
COGNITIVE PROGRAMS MEMORY

A FRAMEWORK FOR INTEGRATING EXECUTIVE

CONTROL IN STAR

OMAR ABID

A THESIS SUBMITTED TO THE FACULTY OF

GRADUATE STUDIES IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

GRADUATE PROGRAM IN ELECTRICAL

ENGINEERING AND COMPUTER SCIENCE

YORK UNIVERSITY

TORONTO, ONTARIO

DECEMBER 2018

©OMAR ABID, 2018

Abstract

Cognitive Programs are algorithms which guide the execution of visual tasks in the Se-

lective Tuning (ST) model and its extension Selective Tuning Attentive Reference (STAR).

However, no framework exists that allows for their rapid development, parameterization

and execution.

In this thesis we propose that a basis set of elemental operations called Neural Primi-

tives (NP) in conjunction with other control elements constitute a Cognitive Program. The

Neural Primitives are biologically inspired computations that dictate the transformation

functions from one representation to another and form the foundation of this thesis. There-

fore a key theme here is using low level neural computations, the NPs to perform higher

level cognitive functions that are required for task demands.

This thesis also introduces a database like structure called the Cognitive Programs

Memory (CPM) that holds a set of predefined CPs which are accessible by the visual task

executive (vTE) - a component of STAR with a major role of controlling task execution.

The CPs have been tested on the execution of three psychophysical experiments demon-

strating how a sequence of operations can be used to complete visual tasks. The CPs have

also been tested on two experiments demonstrating that the application of the NP opera-

tions result in qualitatively similar neural tuning curves to neurophysiological data.

ii

Acknowledgments

I would like to thank my supervisor, John K. Tsotsos for his kindness, patience, insights and

guidance from the very first day I joined the lab as a research assistant in Summer 2015 as well

as his continual support and helpful suggestions throughout the development of this work.

I would also like to thank Thilo Womelsdorf for useful discussions and helpful suggestions.

In addition, I would like to thank my committee member Mazyar Fallah for taking the time to

review my work.

A special thanks goes to my colleagues and friends Raghavender Sahdev, Vassil Halatchev,

Toni Kunic, Calden Wloka, Rakesh Sengupta and Oscar Gonzalez for providing words of en-

couragement, many laughs and helpful discussions for the development of this thesis.

Last, but certainly not least, I would like to thank my parents: Abid Hussain and Shahida

Abid, and my siblings: Sumair , Zobia and Ayesha for their patience and support.

