
DISCOVERY AND EFFECTIVE USE OF FREQUENT ITEM-SET MINING AND
ASSOCIATION RULES IN DATASETS

NIMA SHAHBAZI

A DISSERTATION SUBMITTED TO
THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

GRADUATE PROGRAM IN COMPUTER SCIENCE AND ENGINEERING
YORK UNIVERSITY

TORONTO, ONTARIO

NOVEMBER 2018

c© Nima Shahbazi, 2018

Abstract

The unprecedented rise in digitized data generation has led to the ever-expanding demand for sophisticated

storage and analysis methods capable of handling vast amounts of complex data, much of which is stored

within many databases. Owing to the large size of such databases, employment of sophisticated analysis

methods, such as data mining and machine learning, becomes necessary to extract useful insights regarding a

given system under study. Frequent itemset mining and association rules mining represent two key approaches

to mining knowledge stored in databases. However, handling of large databases often leads to time-consuming

calculations that necessitate large amounts of memory. In this regard, the development of methods capable

of enabling faster, less laborious search or pattern discovery remains a central focus in the field of data

mining. Incontestably, such methods could aid in faster processing and knowledge extraction, enabling new

breakthroughs in how knowledge is acquired from data and applied in real-world applications. However,

real-world applications are often hindered by limitations inherent to currently available algorithms. For

instance, many itemset mining algorithms are known to first store a given database as a tree structure in

memory. However, such algorithms fail to provide a tight upper bound on the number of nodes that will be

generated during the tree building process – accordingly, there are no upper bounds governing the amount

of memory that is needed to generate such trees. As such, practical implementation of frequent itemset

ii

mining algorithms is often restricted by memory consumption. However, despite the importance of memory

consumption in the applicability of itemset mining, this factor has not drawn adequate attention from the

data mining community and remains as a key challenge in its application. In addition, the majority of

algorithms widely used and studied to date are known to require multiple database scans, a factor which

restricts their applicability for incremental mining applications. In this regard, the development of an

algorithm capable of dynamically mining frequent patterns “on-the-fly” would open new pathways in data

mining, enabling the application of itemset mining methods to new real-world applications, in addition to

vastly improving current applications.

In this thesis, different approaches are proposed in relation to the above-mentioned limitations currently

hampering further progress in this significant area of data mining. First, an upper bound on the number of

nodes of well-known tree structures in frequent itemset mining is presented. Second, aiming to overcome the

memory consumption constraint, a memory-efficient method to store data processed by the frequent itemset

mining algorithm is proposed, where instead of a tree, data is stored in a compact directed graph whose

nodes represent items. Third, an algorithm is proposed to overcome costly databases scans in the form of

a novel SPFP-tree (single pass frequent pattern tree) algorithm. Lastly, approaches that allow for frequent

itemset and association rules to be practically and effectively used in real world applications are proposed.

First, the quality and effectiveness of frequent itemset mining in solving a real world “facility management

problem” is examined. Second, with aims of improving the quality of recommendations made to users, as

well as to overcome the cold-start problem suffered by new users, a hybrid approach is herein proposed for

the application of association rules into recommender systems.

iii

Acknowledgements

I would like to take this opportunity to convey my sincerest gratitude to the people who have lent me

their support throughout the duration of this thesis, as well as those who have contributed to set me on this

path with their support and guidance throughout all my years.

Firstly, to my advisor, Prof. Jarek Gryz, for agreeing to supervise me, for believing in me, and for his

tireless assistance throughout this journey. In addition to constantly motivating me to explore new limits,

his guidance was invaluable throughout both the research and writing phases of this thesis. Among his many

admirable traits, his patience, motivation, and vast knowledge are an inspiration to current and aspiring

researchers in this field.

To Prof. Aijun An, whose data mining class brought me the idea for my first research paper. She also

provided me with the opportunity to join the BRAIN team and to make use of their research facilities.

Without her precious support I could not have conducted this research.

Prof. Parke Godfrey, for his insightful comments and encouragement, as well as for the questions he

posed throughout this process, which allowed me to achieve new breakthroughs by contemplating broached

iv

topics from various perspectives. His extensive knowledge in databases and data mining enabled me to tackle

said challenges from various directions.

My lovely parents and my two sisters (Nasim and Ghazal), real-life heroes in my life story. These lovely

humans never ever let me settle for less than what I could achieve during my younger years, and have always

pushed me to new limits by believing in my abilities. Their love and affection have always strengthened

me, as shown through their unwavering spiritual support, their ongoing eager interest in my work, and their

readiness to always stand by me throughout difficult times. Thank you for being there for your son and your

little brother.

One of my best friends, Masoud Memarzadeh, from whom I learned so much. He has taught me not only

math, but so much about life. His sharp solutions to various problems have always motivated me to think

outside the box, which has helped me understand and formalize problems in formal forms.

Naresh Bangia and Ajay Agrawal, whom I met during my internship at the NextAI and Creative De-

struction lab. Their willingness to take on a new guy and show him the ropes undoubtedly helped me better

understand and convert various theories and academic concepts into applicable business ideas. I really

cherish my experience in CDL and NextAI.

Last but not least, I would like to thank my lovely wife, Arezoo, for her support during the entire length

of this doctorate. She has always motivated me to achieve this dream, and has stood by my side during the

entire time I struggled through this process, ensuring I never lost sight of my objectives. Thank you Arezoo,

I have reached the finish line thanks to your relentless support and devotion, and I couldnt be more grateful

for all you have done to help me get here.

v

Table of Contents

Abstract ii

Acknowledgements iv

Table of Contents vi

List of Tables xii

List of Figures xv

1 Introduction 1

1.1 MOTIVATIONS AND OBJECTIVES . 1

1.2 RESEARCH CONTRIBUTION . 4

1.3 THESIS ORGANIZATION . 6

vi

2 Background and Literature Review 8

2.1 PROBLEM STATEMENT . 8

2.2 FREQUENT ITEMSET MINING . 11

2.2.1 Search Space for Itemset Mining . 12

2.2.2 Transaction Database . 15

2.3 APRIORI FREQUENT ITEMSET AND ASSOCIATION RULE MINING 16

2.4 TRIE DATA STRUCTURE . 19

2.5 THE APRIORI-TID AND APRIORI-HYBRID ALGORITHMS 20

2.6 DHP OPTIMIZATION . 22

2.7 THE DIC AND PARTITIONING ALGORITHMS . 22

2.8 THE ECLAT ALGORITHM . 23

2.9 THE FP-GROWTH ALGORITHM . 26

2.10 THE FELINE ALGORITHM . 29

2.11 THE AFPIM ALGORITHM . 33

2.12 THE CP-TREE AND CAN-TREE CONSTRUCTION . 35

2.13 SUMMARY . 38

vii

3 Building FP-tree on the Fly: Single-Pass Frequent Itemset Mining 40

3.1 INTRODUCTION . 40

3.2 SPFP-TREE ALGORITHM . 41

3.2.1 Tree construction/reconstruction . 41

3.2.2 Correctness of the SPFP-tree algorithm . 46

3.2.3 Incremental mining with the SPFP-tree . 49

3.2.4 Interactive mining with SPFP-tree . 50

3.3 PERFORMANCE STUDY . 51

3.3.1 Performance study of execution time for different threshold levels 51

3.3.2 Performance Study of Incremental Mining . 53

3.3.3 Performance study of interactive mining . 54

3.4 SUMMARY . 55

4 Memory Efficient Frequent Itemset Mining 56

4.1 INTRODUCTION . 56

4.2 METHODOLOGY . 57

4.2.1 Graph Construction . 58

4.2.2 Edge Labeling . 59

viii

4.2.3 Identifying Transactions in the Graph . 62

4.2.4 Algorithms for graph construction . 64

4.3 PERFORMANCE RESULTS . 65

4.4 SUMMARY . 71

5 Upper Bounds for Alphabetical and FP-trees 72

5.1 PRELIMINARIES . 73

5.2 ALPHABETICAL-TREE UPPER BOUND PROCEDURE 79

5.3 The Upper Bound Procedure for Alphabetical-tree . 90

5.4 FP-TREE UPPER BOUND . 95

5.5 SUMMARY . 105

6 Improving the Cold-Start Problem in Recommender Systems with Association Rule

Mining and SVD-based Features 107

6.1 INTRODUCTION . 107

6.2 USER PROFILING . 109

6.3 HYBRID METHOD: ASSOCIATION RULE AND SVD-BASED FEATURE ENGINEERING

AS A SOLUTION FOR THE COLD-START PROBLEM . 116

6.3.1 Using Association Rules to Expand User Profiles . 116

ix

6.3.2 User-based similarity . 124

6.3.3 Conditional Probability / Expectation Features . 127

6.3.4 Matrix Factorization and Truncated SVD-based features 134

6.4 TRAINING AND VALIDATION . 136

6.4.1 Model Selection and Tuning . 138

6.4.2 Blending and Stack Generalization . 138

6.5 EVALUATION . 139

6.6 SUMMARY . 140

7 Using Frequent item-set mining for Maintenance Issue Classification 142

7.1 INTRODUCTION . 142

7.2 Machine Learning Algorithms for Textual Classification . 144

7.3 OVERAL STRUCTURE . 146

7.4 CASE STUDY . 147

7.4.1 Data Restructuring and Cleaning . 147

7.4.2 L1 Classifier Development . 148

7.4.3 L2 Classifier Development . 151

7.5 EVALUATION . 152

x

7.5.1 L1 Classifier Results . 152

7.5.2 L2 Classifier Performance . 154

7.6 SUMMARY . 159

8 CONCLUSIONS 163

8.1 FUTURE WORKS . 165

Bibliography 167

xi

List of Tables

2.1 Transaction Database for Example 2.1 . 11

2.2 Itemsets and their support in database of Example 2.1 . 12

2.3 Association rules and their support and confidence of Example 2.1 13

2.4 Transaction Database . 20

2.5 Transaction Database . 28

2.6 Transaction Database for CATS tree [45] . 32

4.1 Number of nodes used for data representation by FP-Growth, CanTree, and the Compact graph. 69

4.2 Memory Ratio Comparison. 70

5.1 Transaction Database . 74

xii

5.2 Items in transactions for Example 5.3. 89

5.3
w

c
values for all the transactions in Table 5.2 . 90

5.4 Upper Bound for different n and TC . 96

5.5 Upper Bound for n = 100 and different TC . 96

5.6 Upper Bound for TC = 1010 and different n . 97

5.7 Unused nodes in FP-tree with cut off subtraction. 100

6.1 Distributions of users and songs in train and test sets . 111

6.2 Meta-data for users and songs . 112

6.3 User item profile . 113

6.4 User extended (taxonomy) profile . 113

6.5 An example of transactional dataset base on extended profile 117

6.6 User extended (taxonomy) profile . 121

6.7 Features based on user. 132

6.8 Features based on user. 133

6.9 Model Parameters . 139

6.10 Result on AUC score for different set of features . 140

6.11 Average Importance Gain for different set of features . 141

xiii

7.1 Sample support matrix . 150

7.2 L1 classifier performance for all categories . 153

7.3 Class accuracy of L1 classifiers (8 most common L1 categories) 155

7.4 L2 classifier accuracy . 157

7.5 Hierarchical Prediction Accuracy of L2 Models using (Random Forest) 158

xiv

List of Figures

2.1 [2] Apriori Itemset Mining . 17

2.2 [2] Apriori Association Rule Mining . 18

2.3 Trie (Prefix-tree) based on Table 2.4 . 19

2.4 AprioriTid algorithm . 21

2.5 [64] Local Itemset Mining for Partition algorithm . 24

2.6 [64] Partition algorithm . 24

2.7 Eclat algorithm . 25

2.8 [31] FP-Tree and FP-Growth Procedure . 27

2.9 FP-tree with its header table . 28

2.10 rewriting FP-Growth Algorithm based on Eclat . 30

xv

2.11 CATS tree in addition of each transaction of Table 2.6 (from left to right) [45] 32

2.12 FP-trees for DB, DB ∪ db1 and DB ∪ db1 ∪ db2 (from left to right) [45] 35

2.13 CanTree for DB, DB ∪ db1 and DB ∪ db1 ∪ db2 (from left to right) [45] 36

2.14 [68] Construction of CP-Tree and comparison with CanTree 38

3.1 Hash tables and corresponding FP-tree . 43

3.2 Transaction {F,E} added . 44

3.3 Transaction {D,G} added . 44

3.4 Reconstruction . 45

3.5 SPFP-tree Algorithm . 46

3.6 Constructing TP
i fromT

P
i−1 . 49

3.7 Changing position in unpacked tree and then packing back the tree. 50

3.8 Performance as a function of min sup . 52

3.9 Tree Construction Time . 53

3.10 Number of nodes in each tree . 53

3.11 Incremental mining on mushroom with min sup = 0.1 . 54

3.12 Interactive Mining for Mushrooms Dataset . 54

xvi

4.1 Resulting graph after adding each of the transactions: T1 (a) T2 (b) T3 (c), and (d) the

completed graph after adding T1, T2 and T3 with the new coding structure. 59

4.2 a) A Transactional Dataset with four distinct items and all transactions with a length of

greater than 2 b) the proposed methods resulting graph . 63

4.3 For transactions which happen more than once we can set an integer to represent its count . 64

4.4 In order to speed up conditional tree creation, we can add a directional link for all codes

connecting to the first node as well. 65

4.5 Algorithm 1 shows FP Graph Construction . 66

4.6 Algorithm 2 shows the Conditional Tree Creation . 67

4.7 Performance of each of the algorithms on 6 different datasets 68

5.1 Constructing FP-tree and Can-tree from Table 5.1 . 76

5.2 Alphabetical layout-tree on A = {a, b, c} (total 23 = 8 nodes). 77

5.3 Adding 〈a, b, c〉 to the layout-tree of Example 5.2 . 79

5.4 Adding 〈a, c〉 to the tree of Figure. 5.3 . 79

5.5 Final alphabetical prefix-tree, after removing unused nodes (count = 0) of Example 5.2 . . . 80

5.6 Can-tree of Example 5.3, based on D1 . 82

5.7 Can-tree of Example 5.3, based on D2 . 82

5.8 Layout-tree on A = {a, b, c, d, e}. 83

xvii

5.9 Parsing transaction T1 : 〈a, b, c, d, e〉. 85

5.10 Parsing transaction T2 : 〈b, c, d, e〉. 86

5.11 Parsing transaction T3 : 〈c, d, e〉. 87

5.12 Parsing transaction T4 : 〈d, e〉. 87

5.13 Parsing transaction T5 : 〈e〉. 88

5.14 Parsing transaction T6 : 〈a, c, d, e〉 with 1 common node. 88

5.15 TD of Example 5.7 . 91

5.16 adding T3 = 〈a, b, c〉 to TD results in w = 2 and c = 1 . 91

5.17 FP layout-tree on A = {a, b, c, d, e}, where a <Freq b <Freq c <Freq d <Freq e (count = 0 fields

are removed for simplicity. 97

5.18 layout tree on A where each ai appeared 2(i−1) . 99

5.19 adding a4 with total appearance of 1 +
∑3

i=1 2i−1 = 24−1 . 99

5.20 FP-tree TD for Example 5.9 . 103

5.21 Increasing b’s Freq leads to a new node . 104

5.22 Increasing b’s Freq do not create a new node . 104

6.1 High level view of the TPR approach . 115

6.2 High level flow of the proposed method for expanding short profiles 118

xviii

6.3 The process of expanding user profile through association rules 120

6.4 The expansion process for a user profile with restrictions imposed 122

6.5 The overall structure for adding similarity-based feature on extended profile 126

6.6 Evolution of repeated listening (target) in time. 128

6.7 Number of songs per source type for the first 1 million observations and the corresponding

target values . 129

6.8 Number of songs per source type for the last 1 million observations and the corresponding

target values . 130

6.9 Distribution of played songs . 131

6.10 The overall structure of adding engineering and embedding features to the Classifier 137

7.1 Example reclassification of problem type categories . 148

7.2 Confusion matrices for L1 classifier models (99% of cases): TF (top left), TF-IDF (top centre),

Random Forest (top right), FIA (bottom left) and FIA with sliding window (bottom right) . 156

7.3 Confusion matrices for L2 models (top row: TF (left), TF-IDF (right), middle row: FIA (left)

and FIA + sliding window (right); bottom row: Random Forest (left), and hierarchical (right) 160

xix

Chapter 1

Introduction

1.1 MOTIVATIONS AND OBJECTIVES

Frequent itemset mining is an important task in data mining and has been deployed in a wide range of

applications, including bio-informatics [70], web mining [43], software bug mining [48], system caching [72],

among numerous others. Indeed, frequent itemset mining has been proven to be a successful technique for

extracting useful information from large datasets, spurring the development of numerous algorithms to date

with relevance in various application domains, including market analysis, inventory control, and many others

[79].

Association rules mining is a leading data mining technology that is employed in variety of fields to find

associations or relations between data items, as well as uncover key attributes of large data sets. Briefly,

the process enables the discovery of patterns, associations or correlations, as well as the identification of

relationships among patterns themselves with minimal human effort needed, thus easily unearthing valuable

1

information for use that would otherwise not be easily available due to the large size and complexity of modern

day databases. The vast applicability of the technique is undoubtedly confirmed by the number of algorithms

and models developed to date for a wide range of application domains, including telecommunication networks,

market analysis, risk management, and inventory control, among others.

Given a data set of transactions (each containing a set of items), frequent itemset mining finds all the

sets of items that satisfy the minimum support, a parameter provided by a user or an application. The

value of that parameter determines the number of itemsets discovered by the mining algorithm. If a low

minimum support threshold is chosen for a database, then a large number of frequent itemsets may be found.

On the other hand, a high minimum support threshold may exclude the presence of interesting, potentially

useful itemsets from the search results. Thus, the mining process usually needs to be run multiple times

before a satisfactory result can be achieved. In either case, the size of the data structure used by the mining

algorithms to store temporary results can vary widely and is difficult to predict in advance.

When dealing with large databases, the representation and storage of the data become critical factors in

the processing time of the mining algorithms. Therefore, successful application of a frequent itemset mining

algorithm for solving real world problems is often restricted by memory/CPU consumption. However, despite

the importance of memory consumption in the applicability of itemset mining, this factor has not drawn

adequate attention from the data mining community, remaining as a key challenge in its applications.

The majority of algorithms widely used and studied in frequent itemset mining to date are known to

require multiple database scans, a factor which restricts their applicability for incremental mining appli-

cations. In this regard, the development of an algorithm capable of dynamically mining frequent patterns

“on-the-fly” would open new pathways in data mining, enabling the application of itemset mining methods

to new real-world applications, in addition to vastly improving current applications.

In order to mine special patterns in the data, many itemset mining algorithms first store the database

as a tree structure in memory. However, there is no tight upper bound for the number of nodes and

2

the memory requirements for these trees. Many of these algorithms are well suited for interactive mining

where the database remains unchanged and only the minimum support threshold gets changed. Hence, such

algorithms work well in situations that follow the ”build once, mine many” principle; however, they are

inefficient in situations that require incremental mining (where the database is changed frequently) [45].

The mining of association rules represents yet another significant challenge in the field. The development

of mining association rules, whereby relations between distinct items in a dataset are revealed, has been

historically motivated by the potential benefits associated with analysis of supermarket transaction data,

as mining of such data allows for a more in-depth understanding of customer behavior regarding product

purchase. Chiefly, association rules mining aims at describing existent relations among distinct items with

respect to their selection by customers; particularly, how, why, or how often certain items are selected

together. For instance, the association rule bread cheese (40%) describes that two out of five customers

who bought bread also purchased cheese. Undoubtedly, such rules aid in revealing existing market needs

and interpreting customer behavior, consequently helping inform decisions regarding product pricing, store

layout, promotions, purchasing logistics, etc. Given its vast applicability, much of the research in this area

has been successfully applied to real world scenarios. However, in order to enhance the usability of the data

that is attained, improvements must be made to the technology. New advances in the field of association

rule mining would undoubtedly result in the increased applicability of the method, enabling more effective

usage of data and enhanced benefits to businesses and costumers alike. Given the ever increasing demand

for methods that enable sophisticated insight into patterns of customer behavior as well as the ever growing

digitalization of data, the development of novel techniques to discover and mine high quality association

rules from datasets demands significant attention.

However, the successful application of extracted rules towards solving real world problems is very often

restricted by the quality of the rules. In this respect, research involving the effective application of association

rules to real world applications (e.g, recommender systems) has proliferated in recent years. Indeed, since its

introduction by Agrawal et al. [2] in 1993, the association rule principle has received a great deal of attention

3

from the scientific and technological communities, resulting in an abundance of publications focusing on new

or enhanced algorithms to solve more efficiently such mining problems.

1.2 RESEARCH CONTRIBUTION

This thesis contributes to the data mining field in the areas of frequent itemset mining and association rules

mining for recommender systems. Contributions to the field of itemset mining include the development

and subsequent real-world application of an algorithm with demonstrated suitability for incremental min-

ing applications, a function that is made possible through decreased memory consumption and the single

database scanning modality of the algorithm. Further, the following work shifts the paradigm in the field of

association rules mining for recommender systems by introducing the feasible use of association rules mining

in recommender systems in the form of an award-winning hybrid system.

Two main challenges associated with frequent itemset mining algorithms concern costly databases scans

and large memory consumption.

Within the field of frequent itemset mining, most of the algorithms widely used and studied to date

require two database scans, and thus cannot be used for streaming data applications. Further, most of these

algorithms are designed for static datasets, where input transactions are fixed. Thus, incremental mining

algorithms are not easily adoptable for on-the-fly, fast, and memory efficient mining. In order to overcome

costly databases scans, a novel algorithm based on SPFP-tree (single pass frequent pattern tree) is proposed

in this thesis. The proposed algorithm allows for a single scan of the database, to mine efficient frequent

itemsets by dynamically changing the tree structure to create a highly compact tree on-the-fly.

When dealing with large databases, the representation and storage of the data becomes a critical factor

in the processing time of a given mining algorithm. Existing techniques deploy either list-based or tree-based

structures to store data. The problem with both structures, however, is that in cases where a large number

4

of itemsets needs to be processed by the algorithm, the application may run out of memory. In this sense, the

development of methods or structures that could lead to more efficient memory consumption have significant

value. Here, a memory-efficient method to store data processed by the frequent itemset mining algorithm is

proposed in this thesis: instead of using a tree, the data is stored in a compact directed graph whose nodes

represent items. In this way, the size of the graph is bounded by the number of distinct items present in the

database.

Two efficient tree structures, alphabetical- and FP-trees, are used to store itemsets in memory for mining

of special patterns. Here, an upper bound is provided for the maximum number of nodes in FP and

Alphabetical trees. The upper bound on the number of nodes is provided in the context of a greedy algorithm

for the alphabetical tree structure, while a closed form solution for the FP-tree is derived.

Two key methods, namely association rules and recommendation systems, can be scrutinized in relation

to their role in data mining applications. Given that both association rules and recommendation systems

aim at identifying items that appear together frequently, with the latter particularly targeted at providing

recommendations to the public, it should therefore be possible to couple these two techniques together to

create a more powerful hybrid system that relies on the strengths of each technique. Therefore, with aims

of improving the quality of recommendations made to users, as well as to overcome the cold-start problem

suffered by new users, a hybrid approach is herein proposed for the application of association rules into

recommender systems. The herein described hybrid approach won the ACM WSDM18 Recommendation

challenge. The herein presented approach is used to feed association rules extracted from a database into a

recommender system. Briefly, the information attained is used to improve the quality of recommendations

being made by the system to users, as well as to address the cold-start problem often encountered by

recommendation systems when new users are added to the database. The theoretical principles and formulas

developed in this work can also be adapted to a wide range of real-word recommender systems, thus extending

their usability beyond their theoretical value by enabling practical use of the proposed approaches.

5

Finally, the quality and effectiveness of frequent itemset mining in solving a real world “facility manage-

ment problem” are also examined as part of the current work. Here, the main objective of the task is to

classify complaints or Work Orders (WOs) that describe issues requesting specific action. Automatic text

classification applies machine learning techniques such as Random Forests, Bayesian networks, and support

vector machines (SVM) to train an algorithm to extract features from a set of pre-labeled text documents

in order to classify new documents based on their contents. Random Forests have demonstrated increased

performance due to reduced model variance without increasing bias. It has been shown that randomization

can de-correlate the trees in the ensemble, resulting in a highly effective classification method. Given that the

important features extracted by these algorithms are mainly words that appear together, it should therefore

be possible to address this task via application of frequent itemset algorithms to create a powerful yet simple

learning algorithm. The algorithm presented here not only predict classes with more than 90% accuracy, but

the running time is twenty times faster than random forest and memory usage is also one third of random

forest.

1.3 THESIS ORGANIZATION

In Chapter 2, an in-depth review of the associated literature is presented to include works that broach topics

and areas relevant to the herein presented body of work, with particular focus given to frequent itemset and

association rule mining algorithms. Given the extensive work carried out in this area to date, the presented

review aimed at avoiding duplication of existing works, as well as at providing an overview of the main

challenges currently being faced by the frequent itemset mining community.

Chapter 3 (from the published “Building FP-Tree on the Fly: Single-Pass Frequent Itemset Mining.”

paper), introduces a single pass frequent itemset mining algorithm suitable for data streams and interac-

tive/incremental mining.

Chapter 4 (from the published “Memory Efficient Frequent Itemset Mining.” paper), proposes a memory-

6

efficient algorithm for frequent itemset mining applications. Here, the proposed data structure is described

and key factors regarding the efficiency of the algorithm for frequent itemset mining are discussed.

Chapter 5 details the development of an upper bound for the number of nodes in well-known tree structure

representations for frequent itemset mining algorithms, where the upper bound is provided in the context of

a greed algorithm and a close form solution.

Chapter 6 (from the published “WSDM Cup 2018: Truncated SVD-based Feature Engineering for Music

Recommendation” paper), in turn, provides a proof-of-concept practical application of association rules to

solve a significant challenge faced by recommender systems, namely the cold-start problem. In this work,

association rules extracted from a database are used in conjunction with other well-known methods to

enhance the overall quality of recommendations proposed by the recommender system, while simultaneously

addressing the cold-start problem typically encountered when new user profiles with insufficient information

are introduced into the database.

Chapter 7 (from the “Machine learning and BIM visualization for maintenance issue classification and

enhanced data collection.” paper) presents a proposal to improve classification accuracy with respect to

Work Orders in facility management through employment of the frequent itemset approach FIA.

Finally, Chapter 8 offers conclusions regarding the proposed body of work and recommendations for

future research, including possible development activities to further enhance the usability of the presented

techniques.

7

Chapter 2

Background and Literature Review

The purpose of this chapter is to present an in-depth review of the topics, areas and works related to the

research presented here. Firstly, definitions and problem statements for frequent itemset and association

rule mining are presented. A brief but comprehensive in depth review of frequent itemset and association

rule mining algorithms (broad survey on prevalent techniques introduced in the past few years to address

this problem) is made.

2.1 PROBLEM STATEMENT

Definition 2.1. Let A = {a1, a2, ..., an} be a set of literals, called items. Set P = {ai1 , . . . , aik} ⊆ A, where

ik ∈ [1, n], is called a pattern (or more specifically an itemset or a k-itemset if it contains k items). A

transaction T = (tid, P) or Ttid = P is a tuple where tid is a transaction-id and P is a pattern or itemset.

A transaction database D is a set of transactions T . A transaction T = (tid, P) is said to contain (or

support) an itemset X, if X ⊆ P .

8

We put a total order <x on the items in A, where x represent item ordering. A pattern P = {ai1 , . . . , aik}

is said to be ordered if we change it to sequence P = 〈ai1 , . . . , aik〉, and ∀j ∈ [1, k − 1], aij <x aij+1 . Given

two ordered patterns, P1 = 〈ai1 , . . . , aim〉 and P2 = 〈aj1 , . . . , ajk〉, m ≤ k, if ∀s ∈ [1,m], ais = ajs , then

P1 is called a prefix of P2. An ordered transaction is a transaction with an ordered pattern or Ttid =

〈ai1 , . . . , aik〉, and ∀j ∈ [1, k − 1], aij <x aij+1 , {ai1 , . . . , aik} ⊆ A. Let |Ttid| = |〈ai1 , . . . , aik〉| = k.

Definition 2.2. The cover of an itemset X consists of the set of transaction identifiers of transactions that

contain X:

cover(X,D) = {tid | (tid, P) ∈ D, X ⊆ P}.

Definition 2.3. The support count (or frequency count) of an itemset X in D is the number of transactions

in the cover of X in D:

support count(X,D) = |cover(X,D)|

We also divide support count to the total number of transactions in database to get the support ratio or

support:

support(X,D) =
support count(X,D)

|D|

where |D| denotes the total number of transactions in database. We also omit D whenever it is clear from

context. The minimal support threshold σabs, with 0 ≤ σabs ≤ 1 is used to determine whether an itemset is

frequent by identifying if its support is more than σabs.

Definition 2.4. Let D be a transaction database, and σ a minimal support threshold. The collection of

frequent itemsets in D respective to σ can be formulated as:

F(D, σ) = {X ⊆ A | support(X,D) ≥ σ}

Problem 2.1. (Itemset Mining) Given D and σ, find F(D, σ).

The set of itemsets F are not the only items of interest, but rather their actual supports are more useful

in real practice.

9

Definition 2.5. If X and Y are itemsets, and X ∩Y = {}, an association rule can be expressed as X ⇒ Y .

