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Abstract

This dissertation focuses on three types of high-dimensional genetic data: protein

sequences, DNA methylation data, and microRNA expression data. The four major

parts are presented in Chapters 2-5, respectively.

In Chapter 2, we develop a new clustering method for protein sequences. First,

we reduce the dimensionality based on entropy. Second, the sequences are clustered

using the Hamming distance vectors of chosen sites. We apply this new method to an

influenza A H3N2 HA data set, which consists of 1960 viral sequences. Our method

aggregates these sequences into 23 clusters. Based on the temporal evolution pattern

of these clusters, we find that the dominant clusters change from time to time and

are often different from the clusters housing vaccine strains.

In Chapter 3, we conduct systematic simulation studies and real data analysis

to compare the performance of seven statistical tests for equal-variance hypothesis.

Our results show that Brown-Forsythe test and trimmed-mean-based-Levene’s test

have better performance on DNA methylation data in comparison with other tests.

ii



Detection of differential DNA methylation and differential variability have re-

ceived a lot of attention in the literature. In Chapter 4, we derive the asymptotic

distribution of a joint score test (AW), proposed by Anh and Wang (2013). Further-

more, we propose three improved joint score tests, namely iAW.Lev, iAW.BF, and

iAW.TM. Systematic simulation studies show that at least one of the proposed tests

performs better than the existing tests for data with outliers or from non-normal dis-

tributions. The real data analyses demonstrate that the three proposed tests have

higher true validation rates than the existing tests.

Besides DNA methylation, microRNA regulation is another important epigenetic

mechanism. In Chapter 5, we propose a novel model-based clustering method to de-

tect differentially variable (DV) miRNAs. We impose biologically meaningful struc-

tures on covariance matrices for each cluster of miRNAs. Simulation studies show

that the proposed method performs better than other model-based methods when

miRNA expression levels are from a multivariate normal distribution. In real data

analysis, the proposed method has a higher validation rate than other methods.
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1 Introduction

The innovation of statistical procedures has always been driven by the desire to

learn from emerging data. Genetic data can reflect inherited or acquired genetic

features of an organism. The analysis of genetic data can advance our understand-

ing of biological mechanisms in biological development, complex genetic disorders,

and even the evolution of a species. However, the high dimensionality of genetic

data has posed a significant challenge for scientists. With the rapid advance of se-

quencing technologies (e.g., next-generation sequencing), genetic data has exploded

in both dimensionality and complexity. For instance, one complete hemagglutinin

protein sequence in influenza contains 566 amino acid sites. Each site can have 20

possible types of amino acids and one gap. Therefore, a complete hemagglutinin

protein sequence consists of 21566 possible states. The number of possible states

is far more than the number of available sequences. During the past few years,

there have been many publications on the analysis of high-dimensional genetic data

(Boulesteix and Strimmer, 2006). Since many traditional statistical methods may
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not be applicable in the analysis of high-dimensional data, statistically rigorous and

biologically interpretable approaches are required to yield new scientific insights from

these enormous, ever-growing genetic data resources. In this dissertation, we are con-

cerned with three types of genetic data: influenza hemagglutinin protein sequences,

human DNA methylation data, and human microRNA (miRNA) expression data.

We introduce these three types of data and their related problems in the next three

sections.

1.1 Influenza hemagglutinin protein sequences

Influenza virus is a negative-stranded, segmented, and enveloped RNA virus

which incurs acute and infectious respiratory disease globally. Influenza epidemics

act as a major cause of human mortality and morbidity. They occur in the winter

months of each hemisphere every year, which is well-known as the influenza season

(or flu season). In the influenza virus family, there are two main genera: A and B.

Among them, influenza A has caused most of the flu epidemics in recent years. Based

on their surface proteins, hemagglutinin (HA) and neuraminidase (NA), influenza A

viruses can be further classified into 16 known HA and 9 known NA. The HA protein

is regarded as the primary antigenic component in the circulating influenza virus.

The occurrence of seasonal flu epidemics is highly influenced by the accumulated
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small mutations in the HA protein (antigenic drift), which allow the virus to evade

recognition of host immune systems and increase the lifetime susceptibility of the

host.

Vaccination is the most effective way to prevent or mitigate the severity of sea-

sonal flu. Each year, the formulation of seasonal flu vaccine is reviewed and some-

times updated because circulating influenza strains are continuously changing. How-

ever, high mutation rate of the seasonal influenza strains, especially on the HA pro-

tein, makes it difficult to select the most proper vaccine strains. Furthermore, some

analyses of the HA gene sequence discovered that antigenic drift of the circulating

strains from vaccine strains played an essential role in affecting the efficacy of the

vaccine (Carrat and Flahault, 2007; Boni, 2008).

Recently, investigators begin to pay attention to flu viral swarms or clusters,

which are viewed as major units driven by evolutionary forces, instead of only fo-

cusing on phylogenetic reconstruction of virus strains (Plotkin et al., 2002;  Luksza

and Lässig, 2014). Nevertheless, in those studies which emphasize the evolutionary

history of clades, the statistical approaches are not optimal and can be improved.

For instance, Plotkin et al. (2002) made some subjective decisions in their method-

ology and consequently, the method is not fully automatic. Moreover,  Luksza and

Lässig’s method has many assumptions and also substantial computation complexity.
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Therefore, a fast and effective clustering algorithm is required for flu viral sequences

to describe the flu’s temporal evolution pattern. The study of this pattern can help

us predict future mutation hot spots in influenza protein sequences and design more

effective vaccine strains.

1.2 Human DNA methylation data

DNA methylation is the most well-characterized epigenetic mechanism that reg-

ulates gene expression without changing genetic codes. In humans, methylation fre-

quently occurs by adding a methyl group to the cytosine (C) nucleotide followed by

a guanine (G) nucleotide, which is named as CpG site (Wahl et al., 2014). Aberrant

methylation patterns and levels have been shown to be associated with many diseases

such as cancer (Gopalakrishnan et al., 2008). Since DNA methylation is reversible,

it is now considered as a potential therapeutic target in cancer treatment due to its

ability to inhibit the expression of oncogenes, which can transform a normal cell into

a tumor cell in certain circumstances.

Generally, the DNA methylation level is measured as the ratio of methylated

to combined (methylated and unmethylated) levels. The definition is presented as

follows. For a given methylation site, let τi denote the original methylation value

of subject i, where i = 1, ..., n. Then τi is defined as the ratio of methylated to

4



combined intensity values of signals:

τi =
Mi

Ui +Mi + e
,

where Mi and Ui are the methylated and unmethylated intensity values of subject

i, and e is a small correction term to regularize probes of low total signal intensity

(Teschendorff and Widschwendter, 2012).

Recent advances in next-generation sequencing and microarray technology allow

us to measure genome-wide methylation levels at a high resolution (Bock, 2012). A

series of Illumina Infinium Methylation platforms provide quantitative array-based

methylation measurement at the single-CpG-site level. These platforms include the

Illumina Infinium HumanMethylation27 BeadChip (HM27k), the Illumina Infinium

HumanMethylation450 BeadChip (HM450k), and the Illumina Infinium Methyla-

tionEPIC BeadChip (EPIC). All three Illumina Infinium Methylation technologies

are based on bisulfite-converted DNA. They investigate approximately 27k (HM27k),

450k (HM450k), and 850k (EPIC) CpG sites. The genomic regions targeted by the

HM27k are proximal promoter region of RefSeq genes that are well-characterized

in NCBI Reference Sequence Database and well-described cancer genes. Including

94 percent of the methylation sites of the HM27k, the HM450k covers more regions

comprising of CpG islands and related regions, bodies of RefSeq genes and functional

transcription regions, and more regulatory regions (Pidsley et al., 2016). Compared

5



with the HM450k, the EPIC quantifies DNA methylation levels at more distal regu-

latory regions.

Compared with the HM27k, the HM450k and the EPIC have more interrogated

CpG sites, offering more resources for genome-wide association studies (GWAS).

However, they also bring more challenges as a result of having two different types of

chemical assays in one data, termed Infinium I and Infinium II. Infinium I assay uses

two probes (Type I probes) per CpG locus (as HM27k) to generate methylated and

unmethylated measurements. Infinium II assay uses a single probe (Type II probes)

with two different colors to differentiate methylated (green) and unmethylated signals

(red) (Wu et al., 2014; Shiah et al., 2017). The distributions of the methylation values

derived from these two assays are significantly different. Type II probes are reported

to have a reduced dynamic range and are generally less reproducible (Dedeurwaerder

et al., 2011). Along with some common noises of microarray technologies, some biases

introduced by Type II probes make the tasks of pre-processing DNA methylation data

more challenging. Hence, normalization and quality control are crucial for statistical

inference using DNA methylation data. In general, DNA methylation data should

be pre-processed and evaluated by the following steps:

(1) Normalization including background correction, within-array normalization,

and between-array normalization;
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(2) Removal of the CpG sites with low quality, including CpG sites with high

detection p-value, high missing proportion, and CpG sites residing near SNP,

etc;

(3) Principal component analysis (PCA) for detection and adjustment of batch

effects;

(4) Cell type estimation and adjustment or other adjustment.

One major goal in the analysis of methylation data is to identify disease-associated

CpG sites. Many analyses in the past have focused on the difference of mean methyla-

tion levels between the diseased and control groups. Recently, some research suggests

that methylation features detected based on variation discrepancy may also play a

crucial role in unveiling the underlying mechanisms of complex diseases (Frank, 2010;

Feinberg et al., 2010; Hansen et al., 2011; Jaffe et al., 2011; Teschendorff and Wid-

schwendter, 2012). Many DNA methylation analyses show that differentially variable

DNA methylation marks are biologically relevant to the disease of interest. However,

these investigators make the inference relying on the information from the standard

F test or Bartlett’s test (Bartlett, 1937). It is well-known that F test or Bartlett’s

test is highly sensitive to the departure of the normality assumption and the presence

of outliers. It has been reported that DNA methylation levels for different sites often

follow various distributions and contain outliers (Ahn and Wang, 2013). Therefore,
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we need robust equal-variance testing procedures, which can keep the nominal type

I error and have reasonable power even if the normality assumption is violated.

Conover et al. (1981) compared 56 equal-variance testing procedures using simu-

lation studies and found that the Brown-Forsythe test (Brown and Forsythe, 1974)

was one of the best performers in terms of robustness and testing power. Phip-

son and Oshlack (2014) compared their proposed two equal-variance tests with F

test and Bartlett’s test using simulated data generated from a Bayesian hierarchical

model and evaluated the impact of outliers on the test statistics. However, sys-

tematic comparisons among these equal-variance tests are still needed to evaluate

their performance when there are different distributions and outliers, featuring DNA

methylation data.

Since discrepancies in both mean methylation levels and methylation variabilities

can contribute to the identification of CpG sites relevant to the disease of interest,

a more efficient approach is to test equal means and equal variances simultaneously.

Some researchers have tried to construct this kind of joint tests. Littell and Folks

(1971, 1973) compared four methods of combining independent tests of hypotheses

and found that Fisher’s method is the most efficient in terms of Bahadur efficiency.

Perng and Littell (1976) suggested a joint test for two normal populations by testing

equal mean and equal variance simultaneously. The joint test is proved to have

8



asymptotical optimality based on Bahadur efficiency. Zhang et al. (2012) constructed

the exact distribution of the likelihood ratio test statistic of the joint test. Chen et al.

(2014) employed a generalized exponential tilt model to derive semiparametric tests,

which could evaluate the disparities in both means and variances between diseased

and non-diseased groups. However, all these methods have parametric assumptions

on data distributions, which may be violated in DNA methylation data. Ahn and

Wang (2013) proposed a joint test to assess the discrepancies in means and variances

simultaneously. This joint test is derived from a generalized linear model and relaxes

some parametric restrictions on the data, which can be applied to DNA methylation

data with different distributions. However, Ahn and Wang (2013) did not consider

the fact that outliers are prevalent in DNA methylation data and the occurrence of

mixture structures increases a lot in the HM450k and EPIC data. Therefore, we

propose some robust joint tests to address this problem.

1.3 Human microRNA expression data

Besides DNA methylation, another important epigenetic mechanism is the regu-

lation of microRNAs (miRNAs). Ribonucleic acid (RNA) is one of the three major

biological macromolecules (DNA, RNA, and protein) that are essential for all known

forms of life. RNA can be generally classified into two categories based on whether it
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can be translated into protein (coding RNA) or not (non-coding RNA). The function-

ally important types of non-coding RNAs (ncRNAs) include transfer RNAs (tRNAs),

ribosomal RNAs (rRNAs), small RNAs (e.g., microRNAs, siRNAs), and the long

ncRNAs. The miRNAs are non-coding RNAs of about 22 nucleotides long, which

can regulate gene expression through post-transcriptional repression or target mRNA

degradation (He and Hannon, 2004; Hammond, 2015). It has been demonstrated

that miRNAs play an important role in mammalian development, maintaining tissue

homeostasis, cell cycle progression and proliferation, regulation of immune response,

and aging of the brain (Hammond, 2015; Silva Rodrigues et al., 2018; Van den Hove

et al., 2014). Aberrant miRNA expression patterns are found to be associated with

a wider range of human diseases, such as cancer (Lu et al., 2005), metabolic diseases

(Fernández-Hernando et al., 2013), Viral pathogenesis (Cullen, 2011).

The miRNA expression profiling becomes increasingly popular because miRNAs

can significantly affect many biological processes and are the promising candidates

for disease biomarkers. Three major approaches have been widely used for miRNA

profiling: quantitative reverse transcription-polymerase chain reaction (qRT-PCR),

hybridization-based methods (e.g., microarrays), and high-throughput sequencing

(i.e., RNA-seq) (Pritchard et al., 2012). These approaches have different technical

advantages, and hence can be used to achieve different research objectives. The
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qRT-PCR is a well-established method and can be used to determine absolute quan-

tification. The miRNA microarray is well established and can be easily adapted to

existing microarray workflow. RNA sequencing has high accuracy and sensitivity to

detect novel miRNAs. Ascribed to more and more comprehensive and in-depth stud-

ies of miRNAs, the public miRNA database miRBase (http://www.mirbase.org/)

contains more than 38,000 miRNA entries with detailed information on sequences

and physical structures (Kozomara and Griffiths-Jones, 2013). This information can

help us advance the understanding of the mechanisms of gene regulation and develop

novel effective miRNA-based diagnoses and therapies.

With the rapid advance of sequencing platforms, array-based technologies allow

investigators to interrogate hundreds of thousands of miRNAs simultaneously in one

experiment. Many analyses have been conducted to identify disease-associated miR-

NAs based on differential means (Bandrés et al., 2006; Resnick et al., 2009; Bandrés

et al., 2006). Similar to DNA methylation data, differentially variable miRNAs may

also be relevant to the disease of interest or the improvement of therapies (Mar et al.,

2011). However, to the best of our knowledge, no studies have incorporated the infor-

mation of variances because they have all focused on testing equal means in miRNA

expression data.

Generally, there are two kinds of methods used in the analyses of gene expression
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data: probe-wise approaches and model-based methods. Some common probe-wise

approaches for differential variances are F test or Bartlett’s test (Bartlett, 1937),

Brown-Forsythe test (Brown and Forsythe, 1974), and methods derived from these

tests. The probe-wise approaches are flexible and easily implemented, but they ig-

nore the correlations between gene marks and have multiple testing problems. The

model-based methods can borrow information across probes and avoid multiple test-

ing problems. Strbenac et al. (2016) used re-sampling methods and user-defined

thresholds to identify gene marks based on differential means and differential vari-

ances. This method is partially subjective due to user-defined parameters. Bar

et al. (2012, 2014) and Bar and Schifano (2018) considered differential means and

differential variances in mixture models. However, these models characterize the dis-

tributions of the summary statistics (e.g., mean, variance, or difference of means),

instead of the observed expression levels. In this dissertation, we propose a three-

component multivariate normal mixture model to fit the expression levels of miRNAs

in order to identify differentially variable miRNAs between two samples.
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2 Clustering influenza hemagglutinin protein

Sequences

In this chapter, we present a novel clustering method to aggregate the hemag-

glutinin (HA) protein sequences of flu viruses. This method has two steps: entropy-

based dimensionality reduction and clustering. We apply this method to study the

evolutionary properties of the HA component of influenza A H3N2 virus - a major

cause of seasonal flu. We show that our new method could be used to uncover HA

evolution patterns and evaluate recommended vaccine strains.

2.1 Methodology

2.1.1 Data acquisition

This study used 1960 sequences, of which 1947 sequences were directly down-

loaded from the Influenza Research Database (IRD), an online repository of influenza
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sequences, based on the criteria listed in Table 2.1. The downloaded sequences of the

H3 type HA genes were collected from locations around the globe between September

1998 and July 2012. Each of these sequences consists of 1698 nucleotides plus a stop

codon (3 nucleotides).

Table 2.1: Search criteria of HA sequences in IRD.

Option Criteria

“Data to return” protein

“Virus type” A

“Sub type” H3N2

“Select segments” HA

“Complete sequences” Complete Segments Only

“Date range” 1998 to 2012

“Host” Human

“Geographic grouping” All

Advanced options

“Month Range” Sep 1998 to July 2012

“Remove Duplicate Sequences” Yes

All other settings were kept the default or blank.

In order to explore the relationship between the collected flu sequences and rec-

ommended vaccine strains, we added recommended vaccine strains to the data set.

The vaccine sequence information was obtained from the World Health Organi-

zation (http://www.who.int/influenza/vaccines/virus/recommendations/en/). Ta-
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ble 2.2 lists the information and includes all vaccine strains used from Septem-

ber 1998 to July 2012. When we searched for vaccine strains in our downloaded

data set based on strain names, three vaccine strains called “A/Brisbane/10/2007”,

“A/Perth/16/2009”, and “A/Texas/50/2012”, were already included in the data set.

We acquired the remaining vaccine sequences separately and merged them into the

data set manually, resulting in a total of 1960 sequences in our data set.

Table 2.2: Vaccine sequences in the data set.

Stain Name Number of sequences Accession Number

A/Moscow/10/99 2 AY531035, DQ487341

A/Fujian/411/2002 2 CY088483, CY112933

A/California/7/2004 1 CY114373

A/Wisconsin/67/2005 4 CY033646, CY163936

CY114381, EU103823

A/Brisbane/10/2007 3 CY035022, CY039087

EU199366

A/Perth/16/2009 1 GQ293081

A/Victoria/361/2011 1 KC306165

A/Texas/50/2012 2 KC892248, KC892952

The resulting 1960 sequences were then translated into the corresponding amino

acids using MEGA software (Tamura et al., 2011). We translated the coding se-

quences into protein sequences instead of downloading the protein sequences directly

from IRD to avoid the handling of the ambiguous amino acid sign “B”. The transla-
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tion resulted in 566 amino acids for each of the 1960 sequences. Next, we conducted

multiple alignments on all 1960 protein sequences simultaneously using MUSCLE

software (Edgar, 2004). All sequences were neatly aligned and some of them may

have contained a few gaps. The data set can be regarded as 1960 observations (se-

quences) and 566 categorical variables (amino acid sites). Each site has 21 possible

states, 20 types of amino acids and one gap. To better analyze the data set us-

ing statistical softwares (R and Matlab), we converted the alphabetical characters

(representing amino acids) into numerical values.

Each of these 1960 sequences is related to a calendar year, country, and city of

isolation, inferred from the strain name. For the 1947 sequences that were directly

downloaded from the IRD, we can also obtain the date of isolation, which allows us

to partition the data into different influenza seasons (October 1st through September

30th).

2.1.2 Entropy-based dimensionality reduction

A dataset S with n records and p columns is a sample set of the discrete random

vector A = {a1, . . . , ap}. For each component aj, 1 ≤ j ≤ p, aj takes a value from

the state domain Ψj. For j 6= j′, Ψj is conceptually different from Ψj′ . There are a

finite number of distinct categorical values in domain(Ψj) and we denote the number
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of distinct values as |Ψj|.