iii

Table of Contents

Abstract . ii

Acknowledgments . iii

Table of Contents . iv

List of Tables . vii

List of Figures . x

List of Program Listings . xi

List of Abbreviations . xiii

1 Introduction 1

1.1 Motivation . 1

1.2 Significance and Contributions . 3

1.3 Thesis Outline . 4

2 Literature Review 6

2.1 Visual Routines . 6

2.2 ST Model . 9

2.2.1 Cognitive Programs . 10

2.2.2 STAR . 12

2.3 Neurophysiological Literature . 16

2.3.1 Anatomy . 16

2.3.2 Neural Correlates of Attention . 19

2.3.3 Neural Computational Elements . 21

2.4 Summary . 27

3 Neural Primitive Specification 28

3.1 Overview . 28

3.2 Representation . 31

3.3 Operation . 34

3.3.1 Gating . 36

3.3.2 Bias Control . 39

3.3.3 Bias Feedback . 42

3.3.4 Integration . 45

3.4 Summary . 47

iv

4 Cognitive Programs Memory Specification 51

4.1 Overview . 51

4.2 Framework . 52

4.2.1 Method Elements . 55

4.2.2 Methods Database . 57

4.3 Cognitive Programs Memory Methods . 59

4.3.1 Overview . 59

4.3.2 VH.Localization . 59

4.3.3 VH.Prime with AS . 63

4.3.4 VH.Prime without AS . 65

4.3.5 VH.Detection . 72

4.3.6 VH.Recognition, VH.Categorization and VH.Identification 77

4.3.7 VH.Identification (Within Category) . 81

4.3.8 FC.setFHMBias . 82

4.4 Summary . 85

5 Framework Implementation 88

5.1 Overview . 88

5.2 Neural Primitive . 89

5.2.1 Overview . 89

5.2.2 Graph Creation . 92

5.2.3 Updating Nodes . 98

5.2.4 Summary . 99

5.3 Cognitive Programs Memory . 99

5.3.1 Overview . 99

5.3.2 CP Assembly and Storage . 100

5.3.3 Generate TN3Runner Task Specification 103

5.3.4 Task Execution . 106

5.3.5 Summary . 106

6 Evaluation 107

6.1 Visual Attention Experiments . 107

6.1.1 Egly & Driver ‘94 . 107

6.1.2 Folk et al. ‘92 . 112

6.1.3 Raymond et al. ‘92 . 117

v

6.2 Neural Tuning Curve Experiments . 122

6.2.1 Spatial Attention . 122

6.2.2 Feature Attention . 124

7 Discussion and Conclusion 127

Bibliography 135

Appendix A Implementation 136

A.1 TN3Network . 136

A.2 CPM-ME Base Methods . 138

A.3 Recognition Methods . 139

A.4 Auxiliary Functions . 141

A.5 Function Generator . 141

Appendix B Supplementary Results and Figures 143

B.1 Copying to vWM . 143

B.2 Building an AS . 143

B.3 Transforming an AS . 144

B.4 Priming the VH . 145

B.5 Memory Consolidation Signal . 146

B.6 Egly & Driver 1994 . 146

Appendix C STAR Parameters 152

C.1 Visual Hierarchy Parameters . 152

C.2 Experiment Parameters . 152

C.3 Complete STAR Architecture . 154

vi

List of Tables

2.1 Three levels of visual routines in order of complexity. 7

2.2 Roelfsema 2005 elemental operations. 8

2.3 Summary of elementary computations performed by different circuit motifs. . . . 27

3.1 Summary of Neural Primitive Node representation. 48

3.2 Summary of Neural Primitive computations . 49

3.3 A summary of the mathematical formulation of Neural Primitives. 49

3.4 Neural Primitive biological connectivity pattern. 50

4.1 Cognitive Programs Memory methods. 52

4.2 Description of “Access to representations” Base Methods 56

4.3 Description of “Parameter specification” Base Methods. 57

4.4 Description of “Executing a Process” Base Methods. 58

4.5 Description of “Queries” Base Methods. 58

4.6 Vh.Detection. Three kinds of detection processes. 72

4.7 Summary of Method Elements . 86

6.1 Cue detection, priming and target detection times for Egly and Driver 1994. . . . 111

6.2 Cue detection and priming times for Folk et. al 1992. 115

6.3 Folk et al. 1992 Target recognition times. 116

6.4 Raymond et al 1992 target detection and identification times. 120

6.5 Raymond et. al 1992. Probe detection times and its similarity index. 121

A.2 Prebuilt TN3Networks in TN3NetworkStorage 138

A.3 “Access to representation” Base Method implementation. 138

A.4 “Parameter Specification” Base Method implementation. 138

A.5 “Executing a Process” Base Method implementation. 139

A.6 “Queries” Base Method implementation. 139

A.8 Complete list of Cognitive Program methods. 140

A.10 Auxillary TN3Runner functions . 141

vii

List of Figures

1.1 Constituents of the Cognitive Programs Memory. 3

2.1 Example of several Cognitive Programs and their interaction. 11

2.2 Components of STAR. 12

2.3 ST microcircuit . 15

2.4 Anatomy of a Neuron . 17

2.5 Dorsal and ventral visual pathways. 18

2.6 Generic feedforward inhibition (FFI) circuit motif. 23

2.7 Thalamo-cortical feedforward inhibition circuit motif 24

2.8 Generic feedback inhibition (FBI) circuit motif. 25

2.9 FBI PING circuit motif . 25

2.10 Feedback inhibition circuit in Layer V of the cortical column. 26

3.1 Neural Primitive transformations of representations. 29

3.2 Neural Primitive operations. 30

3.3 Default, memory and context node representation symbols. 33

3.4 Default and Memory node neural activations. 34

3.5 Neural Correlates of Connectivity for Neural Primitive operations. 37

3.6 Gating Neural Primitive. 38

3.7 Neural activation of a gating operation. 39

3.8 Bias Control Neural Primitive. 40

3.9 Bias Control operation neural circuit motifs. 41

3.10 Bias Control bias term manipulations effect on neural response curve. 42

3.11 Bias Feedback Neural Primitive. 43

3.12 Bias Feedback operation neural circuit motifs. 44

3.13 Bias Feedback bias term propagation. 45

3.14 Integration Neural Primitive. 46

3.15 Integration operation neural circuit motifs. 47

3.16 Integration operation neural response profiles. 48

4.1 Cognitive Programs Memory components in relation to STAR architecture. . . . 54