This implies that if a transaction contains all items in X, it has to also contain all Y items. X is therefore,

known as the body or antecedent, and Y is accordingly known as the head or consequent of the rule. The

support/support count of association rule X ⇒ Y , equals X ∪ Y ’s support/support count. An association

rule is called frequent if its support is greater than a given minimal support threshold σabs. In this thesis

only the absolute minimal support threshold for association rules is considered and the subscript abs, unless

explicitly stated otherwise, is omitted.

Definition 2.6. The association rule confidence of X ⇒ Y is defined as the conditional probability of having

Y , with an existing X, in the same transaction, or:

confidence(X ⇒ Y,D) = Probability(Y |X) =
support(X ∪ Y,D)

support(X,D)

Note that we will remove database D, when it is clear from context. The rule is deemed confident if

Probability(Y |X) surpasses a given minimal confidence threshold γ, with 0 ≤ γ ≤ 1.

Definition 2.7. Suppose that transaction database D, minimum support threshold σ and minimum confi-

dence threshold γ are given. The collection of frequent and confident association rules with respect to σ and

γ can be formulated as:

R(D, σ, γ) =
{
X ⇒ Y |X,Y ⊆ A ∧X ∩ Y = {} ∧X ∪ Y ∈ F(D, σ) ∧ confidence(X ⇒ Y,D) ≥ γ

}

or simply R when A,D, σ and γ are clear from the context.

Problem 2.2. (Association Rule Mining) Given D, σ and γ, find R(D, σ, γ).

Not only the association rules R, but their actual support and confidence of the rules are useful in real

practice.

Example 2.1. Suppose that A = {beer, diaper, cheese, chocolate} and consider the database in Table 2.1.

Table 2.2 provides frequent itemsets in D where σ = 25% and Table 2.3 provides confident and frequent

10

Table 2.1: Transaction Database for Example 2.1

Database

1000 {beer, diaper, chocolate}

1001 { beer, diaper }

1002 { cheese, chocolate }

1003 {diaper,cheese }

association rules where σ = 25% and a γ = 50%. Based on Table 2.2 the set of the frequent itemsets, is as

follows:

F(D, σ) =
{
{beer}, {diaper}, {cheese}, {chocolate}, {beer, diaper}, {beer, chocolate}, {diaper, pizza},

{diaper, chocolate}, {cheese, chocolate}, {beer, diaper, chocolate}
}

The first ever algorithm proposed for solving the association rule mining problem was divided into two

phases [2]. In the first phase, all frequent itemsets are generated.In the second phase, all frequent and

confident association rules are generated. A Majority of association rule mining algorithms follow this two-

phased strategy. In the following sections, these two phases are discussed in further detail. In addition to

the support and confidence measures, other measures have been proposed for obtaining more interesting

association rules. Tan et al. [67] provide an overview of various measures proposed in statistics, machine

learning and data mining literature.

2.2 FREQUENT ITEMSET MINING

Discovering all frequent itemsets is a challenging task. The search space is exponential with respect to

the number of items occurring in the database. On the other hand, the support threshold, may limit the

output to a reasonable subspace. In addition, such databases are usually massive and contain millions of

11

Table 2.2: Itemsets and their support in database of Example 2.1

Itemsets Cover Support Count Support

{beer} {1000, 1001} 2 50%

{diaper} {1000, 1001, 1003} 3 75%

{cheese} {1002, 1003} 2 50%

{chocolate} {1000, 1002} 2 50%

{beer, diaper} {1000, 1001} 2 50%

{beer, chocolate} {1000} 1 25%

{diaper, cheese} {1003} 1 25%

{diaper, chocolate} {1000} 1 25%

{cheese, chocolate} {1002} 1 25%

{beer, diaper, chocolate} {1000} 1 25%

transactions, which makes support counting expensive. In this section, these two aspects are analyzed in

further detail.

The search space of all itemsets comprises precisely 2n−1 different itemsets, where n is the total number

of items in A. If A is large enough, it is impossible to employ a naive approach for generating and counting the

supports of all itemsets over the database in a reasonable time. In many applications, A contains thousands

of items leading to the number of itemsets; the power set of this is intractable. Numerous approaches have

been proposed to remedy this problem, to perform more directed searches in the search space.

2.2.1 Search Space for Itemset Mining

When deploying such a search, multiple collections of candidate itemsets are generated, and their supports

are computed until all frequent itemsets have been generated.

12

Table 2.3: Association rules and their support and confidence of Example 2.1

Rule Support Count Support Confidence

{beer} ⇒ {diaper} 2 50% 50%

{beer} ⇒ {chocolate} 1 25% 100%

{diaper} ⇒ {beer} 2 50% 66%

{cheese} ⇒ {diaper} 1 25% 50%

{cheese} ⇒ {chocolate} 1 25% 50%

{chocolate} ⇒ {beer} 1 25% 50%

{chocolate} ⇒ {diaper} 1 25% 50%

{chocolate} ⇒ {cheese} 1 25% 50%

{beer, diaper} ⇒ {chocolate} 1 25% 50%

{beer, chocolate} ⇒ {diaper} 1 25% 100%

{chips, chocolate} ⇒ {beer} 1 25% 100%

{beer} ⇒ {diaper, chocolate} 1 25% 50%

{chocolate} ⇒ {beer, diaper} 1 25% 50%

13

If the size of a collection of candidate itemsets surpass the available RAM, the I/O cost could become

very expensive. Furthermore, generating as few candidate itemsets as possible is vital, since computing the

supports for them can be a tedious task. In the best-case scenario, only the frequent itemsets are generated

and their supports are counted (which is not the case in general). The fundamental property used by most

algorithms is the support monotonicity property.

Lemma 2.1. (Support monotonicity property) Given database D and two itemsets X and Y , if X ⊆

Y, then support(Y) ≤ support(X).

Proof. This follows immediately from that cover(Y) ⊆ cover(X), which is true by construction. �

Therefore, if an itemset is infrequent, so must be all its supersets. In the literature, this property is

referred to as the downward closure property. Mannila and Toivonen [53] showed that frequent itemsets can

be denoted by the collection of maximal or minimal frequent itemsets, and proposed the notion of the border

of a downward closed collection of itemsets for this purpose.

Definition 2.8. (Border) The border Bd(F) contains those itemsets X ⊆ A such that all subsets of X are

in F , and no superset of X is in F :

Bd(F) =
{
X ⊆ A | ∀ Y ⊂ X : Y ∈ F ∧ ∀ Z ⊃ X : Z /∈ F

}

Those itemsets in Bd(F) that are in F are noted as the positive border Bd+(F), and those itemsets

in Bd(F) that are not in F are noted as the negative border Bd−(F). Below example better illustrate the

definition.

Example 2.2. Using the same F(D, σ) =
{
{beer}, {diaper}, {cheese}, {chocolate}, {beer, diaper},

{beer, chocolate}, {diaper, pizza}, {diaper, chocolate}, {cheese, chocolate}, {beer, diaper, chocolate}
}

of Ex-

ample 2.1.

The borders are:

14

• Bd(F) =
{
{beer, cheese}, {beer, diaper, chocolate}, {diaper, cheese}, {cheese, chocolate},

{diaper, cheese, chocolate}
}

• Bd+(F) =
{
{beer, diaper, chocolate}, {diaper, cheese}, {cheese, chocolate}}

}
• Bd−(F) =

{
{beer, cheese}, {diaper, cheese, chocolate}

}
Theorem 2.2. [53] Consider database D , and σ are given. Finding the collection F(D, σ) would require

that at least all itemsets in the negative border Bd−(F) to be evaluated.

It is worthwhile to note that the number of itemsets in the positive or negative border of any given

downward closed collection of itemsets of A can still be large, however, it is bounded by
(|A|
b |A|2 c

)
known as

Sperner’s theorem. It could become infeasible to generate all frequent itemsets for a given database if their

number is large. Furthermore, if the transaction database is dense, or σ is set too low, there could exist

many frequent itemsets, making the process infeasible to send them all to the output, considering that a

frequent itemset of size k contains at least 2k − 1 other frequent itemsets [52, 60].

2.2.2 Transaction Database

Access to the database is required to compute the supports of a collection of itemsets. The representation of

the transaction database is an important consideration in most algorithms. Theoretically, such databases can

be represented using a binary two-dimensional matrix where each row represents an individual transaction

and each column represent an item in A. There are several ways of implementing such a matrix. The most

commonly employed is the horizontal data layout where each transaction has a unique identifier along with

a list of items occurring in that transaction. An alternative layout is the vertical data layout, consisting of

a set of items, each followed by its cover [74]. Many algorithms use a tree structure to store the transaction

database in the memory for itemset mining problem. The best known is the FP-Growth Algorithm [32]. In

15

the following sections, we will discuss the well-known techniques and algorithms for frequent itemset and

association rule mining.

2.3 APRIORI FREQUENT ITEMSET AND ASSOCIATION RULE MINING

Agrawal et al. [2] developed the first algorithm to generate all frequent itemsets and confident association

rules, known as AIS. They also introduce this mining problem. Soon after, the algorithm was enhanced and

took a new name, the Apriori Algorithm. For the remainder of this chapter, it is assumed, unless stated

otherwise, that the list of all items is denoted as I. Figure 2.1 outlines the itemset mining phase of the

Apriori algorithm. Notation X[i] is used to represent the ith item in X. The k-prefix of an itemset X is

the k-itemset {X[1], ..., X[k]}. The algorithm iteratively generates candidate itemsets Ck+1 of size k + 1,

starting with k = 0 (line 1), by performing a breadth-first search through the search space of all itemsets.

The database, is scanned to count the supports of all candidate k-itemsets, and those candidate itemsets are

incremented (lines 5-10). All frequent itemsets are then inserted into Fk (lines 12-14). If all subsets of an

itemset are known to be frequent, it is deemed a candidate. For example, if C1 contains all items in I, and

at a certain level k, all itemsets of size k + 1 in Bd(Fk) will be generated. This can be done in two stages.

In the first stage join, Fk is joined with itself. Then, the union X ∪ Y of itemsets X,Y ∈ Fk is generated

only if they have the same k − 1-prefix (lines 14-16). In the second stage, prune, X ∪ Y is only put in Ck+1

if all of its k-subsets appear in Fk (lines 17-19).

When all frequent itemsets are generated, all frequent and confident association rules can be generated.

The algorithm for this purpose (shown in Figure 2.2) is very much like the frequent itemset mining algorithm.

The first step is to generate all frequent itemsets using frequent itemset mining algorithm. Next, every

frequent itemset I is separated into a candidate consequent Y and a antecedent X, where X = I \ Y . This

procedure starts with Y = {}, resulting in the rule I ⇒ {}, always holding with 100% confidence (line 4).

Afterwards, the algorithm iteratively produces candidate heads Ck+1 of size k + 1, starting with k = 0 (line

16

Figure 2.1: [2] Apriori Itemset Mining

17

Figure 2.2: [2] Apriori Association Rule Mining

5). A antecedent is considered as a candidate if all its subsets represent confident rules. This process is

closely identical to the candidate itemset generation in frequent itemset mining Algorithm (lines 11-16). The

support of I and X is retrieved from F for computing the confidence of a candidate head Y . All heads with

confident rules are put in Hk (line 9) and eventually inserted into R (line 20). Fortunately, the time needed

to find such rules would be equal to that of finding all frequent sets, if the number of frequent and confident

association rules is not too large.

18

Figure 2.3: Trie (Prefix-tree) based on Table 2.4

2.4 TRIE DATA STRUCTURE

Trie (or prefix-tree) is another data structure that is commonly used [7, 45, 49, 31]. Each k-itemset has a

node associated with it in a trie, which is also true for its k−1-prefix. The root node is the empty itemset. All

of the 1-itemsets are branched from the root node, and the item they represent determines their branches’

labels. Any other k-itemset is branched from its k − 1-prefix. All candidate k-itemsets are, at a certain

iteration k, stored at depth k in the trie. The path starts at the root node to find the candidate-itemsets

that are included in a transaction T . It is easy to use a trie for the join step of the candidate generation

procedure. This is due to the fact that all itemsets of size k with the same k − 1-prefix are denoted by the

branches of the same node [14]. Table 2.4 shows a transaction database and Figure 2.3 shows a prefix-tree

representation of this transaction database, if transactions are sorted alphabetically first and then added to

the tree.

19

Table 2.4: Transaction Database

tid Content Sort based on Alphabetical Order

1 {a, d, b, g, e, c} 〈a, b, c, d, e, g〉

2 {b, f, c, a, e} a, b, c, e, f〉

3 {b} 〈b〉

4 {d, b} 〈b, d〉

5 {a, c, b} 〈a, b, c〉

6 {c, b, e} 〈b, c, e〉

7 {b, c} 〈b, c〉

8 {c, b} 〈b, c〉

2.5 THE APRIORI-TID AND APRIORI-HYBRID ALGORITHMS

Many other algorithms that were proposed after the introduction of the original Apriori algorithm retain the

same general structure. However, by adding new methods, they try to enhance certain steps in the original

algorithm. Most research has focused on improving the support counting procedure of the Apriori algorithm,

due to the fact that the performance of the Apriori algorithm is primarily determined by the performance of

this procedure. It is worthwhile to recall that the performance of this procedure is primarily reliant on the

number of candidate itemsets in each transaction. Agrawal et al. proposed two other algorithms, AprioriTid

and AprioriHybrid along with the Apriori algorithm [4],[3].

The enhancement in AprioriTid algorithm lies in its ability to reduce the required time for the support

counting procedure. This is achieved by replacing each transaction in the database with a set of candidate

itemsets in that transaction (the adapted transaction database is denoted by C̄k). The algorithm is shown in

Figure 2.4. AprioriTid algorithm performs much faster in later iterations; however, its performance is much

slower than the original Apriori in first iterations. This is primarily a result of the additional overhead when

20

Figure 2.4: AprioriTid algorithm

C̄k does not fit into the RAM and consequently is written to the disk. More details of the implementation

in provided in [4].

To speed up the AprioriTid algorithm, AprioriHybrid [3] combines the Apriori and AprioriTid algorithms

in a particular way. The idea behind this hybrid algorithm is to use Apriori for the initial iterations and

switch to AprioriTid when C̄k fits into RAM. A heuristic is used for estimating the size of C̄k in the current

iteration. The algorithm decides to switch to AprioriTid, if this size is small enough. Although AprioriHybrid

is not airtight, it performs almost always better than Apriori.

21

2.6 DHP OPTIMIZATION

Park et al. [59] proposed Direct Hashing and Pruning (DHP) shortly after the Apriori algorithm was proposed

to reduce the number of candidate itemsets. The mechanism that differentiates DHP is its ability to gather

information about candidate itemsets of size k+ 1 during the kth iteration and the support of all candidate

k-itemsets is counted by scanning the database. This is done by hashing all (k+1)-subsets of each transaction

to a hash table after pruning. Each bucket has a counter in the hash table that keeps record of how many

itemsets have been hashed in it. This method decreases the number of candidate itemsets to be counted

significantly. However, there is a significant overhead for creating the hash tables and writing the adapted

database to disk at every iteration [59].

2.7 THE DIC AND PARTITIONING ALGORITHMS

Brin et al. [17] proposed the DIC algorithm which, by separating the database into intervals of a certain

size, attempts to reduce the number of passes over the database. In the first step, all candidate patterns of

size 1 are generated. Then, over the first interval of the database, the supports of the candidate sets are

counted. If all subsets are known to be frequent in advance, a new candidate pattern of size 2 is generated

based on these supports and its support is counted over the database along with the patterns of size 1.

After each interval, candidate patterns are generated and counted. The algorithm would stop when no more

candidates can be generated and all those generated have been counted throughout the database. While

this technique cuts the number of scans on database considerably, its performance is severely reliant on the

data distribution. Brin et al. [17] claim that the performance enhancements due to reordering all items in

support ascending order is insignificant. However, this is not in general true for Apriori. The supports of

the 1-itemsets that computed only in the first interval were the basis for the reordering in DIC. Therefore,

success of this heuristic is highly dependent on the data distribution [18].

22

Savasere et al. [64] proposed a different approach known as the Partition Algorithm. This approach

stores the database in the RAM via the vertical database layout and computes support of an itemset using

intersection of two of its subsets covers. The algorithm does so by storing the cover of each frequent itemset.

If X and Y are subsets of candidate k-itemset I, its support is computed by joining X and Y similar to

Apriori algorithm where covers of X and Y are intersected to make the cover of I. The approach described

means that covers of all itemsets would be stored in RAM. This would require a lot of space and makes it

impossible for large databases to be processed by this algorithm. In order to address this issue, the algorithm

divides the database into multiple disjoint partitions. The algorithm then computes frequent covers in each

division and puts them back in a unified order as shown in the Algorithm in Figure 2.5. The choice of

division size depends on the memory capacity and is determined in such a way that each partition can be

stored in RAM by itself. At the end, all different parts along with their frequent sets are merged to create a

superset of all frequent itemsets over the complete database. It is evident that if an itemset is frequent over

the whole database, it should also be relatively frequent in one of the partitions. Therefore, if the Algorithm

in Figure 2.5 is repeated multiple times, the end result would provide the most frequent itemsets over the

whole database as shown in Figure 2.6.

2.8 THE ECLAT ALGORITHM

The vertical database layout is used in Eclat and intersection based approach is used to compute the support

of an itemset as show in Figure 2.7. In this algorithm, line 6 computes the support while a candidate itemset

is represented by each set I ∪ {i, j}. In this approach, the number of candidate itemsets generated is much

larger due to the fact that the algorithm does not rely on the monotonicity property. The itemsets required

for the prune step are not available in this approach; therefore, Eclat generates itemsets by only employing

the join step from Apriori. If all items in the database are ordered in the support ascending order, it can

reduce the number of itemsets required to generate at each iteration and consequently will reduce the number

of covers computed from these itemsets. This will result in less memory space required to store these covers.

23

Figure 2.5: [64] Local Itemset Mining for Partition algorithm

Figure 2.6: [64] Partition algorithm

24

Figure 2.7: Eclat algorithm

This reordering can be performed at every iteration between line 6-11. It can be argued that the task of

counting support of all itemsets is much more efficient compared to Apriori. In addition, the total size of all

covers kept in the RAM is less compared to Partition. This is due to the fact that in this approach, their

covers are stored in RAM at iteration k [13].

After Eclat, another approach was proposed by Zaki and Gouda [75, 76]. This approach has the advantage

of computing the support of an itemset more efficiently using the vertical database layout. The enhancement

is possible due to less storage requirement stemming from storing diffset, the difference between the cover of

I and the cover of the k − 1-prefix of I, instead of the cover of a k-itemset I. Subtracting the size of diffset

from the support of its k − 1-prefix would result in the support of I. The main advantage of this approach

is that there is no need to store the support for each itemset and it can be called as a parameter in the

algorithm’s recursive function calls. Given the two diffsets of its subsets I ∪ i and I ∪ j, the diffset of an

25

itemset I ∪ {i, j}, with i < j follows recursively as:

diffset(I ∪ {i, j}) = diffset(I ∪ {j}) \ diffset(I ∪ {i}).

The new designation for this algorithm, known as dEclat [75], has proven to improve considerably the

performance of the algorithm. However, the layout for the original database is still in vertical. If we look at

an arbitrary recursion path of the algorithm, it starts from {i1}, all the way up to I = {i1, ..., ik}.

Hipp et al. [35] proposed a hybrid optimization that combines Apriori and Eclat. The hybrid approach

in the algorithm uses Apriori to start generating frequent itemsets in a breadth-first manner, and shifts to

Eclat at some point as a depth-first strategy. The user chooses the exact switching point in this scenario. If

too many transactions contain candidate itemsets for storing them into RAM, it is impossible to use Eclat,

while continuing with Apriori would not be a problem.

2.9 THE FP-GROWTH ALGORITHM

In the rest of this thesis, for simplicity, we assume that that items in transactions (itemsets of length 1) are

frequent.

FP-growth employs the horizontal as well as the vertical database layout for storing the database in

RAM. The way it works is by storing the actual transactions from the database in a trie structure (prefix-

tree) with a linked list of all attached transactions known as a Frequent-Pattern tree (FP-tree) [31], FP-tree

construction and the FP-Growth procedure is shown in Figure 2.8. As a pre-processing step, the items in

the database are ordered in support ascending order. Next, for the first step of the process, a root node

is created and labeled as ”null”. For each transaction in the database, the items are processed in reverse

order. Each node in the FP-tree has a counter to keep track of the transactions sharing it. Moreover, the

transaction item nodes following the prefix are generated and associated with their links. In addition, a

26

Figure 2.8: [31] FP-Tree and FP-Growth Procedure

header table is created to track occurrences of each item in the tree through node-links while storing its

support. The rationale behind storing transactions in the FP-tree in support descending fashion comes

from the fact that arranging the more frequently occurring items closer to the root would result in a higher

likelihood of them being shared and consequently keeping the overall representation size of the database

rather small. Example 2.3 shows the FP-tree with a header table of a sample transaction database.

Example 2.3. Suppose that all transactions are sorted in the support descending order as shown in Table 2.5.

The corresponding FP-tree (with the header table) illustrated in Figure 2.9.

27

Table 2.5: Transaction Database

tid sorted transactions

1 〈a, b, c, d, e, f〉

2 a, b, c, d, e〉

3 〈a, d〉

4 〈b, d〉

5 〈b, d, f〉

6 〈a, b, c, e, f〉

Figure 2.9: FP-tree with its header table

28

The supports of all frequent items for such FP-tree can be found in the header table. Clearly, the FP-tree

outlines a lossless representation of the complete transaction database. In fact, the linked list for an item

in the header table represents that item’s cover in a compressed format. In the meantime, each branch

stemming from root node represents a set of transactions in a compressed format. The FP-growth algorithm

behaves like Eclat, excluding the FP-tree. However, it requires additional steps for maintaining the FP-tree

structure while performing the recursion steps, in contrast to Eclat, which only requires maintaining the

covers of all itemsets generated. For every i ∈ I to generate all frequent itemsets in F , the i-projected

database of D is generated as described in algorithm shown in Figure 2.10.

FP-growth is mainly different from Eclat in representation and maintenance of the i-projected database.

This means that lines 5-10 of the Eclat algorithm need to be modified for FP-growth. To do so, the first task

is to compute all frequent items for Di (lines 6-10). Following the linked list that starts from the entry of i

in the header table can accomplish this. In the next step, it follows its path up to the root node and adds its

count to the support of each item it goes through. Next, for those transactions in which i occurs, the FP-tree

for the i-projected database is built and intersected with the set of all frequent items in D greater than i

(lines 11-13). Note that at every recursive step, item j occurring in Di represents the itemset I ∪{i, j}. This

means that for each frequent item i in D, all frequent 1-itemsets in the i-projected database Di are found

by the algorithm. Further optimization on this technique can be achieved as follows. Consider an FP-tree

consisting of a single path. It is evident that for such FP-tree, no recursion is required. Therefore, for single

paths of the tree the recursion part can be skipped. It is also worth to mention that one of the FP-growth

advantage is its ability to store dataset in a compressed format.

2.10 THE FELINE ALGORITHM

Most proposed algorithms for frequent itemset mining were for static datasets, where the number of trans-

actions and support threshold are fixed during the mining process. What happens when the number of

29

Figure 2.10: rewriting FP-Growth Algorithm based on Eclat

30

transactions and support threshold varies during the mining process? Variations based on Apriori and the

FP-Growth framework have been developed to address this problem, such as the FUP [21] and UWEP [8]

algorithms based on the Apiori framework, and AFPIM [38], FELINE with CATS tree [22], and CanTree [45]

Algorithms based on the FP-Growth framework.

In another effort, Cheung and Zaiane [22] used a CATS tree toward an interactive mining problem. A

CATS tree uses the idea of FP-tree for storage compression, and does not generate candidate itemsets for

finding frequent itemsets.

The tree construction process starts with a database scan. New transactions are added at the root

level and compared with the children nodes. This comparison helps avoiding duplicates. Hence, if the new

items have the same contents as the children, the transaction is merged with the node that has the highest

frequency level. This process continues recursively until all common items are found and duplicates are

eliminated. Any remaining items become an addition to the last merged node. To keep the hierarchy of

the tree, if a node has a frequency higher than its ancestors, it should be swapped in such a way that the

frequency always flows down the tree with higher frequencies at the higher nodes. To illustrate this process,

let us look at an example.

Example 2.4. For the database in Table 2.6, CATS tree is shown step by step after adding each transaction

in Figure 2.11.

The important steps in this process to be noted of are as follows. At first, the CATS tree is empty. In the

next step, Transaction {a, d, b, g, e, c} is added to the root, with no modifications. After adding transaction

{d, f, b, a, e}, common items i.e., (a, d, b, e) are merged. Therefore, node e is swapped with node g. As there

is not other common item, the remaining item from the new transaction i.e., (f) is added to a new branch to

e. Transactions {a} and {d, a, b} are added in a similar way. When transaction {a, c, b} is added, common

items a and b are merged. Nodes b and d are swapped and move up. However, there is an issue with common

item c, which cannot be swapped and merged due to violation of the frequency law. Therefore, item c is added

31

Table 2.6: Transaction Database for CATS tree [45]

Tid Contents

Original Database (DB) 1 {a, d, b, g, e, c}

2 {d, f, b, a, e}

3 {a}

4 {d, a, b}

First Group of insertion (db1) 5 {a, c, b}

6 {c, b, a, e}

Second Group of insertion (db2) 7 {a, b, c}

8 {a, b, c}

Figure 2.11: CATS tree in addition of each transaction of Table 2.6 (from left to right) [45]

32

as a new branch to b to address that issue.

It is important to make a few remarks. First, CATS trees have the property of keeping all items in every

transaction, whereas FP-trees only keep the frequent items. Second, CATS trees use local frequency to order

their nodes, whereas FP-trees employ global frequencies. For example, after transaction with Tid = 6 is

added, item e is above c on the left branch while item c is above e on the right branch. This leads to some

concerns regarding CATS tress.

1. Since the tree construction in CATS only used a single data scan (without prior knowledge of data),

its maximum compression is not guaranteed.

2. The tree compression is sensitive to (a) database transaction order and (b) transaction item order.

2.11 THE AFPIM ALGORITHM

Koh and Shieh [38] were the first researchers to introduce the Adjusting FP-tree for Incremental Mining

(AFPIM) algorithm in 2004. The main difference between this algorithm and its ancestor FP-tree is that it

uses another notion for the frequent item. In this algorithm, frequent item is an item, for which its frequency

is equal to or greater than a threshold known as preMinsup. This threshold is usually lower than that of

FP-tree user-support threshold minsup. In the same way as FP-tree, all frequent items are arranged in a

descending order based on their global frequency. When operations (i.e, insertions, modifications, and/or

deletions) are done on transactions, frequency of items change, and this implies that the order in the tree

needs to be adjusted. The AFPIM addresses this issue by swapping items in the tree using a bubble sort,

which recursively exchanges adjacent items.

Insertion may lead to new items in the tree, and may introduce new items by making non-frequent items

in the previous iteration to frequent items in the current database. Since in this situation, the existing

33

tree cannot be used to represent the database, the AFPIM algorithm needs to rescan the whole database

and build a new FP-tree, which can be computationally heavy. To illustrate the workflow of the AFPIM

algorithm, consider the following example. In the database shown in Table 2.6, let us set the threshold

preMinsup to 35% and the minimum support threshold minsup to 55%). The original FP-tree along with

the trees after the first and second insertions are shown in Figure 3.2. It is worthwhile to make some

observations. The AFPIM algorithm scans the entire database to determine the global frequency of each

item (i.e., (a : 4, b : 3, d : 3, e : 2)). In another scan, the algorithm only keeps the frequent items. In this

case items having frequency equal or greater than minsup must be frequent since minsup ≥ preMinsup; the

reverse does not hold.

For database (DB), FP-tree contains items a, b, d, and e. After transactions with Tid 5 and 6 are

inserted, item c (which had a frequency of 1 becomes frequent (because of preMinsup) with a frequency of

3 in DB ∪ db1. Since not all frequent items in DB ∪ db1 are in the FP-tree for DB, the AFPIM algorithm

needs to rescan the entire database (i.e., DB ∪ db1) again to build a new FP-tree. This will lead to lot of

I/Os, especially when the database is large.

As discussed earlier, one of the issues with AFPIM is its necessity to update items in the tree other than

the ones inserted/deleted due to affect of such items on other items. This usually occurs when ordering of

items needs to be changed since frequency of some items are affect by others. This brings another major

challenge with AFPIM compared to FELINE, as AFPIM employs bubble sort for exchanging adjacent tree

nodes recursively. Furthermore, bubble sort has O(h2) computational order, where h is the number of nodes

in the FP-tree. Hence, AFPIM can be computationally inferior compared to its competitors.

Another issue with the AFPIM is determining its parameter preMinsup. This additional parameter

ensures only items with a frequency equal to or higher than this threshold are kept in the tree. However,

finding a value for minsup itself is known to be challenging and preMinsup is an additional step to defining

that parameter. Therefore, finding two parameters makes it an even more challenging task to complete.

34

Figure 2.12: FP-trees for DB, DB ∪ db1 and DB ∪ db1 ∪ db2 (from left to right) [45]

2.12 THE CP-TREE AND CAN-TREE CONSTRUCTION

The Canonical-order Tree (CanTree) is a representation for a transaction database which does not need to

rescan the whole database when it is updated due to transactions being inserted or deleted. This is due to

the structure of this tree where items can be arranged in alphabetical or lexicographic order. The CanTree

algorithm works in the same way as the FP-tree; however, the main differences are that CanTree builds the

prefix tree based on a canonical order and mines the tree in the same fashion as FP-Growth algorithm [45].

