m]) and an ST-cell s, if ∃u ∈ [1, nh] s.t.

sigia[u] > hu(s), then s /∈ seqma .

Proof. If s ∈ seqma , then sigma [u] ≤ hu(s). From Theorem 1 we know that sigia[u] ≤

sigma [u], and thus sigia[u] ≤ hu(s), which contradicts the condition.

Via Theorem 2, for a given signature sig, we can obtain a pruned set of ST-cells

such that entities bearing sig are guaranteed not to have presence in those ST-cells.

We use PS ia to denote the pruned set based on signature sigia. This property will

be explored in pruning the search space while computing the top-k answers.

35

4.2.2 MinSigTree

We next build the MinSigTree, an m-level tree structure, which groups entities

sharing similar signatures together. Each node in the MinSigTree has at most nh

child nodes (with nh being the number of hash functions used while computing

signatures), each leaf node contains a set of entities, and each entity is contained

in a single leaf node. If node N contains entity ea, we consider all ancestor nodes

of N to contain conceptually ea as well to ease notation (but no physical storage is

involved). For node N containing entity set EN , we compute a group-level signature

SIGN summarizing the PIs of all entities in EN .

Assuming that there is a virtual root node (at level 0), we use Algorithm 1 to

build the MinSigTree.

As Step 1, we fetch the level 1 signature of every entity, (sig11, sig
1
2, · · · , sig1|E|),

and partition these signatures into nh non-overlapping groups. This is done in a

way such that entity ea is routed to the u-th group (u ∈ [1, nh]) if ∀v ∈ [1, nh](v 6=

u), sig1a[u] ≥ sig1a[v]; i.e., u is the position of the maximal hash value in sig1a (ties

are broken arbitrarily). We call u the routing index of the u-th group (Line 3).

Step 2 involves computing a group-level signature for each node (Lines 5—7).

Assume that node Nu contains entity set ENu . Then the signature of Nu, SIGNu ,

can be computed by SIGNu [v] = mine∈ENu
{sig1e [v]}, where v ∈ [1, nh]. The newly

36

Algorithm 1 Building MinSigTree

Input: Entity set E , signatures of all entities
Output: MinSigTree
1: Initialization: MinSigTree root to contain all entities; root enqueued to pri-

ority queue Q;
2: for N : Q do
3: G = sets of entities in N grouped by routing index;
4: for g : G do
5: u = routing index of g;
6: Eg = entities contained in g;
7: SIGg = group-level signature of Eg;
8: Nu = node(u, SIGg[u], Eg);
9: N .addChild(Nu);

10: if i 6= m then
11: enqueue Nuto Q;
12: else
13: insert Eg to Nu;
14: end if
15: end for
16: end for
17: return MinSigTree;

created nodes are then inserted as the children of the root (Lines 8—9).

The second step computes a group-level signature for each node in a way that

any hash value in SIGNu is no greater than the corresponding hash values in the

signatures of entities in ENu . With signatures computed this way, we can obtain a

group-level pruned set,

PSNu =
⋂

e∈ENu

PS1
e (4.1)

All entities in ENu are guaranteed not to have presence in the ST-cells contained in

PSNu . Note that there is no need to store the pruned set of each node, as it can

37

be inferred from the group-level signature.

In practice, however, storing the entire signature of a node imposes space over-

head. It is evident from the grouping strategy that, given a group-level sig-

nature SIGN with routing index u, ∀v ∈ [1, nh](v 6= u), SIGN [u] ≥ SIGN [v]

(SIGN [u] � SIGN [v] when the number of employed hash functions is high). From

Theorem 2 it follows that the pruned set of a signature is mainly decided by the

large hash values in the signature. Thus one can materialize SIGN [u] only, instead

of SIGN . This greatly reduces storage costs, at the expense of pruning effectiveness.

We explore this further in Section 5.1.

Consider the signature table in Example 4.2.1. We fetch all level 1 signatures

and group entities accordingly. As a result, group N1 = {ed} with routing index 1,

N2 = {ea, eb, ec} with routing index 2, and SIGN1 = 〈3, 1〉, SIGN2 = 〈1, 2〉.

The grouping principle of Step 1 is designed in a way to prevent the group-level

signature from becoming too small. For example, if ec and ed were to be grouped

together, the group-level signature would be 〈1, 1〉, which would not be greater than

any hash values and the pruned set would thus be empty.

Now we have grouped entities at the first level of the MinSigTree based on the

level 1 signatures of all entities. However, the level 1 signatures reveal only the

PI patterns at the highest/coarsest sp-index level. Intuitively, entities belonging to

different groups at level 1 are guaranteed not to be strongly associated, but entities

38

belonging to the same group may still have different PI patterns at a finer-level.

For example, if two people both visited New York City, but one in Manhattan and

the other in Brooklyn, their PIs are different in the district level. Therefore, we

need to further partition the entities based on their finer-level signatures.

For node Nu at level i, if i 6= m (i.e. Nu is not at the leaf level), we fetch

the level (i + 1) signatures of entities in ENu (Lines 10—11), partition ENu by the

routing indexes, compute a signature for each new group, and add these newly

created nodes as children of Nu. We repeat this process until we reach the leaf

level. If an entity belongs to node Nf at the leaf level, we insert this entity to Nf

(Lines 12—13).

In the above example, group N1 = {ed}, N2 = {ea, eb, ec}. Since sig2d[2] >

sig2d[1], ed belongs to the sub-group with routing index 2; i.e. N12 = {ed}. Similarly,

we have N21 = {ea, ec}, N22 = {eb}. Group level signatures are SIGN12 = 〈3, 7〉,

SIGN21 = 〈4, 3〉, and SIGN22 = 〈1, 5〉. The overall MinSigTree is given in Figure

4.1.

By partitioning entities recursively at each level, each group will end up con-

taining entities that are similar at all sp-index levels, and thus very likely to result

in high association degrees with each other. In addition, the partitioning strategy

guarantees the following property.

Theorem 3. If Na is an ancestor node of Nd, then PSNa ⊆ PSNd
.

39

root

N1

3

N2

2

N12

7

N21

4

N22

5
ed ea ,ec eb

Figure 4.1: A sample MinSigTree

The proof follows from the building process and is omitted for brevity.

4.2.3 Incremental update

Similar to the building process, the MinSigTree also supports incremental update.

More specifically, after building the MinSigTree, we can deal with new records

of entity e by re-computing the signature on the path from the root to the leaf

containing e (or the leaf to insert e if e is a new entity). The time complexity of

this is linear w.r.t. the height of the MinSigTree. Updating MinSigTree is discussed

in detail in Section 7.8.

4.3 Cost of index construction

We analyze the I/O and processor cost of the index construction, and provide a

theoretical minimum memory usage to avoid repetitive data retrieval. Methods

40

proposed in this chapter require digital traces to be organized by entities, but

real world data have varying formats. In a system with adequate memory, we

can load all records into memory and directly fetch the digital traces of a specific

entity. However, when memory becomes the bottleneck, sorting the digital traces

by entity becomes a necessity. We employ the well-known B-way external merge

sort [11] algorithm to do the sorting. The I/O cost in the sorting process is 2N ×

d1 + dlogBdN/Beee, where N is the total number of pages storing the digital traces

and B is the number of buffer pages in memory. d1 + dlogBdn/Beee denotes the

total number of passes, and in each pass, we need to read and write each page

exactly once.