4.2 Constituents of the Cognitive Programs Memory. 55

4.3 Node representation convention. 60

4.4 VH.Localization required STAR modules. 61

4.5 VH.Localization algorithm. 62

4.6 VH.Localization. Copying an AS from VH to vWM. 63

viii

4.7 VH.Prime with AS modules and representation. 64

4.8 VH.Prime with AS. An example AS. 65

4.9 VH.Prime with AS Algorithm. 66

4.10 VH.Prime without AS modules and representation in STAR. 67

4.11 VH.Prime feature parameterization. 68

4.12 VH.Prime feature parameterization example plots. 69

4.13 VH.Prime without AS Algorithm. 70

4.14 Task based spatial location priming. 71

4.15 Task based feature priming. 71

4.16 Task based spatial and feature priming. 72

4.17 VH.Detection required STAR modules. 73

4.18 VH.Detection Algorithm. 75

4.19 VH.Detection. Match decision node neural activation for a detection process. . . 77

4.20 VH.Recognition, VH.Categorization and VH.Identification. Modules and repre-

sentations in STAR. 79

4.21 Memory Consolidation Signal Algorithm. 80

4.22 Match decision node neural activation for a recognition process. 81

4.23 FC.setFHMBias. Modules and representations in STAR. 84

4.24 FC.setFHMBias Algorithm . 85

4.25 FC.setFHMBias example neural response curve. 86

5.1 CPM framework implementation structure. 90

5.2 Neural Primitive Specification implementation structure 91

5.3 Context Node sample function computed. 95

5.4 TN3Network implementation. Sample network creation example. 96

5.5 Neural Primitive internal node initialization implementation. 97

5.6 Detailed view of the CPM framework classes implemented. 101

6.1 Egly & Driver 1994 experimental paradigm. 108

6.2 Egly & Driver 1994 reaction times results. 111

6.3 Folk et al. 1992 experimental paradigm. 113

6.4 Folk et. al. 1992. Qualitative comparison of reaction times. 116

6.5 Raymond et al. 1992 experiment paradigm. 118

6.6 Raymond et. al 1992 system comparison to experimental findings. 121

6.7 Spatial attention experiment paradigm. 123

6.8 Spatial attention neural response curve. 124

ix

6.9 Feature attention experiment paradigm. 125

6.10 Feature based attention neural tuning curve. 126

B.1 Copying the contents of the VH to the vWM. 143

B.2 Building an Attentional Sample. 144

B.3 Transforming the AS to represent spatial information only. 145

B.4 Neural activation curve during priming the VH. 145

B.5 Raymond et. al 1992. Memory Consolidation Signal. 146

B.6 Egly & Driver 1994. Feedforward input processed by VH. 147

B.7 Egly & Driver 1994. AS captured in the vWM. 148

B.8 Egly & Driver 1994. Stimulus processing by the VH when no priming in place. . 149

B.9 Egly & Driver 1994. Stimulus processing by the VH when priming in place. . . . 149

B.10 Egly & Driver 1994. vWM neural activation for target. 150

B.11 Egly & Driver 1994. Match Detection Process. 151

C.1 Complete STAR Architecture . 154

x

List of Program Listings

5.1 Context node update algorithm. 94

5.2 Neural Primitive Implementation. Updating Nodes algorithm. 98

5.3 CPM Implementation. Priming with an AS CP algorithm. 103

5.4 CPM Implementation. Implementation of init() function. 104

5.5 Egly & Driver 1994 CP execution algorithm. 106

5.6 run() method algorithm for task execution. 106

6.1 Egly & Driver 1994 CP execution algorithm. 109

6.2 Egly & Driver 1994 experiment terminal output. 112

6.3 Folk et. al 1992 CP execution algorithm. 114

6.4 Folk et. al 1992 terminal output. 117

6.5 Raymond et. al 1992 CP execution algorithm. 119

6.6 Spatial attention vTE code listing. 123

6.7 Feature attention vTE code listing. 126

A.1 Node Instantiation with a specified width (w) and height (h). 136

A.2 Network creation for priming with an AS algorithm. 136

A.3 Adding subnetworks to a network. 137

A.4 Example CPM method calls. 140

xi

List of Abbreviations

ACC Anterior Cingulate Cortex

AS Attentional Sample

BG Basal Ganglia

CP Cognitive Program

CPM Cognitive Programs Memory

CPM-MD Cognitive Programs Memory Methods Database

CPM-ME Cognitive Programs Memory Method Elements

FBI Feedback Inhibition

FC Fixation Controller

FEF Frontal Eye Field

FFI Feedforward Inhibition

FOA Focus of Attention

ISI interstimulus interval

IT Inferotemporal Cortex

LGN Lateral Geniculate Nucleus

LIF Leaky Integrate and Fire

LIP Lateral Intraparietal Cortex

mLTM methods Long Term Memory

NP Neural Primitive

PAM Peripheral Attentional Map

PC Pyramidal Cell

PFC Prefrontal Cortex

PING Pyramidal Interneuron Gamma

PV Parvalbumin cells

xii

px pixels

STAR Selective Tuning Attentive Reference

tWM Task Working Memory

vAE Visual Attention Executive

VH Visual Hierarchy

VR Visual Routine

vTE Visual Task Executive

vWM Visual Working Memory

xiii

1 Introduction

1.1 Motivation

A person looks both ways before crossing the street and a complex activity of neural activations

in the individual’s brain occur during this process. How may we link such seemingly distinct

concepts at two levels of abstraction together? More importantly, is it even possible to connect

high level behavior to neural activations or is there just too much variability and complexity to

solve such a problem? Clearly, this is an unsolved problem, however a good starting point to tie

these two concepts together involves attention. Attention is defined as “.. a set of mechanisms

that help tune and control the search processes inherent in perception and cognition” [82].

Indeed theories have been proposed that integrate attention at the level of behavior, networks,

circuits and neurons [12].