This structure is meant to be used for incremental mining. One of the main advantages of this structure

is that it only requires one scan of the database compared to that of FP-tree where one scan is required to

determine frequency of the items and another to sort them numerically while keeping only the most frequent

ones. This feature brings some important properties to this algorithm and tree structure as follows.

• Property 1. Items are ordered in a fixed global canonical ordering.

• Property 2. Items’ orders are not affected by the frequency changes due to incremental updates.

• Property 3. A parent node always has the frequency that is at least more than the sum of all its

35

Figure 2.13: CanTree for DB, DB ∪ db1 and DB ∪ db1 ∪ db2 (from left to right) [45]

children.

Because of these unique properties, transaction can be easily added the CanTree structure without having

to rescan the database or searching for mergeable paths. Despite delivering the fastest tree construction

among all FP-growth based algorithms, CanTree has a major drawback, which is its mining performance

due to large branches in its trees. Figure 3.2 illustrates CanTree from Table 2.6 database.

A comparison between FELINE, AFPIM, and CanTree is provided below:

• FELINE

1. To maintain the CATS tree, single scan of the incremental database db would suffice.

2. Local frequency of the items in their path determines their descending order.

3. Updates in the original database DB can incur swapping or merging of tree nodes.

• AFPIM

1. The AFPIM algorithm would require two scans of the updated databased in the worst case.

2. Items global frequency positions them in a descending order in the tree.

36

3. Updates to the databased can cause swapping, splitting, and merging of the nodes.

• CAN-Tree

1. A single scan of the incremental portion of the database db would be sufficient.

2. The frequency changes brought in by updates to the database do not affect the canonical order

in which the items are arranged.

3. Updating items in the original database would not require nodes in the tree to be swapped.

The CP-tree, builds an FP-tree structure with a single pass of a transaction database. The item order

of a CP-tree is maintained by a list, called an I-list. After adding number of the transactions, if the item

order of the I-list differs from the frequency-descending item order (I-list contains the current frequency

value of the items), the CP-tree is restructured by the current item order and the I-list is updated. CP-tree

construction can be divided into two phases:

• Insertion phase: a) Transactions are read one at a time. b) Inserting them into the tree defined by

I-list. c) Updating the frequency of affected items in the I-list.

• Restructuring phase: a) Re-ordering the I-list with respect to frequency-descending order of items. b)

Reconstructing the tree to maintain the frequency descending order.

In order to keep the prefix tree the same as FP-tree, this algorithm adjusts the tree using bubble sort.

The algorithm needs to check all the branches in the tree to make sure the nodes in a branch are sorted,

and rearrange the nodes in the branches to keep them in the sorted order. This will make the overall

mining time reasonably long when a large fraction of branches in the tree require reconstruction. More

detailed implementation is available in [68]. Construction of CP-Tree and comparison with CanTree is

shown in Figure 2.14.

37

Figure 2.14: [68] Construction of CP-Tree and comparison with CanTree

2.13 SUMMARY

Mining frequent itemsets can be broadly divided into two categories; static mining and incremental/interac-

tive mining. The algorithms in static mining assume that the data set does not change during the mining

process. These algorithms can be further divided into two main subgroups: Apriori based algorithms and

FP-Growth based algorithms. The main weakness of Apriori-based algorithms is the use of multiple database

scans and numerous candidate generations. The FP-Growth algorithm eliminates the process of generating

candidates and reduces the number of database scans to two. Within the FP-Growth based framework, the

algorithms use a tree structure that captures all the necessary database information and mines the frequent

itemsets in two or one database scans. Algorithms in this group include AFPIM [39], FELINE with CATS

tree [23], Can-Tree [46] and CP-tree [68]. The FP-Growth based incremental algorithms perform mining

by incrementally updating a compact data structure, usually an FP-tree structure. APFIM and FUFP-tree

algorithms require two database scans in order to build the corresponding FP-tree. Upon updating the

database, if any infrequent patterns become frequent, the APFIM algorithm may require rescanning the up-

38

dated database and FUFP-tree may require rescanning the original database. Many other algorithms were

also proposed to improve the performance of FP-Growth. However, these algorithms only work on static

datasets and cannot be used for incremental or interactive mining. CanTree was designed for incremental

mining purposes. A user defined canonical order is used to arrange items and create the prefix tree which

encapsulates all database content. This method requires only one database scan. In the CanTree, items are

arranged according to a certain canonical order, which is unaffected by frequency changes. This method

does not require merging, splitting, or swapping of nodes. CanTree deploys a similar mining method to

FP-Growth by using a divide and conquer strategy. Conditional trees [31] are created for frequent items by

traversing the tree path upwards only. Only frequent items are included in the traversal step and they can

be easily looked up through a simple header table.

FELINE with the CATS tree is well suited for interactive mining but its efficiency for incremental mining

(when the database changes frequently) is unclear, due to its complex tree construction process. Can-Tree

captures all the database information in a prefix tree which is based on lexicographic-order and uses the

same mining technique as FP-Growth. The creation of a Can-Tree is faster than that of an FP-tree because

the use of the lexicographic order requires no swapping or reconstruction of the tree. But it suffers from

poor mining performance in comparison to FP-Growth due to the potentially large size of the resulting tree.

CP-tree does not maintain the FP-tree structure at all times, but intermittently (e.g, after an addition of

every five transactions) does so. In order to keep the prefix tree the same as FP-tree, this algorithm adjusts

the tree using bubble sort. The algorithm needs to check all the branches in the tree to make sure the

nodes in a branch are sorted, and rearrange the nodes in the branches to keep them in the sorted order.

This will make the overall mining time reasonably long when a large fraction of branches in the tree require

reconstruction.

39

Chapter 3

Building FP-tree on the Fly: Single-Pass Frequent Itemset

Mining

3.1 INTRODUCTION

The FP-Growth offers the advantage of avoiding costly database scans in comparison with Apriori-based

algorithms. However, since it still requires two database scans, it cannot be used on streaming data. Also,

the algorithm is designed for static datasets, where the input transactions are fixed and thus cannot be

used for incremental or interactive mining. Existing incremental mining algorithms are not easily adoptable

for on-the-fly, fast, and memory efficient FP-tree mining. In this chapter we propose a novel SPFP-tree

(single pass frequent pattern tree) algorithm that scans the database only once and provides the same tree

as FP-Growth. Our algorithm changes the tree structure dynamically to create a highly compact frequency-

ordered tree on the fly. With the insertion of each new transaction our algorithm dynamically maintains a

tree identical to an FP-tree. Experimental results show the efficiency of the SPFP-tree algorithm in both

40

incremental and interactive mining of frequent patterns.

In general, if we can scan the database only once to construct the FP-tree, we are able to mine patterns

incrementally. Several algorithms such as Can-Tree [46] and CP-tree [68] have been proposed to capture all

the necessary information in a database in one scan. The Can-Tree construction is based on the lexicographic

order (i.e. alphabetical order) while CP-tree is based on the frequency descending order. The key contribution

of this work is an algorithm that efficiently constructs an FP-tree on the fly, which is thus suitable for

incremental and interactive mining. The algorithm constructs an SPFP-tree (single pass frequent pattern)

by scanning the database only once and changes dynamically the structure of the tree to maintain the FP-

tree structure. Our experimental results show that frequent itemsets mining with the SPFP-tree algorithm

is more efficient than existing algorithms for single pass incremental mining.

The rest of this chapter is organized as follows. Section 3.2 presents the SPFP-tree construction for

incremental and interactive mining. Experimental results are described in Section 3.3 and the summary is

given in Section 3.4.

3.2 SPFP-TREE ALGORITHM

3.2.1 Tree construction/reconstruction

The construction of FP-tree in FP-Growth [33] consists of two major steps. First, the algorithm scans the

database and finds the total frequency count of each item. Second, in the second database scan, items in

a transaction are sorted in descending order of their frequency and added to the tree with prefix merging.

The key feature of our algorithm is to maintain the structure of the FP-tree at all times so it can be mined

efficiently due to its compact structure. The novelty of our approach lies in minimizing the number of branch

comparisons whenever a new transaction is added.

41

The proposed algorithm consists of three steps: tree construction, tree reconstruction, and mining.

Transactions are read, one at a time, and inserted into the tree. Then, the reconstruction phase modifies the

tree structure to maintain its FP-tree structure. Finally, the mining algorithm finds the frequent itemsets

from the tree. The major advantage of the method is the fact that the first two steps require only one

database scan. Since the third step is identical as the tree mining part of the FP-Growth algorithm, we only

describe the first two steps.

We maintain two hash tables for our algorithm. Hash1 stores pairs (item, frequency count) where

frequency count is the number of transactions containing the item, and Hash2 stores pairs (frequency count,

list of items). Thus, pairs in Hash2 are reversed pairs from Hash1 with items with identical counts collapsed

to a single entry (the use of both tables will be explained below). Pairs in both hash tables are ordered with

respect to the value of frequency count1. Consider a database with transactions: T1 : {A,B}, T2 : {A,C}

and T3 : {A,B,C}. The resulting hash tables are: Hash1 = {A : 3, B : 2, C : 2} and Hash2 = {3 : (A), 2 :

(B,C)}. The frequency count order of the items is: A > B ≥ C.

Let us walk through the details of the algorithm. We maintain a proper FP-tree at all times updating it

on the fly. Whenever a transaction is processed, the following steps are taken.

• Sort items in the transaction based on Hash1 frequency count.

• Add the transaction to the tree in a prefix-merging manner.

• Use Hash2 to determine if any item violate the frequency count order (we describe below what exactly

this involves) and reconstruct the tree if necessary.

• Update hash tables

As an example, consider the transactions and corresponding FP-tree in Figure 3.1(a) and Figure 3.1(b)

1A second hash map is used to store the order information. The full implementation can be find here:
https://gist.github.com/dgrant/6332309

42

Figure 3.1: Hash tables and corresponding FP-tree

respectively (the equivalent hash tables are shown in Figure 3.1(c)). The frequency count order of the items

is: A > B ≥ C ≥ D > E > F > K > G > H ≥ I ≥ J . We use Hash1 table for ordering items in each

transaction based on frequency count, and Hash2 to find out if the frequency count order has changed.

Now suppose transaction T23 : {F,E} is to be processed (so far, the frequency count for E and F is 5 and

4, respectively). The items in the transactions are first sorted with respect to the Hash1 table to E,F and

added to the tree in a prefix-merging manner as shown in Figure 3.2 (only the affected branch of the tree is

shown). After items E and F are added, we need to verify that there are no items in the Hash2 table with

frequency counts equal to the frequency counts of E or F (key 5 has only E as its value and key 4 has only F

as its value). This test guarantees that no tree reconstruction is required because adding items F and E does

not change the frequency count order of the items (still A > B ≥ C ≥ D > E > F > K > G > H ≥ I ≥ J).

A change in order is possible only when the added item has its current frequency count equal to that of

another item. In that case, the addition of a new transaction with that item increases its count above the

other one. Finally, the hash tables are updated as shown in Figure 3.2.

To see when the tree reconstruction is necessary, consider transaction T24 : {D,G}. Again, the items are

sorted first within the transaction according to their order in Hash1 table (D,G is the correct order) and

added to the tree as shown in Figure 3.3. Hash2 table (as shown in Figure 3.2, before it is updated for

43

Figure 3.2: Transaction {F,E} added

Figure 3.3: Transaction {D,G} added

T24) shows that there are two other items, B and C, whose frequency counts are equal to item D’s frequency

count (key 7 has values B, C, and D). In this case, we call node D a winner and nodes B and C losers. If

there is a branch in the tree where node D’s parent is B or C, it will lead to reconstruction of the tree (this

is necessary to retain the FP-tree properties). Finally, hash tables are updated as shown in Figure 3.3. Note

that the frequency order counts has now changed to: A > D > BC > E > F > K > G > HIJ .

Since there is a branch in the FP-tree where Ds parent is C (leftmost branch in Figure 3.1(b)), the

reconstruction phase is called. The winner node and all of its children are removed from its parent node

and all of its children are kept in memory to be reassigned as children to other nodes. This is illustrated

in Figure 3.4(a). Then the loser nodes local counts in the branch they share with the winner node are

decreased by the local count of the winner node as shown in Figure 3.4(b). If the local count of the loser

node is equal to the local count of the winner node, the loser node is removed as its count becomes 0. The

winner node is then added as a child to the immediate parent of the loser nodes, node A in our case, as

shown in Figure 3.4(b). If node As children already contain the winner node, then these two nodes can be

merged (changing the local count of the two nodes to the sum of the local counts). This is the only case in

which two nodes are allowed to be merged. Then the final phase of reconstruction commences as illustrated

in Figure 3.4(c). In this phase, we first iterate through the list of loser node items (nodes B and C), a copy

44

Figure 3.4: Reconstruction

of the loser node items will be created and added to the winner node as children. The counts of these items

however will be set to the winner node count (Node D with count 2). Finally, the child of the winner node

(node H) is added as a child to the bottom-most loser node.

The resulting tree is the same as the FP-tree, and all items are in frequency descending order (A > D >

B ≥ C > E > F > K > G > H ≥ I ≥ J). Once the FP-tree is built, frequent item sets can be mined

similar to the mining part of FP-Growth algorithm for different support thresholds.

Figure 3.5 shows the corresponding pseudo code of the algorithm. Lines 1 to 17 read each transaction

from the database, and update the Hash1 and Hash2 tables respectively. If items with the same frequency

counts are found (loser items) they are removed from the Hash2 table (line 6). Line 10 is in charge of the

reconstruction procedure given the winner and loser items and then the winner item with a new frequency

count (previous frequency count plus one) will be added to the Hash2 table.

In the reconstruction procedure, we find all parents of winner nodes which are in the losers list, and

decrease their local counts by winners local count (if the local count for losers node becomes zero, the node

will be removed). Then we add the winner node to the immediate parent of the loser nodes. Finally, starting

from the winner node, iterating through the list of loser nodes’ items, a copy of loser nodes will be created

and their local counts will be set the same as winners local count, and added to the winners children. Also,

the children of the winner node will be added to the children of bottom-most loser node (line 23 to 33).

45

Figure 3.5: SPFP-tree Algorithm

3.2.2 Correctness of the SPFP-tree algorithm

We prove the correctness of the SPFP-tree algorithm. The objective of the proof is to show that tree

maintained by the algorithm is the FP-tree. The key procedure is the tree reconstruction: we show that

46

after the reconstruction the resulting tree is an FP-tree.

Definition 3.1. Recall Definition 2.1 in chapter 2.

Definition 3.2. A batch B is a finite sequence of transactions. Let Bk be the first k transactions 〈T1, T2, ..., Tk〉

based on their appearance in D, 1 ≤ k ≤ N .

We define two operators: ||k as count operator and ≤k as ordered relation operator on Bk respectively:

|ai|k = count of ai in Bk 1 ≤ i ≤ n, 1 ≤ k ≤ N (3.1)

ai ≤k aj ⇐⇒ (|ai|k < |aj |k or (|ai|k = |aj |k and i < j)) 1 ≤ i, j ≤ n, 1 ≤ k ≤ N (3.2)

By Eq. 3.2 items are ordered in a batch by their frequency count, and if they have equal frequency count,

they ordered by their index. Consider a batch Bk, 1 ≤ k ≤ N . We define the following trees:

• An unpacked tree TU
k (1 ≤ k ≤ N) created from Bk, is defined as follows.

– All the transactions in Bk are attached to the root of the tree, R, without prefix merging.

• Packed tree TP
k (1 ≤ k ≤ N) created from Bk, is defined as follows.

– All the transactions in Bk attached to R with prefix merging (prefix-tree).

• Level k for each tree consists of all nodes that have distance k from the root (the root is at level 0).

The depth of the tree is equal to the largest level of the tree.

In order to create the FP-tree, we need to create the ≤N order first and then the TP
N tree (prefix merging).

Our algorithm works in N steps. In step i (1 ≤ i ≤ N) an ≤i order is created from the ≤i−1 order and

TP
i tree from TP

i−1 tree. In order to show that our tree is the same as FP-tree, it is required to show that

the proposed method for reconstructing TP
i from TP

i−1 tree is correct (which means that Equation 3.3 and

Equation 3.4 produce the same tree).

47

TP
i 1 ≤ i ≤ N (3.3)

TP
i−1 and adding Ti 1 ≤ i ≤ N (3.4)

If adding Ti does not require tree reconstruction, then Eq. 3.3 and Eq. 3.4 are obviously the same. But

suppose that, there are two items a and b with equal frequency counts in TP
i−1, and Ti consist of one item

a. By adding Ti = {a} the order of items a and b will change (that is, a ≤i−1 b and b ≤i a). Now a branch

in TP
i−1 needs reconstruction if it has items a and b, as shown in the left branch of Figure 3.6(a). In this

case for TP
i node a must have lower level than node b (because, b ≤i a). The algorithm will change the tree

structure as follows. First, Ti = {a} added to the tree in a prefix-merging manner (changing node a’s local

count in l1 from w to w + 1). See the right branch in Figure 3.6(b). Then node a in left branch will go to

level l1 in that branch and its local count k1 will add up with a local count w + 1 in that level. The total

local count for a is now k1 + w + 1. Then the k1 local count of b will be a’s child in the left branch and all

a’s children in the left branch will be b : k1’s child now. New local count for b in l1 will be (k2− k1). See the

right branch in Figure 3.6(c).

To validate the above reconstruction, consider the unpacked tree (the unpacked version o TP
i−1 is shown

in Figure 3.7, top left). Due to b ≤i a, item a must have lower level than item b. So for two items in the

same path we only change the position of those items one by one (now k2 − k1 local count of b will remain

in l1 level and the remaining k1 local count of b will be a’s child in left branch). In order to get back to TP
i

tree is to pack everything again, after that an exact replica of an FP-tree has been created, see Figure 3.7

(the steps in the figure shows that: first by considering unpack tree, and then changing the node position

one by one followed by packing back the result, that the same TP
i in Figure 3.6(c) is created).

48

Figure 3.6: Constructing TP
i fromT

P
i−1

3.2.3 Incremental mining with the SPFP-tree

Items can be stored in a compact FP-tree structure regardless of whether they are frequent or not. It is

then straightforward to add or delete transactions from the tree. In order to delete a transaction it needs

to be sorted first based on the Hash1 table. Then the tree is traversed downwards in order to find the

corresponding nodes and their local counts are decreased by one. Afterwards, the Hash1 and Hash2 tables

are updated and the reconstruction phase procedure of the tree will be called. To add a transaction one

needs to follow the routine described in the SPFP-tree algorithm.

49

Figure 3.7: Changing position in unpacked tree and then packing back the tree.

3.2.4 Interactive mining with SPFP-tree

Since the SPFP-tree algorithm builds a tree from all the items in transactions, it supports mining the tree

with different support thresholds. Given a minimum support threshold (min sup), the algorithm traverses

the tree upward from nodes that have a min sup count in Hash1 table, and builds the corresponding FP-

tree. The tree is in frequency-descending order and nodes placed below the traversed nodes are not frequent.

Similar to other interactive mining methods if the new min sup is greater the min sup in the previous round,

it is possible to cache the frequent patterns in previous round and reuse them in the next round. This allows

for further reducing of the total mining time.

50

3.3 PERFORMANCE STUDY

In this section, the performance of the SPFP-tree algorithm is evaluated in comparison with Can-Tree and

CP-tree. These two were chosen for comparison since they show good performance among other incremental

frequent item set mining algorithms. All programs are implemented in Java and run on Linux centos 6

with Intel core 2 duo 3.00 GHz CPU and 4 GB memory. The reported figures are based on the average

execution time over multiple runs. The experiments were performed on sever-al datasets from the UCI

Machine Learning Repository [11] specifically Chess, Connect, Mushroom and Accidents.

3.3.1 Performance study of execution time for different threshold levels

In the first experiment we measure how the minimum support threshold affects the runtime of the algorithms.

Figure 3.8 shows the runtime for SPFP-tree versus CP-tree and CanTree on different support thresholds for

four datasets. The total execution time includes time for the prefix tree construction, and frequent item set

mining steps. Total Time=Construction Time+Mining Time.

CanTree has smaller construction time in comparison to CP-tree and SPFP-tree, because it uses alpha-

betical order to add transactions, and no reconstruction is needed. But the tree generated by the CanTree

algorithm is larger than CP-tree or SPFP-tree (see Figure 3.10) resulting in larger mining time. The mining

time is highly correlated to the number of nodes in the pruned prefix-tree (pruned based on the minimum

support threshold). Therefore, when a low min sup is used the pruned prefix-tree (either for FP-tree or

alphabetical tree) has more nodes than when a higher min sup is used. This causes a dominance in mining

time, whereas when we have min sup (either for the FP-tree or alphabetical tree), the construction time will

be dominant.

Mining times for SPFP-tree and CP-tree are the same, since both algorithms have the same final FP-tree

structure. Therefore, the difference between them depends on the construction time. The construction time

51

Figure 3.8: Performance as a function of min sup

in the proposed algorithm is lower than that of CP-tree (see Figure 3.9). Therefore, in all cases it outperforms

the CP-tree algorithm.

Comparing SPFP-tree with CanTree, it can be seen that with an increase in the support threshold (for

example, more than 0.8 in the Connect dataset) the total required time for CanTree becomes smaller than

that of the SPFP-tree algorithm. This is due to the fact that a higher support threshold makes construction

time dominant, causing CanTree to have better performance due to its fast prefix-tree creation.

52

Figure 3.9: Tree Construction Time

Figure 3.10: Number of nodes in each tree

3.3.2 Performance Study of Incremental Mining

In the next experiment, we compare the performance of the respective algorithms for incremental updates

of SPFP-tree and CanTree. The experiment is performed on the Mushroom dataset for which 90% of the

transactions are preloaded, and the remaining 10% is incrementally added to the tree in ten steps. The

running time will be the time required for inserting the updated part of the database to the prefix-tree and

mining the prefix-tree. Figure 3.11 shows the performance of SPFP-tree versus CanTree.

The experiment demonstrates that SPFP-tree outperforms Can-Tree on running time. This is due to the

compact tree structure of SPFP-tree, which makes the mining part of its process much faster than CanTree.

53

Figure 3.11: Incremental mining on mushroom with min sup = 0.1

Figure 3.12: Interactive Mining for Mushrooms Dataset

3.3.3 Performance study of interactive mining

Interactive mining occurs when the user plans to mine a fixed database with different minimum support

thresholds. The results of interactively mining the Mushroom dataset with the proposed SPFP-tree and

CanTree are shown in Figure 3.12.

Both algorithms need to construct the tree once, and then prune it based on a min sup interactively.

The time reported here covers only the mining time (we assume the tree has already been built). The result

shows that the SPFP-tree out-performs CanTree, due to its frequency-descending item ordering and more

compact tree structure.

54

3.4 SUMMARY

In this chapter, a new method called SPFP-tree (single pass frequent pattern tree) for incrementally con-

structing FP-tree with a single pass of the data set has been proposed. The proposed algorithm rearranges

the tree on the fly, and keeps the items in each branch of the tree in frequency-descending order (just as in

FP-tree) after each transaction is added. Performance analysis results of SPFP-tree were reported against

other algorithms for incremental mining, including CanTree and CP-tree. Our results show that SPFP-tree

outperforms CP-tree in all the datasets on various support thresholds, and outperforms CanTree on lower

support thresholds. Moreover, SPFP-tree is more memory efficient compared to CanTree because of its dense

frequency-descending prefix-tree structure. The feasibility of the algorithm for incremental and interactive

mining was also presented.

55

Chapter 4

Memory Efficient Frequent Itemset Mining

4.1 INTRODUCTION

When dealing with large databases, the representation and storage of the data becomes a critical factor in

the processing time of the mining algorithms. The existing techniques deploy either list-based [61, 26, 25] or

tree based [47, 50, 32, 65] structures to store data. The problem with both structures, however, is that with

a large number of itemsets processed by the algorithm, the application may run out of memory.

The most popular structure for frequent pattern mining is FP-tree [32], which is a prefix-tree representing

the transactions with only the frequent items in a compact way. In an FP-tree, the number of nodes required

to create the tree can be substantially greater than the total number of distinct items in the dataset. This

happens because, in general, items can be repeated multiple times in the tree. In the worst case (admittedly

unlikely), the prefix tree can grow to a maximum of 2n nodes, where n is the number of distinct items in

a database. If a dataset holds 100 distinct items, to mine such a dataset a computer would require storage

56

capable of holding 2100 or approximately 1030 nodes. However, with the deployment of the method we

propose in this chapter, we would only require a storage capacity capable of storing a total of 100 nodes

(and at most 100 ∗ (100− 1)/2 labeled edges), which is much more feasible.

The main objective of this work is to propose a memory efficient method to store the data processed

by the frequent itemset mining algorithm. Instead of a prefix-tree, we store the data in a compact directed

graph whose nodes represent items. In this way, the size of the graph is bounded by the number of distinct

items present in the database.

Our algorithm was tested on six different data sets from the UCI Machine Learning Repository [12] and

the results were analyzed and compared against results obtained from two state-of-the-art methods: FP-

Growth [32] and CanTree [47]. The results not only showed a dramatic reduction in the amount of memory

required to store the data structure required for mining, but also showed that running time of our algorithm

was comparable to that of tree based frequent item set mining methods. In fact, in four of the tested datasets

(Connect, Accident ,T10I4D100K and Pumsb) our algorithm is superior with respect to runtime performance

to the CanTree method.

The rest of this chapter is organized as follows. Section 4.2 offers the details of the data structure and the

mining algorithm. Experimental results are presented in Section 4.3, while the summary is in Section 4.4.

4.2 METHODOLOGY

As indicated above, the goal of our method is to decrease memory requirements for the data structure on

which the mining for frequent patterns is performed. Thus, we replace the tree structure used in previous

methods [47, 32] with a labeled directed graph.

57

4.2.1 Graph Construction

Definition 4.1. Recall Definition 2.1 in chapter 2.

For this problem we require ordered transactions which are sorted with respect to their indices, that is,

Tk = 〈ak1 , · · · , akl
〉 , where aki ∈ A, 1 ≤ i ≤ l, l > 1.

Transactions with l = 1, only increase the total counts of an item and do not add an edge to the graph.

We define an edge-labeled directed graph as G = (N,E) where:

• N = A

• E =
⋃m

k=1({〈aki
, aki+1

〉|Tk = 〈ak1
, · · · , akl

〉 ∈ D, 1 ≤ i ≤ l − 1} ∪{〈akl
, ak1
〉|Tk = 〈ak1

, · · · , akl
〉 ∈ D})

We call the edges 〈aki
, aki+1

〉, 1 ≤ i ≤ l − 1 forward edge s, and the edge 〈akl
, ak1

〉 a backward

edge. Labels in our graph are binary strings, and we call them edge codes. A Label on a backward edge is

called backward edge code or BEC, and label on a forward edge is called forward edge code or FEC. For a

transaction with l items, l− 1 forward edge between two contiguous items and one backward edge between

the last and the first items in the transaction will be created.

Consider the following example.

Example 4.1. Let T1 : {a3, a2, a4, a1} , T2 : {a4, a3, a1}, and T3 : {a3, a2} be three transactions in a

database, with four distinct items {a1, a2, a3, a4}. In order to add a transaction to the graph, the items

within each transaction are first sorted based on their indices. Therefore, items in T1 are sorted so that T1 =

〈a1, a2, a3, a4〉 . Then the following set of edges E = {〈a1, a2〉, 〈a2, a3〉, 〈a3, a4〉, 〈a4, a1〉} is created for trans-

action T1. In this example three forward edges and one backward edge are created for the transaction (as

shown in Figure 4.1.a with red edges). Then T2 is added to the graph with two forward edges from a1 to a3

and from a3 to a4 and with one backward edge from a4 to a1 (as shown in Figure 4.1.b with green edges).

58

Finally, T3 is added to the graph. Since it shares its forward edge with T1 and has a distinct backward edge,

no new label is created for it (the labeling method is discussed in depth below). The graph with all three

transactions is shown in Figure 4.1.c.

Each transaction requires a unique backward edge which completes a cycle for that transaction in the

graph. When T1 was added to the graph a label r was assigned to it. Since T2 shares a common backward

edge with T1 we need to distinguish it from T1 s backward edge, hence we labeled it g . For the overlapping

edges such as these two we merge the labels (r+g in this example). When T3 is added to the graph, we create

a new backward edge 〈a3, a2〉 in the graph and since that edge is not yet in the graph an overlap of codes will

not occur on that edge and the existing code (r) is used for it. We will show later that each transaction can

be extracted from the graph with its unique backward edge code.

Figure 4.1: Resulting graph after adding each of the transactions: T1 (a) T2 (b) T3 (c), and (d) the

completed graph after adding T1, T2 and T3 with the new coding structure.

4.2.2 Edge Labeling

For efficiency of implementation, we designed a coding structure based on binary strings. Each transactions

code will be binary representation of powers of 2 values
(
20, 21, 22, · · ·

)
. In our example, r is represented

59

by 20 (r → 1) and g is represented by 21 (g → 10). We call the code assigned to each transaction a unique

backward code (UBC) as this code is unique for a backward edge of every transaction. In our example, T1

and T2 share a backward edge so they need two distinct UBCs; 1 is used for T1 and 10 is used for T2.

(Notice that T3 does not share a backward edge 〈a3, a2〉 with any other transaction hence it does not require

a distinct UBC.) When two transactions with different UBCs share an edge, we need to label that edge with

their two distinct UBCs. Again, for efficiency of implementation, we can do better: we use the logical OR

of their UBCs. T1 and T2 have two common edges in the graph, 〈a3, a4〉 and 〈a4, a1〉. The UBCs of these

transaction: 1 and 10 respectively, are ORed together to create FEC and BEC with the value 11. On the

other hand, knowing the value of the edge code to be 11 we can deduce that this it is a combination of the

UBC 1 and the UBC 10. The complete labeled graph for the three transactions is shown in Figure 4.1.d.