With access to the digital traces organized by entity, we can compute the sig-

nature list for each entity and build the MinSigTree. As described above, for each

entity, we obtain its ST-cell sets at m levels, employ a family of nh functions to

map each set to a hash space, and then build an m-level MinSigTree based on the

signatures of all entities. Therefore, the total processor cost in the indexing process

is O(|E|Cm3nh), where C is the average number of ST-cells that an entity has been

present in.

Since the signatures of each entity are calculated independently, we can fetch one

entity into memory at a time and update the MinSigTree incrementally. In order to

avoid extra I/O cost, we need to keep the MinSigTree and hash functions in memory.

41

Theoretically, the size of the MinSigTree is (nh)
m. However, since the total number

of entities is |E|, the number of leaves in the tree is bounded by |E|. Since each node

has one and only one parent node, the number of nodes at other level of the tree is

also bounded by |E|. Therefore, the size of the MinSigTree is min{(nh)m, |E| ×m}.

The minimum memory required is thus (min{(nh)m, |E| × m} + nh + C) to store

the MinSigTree, nh hash functions and the ST-cells of one entity.

42

5 Query Processing

The MinSigTree partitions entities to groups enabling an efficient search strategy

for top-k query processing. We present an algorithm for top-k query evaluation

using the proposed structure.

5.1 Early termination

Given a query entity eq with ST-cell set sequence seqq, the basic search strategy is to

compute an upper bound on the association degree between eq and each candidate

node of the MinSigTree (which contains a group of candidate entities), and then

progressively visit the node with the maximal upper bound until the top-k answers

are identified. We outline how to compute and gradually tighten the upper bound

of a node in order to prune more entities and terminate the search earlier.

We use Sq to denote seqmq , which contains all ST-cells in which eq is present.

For each node N in the search path, we determine an upper bound, UBN , for the

association degree between eq and entities in node N , to decide whether to continue

43

searching or to terminate.

Theorem 4. Let PSN be the pruned set of node N , and ev be an artificial entity

with ST-cell set Sv = Sq − PSN . Then UBN = deg(ev, eq).

Proof. Because Sv ⊆ Sq, we have Pv ⊆ Pq, where Pv and Pq are the PI sets of ev

and eq, respectively. Thus, Pvq = Pv, where Pvq is the set of AjPIs between ev and

eq.

Let EN denote the set of entities contained in N . Since ∀ep ∈ EN , Sp ∩Sq ⊆ Sv,

we have Ppq ⊆ Pv = Pvq. Therefore, F (Ppq) ≤ F (Pvq).

∀ep ∈ EN , if Pv ⊆ Pp, then F (Pp) ≥ F (Pv), and thus deg(ev, eq) ≥ deg(ep, eq);

otherwise,we have (Pv − Pp) 6= ∅ and (Pv − Pp) ⊆ Pq, and thus deg(ev, eq) ≥

deg(ep, eq) according to the definition of deg given in Section 3.2.

In practice, it is not required to compute the entire pruned set of a node; instead,

it can be conducted in a more efficient way. Let u be the routing index of the node

N . For an ST-cell s ∈ Sq, if hu(s) < SIGN [u], it is guaranteed that s ∈ PSN . All

such ST-cell s form the partial pruned set PPSN , which can be used to create the

artificial entity e′v with ST-cell set S ′v = Sq − PPSN . Since we only use one hash

value to build the partial pruned set, S ′v may be slightly larger than Sv, which leads

to a larger upper bound UB′N . However, as the hash value at the routing index

is, in general, far larger than the other hash values in the group-level signature,

44

UB′N should be very close to UBN . Introducing the partial pruned set thus leads

to significant savings in storage and computation cost. In the experiment we use

partial pruned sets to evaluate performance; details are given in Chapter 7.

As discussed in Theorem 3, the pruned set of a descendant node contains that

of its ancestor nodes. Therefore, in a specific branch of the MinSigTree, the upper

bound can be gradually tightened before we reach the leaf nodes and check the

contained entities.

5.2 Search algorithm

A search algorithm based on the early termination condition is given in Algorithm

2. We initialize the result as a priority queue sorted by association degree (from

high to low), and start the search from the root of MinSigTree (Line 1) whose upper

bound is set to 1. We fetch the node with maximal UB in the candidate list (Line

3) and insert all its child nodes into the candidate list (Line 8). Once we reach a

leaf node, we calculate the exact association degree between the query node and all

entities in this node, and update the result accordingly (Lines 10—13). The process

terminates when either (1) we have identified k entities, and the association degree

between any of these k entities and the query entity is no less than the maximal

UB of the remaining candidates (Lines 4—5), or (2) all leaves have been explored

(Line 16). It is worth noting that the algorithm is applicable to all association

45

degree measures as long as they satisfy the constraints of d specified in Section 3.2.

Algorithm 2 Top-k query processing

Input: MinSigTree T , k, query entity e, measure deg
Output: k most associated entities to e
1: Initialization: Result = { }, Candidate = {root of T};
2: while Candidate6= ∅ do
3: N = node with maximal UB in Candidate;
4: if Result.minKey≥N.UB and Result.size==k then
5: return Result;
6: end if
7: if N is not leaf then
8: Candidate = Candidate ∪{all child nodes of N};
9: else
10: EN = entities contained in N ;
11: for e′ : EN do
12: s = deg(e, e′);
13: Result.update(e′, s)
14: end for
15: end if
16: end while
17: return Result;

Example 5.2.1. Let us again consider the MinSigTree in Figure 4.1 as an exam-

ple. We use a Dice similarity-based function as the measure of association degree:

deg(ei, ej) = 0.1 × |seq1i ∩seq1j |
|seq1i |+|seq1j |

+ 0.9 × |seq2i ∩seq2j |
|seq2i |+|seq2j |

. Let ec be the query entity, and

the Top-1 result is desired. As indicated in Example 4.2.1, seq2c = {T1L3, T2L1},

h1(T1L3) = 4, h2(T1L3) = 4, h1(T2L1) = 8, h2(T2L1) = 3. We start the search from

the root. For node N1, as 3 < h1(T1L3) and 3 < h1(T2L1), we have PPSN1 = ∅,

and thus we know the upper bound of N1, UBN1 = 1. Similarly UBN2 = 1. The

46

candidate queue is (1 : {N1, N2}). Since there is no remaining node at level 1, we

dequeue N1, the only child of which is N12. As 7 > h2(T1L3) and 7 > h2(T2L1), we

have PPSN12 = {T1L2, T2L1}, UBN12 = 0.1× 1 + 0.9× 0 = 0.1, where 1 is the UB

of the parent node of N12, and 0 corresponds to the fact that both query ST-cells

are contained in PPSN12. We then dequeue N2. The first child of N2 is N21. As

4 < h1(T1L3) and 4 < h1(T2L1), UBN21 = 1. For node N22, as 5 > h2(T1L3) and

5 > h2(T2L1), UBN22 = 0.1 × 1 + 0.9 × 0 = 0.1. The candidate queue becomes

(1 : {N21}, 0.1 : {N12, N22}). We then dequeue N21. Since N21 is a leaf node, we

calculate the actual association degree between ea and entities contained in N21, and

obtain deg(ea, ec) = 0.15. Since deg(ea, ec) > 0.1, the algorithm returns ea.