For each component aj, let p(aj = k), k ∈ Ψj. The entropy of aj can be defined

as (Cover and Thomas, 2012):

H(aj) = −
∑
k∈Ψj

p(aj = k) log p(aj = k). (2.1)

Since H(aj) is estimated using the sample set S, we define the estimated entropy

as Ĥ(aj) = H(aj|S), i.e.

Ĥ(aj) =H(aj|S)

=−
∑
k∈Ψj

p(aj = k|S) log p(aj = k|S).
(2.2)

In our context, the numbers of records and columns are n = 1960 and p = 566.

Each component of the categorical vector aj, 1 ≤ j ≤ p contains 21 categorical

values, using integers 1-20 to represent the 20 types of amino acids and 21 to denote

a gap. Hence Ψj = (1, . . . , 21) and |Ψj| = 21 for j = 1, ..., 566.

To avoid subjective decision about the number of clusters, we use Hamming

distance vector (HD vector) algorithm (Zhang et al., 2006) to conduct clustering

analysis. The most time-consuming part of the HD vector algorithm is to find cluster

centers. The computational complexity is O(γ3), where γ is defined as the number of

unique sequences in the data set, which depends on M , the total number of possible

positions. Thus, we reduce the dimensionality before clustering analysis. The main
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idea behind our dimensionality reduction is to select a smaller number (pe) of sites

based on the variabilities of the sites in the data. This is a reasonable approach,

as it is well known that parts of HA sequences are well-conserved (Staneková and

Varečková, 2010). To identify the most variable (equivalently, least conserved) sites,

we use the notion of entropy. Incorporating the known information to (2.2), we

compute the entropy for each of the 566 sites as follows:

Ĥ(aj) = −
21∑
k=1

p(aj = k) log p(aj = k). (2.3)

Note that Ĥ(aj) is always positive, and large entropy indicates great variability

at a site. Sites with entropy equal to zero were removed, as there is no amino acid

variability in those sites and hence, no useful information for clustering. Sites with

entropy equal to 0.004377 (i.e. only one observation has a different state value from

the other 1959 observations) were also removed. Finally, we sorted the remaining

entropy in ascending order and used a Gaussian mixture model to cluster them

(Everitt and Hand, 1981). The algorithm results in five classes of entropies. We

identified the fifth class with the largest entropy as the selected sites to cluster all

the sequences. This class contains 62 sites (pe = 62), which allows us to reduce the

dimension to 2162. That is, our data is now made up of 62 sites (variables) and 1960

sequences (observations).
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2.1.3 Clustering categorical data

We use Hamming distance to evaluate the distance between any two sequences

(Forney, 1966). For two sequences, A = {a1, . . . , ape} and B = {b1, . . . , bpe} the

Hamming distance is defined as

ds(A,B) =

pe∑
i=1

I(ai 6= bi), (2.4)

where I(E) is the indicator function that is equal to one if E is true, and zero

otherwise. The Hamming distance between any two HA sequences is the number of

sites with different amino acids.

According to the Hamming distance vector (HD vector) algorithm (Zhang et al.,

2006), we consider a general set-up where pe nominal categorical attributes are of

interest and the jth attribute is categorized by mj (mj = |Ψj|) levels. The categorical

sample space, Ω, is defined as the collection of all possible pe-dimensional vectors of

states. For us, mj = 21 for each j, and j = 1, . . . , pe. Therefore, each sequence can

be seen as a vector of length 62 (pe = 62), and each element of the vector is a value

taken from one of 21 (mj = 21 for all j) possible categories.

Any given data set, which in our case can be represented as A1, . . . , An, gives

a distribution of distances on the sample space Ω from a fixed reference position

in Ω. We denote this fixed reference position as S = {s1, . . . , spe}. For a sample

data set, we use n to denote the sample size (n = 1960). Recall the definition of
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Hamming distance given in (2.4), and note that it will take values in 0, 1, 2, . . . , pe.

The algorithm relies on HD vector, which is defined as a (pe + 1)-element vector

H(S) = {H0(S), H1(S), . . . , Hpe(S)}, where

Hq(S) =
n∑
j=1

1(ds(Aj, S) = q), q = 0, . . . , pe.

Thus, Hq(S) counts the number of all sequences of which the Hamming distance to

the given reference position S equal to exactly q (Zhang et al., 2006).

In the categorical sample space Ω, when all the data points have equal probability

to occur at each position, the resulting HD vector is defined as uniform HD vector

(UHD), and denoted by U(Ω) = {U0(Ω), U1(Ω), . . . , Upe(Ω)}. Given an uniformly

distributed data {x1, . . . , xn}, for a reference position S ∈ Ω, the corresponding

uniform HD vector U(S) has pe + 1 elements. The qth element is:

Uq(S) =
n∑
i=1

ds(xi, S), q = 0, . . . , pe,

which is the number of possible sequences with a distance q to the position S (Zhang

et al., 2006). Note that the total number of possible positions in the categorical

sample space is M =

pe∏
j=1

mj, where mj is the number of states for jth attribute.
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Based on Theorem 3 of Zhang et al. (2006), the UHD vector has the following form:

U0(Ω) =
n

M
,

U1(Ω) =
n

M
{(m1 − 1) + (m2 − 1) + · · ·+ (mpe − 1)},

U2(Ω) =
n

M

pe∑
i<j

(mi − 1)(mj − 1),

...

Upe(Ω) =
n

M
(mi − 1)(mj − 1) . . . (mpe − 1).

Note that the UHD vector does not depend on the position S.

The HD vector algorithm sequentially examines the existence of cluster patterns,

and extracts the clusters. At each iteration, the algorithm detects only one cluster

which is defined by a cluster center and a cluster radius. The cluster center is

determined by the position with maximum modified chi-squared statistic based on

HD vector and UHD vector. The cluster radius is defined by the first local minimum

of the frequency distribution of the HD vector. The cluster will be deleted from

the dataset before the next iteration. When there are no more significant clusters

in the remaining data, the iteration stops and the algorithm outputs the number of

clusters. Thus, the algorithm is fully automatic in finding both the clusters and the

number of clusters.

After applying the HD vector algorithm to our data set of sequences, we want to

evaluate the method of dimension reduction based on the distances between clusters.
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Consider two clusters, C1 and C2. Each cluster is made of up of a number of sequences,

say, C1 = {A1, . . . , Aκ1} and C2 = {B1, . . . , Bκ2}. The mean Hamming distance is then

dc(C1, C2) =
∑
i,j

ds(Ai, Bj)

κ1κ2

,

if C1 and C2 are two different clusters. If C1 = C2, then we use

dc(C1, C1) =
∑
i<j

ds(Ai, Aj)

κ1(κ1 − 1)/2
=

∑
i 6=j

ds(Ai, Aj)

κ1(κ1 − 1)

This modification is due to the fact that when comparing the same cluster, all dis-

tances “along the diagonal” will always be zero.

2.2 Results

2.2.1 Cluster evaluation

After the dimensionality reduction, we identified 62 sites of high variability across

the whole HA sequence. The HA protein is composed of two subunits - HA1 and

HA2. The two subunits are linked by disulfide bond and form a protein complex to

exert the full function (Knipe and Howley, 2007). Of the 62 sites, 52 lie within the

HA1 domain. The remaining 10 sites lie within the HA2 domain.

The 1960 viral sequences were partitioned into 23 clusters. Figure 2.1 shows two

dendrograms of the resulting clusters. The top dendrogram is based on the mean
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Hamming distance calculated only for the sites of maximal entropy; whereas in the

bottom dendrogram, the mean Hamming distance is calculated for all sites. The more

variable the corresponding amino acid site, the higher the entropy. The most variable

sites tend to be protein mutation hot spots based on the available sequences. Indeed,

the dendrograms are largely consistent with regard to tree locations. Clusters 1 - 8

are grouped into a clade, while the remaining clusters, with the exception of 21, are

grouped into another clade. Although subtle discrepancies in the specific clade loca-

tion of some clusters exist, the evolution pattern of clades is generally consistent. We

use mean Hamming distance (in amino acids) to measure genetic distance between

two clusters of sequences. If the two clusters are close in mean Hamming distance,

they are considered to be close in lineage evolution history. We regard clusters of

sequences as evolutionary units and infer the genealogy of the clusters by ensemble

of trees, those with small mean Hamming distances will be grouped into a clade (i.e.

in the same trunk of phylogenic tree).
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Figure 2.1: Dendrograms of clusters by mean Hamming distance. This plot is drawn

using hierarchical cluster analysis with complete linkage. The top dendrogram is

based on mean Hamming distance of the 62 sites with highest entropy, and the

bottom one is based on mean Hamming distance of all 566 sites.

2.2.2 Temporal evolution of flu clusters

Figure 2.2 shows the number of sequences in each cluster sorted by the year of

isolation. The clusters that house the vaccine strains are also indicated. The location

order of vaccine strains is consistent with the calendar year according to their strain
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name (and year closeby) e.g. “A/California/7/2004” and “A/Wisconsin/67/2005”,

“A/Victoria/361/2011” and “A/Texas/50/2012” are clustered together. This helps

verify the validity of the clustering results.

Figure 2.2: Histogram of cluster size and vaccine location. The clusters have been

re-ordered in accordance to the sequence of the calendar year.

We can observe from Figure 2.2 that large clusters are generally surrounded by

clusters of much smaller sizes. Thus, the dominant clusters can be identified over

time. We can also observe that a higher number of small clusters are generated

in recent years. This may be due to higher reporting rates, as rapid sequencing

technologies have become increasingly available.
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Figure 2.3: The number of HA protein sequences within each cluster versus the

calendar year of isolation. Each cluster is indicated by a different colour, and the

line width reflects the cluster size.

Each cluster houses strains that exist over one or more influenza seasons. In

Figure 2.3, we plot the number of sequences in each cluster as a function of their

isolation year. The thickness of the line indicates the size of each cluster. We

observe that some clusters have a significantly longer lifespan than others, but no

cluster spans more than seven years. It is also observed that clusters first increase

and then decrease in size over their lifespan. Dominant clusters of viral sequences

replace one another every 2-5 years. However, the occurrence of dominant clusters
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in Figure 2.3 is not periodic within the time span. Once HA evolves away from a

given region of the sequence space, it does not revisit that region at a later time.

This agrees with previous studies of influenza evolution (Plotkin et al., 2002; Knipe

and Howley, 2007).

2.2.3 Evaluation of recommended vaccines

In Table 2.3, we identified dominant clusters and the clusters containing vaccine

strains (vaccine clusters) from 2000 to 2012. Ideally, the vaccine cluster can be the

same as the dominant cluster. Considering the time lag that exists between the

disease outbreak and time of isolation, the vaccine clusters should be as close to the

dominant clusters as possible.

A common observation over all of the years shown indicates that the vaccine

clusters and the dominant clusters are different. For example, from 2000-2004 the

same vaccine strain “A/Moscow/10/99” was used, however, the dominant cluster

changes each year in this time period, moving from a mean distance of 6.15 amino

acids (aa) of the vaccine sequence to 8.37aa, and then 18.68aa in 2002-2004.
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From Table 2.3, we can also see that cluster extinction often coincides with the

existence or introduction of a well-matched vaccine strain. In particular, the extinc-

tion of clusters 6 and 9 coincides with the introduction of vaccines housed in the same

cluster. A similar observation can be made in cluster 11. Ultimate extinction of a

cluster, however, is the result of a combination of various factors, including vaccine

strain and competition between strains. An exploration of strain fitness is a course

for future work.

2.3 Discussion

In this chapter, we have presented a new method for clustering protein sequences

and have applied the method to clustering HA sequences of seasonal influenza A

H3N2. The inclusion of vaccine sequences in the analysis allows us to present im-

portant relationships between the vaccine strains and the dominating flu clusters.

The traditional method for clustering genetic sequences is to use hierarchical ag-

glomerative clustering methods to construct the phylogenetic tree of sequences based

on the pairwise distance of the whole sequence (Plotkin et al., 2002). The number

of resulting clusters are determined by subjective decisions. Our proposed method

is parameter free and doesn’t depend on subjective decisions about the number of

clusters.
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We demonstrate that it is not necessary to perform clustering methods on the

entire HA genome. The 62 sites of the largest entropy can provide similar measures

of Hamming distance. These 62 sites lie within the HA1 and HA2 regions of the

HA genome. Our clustering methodology separates the HA data set into 23 clusters.

Based on the analyses of these clusters, we find that dominant clusters replace one

another every 2-5 years; the dominant clusters are often different from the clusters

housing the vaccine strain, and the extinction of a dominant cluster often coincides

with the existence or introduction of a well-matched vaccine.

Our results are highly consistent with previous studies of HA evolution (Plotkin

et al., 2002; Nelson and Holmes, 2007;  Luksza and Lässig, 2014). Plotkin et al.

(2002) found that the persistence of clusters could be used to predict next season’s

influenza sequences. In their analysis, however, some sites of high variability in HA2

are neglected. Their results are not as detailed as ours. Through choosing those

most variable sites of the whole sequence, all the potential evolutionary hot spots

can be taken into account.

Our method can be applied to other components of the influenza virus genome.

The comparisons among studies of other genetic parts of the influenza virus can be

conducted to provide more information for epidemics prediction and vaccine design.

We use the term “dominant” to denote clusters with the greatest number of
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sequences in a given season, but this definition only identifies the cluster containing

the largest number of unique sequences. Therefore, the definition does not account

for (a) the actual number of sequences reported in a season, or (b) their relation to the

frequency of the strain within the population. Although the first issue is relatively

straightforward to fix, the second is more problematic. The influenza sequences

available via IRD are based on voluntary contributions and are therefore not the

result of random sampling. It is thus possible that systematic biases exist in the data

set, including yearly and regional variations ( Luksza and Lässig, 2014). Translating

the observed sequences on IRD into an appropriate representation of population-level

frequencies is an important statistical problem which requires careful consideration

in our future work.

Lastly, we point out that our analysis is based on the Hamming distance (2.4),

which means that we regard the sequences close in Hamming distance (in amino

acids) as close in lineage evolution history. This approach is purely mathematical

in that it does not include any potential information on the level of importance

of specific amino acid differences, or their locations. Incorporating such additional

information will improve on the quality of our analysis, and will be included in future

analysis.
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3 Tests for homogeneity of variances applied to

DNA methylation data

As mentioned in Chapter 1, other than differentially methylated marks, differ-

entially variable methylation marks are also relevant to some diseases. However,

many inferences are presented based on the F test or Bartlett’s test. Both tests are

sensitive to the departure of the normality assumption and the presence of outliers.

More than 50 tests have been proposed in the statistical literature to improve the F

test/Bartlett’s test. Conover et al. (1981) compared 56 equal-variance testing pro-

cedures using simulation studies, with the Brown and Forsythe’s test being one of

the top performers. The Brown and Forsythe’s test has larger statistical power than

other tests when samples are from non-normal distributions, while it maintains the

nominal Type I error rate. To our knowledge, the Brown and Forsythe’s test has

not yet been applied to DNA methylation data. Phipson and Oshlack (2014) com-

pared their proposed two equal-variance tests with F test and Bartlett’s test using
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simulated data and evaluated the impact of outliers on the performance of the tests.

However, systematic comparisons among these equal-variance tests are still needed

in order to evaluate their performance for different distributions and the presence

of outliers. In this chapter, we aim to help researchers choose the right test for

equal variances in their DNA methylation data analysis. We compare Phipson and

Oshlack’s equal-variance tests and five commonly used equal-variance tests in the

literature (F test, Bartlett’s test, Levene’s test, trimmed-mean-based Levene’s test,

and Brown-Forsythe test) via systematic simulation studies and real data analysis.

3.1 Methodology

The scientific question we would like to address is to test if the variances of two

populations (e.g., diseased and non-diseased subjects) are the same based on their

corresponding samples. Let Xi and Yi denote the methylation value and the disease

status of subject i, where i = 1, ..., n, with n = n0 +n1, n0 is the number of the non-

diseased subjects (controls, Yi = 0) and n1 is the number of the diseased subjects

(cases, Yi = 1). We would like to test the null hypothesis H0 : σ2
0 = σ2

1 versus

the alternative hypothesis Ha : σ2
0 6= σ2

1, where σ2
0 and σ2

1 are the variances of the

non-diseased subjects and diseased subjects, respectively.

Next, we would like to compare the performance of the seven equal-variance tests:
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F test, Bartlett’s test, Levene’s test, trimmed-mean-based Levene’s test, Brown and

Forsythe’s test, Phipson and Oshlack’s equal variance test based on absolute differ-

ence, and Phipson and Oshlack’s equal variance test based on squared difference. We

denoted the seven tests by F , Bartlett, Levene, L.trim, BF, PO.AD, and PO.SQ,

respectively.

The F test is to test homogeneity of variance for a two-sample problem based on

the ratio of variances. To test homogeneity of variance in multiple-sample situation,

one popular test is Bartlett’s test (Bartlett, 1937; Shoemaker, 2003). The Levene,

L.trim, BF, PO.AD, and PO.SQ tests employ the ideas of equal-mean tests (e.g.,

t-test or one-way ANOVA) and replace the original data xki in the test statistics by

the transformed data zki = |xki − c| or zki = (xki − c)2, where the subscription k

indicates the group, i indicates the subject within the group, and c is a measure of

central tendency, such as within-group mean or overall mean.

Specifically, Levene, L.trim, and BF tests replace xki by zki in one-way ANOVA’s

F test statistic; PO.AD and PO.SQ tests replace xki by zki in the moderated t-test

statistic (Smyth, 2004). The definitions of these seven equal-variance tests are given

as follows.

Phipson and Oshlack (2014) proposed two equal-variance tests based on the fol-
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lowing two linear regression models:

z∗i =β0 + β1yi + εi,

z∗∗i =γ0 + γ1yi + ξi,

i =1, . . . , n0 + n1,

(3.1)

where

z∗i =c∗i |xi − g(xi)|,

z∗∗i =c∗i [xi − g(xi)]
2,

and g(xi) = 1
n0

n∑
i=1

xiI(yi = 0) for controls or g(xi) = 1
n1

n∑
i=1

xiI(yi = 1) for cases.

The value of c∗i is

c∗i =


√

n0

n0−1
if yi = 0 (i.e., controls),√

n1

n1−1
if yi = 1 (i.e., cases),

In matrix terminology, the two linear models can be written as:

E(z∗) =Ydβ,

E(z∗∗) =Ydγ,

(3.2)

where

Yd =

 1, y1

...,
...

1, yn

 , β =

(
β0

β1

)
, γ =

(
γ0

γ1

)
.

And the regression coefficients can be estimated as

β̂ = (Y T
d Yd)

−1Y T
d z
∗,

γ̂ = (Y T
d Yd)

−1Y T
d z
∗∗,

(3.3)
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Phipson and Oshlack (2014) mentioned that testing for equal-variance between

cases and controls is equivalent to testing if the slope β1 (or γ1) is equal to zero.

Phipson and Oshlack (2014) applied moderated t-test (Smyth, 2004) to borrow in-

formation across CpG sites to improve the test of the null hypothesis H0 : β1 = 0

(or γ1 = 0) for a given CpG site. The moderated t-test statistics is defined as:

t̃ =
β̂1

s̃
√
ν
, (3.4)

where ν is the diagonal element from the positive definite matrix (Y T
d Yd)

−1 and s̃

is the standard deviation of the squeezed variance calculated according to Smyth’s

(2004) procedures.

The F test statistic is asymptotically F distributed under the null hypothesis:

F =
S2

1

S2
0

d→ Fn1−1,n0−1,

where

S2
k =

1

(nk − 1)

nk∑
i=1

(xki − x̄k)2,

x̄k =
1

nk

nk∑
i=1

xki,

k = 0, 1, n0 and n1 are the sample sizes for controls and cases, respectively, and

N = n0 + n1.

For two-sample comparison (K = 2), Bartlett’s test statistic is

X2 =
(n1 + n0 − 2) log(S2

p)−
∑2

k=1 (nk − 1) log (S2
k)

1 + 1
3

(∑2
k=1

(
1

(nk−1)

)
− 1

(n1+n0−2)

) d→ χ2
1,
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where

S2
p =

1

(N − 2)

2∑
k=1

(nk − 1)S2
k .