We now show formally how transactions are assigned their UBCs and how these UBCs are represented as

graph labels. For the smallest transactions containing just two items, the corresponding UBC is calculated

as follows:

UBC (< ai, aj >) =

1 j − i = 1

10
(j−2)(j−3)

2 .10i otherwise

(4.1)

Thus, in Example 1, the UBC of T3 is equal to 1.

For transactions with more than two items, the maximum UBC of consecutive pairs within that trans-

action is calculated as follows:

UBC (〈a1, a2, · · · , ak−1, ak〉) =

max (UBC (〈a1, a2〉) , · · · , UBC (〈ak−1 · · · ak〉))
(4.2)

In Example 4.1, the UBCs for T1 and T2 respectively, are 1 and 10. Note that the UBCs calculated

via Equation 4.1. are not necessarily unique for transactions. But any clashes of UBCs of two different

60

transactions will be identified before these transactions are inserted into the graph (this is taken care in Line

3 of Procedure 1 below).

After assigning each transaction a UBC, we need to create labels (edge codes) of the graph edges, that

is, the BECs and the FECs. As shown in Example 1, if two or more transactions share a backward edge, the

labels of the edges shared by these transactions will be created via a logical OR of their UBCs. We say that

the labels generated in this way contain the UBCs of their transactions. In fact, there is a straightforward

way of telling when an edge code contains a given UBC.

Observation 4.1. BEC L contains UBC X, if and only if, the logical AND between L and X is not zero.

We now ready to present an algorithm for inserting a transaction into a graph.

Procedure 1: Insert Transaction T in to graph G

1. Calculate the UBC of T using Equation 4.1 and Equation 4.2; call it X.

2. Create forward and backward edges (unless they are already in G) for T and assign 0 for all its BECs

and FECs.

3. If BEC of T already containsX, generate a new UBC for T : X =binary representation of
(
2number of bits(BECofT)

)
.

4. Perform a logical OR on BECs and FECs of T with X

Two elements of the procedure require an explanation. First, assigning 0 in Line 2 initializes the values

of the edge codes for edges in the graph that did not exist before so that the operations in Line 4 could be

performed. Second, Line 3 verifies whether the UBC of the new transaction is unique on the backward edge

of that transaction: if the BEC of that edge contains that UBC, it means that some other transaction with

the same backward edge has the same UBC. To make the UBC of the new transaction unique, we assign it

a new UBC as specified in Line 3.

61

4.2.3 Identifying Transactions in the Graph

We now present an example where we show how transactions are identified in the graph generated via

Procedure 1.

Example 4.2. Consider a database with four items and all possible transactions with length greater than one.

Fig. 2.a. shows the transactions and their corresponding UBCs. The graph representing the transactions

with appropriate edge codes is shown in Figure 4.2.b. Consider as an example the edge < a1, a2 >. This

edge is shared by transactions T1, T7, T8 , and T11 with their respective UBCs 1, 1, 1000, 1. A logical OR

between these codes results in 1001. Note that even in this relatively complex example, the condition in Line

3 of Procedure 1 is never satisfied and the transactions keep their original UBCs.

The ultimate goal for creating the graph was to enable mining for frequent itemsets. For this, we need to

identify the transactions in the graph and create conditional trees[31] and then the same FP-Growth mining

algorithm will be used. As we have observed before, for every transaction there exists a loop in the resulting

graph. In order to extract all transactions from the graph, a traversal of all backward edges is required.

When a given backward edge is traversed, all UBCs of its BEC are extracted. These are the UBCs of all

transactions sharing that backward edge. Procedure 2 describes how the nodes of a transaction with a

given UBC is identified. The procedure starts with node v which is the in-vertex of the given backward edge.

Procedure 2: Extract nodes of transaction with UBC X originating from node v

1. Perform the logical AND between X and all FECs of edges outgoing from v.

2. Follow the edge with non-zero result to reach the next node.

3. Repeat steps 1 and 2 until a loop is completed.

62

Consider again the graph shown in Figure 4.2.b. and assume we are considering the backward edge which

connects a4 to a1. BEC of that edge is 1111 which contains four UBCs: 1, 10, 100, and 1000. Sup-

pose that the transaction with UBC 10 is chosen for traversal. We initialize Procedure 2 with UBC

10 and node a1. Of the three outgoing edges, only the one from a1 to a3 with the FEC=10 succeeds

(10 AND 10 6= 0). For the remaining two outgoing edges the AND result of their FECs and UBC 10 is

zero ((1001 AND 10) = 0 (100 AND 10) = 0). After reaching a3 we can only go to a4 (10 AND 11 6= 0).

The loop is then complete and transaction T9 with items 〈a1, a3, a4〉 is retrieved.

In order to extract all transactions within a graph in Figure 4.2.b., a traversal of all backward edges with

their containing UBC is required. For example, a4 has three backward edges with edges codes 1, 1001 and

1111. Code 1 contains UBC 1. Code 1001 contains UBC 1000 and 1. Code 1111 contains UBC 1, 10, 100 and

1000. By traversing all the corresponding UBCs on a4 backward edges, all seven transactions containing item

a4 are extracted (T3, T5, T6, T8, T9, T10 and T11). These extracted transactions (all transactions containing

item a4) are used to create conditional trees [31] and then the same FP-Growth mining algorithm find the

frequent itemsets [32]. UBCs are used to obtain transactions, but do not reflect the number of times that

Figure 4.2: a) A Transactional Dataset with four distinct items and all transactions with a length of greater

than 2 b) the proposed methods resulting graph

63

transaction has been repeated. If a transaction like T9 with items 〈a1, a3, a4〉 appears more than once (ex.

three times) then an integer three is assigned for its corresponding UBC, as shown in Figure 4.3. Therefore,

when a new transaction is parsed, if it already exists in the graph its integer count is incremented by one.

In other words, the corresponding count of a transaction indicates its frequency within the database.

Figure 4.3: For transactions which happen more than once we can set an integer to represent its count

To speed up conditional tree [32] creation another step which can be taken is when we have a transaction

such as T11 with items 〈a1, a2, a3, a4〉 not only do we add a directional link from a4 to a1 with a code of 1,

but we do this for all other nodes connected to a1 (as shown in Figure 4.4). This will help in speeding up the

conditional tree creation. This is because the conditional tree which is based on T11 with items 〈a1, a2, a3, a4〉

also includes transactions 〈a1, a2, a3〉 and 〈a1, a2〉. This extra step does not stall transaction processing, and

is not a requirement.

4.2.4 Algorithms for graph construction

Algorithm 1 in Figure 4.5 shows the corresponding pseudo code of the graph construction phase. The graph

itself is defined to be an adjacency list called graph list which uses an array indexed by item (node in graph)

number. Each array item points to a list of the neighboring items of that item. A header list is also defined

64

Figure 4.4: In order to speed up conditional tree creation, we can add a directional link for all codes

connecting to the first node as well.

to store the distinct items in the database. The transactions will be processed one by one and if an item

is reached that is not already in the header list, the item will be added to the end of the header list and

correspondingly a node containing that item will be added to the end of the graph list. Each transaction

will be sorted based on the header list and then each item in that transaction will be added to the neighbor

list of its predecessor and the value of nodes will be updated accordingly. After constructing the graph,

the graph can be mined to find the complete set of frequent patterns. To accomplish this job, conditional

tree [31] creation phase will begin. The mining algorithm is the same as FP-Growth after conditional trees are

created. In the conditional tree phase the graph is parsed according to the pseudo code offered in Algorithm 2

Figure 4.6. The graph list is parsed in reverse order, and all the nodes within the graph containing backward

edges are found. The graph is then traversed based on their codes, and the conditional tree for each distinct

item is generated.

4.3 PERFORMANCE RESULTS

In this section we present performance evaluation of our method (we call it a compact graph) in comparison

to FP-Growth and CanTree is given. FP-Growth and CanTree demonstrate good performance in incremental

frequent item set mining and were chosen as a baseline to assess the Compact Graphs results. All computa-

tional aspects were conducted in Java on a Linux Centos 6 with Intel Core 2 Duo 3.00 GHz CPU and 4 GB

memory. From the UCI Machine Learning Repository the Chess, Connect, Mushroom, Accidents, Pumsb

65

Figure 4.5: Algorithm 1 shows FP Graph Construction

66

Figure 4.6: Algorithm 2 shows the Conditional Tree Creation

and T10I4D100K datasets were used. Seven runs were conducted and reported runtime figures represent the

average of their execution times.

Table 4.1 shows the number of nodes required to generate the prefix tree for CanTree, FP-Growth and the

Compact Graph. Tests were also conducted on the total memory consumption of CanTree and FP-growth

in comparison to the Compact Graph with the results compiled for each of the tested datasets as shown in

Table 4.2. Compact Graph performs better in all cases, and other than the mushroom dataset, outperforms

the other algorithms by a large margin. Due to its alphabetically structured tree and high node count,

Can-Tree consumes the most amount of memory. FP-Growth has a more efficient tree structure which leads

to smaller memory utilization and fewer nodes. However, Compact Graph utilizes the least number of nodes

possible with a compact structure, and therefore is the most memory efficient.

Figure 4.7 shows runtime results for the Compact Graph, FP-growth, and Can-Tree utilizing different

support thresholds on the tested datasets. The purpose of this experiment was to measure effects of the

minimum support threshold on the runtime of algorithms and to confirm that the Compact Graph is not

sacrificing the execution time of the mining algorithm. Total execution time consist of the amount of time

67

Figure 4.7: Performance of each of the algorithms on 6 different datasets

68

Table 4.1: Number of nodes used for data representation by FP-Growth, CanTree, and the Compact graph.

Dataset FP-Growth Can-Tree Compact graph

Chess 38610 39551 75

Mushroom 27122 34004 119

Accident 4243242 5262556 468

Connect 359292 1092209 129

Pumsb 1126155 2773441 2088

T10I4D100k 714731 748409 870

required for prefix tree or graph construction in addition to the frequent item set mining step (Equation 4.3):

TotalT ime = ConstructionT ime+MiningT ime. (4.3)

The construction phase is shortest for Can-Tree in comparison to FP-Growth and the compact graph

method; this is due to Can-Tree not requiring tree reconstruction and deploying an alphabetical order to

add transactions. Despite having the fastest prefix tree construction phase, Can-Tree generates a larger tree

than the ones generated by FP-Growth or the Compact Graph.

Mining time is highly correlated to the number of nodes in the pruned prefix tree (pruned based on the

minimum support threshold), therefore larger prefix-trees result in larger mining times. This causes mining

time to become a dominant factor, whereas when we have a high minimum support, the construction time

will be dominant.

The Compact Graph has a higher construction time than both CanTree and FP-Growth, which is due

to the need for encoding data in the graph. In the mining phase the Compact Graph is slower than FP-

Growth, but based on the support threshold used it may prove a better option to Can-Tree. This is due

69

Table 4.2: Memory Ratio Comparison.

Minimum support 0.0 0.4 0.5 0.6 0.7

FP-Growth/compact 12 20 21 17 11

Can Tree/compact 14 26 35 42 86

(a) Chess

Minimum support 0.0 0.1 0.2 0.3 0.4

FP-Growth/compact 4 8 7 5 3

Can Tree/compact 5 17 29 67 98

(b) Mushroom

Minimum support 0.0 0.7 0.75 0.8 0.85

FPgrowth/compact 28 7 6 3 2

Can Tree/compact 73 987 1067 1146 1463

(c) Connect

Minimum support 0.0 0.1 0.12 0.14 0.16

FPgrowth/compact 48 120 116 118 122

Can Tree/compact 69 195 215 223 234

(d) Accident

Minimum support 0.0 0.55 0.6 0.65 0.7

FP-Growth/compact 9 12 26 23 18

Can Tree/compact 17 323 376 485 523

(e) Pumsb

Minimum support 0.0 0.01 0.02 0.03 0.04

FP-Growth/compact 12 27 52 66 34

Can Tree/compact 14 43 86 165 436

(f) T10I4D100k

70

to the complex structure of Can-Tree; with a lower support threshold, the Compact Graph mines the data

more efficiently.

4.4 SUMMARY

The size of memory becomes a limiting factor in mining large databases. The solutions offered so far, such

as those proposed in incremental mining methods, called for dividing the database into subsets and mining

each of them separately. In this chapter, we took a different approach and faced the problem head-on. We

proposed a new approach for storing large collections of frequent itemsets in a compact graph. This method

utilizes only one node per each distinct item in the database, therefore reducing dramatically the amount of

required memory. Our experimental results have shown that our method performs much better than both

FP-Growth and Can-Tree in terms of memory usage and is comparable to them in terms of runtime.

71

Chapter 5

Upper Bounds for Alphabetical and FP-trees

Two efficient tree structures known as alphabetical based (Can-tree) [45] and FP-tree based [31] are used to

store a database in memory for mining the frequent patterns. However, there has been no discussion on a

tight upper bound for the number of nodes and the memory requirements for these trees. In the literature,

an upper bound of 2n is used, where n is the number of distinct items in the database. In this chapter,

we provide an upper bound for the number of nodes in alphabetical and FP-trees. The upper bound on

the number of nodes is provided in the context of a greedy algorithm for the alphabetical tree structure

while a closed form solution for the FP-tree is derived. These results are illustrated in the context of various

examples both in graphical and mathematical forms. We anticipate these upper bounds would be useful in

various applications.

The structure of the chapter is as follows. Section 5.1 provides the basic terminology that is used in this

chapter. Section 5.2 follows up with an algorithm for the Alphabetical tree upper bound. In this section,

we provide an algorithm that calculates this upper bound in a systematic way. In Section 5.4 we derive a

72

closed formula to find an upper bound on the number of nodes in FP-tree, this derivation is shown in the

context of an illustrative example. Finally, Section 5.5 provides the concluding remarks of this research.

5.1 PRELIMINARIES

Definition 5.1. Recall Definition 2.1 in chapter 2.

Definition 5.2. Database D is a sequence of transactions: D = 〈T1, . . . , Tm〉 and total count or TC =∑m
i=1|Ti|. Also adding transaction Tx to database D is shown as: D; Tx = 〈T1, . . . , Tm, Tx〉.

Definition 5.3. <A represents item ordering as alphabetical name order of the items (e.g. a <A b, b <A c).

Definition 5.4. <Freq represents item ordering as frequency descending order of the items in database,

defined below:

a <Freq b⇔ (FreqD(a) > FreqD(b) or (FreqD(a) = FreqD(b) and a <A b))

where a, b ∈ A and D = 〈T1, . . . , Tm〉, a ∈ A, i ∈ [1,m] and Acc(a; Ti) =

1 a ∈ Ti

0 a /∈ Ti

FreqD(a) =

m∑
i=1

Acc(a; Ti)

FreqD(a), also called support count of a in D, is the number of transactions that contains a in database

D (we omit the subscription D when it is clear from the context).

73

Table 5.1: Transaction Database

tid Content

Sort Based on Frequency

descending order <Freq

(FP-tree)

Sort Based on Alphabetical

order <A (Can-tree)

1 {a, d, b, g, e, c} 〈b, c, a, e, d, g〉 〈a, b, c, d, e, g〉

2 {b, f, c, a, e} 〈b, c, a, e, f〉 〈a, b, c, e, f〉

3 {b} 〈b〉 〈b〉

4 {d, b} 〈b, d〉 〈b, d〉

5 {a, c, b} 〈b, c, a〉 〈a, b, c〉

6 {c, b, e} 〈b, c, e〉 〈b, c, e〉

7 {b, c} 〈b, c〉 〈b, c〉

8 {c, b} 〈b, c〉 〈b, c〉

In order to represent a transaction database with a Can-tree/FP-tree structure, transactions are read

one at a time with a predefined item order (<A item ordering for Can-tree and <Freq item ordering for FP-

tree) and mapping each transaction onto a path in the tree from the root (prefix merging). Since different

transactions can have several items in common, their paths may overlap. Each node in the tree consists

of two fields: item-name : count, where item-name registers which item this node represents and count

registers the number of transactions represented by the portion of the path reaching this node. When a new

node is added in the tree the count field is initialized to 1, and when two prefixes are merged, the count field

increases by 1. The following example illustrates the Can-tree/FP-tree construction from a database.

Example 5.1. Suppose that the transaction database, DB, be the first two columns of Table 5.1. We have

N = 7 distinct items A = {a, b, c, d, e, f, g}, and the database consists of 8 transactions. A scan of DB

derives the support count (Freq) of each item as follows; Freq(b) = 8,Freq(c) = 6,Freq(a) = 3,Freq(e) =

3,Freq(d) = 2,Freq(f) = 1 and Freq(g) = 1, with TC = 24. Hence, the FP-tree item ordering will be:

74

b <Freq c <Freq a <Freq e <Freq d <Freq f <Freq g. Also, alphabetical tree item ordering will be: a <A b <A c <A

d <A e <A f <A g. For constructing a FP-tree/Can-tree, first we need to create ordered transactions based

on <Freq and <A, as shown in third and fourth column of Table 5.1 (i.e. {a, d, b, g, e, c} →< b, c, q, e, d, g >

/ < a, b, c, d, e, g >) respectively, and then each transaction is attached to the root of the tree with prefix

merging.

Consider adding the first two transaction for Can-tree as shown in Figure 5.1a (right). First note that

〈a, b, c〉 is a common prefix of the first two transactions 〈a, b, c, d, e, g〉 and 〈a, b, c, e, f〉. Adding the first

transaction 〈a, b, c, d, e, g〉 results in 6 new nodes in the tree (a, b, c, d, e, g). Therefore, the count field will

be 1 for all of them as shown in Figure 5.1a. The second transaction 〈a, b, c, e, f〉, has prefix 〈a, b, c〉 sharing

with the first transaction. So, adding the second transaction will increase the count field by 1 (now count =

2) for the prefix items in the tree (we call these nodes merged or common nodes). Also, two new nodes e

and f with count field equal to 1 are added to the tree. Hence the first transaction which has 6 items, adds

6 new nodes to the tree while the second transaction which has 5 items, only adds 2 new nodes to the tree.

As a whole by adding first two transactions, the tree would have 8 nodes. Figure 5.1a. shows a step by step

procedure for adding the first three transactions and, Figure 5.1b. shows the complete tree for FP-tree and

Can-tree, respectively.

A set with n distinct items has 2n subsets. Therefore, for a transaction database with n distinct items,

the number of nodes in the tree representation with prefix-merging (which it is called prefix-tree) is bounded

by 2n [31] (The 2n upper bound is called a loose upper bound in the rest of the chapter. For example, with

100 distinct items the loose upper bound of the prefix-tree is 2100 ≈ 1030!). The intuition behind that is

if A has n items then the transaction database which has all subsets of A (i.e., the power-set of A) has 2n

distinct transactions (counting null). Hence, in case of all subsets are attached to the root of the tree (with

a predefined order) then the tree will have 2n nodes, and is called a complete prefix-tree. If the <A item

ordering is used for a complete prefix-tree, we call the tree a complete alphabetical prefix-tree and if the <Freq

item ordering is used for a complete prefix-tree, we call it a complete FP prefix-tree.

75

(a) Adding T1 , T2 and T3 from left to right for FP-tree (left) and Can-tree (right) with prefix-merging.

(b) Complete FP-tree (left) Can-tree (right) based on Table 5.1

Figure 5.1: Constructing FP-tree and Can-tree from Table 5.1

76

Figure 5.2: Alphabetical layout-tree on A = {a, b, c} (total 23 = 8 nodes).

Definition 5.5. Alphabetical layout-tree (TLayout(A,<A)) is complete alphabetical prefix-tree on A, where

for each item we add another field called count with 0 value.

Alphabetical layout-tree for A = {a, b, c} is shown in Figure 5.2. For simplicity we will remove <A from

Alphabetical layout-tree notation when it is clear from the context and represent it as TLayout(A). Conse-

quently, if the <Freq item ordering is used in this definition then we call it FP layout-tree.

Definition 5.6. Suppose that database D on a set of items A with the <A item ordering is given. Alphabetical

Prefix-tree TD,<A on database D, can be defined as follows:

1. Root node is labeled by 〈〉 and each non-root node is labeled by 〈a, count〉 (a ∈ A, count ∈ N).

2. if D = ∅ then TD,<A = TLayout(A).

3. Read each transaction T (ordered by <A) from D one at a time and do the following:

Find a path in the tree starting from the root with the same ordered items as in T , and increase the

items’ count by 1.

4. Remove nodes with count = 0 in the tree.

77

Note that:

• for simplicity we will remove (Alphabetical) / <A from Alphabetical Prefix-tree / TD,<A notation when

its clear from the context, and will represent it as TD.

• Consequently, if the <Freq item ordering is used in this definition, we call it FP Prefix-tree or FP-tree

for short.

Below is an example for creating Alphabetical prefix-tree based on the above definition.

Example 5.2. Suppose that A = {a, b, c}, D = 〈T1, T2〉, T1 = 〈a, b, c〉, T2 = 〈a, c〉 then Alphabetical Prefix-

tree TD is created from definition 5.6 in two steps:

• Step1: Alphabetical Layout-tree is created as shown in Figure 5.2.

• Step2: Transactions are read one at a time:

1. T1 = 〈a, b, c〉 is parsed, then Path1 is found in the tree which has the same ordered items as in

T1, finally the items’ count increased by 1 as shown in Figure 5.3.

2. T2 = 〈b, c〉 is parsed, then Path2 is found in the tree which has the same ordered items as in T2.

Finally the items’ count increased by 1 as shown in Figure 5.4.

• Step3: Nodes with item count = 0 is removed from the tree as shown in Figure 5.5.

Definition 5.7. Below are some definitions on (Alphabetical/FP) prefix-tree:

• count = 0 means this node is not in any transactions (we called this node unused node) and will be

removed.

• If count = 1, we call this node new node.

• If count > 1 we call this node merged or common node.

78

Figure 5.3: Adding 〈a, b, c〉 to the layout-tree of

Example 5.2

Figure 5.4: Adding 〈a, c〉 to the tree of Figure. 5.3

• Size of the prefix-tree: |TD| = |{〈a, count〉 ∈ TD | count 6= 0}|+ 1, which is number of nonzero labeled

nodes plus one for the root. We can also say |TD| = 2n − |{〈a, count〉 ∈ TD | count = 0}| where n is

the size of items. Therefore, |TD| = 4 + 1 = 5 or |TD| = 23 − 3 (unused node)=5.

In the following sections, we find the upper bound procedure of the number of nodes in the tree for

Can-tree and closed form upper bound of the number of nodes in the tree for FP-tree, given n and TC.

5.2 ALPHABETICAL-TREE UPPER BOUND PROCEDURE

In this section wherever we use layout-tree we mean alphabetical layout-tree, also we will remove <A ordering

from notations.

Lemma 5.1. if D1 = 〈T1, . . . , Tm〉 and D2 = 〈R1, . . . ,Rm〉 and {T1, . . . , Tm} = {R1, . . . ,Rm} then TD1 =

TD2
.

Proof. Straightforward. �

79

Figure 5.5: Final alphabetical prefix-tree, after removing unused nodes (count = 0) of Example 5.2

Lemma says that the prefix-tree created from transactions is independent of transaction’s order. From

definition 5.6 each transaction will find its path and increase the count field for its corresponding path in

the tree, and this process is clearly independent of their ordering. Considering example 5.2, the prefix-tree

constructed from 〈T1, T2〉 is clearly the same as 〈T2, T1〉.

Note: As the transaction ordering in database does not matter for creating the prefix-tree, we may also

show database as a set of transactions in this study.

In order to illustrate the upper bound procedure, we start with a small value for number of distinct items

in a database, although the loose upper bound based on small value is not large, we use these small examples

to construct an algorithm for tighter upper bound based on TC and n that could be generalized for any

values of these parameters.

Example 5.3. What is the Can-tree upper bound for n = 3 and TC = 5?

For n = 3 we have A = {a, b, c} and suppose that we have two different databases D1 = 〈T11, T12〉 and

D2 = 〈T21, T22〉. Where:

1. T11 = 〈a, b, c〉, T12 = 〈b, c〉

80

2. T21 = 〈a, b, c〉, T22 = 〈a, b〉

Can-tree constructed from D1 and D2 are shown in Figure 5.6 and Figure 5.7 respectively. Can-tree based

on D1 has 6 nodes and based on D2 has 4 nodes (counting root). For this small example one can confirm

that maximum number of nodes in Can-tree with n = 3 and TC = 5 is 6. Hence, Can-tree based on the first

database creates the maximum number of nodes in the tree (so the upper bound is equal to 6). But in the

second database, T22 transaction did not create a new node in the tree and two previous nodes (a and b) are

merged (prefix-merging). Therefore, if the canonical ordering of transactions in D1 is used, the maximum

number of nodes appeared in the tree (hence, the upper bound achieved). Therefore, we are looking for a

canonical order of transactions which creates maximum number of nodes in the tree based on n and TC.

TC is our total budget and ideally, we want to use all of the budget to create new nodes in the tree, therefore

at some point, we are not able to create a new node and we are forced to have some merged nodes in the

tree.

Upon adding a transaction with size k to the tree; new nodes are created, and some previously created

nodes may merge in the tree, the total number of new nodes added to the tree is represented by w and

total nodes shared in the tree is represented by c (k = w + c). For example by adding T11 where k = 3,

we have w = 3 and c = 0, and by adding T22 where k = 2, we have w = 0 and c = 2. Also we have

{0 ≤ w, c ≤ n and 0 < w + c ≤ n} where n is A size.

For the upper bound procedure of Can-tree we propose our transactions’ ordering and later in this section

we show that this transactions’ ordering will results in the biggest tree possible (maximum number nodes).

Example 5.4. Suppose that we want to find the upper bound for alphabetical tree, based on n = 5, A =

{a, b, c, d, e} and TC = 19.

Layout-tree for this example has 25 = 32 nodes. To reduce the complexity in figures, we remove count

field in the nodes, and when count field of a node becomes greater than 1, that node becomes bold. Figure. 5.8

81

Figure 5.6: Can-tree of Example 5.3, based on D1 Figure 5.7: Can-tree of Example 5.3, based on D2

shows the layout-tree on A = {a, b, c, d, e}.

To construct our canonical order of transactions, we start with layout-tree and construct a greedy algo-

rithm that finds transaction one at a time with the following goal.

Greedy algorithm goal : Find a transaction that adds more new nodes (represented by w) while keeping

the number of common nodes (represented by c) minimal to the current tree structure. In order to achieve

this goal, we define a measure that quantifies our objective as
w

c
. The bigger the fraction we have, the more

nodes are added to the tree. If we are in a position to compare two fractions with c = 0, we choose the

fraction with larger numerator w to be the larger fraction (because it will add more new nodes to the tree).

Definition 5.8 shows this comparison formally, and based on this we will show how we will choose which

transaction to pick next.

82

Figure 5.8: Layout-tree on A = {a, b, c, d, e}.

Definition 5.8. For 〈w1, c1〉 and 〈w2, c2〉 where w1, w2, c1, c2 are nonnegative integers, let

〈w1, c1〉 � 〈w2, c2〉 ⇐⇒

any c1 = 0 and c2 6= 0 ∗

w1 > w2 c1 = 0 and c2 = 0

w1

c1
>
w2

c2
or (

w1

c1
=
w2

c2
and w1 > w2) c1 6= 0 and c2 6= 0

equivalently

〈w1, c1〉 � 〈w2, c2〉 ⇐⇒ 〈(1− sgn(c1)),
w1

c1
, w1〉 � 〈1− sgn(c2),

w2

c2
, w2〉

where � is lexicographic order 2.

∗ This means that if one of the c values is 0 and the other one is not, the pair with c value equal to 0 is

� than the other pair.

� is an order on pairs of nonnegative integers, and we call it Corder, it is clear that this order is a total

order since when two fractions are equal, we chose the one with bigger numerator.

2https : en.wikipedia.org/wiki/Lexicographical order

83

Now a set P is created on all possible values for w and c based on n as:

P = {〈w, c〉 | 0 ≤ w, c ≤ n and 0 < w + c ≤ n}

where n is the size of A.

Example 5.5. Suppose A = {a1, . . . , a5} where n = 5. Then:

• P = {〈5, 0〉, 〈4, 1〉, . . . , 〈0, 5〉, 〈4, 0〉, 〈3, 1〉, . . . , 〈0, 4〉, 〈3, 0〉 . . . , . . . , 〈1, 0〉, 〈0, 1〉}, below are some exam-

ples:

• 〈5, 0〉 � 〈4, 1〉,

• 〈4, 1〉 � 〈3, 2〉, and

• 〈2, 0〉 � 〈4, 1〉.

We also need to assign a number for each pair in P that represent its ordering position with respect to

�, defined as: `(〈w, c〉) = |{〈w′, c′〉 | 〈w′, c′〉 � 〈w, c〉}|.

Example 5.6. By using the same items in Example 5.5, below are some examples for the ` value.

• `(〈5, 0〉) = 0, there is no pair Corder than 〈5, 0〉.

• `(〈4, 0〉) = 1, there is 1 pair Corder than 〈4, 0〉 which is 〈5, 0〉.

• `(〈3, 0〉) = 2, there are 2 pairs Corder than 〈3, 0〉 which are 〈5, 0〉 and 〈4, 0〉.

then we can define:

W(pos) = π1(`−1(pos)) and C(pos) = π2(`−1(pos)), where pos ≥ 0

where π1 and π2 are projections on first and second elements in the pair, respectively. For example:

84

Figure 5.9: Parsing transaction T1 : 〈a, b, c, d, e〉.