Attention at the level of behavior is typically studied with psychophysical experiments in

visual spatial orienting [56] and visual search [80] tasks. At the level of neural circuits and

networks, a set of circuit motifs have been proposed to implement a diverse set of computations

that may be important for solving visual tasks [92, 93]. In this thesis, we will attempt to bridge

the gap between these levels of abstractions by implementing a set of algorithms for attention

within the Selective Tuning and Attentive Reference (STAR) model [86].

There are two goals of this thesis. The first is to develop a database-like structure called the

Cognitive Programs Memory (CPM) responsible for storing a set of algorithms that guide the

system for executing a particular visual task. The algorithms used for accomplishing control are

referred to as Cognitive Programs (CPs) [84] and stem from the concept of applying a sequence

of operations until the goals of the task have been met, originally envisioned as Visual Routines

by Ullman [88].

The second goal of this thesis is to propose a set of biologically inspired atomic operations

called Neural Primitives (NPs). These act as the fundamental “building blocks”, that when

combined with some of the other elements in the CPM provide a set of useful computational

functions that can be applied in a stepwise algorithmic manner.

CPs require a range of computations that are involved in pursuit of completing visual tasks.

Some of these include providing top down control signals, selecting region of interest, dealing with

covert and overt fixations, information routing, access to memory, matching to task and priming

and coordination of bottom up and top down information [84]. The specific CPs executed are

dependent on the processing strategy required by the visual tasks [85]. Furthermore, there may

be other CP functions that are as of yet undiscovered or undefined which may complement

1

some of the ones listed here. Although the set of computations CPs must implement has

been thoroughly discussed and an implementation of CPs for playing video games has been

demonstrated [30], there is no standardized method of reusing or adapting these algorithms for

a variety of different visual tasks. Because of this, a user wishing to test a visual task in the

STAR framework must know the precise task demands and implement the specific functionality

required on a task by task basis making future research and development into the Selective

Tuning model difficult and time consuming.

As a solution to these problems, we implement a set of CPs that are tailored to a specific

visual processing strategy [85]. We propose that CPs are composed of two functional com-

ponents: a) Queries and b) Actions. Queries are encoded as conditional statements and the

results are used to make decisions while actions include access to representations (both read

and write) via NPs, control signal and task specification and execution of an internal process.

The underlying implementation of access to representations (write only) and a subset of control

signals is done by a set of four computational operations referred to as NPs: a) Bias Control,

b) Bias Feedback, c) Integration and d) Gating. Yes-no decision points are implemented either

algorithmically or via the use of neural activation thresholds. Activation thresholds work on

the basis of “triggering” a decision given a rule based criterion. Such rules are encoded as “if

average activation of representation X is greater than 10.0 then return true, otherwise return

false”. The determination of control signals is also rule based as in the decision points and may

also be influenced by the current state of a representation.

Figure 1.1 shows two components of the CPM - Method Elements (CPM-ME) and Methods

Database (CPM-MD). Neural Primitive (NP) Operations can be integrated with Base Methods

to assemble high level Cognitive Programs (Stored Methods). Here, a summary of each of these

components is provided while a detailed description is left for subsequent sections.

1. Method Elements: Contains the necessary elements that are used to form other methods.

(a) Base Methods: Composed of action and query methods.

(b) NP Operations: Computational counterparts of biologically inspired neural corre-

lates. Four operations, each with a distinct computation are proposed.

2. Methods Database: Stores assembled CP methods that are composed of the Method El-

ements. Here, we implement several methods that will be useful for demonstrating their

functionality on different visual tasks. The Detection, Recognition, Categorization and

Identification methods have been grouped together since they share similar Method Ele-

ments.

2

Figure 1.1: The Cognitive Programs Memory (CPM) is composed of the Method Elements
(CPM-ME) and the Methods Database (CPM-MD). The CPM-ME uses low level NP operations
in conjunction to a set of Base Methods to compose useful methods for task execution. Such
methods are then stored into the CPM-MD. The arrow between Actions and Queries indicate
that information captured from executing a process, parameter specifications and access to
representations can be used for conditional statements.

The CPs which exist in the CPM operate on a fixed set of modules referred to as the visual

attention executive (vAE), visual task executive (vTE), task working memory (tWM), visual

working memory (vWM), fixation controller (FC) and visual hierarchy (VH). It is important to

mention that of these modules, the vTE has recently been further developed [32] and is central

to task execution, without which the CPM would not function.

To assess the CPM, we test on three psychophysical experiments employing distinct pro-

cessing strategies to demonstrate a variety of different CP functionalities. In addition, we also

test the CPs on a spatial and feature attention paradigm and show that the system is able to

replicate qualitatively similar neural tuning curves to neurophysiological data.

1.2 Significance and Contributions

This thesis introduces the concept of Neural Primitives, the systematic construction of Cognitive

Programs in part by these NPs and the introduction of the Cognitive Programs Memory.