The numerator of the Bartlett’s test for two-sample comparison of variances is

numer = (n1 + n0 − 2) log
(
S2
p

)
−
[
(n1 − 1) log

(
S2
1

)
+ (n0 − 1) log

(
S2
0

)]
= log


[
(Sp)2

]n1+n0−2

[
(S1)2

]n1−1 [
(S0)2

]n0−1


= log


[

(Sp)2

(S1)2

]n1−1 [
(Sp)2

(S0)2

]n0−1


= log

{[
1

(n1 + n0 − 2)

[
(n1 − 1) + (n0 − 1)

S2
0

S2
1

]]n1−1 [
1

(n1 + n0 − 2)

[
(n0 − 1) + (n1 − 1)

S2
1

S2
0

]]n0−1
}

= log

{[
1

(n1 + n0 − 2)

[
(n1 − 1) + (n0 − 1)

1

F

]]n1−1 [ 1

(n1 + n0 − 2)
[(n0 − 1) + (n1 − 1)F ]

]n0−1
}
,

where
S2
1

S2
0

is the F test statistic.

Hence, Bartlett’s test for two-sample comparison of variances is similar to F test,

but they have small differences in performance when applied to data with a small

sample size due to different derived asymptotic distributions.

Levene’s test statistic for two-sample comparison of variances is defined as

W =
(n− 2)[n1(w̄1 − w̄)2 + n0(w̄0 − w̄)2]∑n1

i=1(w1i − w̄1)2 +
∑n0

j=1(w0j − w̄0)2
,
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where

w1i =|x1i − x̄1|, x̄1 =
1

n1

n1∑
i=1

x1i,

w0j =|x0j − x̄0|, x̄0 =
1

n0

n0∑
j=1

x0i,

w̄1 =
1

n1

n1∑
i=1

w1i,

w̄0 =
1

n0

n0∑
j=1

w1j,

w̄ =
1

n

[
n1∑
i=1

w1i +

n0∑
j=1

w0j

]
.

Trimmed-mean-based Levene’s test for two-sample comparison of variances has

the same format as Levene’s test. The only difference is in the definition of w1i and

w0j:

w1i =|x1i − x̌1|,

w0j =|x0j − x̌0|,

where x̌1 and x̌0 are within-group 10% trimmed means for cases and controls, re-

spectively.

Brown-Forsythe test statistic uses the same format as Levene’s test for two-sample

comparison of variances. The only difference is in the definition of w1i and w0j:

w1i =|x1i − x̃1|,

w0j =|x0j − x̃1|,

where x̃1 and x̃0 are medians for cases and controls, respectively.
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3.2 Simulation studies

3.2.1 Simulation setting

We conducted two simulation studies. Each study contains several scenarios and

only evaluates the balanced samples. For each scenario, we generated 100 simulated

data sets. For each simulated data set, we generated DNA methylation levels for

1000 CpG sites. For each CpG site, we tested if the DNA methylation levels are

differentially variable between non-diseased and diseased subjects using each of the

seven equal-variance tests. A test is claimed as significant if its p-value is < 0.05.

Two-sided tests were used by the R statistical software (R Core Team, 2008) for the

simulation studies.

In Simulation Study I, we evaluated the performance of the seven tests by the

following aspects: (1) the violation of the normality assumption, (2) the presence of

heterogeneity of means, (3) the existence of outliers, (4) various sample sizes. We

employed three parametric distributions to generate the methylation data: normal

distribution, t distribution, and chi-squared distribution. To evaluate the impact of

different group means on these tests, we considered two scenarios: equal group means

(eqM) and different group means (diffM). To evaluate the influence of outliers, we

randomly picked a diseased subject and replaced its DNA methylation value by the
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maximum DNA methylation level of all CpG sites. We also used three sample sizes:

20 (small), 50 (median), and 200 (large), to evaluate the effect of sample size on the

performance.

The distribution settings for the scenarios in Simulation Study I are summarized

in Table 3.1. Simulation study I had 3 (distributions) × 2 (scenarios of group means)

× 2 (with or without outlier) × 3 (sample sizes) = 36 different comparisons.

Table 3.1: The distribution settings for the scenarios in Simulation Study I.

Mean & Variance Normal t distribution chi-squared distribution

(mean, var) Non-D D Non-D D Non-D D

eqM & eqV N(0, 1) N(0, 1) t10 (0, 1.25) t10 (0, 1.25) χ2
2 (2,4) χ2

2 (2,4)

eqM & diffV N(0, 1) N(0, 2) t10 (0, 1.25) t10/3 (0, 2.5) χ2
2 (2,4) χ2

0.5,1.5 (2,7)

diffM & eqV N(0, 1) N(1.5, 1) t10 (0, 1.25) t15,1.489 (1.57, 1.25) χ2
2 (2,4) χ2

1,0.5 (1.5,4)

diffM & diffV N(0, 1) N(1.5, 2) t10 (0, 1.25) t6,2.393 (2.75, 2.5) χ2
2 (2,4) χ2

4 (4,8)

eqM: equal-mean; eqV: equal-variance; diffM: different-mean; diffV:different-variance; D:

diseased; Non-D: non-diseased; N(a, b): normal distribution with mean a and variance b;

tc: t-distribution with degrees of freedom c; td,e: non-central t-distribution with degrees

of freedom d and non-centrality parameter e; χ2
f : chi-squared distribution with degrees

of freedom f ; χ2
g,h: non-central chi-squared distribution with degrees of freedom g and

non-centrality parameter h.

In Simulation Study II, we considered two Bayesian hierarchical models. First,

we generated the DNA methylation values from a normal distribution with the vari-

ance sampled from an inverse chi-squared distribution (denoted as c.N). Second, we

generated the DNA methylation values from a chi-squared distribution, the degrees
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of freedom of which were generated from the scaled inverse chi-squared distribution

scale-inv-χ2(d0, s
2
0) (denoted as c.chisq). To evaluate the type I error rate (equal-

variance scenario), we set the degrees of freedom d0 = 20 and the scaling factor

s2
0 = 0.64 for both non-diseased and diseased subjects. To evaluate the power of

the tests (different-variance scenario), we set the scaling factor as s2
0 = 0.64 for non-

diseased subjects and s2
0 = 1.5 for diseased subjects. The degrees of freedom are set

to be d0 = 20 for both non-diseased and diseased subjects. To evaluate the effect of

outliers and sample size, we used the same procedures in Simulation Study I. Thus,

Simulation Study II had 2 (distributions) × 2 (with or without outlier) × 3 (sample

sizes) = 12 different comparisons.

For each simulated data set, we assessed the performance of an equal-variance

test by the estimated type I error rate and power. The estimated type I error rate

is the proportion of significant tests detected by the equal-variance test among the

1000 CpG sites in a simulated data set generated from the null hypothesis (i.e., CpG

sites are non-differentially variable). Estimated power is the proportion of significant

tests detected by the equal-variance test among the 1000 CpG sites in a simulated

data set generated from the alternative hypothesis (i.e., CpG sites are differentially

variable).
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3.2.2 Simulation results

Figure 3.1 and Table 3.2 summarize the observed results from all the scenarios:

(1) F test, Bartlett’s test, Levene’s test, and PO.AD test have type I error rates

higher than the nominal value (0.05) in most scenarios, while L.trim, BF, and PO.SQ

maintain the nominal type I error rates for almost all scenarios; (2) BF test and

PO.SQ test perform better than the other tests in terms of having high power while

maintaining the nominal type I error rate; (3) F test and Bartlett’s test have very

similar performance and perform best under normality assumption, while both of

them have type I error rates higher than the nominal value (0.05) when the normality

assumption is violated; (4) PO.AD test tends to have a type I error rate higher than

the nominal value of 0.05 for a majority of simulation scenarios, while PO.SQ test

can maintain the nominal type I error rate of 0.05 for almost all simulation scenarios;

(5) For almost all of the scenarios where PO.AD test maintains the nominal type I

error rate, PO.AD test has the largest power, while the PO.SQ test is less powerful

than other tests in the similar situation of PO.AD; and (6) the power has improved

a lot by increasing the sample size from 20/50 subjects per group to 200 subjects

per group. In addition, we observe that the ranks of the seven tests do not change

much as the sample size increases. The ranks of power by different sample sizes are

presented in Appendix A.
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Figure 3.1: Plots of nreject versus m, where nreject is the number of scenarios where

the test has inflated type I error rate and m is the median of the ranks of power. For

ranks with ties, average ranks are used. The upper-right, bottom-left, and bottom-

right panels are based on scenarios with sample size 200, 50, and 20 subjects per

group, respectively. The upper-left panel is based on all 48 scenarios.
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Table 3.2: The summary of the simulated 48 comparisons for the seven tests.

n Distribution F Bartlett Levene L.trim BF PO.AD PO.SQ

200 N(incl. c.N) 2(3) 2(3) 5(3) 3.25(0) 3.25(0) 4.75(2) 2(1)

200 t -(4) -(4) 2(2) 3(1) 4(1) 2(2) 2(0)

200 chisq (incl. c.chisq) -(6) -(6) -(6) 1(3) 1.5(1) -(6) 2.5(0)

50 N(incl. c.N) 1.5(3) 1.5(3) 2(5) 4(1) 4.5(0) 1(4) 3(1)

50 t -(4) -(4) 2(3) 1(0) 2(0) 1(3) 3(0)

50 chisq (incl. c.chisq) -(6) -(6) -(6) 1(3) 2(1) -(6) 2.5(0)

20 N(incl. c.N) 1.5(3) 1.5(3) -(6) 4(1) 4(0) 1(4) 3(1)

20 t -(4) -(4) 2(3) 1.5(0) 2.5(0) 1(2) 3.5(0)

20 chisq (incl. c.chisq) -(6) -(6) -(6) 1(3) 2(1) -(6) 3(2)

Total 1.5(39) 1.5(39) 2(40) 2(12) 2(4) 1(35) 3(5)

N : Normal distribution;

c.N : Bayesian hierarchical model with normal distribution;

t : t distribution;

chisq : Chi-squared distribution;

c.chisq : Bayesian hierarchical model with chi-squared distribution;

m(nreject) : m denotes the median of the ranks of the power, nreject denotes the number of the

scenarios where the test has inflated type I error rate;

“-” : no power can be considered because the test has inflated type I error rates for all the scenarios

in the situation.
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3.3 Real data analysis

3.3.1 Data description

To evaluate the performance of the seven equal-variance tests for real data sets,

we used two data sets (GSE37020 and GSE20080) downloaded from the public repos-

itory: Gene Expression Omnibus (GEO, www.ncbi.nlm.nih.gov/geo). Both data sets

contain DNA methylation (DNAm) profiles of 27,578 CpG sites measured from liq-

uid based cytology (LBC) cervical smear samples by IlluminaHumanMethylation27

platform.

GSE37020 contains a total of 48 samples, 24 of which have normal histology and

the remaining 24 are cervical intraepithelial neoplasia of grade 2 or higher (CIN2+).

All of them are human papillomavirus (HPV) positive. Normal and CIN2+ samples

are age-matched. GSE20080 also contains 48 samples. A total of 30 samples (11 HPV

positive samples and 19 HPV negative samples) have normal cytology. The other 18

samples (all HPV positive) are with CIN2+. Moreover, normal and CIN2+ samples

were age-matched. After the procedures of quality control and data preprocessing,

the remaining 22,859 are matched CpG sites in both data sets. We used these 22,859

CpG sites in our real data analysis. The procedures and results of quality control

(QC) and data preprocessing are presented in Appendix B.
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We used GSE37020 as the discovery set to detect CpG sites differentially vari-

able between normal cytology samples and CIN2+ samples. To control for multiple

comparisons, we applied the Benjamini and Hochberg’s method to adjust p-values

so that the false discovery rate (FDR) is controlled at the level of 0.05. Specifically,

a CpG site was claimed significant if its FDR-adjusted p-value was < 0.05. We

then validated these differentially variable CpG sites by using the GSE20080 data

set. If an equal-variance test for a given CpG site had FDR-adjusted p-value < 0.05

in the analysis of GSE37020 and had un-adjusted p-value < 0.05 in the analysis

of GSE20080, we then claimed that the significance of the test in GSE37020 was

validated in GSE20080.

3.3.2 Results

For the real data set GSE37020, the numbers of significant CpG sites (i.e., CpG

sites with FDR-adjusted p-value < 0.05) obtained by the seven equal-variance tests

are 2318 (F), 2315 (Bartlett), 235 (Levene), 15 (L.trim), 7 (BF), 130 (PO.AD), and

0 (PO.SQ), respectively. The numbers of significant CpG sites detected by F test

and Bartlett test are much larger than those detected by other tests. No significant

CpG sites were detected by the PO.SQ test.

The numbers/proportions of significant CpG sites validated by GSE20080 are
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1154/49.8% (F), 1164/50.3% (Bartlett), 183/77.9% (Levene), 9/60.0% (L.trim), 3/42.9%

(BF), and 91/70% (PO.AD), respectively (see Table 3.3). The six tests (except

PO.SQ) have large proportions of significant CpG sites validated by the testing set

GSE20080. Overall, the robust equal-variance tests have a larger proportion of vali-

dated significant CpG sites than F or Bartlett test.

Since the F test and Bartletts test are sensitive to outliers, we check the num-

ber/proportion of significant CpG sites containing outliers detected based on GSE37020.

The numbers/proportions are 1503/64.8% (F), 1501/64.8% (Bartlett), 70/29.8%

(Levene), 2/13.3% (L.trim), 2/28.6% (BF), and 64/49.2% (PO.AD), respectively

(see the second column of Table 3.3). For the F test and Bartletts test, more than

60% significant CpG sites contain outliers. For robust tests (e.g., Levene, L.trim,

and BF), the proportions are relatively small (< 30%).
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Table 3.3: The performance of seven equal-variance tests based

on data sets GSE37020 and GSE20080.

Test
GSE37020 GSE20080

pValid
nSig(p.adj < 0.05) nValid(pval < 0.05)

F 2318 1154 49.8%

Bartlett 2315 1164 50.3%

Levene 235 183 77.9%

L.trim 15 9 60.0%

BF 7 3 42.9%

PO.AD 130 91 70%

PO.SQ 0 0 -

nSig : the number of significant CpG sites detected in GSE37020 based

on FDR-adjusted p-value < 0.05;

nValid : the number of validated CpG sites in GSE20080 based on un-

adjusted p-value < 0.05;

pTV : = nV alid
nSig , the proportion of significant CpG sites detected in

GSE37020 and validated in GSE20080;

We then checked if the significant CpG sites containing outliers in GSE37020

would still contain outliers in GSE20080. The number/proportion of such CpG sites

are 495/32.9% (F), 497/33.1% (Bartlett), 34/48.6% (Levene), 0/0% (L.trim), 0/0%

(BF), and 31/48.4% (PO.AD), respectively (see third column of Table 3.3).
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Table 3.4: The number (proportion) of significant CpG sites

that contain outliers in GSE37020 and GSE20080.

Test
GSE37020 GSE20080

nOut.Sig (pOut.Sig) nOut.Valid (pOut.Valid)

F 1503 (64.8%) 495 (32.9%)

Bartlett 1501 (64.8%) 497 (33.1%)

Levene 70 (29.8%) 34 (48.6%)

L.trim 2 (13.3%) 0 (0%)

BF 2 (28.6%) 0 (0%)

PO.AD 64 (49.2%) 31 (48.4%)

PO.SQ 0 (-) 0 (-)

nOut.Sig (pOut.Sig) : the number (proportion) of significant CpG sites

containing outliers detected in GSE37020;

nOut.Valid (pOut.Valid) : the number (proportion) of the significant CpG

sites with outliers that also contain outliers in GSE20080.

We next checked the parallel boxplots of DNA methylation level versus case-

control status for the top CpG site (i.e., having the smallest p-value for testing

equal variance) obtained by each of the seven tests based on GSE37020. The top

CpG sites detected by the seven equal-variance tests are cg26363196 (F, Bartlett,

PO.AD), cg00027083 (Levene and L.trim), and cg06675478 (BF), respectively. All

these top CpG sites were validated in GSE20080. Figure 3.2 shows the boxplots

of these three unique top CpG sites. We found that all these three top CpG sites
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contain at least one outlier in either GSE37020 or GSE20080.
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Figure 3.2: Parallel boxplots of DNA methylation level versus case-control status for

the obtained three unique top CpG sites.
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3.4 Discussion

Recently, Phipson and Oshlack (2014) proposed two new tests for homogeneity

of variances for DNA methylation data analysis. However, the performance of their

methods has not been compared with existing tests that are robust against the

violation of the normality assumption, such as Levene’s test, trimmed-mean-based

Levene’s test, and Brown Forsythe’s test.

In this chapter, we systematically compare the performance of the two new equal-

variance tests with the F test, Bartlett’s test, Levene’s test, trimmed-mean-based

Levene’s test, and Brown Forsythe’s test via two sets of simulation studies and one

real-data analysis. Based on the simulation results, BF, L.trim, and PO.SQ tests for

equality of variance have relatively high power while keeping the nominal type I error

rate for most of the simulation scenarios. Levene’s test has type I error rates higher

than the nominal value 0.05 for a majority of the scenarios, even for the scenarios

where data are generated from a normal distribution. All the seven equal-variance

tests have low power when data are generated from chi-squared distributions. Com-

pared to real DNA methylation data, our simulation studies do not cover all scenarios

encountered in real DNA methylation data analysis. However, our simulation studies

provide useful information about the performance of the seven equal-variance tests.

Our simulation studies and real data analysis confirm the fact that F/Bartlett’s
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test are very sensitive to the violation of the normality assumption and the pres-

ence of outliers. However, outliers might be biologically important as pointed out

by Teschendorff and Widschwendter. The real data analysis in this chapter also

shows that a number (30% - 50%) of significant CpG sites with outliers detected

in GSE37020 also contain outliers in GSE20080. Our real data analysis also agrees

with Teschendorff and Widschwendter’s observation that changes in DNA methyla-

tion for differentially variable CpG sites are heterogeneous and stochastic as shown

in the parallel boxplots for CpG cg26363196 in Figure 3.2. We notice in the real data

analyses that some outliers might be artifacts. For example, more than 60% of the

1503 significant CpG sites containing outliers do not contain outliers in GSE20080.
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4 Robust joint score tests for DNA methylation

data analysis

Since both mean and variance are biologically meaningful in DNA methylation

analysis, it is more efficient to test for equal means and equal variances simultane-

ously. The joint likelihood ratio test (jointLRT) and the two-sample Kolmogorov-

Smirnov (KS) test are two traditional methods for this task. Ahn and Wang (2013)

proposed a joint score test (AW), which is a quadratic form of a vector of two tests.

One of them is to test for equal means, and the other is to test for equal variances.

However, they did not provide the derivation of the asymptotic distribution for this

test nor the comparison of AW with jointLRT or KS that are the benchmark tests

in the statistical literature.

In this chapter, we derive the asymptotic distribution of the AW joint test statis-

tic and make comprehensive comparisons between AW, jointLRT, and KS tests.

Although a normal distribution is usually assumed for methylation data, the viola-
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tion of the normality assumption and the presence of outlying points can often be

observed in the analysis of real data. Bi-modal distributions are also encountered

frequently in practice. To improve on the robustness of the AW joint test, we propose

three tests based on absolute deviation from mean (iAW.Lev), median (iAW.BF),

and trimmed mean (iAW.TM), respectively.

4.1 Methodology

4.1.1 Asymptotic distribution of AW-type joint test statistics

Let Xi and Yi denote the methylation value and the disease status of subject i,

where i = 1, . . . , n, with n = n0 + n1, n0 being the number of non-diseased subjects

(controls, Yi = 0) and n1 being the number of diseased subjects (cases, Yi = 1).

To detect methylation loci that are relevant to the disease based on means and

variances, the corresponding hypothesis is considered as H0 : µ0 = µ1 and σ2
0 = σ2

1

versus H1 : µ0 6= µ1 or σ2
0 6= σ2

1, in which µ0 and µ1 are means of methylation levels

for controls and cases, respectively, and σ2
0 and σ2

1 are the corresponding variances.