• at pos = 0, W(0) = 5 and C(0) = 0,

• at pos = 1, W(1) = 4 and C(1) = 0, and

• at pos = 2, W(2) = 3 and C(2) = 0.

Consider again Example 5.3. To find the upper bound, first we start with layout-tree (no transaction

added yet), and based on the greedy algorithm goal, we want to find a transaction with greater Corder pairs.

For this goal, all we need to do is to find the transaction which adds W(pos) new nodes, with C(pos)

common nodes to the tree (starting from pos = 0 and increases it by one each time). Start at pos = 0, we are

after transaction(s) which adds W(0) = w = 5 new nodes with C(0) = c = 0 common nodes to the current

tree structure. Transaction T1 = 〈a, b, c, d, e〉 will add 5 new nodes to the layout-tree with 0 common nodes

(k = w = 5, c = 0) as shown in Figure 5.9 (one could verify that there is no transaction that can add more

nodes to the tree). Each time we add a transaction to the tree, we subtract transaction size from our budget

TC and add w new nodes to U (which is initialized to 0) until TC reaches 0. Therefore, TC = 19− 5 = 14

and U = U + 5 = 5. For now suppose that we add the transaction(s) to our ordering sequence represented

by 〈Spos〉 (0 ≤ pos). Therefore , S0 = T1 and the current sequence is: 〈S0〉.

85

Figure 5.10: Parsing transaction T2 : 〈b, c, d, e〉.

At pos = 1 we are after transaction(s) which adds W(1) = w = 4 new nodes with C(1) = c = 0 common

nodes to the current tree structure. Transaction T2 = 〈b, c, d, e〉, will add 4 new nodes to the current tree with

0 common nodes (k = w = 4, c = 0) as shown in Figure 5.10. One could verify that there is no transaction

that can add more nodes to the tree. Also, TC = 14 − 4 = 10 and U = U + 4 = 9, S1 = T2. Now current

ordering is:〈S0,S1〉.

At pos = 2 we are after transaction(s) which adds W(2) = w = 3 new nodes with C(2) = c = 0 common

nodes to the current tree structure. Transaction T3 = 〈c, d, e〉, will add 3 new nodes to the current tree with

0 common nodes (k = w = 3, c = 0) as shown in Figure 5.11. One could verify that there is no transaction

that can add more nodes to the tree. Also, TC = 10 − 3 = 7 and U = U + 3 = 12, S2 = T3. Now current

ordering is:〈S0,S1,S2〉.

With the same reasoning, the next transaction is T4 = 〈d, e〉, which will add 2 new nodes to the current

tree with 0 common nodes (k = w = 2, c = 0) as shown in Figure 5.12. Also, TC = 7 − 2 = 5 and

U = U + 2 = 14, S3 = T4. Now current ordering is:〈S0,S1,S2,S3〉.

The next transaction is T5 = 〈e〉, which will add 1 new node to the current tree with 0 common nodes

(k = w = 1, c = 0) as shown in Figure 5.13. Also, TC = 5 − 1 = 4 and U = U + 1 = 15, S4 = T5. Now

86

Figure 5.11: Parsing transaction T3 : 〈c, d, e〉.

Figure 5.12: Parsing transaction T4 : 〈d, e〉.

current ordering is:〈S0,S1,S2,S3,S4〉.

From now on, adding any transaction to the database, has to have at least one common node in the tree.

The next transaction is T6 = 〈a, c, d, e〉, which will add 3 new node to the current tree with 1 common

nodes (k = 4, w = 3, c = 1) as shown in Figure 5.14 (there is no other transaction with bigger
w

c
). Also,

TC = 4− 4 = 0 and U = U + 3 = 18, S5 = T6. Now the ordering is:〈S0,S1,S2,S3,S4,S5〉. At this point our

budget TC becomes 0 and we output U = 18 as upper bound for the Can-tree of Example 5.3. One could

verify that this is the maximum size of Can-tree for this example.

87

Figure 5.13: Parsing transaction T5 : 〈e〉.

Figure 5.14: Parsing transaction T6 : 〈a, c, d, e〉 with 1 common node.

In general setting, in order to find all the transactions with their corresponding w and c, lets consider

Table 5.2. In this table each column shows an item and each row indicates a transaction. The table shows

which items appear in which transactions. If an item appears in a transaction the corresponding cell is 1

otherwise it is 0. Cells that are filled with dashed line indicate the corresponding item may or may not

appear in the specified transaction.

Parsing Table 5.2 row by row, for all the transactions and their corresponding
w

c
, will lead to the following

observations:

88

Table 5.2: Items in transactions for Example 5.3.

Tran\items a b c d e

Trans1 1 1 1 1 1

Trans2 0 1 1 1 1

Trans3 — 0 1 1 1

Trans4 — — 0 1 1

Trans5 — — — 0 1

Trans6 — — — — 0

Row 1, which corresponds to transaction T1 = 〈a, b, c, d, e〉, with
w

c
=

5

0
.

Row 2, which corresponds to transaction T2 = 〈b, c, d, e〉, with
w

c
=

4

0
.

Row 3, with a = 0 corresponds to T3 = 〈c, d, e〉, with
w

c
=

3

0
. If a = 1, this row corresponds to 〈a, c, d, e〉

with
w

c
=

4− 1

1
.

Row 4, with a = 0 , b = 0 corresponds to transaction T2 = (d, e), with
w

c
=

2

0
. There are 3 more transactions

in this row (a = 1, b = 0 or a = 0, b = 1 or a = 1, b = 1). If a = 1, b = 0 this row corresponds to 〈a, d, e〉,

with
w

c
=

3− 1

1
. If a = 0, b = 1 this row corresponds to 〈b, d, e〉, with

w

c
=

3− 1

1
. Finally if a = 1, b = 1

this row corresponds to 〈a, b, d, e〉, with
w

c
=

4− 2

2
.

w

c
s in this row are

2

0
,

(4− 2)

2
,

(3− 1)

1
and

(3− 1)

1
. We can recount them as:

2

0
,
(
2
2

) (4− 2)

2
and(

2
1

) (3− 1)

1
.

Note that the combinatorial coefficient represents only the number of times each
w

c
fraction occurs.

Row 5, if a = 0 , b = 0 , c = 0, corresponds to transaction T1 = 〈e〉,with
w

c
=

1

0
. There are 7 more

transactions in this row depending on the values of a,b and c to be 0 or 1. With the same reasoning shown

89

Table 5.3:
w

c
values for all the transactions in Table 5.2

Row 1 5
0

Row 2
(
0
0

)
4
0

Row 3
(
1
1

)
4−1
1

(
0
1

)
3
0

Row 4
(
2
2

)
4−2
2

(
2
1

)
3−1
1

(
0
2

)
2
0

Row 5
(
3
3

)
4−3
3

(
3
2

)
3−2
2

(
3
1

)
2−1
1

(
0
3

)
1
0

Row 6
(
4
4

)
4−4
4

(
4
3

)
3−3
3

(
4
2

)
2−2
2

(
4
1

)
1−1
1

(
0
4

)
0
0

in Row 4,
w

c
s in this row are

(
3
1

)2− 1

1
,
(
3
2

)3− 2

2
and

(
3
3

)4− 3

3
. In this row the combinatorial coefficients are(

3
1

)
,
(
3
2

)
and

(
3
3

)
.

Row 6, There are 15 more transactions in this row depending on the values of a, b, c and d to be 0 or 1

(excluding all equal to 0). With the same reasoning as above, the
w

c
values for all the possible transactions

are shown in Table 5.3.

5.3 The Upper Bound Procedure for Alphabetical-tree

If we create the 〈S〉 transactions’ ordering in advance for A, all we need to do is to extract transactions one

by one from the sequence and compute the U as illustrated in the above example. Therefore, to obtain an

upper bound for n and TC (where n is the size of A), first, we order all possible transactions with respect

to � ordering of their corresponding w and c in a sequence represented by 〈S〉. Then we start removing

transactions one by one from our created sequence, and keep updating TC and U , until TC reaches 0 (as

shown in the above example). In the next section we formally state this sequence of transactions and the

algorithm. Finally we proof that the this assumption will lead to the biggest tree possible for Can-tree. But,

first we need one more definition in order to formally define our canonical ordering of transaction.

90

Figure 5.15: TD of Example 5.7

Figure 5.16: adding T3 = 〈a, b, c〉 to TD results in

w = 2 and c = 1

In order to compute w and c as a result of adding transaction T to database D, two functions called W

and C are defined as follow:

Definition 5.9. Suppose that for a database D we add a new transaction T :

• W(D, T) = |TD;T | − |TD|,

• C(D, T) = |T | −W(D, T).

W and C are computing w and c of the newly added transaction T , respectively. The following example

illustrate the above definition.

Example 5.7. Suppose that D = {T1, T2}, T1 = 〈a, c〉, T2 = 〈b〉. TD is shown in Figure 5.15 with size

|TD| = 3. By adding T3 = 〈a, b, c〉 to D the result tree is shown in Figure 5.16 with size |TD;T3 | = 5, then we

have:

• W(D, T3) = |TD;T3 | − |TD| = 5− 3 = 2, so w = 2 new nodes added to the tree (b and c).

• C(D, T3) = |T3| −W(D, T3) = 3− 2 = 1 , so adding T3 results in c = 1 common node in the tree (node

a with count=2).

91

• Also note that |T3| = new nodes + common nodes = 2 + 1 = 3

Now we have all the ingredients to define our canonical ordering of transactions, which exactly creates the

sequence described in Example 5.3. In this sequence, transactions are ordered based on the Corder defined

in Definition 5.8.

Definition 5.10. For A = {a1, . . . , an} we define 〈S〉 and functions kf() and wf() on this sequence simul-

taneously. For all 2n transactions and non-negative integer pos, 0 ≤ pos:

• Spos = {T | W(Dpos, T) = W(pos) and C(Dpos, T) = C(pos)} where Dpos =
⋃

i<pos Si and D0 = ∅

• wf(Spos) = W(pos)

• kf(Spos) = W(pos) + C(pos).

Note that Spos uses Dpos that depends on S0 . . .Spos−1. Also it is clear that wf(.) is a function that maps

transactions to their corresponding w new nodes, and kf(.) is a function that maps transactions to their

corresponding size k.

Bellow example better illustrate the definition.

Example 5.8. Suppose that A = {a1, . . . , a5}.

Starting from pos = 0, W(0) = 5 and C(0) = 0:

• S0 = {T | W(D0, T) = W(0) = 5 and C(D0, T) = C(0) = 0} where D0 = ∅

• wf(S0) = 5

• kf(S0) = 5 + 0.

92

S0 has the first transaction which corresponds to w = 5 and c = 0, which is the transaction shown in

Figure 5.9.

If pos = 1, W(1) = 4 and C(1) = 0:

• S1 = {T | W(D1, T) = W(1) = 4 and C(D1, T) = C(1) = 0} where D1 = {S0}

• wf(S0) = 4

• kf(S0) = 4 + 0.

S1 has the second transaction that adds 4 new nodes with 0 common node in the tree, which is the transaction

shown in Figure 5.10.

If m = 2, W(2) = 3 and C(2) = 0:

• S2 = {T | W(D2, T) = W(2) = 3 and C(D2, T) = C(2) = 0} where D2 = {S0,S1}

• wf(S2) = 3

• kf(S2) = 3 + 0.

S2 has the third transaction that adds 3 new nodes to the tree with 0 common node, which is the trans-

action shown in Figure 5.11. The rest of the transactions are added in the same manner.

Now we can propose our algorithm for the upper bound of Alphabetical tree:

Algorithm 5.2 (FindAlphabeticalUpperBound). For A = {a1, . . . , an} and TC, the biggest possible size for

alphabetical tree is produced by this algorithm:

93

Data: n: size of A, t: TC

Result: U : Upper bound for Alphabetical tree. Initialization: i← 0, U ← 0

Create 〈S〉 and kf() and wf() functions for A with size n; while t ≥ 0 do

while 〈Si〉 6= ∅ do

remove transaction T from Si

t← t− kf(Si)

U ← U + wf(Si)

end

i← i+ 1

end

return U

This algorithm iterates through 〈S〉. The inner loop removes transactions one by one, and adds the

transaction’s w new nodes to upper bound and subtract the added transaction’s size k from TC, until TC

reaches 0.

Theorem 5.3. For every n and TC the result of Algorithm FindAlphabeticalUpperBound is the tightest upper

bound for alphabetical tree.

Proof. First, we need to show that there is a database D s.t. |TD| = U . As the transactions used in the

while loop of the algorithm create a database D, it is clear that such database D with |TD| = U exists.

Second, we need to show that there is no alphabetical tree with a larfer size. Hence, for the sake of

contradiction assume that there is a database like D′ s.t. |TD′ | = U ′, where U ′ > U , then there are two

cases:

• Case 1: Suppose that D′ has the same transactions in D but in a different order. By Lemma 5.1, the

ordering of transactions do not matter. Hence, we can re-order D′ to match D which results in U ′ = U .

94

• Case 2: There are some transactions that appears in D but not in D′ and vice versa. First of all, we

order transactions in both databases with respect to our canonical ordering defined in Definition 5.10.

Since there are some transactions in D and not in D′, we have: D\D′ = {Ti1 . . . Tit} and D′\D =

{Rj1 . . .Rjs}. Obviously as both uses the same TC, we have
∑it

k=i1
|Tk| =

∑js
k=j1
|Rk|. As we ordered

transactions in both databases with our canonical ordering and database D′ differs database D in

some transactions, this means that database D′ missed some transaction(s) with respect to the �

ordering as defined in Definition 5.8. We know that in the � ordering, transactions are chosen based

on bigger
w

c
, which means adding more new nodes to the tree with less common nodes to the current

tree structure. Therefore, Rs transactions are not better than T s in terms of the � ordering. More

precisely, if D(`) = 〈Ti1 . . . Ti`〉 and D′(`
′)

= 〈Rj1 . . .Rj`′ 〉 such that ` ≤ t and `′ ≤ s we have:

W(D, Ti`)
C(D, Ti`)

≥
W(D′,Ri`′)

C(D′,Ri`′)

This non-equality results in: |TD| > |TD′ | or U > U ′, which contradicts with our assumption.

�

Table 5.4 shows the upper bound for different n and TC. Table 5.5 shows upper bound when n is increased

and TC is not increased. Table 5.6 shows upper bound when TC is increased and n is not increased.

5.4 FP-TREE UPPER BOUND

In this section wherever we use layout-tree we mean FP layout-tree, also we will remove the <Freq item

ordering from notations when it is clear from context.

In the previous section, we developed a greedy algorithm to compute an upper bound for the number

of nodes in an alphabetical tree based on two variables, TC and n. In this section, we derive a formula to

compute an upper bound for the FP-tree given the same two parameters.

95

Table 5.4: Upper Bound for different n and TC

n TC loose Upper bound 2n Upper bound

5 19 32 18

10 200 210 171

30 106 230 ≈ 1.07× 109 7.35559× 104

60 1010 260 ≈ 1.16× 1018 7.55889× 107

70 1015 270 ≈ 1.2× 1021 5.866134× 1013

100 1022 2100 ≈ 1.2× 1030 5.192964× 1019

500 1050 2500 ≈ 3.2× 10150 8.653038× 1048

2000 1060 22000 ≈ 1.15× 10602 9.768086× 1059

Table 5.5: Upper Bound for n = 100 and different TC

n TC loose Upper bound 2n Upper bound

100 19 2100 ≈ 1.2× 1030 19

100 200 2100 200

100 106 2100 9.7241× 105

100 1010 2100 9.019651× 108

100 1015 2100 7.807619× 1013

100 1022 2100 5.192964× 1019

100 1025 2100 3.86918× 1023

96

Table 5.6: Upper Bound for TC = 1010 and different n

n TC loose Upper bound 2n Upper bound

10 1010 210 1024

20 1010 220 1.048576× 106

40 1010 240 ≈ 1.1× 1012 5.028888× 109

60 1010 260 ≈ 1.16× 1018 7.55889× 107

80 1010 280 ≈ 1.2× 1024 8.535977× 108

100 1010 2100 ≈ 1.2× 1030 9.019651× 108

200 1010 2200 ≈ 1.6× 1060 9.688576× 109

Figure 5.17: FP layout-tree on A = {a, b, c, d, e}, where a <Freq b <Freq c <Freq d <Freq e (count = 0 fields

are removed for simplicity.

97

Figure 5.17 shows the layout-tree on A = {a, b, c, d, e} (count = 0 fields are removed for simplicity), hence

we are assuming that a <Freq b <Freq c <Freq d <Freq e. As illustrated in Figure 5.17, the total nodes of item

‘a’ (most frequent item) is 20. The total nodes of item ‘b’ (second most frequent item) is 21, total nodes of

item ‘c’ is 22 and so on. We can simply assume that (a = a1, b = a2, c = a3, d = a4 and e = a5, such that

i < j ⇔ ai <index aj).Therefore, total appearance of node ai in the layout tree will be 2i−1.

Lemma 5.4. Assume A = {a1, . . . , an} such that i < j ⇔ ai <index aj . We claim that node ai in TLayout(A)

appears 2i−1 times.

Proof. By induction on n we prove that our claim is true for all i ≤ n and for any n ∈ N.

• if n = 1 then A = {a1} and hence TLayout(A) is a tree with root and just one child (21−1) labeled by

a1.

• Suppose that n = k, 0 ≤ i ≤ k , ai appears 2i−1.

• if n = k + 1, 0 ≤ i ≤ k + 1 then ak+1 appears 2k+1−1.

with n = k+ 1, A = {a1, . . . ak, ak+1}. TLayout(A) with k+ 1 items is constructed from TLayout(A) with

k items, where the new node ak+1 is attached to all the nodes including root, so ak+1 appears:

1 +

k∑
i=1

2i−1 = 1 +

k−1∑
i=0

2i = 1 + (2k − 1) = 2k = 2k+1−1

�

Below is an example illustrating the proof.

Example 5.9. Suppose that A = {a1, a2, a3} and i < j ⇔ ai <index aj. Figure 5.18 shows layout tree on

A. One can confirm that number of appearance of a1 is 2(1−1), a2 is 2(2−1) and a3 is 2(3−1). Figure 5.19

shows the previous layout tree with additional node a4. This a4 node is added to all the nodes with the total

appearance of 2(4−1).

98

Figure 5.18: layout tree on A where each ai ap-

peared 2(i−1)

Figure 5.19: adding a4 with total appearance of

1 +
∑3

i=1 2i−1 = 24−1

We build our formula for the upper bound of the number of nodes in the context of the following simple

examples.

Example 5.10. What is the upper bound for FP-tree if n = 5, A = {a, b, c, d, e}, and TC = 15. But suppose

that we have extra information on the Freq of items, given as follows: Freq(a) = 5,Freq(b) = 4,Freq(c) =

3,Freq(d) = 2 and Freq(e) = 1.

There are 24 nodes for item e in the layout-tree (shown in Figure 5.17), but in our example, Freq(e) = 1.

Hence, (24 − 1) = 15 nodes will not appear in this tree (unused nodes). For item d, we have 23 nodes in

the layout tree, but in this example Freq(b) = 2, therefore, minimum number of (23 − 2) = 6 nodes, will not

appear in the tree. For item c there are 22 nodes in the layout-tree, but in this example Freq(c) = 3, thus

minimum number of (22 − 3) = 1 node will not appear. For item b there are 21 nodes in the layout tree

and Freq(b) = 4. Note that in this case (21 − 4) = −2 is negative, so this item has no unused nodes (we

cannot have more nodes than in layout-tree). Therefore, when this computation becomes negative we know

that it means 0 unused node. Similarly, for item a there are 20 nodes in the tree, but again Freq(a) = 5, and

(20 − 5) = −4 is negative, therefore, there is no unused node for item a.

99

Table 5.7: Unused nodes in FP-tree with cut off subtraction.

Items Counts Number of unused nodes

a 5 20 −. 5 = 0

b 4 21 −. 4 = 0

c 3 22 −. 3 = 1

d 2 23 −. 2 = 6

e 1 24 −. 1 = 15

Total = 0 + 0 + 1 + 6 + 15 = 22

Based on our calculations of the number of unused nodes for each item described above, we introduce an

operator called cut-off subtraction:

cut off Subtraction: x−. y =

x− y x ≥ y

0 otherwise

(5.1)

Therefore, by using this equation we will change the negative values for unused node counts to 0. In

order to get the maximum number of nodes in the tree, we just need to subtract 25 (which is the to-

tal number of nodes in the layout-tree) from the total number of unused nodes described above. In this

example as shown in Table 5.7, there are total of 22 unused nodes. Hence, the upper bound is, U =

25 − total number of unused nodes , i.e. U = 25 − 22 = 10.

In what follows we investigate possibility of finding the U only based on TC and n (size of A).

Example 5.11. What is the U for FP-tree if TC = 15 and n = 5?

U = 25 − total number of unused nodes. (5.2)

total number of unused nodes = 20−. Freq(a)+21−. Freq(b)+22−. Freq(c)+23−. Freq(d)+24−. Freq(e). (5.3)

100

Therefore, based on (Eq 5.2) and (Eq5.3) the upper bound is,

U = 25 − (20 −. Freq(a) + 21 −. Freq(b) + 22 −. Freq(c) + 23 −. Freq(d) + 24 −. Freq(e)). (5.4)

Constraint 5.1. We want to maximize U with the following constraints:

1. Freq(a) ≥ Freq(b) ≥ Freq(c) ≥ Freq(d) ≥ Freq(e)

2. Freq(a) + Freq(b) + Freq(c) + Freq(d) + Freq(e) = 15

3. Freq(a) > 0,Freq(b) > 0,Freq(c) > 0,Freq(d) > 0,Freq(e) > 0

To maximize U one needs to minimize the total number of unused nodes. Note that each term in

the total number of unused nodes is larger than or equal to zero, i.e. (21 −. Freq(b) ≥ 0). Now suppose that

we have a total budget count of 15 for TC to be distributed to the items. Assigning frequency one for each

distinct item has to be done to satisfy the Constraint No. 3. Hence, 1 for a, 1 for b, 1 for c, 1 for d and 1 for

e. This already minimizes the first term, i.e., (20 −. Freq(a)). Total 5 assigned, and now TC = 15− 5 = 10.

Adding more to the frequency of a does not help to minimize the total unused nodes as we have exhausted

the amount that we could minimize this term. Clearly, we would like most to assign the budget to e (since

the term for item e has the biggest value in cut-off subtraction, which is 24−. Freq(e)) but the Constraint No.

1, prevents us from assigning a budget to e before assignment to the more frequent items. To best use the

budget, we only add one to the more frequent item, till the permission for adding to the least frequent item

is issued. We keep repeating this process till the budget is finished, therefore again we need to assign 1 for a,

1 for b, 1 for c, 1 for d and 1 for e, total 5 assigned, and now TC = 10 − 5 = 5. The remaining budget of

size 5 is also assigned in the same order form a to e ,1 by 1. This means, to maximize U , TC should evenly

be distributed through the items as much as possible. To formally proof this claim first consider Lemma 5.5.

Lemma 5.5. Suppose D is a database on A and ∃ a,b ∈ A where FreqD(a) > FreqD(b). Then a database D′

exists such that by decreasing the Freq of a by 1 and adding 1 to Freq of b (such that the frequency ordering

remains unchanged), may result in an increase in FP-tree size of the |TD′ | or equivalently:

101

(I) FreqD′(a) = FreqD(a)− 1

(II) FreqD′(b) = FreqD(b) + 1

(III) ∀x(x 6= a ∧ x 6= b)⇒ FreqD′(x) = FreqD(x)

(IV) FreqD′(a) > FreqD′(b)

and

|TD′ | ≥ |TD|

Proof. We distinguish two cases:

• There exist a node in TD such that count of a is greater than one. Then decreasing Freq of a by 1,

means that simply removing a from a transaction on this path (tree size remain unchanged). Increasing

Freq of b by 1 may result in a node of b in tree from count = 0 to count = 1, which means a new node

is created (tree size increased). If a node of b with count 6= 0 increased, then no new node is created

(tree size remain unchanged). Therefore,

|TD′ | ≥ |TD|

.

• All nodes of a’s have a count equal to one. Since FreqD(a) > FreqD(b), there exist a transaction T

where Acc(a; T) = 1 but Acc(b; T) = 0. We can simply replace a by b in T to get D′. Therefore, we

ended up with the same tree size in D′.

�

Below example better illustrate the proof.

102

Figure 5.20: FP-tree TD for Example 5.9

Example 5.12. Suppose that D = {T1, T2, T3, T4 T5}, T1 = 〈a〉, T2 = 〈a, b, c〉, T3 = 〈a〉, T4 = 〈a, b〉 and T5 =

〈a〉. FP-tree TD is shown in Figure 5.20 where Freq(a)=5, Freq(b)=2, Freq(c)=1 and |TD| =4.

By decreasing Freq a by 1 and increasing b’s Freq by 1, we will end up to two different trees as shown in

Figure 5.21 and Figure 5.22 (affected nodes are bold). Figure 5.21 shows where increasing b’s Freq leads to

a new node and |TD′ | = |TD|+1 = 5. Figure 5.22 shows where increasing b’s Freq do not create a new node

and |TD′ | = |TD|.

Corollary 5.6. For any given A and D, the largest size of TD requires that for any a, b ∈ A we have

|FreqD(a)− FreqD(b)| ≤ 1.

Proof. Suppose that for the sake of contradiction ∃ a, b ∈ A where |FreqD(a)− FreqD(b)| ≥ 2 . Then we can

safely decrease Freq of a by 1 and increase Freq of b by 1 as described in Lemma 5.5 (notice that frequency

ordering remains the same) and expect a tree that may increase in size. �

This corollary means, to maximize U , all item frequencies must be equal, and if they are not, they should

103

Figure 5.21: Increasing b’s Freq leads to a new

node

Figure 5.22: Increasing b’s Freq do not create a

new node

differ by only 1 in size. In other words TC should evenly be distributed through the items as much as

possible.

Lemma 5.7. Maximum size of FP-tree on A = {a1, . . . , an} based on FreqD(a) for all a ∈ A, equals to:

2n −
n∑

i=1

(2i−1 −. FreqD(ai)). (5.5)

Proof. Base on Equation 5.2, U = 2n − total number of unused nodes. Lemma 5.4 says that ith element

of A appears 2i−1 times in the layout tree. In addition, we know ai occurs FreqD(ai) times in TD, hence,

minimum number of unused nodes of ai will equal to 2i−1−. FreqD(ai), and adding it up for all n items, will

result in the total number of unused nodes =
∑n

i=1(2i−1 −. FreqD(ai)). �

Lemma 5.8. Upper bound for FP-tree given n and TC equals to:

U(n, TC) =

2n −

∑n
i=1(2i−1 −. TC

n
) n divides TC

2n −
∑n

i=1

(
2i−1 −.

(⌊TC
n

⌋
+ sign

(
(TC −

⌊
TC

n

⌋
× n)−. (i− 1)

))
otherwise

(5.6)

Proof. Corollary 5.6 condition happens when all frequencies are equal, and if they are not, they should differ

104

by only 1 in size. To achieve this goal, if n divides TC then
TC

n
is equally assigned for each item frequency.

By plugging in
TC

n
in Lemma 5.7’s equation, Upper bound equals to 2n −

∑n
i=1(2i−1 −. TC

n
).

If TC is not divisible to n, First

⌊
TC

n

⌋
is equally assigned for each item frequency. Then, we would need

another term to divide the residual budget (TC −
⌊
TC

n

⌋
× n) to items (1 for each item until the residual is

finished), which is: sign
(

(TC −
⌊
TC

n

⌋
× n)−. (i− 1)

))
. Note that the argument inside the sign function is

positive or zero (so sign function will return either 0 or 1). In the latter case if the frequencies are not equal,

it is guaranteed to differ only 1 in size. �

Example 5.13. Suppose that A = {a1, a2, a3, a4} where n = 4, and consider two TC values 12 and 15.

• If TC = 12 then n divides TC and
12

4
= 3 is equally assigned for each item frequency.

U = 24 −
4∑

i=1

(2i−1 −. 3) = 10

• If TC = 15 then TC is not divisible to n. First

⌊
15

4

⌋
= 3 is equally assigned for each item frequency,

and the residual budget (15−
⌊

15

4

⌋
× 4 = 3) split between a1,a2 and a3 (1 for each).

U = 24 −
4∑

i=1

(
2i−1 −.

(⌊15

4

⌋
+ sign

(
(15−

⌊
15

4

⌋
× 4)−. (i− 1)

))
= 11

5.5 SUMMARY

In this chapter, we propose a new tight upper bound for the number of nodes and hence the memory

requirements of the alphabetical and FP-tree based structure. These upper bounds are calculated based on

the total number of the items and distinct items in the database. The upper bound for the alphabetical tree

structure is provided as a simple algorithmic routine while the upper bound of the FP-tree is formulated in

a closed form. We anticipate a wide range of applications for these upper bounds in various applications.

The recent acceleration in the amount of big data storage and the need to analyze the frequent patterns in

105

these large databases would indeed be a great indication for usefulness of having upper bounds on the size

of these tree structure in order to perform efficient analysis.

106

Chapter 6

Improving the Cold-Start Problem in Recommender Systems

with Association Rule Mining and SVD-based Features

6.1 INTRODUCTION

Recommender systems are often used by online retailers and service providers to aid users with their selection

of products, services, songs, etc. Such systems generate recommendations based on available information on

the user from their online profiles, previous purchases, as well as popular pairings from previous transactions

by other users. However, such information may not always be available, or sufficient enough so as to generate

good recommendations for the user, a problem that is commonly referred to as the cold-start problem in

the literature. This section explores the feasibility of using SVD-based embedding features and association

rules to enhance user profile information and help generate more useful recommendations in cases where

client information is not available directly. A new approach is proposed herein, and its applicability and

efficiency regarding redundant and non-redundant rule sets is investigated as part of this thesis. Given that

107

rich content information is often available for both music-seeking online users and the wide of assortment

of music available online, music recommender systems were selected to test the applicability of the herein

developed models.