The NPs build the foundations of the CPs as they dictate the mathematical function that is

used to transform one representation into another. They are named accordingly since they are

inspired by four distinct biologically plausible computations. Thus, a major contribution here

3

is the formalization and justification of these operations.

The CPs have been defined previously, however, their implementation was not claimed to

be biologically plausible. Thus, a second contribution is a neural realization of a subset of the

total functionality of CPs.

Finally, the CPM provides a “storehouse” of the available CPs. In previous work, the visual

task executive (vTE) was formalized with one of its functions being that it executes a sequence

of CPs after retrieving them from the CPM [32]. However, at that time, the CPM had not been

fully defined, thus a final contribution is the introduction of the CPM that allows for the storage

and retrieval of CPs.

1.3 Thesis Outline

The second chapter of this thesis provides an overview of a breadth of literature including

visual routines, the ST model, and the neurophysiological literature - including the Neural

Correlates of attention and Neural Computational Elements. This provides a good starting

point for integrating our Neural Primitives into the ST framework.

The third chapter is part one of two of the methods section. Here, a complete theoretical

and mathematical definition of Neural Primitives is provided. In addition we explain the neural

correlates and theoretical computations implemented by four Neural Primitives; Gating, Bias

Control, Bias Feedback and Integration.

The fourth chapter is part two of two of the methods section wherein the Cognitive Pro-

grams Memory and Cognitive Programs are defined and formalized. Eight Cognitive Programs

are also introduced including their algorithmic structure and biological plausibility.

The fifth chapter details the implementation of the Neural Primitive and Cognitive Pro-

grams Memory framework within the TarzaNN system.

The sixth chapter shows the evaluation of Cognitive Programs on three psychophysical

visual attention experiments and two experiments showing the system is able to replicate both

spatial and feature attention neural tuning curves.

The seventh chapter gives a summary of the thesis along with suggestions for future work.

In addition, three appendices are included providing details of the implementation of the

framework. Appendix A provides a full list of functions and classes that were implemented for

running the visual tasks described in Section 6. Appendix B provides additional experimental

results of some of the internal processes executed by the Cognitive Programs. Finally, Appendix

C lists the relevant experimental parameters used for executing all of our visual tasks as well

as provide a complete STAR architecture with all the elements required for implementing and

4

executing each Cognitive Program.

5

2 Literature Review

2.1 Visual Routines

How do humans carry out complex visual tasks such as making a sandwich [95]? One method

may be to break it down to a sequence of simple operations that should be executed serially. For

example, you may decide to first grab all the ingredients required and begin by applying peanut

butter, followed by jam and finally putting the sandwich together. The underlying “sequence of

operations” are a key theme in this thesis originally stemming from Ullman’s Visual Routines

(VR).

Ullman proposed a theory that visual tasks can be solved by reducing the required processes

to a set of elemental operations that may be parameterized for the given task at hand. He

presents a strategy for extracting shape and spatial relations that are essential to completing

a visual task by applying a sequence of transformations on representations [88]. Furthermore,

inspired by the work of Marr’s theory of vision [38], he suggested that vision can be broken down

into a two stage process. First, a bottom up base representation is created from the incoming

visual data, then various operations are applied sequentially to the base representation to solve

a particular visual task. The basic components of the theory are highlighted below.

1. Base Representation: is assumed to be derived automatically and assumed to describe

local image properties (see Marr’s 2.5D Sketch [38]) such as the color, orientation, motion

and depth information.

2. Incremental Representation: is the result of applying visual routines to the base represen-

tation.

3. Atomic Operations: are the unit operations that can be applied to a location within the

base or intermediate representation. These are the single irreducible units in a larger

system [76]. The operations are listed below:

(a) Shift of Processing Focus: Shift the region the atomic operation is to be applied.

(b) Indexing : Defining next target for focusing attention.

(c) Marking : Storing locations for future use.

(d) Boundary Tracing : Tracing a region.

4. Assembly : VRs are assembled by sequencing elemental operations.

5. Execution: VRs require visual attention for execution, the details of the implementation

are not discussed.

6

6. Storage: VRs may be stored in a “skeleton” framework and can be applied at different

spatial locations. In addition, new routines may be assembled and stored given task

demands.

Notice here that the atomic operations work on the principle of extracting subsets of the incoming

data for future processing. For example, the indexing and shift of processing focus operations are

responsible for defining the next location of interest and moving to that location, respectively.

The marking operation serves as a form of memory if locations are required for use at a later

stage of processing. Boundary tracing performs some tracing computation within the selected

region. This idea of applying operations within a region allows us to limit the processing to a

small attended region.

Cavanagh 2004 [16] divided routines into three levels: visual routines, attention routines and

cognitive routines after taking inspiration from Ullman’s VRs. He described Visual Routines as

automated processes that are inaccessible to awareness. Attention routines on the other hand

are consciously initiated by setting a goal or the selection of a target (find the red item) with

the intermediate steps being visual routines. Finally, cognitive routines contain multiple steps

involving action, memory, vision and other senses that may contain attention and visual routines

as part of their intermediate steps. Here, cognitive routines may be used for high level tasks

such as driving home or baking a cake. Table 2.1 summarizes this below.