Instead of directly testing the above hypothesis, Ahn and Wang (2013) proposed

to test H ′0 : β1 = β2 = 0 versus H ′a : β1 6= 0 or β2 6= 0, where β1 and β2 are the
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regression coefficients of the following logistic regression:

logit[Pr(Yi = 1|xi, zi)] = β0 + β1xi + β2zi + εi, (4.1)

and zi is the within-group squared deviation for subject i, which is defined as

zi =


(xi − x̄1)2, if Yi = 1

(xi − x̄0)2, if Yi = 0,

(4.2)

and x̄1 =
∑n

i=1
xiI[Yi=1]

n1
and x̄0 =

∑n
i=1

xiI[Yi=0]
n0

are the sample means for cases and

controls.

The log-likelihood function of the logistic regression (4.1) is

l(θ) =
n∑
i=1

Yi(β0 + β1xi + β2zi)− log[1 + exp(β0 + β1xi + β2zi)],

where θ = (β0, β1, β2)T . The score statistics are partial derivatives of the log-

likelihood function with respect to the parameters of interest, evaluated at the values

postulated by the null hypothesis H ′0 : β1 = β2 = 0.

We have
∂l(θ)

∂β0

=
n∑
i=1

(Yi − πi),

∂l(θ)

∂β1

=
n∑
i=1

xi(Yi − πi),

∂l(θ)

∂β2

=
n∑
i=1

zi(Yi − πi),
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where

πi = Pr(Yi = 1|xi, zi) =
exp(β0 + β1xi + β2zi)

1 + exp(β0 + β1xi + β2zi)
.

Under H ′0 : β1 = β2 = 0,

πi =
exp(β0)

1 + exp(β0)
= π0.

Let ∂l(θ)
∂β0

= 0 under H ′0. The maximum likelihood estimate of π0 is:

π̂0 = Ȳ =
n∑
i=1

Yi
n
.

Hence, the score statistics are

U1 =
∂l(θ)

∂β1

∣∣∣∣
π̂0=Ȳ ,β1=β2=0

=
n∑
i=1

xi(Yi − Ȳ ),

U2 =
∂l(θ)

∂β2

∣∣∣∣
π̂0=Ȳ ,β1=β2=0

=
n∑
i=1

zi(Yi − Ȳ ).

Under H ′0, let U = (U1, U2)T and Σ0 = Cov(U) denote the vector of the score

statistics and the covariance matrix of U, respectively. Based on Fahrmeir (1987)

and Dobson (1990, Page 51),

U
d→ N(0,Σ0),

and

Σ
−1/2
0 U

d→ N(0, I2),

where I2 is a 2× 2 identity matrix. Therefore,

(Σ
−1/2
0 U)T (Σ

−1/2
0 U) = UTΣ−1

0 U
d→ χ2

2. (4.3)
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The AW test statistic T = UT Σ̂−1U is a quadratic form of the vector of the score

statistics, where Σ̂ is the estimate of the covariance matrix Σ0 under H ′0.

Proposition 4.1.1 Under H ′0 : β1 = β2 = 0, the estimated covariance matrix Σ̂ has

the following analytical form:

Σ̂ = nȳ(1− ȳ)

(
σ̂2
x σ̂xz

σ̂xz σ̂2
z

)
, (4.4)

where σ̂2
x =

∑n
i=1

(xi−x̄)2

n
and σ̂2

z =
∑n

i=1
(zi−z̄)2

n
are the sample variances for xi and

zi, and σ̂xz =
∑n

i=1
(xi−x̄)(zi−z̄)

n
is the sample covariance between xi and zi, and ȳ is

the realization of Ȳ . The asymptotic distribution of T = UT Σ̂−1U is a chi-squared

distribution with two degrees of freedom.

Proof. Note that in logistic regression, Yi are random variables, while xi and zi

are fixed (i.e., non-random). We can get

E (U1) =
n∑
i=1

xiE (Yi − Ȳ ) = 0,

E (U2) =
n∑
i=1

ziE (Yi − Ȳ ) = 0.

Hence, we have

Σ0 =Cov (U)

=E
(
UUT

)
− [E (U)] [E (U)]T

=E
(
UUT

)
.

(4.5)
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Define J = (1)n×n, I is a n×n identity matrix, X =

 x1 z1

...
...

xn zn

, Y =

 Y1

...

Yn

,

then X̄ = 1
n
JX, U =


n∑
i=1

xi(Yi − Ȳ )

n∑
i=1

zi(Yi − Ȳ )

 = XT (I− 1
n
J)Y.

E
(
UUT

)
=E

[
XT

(
I− 1

n
J

)
YYT

(
I− 1

n
J

)
X

]
=E

[
(X− X̄)TYYT (X− X̄)

]
=(X− X̄)TE (YYT )(X− X̄).

We have

YYT =

 Y1

...

Yn

( Y1, · · · , Yn
)

=

 Y 2
1 Y1Y2 . . . Y1Yn
...

...
. . .

...

YnY1 YnY2 . . . Y 2
n

 .

Note that Y 2
i = Yi and E (Yi) = πi. We have

E (YYT ) =E

 Y 2
1 Y1Y2 . . . Y1Yn
...

...
. . .

...

YnY1 YnY2 . . . Y 2
n



=E

 Y1 Y1Y2 . . . Y1Yn
...

...
. . .

...

YnY1 YnY2 . . . Yn



=

 π1 π1π2 . . . π1πn
...

...
. . .

...

πnπ1 πnπ2 . . . πn

 .
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Under H ′0 : β1 = β2 = 0, πi = π0. Therefore, we have

E (YYT ) =

 π0 π2
0 . . . π2

0
...

...
. . .

...

π2
0 π2

0 . . . π0


=π2

0J + π0(1− π0)I.

Hence,

E
(
UUT

)
=(X− X̄)T (π2

0J + π0(1− π0)I)(X− X̄)

=(X− X̄)Tπ2
0J(X− X̄) + (X− X̄)Tπ0(1− π0)I(X− X̄)

=π2
0(X− X̄)TJ(X− X̄) + π0(1− π0)(X− X̄)T I(X− X̄).

Since (X− X̄)TJ(X− X̄) = (0)2×2, we have

E
(
UUT

)
=π0(1− π0)(X− X̄)T I(X− X̄)

=π0(1− π0)(X− X̄)T (X− X̄)

=π0(1− π0)


n∑
i=1

(xi − x̄)2

n∑
i=1

(xi − x̄)(zi − z̄)

n∑
i=1

(xi − x̄)(zi − z̄)
n∑
i=1

(zi − z̄)2

 .

Under H ′0 : β1 = β2, we can estimate π0 by the realization of Ȳ , ȳ = n1

n
. Thereby,

we have

Σ̂ =ȳ(1− ȳ)

( ∑n
i=1(xi − x̄)2

∑n
i=1(xi − x̄)(zi − z̄)∑n

i=1(xi − x̄)(zi − z̄)
∑n

j=1(zj − z̄)2

)

=nȳ(1− ȳ)

(
σ̂2
x σ̂xz

σ̂xz σ̂2
z

)
,
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where σ̂2
x =

n∑
i=1

(xi − x̄)2

n
, and σ̂2

z =
n∑
i=1

(zi − z̄)2

n
are the sample variances for xi and

zi, and σ̂xz =
n∑
i=1

(xi − x̄)(zi − z̄)

n
is the sample covariance between xi and zi. Based

on formula (4.3), by Slutsky’s theorem,

T = UT Σ̂−1U
d→ χ2

2. (4.6)

�

4.1.2 Three improved joint score tests

To improve on the robustness of the deviation in (4.2), we propose three improved

joint score tests. In the first improved joint score test (denoted as iAW.Lev), we re-

place the within-group squared deviation by within-group absolute deviation Levene

(1960):

zLi =


|xi − x̄1|, if Yi = 1;

|xi − x̄0|, if Yi = 0.

(4.7)

For the logistic regression logit(Pr(Yi = 1)|xi, zLi ) = βL0 + βL1 xi + βL1 z
L
i , under the

null hypothesis H∗0 : βL1 = βL2 = 0, the joint score test statistic TLev is asymptotically

chi-squared distributed with two degrees of freedom:

TLev = (ULev)T (Σ̂Lev)−1ULev d→ χ2
2,
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where ULev =
(
U1, U

L
2

)T
, UL

2 =
∑n

i=1 z
L
i (yi − ȳ),

Σ̂Lev = nȳ (1− ȳ)

(
σ̂2
x σ̂xzL

σ̂xzL σ̂2
zL

)
,

σ̂2
zL is the sample variance for zLi , and σ̂xzL is the sample covariance between xi

and zLi . Note that the proposed improved joint test is different from Levene’s test

(Levene, 1960) in that Levene’s test regards zLi as random and uses ANOVA, while

the proposed improved joint test regards zLi as fixed (i.e., non-random) and uses a

logistic regression framework.

In the second improved joint score test, we replace the sample means in the TLev

by sample medians Brown and Forsythe (1974):

zBFi =


|xi − x̃1|, if Yi = 1;

|xi − x̃0|, if Yi = 0,

(4.8)

where x̃1 and x̃0 are the sample medians for cases and controls, respectively. Under

the null hypothesis HBF
0 : βBF0 = βBF1 = 0, the joint score test statistic TBF follows

asymptotically the chi-squared distribution with two degrees of freedom:

TBF = (UBF )T (Σ̂BF )−1UBF d→ χ2
2,

where UBF =
(
U1, U

BF
2

)T
, UBF

2 =
∑n

i=1 z
BF
i (yi − ȳ),

Σ̂BF = nȳ (1− ȳ)

(
σ̂2
x σ̂xzBF

σ̂xzBF σ̂2
zBF

)
,
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σ̂2
zBF is the sample variance for zBFi , and σ̂xzBF is the sample covariance between xi

and zBFi .

In the third improved joint score test, we replace the sample means in the TLev

by trimmed sample means Brown and Forsythe (1974):

zTMi =


|xi − x̌1|, if Yi = 1;

|xi − x̌0|, if Yi = 0,

(4.9)

where x̌1 and x̌0 are the 25% trimmed sample means for cases and controls, respec-

tively. The 25% trimmed mean for a sample is the sample mean after 25% from both

the lowest and highest values are trimmed.

For the logistic regression model logit(Pr(Yi = 1)|xi, zTMi ) = βTM0 + βTM1 xi +

βTM1 zTMi , under the null hypothesis HTM
0 : βTM1 = βTM2 = 0, the joint score test

statistic T TM is asymptotically chi-squared distributed with two degrees of freedom:

T TM = (UTM)T (Σ̂TM)−1UTM d→ χ2
2,

where UTM =
(
U1, U

TM
2

)T
, UTM

2 =
∑n

i=1 z
TM
i (yi − ȳ),

Σ̂TM = nȳ (1− ȳ)

(
σ̂2
x σ̂xzTM

σ̂xzTM σ̂2
zTM

)
,

σ̂2
zTM is the sample variance for zTMi , and σ̂xzTM is the sample covariance between xi

and zTMi .
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4.2 Simulation studies

4.2.1 Simulation setting

We conducted comprehensive simulations to compare the performance of the three

improved tests with the three existing methods: the joint likelihood ratio test based

on the normal distribution (jointLRT) (Pearson and Neyman, 1930; Wilks, 1938), the

Kolmogorov-Smirnov test (KS) (William, 1971), and AW test. Zhang et al. (2012)

attained the mathematical expression and the exact distribution of jointLRT test

statistics under normal distribution. Due to computational complexity, we used the

asymptotic distribution of jointLRT in our simulation studies.

The simulation studies examined the following four aspects and their impacts

on these six tests: (1) various sample sizes, (2) the presence of heterogeneity of

means and variances, (3) the violation of the normality assumption, and (4) out-

liers. We considered various sample sizes: (n0, n1)=(100, 100), (n0, n1)=(50, 50), and

(n0, n1)=(20, 20). Four parametric models were employed to generate the methyla-

tion data: the normal distribution, the Beta distribution, the chi-square distribution,

and the mixture of two normal distributions. To evaluate the impact of outliers,

we replaced the DNA methylation level of one randomly picked disease subject by

max{x1,max, (Q3 + 3(Q3 −Q1))}, where x1,max denotes the maximum DNA methy-

63



lation level of the diseased samples, and Q1 and Q3 are the first and third quartiles,

respectively.

We computed the empirical Type I error rates and the power of the six tests

under different scenarios: (1) Type I error scenario (eqM & eqV): distributions of

non-diseased and diseased samples are the same; (2) Power scenario I (diffM & eqV):

distributions of non-diseased and diseased samples are different in means only; (3)

Power scenario II (eqM & diffV): distributions of non-diseased and diseased samples

are different in variances only; and (4) Power scenario III (diffM & diffV): distribu-

tions of non-diseased and diseased samples are different in both means and variances.

We conducted 10, 000 repetitions to estimate Type I error rates under scenario (1).

For the simulated power, the results were based on 5,000 repetitions. We used the

critical values of the observed test statistics under the null to determine the simulated

power in order to make the power comparison fair.

4.2.2 Simulation results

Overall, the three improved joint score tests performed better than the other three

methods when methylation levels contained outliers and had different variances be-

tween diseased and non-diseased samples. Furthermore, iAW.BF is the most robust

in terms of power among all the scenarios. The KS test had conservative empirical
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Type I error rates and the lowest power in many scenarios.

Table 4.1: The type I error (×100) and power (×100) for the six tests evaluated at

5%, 1%, and 0.5% significance levels when methylation β-values were generated from

the normal distribution without or with an outlier. The numbers of non-diseased and

diseased samples are (100, 100).

Scenarios Out Level(%) jointLRT KS AW iAW.Lev iAW.BF iAW.TM

eqM&eqV No 5 4.9 3.5 5.0 5.0 5.2 5.4

No 1 0.9 0.5 0.8 1.0 1.0 1.2

No 0.5 0.4 0.3 0.4 0.5 0.5 0.6

diffM&eqV No 5 97.3 94.8 97.2 97.3 97.1 96.8

No 1 91.0 85.7 91.0 89.8 90.2 88.7

No 0.5 87.5 76.7 87.2 85.0 85.3 83.9

eqM&diffV No 5 89.6 18.1 87.3 84.2 82.5 82.1

No 1 75.6 6.3 69.0 63.2 61.2 60.6

No 0.5 69.0 2.7 59.0 54.0 51.7 51.8

diffM&diffV No 5 84.4 57.0 83.3 80.3 79.8 78.9

No 1 66.1 36.2 63.8 58.4 56.9 56.4

No 0.5 58.9 24.9 55.3 49.0 47.7 47.8

eqM&eqV Yes 5 12.1 3.9 3.5 5.0 5.1 5.1

Yes 1 3.5 0.6 0.5 0.8 0.8 0.9

Yes 0.5 2.0 0.4 0.2 0.5 0.4 0.5

diffM&eqV Yes 5 96.1 95.2 98.4 98.2 98.2 98.4

Yes 1 84.8 82.9 94.9 93.3 94.2 93.2

Yes 0.5 79.5 78.0 91.6 89.3 90.1 88.0

eqM&diffV Yes 5 46.8 16.8 55.0 69.1 67.7 67.8

Yes 1 23.2 3.9 32.8 45.3 46.2 43.5

Yes 0.5 17.7 2.2 24.3 35.7 35.7 32.7

diffM&diffV Yes 5 57.0 59.5 77.7 78.8 79.7 78.4

Yes 1 29.1 32.4 59.9 57.9 60.3 57.3

Yes 0.5 22.0 26.3 50.1 47.9 50.0 46.4

When methylation levels were generated from normal distributions without out-

liers, all tests had their empirical Type I error rates close to the nominal levels,
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except for KS (Table 4.1). For Power Scenarios I, II, and III, three improved joint

score tests had similar performance, but slightly lower power for jointLRT and AW.

When methylation values were from normal distributions with an outlier, the three

improved joint score tests can maintain empirical Type I error rates well at all nom-

inal levels. Whereas the empirical Type I error rates of jointLRT were inflated at

all nominal levels, AW and KS had very conservative empirical Type I error rates

at all levels (Table 4.1). For Power Scenarios I, II and III, the three improved tests

had similar or greater power than AW. For Power Scenarios II and III (i.e., differ-

ent variances), KS had poor estimated power despite the presence or absence of an

outlier. Similar findings of KS were also observed in other parametric distributions

(Tables 4.2 and 4.4).

Similar findings were also observed for the Beta distribution setting (Table 4.2).

When the Beta distributions of two groups were different in variances (Power Sce-

narios II and III) and contained outliers, the three improved tests had significantly

greater power than AW.
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Table 4.2: The type I error (×100) and power (×100) for the six tests evaluated at

5%, 1%, and 0.5% significance levels when methylation β-values were generated from

the beta distribution without or with an outlier. The numbers of non-diseased and

diseased samples are (100, 100).

Scenarios Out Level(%) jointLRT KS AW iAW.Lev iAW.BF iAW.TM

eqM&eqV No 5 5.4 3.6 5.0 5.1 5.3 5.2

No 1 1.1 0.6 0.9 1.0 1.1 0.9

No 0.5 0.6 3.3 0.4 0.5 0.5 0.4

diffM&eqV No 5 97.3 94.9 97.9 97.8 97.7 97.8

No 1 90.8 82.9 92.5 91.0 91.7 92.3

No 0.5 85.3 78.5 89.5 86.4 88.5 88.9

eqM&diffV No 5 88.5 18.4 87.1 82.7 82.1 82.6

No 1 71.0 4.0 68.1 61.1 60.9 63.4

No 0.5 61.8 2.5 58.5 51.1 53.5 56.0

diffM&diffV No 5 84.2 66.0 88.2 85.6 85.9 86.1

No 1 62.8 37.6 71.4 65.1 66.1 69.0

No 0.5 52.5 31.4 63.6 56.2 59.3 62.3

eqM&eqV Yes 5 11.1 3.4 3.8 5.1 5.1 4.7

Yes 1 2.9 0.6 0.5 1.1 0.9 0.9

Yes 0.5 1.7 0.4 0.2 0.5 0.5 0.4

diffM&eqV Yes 5 97.1 95.5 98.7 98.4 98.8 98.8

Yes 1 88.3 84.7 95.4 93.3 94.8 94.3

Yes 0.5 83.1 80.4 92.2 89.1 91.9 91.4

eqM&diffV Yes 5 31.7 15.8 26.3 60.1 59.0 61.1

Yes 1 12.1 3.7 9.4 32.5 31.7 33.8

Yes 0.5 8.0 2.3 4.3 23.1 24.2 25.5

diffM&diffV Yes 5 28.5 59.7 37.7 53.2 52.7 54.4

Yes 1 8.9 33.5 19.7 24.8 26.2 27.0

Yes 0.5 5.8 27.2 12.6 16.4 19.1 19.3

When methylation values were generated from a two-component normal mixture

distribution without outliers, both iAW.BF and AW had appropriate empirical Type

I error rates. However, iAW.Lev and iAW.TM had significantly inflated empirical
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Type I error rates. Additionally, jointLRT and KS had conservative empirical Type

I error rates. Under all Power Scenarios, iAW.BF had greater power than AW

and jointLRT. When methylation values were from two-component normal mixture

distributions with an outlier, iAW.BF had appropriate simulated Type I error rates

at each level. Although iAW.Lev and iAW.TM had increased empirical Type I error

rates, they are much smaller than those rates of jointLRT. The KS and AW tests

had conservative empirical Type I error rates. All of the three improved tests had

significantly greater power than AW under Power scenarios II (i.e., different variances

only) and III (i.e., different means and different variances).

When methylation values were generated from a chi-squared distribution without

outliers, iAW.BF, iAW.TM and AW kept empirical Type I error rates well, though

iAW.Lev presented increased empirical Type I error rates. While jointLRT had

inflated empirical Type I error rates, and KS had more conservative empirical Type

I error rates. For Power scenarios II and III (i.e., different variances), iAW.BF and

iAW.TM had significantly greater power than AW, and iAW.Lev had similar power

to AW for three power scenarios. When methylation values were generated from a

chi-squared distribution with an outlier, the performance of all tests were similar,

with the exception of AW, where it had conservative empirical Type I error rates.