Until recently, people listened to their own local music library and rarely curated collections online.

However, with the advent of streaming services, which circumvent the need to download manually and

organize songs within local libraries, the era of local music libraries has been slowly giving way to a new area,

where music curation primarily occurs online. Indeed, personalization algorithms and unlimited streaming

services such YouTube, Spotify, etc. are emerging as top picks for curation of music. However, the online

availability of an impossibly large collection of music by innumerous artists has brought new challenges to

online music service providers. As opposed to the traditional user, whose regular musical exposure was often

confined to his own locally downloaded and organized library, or top picks on the radio, todays commuters

are now given the choice to listen to any of the millions of songs available online today, and will often vary

in their selections so as to encompass a wide variety of songs stemming from varied genres and decades. For

instance, as part of his commute, a new generation user may choose to listen to songs by varied artists such

as Lady Gaga, Vivaldi, and the Beatles, none of which is from the same genre or decade. Furthermore, new

songs and new artists emerge every week, adding another great challenge to recommendation algorithms.

Without enough historical data, how can an algorithm predict whether a listener will like a new song or a

new artist? And how can it recommend songs to brand new users? The popularity of online content services

and social media has demonstrated the value of providing relevant information to users. Recommender

systems have proven to be an effective tool for this purpose and, as such, have been increasingly receiving

more attention. In addition, the enormous and ever increasing amount of available training data together

with advances in hardware (such as GPUs) have made it possible to tackle these problems in a reasonable

amount of time.

108

6.2 USER PROFILING

Briefly, a recommender system consists of a system that uses information about its users (e.g. their profiles)

as input to generate as output a set of recommendations for a user in an area of interest based on its decision

logic. Input can include information such as user ratings, ratings of previous users with similar taste, the

contents of the ratings or comments (if applicable), and the contents of the item itself. In this regard, the

profile of the user plays a major role in the decision of a recommender system. User profiles (referred to in

this chapter as User Item Profile), consist of users ratings on items, while ‘items’ are understood to be songs

within the context of the currently discussed work . These two designations are used interchangeably within

the chapter. Ratings can be explicit, where the system asks users to explicitly rate an item on a binary

scale (e.g. like/dislike), or discrete scale (e.g, 1-10), or implicit, in which case the rating is inferred from the

history of the users actions or interactions with an item (e.g. purchase, navigation, clicks, listen and ranks.).

Let U = {u1, u2, ..., un} be a set of users and S = {s1, s2, ..., sm} be a set of items or songs. The user item

profile can then be defined as:

Definition 6.1. (User Item Profile): PS : U → [0, rS]m, where [0, rS] is the rating scale such that for a user

ui ∈ U,PS(ui) =< vi1, vi2, , vim >, each vij is the rating to item/song sj, and 1 ≤ i ≤ n, 1 ≤ j ≤ m.

In order to recommend relevant choices for a target user, collaborative filtering recommender systems

have to first generate a pool of other users (neighbours) with user profiles similar to the target user. As

a next step, items that have been preferred or highly rated by neighbours would then be recommended to

the target user as possible choices. This approach works well when the number of items and the pool of

neighbours is large. However, when the target user has a relatively small collection of rated items (referred to

as a ‘short’ profile), it becomes difficult for the system to generate an adequate pool of neighbours, resulting

in a low-quality recommendation system. This is an example of a cold-start problem.

In a study by Ziegler et al., a taxonomy-based product recommender system was proposed (TPR) [81].

109

This approach generates ratings for the categories or features of items based on users item ratings. In this

chapter, the users category rating is referred to as the User Extended Profile. Let T = {t1, t2, ..., tl} be a set

of features (or topics or categories) belonging to S item-set. With that in mind, the user extended profile

can be defined as Follows.

Definition 6.2. (User Extended Profile): PT : U → [0, rT]l, where [0, rT] is the scale of the feature or

category ratings. This means for a user ui ∈ U,PT (ui) =< ai1, ai2, ..., ail >, each aij represents user’s

interest in feature or category tj ∈ T, 1 ≤ j ≤ l.

Given that the user extended profile is a representation of the user’s interest in topics rather than

individual items, the TPR system thus becomes a better candidate for generation of overlapping and more

expressive similarity computations. The main differentiator in the TPR system is that it capitalizes on the

similarity of users extended profiles rather than item profiles to generate neighbourhoods for users. The

number of items is often much bigger than the number of categories of items available at any given time (i.e,

m � l); thus, the system is able to generate much denser user taxonomy profiles as compared to user item

profiles. This aids in the generation of more accurate neighbourhoods, which in turn improves the quality

of the recommendation system [81]. Despite this advantage of extended-based approaches, the cold-start

problem still exists in cases where user ratings are insufficient.

To illustrate an example of user item and extended profiles, as well as to evaluate our model, a dataset

provided by KKBOX at the ACM WSDM18 competition will be used throughout this chapter.

Example 6.1. KKBOX has provided a data set that consists of information regarding the first observable

listening event for each unique user-song pair (E) within a specific timeframe. Intuitively, if a user really

enjoys a song, s/he will repetitively listen to it. We are asked to predict the chances of a user listening to a

song repetitively after the first observable listening event within a given time window. If there are recurring

listening event(s) triggered within a month after the user’s very first observable listening event, its target is

marked 1, and 0 otherwise. More formally, let us assume an event E(U, S, T1) in which a user U listened

110

Table 6.1: Distributions of users and songs in train and test sets

Train Test

7.377.418 events 2.556.790 events

30.755 unique users 25.131 unique users

359.966 unique songs 224.753 unique songs

9.272 users are in train but not in test
3.648 users are in test but not in train; this

corresponds to 14.51% new users

195.086 songs are in train but not in test
59.873 songs are in test but not in train; this

corresponds to 26.64% new songs

to a song S at time T1. If we observe a subsequent event E′(U, S, T2) where T2 − T1 < 1 month (that is,

repetitive listening took place within one month), event E will be marked as 1; otherwise, it will be marked

as 0. The models are evaluated on an area under the ROC curve between the predicted probability and the

observed target. Training and the test data are selected from the user’s listening history within a given time

period and have around 7 and 2.5 million unique user-song pairs respectively. It is worth mentioning that

this structure also suffers from the cold start problem: 14.5% of the users and 26.6% of the songs in test do

not appear in the training data. Table 6.1 contains some statistics on users and songs in the training and

test data, while Table 6.2 summarizes all meta data provided by KKBOX, which demonstrate the presence

of the cold start problem. Hence, the main task of the model is to predict whether or not a new listener will

like a new song or a new artist.

Table 6.3 illustrates a user item (song) profile based on this dataset. As illustrated by this example, for

each user item profile, every individual entry pertaining to preference is processed as a binary rating (e.g.,

like/dislike) that indicates whether the user likes a given song or not, while NA values indicate a missing

entry (like/dislike) for the user song pair. The dataset used in this example contained 30,755 users and

359,966 songs, which results in a sparse matrix of n = 30, 755 rows and m = 359, 966 columns. Table 6.4

111

Table 6.2: Meta-data for users and songs

Train and Test Songs Meta-data Users Meta-data

user id song length city

song id genre ids age

source system tab (tab name) artist name gender

source screen name (layout name) Composer registration method

source type (entry point) Lyricist registration date

target (train only) Language expiration date

song name

ISRC: song code

shows user extended profile from meta-data provided in Table 6.2. In the user item profile, rows represent

users, while columns are used to track individual preference ratings (or lack thereof; i.e. NA) for each

individual song contained in the dataset. In the extended user profile, however, rows will be the users and

columns are features or categories belonging to song meta-data. Using the same dataset as above, we will

have n = 30, 755 rows and l = 5314 columns (in this example the number of extracted features or categories

was 5314, we can also confirm that m � l). To create a profile for each user, categorical features, which

indicate a users taste for that feature, were aggregated (i.e. artist-name). NA values indicate a missing entry

for the metadata feature associated with the users feature pair. To illustrate how the extended user profile

is processed, suppose that user 1 likes 100 songs, and that 10 of those songs have genre ids 1; as a result,

the entry for user 1 under the column designated for genre ids 1 will be equal to 10, as shown in Table 6.4.

Weng et al. [71] developed the user taxonomy profile recommendation system based on previous work by

Ziegler [81]. Among others, relevant literature [5, 37, 55, 58, 71, 78, 81], suggests the use of implicit song rat-

ings to capture user preferences through item taxonomy as a means of to achieve a solution for the cold-start

problem. The above cited literature suggests that songs be used to capture user preferences by converting

112

Table 6.3: User item profile

song 1 song 2 song 3 ...

user 1 0 NA 1 ...

user 2 NA NA 0 ...

user 3 0 1 NA ...

...

Table 6.4: User extended (taxonomy) profile

genre ids 1 genre ids 2 artist name 1 artist name 2 language 1 composer 1 ...

user 1 10 NA 3 NA 21 2 ...

user 2 NA NA NA NA 7 1 ...

user 3 3 200 340 NA NA 7 ...

...

113

them into concepts or concept-weighted vectors. One of the main advantages of using such an approach is that

it ranks such features by their importance rather than via explicit ratings. Let us define the profile vectors for

users ui and uj and item sk as PT (ui) =< ai1, ai2, ..., ail >,PT (uj) =< aj1, aj2, ..., ajl >. Then let PT (sk) =<

ak1, ak2, ..., akl >, for each sk, where l is the number of features and aij denotes a given user’s taste in that

feature tj ∈ T . In this example T = {song length, genre ids 1, genre ids 2, artist name 1, artist name 2,

language 1, composer 1, ...} and PT (user 1) =< 10, NA, 3, NA, 21, 2, ... >, PT (user 2) =< NA,NA,NA,NA, 7, 1, ... >.

For example for song 1 we have PT (song 1) =< 356789, 1, 0, NA, 1, 1, 0, ... >. These profile vectors are used

to measure similarity between users, as well as between users and items, via the Pearson correlation coefficient

measure [81]. Recommendations for a particular user are thus generated based on a subset of ui neighbours,

who have also rated the same item [71]. However, despite the power of taxonomy-driven approaches, the

cold-start problem still remains when applying these approaches to cases where short profiles are dominant

in the rating data.

Figure 6.1 illustrates a high-level process of the user-profile-based recommender system. The raw data in

Figure 6.1 consists of original data for users and songs, which is used to generate user profiles. These profiles

are then used in the next step to generate neighbourhoods/clusters. These clusters include groupings of users

with similar interests in items (songs). Using these groups, the system generates a ranked recommendation

list that includes items of interest for a particular user based on its neighbours and their likings [81].

Here, the short profile problem can be overcome via generation of association rules, while missing features

can be computed based on known user profiles. This will enable the use of rules, which contain concepts

or categories, by a recommender system as a means to improve the quality of recommendations for short

profiles.

114

Figure 6.1: High level view of the TPR approach

115

6.3 HYBRID METHOD: ASSOCIATION RULE AND SVD-BASED FEA-

TURE ENGINEERING AS A SOLUTION FOR THE COLD-START PROB-

LEM

In this section, the developed methodology to solve the cold-start problem is detailed through association

rules and feature engineering. Following profile expansion and extraction of features, the problem is cast as

a classification problem and addressed with the use of gradient boosted decision trees. Three different types

of features were created to feed into the classifier.

1. Statistical features through expansion of user profiles by association rules.

2. Truncated SVD-based embedding features for users, songs, and artists.

3. Statistical-based features for users, songs, artists, and time.

Of note, the developed model herein described won the ACM WSDM challenge. Given that no music domain

knowledge was needed to create the features, the currently presented model only relied on information gain

and prediction accuracy for feature selection. The following sections elaborate on the process by individually

addressing the three above-mentioned features.

6.3.1 Using Association Rules to Expand User Profiles

Often, at the heart of each recommender system lies a user profile from which the system develops its

recommendations. Therefore, to address the cold-start problem particularly caused by short profiles, it is

paramount to expand user profiles by increasing the number of entries (e.g, ratings and likes) in such short

profiles.

116

Table 6.5: An example of transactional dataset base on extended profile

genre ids 1 genre ids 2 artist name 1 artist name 2 Language 1 composer 1

user 1 1 0 1 0 1 1

user 2 0 0 0 0 1 1

user 3 1 1 1 0 0 1

...

Figure 6.2 illustrates a high-level process used to expand short user profiles through association rules.

This method was used to help improve the quality and accuracy of the recommendation system.

As can be seen in Figure 6.2, the process itself is not modified; it is the input of the process (i.e. the

user neighbourhood information extraction) that undergoes modifications. Therefore, this alternation does

not change the mechanics of how a recommender system works, but rather, it changes what should be fed

into it for better recommendations to end users.

A key difference between the currently described process and previous approaches consists of the creation

of a transactional dataset, with each transaction consisting of a set of categories/topics in which the user

is interested. This dataset is then mined for association rules, which are used to expand the previously

generated user profiles. The expanded profiles are then used to improve recommendations.

To generate the required association rules, a transactional dataset is constructed, where each user ui is

a transaction, denoted as Tran(ui). In addition, all the topics t in the taxonomy make up the dataset’s

attributes, i.e, Tran(ui) =< bi1, bi2, ..., bil >, while each value bij shows if user ui is interested in topic

tj or not. Let PT (ui) =< ai1, ai2, ..., ail > be user’s taxonomy profile and bij = 1 if aij 6= 0 and bij = 0

otherwise. This designation helps create a transactional dataset towards user’s interests in topics rather than

items. Table 6.5 show a transactional dataset created based on the explained procedure where ‘genre ids 1’,

‘artist name 1’, etc. are the categories of interest.

117

Figure 6.2: High level flow of the proposed method for expanding short profiles

118

Briefly, the goal of the developed method is to fill in the NA values in user extended profiles so as to

avoid short profiles. Thus, the dataset is mined to find frequent patterns, and necessary association rules

are then derived from these patterns. From these association rules, the available data on short profiles for

users with a limited number of likes/dislikes can be expanded. After mining the association rules, each rule

is then compared in the list to find the exact matches of its ancestor. If a match is found, its contents are

added to the users profile. Each new rule has a weight as well, which is computed from its relation to its

ancestor. In order to generate the association rules, we build a transactional dataset in which each user

ui is a transaction, shown as Tran(ui), and all the categories/topics t create the datasets attributes, i.e,

Tran(ui) =< bi1, bi2,, bil >, each bij value represents if the user is interested in the category/topic tj or

not. This expansion process can be formally described as follows:

For user ui, let Ti = {tj |Tran(ui) = {bi1, bi2, , bil}, bij = 1} be the set of categories that the user is

interested in. For each A ∈ 2(Ti), A is a possible antecedent of an association rule. If a rule exists such

that A → B, the categories in B \ Ti are thus potentially categories to be used to expand a short profile

for a particular user. For each tj ∈ B \ Ti, we have tj ∈ Ti, bij = 0, aij = 0. Therefore, from the user’s

current profile PT (ui) =< ai1, ai2, ..., ail > and the confidence of the rule A→ B, the computation method

to calculate the strength of user’s interest in a particular topic can be described as follows.

tj ∈ B \ Ti, tij =
Σ
|A|
k=1aijk
|A|

× conf(A→ B) (6.1)

where A = {tj1 , tj2 , ..., tjr} is a set of categories from the ancestor and conf(A → B) denotes the rule’s

confidence value [71]. Furthermore, based on the design of the TPR method, the values for topics in the

expanded profile need to be normalized. Example 6.2 further describes this method.

This then generates a set of expanded user profiles P ′T (ui) =< a′i1, a
′
i2, ..., a

′
il >, which can be used to

improve the quality of the recommendation system compared to what is traditionally used as user profiles.

By using the rich user profile information generated by the above steps, we can cluster users based on profile

119

Figure 6.3: The process of expanding user profile through association rules

similarity and derive informative features to feed into the classifier. This process is illustrated in Figure 6.3.

While it is possible to use all matching antecedents and consequent sets from association rules based on

the procedure described above, it would be more effective to use a ranking system to rank all generated

rules, and only use the top ranked rules so as to not include poorly related topics to the users interest, or

overburden the system with computations. In addition, this method can be used to expand any user profile

in the set. However, the aim of this work is to find a solution for the cold-start problem, which is caused by

the existence of short profiles. Therefore, certain restrictions need to be imposed on how the work should

be implemented to expand user profiles.

120

Table 6.6: User extended (taxonomy) profile

genre ids 1 genre ids 2 artist name 1 artist name 2 language 1 composer 1 ...

user 1 10 NA 3 NA 21 2 ...

user 2 NA NA NA NA 7 1 ...

user 3 3 200 340 NA NA 7 ...

...

• Short Profiles: A limitation should be set so as to only impose the method on short profiles that

lack enough information for proper recommendations. It is important to note that as the number

of items increase in a dataset, the available combinations also increase, resulting in more demand

for computational resources to determine whether there is a match in their ancestors, and to rank

existing rules as they are found. Therefore, if caution is not taken in setting a limit, at some point, the

computation demand would hinder the system from generating recommendations in a timely manner,

hence defeating its purpose.

• Number of Rules: As described above, if caution is not taken when selecting the number of rules

used to expand a profile, the expansion can become too large and include poorly related topics to the

users interests. Therefore, there should be a limit set on the number of rules that can be used in the

expansion of a profile based on some measures, including their support, confidence and interestingness.

In this work, the limitation, set based on confidence, is a hyper parameter in our model, and is obtained

during model learning.

Figure 6.4 illustrates the expansion process for a user profile when the above restrictions are considered.

Example 6.2. Using association rules to expand a user profile for user 2. In this example a simple user

profile expansion is demonstrated. The assumptions held for this demonstration are based on Table 6.4 (also

copied in Table 6.6 for user 2). In this example, the user is interested in language 1 and composer 1. Here,

121

Figure 6.4: The expansion process for a user profile with restrictions imposed

122

each feature is given a weight representing the users interest in said feature. In this case, the user is more

interested in language 1, with a weight of 7, as compared to composer 1with the score of 1. For this user,

suppose that a set of 3 rules were found that matched feature combinations from the users profile:

R1 : language 1→ genre 1 confidence = 90%. (6.2)

R2 : composer 1→ genre 1 confidence = 85%. (6.3)

R3 : language 1, composer 1→ artist name 2 confidence = 80%. (6.4)

Therefore, in order to work with the top 3 ranked rules, it would be beneficial to start with the highest

ranked item and move down the list towards lower ranked items. Hence, the first rule to be extracted is R1.

Adding the new topic to the user profile and calculating a score for it would result in a new profile as

follows. Using Equation 6.1 the score of the new topic genre id 1 generated can be calculated as follows:

tij =
Σ
|A|
i=1aijk
|A|

×Rconf → tij =
Σ
|1|
i=1aijk
|1|

× 0.9→ tij =
7

1
× 0.9 = 6.3 (6.5)

where |A| denotes the number of topics included in the ancestor of the rule. In this case |A| is equal

to 1. Rconf denotes the confidence score, set to 0.9 in this case. Thus, the user profile is updated to

PT (user 2) =< 6.09, NA,NA,NA, 7, 1, ... >.

Since the goal of the current exercise was to add up to three rules, and only one rule is used so far, the

next rule to be added would be next rule on the list with the second highest score, R2. The consequent

of R2 in this case is ‘genre ids 1’, which already exists in the user’s profile. Therefore, there is no need

to add it to the profile and the confidence for the item also remains the same. Next, the last highest

ranked rule would be R3 with its consequent as artist name 2, which does not exist in the user’s profile.

Therefore, artist name 2 is added by using Equation 6.1, and the user’s profile is expanded to PT (user 2) =<

6.09, NA,NA, 3.16, 7, 1, ... >.

123

After the user extended profile is updated with association rule mining, the number of short profiles

reduced significantly. This procedure results in a rich user extended profile that can now be used for user-

user similarity and consequent feature extraction based on that, which will be described in the following

section. With this expansion of the profile, the cold-start problem, which existed due to the limited number

of available data from the user, is sufficiently addressed, thus allowing the recommender system to better

provide satisfactory results.

6.3.2 User-based similarity

After creating the user profile, the most common approach to find similar users is to employ the k-nearest

neighbour (kNN) algorithm [41]. The targets for a collaborative filtering are two kinds: users and items.

User-based kNN features can be computed via user profile vectors in high-dimensional space where each

dimension represents a feature. There are two factors to be addressed when employing kNN as follows.

• The rationale behind choosing the number of nearest neighbours (i.e, k parameter),

• The measurement method to compute distance between pairs of users or items.

An optimal k value is usually obtained by repeated trials, taking the value which minimizes the prediction

error. For recommender systems, this is computed based on the evaluation metric on rating scores or ranking.

Many measurement methods have been proposed for similarity computations including Pearson corre-

lation similarity, cosine similarity and mean squared differences [24]. In this example, kNN is not directly

applied to the classification. Rather, kNN is first applied on similarity between users to create additional

features and then used to train the model for classification.

The cosine similarity between user ui and user uj can is defined as:

124

S(ui, uj) =
Rui

Ruj

||Rui
|| · ||Ruj

||
(6.6)

where Rui and Ruj denote the rating vectors for ui and uj , respectively.

It is very common to see features having unpredicted effects on the overall ranking. For example, it could

be the case where two users sharing a popular feature may not be as similar as two users sharing a rare

feature. Therefore, in this work the Inverse Document Frequency [6] was used to rank each feature based on

its popularity in the dataset. To do so, the weight for feature i is defined based on its frequency qi as

Wi = 1/log2(1 + qi) (6.7)

Then Equation 6.6 becomes

S(ui, uj) =
Σk∈ri∩rjWui,k

.Wuj,k√
Σm∈riW

2
m.
√

Σn∈rjW
2
n

(6.8)

where ri and rj denote the indices for features rated by ui and uj , respectively.

Equation 6.8 can be used to compute the weighted average for feature i for user u from its k neighbours.

This information can also be stored in the user profile and be fed to the classifier. It is important to note

that these features computed based on user’s neighbours are not limited to average ratings. In fact, other

features can be used and some of which are listed following:

• Average rating on Artist, Track and album. from user’s neighbours,

• Number of rating on Artist, Track and album. from user’s neighbours,

• Average of similarity score from the user’s neighbours who rated track, album and artist.

The overall structure for adding similarity-based feature on extended profile is shown in Figure 6.5.

125

Figure 6.5: The overall structure for adding similarity-based feature on extended profile

126

6.3.3 Conditional Probability / Expectation Features

It is common among recommender systems to generate many categorical features. In the example provided

here, some of these features include user id, song id, language, city and artist name. Therefore, it is useful

to use the conditional probability of one feature given another feature, to improve the recommendations

for a user or song. The conditional probability would help gain better insight into each user’s profile

and recommend better options for them accordingly. For example, P (source type|user id) can be used to

determine whether the user is using the same source that he/she is used on a regular basis or has it changed

over time. These statistical properties include expectation E(song length|user id) and standard deviation

σ(song length|user id) per user and per property.

Since the recommendation dataset is ordered chronologically, we can use the index as the timestamp.

This feature can help the model find the pattern evolution during the long period of time within the training

set. Furthermore, we can also count the user/song activity within a time window regarding a record of the

first observable listening event.

A set of features is created based on conditional probabilities and extracted features on users, songs

and artists. But, before turning into more feature engineering for this dataset, we would like to highlight

some important aspects of the analysis. We noticed that statistical features based on the target feature

did not work well enough during the training stage. This is probably due to the dynamics involved in the

data structure and the sampling strategy made by KKBOX as shown in Figure 6.6. This figure shows the

evolution of the target mean over time. The plot is set up by aggregating observations target mean in bins

of size 100000. It can be seen from the figure that the target distribution is significantly decreasing over

time. Consequently we should expect a target mean to decline in the test dataset too.

Further analysis of the given features shows a strong correlation between source type feature and the

target value. In Figure 6.7, we plot the distribution of song counts per source type category for the first one

127

Figure 6.6: Evolution of repeated listening (target) in time.

million observations in the training dataset. We can observe that local library and local playlist categories

have the highest count with a large number of re-listening.

In Figure 6.8, we plot the same distribution as above but for the last 1 million observations in the training

dataset and we noticed a huge drop of re-listening in local library and local playlist. Also, the online playlist

counts have increased significantly. It seems that users’ behaviours changed over time, influenced by online

users who are more interested in what other users listened to via the online playlist. As a result, they are

more interested in discovering new songs rather than re-listening again to what they already liked. Still, we

can see from the figure that listening to what other people like does not guarantee that they will re-listen to

the song, which explains why the target mean drops over time.

Figure 6.9 shows that some songs are very popular and have been played more frequently than the others.

We also notice a large variance in the target value for a large number of songs as the number of times a song is

played increases. But the most important fact is that the chances of re-listening increases with its popularity

(number of times it is played). Hence, we have introduced seven features to capture the popularity of a song

and its artist:

128

Figure 6.7: Number of songs per source type for the first 1 million observations and the corresponding

target values

129

Figure 6.8: Number of songs per source type for the last 1 million observations and the corresponding target

values

130

Figure 6.9: Distribution of played songs

• year of the song;

• country of the song;

• total count of each song id;

• cumulative count of each song id;

• number of times a song id appears in each source system tab category;

• cumulative count of each artist name; and

• number of times an artist name appears in each source system tab category.

Several different kinds of features most of which are statistical features based on interactions between a

user and a song or an artist are created. These features are summarized in Table 6.7 and Table 6.8.

131

Table 6.7: Features based on user.

Feature Notation Feature Description

Yr(user id) Users registration year

Duration(user id) Number of days between users expiration date and registration date

mean((user id, sessions),song id) Mean value of number of songs per user sessions

std((user id, sessions),song id Standard deviation of number of songs per user sessions

sum(user id, song length) Sum of songs length for each user Cumulative count of users activity

cumcount(user id) Cumulative count of users activity

cumcount(user id,genre id) Cumulative count of user-genre interaction

cumcount(user id, artist name) Cumulative count of user-artist interaction

n unique(user id, genre id) Number of unique genre categories for each user

n unique(user id, artist name) Number of unique artist counts for each user

n unique(user id, language) Number of unique language categories for each user

n unique((user id, session),genre id) Number of unique genre categories for each users session

n unique((user id,session),artist name) Number of unique artist names for each users session

n unique((user id,artist name),session) Number of unique session values for each users artist

132

Table 6.8: Features based on user.

Feature Notation Feature Description

n unique((user id,session,artist name),song id) Number of unique songs for each artist in a users session

merge count(user id,session) count number of the occurrence of merged user and session

merge count(user id,artist name) count number of the occurrence of merged user and artist

merge count(user id,source type) count number of the occurrence of merged user and source type

merge count(user id,source screen name) count number of the occurrence of merged user and source screen name

merge count(user id,source system tab) count number of the occurrence of merged user and source system tab

merge count(user id,genre id) count number of the occurrence of merged user and genre

merge count(user id,artist name,song year) count number of the occurrence of merged user, artist and song year

n unique((user id,artist name),song year) Number of unique song years for each users artist

n unique((user id,artist name),song country) Number of unique song countries for each users artist

n unique((user id,artist name),genre id) Number of unique genres for each users artist

n unique((user id,artist name),gender) Number of unique genders for each users artist

n unique((user id,session),song id) Number of unique songs for each users session

n unique((user id,artist name),song id) Number of unique songs for each users artist

133

6.3.4 Matrix Factorization and Truncated SVD-based features

Among the latest state-of-the-art, Matrix Factorization (MF) techniques have gained a lot of popularity in

recent decades [42, 56, 66], where they are most commonly used for solving recommendation system problems

such as data sparsity and cold-start. The key aspect of this method is finding the unknown ratings in the

matrix that involves users and items, sorting the ratings and selecting the top k items.

One of the well-known factorization techniques is Singular Value Decomposition (SVD) and it represents

one of the elements in our model. The singular value decomposition of an n × d matrix A expresses the

matrix as the product of the three simple matrices:

A = USV T (6.9)

where: U is an n×n orthogonal matrix. V is an d×d orthogonal matrix, and S is an n×d diagonal matrix

with non-negative entries, and with the diagonal entries sorted from high to low (as one goes “northwest”

to “southeast”). A set of latent user-based features and a set of item-based features can be derived from

the user-song interaction matrix using SVD technique [30, 57]. In our problem user-song matrix is huge

and sparse (there are 34403 users and 419839 songs). A variation of SVD called truncated-SVD is used to

approximate the user-song matrix and decompose the latent factors (or embedded feature) [54].

Truncated-SVD consists in building rank-k approximation Ak to the rank r matrix A by using the k

most significant singular components, where k < r , that is:

A =

r∑
i=1

σiuiv
T
i , Ak =

k∑
i=1

σiuiv
T
i = UkSkV

T
k , A ≈ Ak (6.10)

where δi is the i-th singular value of A, and ui and vi are the corresponding singular vectors. The low

rank approximation reveals hidden links between users or songs only latent in the original data matrix.

Also, from a mathematical view, the latent vectors Ak obtained from the truncated SVD are the best rank-k

approximation in the sense that the Frobenius norm ||A−Ak||F is minimized [10].

134

From a practical point of view, truncated SVD is fast and the decomposition is unique which is a nice

property that allows reproducible results. To create the embedding features based on truncated SVD, we

proceed as follows. First, the sparse matrix A is created and then the k dimensions of the matrices U or V

are extracted as embedding factors.