47

6 Pruning Effectiveness Analysis

In this chapter, we introduce a hierarchical mobility model significantly extending

the well-established single-level individual mobility (IM) model [38]. In addition, we

theoretically analyze the pruning effectiveness of our algorithms using the proposed

model.

6.1 Individual mobility model

In this section we give a brief introduction of the IM model [38] which simulates

human mobility in real world. In the ensuing discussion, β, ρ, γ, α, ζ, µ, and ν are

all model parameters. For an entity e, the duration ∆t of each PI follows

P (∆t) ∼ |∆t|−1−β (0 < β ≤ 1), (6.1)

which indicates that the duration of each PI follows a power law distribution; i.e.,

entities tend to stay for a short duration at each base spatial unit than for a long

48

period.

When e leaves the current base spatial unit, it will either take an exploratory

jump to a new base spatial unit, or return to somewhere it has previously visited.

The probability of taking an exploratory jump is

Pnew = ρS−γ (γ ≥ 0, 0 < ρ ≤ 1), (6.2)

where S is the number of base spatial units visited. As e visits more base spa-

tial units; i.e., when S increases, the probability of e taking an exploratory jump

decreases.

The direction of an exploratory jump is selected randomly, and its displacement

follows

P (∆r) ∼ |∆r|−1−α (0 < α ≤ 2), (6.3)

which stipulates that an entity tends to jump to some base spatial unit near its

current position.

When taking a returning jump, the probability of returning to l is proportional

to the number of e’s previous visits to l. The visit frequency of e to its y-th most

visited base spatial unit follows

fy ∼ y−ζ (ζ ≥ 0), (6.4)

49

which indicates that most visits of an entity are to the few top-ranked base spatial

units.

Given a duration t, the total number of distinct base spatial units visited by e

is

S(t) ∼ tµ (µ ≥ 0), (6.5)

and the mean squared displacement follows

〈∆x2(t)〉 ∼ tν (ν ≥ 0), (6.6)

which indicates that the longer the duration, the further e will drift away from its

starting position.

6.2 Hierarchical individual mobility model

The IM model in Section 6.1 describes human mobility patterns at the finest spatial

level. However, AjPIs may occur at multiple levels. In this section, we give the

general spatial units distribution patterns and aggregate the mobility pattern at

the finest level into patterns at higher levels.

To ease analysis, we assume that the area of interest is a square with side length

L, and that it is equally divided into a grid of non-overlapping cells where each cell

is a square with side length Lbsu. Each base spatial unit corresponds to a cell in this

50

grid. Therefore, there are (L
Lbsu

)2 base spatial units in total. For the sp-index, the

size of each spatial unit (i.e., the number of base spatial units contained therein)

and the structure of the tree depend on two parameters:

• width; i.e., the number of nodes at each level; and

• relative density; i.e., the relative sizes of nodes at the same level.

Intuitively, there are more spatial units at a finer level in the tree. Therefore, we

assume that the width parameter follows a power law distribution w.r.t. level; i.e.,

Wl = Q · la, (6.7)

where l ∈ [1,m] is the level, a is a tunable parameter, and Q = (L
Lbsu

)2/ma serves

as a normalization factor.

In most cases, the nodes at the same level have varying sizes; e.g., business dis-

tricts usually have more buildings than rural areas. Therefore, we use the following

power law distribution to model the relative sizes of nodes at level l:

Di
l = Wl ·R · ib, (6.8)

where i ∈ [1,Wl] is the index of nodes at level l, b is a tunable parameter, and

R = 1/
∑Wl

i=1 i
b is a normalization factor.

51

We validate the applicability of distribution proposed in Equation (6.7) and

(6.8) with real world Point-of-Interest data. Details are given in Section 7.1.

With parameters L, Lbsu, a and b, we can obtain the number of spatial units and

also the size of each spatial unit at any level. Next we demonstrate how distributions

introduced in Section 6.1 modeling mobility at the finest level can be extended and

supplemented with other necessary distributions to derive a hierarchical mobility

model.

Let U be a spatial unit at level l which contains a set of base spatial units SU .

An exploratory jump of an entity takes place when (1) the entity jumps to a new

base spatial unit; and (2) the new base spatial unit is contained in a spatial unit

previously not visited, at level l. The probability of the first condition is given in

Equation (6.2); the probability of the second condition, referred to as Pout, can be

computed by

Pout(U) =
nUvisited
nUreachable

∑
s∈SU

1

|SU |
H(s), (6.9)

where nUreachable denotes the number of spatial units within one jump’s distance from

U , nUvisited denotes the number of spatial units visited among these reachable ones, s

is a base spatial unit in SU , and H(s) denotes the probability of jumping outside U

from s. It is evident that H(s) is a function of the distance from s to the boundary

of U as well as the jump distance distribution given in Equation (6.3). Therefore,

52

the probability of taking an exploratory jump to a new spatial unit, P ′new, is

P ′new(U) = Pnew × Pout(U) (6.10)

Since spatial units at higher levels have varying sizes and ranges, it is essential

to derive the probability of an entity having visited unit U (the size of which is

|SU |) within time t:

PU(t) =
|SU |
|S|

+
∑
U ′

M(U,U ′, t), (6.11)

where S denotes the set of base spatial units, U ′ denotes some spatial unit at level

l s.t. U 6= U ′. To derive this probability we have to consider two cases: the starting

position of the entity is within U or it is not. The probability of the former case is

|SU |
|S| . For the latter case, the starting position can be within any other spatial unit,

U ′. M(U,U ′, t) describes the probability of an entity starting from unit U ′ having

visited U within time t, which can be inferred by the mean square displacement

distribution over time t given in Equation (6.6).

The visit frequency of an entity to its y-th most visited base spatial unit is given

in Equation (6.4). At higher levels, the visit frequency rank, y, reflects not only

personal preference, but also unit characteristics: spatial units containing more

base spatial units are likely to be top-ranked. Therefore, we can safely assume

that the visit frequency follows the same distribution at higher level, where y now

53

describes the rank of the visit frequency to a particular spatial unit.

6.3 Analysis of pruning effectiveness

The model proposed in Section 6.2 enables us to simulate the movements of entities,

estimate the overlap between the digital traces of any entities at all levels, with

which we can calculate the expected association degree between an entity and its k

most associated entities, de. Thus we can discard all branches whose upper bound

is smaller than de. With more branches discarded, answering the query will be

more efficient. Here we formally define pruning effectiveness (PE):

Definition 5 (Pruning Effectiveness). Given a set of entities E, a query entity

e, an association degree measure deg, and a searching strategy S, if S accurately

answers a top-k query w.r.t. E, e, and deg by checking entities in set E ′ (E ′ ∈ E)

only, then the pruning effectiveness of S is |E
′|−k
|E| .

The average PE of is obtained averaging the PE of the top-k query answers over

multiple entities.