68



Table 4.3: The type I error (×100) and power (×100) for the six tests evaluated at 5%, 1%, and

0.5% significance levels when methylation β-values were generated from the mixture of two normal

distributions without or with an outlier. The numbers of non-diseased and diseased samples are

(100, 100).

Scenarios Out Level(%) jointLRT KS AW iAW.Lev iAW.BF iAW.TM

eqM&eqV No 5 2.0 3.6 4.8 9.5 5.2 11.4

No 1 0.5 0.7 0.8 3.0 1.1 4.3

No 0.5 0.2 0.4 0.4 1.8 0.6 2.8

diffM&eqV No 5 98.8 100 97.5 99.0 99.3 98.4

No 1 93.9 99.8 91.9 94.3 97.8 91.0

No 0.5 90.6 99.7 87.8 90.2 96.4 84.6

eqM&diffV No 5 35.0 98.1 54.5 88.9 59.2 75.8

No 1 10.7 81.1 35.6 72.5 36.1 52.7

No 0.5 6.2 72.5 28.7 63.9 28.9 42.5

diffM&diffV No 5 47.3 99.6 56.1 89.8 80.8 82.5

No 1 19.6 93.7 36.9 72.4 60.7 56.5

No 0.5 14.0 91.0 29.7 62.6 52.6 44.8

eqM&eqV Yes 5 24.3 3.4 2.3 5.5 5.2 6.7

Yes 1 6.1 0.6 0.4 1.2 0.8 1.8

Yes 0.5 3.4 0.4 0.2 0.7 0.4 1.0

diffM&eqV Yes 5 90.8 100 98.9 99.5 99.9 99.5

Yes 1 76.4 100 95.1 97.3 98.2 96.3

Yes 0.5 69.0 100 91.6 95.3 97.3 93.9

eqM&diffV Yes 5 0.4 97.5 13.0 81.9 48.1 71.5

Yes 1 0 86.2 5.2 60.4 29.1 45.9

Yes 0.5 0 71.5 3.3 51.0 23.0 37.3

diffM&diffV Yes 5 10.0 99.5 44.8 88.7 80.0 85.0

Yes 1 3.0 96.1 26.3 70.3 61.9 62.5

Yes 0.5 1.8 91.3 18.7 60.7 54.2 52.5

From the results of the four tables, we found that iAW.BF could control empirical

Type I error rates well and have similar or greater power than AW under all scenarios

including the existence of outliers, skewed distributions, and mixtures of two normal

distributions. For the scenarios of mixtures of two normal distributions, iAW.Lev and
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iAW.TM can maintain empirical Type I error rates at proper levels and had similar or

greater power than AW. In comparison, AW can maintain appropriate empirical Type

I error rates for any parametric distributions as designed without outliers. When the

methylation values were generated from a distribution with an outlier, AW tended

to have conservative empirical Type I error rates and smaller estimated power. The

jointLRT, on the other hand, only performed best for methylation values generated

from normal distributions without outliers. KS can keep conservative empirical Type

I error rates under all scenarios, and it had poor estimated power in many scenarios.

Simulation studies were also conducted when the sample size was moderate (50,

50) and small (20, 20). The results are provided in Appendix C. We observed that

empirical Type I error rates increased and power decreased when the sample size

decreased from 100 to 50 subjects per group. Furthermore, the three improved joint

score tests still performed significantly better than AW under a moderate or small

sample size.

70



Table 4.4: The type I error (×100) and power (×100) for the six tests evaluated at 5%, 1%, and

0.5% significance levels when methylation β-values were generated from the chi-square distribution

without or with an outlier. The numbers of non-diseased and diseased samples are (100, 100).

Scenarios Out Level(%) jointLRT KS AW iAW.Lev iAW.BF iAW.TM

eqM&eqV No 5 14.4 3.7 4.8 5.9 5.2 4.7

No 1 5.8 0.7 0.8 1.3 0.9 1.0

No 0.5 4.1 0.4 0.4 0.7 0.5 0.5

diffM&eqV No 5 90.5 99.7 99.8 99.7 99.9 99.9

No 1 61.1 96.8 99.0 97.0 99.5 99.4

No 0.5 46.2 95.3 98.1 94.9 99.0 98.9

eqM&diffV No 5 20.6 10.1 27.4 32.0 35.9 35.4

No 1 7.8 2.0 11.4 12.0 17.0 15.6

No 0.5 4.9 1.3 6.8 8.3 11.0 10.3

diffM&diffV No 5 20.7 44.4 61.3 58.1 72.8 68.7

No 1 5.3 18.5 39.4 29.3 49.3 43.3

No 0.5 2.9 14.1 30.5 21.2 39.3 33.9

eqM&eqV Yes 5 20.4 4.0 4.5 6.9 5.2 4.9

Yes 1 10.3 0.6 0.6 1.6 1.0 0.9

Yes 0.5 7.8 0.4 0.3 0.9 0.5 0.4

diffM&eqV Yes 5 71.4 99.6 99.8 99.5 99.9 99.9

Yes 1 24.6 96.3 99.3 95.7 99.4 99.3

Yes 0.5 13.4 94.6 98.7 92.5 98.8 98.6

eqM&diffV Yes 5 29.6 9.4 34.9 38.6 43.0 41.4

Yes 1 10.8 1.8 13.2 16.6 20.5 20.1

Yes 0.5 6.6 1.2 7.7 10.7 14.2 14.3

diffM&diffV Yes 5 23.4 41.3 68.7 61.0 74.9 71.3

Yes 1 6.5 16.2 45.5 32.5 51.7 48.2

Yes 0.5 3.2 12.0 35.6 23.3 42.0 38.4
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4.3 Real Data Analysis

4.3.1 Data description

We applied all six statistical tests to three publicly available DNA methylation

data sets: GSE37020 (Teschendorff and Widschwendter, 2012), GSE20080 (Teschen-

dorff et al., 2010), and GSE107080 (Zhang et al., 2017)) from Gene Expression Om-

nibus (GEO)(www.ncbi.nlm.nih.gov/geo).

The two HM27k data sets GSE37020 and GSE20080 have been described in

Section 3.3.1. The procedures of quality control and preprocessing about the two data

sets are presented in Appendix B. We used clean GSE37020 as the discovery set and

clean GSE20080 as the validation set to detect CpG sites differentially methylated

(DM) or differentially variable (DV) between CIN2+ samples and normal samples.

For a given CpG site in a given data set, we applied each of the six joint tests to

test for equalities of both means and variances. For a given joint test, we claimed a

CpG site in the analysis of GSE37020 as significant methylation candidate (different

in means or variances) if the false discovery rate (FDR) (Benjamini and Hochberg,

1995) adjusted p-value for the CpG site is less than 0.05. The function p.adjust in

the statistical software R was used to calculate the FDR-adjusted p-value. For a

significant site in the analysis of GSE37020, if the corresponding un-adjusted p-value
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in the analysis of GSE20080 is less than 0.05 and the difference in the directions of

means and variances are consistent between the two data sets, then we claim that

the significance in the analysis of GSE37020 is truly validated in the analysis of

GSE20080. We use the differences of medians and mean absolute deviations between

cases and controls to evaluate the directions.

GSE107080 contained DNA methylation profiles of about 850K sites measured

from whole blood samples using Illumina Infinium MethylationEPIC (EPIC) plat-

form. GSE107080 included 100 individuals with illicit drug injection and hepatitis

C type virus (IDU+/HCV+) and 305 individuals without illicit drug injection and

hepatitis C type virus (IDU-/HCV-). All the individuals were recruited from a well-

established longitudinal cohort, Veteran Aging Cohort Study. The procedures of

quality control and preprocessing for GSE107080 are presented in Appendix B.

For dataset GSE107080, the samples were randomly split into two sets of ap-

proximate equal size (due to odd numbers of cases and controls) as the training set

and the validation set. The training set contained 148 controls (IDU-/HCV-) and

48 cases (IDU+/HCV+), and the validation set contained 147 controls and 47 cases.

We used a similar method as the above to determine if the significance of a CpG site

is truly validated.
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4.3.2 Results

For GSE37020, the numbers of significant CpG sites (i.e., CpG sites with FDR-

adjusted p-value < 0.05) obtained by the six joint tests are 4556 (jointLRT), 1288

(KS), 1850 (AW), 2041 (iAW.Lev), 1843 (iAW.BF), and 1838 (iAW.TM). The truly

validated CpG sites are 1705 (jointLRT), 47 (KS), 220 (AW), 666 (iAW.Lev), 296

(iAW.BF), and 342 (iAW.TM).

Table 4.5: The performance of six joint tests based on HM27k data sets

GSE37020 and GSE20080.

Test nSig nValidation nTV pTV(%) nFV pFV(%)

JointLRT 4556 2213 1705 77.0 508 23.0

KS 1288 60 47 78.3 13 21.7

AW 1850 262 220 84.0 42 16.0

iAW.Lev 2041 747 666 89.2 81 10.8

iAW.BF 1843 339 296 87.3 43 12.7

iAW.TM 1838 387 342 88.4 45 11.6

nSig : the number of significant CpG sites detected in GSE37020 (adjusted p-
value < 0.05);

nValidation : the number of validated CpG sites in GSE20080 (unadjusted p-value
< 0.05);

nTV : the number of truly validated CpG sites with the same difference direc-
tions in means and variances between two samples;

pTV : = nTV
nV alidation

, the proportion of significant CpG sites detected in
GSE37020 and truly validated in GSE20080;

nFV : the number of falsely validated CpG sites in GSE20080 with inconsistent
difference direction in means or variances between two samples;

pFV : = nFV
nV alidation

, the proportion of significant CpG sites detected in GSE37020
but falsely validated in GSE20080.
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Table 4.5 presents the numbers/proportions of truly and falsely validated signif-

icant CpG sites. The three improved joint score tests have higher true validation

ratios than joint LRT, KS, and AW. Among all the tests, iAW.Lev had the highest

true validation rate (89.2%) and the lowest false validation rate (10.8%), followed by

iAW.TM and iAW.BF.

Figure 4.1 shows the parallel boxplots of DNA methylation levels versus case-

control status for the top CpG site (i.e., having the smallest p-value among those

truly validated CpG sites for testing the homogeneity of means and variances si-

multaneously) obtained by each of the six joint tests. All these top CpG sites were

validated in GSE20080. It has been found that the high incidence of cervical lesions

is associated with the genes ST6GALNAC3, CRB1 and RGS7, where cg26363196

(jointLRT), cg00321478 (AW) and cg21303386 (iAW.Lev) might reside (Farkas et al.,

2013; Kudela et al., 2016). Furthermore, the gene PRRG2, where cg2196766 (KS)

might reside, is involved in the signal transduction pathway, which might be a novel

biomarker for CIN2+ diagnosis (Yazicioglu et al., 2013). The gene FPRL2, where

cg06784466 (iAW.BF, iAW.TM) might reside, is related to innate immunity and host

defense mechanisms (Devosse et al., 2009).
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Figure 4.1: Paired parallel boxplots of DNA methylation levels (y-axis) versus case-control

status (x-axis) for the 5 unique top CpG sites acquired by the six joint tests based on

HM27k data sets. The dots indicate subjects.1A and 1B are for cg26363196 (jointLRT).

2A and 2B are for cg2196766 (KS). 3A and 3B are for cg00321478 (AW). 4A and 4B are

for cg21303386 (iAW.Lev). 5A and 5B are for cg06784466 (iAW.BF, iAW.TM). 1A, 2A,

3A, 4A, 5A are based on GSE37020. 1B, 2B, 3B, 4B, 5B are based on GSE20080.
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For GSE107080, the number of significant CpG sites (i.e., CpG sites with FDR-

adjusted p-value < 0.05) obtained by the six joint tests in the training set are 51, 994

(jointLRT), 10 (KS), 12 (AW), 709 (iAW.Lev), 22 (iAW.BF), and 22 (iAW.TM).

The corresponding numbers of validated CpG sites in the validation set (i.e., CpG

sites with unadjusted p-value < 0.05) are 19, 806 (jointLRT), 3 (KS), 5 (AW), 201

(iAW.Lev), 7 (iAW.BF), and 9 (iAW.TM). After checking the direction of differences,

the truly validated CpG sites are 5652 (jointLRT), 1 (KS), 2 (AW), 89 (iAW.Lev),

4 (iAW.BF), and 5 (iAW.TM).

Table 4.6 presents the numbers/proportions of truly and falsely validated signif-

icant CpG sites based on GSE107080. The three improved tests have higher true

validation rates than joint LRT, KS and AW tests. Amongst them, iAW.BF and

iAW.TM have a more than ten percent higher proportion of true validation than

AW.
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Table 4.6: The performance of six joint tests based on EPIC data GSE107080.

Test nSig nValidation nTV pTV(%) nFV pFV(%)

JointLRT 51994 19806 5652 28.5 14154 71.5

KS 10 3 1 33.3 2 66.7

AW 12 5 2 40.0 3 60.0

iAW.Lev 709 201 89 44.3 112 55.7

iAW.BF 22 7 4 57.1 3 42.9

iAW.TM 22 9 5 55.6 4 44.4

nSig : the number of significant CpG sites detected in the training set of

GSE107080 (adjusted p-value < 0.05);
nValidation : the number of validated CpG sites in the validation set of

GSE107080 (unadjusted p-value < 0.05);
nTV : the number of truly validated CpG sites with the same difference direc-

tions in means and variances between two samples;
pTV : = nTV

nV alidation
, the proportion of significant CpG sites detected in the

training set and truly validated in the validation set;
nFV : the number of falsely validated CpG sites in the validation set with

inconsistent difference direction in means or variances between two samples;
pFV : = nFV

nV alidation
, the proportion of significant CpG sites detected in the

training set but falsely validated in the validation set.

4.4 Discussion

The three improved joint score tests are derived from the generalized linear model

framework as AW, thus they maintain the strengths of AW in terms of efficiency.

Furthermore, the three improved tests use an absolute deviation instead of a squared

deviation used by AW to enhance the robustness. For skewed methylation distribu-
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tions or distributions with outliers, squared deviation used by AW can be enormously

affected by extreme values, which can lead to erroneous results, thus AW tends to

have conservative empirical Type I error rates and smaller power in some scenarios.

Our proposed methods rectify this problem and thus can maintain good power even

if the distribution is skewed or contains outliers. Furthermore, when compared to the

squared deviation, the absolute deviation retains the same magnitude of the original

measurement scales and are consequently more interpretable. The iAW.Lev tends to

have inflated empirical Type I error rates under skewed and mixture distributions.

In comparison, iAW.BF and iAW.TM employ a median or trimmed mean as the

central tendency to calculate absolute deviation. Both of them are robust and can

minimize the impact of outliers and skewed distributions in evaluating the overall

dispersion of the sample data.

The performance of the jointLRT is highly dependent on the validity of normality

assumptions. However, the empirical distribution of methylation data are often

skewed or contain outlying observations. The KS test is inclined to have conservative

empirical Type I error rates and lowest power under many scenarios. Therefore, it

might not be suitable for DNA methylation analysis as expected.

We would like to address one limitation in our simulation studies. Since the

analytical form of the underlying probability distribution of methylation data is
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rarely known, we have applied various settings in an attempt to mimic the reality. We

also try to evaluate our methods in four different aspects. However, our simulation

study might not cover all the possible cases that one might encounter in reality.

Nevertheless, the results from real data analyses provide strong evidence to support

the thesis that our proposed tests are in general more robust in comparison with the

AW test.
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5 Model-based clustering for detecting

differentially variable microRNAs

Besides DNA methylation, microRNA (miRNA) regulation is another important

epigenetic mechanism. Aberrant miRNA expression pattern has been linked to many

diseases (Lu et al., 2005; Cullen, 2011; Fernández-Hernando et al., 2013). In addition

to differential mean expression, differentially variable expression levels can also signif-

icantly affect gene regulation. Moreover, the correlations between different miRNAs

can help us advance our understanding of the mechanism of genetic disorders and

find the truly important candidate of miRNAs for diagnoses and therapy.

In this chapter, we focus on better identifying miRNA probes based on their

differential variances by employing the framework of Qiu et al. (2008) and modify-

ing the marginal model to detect differentially variable (DV) miRNAs. We impose

special structures on covariance matrices for each cluster of miRNAs based on prior

information about the relationship between variances in cases and controls.
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5.1 Framework

We assume that the miRNA expression data have been normalized to remove the

confounding effects and transformed so that the distribution of the miRNA expression

levels is close to a normal distribution. Based on Qiu et al. (2008), for a given miRNA,

we denote Xi as the processed expression level for the ith subject, i = 1, . . . ,m, where

m = mc + mn, mc is the number of diseased samples (cases) and mn is the number

of non-diseased samples (controls). Let X = (X1, . . . , Xmc , Xmc+1, . . . , Xmc+mn)T

denote the processed expression profiles overm samples and follow a three-component

mixture of multivariate normal distributions with marginal density:

π1f1(x;θ1) + π2f2(x;θ2) + π3f3(x;θ3),

π1 + π2 + π3 = 1, πk > 0, k = 1, 2, 3,

(5.1)

where π1, π2, π3 are mixing proportions. The m × 1 vector x is a realization of the

random vector X; θk, is the parameter set for the k-th component distribution fk,

k = 1, 2, 3; and f1, f2, and f3 are the density functions for multivariate normal

distributions with the mean vectors

µ1 =

(
µ1c1mc

µ1n1mn

)
, µ2 =

(
µ2c1mc

µ2n1mn

)
, µ3 =

(
µ3c1mc

µ3n1mn

)
, (5.2)
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and covariance matrices

Σ1 =

(
σ2

1cR1c 0

0 σ2
1nR1n

)
, Σ2 =

(
σ2

2R2c 0

0 σ2
2R2n

)
,

Σ3 =

(
σ2

3cR3c 0

0 σ2
3nR3n

)
,

(5.3)

respectively, where the correlation matrices are

Rt = (1− ρt)
[
Int +

ρt
(1− ρt)

1nt1
T
nt

]
, (5.4)

t = 1c, 1n, 2c, 2n, 3c, or 3n. Note that nt = mc if t = 1c, 2c, or 3c; nt = mn if t =

1n, 2n, or 3n. Without loss of generality, we assume the first mc elements are for the

diseased samples (cases) and the remainingmn elements are for the non-diseased sam-

ples (controls). Let θ1 = (µ1c, σ
2
1c, ρ1c, µ1n, σ

2
1n, ρ1n)T , θ2 = (µ2c, σ

2
2, ρ2c, µ2n, ρ2n)T ,

θ3 = (µ3c, σ
2
3c, ρ3c, µ3n, σ

2
3n, ρ3n)T .

We assume that the available miRNAs belong to one and only one of the following

clusters: (1) σ2
1c > σ2

1n, miRNAs having higher variances in cases than in controls

(denoted as the OV cluster), (2) σ2
2c = σ2

2n = σ2
2, miRNAs having equal variances

between cases and controls (denoted as the EV cluster), (3) σ2
3c < σ2

3n, miRNAs

having smaller variances in cases than in controls (denoted as the UV cluster). We

allow the means and correlations to be different between cases and controls in the

EV cluster.

Based on the characteristics of miRNA expression profiles, Model 5.1 makes some

assumptions to capture the structural information of miRNA expression data: (a)
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miRNA expression profiles in the same cluster have the same marginal distribution;

(b) miRNA expression profiles are marginally independent; (c) marginal means and

variances of expression levels for a given miRNA from the same type of samples (cases

or controls) are the same; (d) marginal correlations between any pair of expression

levels for a given miRNA from the same type of samples are the same; (e) marginal

correlations between any pair of expression levels for a given miRNA from different

types of samples are zero.