Feature X represents the row of the matrix and a concatenation of Y1, Y2, Y3, ... features represent the

column of the matrix, called Y . Each entry of the matrix is equal to 1 if X and Y1 or X and Y2 or X and

Y3, ... appear in the data.

By setting the X and Y matrices with different features, the latent factors stored in U and V matrices

are extracted as follows:

1. Set X = user id and Y = song id with k = 35, return both U and V matrices as embedding features

2. Set X = user id and Y = artist name with k = 5, return both U and V matrices as embedding features

3. Set X = user id and Y = source type with k = 10, return only U as embedding features

4. Set X = song id and Y = source type with k = 10, return only U as embedding features

5. Set X = user id and Y = genre id with k = 10, return only V as embedding features

6. Set X = user id and Y1 = song id, Y2 = artist name, Y3 = genre id, Y4 = source type with k = 10,

return only U as embedding features

7. Set X = song id and Y = song id with k = 5, return only U as embedding features. In this matrix for

each user, we took the last 30 songs s/he listened to (it may be a re-listening or not). Two songs s1

and s2 have entry equal to 1 if a user listened to both in his last 30 listenings. The idea behind this

matrix creation is to overcome the cold-start problem related to the songs.

Two important issues must be addressed in the use of truncated SVD above: 1) how to set the value

for the parameter k (the number of embedding factors to consider), and 2) whether to use matrix U or V

135

for the embedding space of the users, songs or artists. The optimal k value, or the choice between U or V

matrix, is obtained by repeated trials, taking the value, which maximizes the prediction accuracy, which for

this task was the area under the ROC curve.

By using the embeddings for users, we anticipated that the ones who listened to the same songs or artists

will be close to each other in the new embedding space. Also, we anticipated that the songs and artists will

also be close to each other in the new embedding space if they were listened to by the same song.

The overall structure for adding engineering and embedding features on extended profile is shown in

figure 6.10.

6.4 TRAINING AND VALIDATION

For this problem to examine the performance of the features more quickly, we used a subset of the training

data (the last 41% of observations) to create our own training and validation sets. From this subset, the last

877417 observations were used for validation and the rest for the training set. The created validation and

training sets have the same user and song distribution as it appears in the original training and test data

(in order to have the same unseen user and song distributions). Within this schema, every time that we had

an improvement on our local validation set, it was guaranteed that we will get the same improvement on

the original test data. Also, as we have to examine lots of features, having a small validation schema for the

test set is vital. As a result, we came up with indices 4400000 to 6500000 for training and from 6500001 to

7377417 for validation.

Using the complete training set as input, we computed all of the features described above and fed these

results into our classification model for the test set prediction.

136

Figure 6.10: The overall structure of adding engineering and embedding features to the Classifier

137

6.4.1 Model Selection and Tuning

As the response matrix in our example includes only 0 and 1, we cast this problem as a binary classification

problem, there are various learning algorithm than can be used: logistic regression, support vector machines

(SVM), neural nets, random forest, gradient boosting decision trees, etc. For this problem, we used Mi-

crosoft LightGBM implementation of gradient boosting decision trees as our classifier which was presented

as NIPS’17 due to its simplicity and superior accuracy in many real world applications [36].

We have a total number of 185 features as described above. A subset of those features was used to train

five different models with different hyper parameters. There were 80 features in common between all models,

but the rest were different. The average Pearson correlation of the five-model prediction was around .89,

which gives us a good boost in prediction accuracy by using blending or stacking, described in the following

section.

For model parameters tuning, after several experiments, we found that the best performance was achieved

for the parameters summarized in Table 6.9. Parameters used in Table 6.9 are described in the Github

repository 3.

Amazon EC2 c5.4xlarge-c5.9xlarge instances were used for validation-training with 16-36 CPUs and 32-72

GB-RAM respectively. Each validation run took around 20 minutes and the time for training was around

one hour only.

6.4.2 Blending and Stack Generalization

In general stacking is ensemble of models combined sequentially. Blending is just averaging the output

predictions of each model with different weights. While both techniques have improved the score in this

3https://github.com/Microsoft/LightGBM

138

Table 6.9: Model Parameters

Parameter Values

learning rate 0.1 0.1 0.1

bagging fraction 0.9 0.8 0.8

sub feature 0.8 0.4 0.4

min hessian 50 500 1000

max depth 90 63 16

num leaves 511 200 250

num rounds 850 80 900

problem, we used blending approach due to its simplicity and slightly better results on our validation set.

Bagging method (averaging predictions from single models with the same features and the same parame-

ters but with different random seeds) was used for three of the models, and two of the models are just single

run. The final model was the weighted average of the five models’ predictions. To find the best weights for

the model blending, We used an optimization function, which is based on Nelder-Mead, quasi-Newton and

conjugate-gradient algorithms [9, 19, 28].

6.5 EVALUATION

The model achieved 0.74693 AUC on private leaderboard with the score difference of 0.00094 from the first

place among 1081 teams. Table 6.10 shows the improvement of the AUC score as we replace the user, song

and artist with their corresponding embeddings and after adding engineered features. Note that each row in

this table adds a new feature to the features introduced in the rows above. Truncated SVD-based embedding

with association rule mining features proved to be the most important and result in an increase of nearly

0.07 in the AUC score from the raw feature set.

139

Table 6.10: Result on AUC score for different set of features

Feature Validation AUC score

Raw features without user id, song id, artist name 0.65510

Raw features and four additional features: Duration(user id),

song year, song country and Yr(user id)

0.66451

replacing user id, song id with their corresponding embedding 0.68781

replacing artist name with its embedding 0.69122

adding the rest of embeddings describe in 0.72145

session, user, song and artist engineered features 0.74257

with association rule mining features 0.74920

Many efforts were made in this work to produce more predictive features instead of tuning model pa-

rameter. Feature selection was conducted after all feature values were calculated. This step was performed

based on the importance of each feature to the overall prediction performance [16]. Table 6.10 shows the

average importance gain for different set of features.

6.6 SUMMARY

In this chapter, an approach was proposed to address the cold-start problem through expansion of short user

profiles. This improves the quality of the recommender system recommendations. The proposed approach

helps expand user profiles with the help of available data in the system from other users (neighbours) and

without having the user input more data in the system. Also, the solution was presented to the 2018 ACM

WSDM recommender system challenge. Our team, Magic Recommenders won the competition. We were

able to come up with a promising AUC score for this task. For future work, a promising area of research is

140

Table 6.11: Average Importance Gain for different set of features

Feature Importance Gain

user id and song id embedding features 0.17778

artist name embedding features 0.11949

Association rule mining features 0.14743

user engineered features 0.19250

song engineered features 0.18310

artist engineered features 0.09254

to explore further the user and song behaviour and interaction. Users typically have specific tastes when a

new song by an artist is released but these taste change over time.

141

Chapter 7

Using Frequent item-set mining for Maintenance Issue

Classification

7.1 INTRODUCTION

Facility Management (FM) activities are knowledge-intensive and require information to be gathered from

a range of sources and integrated into a coherent understanding of a building. A significant, but difficult

to use data source is occupant-generated complaints or Work Orders (WOs) describing issues requiring

resolution by the FM team or requesting specific action. Also referred to as maintenance requests or occupant

complaints, WOs are key forms of feedback, providing facility engineers with valuable insight regarding

building operational performance, and their resolution forms much of the core work of an FM team [29]. As

noted by Goins and Moezzi [29], the “analytical and systematic study of complaints may offer new insights

into many building-related concerns”, further noting both the paucity of existing academic research on this

topic and the need for “more researcher, designer, and building management attention to the potential value

142

of using occupant complaints as a tool for diagnosing what goes wrong in buildings, from the occupants’ points

of view”.

Occupant-generated WOs are recognized as a good potential data to support FM activities. However the

unstructured nature of written complaint descriptions is a key challenge in analysing and integrating this

data within the FM domain [2, 3]. Furthermore, they rarely contain the specific information required by

engineers to resolve reported issues, often requiring multiple trips to the field to resolve. First to identify

the required trade, next to specifically define the problem and identify any specific parts or tools required,

and finally to resolve the issue. The ability to ask each user topic-specific questions regarding the nature

of their complaint will allow this specific information to be gathered. To this end, an automated system

is being developed that analyses the unstructured text, classifies the work order by category (L1) and

subcategory (L2) and prompts the user with FM-team generated follow-up questions in real time. This

chapter compares the prediction accuracies of a number of machine learning classifiers. The contribution of

this chapter is a detailed investigation of various machine learning and frequent itemset mining algorithms

to analyze unstructured text from occupant-generated work orders and classify it with high accuracy into

one of multiple classes. From a research standpoint, the key problem of this chapter is this classification in

light of the limitations of previous studies on this type of data, which have had limited success. While 70-

95% accuracy has been achieved for k=2 class data classification, class accuracies for multiple (k=7) classes

have rarely exceeded an average of 70%. This is not adequate to support work order classification and thus

the application of alternative techniques are warranted. This chapter focuses on the testing of classifiers

using existing textual feature extraction methods and the development of a frequent itemset approach to

classify the WO category and subcategory. The main objective of the task is to classify complaints or Work

Orders (WOs) that describe issues requesting specific action. Given that the important features extracted

by machine learning algorithms are mainly words that appear together, it should therefore be possible to

address this task via application of frequent itemset algorithms to create a powerful yet simple learning

algorithm. Following the presentation of the algorithms used and prediction results, this chapter presents

143

the strategy developed to integrate this FM information into an FM-enabled Building Information Model

(BIM).

7.2 Machine Learning Algorithms for Textual Classification

In order to identify the most promising algorithms for WO textual classification, a survey of machine learning

algorithms for similar problems was completed. Machine learning approaches are broadly classified into two

categories: supervised [44] and unsupervised [34]. In supervised learning, correct data labels are available

to permit the machine learning algorithm to develop classification hypotheses based on the training data

labels. Unsupervised learning discovers hidden patterns or grouping in data with no such labels available.

Automatic text classification applies machine learning techniques to train an algorithm to extract features

from a set of pre-labeled text documents and classify new documents based on their contents. Aggarwal et

al. [1] present a summary of textual classification algorithms, highlighting decision trees, Bayesian networks,

support vector machines (SVM). In order to use all of these techniques, features representing a text document

need to be extracted from the training data. The most common features for representing text documents

are a “bag of words”. A simple way to select a bag of words is based on document frequency (DF) [73],

which ranks and selects the words based on the number of training documents containing a word. However,

such frequent words may not be able to distinguish different classes well because they may occur in all

types of documents. A more commonly used feature selection method is information gain (IG) [73], which

is a supervised feature selection method that maximizes the information gained by knowing the word is

present or absent. To represent a document using a set of selected words, term weighting methods, such as

term frequency (TF) within a document or term frequency and inverted document frequency (TF-IDF) can

be used. The weighting information extracted by TF-IDF can efficiently use by a tree-based classifier for

classification and numerous clustering and classification methods have used TF-IDF as an input feature [80].

Decision tree classifiers [62] are broadly adopted because they are non-parametric, robust to outliers,

144

and they can process mixed data types [51]. Random Forest [15] creates multiple decision trees (a “forest”)

from the training data as follows. For each decision tree, N cases are randomly sampled with replacement

from the original training data to form a training set, where N is the number of entries in a dataset. At

each node, a subset of m features are selected at random and the best features are used to split the node.

Each tree is grown to the largest extent possible with no pruning. New instances are classified by each tree

and a class probability is assigned for each. These probabilities from each tree are then used to develop

an overall prediction. Random forests have been frequently used for recommender systems development,

including a recent study to incorporate user feedback [77]. By combining decision trees into an ensemble

model, Random Forests have demonstrated increased performance due to reduced model variance without

increasing bias. It has been shown that randomization can de-correlate the trees in the ensemble [51],

resulting in a highly effective classification method. Based on these qualities, Random Forest techniques

prove themselves promising for textual classification problems.

Bayesian classification [27] considers networks of probabilities of feature independence to predict the most

likely class. Hierarchical classification leverages Bayesian approaches and several have been considered for

textual classification. Hierarchical classification approaches used in the literature include [20], in which a

hierarchical SVM classifier is combined with Bayesian classification, document classification using Bayesian

networks [40]. In a survey of studies comparing hierarchical and flat classification techniques, Zimek et al. [82]

note that results vary but improve when localized feature selection is present and there are relationships

between features. Since decision tree methods incorporate localized feature selection, this suggests a potential

benefit to hierarchical classification by problem type and subcategory versus flat classification by subcategory.

The development of a successful algorithm will enable the generation of new WO reporting systems to

both structure and improve the quality of problem description data and this forms the motivation for the

classifier development presented in this chapter.

145

7.3 OVERAL STRUCTURE

The overall methodology used in this chapter consists of data structure analysis and cleaning, identification

of potential machine learning classifiers, preprocessing, modeling and model tuning. For WOs, the data

structure consists of the problem classification structure used to both identify necessary sub-trade(s) to

resolve the work issue, as well as subcategories describing specific types of problems, equipment involved,

and/or types of action required. Data cleaning is necessary to create the testing and training datasets used

for classifier development. These datasets cannot contain those WOs that cannot be accurately classified, for

example, those containing blank work descriptions or containing multiple (different) types of work requests,

for example, “the light in my office is burnt out”. Also, “there is a stained ceiling tile”. The latter WOs can

be divided into multiple requests, each associated with a single subtype, but kept as a whole; these cannot be

correctly classified into a single category by a domain expert and thus cannot be properly labelled. Data pre-

processing also includes the deletion of irrelevant fields (columns) and removal of punctuation and common

but meaningless words such as “are” from the work description. A lemmatization (word stemming) process

is finally used to group words with similar meanings together.

The identification of potential classifiers is strongly related to the data structure identified. As noted in

the literature review, the Random Forest algorithm (a decision tree method) and rules-based classifiers show

significant promise, as does a Bayesian or hierarchical approach when the data structure itself has hierarchy

and meaningful relationships between levels.

In order to train and test each classifier, testing (2015 WOs) and training (2010-2014) datasets are

developed. Each classifier is further tuned to determine the optimal parameters by using cross-validation

within the training set. Once tuned, the test data is used to test each classifier and results are analysed

using confusion matrices, which indicate the frequency of predicted vs actual data labels and confounding

between categories. Accuracy statistics, including both the prediction accuracy and the no information rate

(NIR, sometimes referred to as null accuracy), which represents the proportion of the data points included

146

in the largest class and thus the best guess results, must also be considered in evaluation, along with the

probability that the calculated prediction accuracy is not greater than the NIR. The detailed execution and

model tunning is unique to each data set/data structure, thus the methodology is presented as applied to

the case study in the next section.

7.4 CASE STUDY

7.4.1 Data Restructuring and Cleaning

The G1 dataset used in [69] included 32 problem type categories, each with numerous subcategories, many

of which overlapped as described previously. A revised data structure was co-developed with the domain

expert (Ryerson Facility Engineer) along with specific follow-up questions to obtain targeted details from

the occupant based on the type of problem reported. This additional information is critical to support root

cause analysis algorithm development and is anticipated to reduce the time to resolve each WO due to the

avoidance of the information gathering initial field visit by general maintenance staff.

The restructuring eliminated duplicate or overlapping categories, grouped related subcategories, and

removed all -Miscellaneous categories and associated WOs (approx. 70,000), which were reviewed and found

to be similar enough to the remaining WOs that their omission from the Generation 2 (G2) test/train dataset

was unlikely to significantly change the extracted features. The revised data structure consisted of two levels.

The top category (L1) label denotes the problem category, which is often named for the associated trade (i.e.

HVAC, Plumbing). The subcategory (L2) label describes the type of problem occurring within the defined

category, for example L1 — L2 could be HVAC — Temperature or Plumbing — Drain.

A sample G2 classification structure for the Plumbing category is shown in Figure 7.1. Note that while

most of the original G1 subcategories have been grouped under new L2 labels, the Plumbing Misc. sub-

category was excluded from the new structure since previous research indicated that the presence of such

147

Figure 7.1: Example reclassification of problem type categories

catch-all categories significantly reduced classification accuracy. Once reclassified, custodial requests were

excluded as this project focused on maintenance tasks only. Second, work orders covering multiple issues

from unrelated subcategories, for example “the light in my office is burnt out”. Also, “there is a stained

ceiling tile” were removed; these were consistently poorly classified due to the presence of multiple feature

words from multiple categories.

7.4.2 L1 Classifier Development

Based on the review of available machine learning approaches, along with a review of the dataset structure

used in the case study the authors determined that tree-based algorithms and frequent itemset mining

techniques are the most promising avenues of investigation. TF and TF-IDF have been widely used in

information retrieval [63] and a classifier was developed using the features extracted using these approaches.

These constitute the first three classifiers selected and used in the first phase of research.

148

Two types of approaches were used to develop the L1 classifiers: (1) methods classifying according to

the frequency of mined keywords in each category, and (2) those using frequent itemsets identified with the

frequent itemset mining algorithm. In the first set of approaches, two methods were applied to generate

representative words: TF and TF-IDF, with the random forest algorithm using the latter. In the second

set, word frequencies were analysed using frequent itemset mining techniques and used to develop support

counts for classification. All model development and testing was performed using R.

Three learning methods were used to learn representative words for each problem type category and

integrated into algorithms to classify WOs based on problem descriptions. In the Term Frequency (TF)

method, the set of work descriptions for each problem type was analysed and the most frequently used

words (“representative words”) for each category were determined and used to represent that category. Each

unlabelled WO was then scored against each category based on the number of representative words from

that category present and assigned to the category with the highest score.

In the Term Frequency-Inverse Document Frequency (TF-IDF) model, the prevalence of representative

words within the work description were weighted in inverse proportion to overall category frequency - i.e.

those words occurring primarily in a single problem type category were weighted more heavily than those

occurring across all work description categories. In this method, the weight of the frequency term i in

problem type category j is weighted using the log of the ratio of the total number of problem type categories

over the number of categories in which term i appears.

Finally, a Random Forest classifier was built using the features (10 distinct representative words per

category) extracted from work descriptions using the TF-IDF method. Decision trees were not pruned in

order to permit fair comparison between standard and hierarchical RF approaches; in the latter approach,

the inclusion of pruning would result in different tree depths for each L1 category.

A new algorithm (Frequent Itemset Analysis or ‘FIA’) was developed and applied within the final two

classifiers. FIA was inspired by the observation that several representative words, for example {ceiling},

149

Table 7.1: Sample support matrix

V1 V1 V2 V2 V3 V3 V4 V4

FFE FFE PLUMBING PLUMBING HVAC HVAC LOCK + KEY LOCK + KEY

{tabl} 0.27487 {toilet} 0.46030 {cold} 0.35109 {key} 0.66081

{door} 0.23203 {washroom} 0.20671 {hot} 0.30755 {lock} 0.27587

{set} 0.22098 {clog} 0.19827 {room} 0.16254 {attach} 0.24554

{room} 0.18934 {plug} 0.18433 {temperatur} 0.14204 {form} 0.19899

{floor} 0.15657 {urin} 0.13851 {heat} 0.13718 {attach,form} 0.17558

{chair} 0.15291 {drain} 0.13155 {air} 0.13380 {attach,key} 0.16361

were present in multiple categories, but sets of keywords tended to be unique. For example, itemsets such

as {lights}, {outlet},{ceiling, lamp} and {breaker} have high frequency counts in electrical and itemsets like

{washroom}, {leak}, {ceiling, water} and {plugged} are frequent in the Plumbing problem type. In this

algorithm, every work description is considered a transaction, resulting in over 44,000 transactions to review.

Given N categories (k1, k2, ..., kN), the frequent itemset mining algorithm was used on the training set to

calculate the support - the percentage of the transactions in the training data set in the relevant category

that contains the itemset - of each frequent itemset. A support threshold of 2% was used to select itemsets,

which were stored along with their supports in a scoring matrix, illustrated for m = 6 frequent itemsets

(within each category) and N = 4 classification categories in Table 7.1.

Once the scoring matrix has been created, the FIA algorithm classifies the test data as follows. First, all

category scores (denoted as CSi, 1 ≤ i ≤ N) is initialized with zero. When a new work order is presented

during the prediction phase, the category scores CSi, 1 ≤ i ≤ N , are calculated as follows: for each frequent

itemset j in each category in the support matrix, the transaction text is checked to determine whether the

itemset is present. If so, the support value from the support matrix is added to the CSi. Finally, the record is

classified based on the maximum CSi. This algorithm has significant advantages over simple term frequency

150

approaches due to its consideration of feature supports, while having a significantly lower computational

cost than RF classifiers.

A sliding window variation was also applied to FIA, which formed the final classifier ‘FIA + sliding

window’. This approach generated new frequent item sets using recent transaction subsets and applied them

for rule development and subsequent testing. A subset size of N = 1000 was used and the full 2010-2015

dataset was re-split into 80% training, 20% testing. The support matrix was then developed using the first

1000 chronological transactions, and tested on the following 1000. This was repeated for the full dataset,

allowing the most recent data to be used to develop the support prediction matrix for each instance and

thus considering short-term trends in language used to describe particular maintenance issues.

7.4.3 L2 Classifier Development

The models applied for L1 were developed and tested on L2 data using the methods described above. To

limit computational cost, only the most common cause codes - those accounting for 90% of the WOs - were

considered in L2 classifier development.

To take advantage of the two-level structure of the category labels, a hierarchical approach was developed

in Python to investigate whether representative words created using TF-IDF L1 subsets (by class) rather

than full data would be a) substantially different, and b) more effective for prediction. In this hierarchical

approach, a random forest model was first trained on the L1 categories. For each L1 category, a subset was

created and a new random forest model was trained on each to predict L2 labels. To reduce computational

cost for the hierarchical clustering, each WO was transformed into a vector representation with each element

denoting the occurrences of each word in the WO to create the TF-IDF matrix. This matrix has high

dimensionality and 11 random forest models were trained, so singular value decomposition was used to reduce

its dimension and speed up the training process. One L1 classifier and ten L2 classifiers were developed for

this hierarchical model; L1 categories without sub-classification did not require rules for further sorting and

151

thus did not result in L2 classifiers. Dimensionality reduction was necessary to reduce computational cost for

L2 classification; to do so, a 10% sample of the dataset was used with the full complement of representative

words to identify those most significant. The top 20 representative words were used to build the random

forest classifier on the full dataset. All models were then combined using conditional probabilities as follows.

Suppose that C2 denotes the L2 categories and y1,2 are the correct labels for L1 and L2, respectively, the

probability of C2 of a correct L2 prediction is:

P (C2 = y2) = P (C2 = y2|C1 = y1) ∗ P (C1 = y1) (7.1)

Using the trained models, the prior P (C1 = y1) and posterior P (C2 = y2|C1 = y1) probabilities are

computed and combined using Equation 7.1 to find the probability that C2 = y2. The predicted label ypred

is the category that results in the highest probability. Both random sampling (90% train; 10% test) and

time series distribution (historical 2010-2014 train data; 2015 testing data) were used to separate testing sets

with negligible impact on accuracy for this technique.

7.5 EVALUATION

7.5.1 L1 Classifier Results

Classification models used in the initial data analysis (TF, TF-IDF, and RF using TF-IDF) were revisited

with the full G2 dataset to determine whether the reclassification allowed the full range of categories to be

modelled with better accuracy than the most-frequent categories modelled in previous work [69]. In that

previous study, classifiers were trained and tested on the data subset containing the k=5 most common

classes, representing 70% of all WOs. The results from this study are compared with the results for the same

data subset as well as the k = 11 classes representing 99% of all WOs in Table 7.2. Note that a 99% threshold

was used to avoid classes with too few samples for adequate training. The FIA classifier was developed in

the second phase of this research and was not tested on the G1 dataset.

152

Table 7.2: L1 classifier performance for all categories

G1 Dataset , k = 5 G2 Dataset, k = 3 G2 dataset, k = 11

(50% of WOs) (50% of WOs) (99% of WOs)

Accuracy NIR Accuracy NIR Accuracy NIR

TF 0.5789 0.247 0.8305 0.315 0.5838 0.2306

TF-IDF 0.6007 0.2442 0.7977 0.3041 0.6353 0.2290

Random Forest 0.7047 0.2698 0.8946 0.3671 0.8602 0.2482

FIA Not tested in this phase 0.8161 0.3671 0.7223 0.2487

FIA w/ Sliding Window Not tested in this phase 0.8472 0.3951 0.6788 0.2833

Table 7.3 breaks down these results by class for the full G2 dataset. Both FIA algorithms consistently

achieve class accuracies of 90% or higher for three of the most common categories, while RF achieves this

for six of the top eight. The worst results across all classifiers were related to the EQUIPMENT category,

which included equipment of all types (HVAC, Electrical, Plumbing, etc.) and had several confounded

features with the other categories. Contrasting previous results, the term frequency methods used on G2

data produced notably different representative word fragments for the full spectrum of problem types. The

resultant L1 classification accuracies for the reclassified categories containing 50% of all work orders (G2,

k = 3) significantly exceed those obtained in the initial work (G2, k = 5) for the same volume of work orders.

This difference in performance is most notable when a high number of classes (G2, k = 11, representing 99%

of all WOs) is considered, which also has higher classification accuracy than the initial k = 5 most common

categories. In all cases, the Random Forest algorithm was the best overall performer, followed by both FIA

variants.

As noted above, the two models using the FIA algorithm compared well to one another, with less than 5%

accuracy difference overall, regardless of the number of L1 categories included in the data. The class-by-class

comparison presented in Table 7.3 indicates that while some categories benefited from the sliding window

153

approach when compared with FIA, most showed a marked decrease in class accuracy using this approach,

most likely due to the smaller training dataset. Note that Prevalence is the true percentage of items in a

class, Detection Rate refers to the percentage of true positive predictions, and Detection Prevalence refers

to percentage of positive predictions (true and incorrect); note that all percentages are based on the total

number of items in the dataset. The Balanced Accuracy considers both model sensitivity (percentage of

items predicted in the correct class) and specificity (percentage of items correctly not predicted to be in the

wrong class).

The confusion matrices for the five L1 classifier models are shown as heatmaps in Figure 7.2. These

have been normalized, ranging from 0% of an actual class (black) to 100% of the class (white). The output

of a perfect algorithm would have white squares on the diagonal (where the predicted (row) = actual

(column) labels, and black squares in all non-diagonal cells. Classifiers using the TF and TF-IDF feature

extraction techniques have a high misclassification rate as shown by the off-diagonal entries in the respective

confusion matrices. The two FIA classifiers perform noticeably better, however the confusion matrix shows

a high misclassification of Leak issues as Finishes. This is not unexpected since both contain subcategories

related to ceiling tiles and thus there are significant overlaps in the frequent itemsets contained within these

categories. This is again evident in a close observation of the class accuracy of the Finishes category in

Table 7.2. The RF classifier shows the best overall performance, and the confusion matrix shows minimal

clustering of erroneous results.

7.5.2 L2 Classifier Performance

Table 7.3 summarizes the L2 classifier performance for the five models previously discussed considering only

the top k categories accounting for 99%, 90%, and 70% of all WOs, respectively. Table 7.4 provides overall

model performance for the top k=10 subcategories. Comparing these results to those obtained at L1, the

L2 predictions improved when the number of categories included was similar (k=13 for L1; k=10 for L2),

154

Table 7.3: Class accuracy of L1 classifiers (8 most common L1 categories)

E
L

E
C

T
R

IC
A

L

E
Q

U
IP

M
E

N
T

F
F

E

F
IN

IS
H

E
S

H
V

A
C

L
IG

H
T

IN
G

L
O

C
K

+
K

E
Y

P
L

U
M

B
IN

G

TF

Prevalence 0.054 0.035 0.231 0.079 0.111 0.17 0.109 0.132

Det. Rate 0.028 0.017 0.136 0.039 0.082 0.064 0.081 0.102

Det. Prev. 0.035 0.053 0.266 0.103 0.122 0.08 0.145 0.126

Balanced Accuracy 0.758 0.727 0.712 0.714 0.847 0.677 0.832 0.873

TF-IDF

Prevalence 0.054 0.034 0.229 0.079 0.11 0.171 0.109 0.133

Det. Rate 0.043 0.022 0.109 0.062 0.089 0.111 0.089 0.107

Det. Prev. 0.065 0.049 0.129 0.099 0.113 0.136 0.136 0.134

Balanced Accuracy 0.885 0.804 0.726 0.871 0.892 0.807 0.881 0.887

Random

Forest

Prevalence 0.055 0.032 0.248 0.078 0.117 0.162 0.105 0.128

Det. Rate 0.044 0.024 0.227 0.067 0.093 0.149 0.086 0.113

Det. Prev. 0.048 0.039 0.303 0.072 0.101 0.156 0.096 0.122

Balanced Accuracy 0.900 0.863 0.905 0.930 0.89 0.955 0.903 0.937

FIA

Prevalence 0.055 0.032 0.249 0.078 0.117 0.034 0.162 0.106

Det. Rate 0.033 0.008 0.142 0.065 0.083 0.030 0.147 0.097

Det. Prev. 0.060 0.010 0.204 0.096 0.094 0.066 0.167 0.135

Balanced Accuracy 0.782 0.615 0.744 0.898 0.845 0.925 0.942 0.939

FIA +

Sliding

Window

Prevalence 0.045 0.033 0.283 0.102 0.148 0.027 0.152 0.091

Det. Rate 0.030 0.017 0.162 0.071 0.094 0.026 0.129 0.086

Det. Prev. 0.056 0.027 0.230 0.097 0.103 0.086 0.147 0.144

Balanced Accuracy 0.820 0.745 0.739 0.836 0.811 0.941 0.914 0.943

155

Figure 7.2: Confusion matrices for L1 classifier models (99% of cases): TF (top left), TF-IDF (top centre),

Random Forest (top right), FIA (bottom left) and FIA with sliding window (bottom right)

156

Table 7.4: L2 classifier accuracy

k = 32 (99% of records) k = 20 (90% of records) k = 10 (70% of records)

Accuracy NIR Accuracy NIR Accuracy NIR

TF 0.4822 0.1377 0.5161 0.1491 0.6393 0.1846

TF-IDF 0.5528 0.1385 0.6286 0.1500 0.7413 0.1850

FIA 0.4695 0.1346 0.634 0.1457 0.8146 0.1778

FIA + sliding window 0.4564 0.2833 0.6902 0.1938 0.8212 0.1687

Random forest 0.8398 0.1348 0.8478 0.1461 0.900 0.1779

Hierarchical Random Forest 0.804 N/A 0.840 N/A 0.8829 N/A

on the order of 4-6% for TF, TF-IDF, and RF classifiers, and 8-12% for FIA, due to the specificity of the

subcategories. The FIA algorithm outperformed both TF and TF-IDF, for the k=10 and k=20 tests but

this benefit was lost at higher numbers of classes.