Evidently, the UB of a child node on the MinSigTree cannot be larger than that

of its parent nodes. Therefore, we can estimate PE by computing the percentage

of leaf nodes on MinSigTree whose UBs are larger than de.

Suppose that the total number of base spatial units is n and the duration is

54

t, the range of hash functions is thus [0, n × t − 1]. For entity ea with ST-cell set

sequence seqa and signatures siga, the probability of sigma [u] = i is

p(sigma [u] = i) =

|seqma |∑
x=1

Cx
|seqma |(

1

n× t
)x(

n× t− i
n× t

)|seq
m
a |−x (6.12)

The condition of sigma [u] = i is that, ∃Sa ⊂ seqma , Sa 6= ∅, s.t. ∀s ∈ Sa, hu(s) = i,

and ∀s′ ∈ seqma −Sa, hu(s′) > i. We assume that |Sa| = x, the probability of which

is Cx
|seqma |

[1/(n× t)]x, then all remaining ST-cells take hash values larger than i,

the probability of which is [(n× t− i)/(n× t)]|seqma |−x. By grouping entities with

the MinSigTree, the signature of a node N , SIGN , satisfies p(SIGN [u] = i) ≈

p(sigma [u] = i) (equal when N only contains ea).

Let r be the routing index of N , then the probability of SIGN [r] = i is

p(SIGN [r] = i) =

nh∑
x=1

Cx
nh
p(SIGN [u] = i)xp(SIGN [u] < i)nh−x,

p(SIGN [u] < i) =
i−1∑
x=0

p(SIGN [u] = x) (6.13)

With the knowledge of p(SIGN [r] = i) we can estimate the value distribution of

all leaves. Assume that range [0, n× t−1] is divided into nr consecutive equal-sized

sub-ranges R, then we use V [j] to denote the percentage of leaves whose value on

the routing index is bounded by R[j], 0 ≤ j < nr.

55

Let nc be the minimal number of ST-cells shared by entities with association

degree larger than de. For node N , if ∃Sap ∈ seqma , |Sap| ≥ nc, s.t. ∀s ∈ Sap,

s /∈ PSN , then N cannot be discarded.

Since hash functions are selected randomly, the hash values of all ST-cells are

independent. Suppose that SIGN [r] is bounded by R[j], then the probability that

N cannot be discarded is

q(R[j]) =

|seqma |∑
x=nc

Cx
|seqma |(

n× t− 1−R[j]

n× t− 1
)x(

R[j]

n× t− 1
)|seq

m
a |−x (6.14)

PE can thus be calculated with the following equation:

PE =
nr∑
j=0

V [j]q(R[j]), (6.15)

where V [j] denotes the percentage of leaf nodes with signatures bounded by

R[j]; and q(R[j]) is the probability that at least nc ST-cells in set seqma take hash

values greater than R[j], which is also the probability that a node with signa-

ture bounded by R[j] cannot be discarded, as discussed before Equation (6.14).

Therefore, V [j]q(R[j]) corresponds to the percentage of leaf nodes with signatures

bounded by R[j] in the MinSigTree that cannot be discarded; if we sum up all

V [j]q(R[j]) values for j ∈ [0, nr], we obtain the overall pruning effectiveness.

With Equation (6.15) derived from above discussion, we can estimate the prun-

56

ing effectiveness of the proposed approach given a set of mobility parameters and

spatial distribution parameters. We compare the theoretical pruning effectiveness

with the measured pruning effectiveness over two datasets in Section 7.7.

6.4 Scalability

In this section, we briefly discuss the scalability of the approach in terms of indexing

time, pruning effectiveness, and query processing time.

The total cost of the indexing step consists of IO cost (scanning the data once to

build ST-cell set sequences) and processor cost (computing signatures and building

the MinSigTree). The time of the scanning evidently grows linearly with the data

volume. The processor cost, as discussed in Section 4.3, is O(|E|Cm3nh), where

E is the entire set of entities, C is the average number of ST-cells an entity has

presence in, m is the height of the sp-index, and nh is the number of hash functions.

The values of |E|, C, and m are data dependent. It is clear that the processor cost

grows linearly with |E| and C, but super-linearly with m. However, in practice,

depending on the location distribution of the explored area, we can expect that m,

the height of sp-index, always takes small values; i.e., values ranging from 3 to 5.

We have proven in Section 6.3 (Equation (6.12) to (6.15)) that the pruning

effectiveness depends the number of hash functions only and is independent of data

volume related factors; i.e., |E| and C mentioned in the last paragraph. Therefore,

57

the size of the data has no effect on the pruning effectiveness; i.e., the approach is

pretty scalable in terms of pruning effectiveness.

The query processing time cost depends on both the pruning effectiveness and

the data volume. Since the pruning effectiveness is indifferent to data volume, it

is straightforward to conclude that the query processing time grows linearly w.r.t.

data volume.

We experimentally demonstrate the scalability of the approach in Chapter 7.

58

7 Experiments

In this chapter, we present a thorough experimental evaluation of our approach

using synthetic and real datasets, varying parameters of interest to explore the

sensitivity of our proposal as well as PE trends.

7.1 Settings

Environment. The experiments are conducted on an Amazon Web Service EC2 in-

stance, with a 30 core 2.3GHz Xeon CPU, 120GB of RAM, and ITB EBS Through-

put Optimized HDD (maximal throughput 1,750MiB/s). The programming lan-

guage is Java (version 1.8.1).

Datasets. We employ both real and synthetic datasets in our evaluation. Syn-

thetic data are used as it is easy to vary parameters for sensitivity analysis. The

synthetic dataset (referred to as SYN in the sequel) is generated by the hierarchical

IM model in Chapter 6 with varying values of the parameters α, β, γ, ζ, ρ, a, b

and m. Unless otherwise specified,we set α = 0.6, β = 0.8, γ = 0.2, ζ = 1.2,

59

ρ = 0.6, which correspond to the normal mobility pattern (as per [38]), and a = 2,

b = 2, m = 4 (a and b usually take values in the range [1, 2] in real datasets3, and

4 is the typical hierarchical level in a city). The sensitivity to these parameters

governing data characteristics is evaluated in Chapter 7.4. The locations in the

data are drawn from a set of 9 equal-sized sp-indexes with 250K locations in total.

The data consists of the digital traces of 100M entities for a period of 30 days.

The real dataset (referred to as REAL) is a WiFi hotspot handshaking data

set provided to us by a large telecommunications provider and includes 30 million

mobile devices and 76,739 WiFi hotspots. The hotspots are organized into a 4-level

sp-index.

The data distribution is depicted in Figure 7.1, demonstrating both data distri-

bution across levels as well as distribution of AjPI duration. Note that the vertical

axes in all these plots are in log scale. Figure 7.1(a) depicts the number of entities

forming AjPIs with a particular entity at each level on REAL. Given an entity e,

as shown in Figure 7.1(a), roughly 22 million entities form AjPIs with e at level

1 (two entities forming an AjPI at a finer level also form an AjPI at the coarser

levels), etc. Figure 7.1(b) illustrates the same distribution on SYN. Figure 7.1(c)

provides the duration distribution of AjPI at each level: roughly 20 million entities

form AjPI with e at level 1 for durations shorter than 100 hours, etc.