Visual Routines Attention
Routines

Cognitive
Routines

Description Automatic Voluntary
initiation.

Reportable output.
No intermediate,
accessible states.

Multiple steps with
intermediate steps
available for access.

Examples Grouping, light
constancy, shape

recognition,
pictorial cues

Set selection
criteria, spatial &
temporal relations,

tracking

Counting, cooking

Table 2.1: Three levels of visual routines arranged in a hierarchy of complexity from left to right.
Whereas visual routines are used to extract low level visual features, attention and cognitive
routines make use of visual routines to solve complex visual tasks. Reproduced from [16].

Recent neurophysiological work supports the concept of Ullman’s VRs with literature sug-

gesting that serial cognitive tasks may be implemented by the interaction of brain networks

spanning several cortical areas [60]. In one experiment, monkeys were asked to do curve tracing

and visual search in different orders and recordings were made in area V1 of the visual cortex.

The authors monitored the precise time course of these operations and found that the ordering

of neural activations is dependent on the ordering of the tracing and visual search operations.

7

This temporal ordering of cognitive operations provides evidence of encoding complex visual

tasks in the primary visual cortex via a set of elemental operations [47]. Similar findings have

been found by other authors [61].

Several other works use VRs to model complex visual tasks. For example Yi and Ballard

[95] model human behavior on visuomotor tasks of making a sandwich or pouring coffee using a

dynamic Bayes network and show how the steps implemented in the network are akin to visual

routines.

Roelfsema [60] proposed two categories of operations: binding and maintenance operators

based on neurophysiological findings and Ullman’s VRs. Binding operators are responsible

for establishing groupings that are not available in the base representation while maintenance

operations store intermediate results that may be useful for use at a later point. The proposed

elemental operations are listed in Table 2.2. To demonstrate these operations, the author showed

how they could be used to find your way on a map. The first process is defining your current

position on the map and the destination position you wish to reach. Then, through a process of

applying visual search, tracing, movement (motor actions), cuing and suppression operations,

one can map out the route required to reach their final destination (see Box 2 in [60]).

Binding Maintenance Other Operations
searching, cuing, tracing,
region filling, associating

Working memory,
suppression

Matching, Motor actions

Table 2.2: A summary of the elemental operations proposed by Roelfsema [60]

Another model that uses the idea of sequencing operations proposes that three classes of

neurons: a) evidence accumulation neurons, b) action neurons and c) memory maintenance

neurons may interact and be combined sequentially to form mental programs or visual routines

[97]. Evidence accumulation neurons, also called “ramping neurons”, integrate evidence over

time to improve signal-to-noise ratio, and typically result in the firing of a production rule when

the neurons activation reaches some threshold. Action neurons participate in a winner take all

(WTA) competition for a selection of one action among others. These neurons are typically

used to encode a production system that allows for the implementation of IF-THEN like rules.

In [96], the authors suggest that a “chain” firing of these action neurons may be one mechanism

the brain uses to sequence serial operations as well as dealing with noise propagation issues that

would be inherent in analog systems like the neuron. Memory maintenance neurons maintain

states of information encoded at previous times steps that may be useful for future operations.

Such a model has been used to show how arithmetic and more complex visual tasks can be

encoded using these three classes of neurons thus highlighting the biological plausibility of the

8

framework [96].

In this section we have highlighted neurophysiological support for VRs as well as several

models that implement them for solving cognitive tasks. However, there is a tremendous amount

of literature that is beyond the scope of this review. For a more comprehensive look at various

implementations of visual routines and their applications, please refer to [30].

2.2 ST Model

In the previous section we had looked at Ullman’s VRs as a theory for explaining how complex

visual tasks may be solved by a sequence of operations. However, recent neurophysiological

literature suggests that a base representation formed from a purely bottom up stimulus is not

enough to gather all the knowledge about the scene or to provide sufficient details about ob-

jects within the scene. Furthermore, the conceptualization of VRs is based on attention being

purely spatial that precedes interpretation; such a view is also no longer supported by modern

knowledge [15]. Instead, an interaction between bottom up and top down processes is required

[3, 12, 44] to explain the breadth of processes involved.

Visual attention is defined as “.. a set of mechanisms that help tune and control the search

processes inherent in perception and cognition” [82] and is central to several models of visual

attention but why is it important? The answer to this comes from the limited processing

capabilities of the brain [83].

Among the many models of visual attention, we review the selective tuning (ST) model,

with the foundation of the framework rooted in advancements in the neurophysiological lit-

erature making it a biologically plausible computational model [82]. Here, among the many

differences this model has with respect to Ullman’s feedforward formation of base and incre-

mental representations include recurrent processing that necessitates top down processing, and

the hierarchical nature of the visual cortex. These differences suggest that a simple base repre-

sentation does not carry all the information we require and instead a series of processing steps

occur before the representation is available for applying some operations. A detailed discussion

is provided by Kruijne and Tsotsos [31].