Figure 7.3 presents the confusion matrices for the six L2 classifier models for the k = 10 (70% of

WOs) subcategory classes. In these confusion matrices, the poor relative performance of the TF algorithm

compared to the remaining algorithms is evident by the significant amount of grey (indicating 10-40%

classification rates) in incorrect categories. The increase in performance from TF to TF-IDF is substantial,

and increases substantially for Random Forest, but decreases for hierarchical (prediction errors from both

steps compounded). Overall, RF provided the best predictions for fully unlabelled data.

Comparing the hierarchical and direct RF techniques, it is notable that the hierarchical classification

results were slightly worse than the direct L2 classification using the random forest model. Upon review

of the keywords identified using the TF-IDF for both the overall dataset and within each L1 category,

fewer than 2% of keywords changed. The prediction accuracy of each L2 subcategory calculated using

conditional probabilities is summarized in Table 7.5. No clear relationship was observed between the number

157

Table 7.5: Hierarchical Prediction Accuracy of L2 Models using (Random Forest)

L1 Category
WOs in

L1

L2 within L1

category

P(C1=y1)

is correct

P(C2=y2 — C1=y1)

is correct

P(C2=y2)

is correct

Electrical 1790 2 80% 99% 79%

Equipment 3355 3 74% 88% 66%

FFE 14253 7 91% 89% 81%

Finishes 4108 2 100% 98% 98%

Fire & Life Safety 200 2 87% 100% 87%

HVAC 5241 3 79% 100% 79%

Leak 1070 3 67% 98% 66%

Lighting 3497 4 92% 74% 68%

Lock + Key 4203 5 82% 87% 71%

Noise 861 1 85% 100% 85%

Odour 386 1 84% 100% 84%

Plumbing 5434 6 88% 88% 78%

158

of subcategories of L2 within L1 or the number of data points in L1, and prediction accuracy.

Overall, the hierarchical model is able to achieve high predictive accuracies for L2 categories only if L1

categories are given, and is extremely sensitive to poor L1 class accuracy. The range of prior P (C1 = y1) class

prediction accuracies was 67%-100% (weighted average of 86.7%), while the posterior P (C2 = y2|C1 = y1) was

higher, ranging from 75%-100% (weighted average of 90.5%). For categories with perfect L1 class accuracy,

such as L1= Finishes, there is no impact on results. Even a 10% misclassification rate, for example the L1

= FFE or Lighting significantly affected the results due to the multiplicative probability effect, and this was

most pronounced in the L1= Leak category, which had 98% posterior prediction accuracy for subclasses but

an overall 66% prediction accuracy due to the very low (67%) L1 class accuracy. The Lighting category

remains a source of significant prediction error, indicating that some L2 subcategories remain confounded in

the new work order structure.

Given a correct L1 class, the L2 prediction accuracy P (C2 = y2|P1 = y1) is slightly higher than the non-

hierarchical approach, indicating a slight improvement in performance due to more targeted representative

words developed within each L1 category for L2 classification. Since this research began, the work order

system has been updated to prompt the user to indicate the L1 category most closely associated with their

request, which will permit deployment of this classifier. Similarly, the FIA algorithm achieved accuracy

above 90% with sliding window when the problem type was given.

7.6 SUMMARY

This chapter investigated a series of classifier models tested to predict WO subcategories based on unstruc-

tured and highly variable occupant-generated WOs. A new efficient and low computational cost algorithm

was also developed with frequent itemset mining called FIA. FIA algorithm not only predict classes with

more than 90% accuracy, but the running time is twenty times faster than random forest and memory usage

is also one third of random forest. This forms the basis for a long-term research project to not only classify

159

Figure 7.3: Confusion matrices for L2 models (top row: TF (left), TF-IDF (right), middle row: FIA (left)

and FIA + sliding window (right); bottom row: Random Forest (left), and hierarchical (right)

160

and visualize these WOs, but also permit the enhancement of the WO reporting system to prompt the

user with targeted follow-up questions in real time. This will enable the structured collection of additional

information necessary to assign priority and urgency levels, prioritize FM response to WOs, and facilitate

root cause identification and analysis. The follow-up questions have been developed and approved for each

maintenance-related L2 subcategory by the Facilities Engineer and Maintenance Manager; those developed

for the LEAK — FLOOD complaint are listed following:

1. Where is the leak coming from? (e.g, the ceiling, wall, radiator, window or a floor)

2. Is the liquid pooling on the floor or any other surface?

3. Please describe the leaking liquid (e.g, is it water, colored liquid, a chemical, etc.)

4. Is there a visible source to the flood (e.g, leaking faucet, overflowing sink/toilet, ceiling leak, etc.)?

5. Is there electrical equipment/outlets in close proximity to the water?

6. Do you believe the flood water is contaminated with sewage?

7. Do you know when the flood started?

The best-performing classifiers for the top 10 subcategories accounting for more than 70% of the total

work orders were the FIA classifiers without a 1000-transaction sliding window and the hierarchical Random

Forest when problem type was provided by the user. Both such classifiers exceeded 90% overall accuracy.

When the full dataset was considered, random forest using TF-IDF, which achieved high (90%) accuracy

on the k = 10 classes, and moderately high (82%) classification accuracy on the full dataset, providing the

best results for the less-common categories. The random forest classification model will be integrated into

the pilot recommender system to identify the top subcategory prediction, with the L2 hierarchical classifier

used as a check. Because system users will be prompted to confirm that the classification is correct, and

select a more appropriate classification if incorrect, as part of the recommender system, it will be possible

161

to monitor the real-time performance of these models. This will permit further increase in accuracy through

the integration of online learning to refine the representative words used to minimize classification error.

The relatively low prediction accuracy within some categories such as Lighting indicates the need to

review and refine the L2 subcategory definitions to reduce misclassification. Further refinements to the

recommender system will include the assignment of priority based on a combination of problem subcategory,

specific trigger words, issue location, and/or clustering of repeated WOs. Further, because the frequent

itemset feature extraction had higher accuracy than TF-IDF for up to k = 20 classes, the development a

random forest classifier using frequent itemsets rather than TF-IDF representative words offers significant

potential and warrants future research.

162

Chapter 8

CONCLUSIONS

The herein presented thesis proposes a new method, namely SPFP-tree (single pass frequent pattern tree), for

incremental construction of FP-trees via a single pass of a given data set. The proposed algorithm rearranges

the tree on the fly, arranging items in each branch of the tree in frequency-descending order (just as proposed

in the FP-tree algorithm) after each transaction is added. SPFP-tree performance analysis results were

compared against those corresponding to other algorithms for incremental mining, including CanTree and

CP-tree. The attained results demonstrate that SPFP-tree outperforms CP-tree for all analyzed datasets on

various support thresholds, while outperforming CanTree on lower support thresholds. Moreover, SPFP-tree

is herein demonstrated to be a more memory efficient alternative to CanTree owing to its dense frequency-

descending prefix-tree structure. The feasibility of the algorithm for incremental and interactive mining is

also presented.

As discussed throughout this thesis, memory size is considered a major limiting factor in large database

mining. Previous solutions, such as those presented by incremental mining methods, generally involve

163

division of datasets into subsets, which can then be mined separately. In this thesis, a different approach

is presented to address this issue, wherein the storage of large collections of frequent itemsets is carried out

in the form of a compact graph. The herein proposed method utilizes a single node per each distinct item

in the database, therefore reducing the amount of memory required for a given mining task. Experimental

results corroborate the usefulness of the presented theoretical model by demonstrating that the proposed

algorithm delivers performance superior to those of FP-Growth and Can-Tree in terms of memory use, while

delivering otherwise comparable results in terms of run time.

Further, an upper bound for the number of nodes for a given tree is proposed as part of this work as a way

to also regulate the memory requirements of alphabetical and FP-tree based structures. These upper bounds

are calculated based on the total number of items as well as the total number of distinct items present within

a given database. The upper bound for the alphabetical tree is provided as a simple algorithmic routine,

while the upper bound of the FP-tree is formulated in a closed form. It is anticipated that the proposed

upper bounds will be implemented in a wide variety of applications encompassing varied fields.

As part of this thesis, an approach was proposed to address the cold-start problem of recommender

systems through expansion of short user profiles. Such an expansion would in turn improve the quality

of generated user recommendations across a variety of platforms. The proposed approach helps expand

user profiles by using available data in the system from other users (neighbors), circumventing the need for

further user input into the system. Of note, the proposed solution was presented in the 2018 ACM WSDM

recommender system challenge, earning a promising AUC score.

This thesis also investigated a series of classifier models aimed at predicting WO subcategories from

unstructured and highly variable occupant-generated WOs. The main objective of this task included practical

classification of complaints or Work Orders (WOs) that describe issues requesting specific action. Automatic

text classification applies machine learning techniques such as decision trees, Bayesian networks, and support

vector machines (SVM) to train an algorithm to extract key features from a set of pre-labeled text documents

164

as a way to classify new documents based on their contents. Given that the key features extracted by these

algorithms are mostly attained through analysis of words that appear together in a text, a simple and yet

powerful frequent itemset mining approach was herein used to tackle this problem. The attained experimental

results show the effectiveness of this technique in classifying WOs.

The following publications have been produced during the course of this research period.

• Shahbazi, Nima, Rohollah Soltani, and Jarek Gryz. “Memory Efficient Frequent Itemset Mining.”

In Proceedings of the International Conference on Machine Learning and Data Mining in Pattern

Recognition, pp. 16-27. Springer, 2018.

• Shahbazi, Nima, Rohollah Soltani, Jarek Gryz, and Aijun An. “Building FP-Tree on the Fly: Single-

Pass Frequent Itemset Mining.” In Proceedings of the International Conference on Machine Learning

and Data Mining in Pattern Recognition, pp. 387-400. Springer, 2016.

• McArthur, J. J., Nima Shahbazi, Ricky Fok, Christopher Raghubar, Brandon Bortoluzzi, and Aijun

An. “Machine learning and BIM visualization for maintenance issue classification and enhanced data

collection.” Advanced Engineering Informatics, 38 (2018): 101-112.

• Shahbazi, Nima, Mohammed Chahhou, and Jarek Gryz. “WSDM Cup 2018: Truncated SVD-based

Feature Engineering for Music Recommendation”, the Eleventh ACM International Conference on Web

Search and Data Mining. ACM, 2018.

8.1 FUTURE WORKS

A possible future direction of this work regards further developments in twitter data mining via application

of the techniques presented in chapters three and four, with further improvements to these techniques

enabling the search of frequent patterns among thousands of tweets within very short time periods. While

165

many techniques have been presented to date to mine special patterns in twitter data, one of main barriers

preventing future advancements in the speed and utility of such methods has been the underwhelming

simplicity and efficiency of said techniques, a shortcoming the currently presented work may be able to

easily address.

Given the overall trends observed in technology nowadays, whereby databases continue expanding in size

while computers gain more processor cores rather than faster ones, ample consideration should be given to

adapting the proposed algorithms for parallel compatibility. If the above-mentioned observed tendencies

persist, parallel algorithms, which capitalize on these trends, will likely play a key role in technologies aimed

at maximizing the use of computation resources; as such, adaptation of the herein proposed algorithms for

parallel compatibility would be of large benefit in such endeavors. As well, given the novelty of the newly

presented algorithm described in Chapter 4, an in-depth optimization analysis of said algorithm and its

structure (Chapter 4) would allow for more concrete determinations regarding the current structure, and

possibly enable further optimizations to its structure aimed at reducing computation costs.

Another promising area of research regards further developments in recommender systems directed at

generation of song recommendations through further exploration of user and song behavior and interaction.

For instance, while the probability of a user enjoying a given new song by an artist upon release is generally

known to be largely dictated by the users specific music taste at that moment, musical taste is also known

to change over time. Algorithms aimed at frequently assessing such changes would thus generate better

recommendations over time.

Further research into the performance of the proposed approaches for other types of dataset may shed

further light into the level of performance said approaches are capable of delivering. Given that the WSDM

dataset employed for this research is quite sparse in terms of rating, dense datasets should be employed to

evaluate the level of reductions achievable by the proposed hierarchical redundancy removal approaches.

Further refinements to the recommender system will include the assignment of priority based on a com-

166

bination of problem subcategory, specific trigger words, issue location, and/or clustering of repeated work

orders. Further, because the frequent itemset feature extraction had higher accuracy than TF-IDF for large

number of classes, the development of random forest classifier using frequent itemsets rather than TF-IDF

representative words offers significant potential and warrants future research.

Finally, we propose further work into the development of average memory requirement for the number

of nodes of alphabetical and FP-tree based structures. Such fine-tuning would enable better predictions

concerning expected memory consumption for these well-known structures, a task that would definitely be

of immense value, particularly for practical applications that require consistent storage and analysis of large

amounts of data. Certainly, the recently observed acceleration in the amount of big data storage, as well as

the increasing need for fast, frequent, and efficient analysis of frequent patterns in such large databases are

a great indication of the usefulness of such an application.

167

Bibliography

[1] Aggarwal, C. C. and Zhai, C. (2012). A survey of text classification algorithms. In Mining text data,

pages 163–222. Springer.

[2] Agrawal, R., Imieliński, T., and Swami, A. (1993). Mining association rules between sets of items in

large databases. In Acm sigmod record, volume 22, pages 207–216. ACM.

[3] Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., Verkamo, A. I., et al. (1996). Fast discovery of

association rules. Advances in knowledge discovery and data mining, 12(1):307–328.

[4] Agrawal, R., Srikant, R., et al. (1994). Fast algorithms for mining association rules. In Proc. 20th int.

conf. very large data bases, VLDB, volume 1215, pages 487–499.

[5] Ahmed, A., Kanagal, B., Pandey, S., Josifovski, V., Pueyo, L. G., and Yuan, J. (2013). Latent factor

models with additive and hierarchically-smoothed user preferences. In Proceedings of the sixth ACM

international conference on Web search and data mining, pages 385–394. ACM.

[6] Aizawa, A. (2000). The feature quantity: an information theoretic perspective of tfidf-like measures.

In Proceedings of the 23rd annual international ACM SIGIR conference on Research and development in

information retrieval, pages 104–111. ACM.

168

[7] Amir, A., Feldman, R., and Kashi, R. (1997). A new and versatile method for association generation. In

European Symposium on Principles of Data Mining and Knowledge Discovery, pages 221–231. Springer.

[8] Ayan, N. F., Tansel, A. U., and Arkun, E. (1999). An efficient algorithm to update large itemsets with

early pruning. In Proceedings of the fifth ACM SIGKDD international conference on Knowledge discovery

and data mining, pages 287–291. ACM.

[9] Bélisle, C. J. (1992). Convergence theorems for a class of simulated annealing algorithms on rd. Journal

of Applied Probability, 29(4):885–895.

[10] Berry, M. W., Drmac, Z., and Jessup, E. R. (1999). Matrices, vector spaces, and information retrieval.

SIAM review, 41(2):335–362.

[11] Blake, C. (1998). Uci repository of machine learning databases. http://www. ics. uci. edu/˜ mlearn/ML-

Repository. html.

[12] Blake, C. and Merz, C. J. (1998). Uci repository of machine learning databases [http://www. ics. uci.

edu/˜ mlearn/mlrepository. html]. irvine, ca: University of california. Department of Information and

Computer Science, 55.

[13] Borgelt, C. (2003). Efficient implementations of apriori and eclat. In FIMI03: Proceedings of the IEEE

ICDM workshop on frequent itemset mining implementations.

[14] Borgelt, C. and Kruse, R. (2002). Induction of association rules: Apriori implementation. In Compstat,

pages 395–400. Springer.

[15] Breiman, L. (2001). Random forests. Machine learning, 45(1):5–32.

[16] Breiman, L. (2017). Classification and regression trees. Routledge.

[17] Brin, S., Motwani, R., Ullman, J. D., and Tsur, S. (1997). Dynamic itemset counting and implication

rules for market basket data. Acm Sigmod Record, 26(2):255–264.

169

[18] Bykowski, A. and Rigotti, C. (2001). A condensed representation to find frequent patterns. In Proceed-

ings of the twentieth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems,

pages 267–273. ACM.

[19] Byrd, R. H., Lu, P., Nocedal, J., and Zhu, C. (1995). A limited memory algorithm for bound constrained

optimization. SIAM Journal on Scientific Computing, 16(5):1190–1208.

[20] Cesa-Bianchi, N., Gentile, C., and Zaniboni, L. (2006). Hierarchical classification: combining bayes

with svm. In Proceedings of the 23rd international conference on Machine learning, pages 177–184. ACM.

[21] Cheung, D. W., Han, J., Ng, V. T., and Wong, C. (1996). Maintenance of discovered association rules

in large databases: An incremental updating technique. In Data Engineering, 1996. Proceedings of the

Twelfth International Conference on, pages 106–114. IEEE.

[22] Cheung, W. and Zaiane, O. R. (2003a). Incremental mining of frequent patterns without candidate gen-

eration or support constraint. In Database Engineering and Applications Symposium, 2003. Proceedings.

Seventh International, pages 111–116. IEEE.

[23] Cheung, W. and Zaiane, O. R. (2003b). Incremental mining of frequent patterns without candidate gen-

eration or support constraint. In Database Engineering and Applications Symposium, 2003. Proceedings.

Seventh International, pages 111–116. IEEE.

[24] Cremonesi, P., Koren, Y., and Turrin, R. (2010). Performance of recommender algorithms on top-n

recommendation tasks. In Proceedings of the fourth ACM conference on Recommender systems, pages

39–46. ACM.

[25] Deng, Z., Wang, Z., and Jiang, J. (2012). A new algorithm for fast mining frequent itemsets using

n-lists. Science China Information Sciences, 55(9):2008–2030.

[26] Deng, Z.-H. and Lv, S.-L. (2015). Prepost+: An efficient n-lists-based algorithm for mining frequent

itemsets via children–parent equivalence pruning. Expert Systems with Applications, 42(13):5424–5432.

170

[27] Devroye, L., Györfi, L., and Lugosi, G. (2013). A probabilistic theory of pattern recognition, volume 31.

Springer Science & Business Media.

[28] Fletcher, R. and Reeves, C. M. (1964). Function minimization by conjugate gradients. The computer

journal, 7(2):149–154.

[29] Goins, J. and Moezzi, M. (2013). Linking occupant complaints to building performance. Building

Research & Information, 41(3):361–372.

[30] Golub, G. H. and Van Loan, C. F. (2012). Matrix computations, volume 3. JHU Press.

[31] Han, J., Pei, J., and Yin, Y. (2000a). Mining frequent patterns without candidate generation. In ACM

sigmod record, volume 29, pages 1–12. ACM.

[32] Han, J., Pei, J., and Yin, Y. (2000b). Mining frequent patterns without candidate generation. In ACM

Sigmod Record, volume 29, pages 1–12. ACM.

[33] Han, J., Pei, J., and Yin, Y. (2000c). Mining frequent patterns without candidate generation. In ACM

sigmod record, volume 29, pages 1–12. ACM.

[34] Hastie, T., Tibshirani, R., and Friedman, J. (2009). Unsupervised learning. In The elements of statistical

learning, pages 485–585. Springer.

[35] Hipp, J., Güntzer, U., and Nakhaeizadeh, G. (2000). Mining association rules: Deriving a superior

algorithm by analyzing todays approaches. In European Conference on Principles of Data Mining and

Knowledge Discovery, pages 159–168. Springer.

[36] Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., and Liu, T.-Y. (2017). Lightgbm:

A highly efficient gradient boosting decision tree. In Advances in Neural Information Processing Systems,

pages 3146–3154.

[37] Koenigstein, N., Dror, G., and Koren, Y. (2011). Yahoo! music recommendations: modeling music

171

ratings with temporal dynamics and item taxonomy. In Proceedings of the fifth ACM conference on

Recommender systems, pages 165–172. ACM.

[38] Koh, J.-L. and Shieh, S.-F. (2004a). An efficient approach for maintaining association rules based on

adjusting fp-tree structures. In International Conference on Database Systems for Advanced Applications,

pages 417–424. Springer.

[39] Koh, J.-L. and Shieh, S.-F. (2004b). An efficient approach for maintaining association rules based on

adjusting fp-tree structures. In International Conference on Database Systems for Advanced Applications,

pages 417–424. Springer.

[40] Koller, D. and Sahami, M. (1997). Hierarchically classifying documents using very few words. Technical

report, Stanford InfoLab.

[41] Konstan, J. A., Miller, B. N., Maltz, D., Herlocker, J. L., Gordon, L. R., and Riedl, J. (1997). Grouplens:

applying collaborative filtering to usenet news. Communications of the ACM, 40(3):77–87.

[42] Koren, Y., Bell, R., and Volinsky, C. (2009). Matrix factorization techniques for recommender systems.

Computer, (8):30–37.

[43] Kosala, R. and Blockeel, H. (2000). Web mining research: A survey. ACM Sigkdd Explorations Newslet-

ter, 2(1):1–15.

[44] Kotsiantis, S. B., Zaharakis, I., and Pintelas, P. (2007). Supervised machine learning: A review of

classification techniques. Emerging artificial intelligence applications in computer engineering, 160:3–24.

[45] Leung, C. K.-S., Khan, Q. I., Li, Z., and Hoque, T. (2007a). Cantree: a canonical-order tree for

incremental frequent-pattern mining. Knowledge and Information Systems, 11(3):287–311.

[46] Leung, C. K.-S., Khan, Q. I., Li, Z., and Hoque, T. (2007b). Cantree: a canonical-order tree for

incremental frequent-pattern mining. Knowledge and Information Systems, 11(3):287–311.

172

[47] Leung, C. K.-S., Khan, Q. I., Li, Z., and Hoque, T. (2007c). Cantree: a canonical-order tree for

incremental frequent-pattern mining. Knowledge and Information Systems, 11(3):287–311.

[48] Li, Z. and Zhou, Y. (2005). Pr-miner: automatically extracting implicit programming rules and detecting

violations in large software code. In ACM SIGSOFT Software Engineering Notes, volume 30, pages 306–

315. ACM.

[49] Liu, G., Lu, H., and Yu, J. X. (2007a). Cfp-tree: A compact disk-based structure for storing and

querying frequent itemsets. Information Systems, 32(2):295–319.

[50] Liu, G., Lu, H., and Yu, J. X. (2007b). Cfp-tree: A compact disk-based structure for storing and

querying frequent itemsets. Information Systems, 32(2):295–319.

[51] Louppe, G. (2014). Understanding random forests: From theory to practice. arXiv preprint

arXiv:1407.7502.

[52] Mannila, H. (1997). Inductive databases and condensed representations for data mining. In ILPS,

volume 97, pages 21–30.

[53] Mannila, H. and Toivonen, H. (1997). Levelwise search and borders of theories in knowledge discovery.

Data mining and knowledge discovery, 1(3):241–258.

[54] Martinsson, G., Gillman, A., Liberty, E., Halko, N., Rokhlin, V., Hao, S., Shkolnisky, Y., Young, P.,

Tropp, J., Tygert, M., et al. (2010). Randomized methods for computing the singular value decomposition

(svd) of very large matrices. Works. on Alg. for Modern Mass. Data Sets, Palo Alto.

[55] Matos-Junior, O., Ziviani, N., Botelho, F., Cristo, M., Lacerda, A., and da Silva, A. S. (2012). Using

taxonomies for product recommendation. Journal of Information and Data Management, 3(2):85.

[56] Melville, P. and Sindhwani, V. (2011). Recommender systems. In Encyclopedia of machine learning,

pages 829–838. Springer.

[57] Meyer, C. D. (2000). Matrix analysis and applied linear algebra, volume 71. Siam.

173

[58] Mnih, A. (2011). Taxonomy-informed latent factor models for implicit feedback. In Proceedings of the

2011 International Conference on KDD Cup 2011-Volume 18, pages 169–181. JMLR. org.

[59] Park, J. S., Chen, M.-S., and Yu, P. S. (1995). An effective hash-based algorithm for mining association

rules, volume 24. ACM.

[60] Pasquier, N., Bastide, Y., Taouil, R., and Lakhal, L. (1999). Discovering frequent closed itemsets for

association rules. In International Conference on Database Theory, pages 398–416. Springer.

[61] Pei, J., Han, J., Lu, H., Nishio, S., Tang, S., and Yang, D. (2001). H-mine: Hyper-structure mining of

frequent patterns in large databases. In Data Mining, 2001. ICDM 2001, Proceedings IEEE International

Conference on, pages 441–448. IEEE.

[62] Quinlan, J. R. (1986). Induction of decision trees. Machine learning, 1(1):81–106.

[63] Ramos, J. et al. (2003). Using tf-idf to determine word relevance in document queries. In Proceedings

of the first instructional conference on machine learning, volume 242, pages 133–142.

[64] Savasere, A., Omiecinski, E. R., and Navathe, S. B. (1995). An efficient algorithm for mining association

rules in large databases. Technical report, Georgia Institute of Technology.

[65] Shahbazi, N., Soltani, R., Gryz, J., and An, A. (2016). Building fp-tree on the fly: Single-pass frequent

itemset mining. In Machine Learning and Data Mining in Pattern Recognition, pages 387–400. Springer.

[66] Takács, G., Pilászy, I., Németh, B., and Tikk, D. (2008). Matrix factorization and neighbor based

algorithms for the netflix prize problem. In Proceedings of the 2008 ACM conference on Recommender

systems, pages 267–274. ACM.

[67] Tan, P.-N., Kumar, V., and Srivastava, J. (2002). Selecting the right interestingness measure for

association patterns. In Proceedings of the eighth ACM SIGKDD international conference on Knowledge

discovery and data mining, pages 32–41. ACM.

174

[68] Tanbeer, S. K., Ahmed, C. F., Jeong, B.-S., and Lee, Y.-K. (2009). Efficient single-pass frequent pattern

mining using a prefix-tree. Information Sciences, 179(5):559–583.

[69] Volk, R., Stengel, J., and Schultmann, F. (2014). Building information modeling (bim) for existing

buildingsliterature review and future needs. Automation in construction, 38:109–127.

[70] Wang, J. T., Zaki, M. J., Toivonen, H. T., and Shasha, D. (2005). Introduction to data mining in

bioinformatics. In Data Mining in Bioinformatics, pages 3–8. Springer.

[71] Weng, L.-T., Xu, Y., Li, Y., and Nayak, R. (2008). Exploiting item taxonomy for solving cold-start

problem in recommendation making. In Tools with Artificial Intelligence, 2008. ICTAI’08. 20th IEEE

International Conference on, volume 2, pages 113–120. IEEE.

[72] Yan, X., Han, J., and Afshar, R. (2003). Clospan: Mining: Closed sequential patterns in large datasets.

In Proceedings of the 2003 SIAM International Conference on Data Mining, pages 166–177. SIAM.

[73] Yang, Y. and Pedersen, J. O. (1997). A comparative study on feature selection in text categorization.

In Icml, volume 97, pages 412–420.

[74] Zaki, M. J. (2000). Scalable algorithms for association mining. IEEE transactions on knowledge and

data engineering, 12(3):372–390.

[75] Zaki, M. J. and Gouda, K. (2003). Fast vertical mining using diffsets. In Proceedings of the ninth ACM

SIGKDD international conference on Knowledge discovery and data mining, pages 326–335. ACM.

[76] Zaki, M. J. and Hsiao, C.-J. (2002). Charm: An efficient algorithm for closed itemset mining. In

Proceedings of the 2002 SIAM international conference on data mining, pages 457–473. SIAM.

[77] Zhang, H.-R. and Min, F. (2016). Three-way recommender systems based on random forests. Knowledge-

Based Systems, 91:275–286.

[78] Zhang, Y., Ahmed, A., Josifovski, V., and Smola, A. (2014). Taxonomy discovery for personalized

175

recommendation. In Proceedings of the 7th ACM international conference on Web search and data mining,

pages 243–252. ACM.

[79] Zhao, Q. and Bhowmick, S. S. (2003). Association rule mining: A survey. Nanyang Technological

University, Singapore.

[80] Zhao, Y., Karypis, G., and Fayyad, U. (2005). Hierarchical clustering algorithms for document datasets.

Data mining and knowledge discovery, 10(2):141–168.

[81] Ziegler, C.-N., Lausen, G., and Schmidt-Thieme, L. (2004). Taxonomy-driven computation of product

recommendations. In Proceedings of the thirteenth ACM international conference on Information and

knowledge management, pages 406–415. ACM.

[82] Zimek, A., Buchwald, F., Frank, E., and Kramer, S. (2010). A study of hierarchical and flat classification

of proteins. IEEE/ACM Transactions on Computational Biology and Bioinformatics (TCBB), 7(3):563–

571.

176