3https://data.cityofnewyork.us/City-Government/Points-Of-Interest/rxuy-2muj

60

2.2E+7

6.4E+6

1.6E+6

2.8E+5

1E+5

1E+7

1E+9

level 1 level 2 level 3 level 4

N
u

m
b

er
 o

f
en

ti
ti

es

(a) REAL data

6.5E+7

2.8E+7

5.7E+6

9.7E+5

1E+5

1E+7

1E+9

level 1 level 2 level 3 level 4

N
u

m
b

er
 o

f
en

ti
ti

es

(b) SYN data

Figure 7.1: Data distribution

61

1E+2

1E+4

1E+6

1E+8

level 1 level 2 level 3 level 4

N
u

m
b

er
 o

f
en

ti
ti

es

0-100 hours 100-200 hours

200-300 hours 300-400 hours

(c) REAL data

1E+2

1E+4

1E+6

1E+8

level 1 level 2 level 3 level 4

N
u

m
b

er
 o

f
en

ti
ti

es

0-100 hours 100-200 hours

200-300 hours 300-400 hours

(d) SYN data

Figure 7.1: Data distribution

62

Association degree measure. There are two properties any association de-

gree measure (ADM in sequel) must possess (as discussed in Section 3.2), namely

monotonicity with respect to AjPI level and duration. We use the following exten-

sible function as the ADM:

deg(ea, eb) =

m∑
l=1

lu(
|Pl

ab|
|Pl

a|+|Pl
b|

)v

max
, (7.1)

where max is a normalization factor guaranteeing the score falls into the range

[0, 1], |P lab| denotes the total duration of all level l AjPIs in set Pab, and u > 1 and

v > 1 are parameters that can be tuned. This ADM favors entities forming AjPIs

at finer levels for longer durations. Naturally the ADM may also take other forms

as long as they share the properties of Section 3.2. We focus our discussion on

the ADM proposed here, as our experiments with several other ADMs reveal very

similar trends and patterns.

Figure 7.2 provides the association degree distribution under different ADM

parameters, where the horizontal axes are u, v parameter combinations, bars of

different colors denote varying ranges of association degree, and the height of a bar

denotes the number of entities falling in the corresponding ADM range with the

query entity. From Figure 7.2, it is evident that most entities bear low association

degrees with a particular entity. In the following experiments both parameters

63

are set to 2 by default, and the sensitivity of the approach to ADM parameters is

discussed in Section 7.5.

7.2 Baseline approach

We consider the following approach based on locality as the baseline approach

for comparison purposes. At each level, we treat an ST-cell set of an entity as a

transaction, each ST-cell as an item, and use frequent pattern mining techniques

to find those frequently co-occurring ST-cells. As a result, ST-cells are partitioned

into clusters, where each cluster is expected to contain ST-cells that are close to

one another temporally and spatially. If there are n clusters in total, then we can

assign each entity an n-bit vector, where the i-th bit in the vector of e equals 1 if e

has presence in at least one ST-cell contained in cluster i, and 0 otherwise. We can

thus use a bit-map to organize all entities. Given a query entity eq, we compute

an ADM upper bound between eq and all bit-vectors. We start searching from the

entities indexed by the vector with the highest UB, and continue until k entities

are found where the minimal ADM of the k entities is already greater than the UBs

between eq and all remaining vectors.

The major drawback of such an approach is that in practice ST-cells show

low degrees of locality; e.g., people living in the same neighborhood may work in

different companies spread across the city, which makes it very difficult to iden-

64

1E+2

1E+4

1E+6

1E+8

2,2 2,5 5,2 5,5

N
u

m
b

er
 o

f
en

ti
ti

es

u,v

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

(a) REAL data

1E+2

1E+4

1E+6

1E+8

2,2 2,5 5,2 5,5

N
u

m
b

er
 o

f
en

ti
ti

es

u,v

0.1 0.2 0.3 0.4 0.5 0.6 0.7

(b) SYN data

Figure 7.2: Association degree distribution

65

tify frequently co-occurring ST-cells. The direct consequence is that the clusters

obtained demonstrate strong coupling and the bit vectors cannot capture the PI

patterns of entities well. Therefore, the upper bound is loose as will be discussed

later in Section 7.7.

7.3 Sensitivity to the number of hash functions

PE is closely related to the number of hash functions used to compute the signa-

tures, nh. We thus evaluate the PE of the proposed approach by varying nh, and

compare the measured PE in the experiment with the one predicted for the model

of Section 6.3. The results are presented in Figure 7.3.

From the result one can observe that the MinSigTree provides high PE with

more hash functions. The reason is that, compressing the large number of ST-cells

into a low-dimensional space makes entities less unique, or even indistinguishable.

With more hash functions employed, signatures can better summarize the PIs of

entities and thus only closely associated entities will be placed in the same group.

Diminishing returns occur when the number of hash functions reaches 1,000, as

each entity has become unique enough that further employment of hash functions

does not change the grouping.

As Figure 7.3 shows, the predicted PE is slightly better than measured, primarily

for the following reasons:

66

0

0.4

0.8

200 400 600 800 1000 1200 1400 1600 1800 2000

P
E

Number of hash functions

Measured

Predicted

(a) REAL data

0

0.4

0.8

200 400 600 800 1000 1200 1400 1600 1800 2000

P
E

Number of hash functions

Measured

Predicted

(b) SYN data

Figure 7.3: PE vs. the number of hash functions

67

• Spatial units in the hierarchical IM model are assumed to be rectangles for

analysis purposes, while in practice units can be in any shapes. As a result,

the mobility patterns at higher levels diverge from the model;

• It is assumed that the hash values are uniformly distributed on the range,

which is not always the case in practice.

7.4 Sensitivity to data characteristics

We evaluate the PE under different mobility patterns and location distributions by

varying all parameters in the hierarchical IM model. Since these parameters inde-

pendently control different aspects of mobility patterns and location distribution,

in each experiment we only vary one parameter and fix other parameters. The

results of answering Top-1, Top-10, and Top-50 query with 2,000 hash functions

under different data characteristics are presented in Figure 7.4.

One can observe that curves in Figure 7.4(a) show a descending trend, as α

controls the movement locality in the following way: as α increases, an entity is

more likely to jump to locations in proximity when it leaves the current position. A

higher level of locality will produce more closely associated entities, and thus lead

to better performance.

Curves in Figure 7.4(b) demonstrate little variation, which indicates that the

68

0.04

0.08

0.12

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

P
E

α

Top-1 Top-10 Top-50

(a)

0.08

0.09

0.1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
E

β

Top-1 Top-10 Top-50

(b)

Figure 7.4: PE vs. data characteristics

69

0.07

0.08

0.09

0.1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
E

ρ

Top-1 Top-10 Top-50

(c)

0.06

0.1

0.14

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
E

γ

Top-1 Top-10 Top-50

(d)

Figure 7.4: PE vs. data characteristics

70

0.06

0.1

0.14

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

P
E

ζ

Top-1 Top-10 Top-50

(e)

0.08

0.09

0.1

0.11

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

P
E

a

Top-1 Top-10 Top-50

(f)

Figure 7.4: PE vs. data characteristics

71

0.08

0.09

0.1

0.11

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

P
E

b

Top-1 Top-10 Top-50

(g)

0.07

0.09

0.11

3 4 5 6

P
E

m

Top-1 Top-10 Top-50

(h)

Figure 7.4: PE vs. data characteristics

72

approach is not sensitive to the expected duration of each presence instance. This

is because we partition PI into ST-cells, and consider the digital traces of an entity

as a set of ST-cells. As a result, whether these ST-cells are consecutive in time or

not has no influence on PE.