In this section we will look at CPs; a modernized version of Ullman’s VRs that are responsible

to complete a visual task [84]. We will then review the selective tuning and attentive reference

(STAR) model; an extension of STAR to allow for executive control with a set of algorithms;

Cognitive Programs [86].

9

2.2.1 Cognitive Programs

CPs are the algorithms that guide the execution of visual tasks and are a modernized version of

Ullman’s Visual Routines [84]. CPs require a range of computations such as providing top down

control signals, selecting region of interest, dealing with covert and overt fixations, information

routing, access to memory, matching to task, priming and coordination of bottom up and top

down information [84].

The specific CPs that are required to be executed depend on the task requirements. For

example, a simple discrimination task would only require a single feedforward pass through the

VH while an identification task would require recurrent processing. Tsotsos et al. [85] identify

several tasks, the approximate time required for processing and the attentional processes taking

place during its execution. Furthermore, the authors identify the binding processes associated

with each task. The implication of this indicates that a small subset of computational strategies

can be used to execute a variety of different visual tasks.

In light of this, Figure 2.1 shows a variety of visual search tasks that overlap in the algorithms

they require. The color coding in the figure indicates which CP the command belongs to. Notice

how the CPs rely on other CPs given task demands.

CPs are also influenced by the idea of storage and execution in Ullman’s theory of VRs. A

stored CP, as a method must first be fetched from the CPM. This method acts as a “skeleton”

algorithm that is task independent and cannot be executed without providing information about

the task. A script ; an executable version of a tuned method is formed when a task specification

is provided. For example, a specification of the color or location of the target for a given method

results in the formation of a script.

Despite this, there is no standardized method of reusing or adapting these algorithms for a

variety of different visual tasks. Thus, a user wishing to test a visual task in the STAR framework

must know the precise task demands and implement the specific functionality required on a task

by task basis making future research and development into the Selective Tuning model difficult

and time consuming. Part of the aim of this thesis is to formalize and implement CPs within

the CPM framework in the TarzaNN software [64].

10

11

Figure 2.1: A graphical depiction of multiple Cognitive Programs that are sequenced together to solve complex visual tasks. The color coding indicates
which Cognitive Program the commands belong to. Reproduced from [84].

2.2.2 STAR

In this section we will review the major components of STAR as highlighted in Figure 2.2.

Figure 2.2: The components of STAR with corresponding arrows indicating the flow of infor-
mation between modules.

Visual Hierarchy The visual hierarchy (VH) is the most well developed part of the ST

model beginning with the processing of some visual input signal and a θ −WTA (winner-take-

all) selection mechanism for the required features or locations is applied at each layer of the

hierarchy. Unlike a standard WTA algorithm in which the neuron with the highest activation is

selected while all others are suppressed, θ−WTA algorithm relaxes this requirement such that

several neurons with firing rates within some threshold θ of one another are selected at any one

time.

The processing of stimuli through the VH occurs in distinct stages. First, the hierarchy

is primed for a location or feature of interest before stimulus onset. Next, a feedforward pass

occurs followed by a θ −WTA selection process at the top of the VH. If further information

about the stimulus is required that is not available at the top most layer of the VH, recurrent

top-down localization suppresses all the neurons that do not contribute to the winner at the

very top of the VH at each layer. Following this, a reinterpretation of the information occurs

through a feedforward pass with the suppression mechanisms in place.

12

The focus of attention (FOA) created after recurrent processing contains the neurons that

contributed to the winner at the top of the VH. All the information available in the FOA across

all layers of the visual hierarchy is called the attentional sample (AS) while a partial attentional

sample (pAS) may contain only a subset of layers. The AS may be stored into the visual working

memory (vWM) or task working memory (tWM) for use in later stages.

Visual Working Memory The visual working memory (vWM) stores a representation of

the VH (as a Partial P-Lattice) in an AS. The AS stored here can be used to extract location or

feature information about the target or serve as the basis for priming the VH. The vWM also

contains the Fixation History Map (FHM) intended to bias against revisiting previously seen

locations [29] which stores the last few fixations. Thus, it interacts directly with the fixation

controller.

Task Working Memory The task working memory (tWM) may be used to store a sequence

of attentional samples, fixations, selections, scripts and script progress. In other words, any

relevant information during task execution is stored here.

Fixation Controller Attention can be directed to a stimulus with either covert or overt

attention. Covert attention refers to attending to a stimulus without any eye movements. Overt

attention occurs when attending to a stimulus by pointing their gaze at the stimulus, thus

requiring eye movements. The Fixation Controller (FC) guides these processes by taking into

account (a) the peripheral visual field (> 10◦) derived from early visual representations, (b) the

Peripheral Attentional Map (PAM) and the central visual field from foveal representations and

(c) the Central Attentional Map (CAM), to form a priority map. A separate representation

that is larger than the visual field, the fixation history map (FHM), contains recent fixations

with task specific biases that may be in place. The FHM is combined with the priority map to

influence the FCs next eye movements. For an in depth look at the FC strategy, please see [86].