Next, we derive a selection method for miRNA candidate based on Model 5.1. The

j-th miRNA is assigned to one of the three clusters based on its posterior probability

Pr(gene j ∈ cluster k|xj) =
πkfk(xj;θk)

π1f1(xj;θ1) + π2f2(xj;θ2) + π3f3(xj;θ3)
,

k =1, 2, 3,

(5.5)

where xj is the processed profile for the j-th miRNA, j = 1, . . . , p. It means that

gene j with profile xj will be classified to cluster Ck0 if the posterior probability that

the j-th miRNA belongs to cluster Ck0 given xj is the largest, i.e.,

k0 = arg max
k
Pr(gene j ∈ Ck|xj). (5.6)

5.2 Parameter estimation

Based on Titterington et al. (1985), the complete data can be represented as

{yj, j = 1, . . . , p} = {(xTj , zTj )T , j = 1, . . . , p},
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where p is the number of miRNAs, xj is an m × 1 vector, m = mc + mn, mc is

the number of diseased samples, mn is the number of non-diseased samples, zj =

(z1j, z2j, 1− z1j − z2j) and

zkj =

{
1 if xj is in category k

0 otherwise
, j = 1, . . . , p, k = 1, 2.

Then the likelihood corresponding to (y1, . . . ,yp) can be written as

g(y1, . . . ,yp|Ψ) =

p∏
j=1

f(xj, zj)

=

p∏
j=1

f(xj|zj)f(zj)

=

p∏
j=1

{[
f1(xj)

z1jf2(xj)
z2jf3(xj)

(1−z1j−z2j)
] [
π
z1j
1 π

z2j
2 (1− π1 − π2)(1−z1j−z2j)

]}
,

where

Zi ∼ Multinomial (1, π1, π2, 1− π1 − π2) , (5.7)

and

f(zi) =


π1 if z1j = 1 and z2j = 0,

π2 if z1j = 0 and z2j = 1,

1− π1 − π2 if z1j = z2j = 0,

=π
z1j
1 π

z2j
2 (1− π1 − π2)(1−z1j−z2j),

(5.8)

and

f(xj|zj) =


f1(xj) if z1j = 1 and z2j = 0,

f2(xj) if z1j = 0 and z2j = 1,

f3(xj) if z1j = z2j = 0,

=f1(xj)
z1jf2(xj)

z2jf3(xj)
(1−z1j−z2j).

(5.9)
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The log complete likelihood function is

`0(Ψ) =

p∑
j=1

zTj V (π) +

p∑
j=1

zTj Uj(θ),

where

zj =

 z1j

z2j

1− z1j − z2j

 , V (π) =

 log(π1)

log(π2)

log(1− π1 − π2)

 , Uj(θ) =

 log (f1(xj;θ1))

log (f2(xj;θ2))

log (f3(xj;θ3))

 ,

and

θ1 =
(
µ1c, σ

2
1c, ρ1c, µ1n, σ

2
1n, ρ1n

)T
,

θ2 =
(
µ2c, σ

2
2, ρ2c, µ2n, ρ2n

)T
,

θ3 =
(
µ3c, σ

2
3c, ρ3c, µ3n, σ

2
3n, ρ3n

)T
,

and

Ψ =
(
π1, π2, µ1c, σ

2
1c, ρ1c, µ1n, σ

2
1n, ρ1n, µ2c, σ

2
2, ρ2c, µ2n, ρ2n, µ3c, σ

2
3c, ρ3c, µ3n, σ

2
3n, ρ3n

)T
.

From some initial approximation, the EM algorithm generates Ψ(0), a sequence

{Ψ(t)} of estimates. Each iteration consists of the following two steps:

E-step: Evaluate Q
(
Ψ,Ψ(t)

)
= E

[
log(g(y|Ψ)|x,Ψ(t)

]
.

M-step: Find Ψ = Ψ(t+1) to maximize Q
(
Ψ,Ψ(t)

)
.

The procedures of parameter estimation are presented in Appendix D.
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5.3 Simulation studies

5.3.1 Simulation setting

We conducted four sets of simulation studies. In the first set (denoted as SimI), we

generated miRNA data from the proposed marginal mixture model of multivariate

normal, where estimated model parameters for GSE67139 (i.e., the discovery set)

are used as the true values of the model parameters (π1 = 0.31, π2 = 0.58, π3 =

0.11, µ1c = −0.14, σ2
1c = 1.49, ρ1c = 0.08, µ1n = 0.14, σ2

1n = 0.45, ρ1n = 0.32, µ2c =

0.03, σ2
2c = 1.01, ρ2c = 0.04, µ2n = −0.03, σ2

2n = 1.01, ρ2n = 0.11, µ3c = 0.13, σ2
3c =

0.28, ρ3c = 0.04, µ3n = −0.13, σ2
3n = 1.69, ρ1n = −0.01). We generated 100 data

sets, each of which has 1,000 miRNAs for 50 cases and 50 controls. The numbers of

miRNAs in each cluster are 310 (OV), 580 (EV) and 110 (UV).

In the second set (denoted as SimII), we generated miRNA data from a mixture

of three-component multivariate t distribution with the same mean vectors and co-

variance matrices as those in SimI and with three degrees of freedom. SimII is used

to evaluate the performance of the proposed method when the normality assumption

for any one of the three clusters (OV, EV, and UV) is violated.

In the third set (denoted as SimIII) of the simulation studies, we generated

miRNA data from the same model as that in SimI, except that the marginal corre-
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lations within subject-groups were set to zero (ρkc = 0 and ρkn=0). SimIII is used

to evaluate the performance of the proposed method when there are no marginal

correlations.

In the fourth set (denoted as SimIV) of the simulation studies, we generated

miRNA data from the same model as that in SimII, except that the marginal corre-

lations within subject-groups were set to zero (ρkc=0 and ρkn = 0). SimIV is used

to evaluate the performance of the proposed method when there are no marginal

correlations and when the normality assumption for any one of the three clusters

(OV, EV, and UV) is violated.

We compared the proposed method (denoted as gs) with the six methods which

are based on Bar et al.’s (2014) N3 model, and Bar and Schifano’s (2018) L2N

model. Both N3 and L2N models have been implemented in R package DVX (Bar

and Schifano, 2018). For both N3 and L2N, DVX outputs raw p-values, q-values, and

posterior probabilities pgk that the probe g belongs to cluster k given its expression

profile and estimated model parameters, k = 1, 2, 3. Hence, for both N3 and L2N,

we used three methods to assign probes to two clusters: DV probes and non-DV

probes. The first method is based on the q-value. If a miRNA has a q-value < 0.05,

we assign that to be differentially variable; and non-differentially variable otherwise.

The second method is based on the false-discovery-rate (FDR) adjusted p-value. If
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a miRNA has a FDR-adjusted p-value < 0.05, we assign that to be differentially

variable; and non-differentially variable otherwise. The third method is based on the

posterior probabilities. We assign a miRNA to cluster k* if the posterior probability

pgk∗ is the largest among the three posterior probabilities, pg1, pg2, and pg3. We

denote the three miRNA-assignment methods as N3.q (L2N.q), N3.f (L2N.f), and

N3 (L2N), respectively.

For simulated datasets, we calculated the magnitude of agreement between the

true cluster memberships of miRNAs and the detected cluster memberships by each

of the seven methods using the Jaccard index (Jaccard, 1912; Qiu et al., 2008).

The maximum value of the Jaccard index is one, indicating perfect agreement. The

minimum value of the Jaccard index is zero, indicating that the agreement is by

chance. The definition of Jaccard index is presented as follows.

Let A and B are two sets, each with p binary attributes, A = {Aj ∈ A|Aj =

0 or 1, j = 1, . . . , p}, B = {Bj ∈ B|Bj = 0 or 1, j = 1, . . . , p}. The total numbers of

each combination of attributes for both A and B are specified as follows:

M11 =

p∑
j=1

I(Aj = 1 and Bj = 1), M01 =

p∑
j=1

I(Aj = 0 and Bj = 1),

M10 =

p∑
j=1

I(Aj = 1 and Bj = 0), M00 =

p∑
j=1

I(Aj = 0 and Bj = 0),

where I(x) is an indicator function, with value as 0 or 1. The Jaccard index is given
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as

J =
M11

M01 +M10 +M11

. (5.10)

We also evaluate the performance using the false positive rate (FPR) (i.e., the

proportion of detected DV probes among the true non-DV probes) and the false

negative rate (FNR) (i.e., the proportion of detected non-DV probes among the true

DV probes). The smaller the FPR (FNR), the better the performance.

5.3.2 Simulation results

When data were generated from a mixture of multivariate normal distributions

(SimI and SimIII), the values of the Jaccard index obtained by the gs method were

close to one (the perfect agreement). Under the assumption of a mixture of mul-

tivariate normal distributions, the gs method performed better than the other six

methods in terms of larger Jaccard index, smaller FPR and smaller FNR (Figure 5.1

and 5.2). The values of FPR and FNR obtained by the gs method were significantly

smaller than those by the other six methods. The results of two-sided Wilcoxon

signed-rank tests of Jaccard index, FPR and FNR are shown in Appendix E.

When data were generated from a mixture of multivariate t distributions (SimII

and SimIV), the gs method had a smaller Jaccard index value than the other six

methods (Figure 5.1 and 5.2). It means that when the simulated miRNA was from
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Figure 5.1: The boxplots of estimated Jaccard indices, FPR, and FNR based on

the 100 simulated datasets in SimI. The closer to one the Jaccard index, the better

the performance of the method. The closer to zero the FPR (FNR), the better the

performance of the method.
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Figure 5.2: The boxplots of estimated Jaccard indices, FPR, and FNR based on the

100 simulated datasets in SimIII. The closer to one the Jaccard index, the better

the performance of the method. The closer to zero the FPR (FNR), the better the

performance of the method.
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the multivariate non-normal distribution, the gs method has a higher probability

of classifying them into the wrong sets (DV and non-DV). The gs method had a

smaller FNR but larger FPR values than the other six methods (Figure 5.1 and

5.2). This result shows that when the underlying assumption that the marginal

miRNA expression levels are from multivariate normal distributions is violated, the

gs method may uncover more false miRNA candidates .
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Figure 5.3: The boxplots of estimated Jaccard indices, FPR, and FNR based on

the 100 simulated datasets in SimII. The closer to one the Jaccard index, the better

the performance of the method. The closer to zero the FPR (FNR), the better the

performance of the method.
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Figure 5.4: The boxplots of estimated Jaccard indices, FPR, and FNR based on the

100 simulated datasets in SimIV. The closer to one the Jaccard index, the better

the performance of the method. The closer to zero the FPR (FNR), the better the

performance of the method.

5.4 Real data analysis

5.4.1 Data description

We downloaded two miRNA data sets from online database GEO: GSE67138

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE67138) and GSE67139

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE67139). Both data sets

are from the same project that aims to detect miRNAs that are differentially ex-

pressed between human hepatocellular carcinoma (HCC) tumor tissues with and

without vascular invasion. GSE67138 is the first batch containing 57 samples (34

invasive tumor tissues and 23 non-invasive tumor tissues), while GSE67139 is the
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second batch containing 120 samples (60 invasive tumor tissues and 60 non-invasive

tumor tissues). The expression levels of miRNAs in both GEO datasets were mea-

sured by using Affymetrix Multispecies miRNA-1 Array (GPL8786). Both datasets

contain 847 miRNAs. Since both data sets have been normalized, we used the two

data sets directly in the further analyses. Since GSE67139 has a larger sample size

than GSE61738, we regarded GSE67139 as the discovery set and GSE67138 as the

validation set.

Following Qiu et al.’s (2008) data preprocessing steps, we first performed the Box-

Cox transformation and miRNA-profile scaling on the two miRNA expression data

sets. We then applied the seven methods (the gs method and the six existing model-

based methods) to the discovery set (GSE67139) to detect miRNAs differentially

variable between invasive tumors and non-invasive tumors. If a miRNA is assigned

to the OV or UV clusters based on the seven model-based clustering methods, we

claim that this miRNA has significantly different variances between invasive tumors

and non-invasive tumors. We then applied the same procedure to the validation set

(GSE67138). We claim that a miRNA is a validated DV miRNA (1) if the miRNA

is DV in both discovery and validation sets, and (2) if the sign of the difference

(s2
c−s2

n) is the same in both datasets, where s2
c and s2

n are sample variances for cases

and controls, respectively. We next calculated the proportion of the validated DV
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miRNAs (i.e., validation rate) pV alid = nV alid
nSig

, where nSig is the number of DV

miRNAs in the discovery set (GSE67139) and nV alid is the number of DV miRNAs

significant and sharing the same difference direction of variances in both data sets. To

estimate the variation of the validation rate pV alid, we obtained the 100 bootstrap

validation rates based on 100 bootstrap discovery sets and validation sets. We then

tested to see if the median bootstrap validation rate of the gs method is the same as

that of each of the other six methods by using two-sided Wilcoxon signed-rank tests.

5.4.2 Results

The numbers of the DV miRNAs in the discovery set (GSE67139) and the num-

bers and proportions of the validated DV miRNAs were shown in Table 5.1. The

gs method detected 358 DV probes based on the discovery set (GSE67139), 67 of

which were validated in the validation set (GSE67138). Amongst the 67 validated

DV miRNAs, 66 miRNAs were in Cluster OV and only one miRNA was in Cluster

UV. The proportion of the validated DV miRNAs is 0.19 for the gs method, which

is higher than those of the N3 and L2N methods. Moreover, the gs method had the

highest median bootstrap validation rate among all seven methods (Figure 5). For

all the seven methods, the number of validated OV miRNAs (nValid.OV) was much

higher than the number of validated UV miRNAs (nValid.UV). This observation
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is consistent with that observed by other researchers using DNA methylation data

(Teschendorff and Widschwendter, 2012).

Table 5.1: The performance of model-based clustering methods on miRNA

expression data sets GSE67139 and GSE67138.

Method nSig n.OV n.UV nValid nValid.OV nValid.UV pValid

gs 358 262 96 67 66 1 0.19

L2N.pp 225 121 104 30 29 1 0.13

L2N.q 173 69 104 17 16 1 0.10

L2N.f 157 60 97 16 15 1 0.10

N3.pp 247 141 106 34 33 1 0.14

N3.q 202 96 106 25 24 1 0.12

N3.f 178 74 104 18 17 1 0.10

nSig : the number of DV miRNAs detected in the discovery set (GSE67139);
n.OV : the number of OV miRNAs detected in GSE67139;
n.UV : the number of UV miRNAs detected in GSE67139;
nValid : the number of validated DV miRNAs in the validation set (GSE67138);
nValid.OV : the number of validated OV miRNAs in GSE67138;
nValid.UV : the number of validated UV miRNAs in GSE67138;
pValid : = nV alid

nSig , the proportion of significant DV miRNAs detected in GSE67139 and

truly validated in GSE67138.

The gs method detected 67 validated differentially variated miRNAs (66 OV

and 1 UV), seven of which are only differential in variances. The seven DV-only

miRNAs are hsa-miR-1826, hsa-miR-191, hsa-miR-194-star, hsa-miR-222, hsa-miR-

502-3p, hsa-miR-93, and hsa-miR-99b. With the exception of hsa-miR-1826, all

DV-only miRNAs have been associated with HCC. Elyakim et al. (2010) showed

that miR-191 is a candidate oncogene target for hepatocellular carcinoma therapy.
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Figure 5.5: The boxplots of validation rates based on 100 bootstrap samples.

Law and Wong (2011) reported the association of miR-194 with metastatic behavior

of HCC. Murakami et al. (2006) reported that miR-222 is increased in poorly versus

moderately versus well-differentiated hepatomas. Jin et al. (2016) reported that miR-

502-3p suppressed cell proliferation, migration, and invasion in HCC by targeting

SET. Li et al. (2009) confirmed that the miR-106b-25 cluster, which miR-93 belongs

to, is over-expressed in HCC. Morishita et al. (2016) found that miR-99b is up-

regulated in HBV-infected HCC cells.
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Based on the miRSystem analysis, there are 1,639 genes targeted by the identified

seven DV-only miRNAs. These 1,639 genes are in six Kyoto Encyclopedia of Genes

and Genomes (KEGG) pathways: CALCIUM SIGNALING PATHWAY, SALIVARY

SECRETION, AMYOTROPHIC LATERAL SCLEROSIS (ALS), MAPK SIGNAL-

ING PATHWAY, PPAR SIGNALING PATHWAY, and ALZHEIMER’S DISEASE.

All of these six pathways have been linked to HCC in the literature. For example,

Huang et al. (2017) reported that increased mitochondrial fission induced cytosolic

calcium signaling in HCC cells. Chen et al. (2017) reported that in a mice study,

DNA methylation marks that are differentially methylated between livers with HCC

and livers without HCC are enriched in the SALIVARY SECRETION pathway. Seol

et al. (2016)’s results suggest that Riluzole, an amyotrophic lateral sclerosis (ALS)

drug, has an anti-cancer effect on HCC. Feng et al. (2018) reported that cantharidic

acid inhibits HCC cell proliferation by inducing cell apoptosis through the p38 MAPK

signaling pathway. Nwosu et al. (2017) reported that down-regulated genes (HCC

vs. non-HCC) were enriched in PPAR SIGNALING PATHWAY based on each of

the eight HCC datasets downloaded from the Gene Expression Omnibus (GEO). Jin

et al. (2015) reported that Kynurenine 3-monooxygenase (KMO), an enzyme play-

ing a critical role in Huntingtons and Alzheimers diseases, exhibits tumor-promoting

effects toward HCC. Hence, DV-only miRNAs are biologically relevant to HCC.
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5.5 Discussion

In this chapter, we propose a novel model-based clustering method (the gs method)

to detect miRNAs that have different variances between cases and controls. We im-

pose special structures on covariance matrices for each cluster of miRNAs based

on prior information about the relationship between variances of cases and controls.

The proposed method is different from probe-wise equal-variance tests in that it does

not involve hypothesis testing. The real data analysis shows that the gs method has

a larger median bootstrap validation rate than the six existing model-based equal-

variance detecting methods. The simulation studies show that the gs method out-

performs the six existing model-based detection methods if the miRNA expression

data follow a mixture of multivariate normal distributions.

Several model-based clustering algorithms have been proposed to detect differ-

ential variable genetic probes in the literature, such as the N3 methods (Bar et al.,

2014) and the L2N methods (Bar and Schifano, 2018). The N3 methods and L2N

methods do not seem to work as well as the gs method when the underlying distribu-

tion of miRNA expression levels is multivariate normal. The poor performance of N3

and L2N is probably due to the fact that the gs method directly models the observed

expression levels to avoid losing information, while the N3 and L2N methods model

the summary statistics (e.g., mean, variance, or difference of means). Moreover,
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the N3 and L2N methods apply a couple of approximations to derive the marginal

densities, while approximations might cause deviations from true marginal densities.

In summary, the proposed gs method assumes expression levels from the mixture

of multivariate normal distributions. The proposed gs method performs better than

the other model-based methods if the underlying assumption is satisfied.
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6 Conclusion and future work

In this chapter, we summarize the results of this dissertation and discuss some

directions for future research.

First, we propose a new method to cluster high-dimensional protein sequences

and apply it to influenza A H3N2 hemagglutinin sequences. After the entropy-based

dimensionality reduction, the 1960 protein sequences active from 1998 to 2012 are

aggregated into 23 clusters using the Hamming Distance vector algorithm. Based on

these clusters, we investigate the relationship between past vaccines and the dominant

cluster in each influenza season. We find that the dominant flu clusters replace one

another every 2-5 years. The dominant clusters are not periodic within the time

span. Once the HA cluster evolves away from a given region of the sequence space,

it does not reoccur within that region. Furthermore, the dominant clusters often

diverge from the clusters housing vaccine strains.

One possible research is to improve on the Hamming Distance vector algorithm

into the algorithm of clustering categorical data and continuous data simultaneously.
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Such an improved algorithm will enable us to consider more information about amino

acids and provide more details about the resulting evolutionary pattern. Further-

more, we can introduce an amino acid substitution model (Dang et al., 2010) and

epidemiological model (Du et al., 2017) to integrate the genetic information and

transmission information of the influenza virus. This integration can help us fore-

cast the flu epidemic dynamics and design more effective future vaccines.