Parameters ρ and γ together control the tendency of an entity to return to

some previously visited location. With smaller ρ and larger γ, entities visit fewer

locations in total, which increases the locality. Therefore, Figure 7.4(c) depicts an

ascending trend and Figure 7.4(d) a descending trend. ρ acts as a linear parameter,

while γ is on the exponent; therefore curves in Figure 7.4(d) appear steeper than

in Figure 7.4(c).

Similarly, Figure 7.4(e) demonstrates a descending trend, as ζ influences the

locality by controlling the visit frequency distribution of an entity to locations.

With higher ζ, most visits are to a few most frequently visited locations, while

with lower ζ, visits are more uniformly distributed.

Curves in Figure 7.4(f) and (g) depict little variation, indicating that good PE

can be achieved under any spatial distribution patterns. As is clear from the search

algorithm, we touch the records of entity e only if the PI patterns of e resembles

the PI patterns of the query entity at all sp-index levels. Although the values of a

and b influence spatial units distribution at higher levels, base spatial unit numbers

and distributions in the explored area are always constant, which means that the

73

PI patterns of entities at the finest level do not change. As a result, groupings at

level m of the MinSigTree remain unchanged under different values of a and b.

From Figure 7.4(h) we observe that the approach performs better with smaller

m; i.e., fewer levels in the hierarchy. The reason is that with more spatial levels,

more entities form AjPIs with each other, and thus the search space grows. As

an example, if we assume that the spatial hierarchy is city-street-district-building,

then if m = 1, we only consider AjPIs at the building level, while with m = 2 we

consider AjPIs at both the building level and the street level, etc.

7.5 Sensitivity to ADM parameters

Values of u and v defined in the ADM of Section 7.1 provide different weights to

AjPI level and duration when selecting associated entities. The PE under different

ADM parameter values are presented in Figure 7.5.

As is clear from Figure 7.5, smaller u (level parameter) and larger v (duration

parameter) yield higher PE in both data sets. The reason is that, while ST-cells

contain timestamps, they do not contain level information. Since signatures are

computed based on ST-cells, the AjPI level is not encoded into the signature. As

a result, entities sharing AjPIs for longer duration are more likely to have similar

signatures than entities sharing AjPIs at finer levels. In Figure 7.2, fewer entities

are assigned high ADM for u = 2, v = 5 than other parameter combinations.

74

0.02

0.05

0.08

2 3 4 5

P
E

v

u=2 u=3

u=4 u=5

(a) REAL data

0.04

0.09

0.14

2 3 4 5

P
E

v

u=2 u=3

u=4 u=5

(b) SYN data

Figure 7.5: PE vs. ADM parameters

75

Consequently, under this combination we only need to check a small portion of

entities to identify query answers. The results reveal that the approach performs

better in cases where duration is the dominant factor of the association degree

between entities.

7.6 Sensitivity to memory size

If more data can be stored in memory, the time spent to fetch records from disk

is reduced. Therefore, the allocated memory size has an impact on query time.

Figure 7.6 depicts the time required to answer Top-1, Top-10, and Top-50 queries

with 2,000 hash functions under different memory sizes.

The horizontal axis in Figure 7.6 denotes the allocated memory size (relative

size compared to raw data). It is evident that the curves in Figure 7.6 depict

a descending trend as expected. The curve drops super-linearly with respect to

the allocated memory size. The reason is that, the relative position of entities

in the MinSigTree is not always guaranteed to be correlated to their association

degrees, especially when the number of hash functions is small (as discussed in

Section 7.3). As a result, although we organize records by their relative position in

the MinSigTree, closely associated entities are not always placed in adjacent disk

blocks. However, as the memory size reaches 40% − 50% of the dataset size, the

curves exhibit only small variation.

76

0

100

200

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Se
ar

ch
 t

im
e

(s
)

Memory size

Top-1

Top-10

Top-50

(a) REAL data

0

250

500

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Se
ar

ch
 t

im
e

(s
)

Memory size

Top-1

Top-10

Top-50

(b) SYN data

Figure 7.6: Search time vs. memory size

77

7.7 Sensitivity to result size

We also evaluate our approach as k (number of results desired in top-k) increases

compared to the baseline method in Figure 7.7. PE on both SYN and REAL

decreases slightly with increased result size, which is the consequence of both the

ADM distribution and the nature of the branch-bound technique. Let eq be the

query entity, ea be the i-th most associated entity to eq, and eb be the (i + 1)-th

most associated one. Let df(i) = deg(eq, ea)−deg(eq, eb) denote the ADM difference

between ea and eb. As Figure 7.2 indicates, the association degree distribution

ranges for entities are denser when the association degree is small; i.e., df(i) > df(j)

if i < j and df(i) → 0 as i increases. Since the number of hash functions used to

compute the signature is far less than the number of ST-cells, the UB of a node

is not always guaranteed to be very tight. Let UBb be the upper bound of the

node containing eb, then deg(eq, ea) < UBb may occur, especially when df(i) ≈ 0;

i.e., i is large, which means we always need to check eb before returning ea. As a

result, more entities are checked when the value of k; i.e., result size, is large, which

implies the trend of the curves in Figure 7.7.

The baseline method, as argued in Section 7.2, is based on the existence of

clusters among ST-cells, which is not typical in real-life digital traces. Consequently,

the PE of the approach is greatly limited, which explains the results in Figure 7.7

78

0

0.5

1

1 10 20 30 40 50 60 70 80 90

P
E

Result size

1000 functions

2000 functions

baseline

(a) REAL data

0

0.5

1

1 10 20 30 40 50 60 70 80 90

P
E

Result size

1000 functions

2000 functions

baseline

(b) SYN data

Figure 7.7: PE vs. result size (k)

79

showing that MinSigTree outperforms the baseline approach by large factors.

7.8 Indexing and update cost

The pre-processing cost to build the MinSigTree is depicted in Figure 7.8. Pre-

processing time grows almost linearly with the number of hash functions (nh), as

the most expensive step in the index construction process is the computation of

signatures for each entity, which requires nh hash operations for each ST-cell where

the entity has a presence.

The size of the MinSigTree is provided in Figure 7.8(b). Generally, each node in

the MinSigTree contains two integers, one indicating its routing index, and the other

recording the hash value of the routing index. A leaf node also includes a pointer to

the entities contained in this node. With more hash functions, each entity becomes

more unique and thus a node with entity set EN may split into several new nodes,

each containing a subset of EN . Therefore, the size of the MinSigTree increases

with the number of hash functions. However, the overhead is quite small compared

to the data size.

Figure 7.9 illustrates the time required for dynamic index updates. In particular,

the figure depicts the time to update records for 1 million entities in an already built

MinSigTree. Since the update process is independent from the data distribution,

we present experiments on SYN data. We report the time required under different

80

0

15000

30000

200 400 600 800 1000 1200 1400 1600 1800 2000

In
d

ex
in

g
ti

m
e

(s
)

Number of hash functions

SYN data

REAL data

(a)

0

100

200

200 400 600 800 1000 1200 1400 1600 1800 2000

In
d

ex
 s

iz
e

(M
B

)

Number of hash functions

SYN data

REAL data

(b)

Figure 7.8: Indexing cost

81

0

300

600

200 400 600 800 1000 1200 1400 1600 1800 2000

U
p

d
at

e
ti

m
e

(s
)

Number of hash functions

100%

70%

40%

Figure 7.9: Update cost

conditions: when 100%, 70%, and 40% of the entities updated are existing dataset

entities, respectively. The time to update grows linearly with the number of hash

functions as in the case of building the index. In addition, one can observe that

inserting new entities requires less time than modifying the records for existing

entities. The reason is that, when updating an existing entity we have to perform

the following steps: (1) locate the entity’s position in the MinSigTree, (2) remove

it from the corresponding leaf node in the index, (3) compute its new signature,

and (4) insert it to the proper node. In contrast, for a new entity only steps (3)

and (4) are required.

82

8 Conclusions and Future Work

8.1 Contributions

In this thesis, we have developed a generic association degree measure (ADM),

which is based on the presence instances of a single entity, and adjoint presence

instances between entities, to quantify the association, and formally defined the

problem of top-k query over digital traces. We have also developed a suite of

techniques to process such queries with high efficiency. The approach we propose

consists of three parts: (1) we transform the digital traces into ST-cell set sequences,

which facilitates efficient computation of the association degree between entities;

(2) we design a MinHash-based approach that computes a signature list for each

entity, so that entities with large overlaps on digital traces have similar signatures,

and we design the MigSigTree that groups entities with similar signatures together;

(3) we propose a search algorithm which takes advantage of the monotonic property

of MinSigTree and exploits an early termination condition to process top-k queries

with high efficiency. We have generalized a well-established individual mobility

83

model to the hierarchical spatial setting and analytically quantified the pruning

effectiveness of the proposed method based on the normal movement patterns of

entities in such an environment. We have also conducted extensive experiments on

both synthetic and real datasets to study the sensitivity of the proposed approach

to data characteristics and tunable parameters, and compare it against a baseline

method. The proposed approach shows strong and stable pruning effectiveness

across a variety of settings, and significantly outperforms the baseline method.

8.2 Future work

This study represents the first step towards a new research direction that inves-

tigates the relationship between entities based on their digital traces, and many

challenging questions remain. We envision three topics of follow up work that can

be immediately investigated: (1) answering approximate top-k queries: many ap-

plications require the results be returned with very short delay and approximate

answers would suffice. It is therefore interesting to develop new data structures

and algorithms to support the fast yet approximate processing of top-k queries

with certain quality guarantees; (2) embedding techniques: initially designed for

Natural Language Processing tasks, embedding techniques have also found applica-

tions in spatio-temporal data management. Transforming entities and ST-cells into

vectors in an embedding space will facilitate the use of machine learning methods

84

in processing similarity queries involving digital traces; (3) kNN join: similarity

join problems over digital traces, combining the kNN queries issued separately for

multiple entities together, are important yet challenging. Efficient processing of

kNN joins is the basis of a large family of data analysis and data mining tasks.

In summary, we initiated the study and formally defined the problem of top-k

query over digital traces, and developed a suite of techniques to efficiently process

such queries. We analytically quantified the pruning effectiveness of the proposed

method, and presented the results of extensive experiments on both synthetic and

real data sets demonstrating the practical utility of our proposal. Natural exten-

sions of the study, such as approximate top-k queries and kNN joins, are worthy of

further investigation.

85

Bibliography

[1] Tenindra Abeywickrama, Muhammad Aamir Cheema, and David Taniar.

“K-nearest neighbors on road networks: a journey in experimentation and

in-memory implementation”. In: Proceedings of the VLDB Endowment 9.6

(2016), pp. 492–503.

[2] Pritom Ahmed et al. “Efficient Computation of Top-k Frequent Terms over

Spatio-temporal Ranges”. In: Proceedings of the 2017 ACM SIGMOD Inter-

national Conference on Management of Data. ACM. 2017, pp. 1227–1241.

[3] Ahmed M Aly, Walid G Aref, and Mourad Ouzzani. “Spatial queries with

two kNN predicates”. In: Proceedings of the VLDB Endowment 5.11 (2012),

pp. 1100–1111.

[4] Senjuti Basu Roy and Kaushik Chakrabarti. “Location-aware type ahead

search on spatial databases: semantics and efficiency”. In: Proceedings of

the 2011 ACM SIGMOD International Conference on Management of data.

ACM. 2011, pp. 361–372.

86

[5] Tolga Bozkaya, Nasser Yazdani, and Meral Özsoyoğlu. “Matching and index-

ing sequences of different lengths”. In: Proceedings of the sixth international

conference on Information and knowledge management. ACM. 1997, pp. 128–

135.

[6] Andrei Z Broder. “On the resemblance and containment of documents”.

In: Compression and complexity of sequences 1997. proceedings. IEEE. 1997,

pp. 21–29.

[7] Lei Chen, M Tamer Özsu, and Vincent Oria. “Robust and fast similarity

search for moving object trajectories”. In: Proceedings of the 2005 ACM SIG-

MOD international conference on Management of data. ACM. 2005, pp. 491–

502.

[8] Zaiben Chen et al. “Searching trajectories by locations: an efficiency study”.

In: Proceedings of the 2010 ACM SIGMOD International Conference on Man-

agement of data. ACM. 2010, pp. 255–266.

[9] Farhana M Choudhury et al. “Maximizing bichromatic reverse spatial and

textual k nearest neighbor queries”. In: Proceedings of the VLDB Endowment

9.6 (2016), pp. 456–467.

87

[10] Ondrej Chum, James Philbin, Andrew Zisserman, et al. “Near Duplicate Im-

age Detection: min-Hash and tf-idf Weighting.” In: BMVC. Vol. 810. 2008,

pp. 812–815.

[11] Richard Cole. “Parallel merge sort”. In: SIAM Journal on Computing 17.4

(1988), pp. 770–785.

[12] Tobias Emrich et al. “An extendable framework for managing uncertain spatio-

temporal data”. In: Proceedings of the 2014 ACM SIGMOD International

Conference on Management of Data. ACM. 2014, pp. 1087–1090.

[13] Yixiang Fang et al. “Scalable algorithms for nearest-neighbor joins on big

trajectory data”. In: IEEE Transactions on Knowledge and Data Engineering

28.3 (2016), pp. 785–800.

[14] Elias Frentzos, Kostas Gratsias, and Yannis Theodoridis. “Index-based most

similar trajectory search”. In: Data Engineering, 2007. ICDE 2007. IEEE

23rd International Conference on. IEEE. 2007, pp. 816–825.

[15] Fosca Giannotti et al. “Trajectory pattern mining”. In: Proceedings of the

13th ACM SIGKDD international conference on Knowledge discovery and

data mining. ACM. 2007, pp. 330–339.