For DNA methylation studies, we propose three robust joint score tests. We

make extensive comparisons among the three proposed tests with jointLRT, KS test,

and the AW test. Systematic simulation studies show that at least one of the three

proposed tests perform better (i.e., having larger power, while keeping nominal Type

I error rates) than the existing tests for data with outliers or from non-normal dis-

tributions. The analyses of the three real data sets demonstrate that the three

proposed tests have higher true validation rates than those from jointLRT, KS, and

AW. The three proposed joint score tests are robust against the violation of normal-

ity assumption and the presence of outlying observations in comparison with three

existing tests. Among the three proposed tests, iAW.BF seems to be the most robust

and effective one for all simulated scenarios and also in real data analyses. More-

over, we conduct systematic simulation studies and real data analysis to compare the

performance of seven statistical tests for equal-variance hypothesis on DNA methy-
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lation data, including two tests that were recently proposed in the literature. Our

results show that the Brown-Forsythe test and trimmed-mean-based Levene’s test

have good performance in testing for equal variance in our simulation studies and

real data analysis.

Since the AW-type joint test is derived from the generalized linear regression

model, it can be naturally generalized to incorporate covariates (Ahn and Wang,

2013). It has been demonstrated that many other factors, such as age, gender, race,

can contribute to aberrant DNA methylation pattern (Phipson and Oshlack, 2014;

Zhang et al., 2011). These factors can confound the effect of DNA methylation

on diseases. To identify the true methylation sites associated with the disease of

interest, we need to evaluate and adjust the effects of these confounding factors via

appropriate methods (Teschendorff and Relton, 2018). Moreover, we can consider the

correlations between CpG sites within a genomic region, such as the region nearby

an important promoter. Under the framework of the generalized linear model, our

proposed methods can extend beyond investigating one CpG site to the region-based

analysis.

For studies of miRNA expression data, we propose a novel model-based clustering

method (the gs method) to detect differentially variable miRNAs between cases and

controls. We impose special structures on covariance matrices for each cluster of
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miRNAs based on prior information about the relationship between variances in

cases and controls. This method is different from probe-wise equal-variance tests in

that it does not involve hypothesis testing. The simulation studies show that this

method outperforms other model-based methods if the underlying assumption that

the miRNA expression levels follow a mixture of multivariate normal distributions.

The real data analysis shows that the gs method has a larger median bootstrap

validation rate than the other model-based methods.

The proposed gs method has been demonstrated to rely on the normality as-

sumption. Since it is common to have outliers in miRNA expression data, we intend

to employ a broader family of distribution, Pearson type VII distribution (Pearson,

1916; Sun et al., 2010), to replace the multivariate normal distribution. Since the

Pearson type VII distribution includes Student t-distribution and has heavy tails,

the method based on the marginal model of Pearson type VII distribution can im-

prove the detecting power when outliers are present (Sun et al., 2010). We could

improve the gs method into a robust version against the violation of the normality

assumption on the component distributions. We could also consider detecting dif-

ferentially expressed (DE) and differentially variated (DV) miRNAs simultaneously

using a nine-component multivariate normal mixture model.
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A Additional simulation results in Chapter 3

Table A.1: Ranks of the seven equal-variance tests in terms of power for

simulation scenarios of sample size 200.

n Distribution eqMean Outlier F Bartlett Levene L.trim BF PO.AD PO.SQ

200 N yes no 2 2 5.5 5.5 5.5 5.5 2

200 N yes yes - - - 2.5 2.5 - 1

200 N no no 2 2 5.5 5.5 5.5 5.5 2

200 N no yes - - - 2.5 2.5 - 1

200 c.N no no 4 4 4.0 4.0 4.0 4.0 4

200 c.N no yes - - - 2.0 2.0 2.0 -

200 t yes no - - 2.0 4.0 5.0 3.0 1

200 t yes yes - - 2.0 3.0 4.0 1.0 5

200 t no no - - - 1.0 2.0 - 3

200 t no yes - - - - - - 1

200 chisq yes no - - - - 1.0 - 2

200 chisq yes yes - - - 1.0 2.0 - 3

200 chisq no no - - - - - - 1

200 chisq no yes - - - 1.0 2.0 - 3

200 c.chisq no no - - - - 1.0 - 2

200 c.chisq no yes - - - 1.5 1.5 - 3

“-” : no power can be considered because the test has inflated type I error rates for all the

scenarios in the situation.
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Table A.2: Ranks of the seven equal-variance tests in terms of power for

simulation scenarios of sample size 50.

n Distribution eqMean Outlier F Bartlett Levene L.trim BF PO.AD PO.SQ

50 N yes no 1.5 1.5 - 4.0 5.0 - 3.0

50 N yes yes - - 2 3.0 4.0 1 5.0

50 N no no 1.5 1.5 - 4.0 5.0 - 3.0

50 N no yes - - - 2.0 3.0 1 4.0

50 c.N no no 1.5 1.5 - 4.0 5.0 - 3.0

50 c.N no yes - - - - 1.0 - -

50 t yes no - - - 1.0 2.0 - 3.0

50 t yes yes - - 2 3.5 3.5 1 5.0

50 t no no - - - 1.0 2.0 - 3.0

50 t no yes - - - 1.0 2.0 - 3.0

50 chisq yes no - - - - 1.5 - 1.5

50 chisq yes yes - - - 1.0 2.0 - 3.0

50 chisq no no - - - - - - 1.0

50 chisq no yes - - - 1.0 2.0 - 3.0

50 c.chisq no no - - - - 1.0 - 2.0

50 c.chisq no yes - - - 1.0 2.0 - 3.0

“-” : no power can be considered because the test has inflated type I error rates for all the

scenarios in the situation.
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Table A.3: Ranks of the seven equal-variance tests in terms of power for

simulation scenarios of sample size 20.

n Distribution eqMean Outlier F Bartlett Levene L.trim BF PO.AD PO.SQ

20 N yes no 1.5 1.5 - 4 5 - 3

20 N yes yes - - - 2 3 1 4

20 N no no 1.5 1.5 - 4 5 - 3

20 N no yes - - - 2 3 1 4

20 c.N no no 1.5 1.5 - 4 5 - 3

20 c.N no yes - - - - 1 - -

20 t yes no - - - 1 2 - 3

20 t yes yes - - 2 4 4 1 4

20 t no no - - - 1 2 - 3

20 t no yes - - - 2 3 1 4

20 chisq yes no - - - - 1 - -

20 chisq yes yes - - - 1 2 - 3

20 chisq no no - - - - - - -

20 chisq no yes - - - 1 2 - 3

20 c.chisq no no - - - - 1 - 2

20 c.chisq no yes - - - 1 2 - 3

“-” : no power can be considered because the test has inflated type I error rates for all the

scenarios in the situation.

Table A.4: Number of scenarios with inflated type I error rate and median of ranks

for the seven tests from 48 simulated comparisons.

F Bartlett Levene L.trim BF PO.AD PO.SQ

nreject 39 39 40 12 4 35 5

m 1.5 1.5 2.5 2.0 2.0 1.0 3.0

nreject : number of scenarios where the test has inflated type I error rate;

m : the median of the ranks of the power. For ranks with ties, average ranks were used.
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B Quality control and data preprocessing in

Chapters 3 and 4

QC and data preprocessing of HM27k data sets GSE30760

and GSE20080

GSE37020 contains a total of 48 samples, 24 of which have normal histology and

the remaining are cervical intraepithelial neoplasia of grade 2 or higher (CIN2+). All

of them are human papillomavirus (HPV) positive. Normal and CIN2+ samples are

age-matched. GSE20080 also contains 48 samples. A total of 30 samples (11 HPV

positive samples and 19 HPV negative samples) have normal cytology. The other 18

samples (all HPV positive) are with CIN2+. Moreover, normal and CIN2+ samples

were age-matched.
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Figure B.1: The plot of quantiles across arrays.
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Figure B.2: The plot of the first principal component (PC1) versus the second principal

component (PC2) for DNA methylation data.

For both of the data sets, we excluded some CpG sites residing on SNPs or

with missing values. Quantile plots and principal component analysis did not show

obvious patterns (see Figures B.1 and B.2). After quality control steps, GSE37020

has 23,066 CpG sites, and GSE20080 has 23,255 CpG sites. There are 22,859 CpG
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sites in common between the two data sets. We used these 22,859 CpG sites in our

real data analysis.

QC and preprocessing of Illumina MethylationEPIC data

For EPIC data GSE107080, we downloaded the processed data set from GEO

database (Zhang et al., 2017). We first removed the CpG sites with at least one

missing value or with probe name using “ch” as the prefix. Second, CpG sites with

detection p-values larger than or equal to 10−12 are discarded. There are 378, 808

CpG sites in the clean data set. We drew the plot of quantiles across arrays for

the clean GSE107080 data set. The results did not show any obvious patterns (see

Figure B.3).
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Figure B.3: The plot of quantiles across arrays for GSE107080.
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Figure B.4: The plot of the first principal component (PC1) versus the second princi-

pal component (PC2) for EPIC data GSE107080. Left panel is for unadjusted data;

right panel is for adjusted data.

Next we did principal component analysis for the clean GSE107080 data set.

The results did not show any obvious patterns (see the left panel in Figure B.4).

Additionally, we regressed out the effects of age and cell type compositions and

obtained the residuals. We re-did principle component analysis on the adjusted data

and drew the plot of the first two principal components. No obvious patterns were

found in the adjusted data (see the right panel in Figure B.4).
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C Additional simulation results in Chapter 4

Table C.1: The empirical type I error rates (×100) and power (×100) for the six tests evaluated

at 5%, 1%, and 0.5% significance levels when methylation values were generated from normal

distributions without or with an outlier. The numbers of non-diseased and diseased samples are

(50, 50).

Scenarios Out Level(%) jointLRT KS AW iAW.Lev iAW.BF iAW.TM
eqM&eqV No 5 5.5 3.8 5.0 5.1 5.1 5.1

(Type I error) No 1 1.1 0.5 0.8 0.9 0.9 0.9
No 0.5 0.5 0.3 0.4 0.4 0.4 0.5

diffM&eqV No 5 75.8 68.7 77 76.3 76.6 76.6
No 1 53.1 40.8 53.5 52.9 53.2 53.6
No 0.5 42.9 40.8 44.7 43.5 44.9 43.2

eqM&diffV No 5 60.5 10.3 55.6 51.8 49.9 50.9
No 1 35.5 2.0 25.9 27.7 26.1 27.6
No 0.5 26.5 2.0 18.2 20.3 19.1 18.8

diffM&diffV No 5 49.5 30 48.8 47.2 46.3 47.0
No 1 27.1 10.0 25 23.6 23.2 23.9
No 0.5 19.0 10.0 18.4 17.3 17.6 16.8

eqM&eqV Yes 5 19.0 3.9 3.0 4.6 4.6 4.6
(Type I error) Yes 1 6.4 0.5 0.4 0.7 0.7 0.7

Yes 0.5 4.0 0.3 0.2 0.2 0.3 0.3
diffM&eqV Yes 5 64.4 72.1 84.4 81.8 82.1 81.8

Yes 1 33.9 44.3 63.9 59.7 59.5 60.0
Yes 0.5 24.3 34.9 56.7 52.2 51.5 50.0

eqM&diffV Yes 5 6.3 9.1 19.7 29.7 29.2 30.0
Yes 1 1.1 2.0 7.0 12.3 11.8 12.6
Yes 0.5 0.6 1.0 4.9 9.2 8.5 8.6

diffM&diffV Yes 5 13.9 32.6 45.8 46.1 47.2 47.3
Yes 1 3.4 11.0 23.7 23.2 24.1 24.5
Yes 0.5 1.7 7.3 18.9 18.3 19.0 18.2
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Table C.2: The empirical type I error rates (×100) and power (×100) for the six tests evaluated

at 5%, 1%, and 0.5% significance levels when methylation values were generated from Beta distri-

butions without or with an outlier. The numbers of non-diseased and diseased samples are (50,

50).

Scenarios Out Level(%) jointLRT KS AW iAW.Lev iAW.BF iAW.TM

eqM&eqV No 5 6.0 3.6 5.4 5.5 5.3 5.5

(Type I error) No 1 1.3 0.4 1.0 1.2 1.2 1.2

No 0.5 0.6 0.2 0.5 0.6 0.6 0.6

diffM&eqV No 5 73.7 70.2 77.3 75.3 76.8 76.3

No 1 50.8 41.6 54.1 50.6 51.7 50.8

No 0.5 42.1 41.6 46.0 40.9 43.0 42.2

eqM&diffV No 5 56.7 9.9 52.7 49.8 49.1 49.8

No 1 31.2 1.5 24.0 23.9 21.9 22.6

No 0.5 23.8 1.5 16.7 16.7 15.7 16.5

diffM&diffV No 5 50.5 35.2 56.8 52.2 53.7 53.8

No 1 24.6 13.1 31.2 25.7 26.8 26.8

No 0.5 17.2 13.1 23.4 17.8 20.0 19.8

eqM&eqV Yes 5 16.1 3.8 3.3 4.7 4.5 4.7

(Type I error) Yes 1 4.3 0.5 0.5 0.8 0.8 0.8

Yes 0.5 2.4 0.2 0.3 0.4 0.4 0.4

diffM&eqV Yes 5 73.8 74.2 85.5 84.1 84.9 84.2

Yes 1 48.7 46.1 65.1 61.3 62.4 61.4

Yes 0.5 37.6 46.1 55.6 51.5 50.9 51.1

eqM&diffV Yes 5 2.5 8.4 6.4 19.5 18.7 18.7

Yes 1 0.5 1.2 1.7 6.7 6.2 6.3

Yes 0.5 0.2 1.2 0.9 4.1 3.5 3.7

diffM&diffV Yes 5 2.8 28.4 13.4 10.8 10.9 10.7

Yes 1 0.7 9.7 4.8 2.4 2.5 2.4

Yes 0.5 0.4 9.7 3.2 1.4 1.4 1.4
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Table C.3: The empirical type I error rates (×100) and power (×100) for the six tests evaluated

at 5%, 1%, and 0.5% significance levels when methylation values were generated from mixtures of

two normal distributions without or with an outlier. The numbers of non-diseased and diseased

samples are (50, 50).

Scenarios Out Level(%) jointLRT KS AW iAW.Lev iAW.BF iAW.TM

eqM&eqV No 5 2.4 4 4.5 8.9 5.3 10.0

(Type I error) No 1 0.5 0.6 0.9 2.7 1.4 2.8

No 0.5 0.3 0.3 0.4 1.6 0.7 1.5

diffM&eqV No 5 9.8 29.8 44.2 26.5 49.9 27.7

No 1 2.2 10.5 20.4 7.9 23.2 10.0

No 0.5 1.1 7.0 14.8 5.0 15.0 6.3

eqM&diffV No 5 18.5 68.3 36.4 59 35.3 46

No 1 3.6 31.5 19.7 33.3 16.7 26.5

No 0.5 1.7 22.1 15.7 27.1 11.3 20.3

diffM&diffV No 5 21.2 71.9 41.1 63.6 41.6 51.2

No 1 4.8 34.4 23.6 37.7 21 30.7

No 0.5 2.3 25.6 18.3 30.3 14.9 24.6

eqM&eqV Yes 5 47.0 3.9 2.2 4.4 4.2 5.0

(Type I error) Yes 1 15.2 0.6 0.3 0.8 0.8 0.9

Yes 0.5 9.2 0.3 0.1 0.3 0.4 0.4

diffM&eqV Yes 5 3.2 31.4 11.3 10.2 39.5 15.3

Yes 1 0.5 11.2 3.2 2.6 19.8 3.9

Yes 0.5 0.3 7.4 1.8 1.7 13.0 2.5

eqM&diffV Yes 5 0.2 66.1 7.4 39.6 24.7 33.1

Yes 1 0.1 30.6 2.2 19.2 11.6 15.1

Yes 0.5 0.0 21.8 1.3 14.8 7.7 11.5

diffM&diffV Yes 5 0.3 69.8 10.6 44.9 32.8 39.4

Yes 1 0.0 34.6 3.8 24.3 16.4 20.2

Yes 0.5 0.0 25.2 2.4 19.2 11.0 15.3
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Table C.4: The empirical type I error rates (×100) and power (×100) for the six tests evaluated

at 5%, 1%, and 0.5% significance levels when methylation values were generated from Chi-square

distributions without or with an outlier. The numbers of non-diseased and diseased samples are

(50, 50).

Scenarios Out Level(%) jointLRT KS AW iAW.Lev iAW.BF iAW.TM

eqM&eqV No 5 13.8 3.7 4.8 6.1 5.1 5.1

(Type I error) No 1 5.9 0.5 0.7 1.3 1.0 0.9

No 0.5 4.3 0.2 0.4 0.8 0.5 0.5

diffM&eqV No 5 50.1 88.1 91.8 85.7 94.2 93.6

No 1 21.3 64.9 78.9 63.4 82.7 81.5

No 0.5 12.8 64.9 71.6 50.5 75.5 72.2

eqM&diffV No 5 12.0 6.9 15.9 16.3 18.5 18.3

No 1 3.4 0.9 5.2 5.3 6.2 6.3

No 0.5 2.0 0.9 3.0 3.0 3.9 3.6

diffM&diffV No 5 11.4 21.7 34.5 28.0 39.7 38.7

No 1 3.0 6.1 16.1 10.5 19 18.2

No 0.5 1.5 6.1 10.6 6.2 13.4 11.7

eqM&eqV Yes 5 23.1 3.6 3.3 6.4 5.0 5.0

(Type I error) Yes 1 12.2 0.5 0.4 1.4 0.8 0.8

Yes 0.5 9.3 0.2 0.2 0.6 0.4 0.3

diffM&eqV Yes 5 16.4 85.2 93.3 82.5 93.1 92.6

Yes 1 2.6 59.6 82.7 57.1 81.5 79.8

Yes 0.5 1.6 50.1 76.8 47.3 75.5 72.8

eqM&diffV Yes 5 19.8 6.3 19.4 24.7 24.0 23.8

Yes 1 5.6 0.7 4.4 7.9 7.9 7.5

Yes 0.5 3.6 0.4 2.5 4.6 4.9 5.0

diffM&diffV Yes 5 14.2 18.8 39.9 34.3 43.5 42.3

Yes 1 3.9 4.8 18.0 13.4 22.3 21.1

Yes 0.5 2.2 2.8 12.6 8.9 16.3 14.9
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Table C.5: The empirical type I error rates (×100) and power (×100) for the six tests evaluated

at 5%, 1%, and 0.5% significance levels when methylation values were generated from normal

distributions without or with an outlier. The numbers of non-diseased and diseased samples are

(20, 20).

Scenarios Out Level(%) jointLRT KS AW iAW.Lev iAW.BF iAW.TM

eqM&eqV No 5 5.9 3.3 5.3 5.4 5.7 5.8

(Type I error) No 1 1.4 0.4 0.9 0.9 1.2 1.0

No 0.5 0.8 0.4 0.4 0.4 0.5 0.4

diffM&eqV No 5 35.5 29.2 35.2 33.7 34.1 33.6

No 1 15.2 9.1 16.0 14.7 14.5 14.6

No 0.5 10.9 9.1 11.8 9.7 9.8 10.0

eqM&diffV No 5 25.6 4.8 19.8 19.9 17.9 18.5

No 1 8.4 0.7 4.6 6.2 4.6 5.8

No 0.5 5.4 0.7 2.6 3.4 2.6 3.2

diffM&diffV No 5 22.3 11.7 20.6 20.1 18.5 19.1

No 1 6.7 2.7 6.5 6.4 5.5 6.2

No 0.5 4.2 2.7 4.3 3.8 3.7 4.0

eqM&eqV Yes 5 26.2 3.1 2.6 3.5 3.8 3.7

(Type I error) Yes 1 10.6 0.4 0.3 0.3 0.5 0.5

Yes 0.5 7.2 0.4 0.1 0.1 0.2 0.2

diffM&eqV Yes 5 22.5 34.7 45.7 42.4 42.9 42.4

Yes 1 6.4 11.7 21.1 19.3 19.2 19.0

Yes 0.5 3.2 11.7 15.3 15.1 12.2 12.6

eqM&diffV Yes 5 0.6 4.2 8.2 9.3 9.9 10.4

Yes 1 0.1 0.5 2.1 2.9 2.9 3.1

Yes 0.5 0.1 0.5 1.3 2.1 1.8 1.9

diffM&diffV Yes 5 3.5 13.9 23.3 21.1 22.8 22.7

Yes 1 0.5 3.6 8.3 7.9 8.4 8.6

Yes 0.5 0.2 3.6 5.6 5.8 5.0 5.3
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Table C.6: The empirical type I error rates (×100) and power (×100) for the six tests evaluated

at 5%, 1%, and 0.5% significance levels when methylation values were generated from Beta distri-

butions without or with an outlier. The numbers of non-diseased and diseased samples are (20,

20).