88

[16] Ralf Hartmut Güting, Thomas Behr, and Jianqiu Xu. “Efficient k-nearest

neighbor search on moving object trajectories”. In: The VLDB Journal—The

International Journal on Very Large Data Bases 19.5 (2010), pp. 687–714.

[17] Cheng-Kang Hsieh et al. “Immersive recommendation: News and event rec-

ommendations using personal digital traces”. In: Proceedings of the 25th In-

ternational Conference on World Wide Web. International World Wide Web

Conferences Steering Committee. 2016, pp. 51–62.

[18] Sergey Ioffe. “Improved consistent sampling, weighted minhash and l1 sketch-

ing”. In: Data Mining (ICDM), 2010 IEEE 10th International Conference on.

IEEE. 2010, pp. 246–255.

[19] Jianqiu Ji et al. “Min-max hash for jaccard similarity”. In: Data Mining

(ICDM), 2013 IEEE 13th International Conference on. IEEE. 2013, pp. 301–

309.

[20] Jae-Gil Lee, Jiawei Han, and Kyu-Young Whang. “Trajectory clustering: a

partition-and-group framework”. In: Proceedings of the 2007 ACM SIGMOD

international conference on Management of data. ACM. 2007, pp. 593–604.

[21] Jure Leskovec, Anand Rajaraman, and Jeffrey David Ullman. Mining of mas-

sive datasets. Cambridge university press, 2014.

89

[22] Ping Li and Kenneth W Church. “A sketch algorithm for estimating two-

way and multi-way associations”. In: Computational Linguistics 33.3 (2007),

pp. 305–354.

[23] Ping Li, Arnd Konig, and Wenhao Gui. “b-Bit minwise hashing for estimat-

ing three-way similarities”. In: Advances in Neural Information Processing

Systems. 2010, pp. 1387–1395.

[24] Zhenhui Li et al. “MoveMine: mining moving object databases”. In: Proceed-

ings of the 2010 ACM SIGMOD International Conference on Management of

data. ACM. 2010, pp. 1203–1206.

[25] James J Little and Zhe Gu. “Video retrieval by spatial and temporal struc-

ture of trajectories”. In: Storage and Retrieval for Media Databases 2001.

Vol. 4315. International Society for Optics and Photonics. 2001, pp. 545–553.

[26] Jiaheng Lu, Ying Lu, and Gao Cong. “Reverse spatial and textual k nearest

neighbor search”. In: Proceedings of the 2011 ACM SIGMOD International

Conference on Management of data. ACM. 2011, pp. 349–360.

[27] Chunyang Ma et al. “KSQ: Top-k similarity query on uncertain trajecto-

ries”. In: IEEE Transactions on Knowledge and Data Engineering 25.9 (2013),

pp. 2049–2062.

90

[28] Gurmeet Singh Manku, Arvind Jain, and Anish Das Sarma. “Detecting near-

duplicates for web crawling”. In: Proceedings of the 16th international con-

ference on World Wide Web. ACM. 2007, pp. 141–150.

[29] Anna Monreale et al. “Wherenext: a location predictor on trajectory pattern

mining”. In: Proceedings of the 15th ACM SIGKDD international conference

on Knowledge discovery and data mining. ACM. 2009, pp. 637–646.

[30] Johannes Niedermayer et al. “Probabilistic nearest neighbor queries on un-

certain moving object trajectories”. In: Proceedings of the VLDB Endowment

7.3 (2013), pp. 205–216.

[31] Julien Pilourdault, Vincent Leroy, and Sihem Amer-Yahia. “Distributed eval-

uation of top-k temporal joins”. In: Proceedings of the 2016 ACM SIGMOD

International Conference on Management of Data. ACM. 2016, pp. 1027–

1039.

[32] Michalis Potamias et al. “K-nearest neighbors in uncertain graphs”. In: Pro-

ceedings of the VLDB Endowment 3.1-2 (2010), pp. 997–1008.

[33] Tobias Preis et al. “Quantifying the digital traces of Hurricane Sandy on

Flickr”. In: Scientific reports 3 (2013), p. 3141.

91

[34] Hiroaki Sakoe and Seibi Chiba. “Dynamic programming algorithm optimiza-

tion for spoken word recognition”. In: IEEE transactions on acoustics, speech,

and signal processing 26.1 (1978), pp. 43–49.

[35] Zhou Shao et al. “Vip-tree: an effective index for indoor spatial queries”. In:

Proceedings of the VLDB Endowment 10.4 (2016), pp. 325–336.

[36] Mehdi Sharifzadeh and Cyrus Shahabi. “Vor-tree: R-trees with voronoi di-

agrams for efficient processing of spatial nearest neighbor queries”. In: Pro-

ceedings of the VLDB Endowment 3.1-2 (2010), pp. 1231–1242.

[37] Jieming Shi, Dingming Wu, and Nikos Mamoulis. “Top-k relevant seman-

tic place retrieval on spatial RDF data”. In: Proceedings of the 2016 ACM

SIGMOD International Conference on Management of Data. ACM. 2016,

pp. 1977–1990.

[38] Chaoming Song et al. “Modelling the scaling properties of human mobility”.

In: Nature Physics 6.10 (2010), p. 818.

[39] Lu-An Tang et al. “Retrieving k-nearest neighboring trajectories by a set

of point locations”. In: International Symposium on Spatial and Temporal

Databases. Springer. 2011, pp. 223–241.

92

[40] Bo Tang et al. “Extracting top-k insights from multi-dimensional data”. In:

Proceedings of the 2017 ACM SIGMOD International Conference on Man-

agement of Data. ACM. 2017, pp. 1509–1524.

[41] Michail Vlachos, Dimitrios Gunopulos, and Gautam Das. “Rotation invari-

ant distance measures for trajectories”. In: Proceedings of the tenth ACM

SIGKDD international conference on Knowledge discovery and data mining.

ACM. 2004, pp. 707–712.

[42] Michail Vlachos, George Kollios, and Dimitrios Gunopulos. “Discovering sim-

ilar multidimensional trajectories”. In: Data Engineering, 2002. Proceedings.

18th International Conference on. IEEE. 2002, pp. 673–684.

[43] Haozhou Wang et al. “Sharkdb: An in-memory storage system for massive

trajectory data”. In: Proceedings of the 2015 ACM SIGMOD International

Conference on Management of Data. ACM. 2015, pp. 1099–1104.

[44] Sheng Wang et al. “Answering top-k exemplar trajectory queries”. In: Data

Engineering (ICDE), 2017 IEEE 33rd International Conference on. IEEE.

2017, pp. 597–608.

[45] Wan-Lei Zhao, Hervé Jégou, and Guillaume Gravier. “Sim-Min-Hash: An

efficient matching technique for linking large image collections”. In: Proceed-

93

ings of the 21st ACM international conference on Multimedia. ACM. 2013,

pp. 577–580.

[46] Bolong Zheng et al. “Approximate keyword search in semantic trajectory

database”. In: Data Engineering (ICDE), 2015 IEEE 31st International Con-

ference on. IEEE. 2015, pp. 975–986.

[47] Kai Zheng et al. “Towards efficient search for activity trajectories”. In: Data

Engineering (ICDE), 2013 IEEE 29th International Conference on. IEEE.

2013, pp. 230–241.

94