Scenarios Out Level(%) jointLRT KS AW iAW.Lev iAW.BF iAW.TM

eqM&eqV No 5 6.2 3.3 5.4 5.5 5.5 5.7

(Type I error) No 1 1.5 0.4 0.9 0.8 1.0 1.0

No 0.5 0.8 0.4 0.3 0.3 0.5 0.4

diffM&eqV No 5 36 30.8 37.4 35.2 36.3 35.4

No 1 14.8 9.7 17.8 16.8 16.7 16.7

No 0.5 10.1 9.7 13.4 12.1 11.1 11.5

eqM&diffV No 5 22.9 4.7 18.0 18.9 16.8 17.6

No 1 7.2 0.4 4.9 6.3 4.6 5.3

No 0.5 4.7 0.4 2.6 3.9 2.6 2.9

diffM&diffV No 5 20.9 14.0 23.0 21.2 21.3 21.2

No 1 6.3 3.2 8.2 8.1 8.1 8.1

No 0.5 3.7 3.2 5.5 5.2 4.9 5.3

eqM&eqV Yes 5 23.5 3.3 2.6 3.6 4.1 4.0

(Type I error) Yes 1 6.4 0.4 0.2 0.3 0.5 0.5

Yes 0.5 3.4 0.4 0.1 0.1 0.2 0.2

diffM&eqV Yes 5 32.4 36.3 46.5 45.0 43.7 43.3

Yes 1 13.7 12.1 22.4 20.1 19.1 19.3

Yes 0.5 7.8 12.1 16.2 13.7 13.1 13.5

eqM&diffV Yes 5 0.3 4.2 3.8 4.7 5.4 5.2

Yes 1 0.0 0.3 1.1 1.3 1.6 1.7

Yes 0.5 0.0 0.3 0.5 0.8 1.1 1.1

diffM&diffV Yes 5 1.6 9.3 8.4 3.4 3.7 3.6

Yes 1 0.3 1.8 3.1 0.9 1.2 1.1

Yes 0.5 0.1 1.8 2.1 0.5 0.6 0.6
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Table C.7: The empirical type I error rates (×100) and power (×100) for the six tests evaluated

at 5%, 1%, and 0.5% significance levels when methylation values were generated from mixtures of

two normal distributions without or with an outlier. The numbers of non-diseased and diseased

samples are (20, 20).

Scenarios Out Level(%) jointLRT KS AW iAW.Lev iAW.BF iAW.TM

eqM&eqV No 5 3.4 3.3 4.5 8.1 5.1 6.7

(Type I error) No 1 0.8 0.5 0.8 2.4 1.3 1.6

No 0.5 0.5 0.5 0.4 1.3 0.6 0.9

diffM&eqV No 5 5.8 11 17.7 10.8 17.5 12.6

No 1 1.3 2 5.2 2.0 4.9 2.8

No 0.5 0.7 2 3.1 0.9 2.4 1.1

eqM&diffV No 5 11.2 24.4 26.2 28.5 23.1 27.3

No 1 2.1 5.5 13.8 11.2 10 12.2

No 0.5 0.9 5.5 10.2 6.3 6.9 7.5

diffM&diffV No 5 11.8 25.4 29.1 31.1 25.9 30.4

No 1 1.9 6.8 15.8 11.9 10.8 13.3

No 0.5 0.8 6.8 11.5 6.2 7.2 8.1

eqM&eqV Yes 5 60.5 3.4 1.9 2.9 2.2 2.3

(Type I error) Yes 1 23.6 0.5 0.2 0.5 0.3 0.3

Yes 0.5 14.2 0.5 0.1 0.2 0.1 0.1

diffM&eqV Yes 5 2.7 12.7 9.0 7.0 17.3 10.4

Yes 1 0.7 2.8 2.2 2.3 6.9 3.4

Yes 0.5 0.2 2.8 1.2 1.2 4.0 2.0

eqM&diffV Yes 5 0.3 22.8 8.4 13.6 16.0 16.4

Yes 1 0.0 5.6 2.3 5.6 7.3 7.4

Yes 0.5 0.0 5.6 1.6 3.5 5.0 5.1

diffM&diffV Yes 5 0.7 26 10.4 16.3 19.7 20.3

Yes 1 0.1 7.2 3.8 6.6 9.7 9.6

Yes 0.5 0.1 7.2 2.6 4.2 6.9 6.7
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Table C.8: The empirical type I error rates (×100) and power (×100) for the six tests evaluated

at 5%, 1%, and 0.5% significance levels when methylation values were generated from Chi-square

distributions without or with an outlier. The numbers of non-diseased and diseased samples are

(20, 20).

Scenarios Out Level(%) jointLRT KS AW iAW.Lev iAW.BF iAW.TM

eqM&eqV No 5 13.4 3.2 5.3 6.4 5.3 5.5

(Type I error) No 1 5.2 0.4 0.9 1.3 1.0 0.9

No 0.5 3.7 0.4 0.4 0.6 0.5 0.5

diffM&eqV No 5 23.9 45.3 52.4 41.0 55.7 52.8

No 1 7.4 17.0 26.6 17.5 30.4 28.3

No 0.5 4.6 17 19.4 10.6 22.6 19.2

eqM&diffV No 5 7.7 3.9 8.7 8.8 9.2 9.2

No 1 2.0 0.6 1.7 2.2 2.2 2.4

No 0.5 1.2 0.6 1.0 1.1 1.1 1.2

diffM&diffV No 5 8.5 9.8 15.5 13.0 18.5 16.9

No 1 2.0 1.6 4.3 3.5 6.2 5.7

No 0.5 1.1 1.6 2.5 1.5 3.7 2.7

eqM&eqV Yes 5 29.7 3.0 2.7 5.9 4.0 3.8

(Type I error) Yes 1 16.1 0.4 0.3 0.7 0.7 0.5

Yes 0.5 12.3 0.4 0.1 0.2 0.3 0.2

diffM&eqV Yes 5 4.0 35.2 55.9 36.1 52.9 52.3

Yes 1 0.8 11.2 30.9 17.8 29.3 29.8

Yes 0.5 0.2 11.2 23.8 12.1 20.6 22.1

eqM&diffV Yes 5 11.9 3.6 9.1 13.3 11 12.2

Yes 1 3.6 0.4 2.1 3.9 2.3 2.9

Yes 0.5 2.0 0.4 1.0 2.1 1.0 1.3

diffM&diffV Yes 5 9.2 6.8 18.2 17.0 20.3 20.7

Yes 1 2.5 0.9 5.4 5.5 6.7 7.2

Yes 0.5 1.3 0.9 3.4 3.3 3.7 4.0
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D Parameter estimation in Chapter 5

In the first component, the miRNAs are over-variated in diseased samples, i.e.

σ2
1c > σ2

1n. In the third component, the miRNAs are under-variated in diseased

samples, i.e. σ2
3c < σ2

3n. Our prior belief is that the majority of miRNAs are usually

non-differentially variated, so we assume π2 > π1 and π2 > π3. We re-parameterized

variances as

sk = log(σ2
k), k = 1c, 2, 3c, 1n, 3n. (D.1)

We re-parameterized variances again to make sure σ2
1c > σ2

1n and σ2
3c < σ2

3n:

s1n =s1c − exp(41n),

s3n =s3c + exp(43n).

(D.2)

To make sure the covariance matrix is positive definite, the correlation ρ should

satisfies the condition

− 1

m− 1
< ρ < 1.
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So we re-parameterized the correlation parameter

ρ =
exp(r)− 1/(m− 1)

1 + exp(r)
. (D.3)

Then the log density for miRNAs in the first cluster:

log [f1(x)|θ1] =−
mc

2
log(2π)−

mc

2
s1c −

mc

2
log(mc) +

mc − 1

2
log(mc − 1) +

mc

2
log [1 + exp(r1c)]−

r1c

2

−
[a (x1c, µ1c)]T [a (x1c, µ1c)]

2 exp(s1c)

mc − 1

mc
[1 + exp(r1c)]

+

(
[a (x1c, µ1c)]T 1

)2 [
(mc − 2) + exp(r1c)(mc − 1)− 1

exp(r1c)

]
2 exp(s1c)m2

c

−
mn

2
log(2π)−

mn

2
[s1c − exp(41n)]−

mn

2
log(mn) +

mn − 1

2
log(mn − 1) +

mn

2
log [1 + exp(r1n)]−

r1n

2

−
[a (x1n, µ1n)]T [a (x1n, µ1n)]

2 exp([s1c − exp(41n)])

mn − 1

mn
[1 + exp(r1n)]

+

(
[a (x1n, µ1n)]T 1

)2 [
(mn − 2) + exp(r1n)(mn − 1)− 1

exp(r1n)

]
2 exp([s1c − exp(41n)])m2

n

,

(D.4)

where

a(x, µ)Ta(x, µ) =xTx− 2µ1Tx+ nµ2,(
a(x, µ)T1

)2
=
(
1Tx

)2
+ n2µ2 − 2nµxT1.

The log density for miRNAs in the second cluster:

log [f2(x)|θ2] =−
mc

2
log(2π)−

mc

2
s2 −

mc

2
log(mc) +

mc − 1

2
log(mc − 1) +

mc

2
log [1 + exp(r2c)]−

r2c

2

−
[a (x1c, µ2c)]T [a (x1c, µ2c)]

2 exp(s2)

mc − 1

mc
[1 + exp(r2c)]

+

(
[a (x1c, µ2c)]T 1

)2 [
(mc − 2) + exp(r2c)(mc − 1)− 1

exp(r2c)

]
2 exp(s2)m2

c

−
mn

2
log(2π)−

mn

2
[s2]−

mn

2
log(mn) +

mn − 1

2
log(mn − 1) +

mn

2
log [1 + exp(r2n)]−

r2n

2

−
[a (x1n, µ2n)]T [a (x1n, µ2n)]

2 exp([s2])

mn − 1

mn
[1 + exp(r2n)]

+

(
[a (x1n, µ2n)]T 1

)2 [
(mn − 2) + exp(r2n)(mn − 1)− 1

exp(r2n)

]
2 exp([s2])m2

n

.

(D.5)

130



The log density for miRNAs in the third cluster:

log [f3(x)|θ3] =−
mc

2
log(2π)−

mc

2
s3c −

mc

2
log(mc) +

mc − 1

2
log(mc − 1) +

mc

2
log [1 + exp(r3c)]−

r3c

2

−
[a (x3c, µ3c)]T [a (x3c, µ3c)]

2 exp(s3c)

mc − 1

mc
[1 + exp(r3c)]

+

(
[a (x3c, µ3c)]T 1

)2 [
(mc − 2) + exp(r3c)(mc − 1)− 1

exp(r3c)

]
2 exp(s3c)m2

c

−
mn

2
log(2π)−

mn

2
[s3c + exp(43n)]−

mn

2
log(mn) +

mn − 1

2
log(mn − 1) +

mn

2
log [1 + exp(r3n)]−

r3n

2

−
[a (x3n, µ3n)]T [a (x3n, µ3n)]

2 exp([s3c + exp(43n)])

mn − 1

mn
[1 + exp(r3n)]

+

(
[a (x3n, µ3n)]T 1

)2 [
(mn − 2) + exp(r3n)(mn − 1)− 1

exp(r3n)

]
2 exp([s3c + exp(43n)])m2

n

.

(D.6)

EM algorithm for updating the parameter sets

After the re-parameterizations, the likelihood for the complete data can be written

as

g(y1, . . . ,yp|Ψ′) =

p∏
j=1

[π
z1j
1 f1(xj|θ′1)z1j ][π

z2j
2 f2(xj|θ′2)z2j ][π

1−z1j−z2j
3 f3(xj|θ′3)1−z1j−z2j ].

And the log complete likelihood function is

`0(Ψ′) =

p∑
j=1

zTj V (π) +

p∑
j=1

zTj Uj(θ
′),
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where

zj =(z1j, z2j, 1− z1j − z2j)
T ,

V (π) =(log(π1), log(π2), log(1− π1 − π2))T ,

Uj(θ
′) =(log(f1(xj|θ′1)), log(f2(xj|θ′2)), log(f3(xj|θ′3)))T ,

θ′1 =(s1c, r1c, µ1c,41n, r1n, µ1n)T ,

θ′2 =(s2, r2c, µ2c, r2n, µ2n)T ,

θ′3 =(s3c, r3c, µ3c,43n, r3n, µ3n)T ,

Ψ′ =(π1, π2, s1c, r1c, µ1c,41n, r1n, µ1n, s2, r2c, µ2c, r2n, µ2n, s3c, r3c, µ3c,43n, r3n, µ3n)T .

EM algorithm is initiated from Ψ′(0) and generates a sequence of estimates {Ψ′(t)}.

Each iteration consists of the following two step:

E-step: Evaluate Q
(
Ψ′,Ψ′(t)

)
= E [log(g(y|Ψ′)|x,Ψ′(t)].

M-step: Find Ψ′ = Ψ′(t+1) to maximize Q
(
Ψ′,Ψ′(t)

)
.

To stabilize the estimates of πk, k = 1, 2, 3, we assume that the vector of mixing

proportions (π1, π2, π3)T are Dirichlet distributed with parameters b1 = b2 = b3 = 3.

E-step:

We can obtain

Q(Ψ′,Ψ′(t)) =

p∑
j=1

[E (zj|x,Ψ′(t))]TV (π) +

p∑
j=1

[E (zj|x,Ψ′(t))]TU(θ′).

132



Denote

wj(Ψ
′(t)) = E (zj|x,Ψ′(t)) = E (zj|xj,Ψ′(t)).

The last equality is because of the independence of data points. The k-th element

of wj(Ψ
′(t)) is

wjk(Ψ
′(t)) =E (zjk|xj,Ψ′(t))

=Pr(zjk = 1|xj,Ψ′(t))

=
Pr(xj|zjk = 1,Ψ′(t))Pr(zjk = 1|Ψ′(t))

f(xj|Ψ′(t))

=
fk(xj|θ′(t)j )π

(t)
k

f(xj|Ψ′(t))
,

where

f(xj|Ψ′(t)) = f1(xj|θ′(t)1 )π
(t)
1 + f2(xj|θ′(t)2 )π

(t)
2 + f3(xj|θ′(t)3 )[1− π(t)

1 − π
(t)
2 ].

These “weights” (wjk(Ψ
′(t)), j = 1, . . . , p, k = 1, 2) are therefore the probabilities

of category membership for the j-th miRNA, conditional on xj and given that the

parameter is Ψ′(t).
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Q(Ψ′,Ψ′(t)) =

p∑
j=1

{
E (zj1|xj,Ψ′(t)) log(π1) + E (zj2|xj,Ψ′(t)) log(π2)

+E (1− zj1 − zj2|xj,Ψ′(t)) log(π3)

+ E (zj1|xj,Ψ′(t)) log(f1(xj)) + E (zj2|xj,Ψ′(t)) log(f2(xj))

+E (1− zj1 − zj2|xj,Ψ′(t)) log(f3(xj))
}

=

p∑
j=1

{
wj1

(
Ψ′(t)

)
log(π1) + wj2

(
Ψ′(t)

)
log(π2)

+
[
1− wj1

(
Ψ′(t)

)
− wj2

(
Ψ′(t)

)]
log(1− π1 − π2)

+ wj1

(
Ψ′(t)

)
log(f1(xj)) + wj2

(
Ψ′(t)

)
log(f2(xj))

+
[
1− wj1

(
Ψ′(t)

)
− wj2

(
Ψ′(t)

)]
log(f3(xj))

}
.

(D.7)

M-step:

We need to maximize the following function

Q(Ψ′|Ψ′(t)) = log[
Γ(b1 + b2 + b3)

Γ(b1)Γ(b2)Γ(b3)
] + [w

(t)
1 + (b1 − 1)] log(π1)

+ [w
(t)
2 + (b2 − 1)] log(π2) + [w

(t)
3 + (b3 − 1)] log(1− π1 − π2)

+
3∑

k=1

p∑
j=1

w
(t)
jk log[fk(xj|θ′k)],

where

w
(t)
k =

p∑
j=1

w
(t)
jk ,

w
(t)
jk =

πkfk(xj|θ′(t)k )∑3
k=1 πkfk(xj|θ

′(t)
k )

,
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and the superscript (t) indicates the number of iterations. Let the first derivative be

zero, we can get

π
(t+1)
k =

w
(t)
k + (bk − 1)

p+ b1 + b2 + b3 − 3
. (D.8)

Denote

Qk(Ψ
′|Ψ′(t)) =

p∑
j=1

w
(t)
jk log[fk(xj|θ′k)].

The first derivatives are:

∂Qk

∂θ′k
=

p∑
j=1

w
(t)
jk

∂ log[fk(xj|θ′k)]
∂θ′k

, k = 1, 2, 3.

We solve the above equations ∂Qk

∂θ′k
= 0 to obtain the update Ψ′(t+1).
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E Additional simulation results in Chapter 5

Table E.1: The p-values of two-sided Wilcoxon signed-rank tests to evaluate whether

the differences of median Jaccard indices obtained by the gs method and by each of

other methods are significant.

Method simI simII simIII simIV

L2N.pp 3.96E-18 3.96E-18 3.96E-18 3.96E-18

L2N.q 3.96E-18 3.96E-18 3.96E-18 3.96E-18

L2N.f 3.96E-18 3.96E-18 3.96E-18 3.96E-18

N3.pp 3.96E-18 3.96E-18 3.96E-18 3.96E-18

N3.q 3.96E-18 3.96E-18 3.96E-18 3.96E-18

N3.f 3.96E-18 3.96E-18 3.96E-18 3.96E-18
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Table E.2: The p-values of two-sided Wilcoxon signed-rank tests to evaluate whether the differ-

ences of median FPR obtained by the gs method and by each of other methods are significant.

Method simI simII simIII simIV

L2N.pp 8.72E-18 3.96E-18 2.02E-16 3.96E-18

L2N.q 5.72E-18 3.95E-18 2.27E-06 3.96E-18

L2N.f 2.24E-17 3.96E-18 7.16E-02 3.96E-18

N3.pp 3.94E-18 3.96E-18 9.74E-18 3.96E-18

N3.q 3.94E-18 3.95E-18 2.66E-16 3.95E-18

N3.f 3.92E-18 3.95E-18 1.14E-11 3.95E-18

Table E.3: The p-values of two-sided Wilcoxon signed-rank tests to evaluate whether the differ-

ences of median FNR obtained by the gs method and by each of other methods are significant.

Method simI simII simIII simIV

L2N.pp 3.94E-18 3.95E-18 3.95E-18 3.95E-18

L2N.q 3.95E-18 3.95E-18 3.95E-18 3.95E-18

L2N.f 3.95E-18 3.95E-18 3.95E-18 3.95E-18

N3.pp 3.93E-18 3.95E-18 3.95E-18 3.95E-18

N3.q 3.94E-18 3.95E-18 3.95E-18 3.95E-18

N3.f 3.95E-18 3.95E-18 3.95E-18 3.95E-18

Table E.4: The p-values of two-sided Wilcoxon signed-rank tests to evaluate whether the differ-

ences of median proportion of validation obtained by the gs method and by each of other methods

are significant based on 100 bootstrap samples of real data.

L2N.pp L2N.q L2N.f N3.pp N3.q N3.f

3.96E-18 4.33E-06 8.57E-08 3.96E-18 5.02E-08 2.98E-08
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