Visual Task Executive The visual task executive (vTE) is responsible for constructing,

executing and monitoring a script. A recent development of the vTE is the addition of a

Cognitive Program Compiler (CPC) [32]. A CPC takes human understandable task description

and translates this into machine code as a task script. The task script contains a sequence of

commands including the execution of CPs after retrieval from the CPM, decision points and

other functions relevant for completing a visual task. For example, a task description of “find ’X’

in the stream of letters” could be translated by setting the appropriate parameters and deciding

13

the relevant CPs to execute sequentially. The CPC provides an excellent strategy for rapidly

executing visual tasks by defining the sequence of commands required for task completion. Thus,

the vTE plays a fundamental role in the architecture indicated by its connectivity to other major

components of STAR: vAE, CPM, tWM and vWM.

Visual Attention Executive The visual attention executive (vAE) generates the necessary

control signals for completing visual tasks using the task specification provided by the vTE.

This is most prominent in the VH but also relevant in other areas of this model including the

FC, vWM and tWM [84]. Notice that the vAE is connected to every module in STAR except

for the CPM.

Cognitive Programs Memory The CPM stores prebuilt CPs that can be retrieved, param-

eterized and executed by the vTE. This thesis formalizes the CPM and consists of the following

components:

• Method Elements: Contains the necessary elements that are used to form other methods.

– Base Methods: Composed of action and queries methods.

– NP Operations: Computational counterparts of biologically inspired neural corre-

lates. Four operations, each with a distinct computation are proposed.

• Methods Database: Stores assembled CP methods that are composed of the Method El-

ements. Here, we implement several methods that will be useful for demonstrating their

functionality on different visual tasks. The Detection, Recognition, Categorization and

Identification methods have been grouped together since they share similar Method Ele-

ments.

ST Microcircuit The Selective Tuning (ST) circuit consists of interpretive, bias, gating and

gating control neurons. Each ensemble of neurons as shown in Figure 2.3 computes a single

visual quantity (such as a feature or object) competing with other ensemble of neurons at the

same spatial location for the representation of the visual quantity.

Interpretive neurons also known as feature detecting neurons, receive feedforward input from

other areas with inputs arriving in layer IV while providing an output to layer V/VI. Bias neurons

provide top-down guidance for visual processing such as parameterizations for locations, regions

or features. A key component of the ST microcircuit is the gating and gating control neurons

in charge for implementing the selection mechanism and tracing those neurons down the visual

hierarchy to their source forming the attentional beam.

14

dr

dt
=

1

τ

−r +B ∗ S

∑
kε↑

γkgkek +
∑
hε↔a

gheh

 (2.1)

B(t) =
min

βε ↓b
Bβ(t) (2.2)

Where gk and ek are the feedforward weights and the activation of neuron k, respectively.

Likewise, gh and eh are the lateral weights and activation of neuron h, respectively. ↑ represents

the set of feedforward connections to the neuron from all sources, ↔ represents the local con-

nections to a neuron and ↓b is the set of bias units making feedback connections to the neuron

and γk is the gating neuron whose value falls as the competition proceeds to reflect the branch

and bound pruning process. In addition, the following constraints are placed on the parameters.

For a more detailed description of the ST microcircuit refer to [63, 82].

1. 0.0 ≤ B ≤ 1.0

2. −1.0 ≤ gh ≤ 1.0

3. 0 ≤ γk ≤ 1.0

4. −1.0 ≤ gk ≤ 1.0

Figure 2.3: The complete ST microcircuit represented by equation 2.1. Reproduced from [82].

15

2.3 Neurophysiological Literature

One of the key questions in neuroscience is how does neural activity lead to high level behavior

that we see in everyday life such as walking and talking. Of course, this is still an unanswered

question, however many avenues of research have tried to correlate neural activity with high level

behavior [12]. In doing so, researchers have identified that certain brain regions are associated

with specialized functions [3, 92]. Others have identified a set of recurring circuit motifs that

may encode simple computational functions [87, 93].

The aim of this portion of the literature review is to understand the interaction between the

sensory information, an organism’s goals, motivations and the control mechanisms that underlie

their processing. In order to do this, we divide the review into three sections. First, we discuss

the brain anatomy followed by a review of the neural correlates and circuits involved in attention.

2.3.1 Anatomy

In this section we discuss the basic anatomy of neurons, a cortical hypercolumn, important

functional brain regions and the kinds of connectivity that govern their interactions.

Neuron The neuron is the basic building block of the nervous system and is responsible for

receiving and transmitting nerve impulses [28] from dendrites and axons, respectively.

Dendrites receive input from a variety of different neural axons as an action potential in

an all-or-nothing firing fashion. The incoming action potential to the dendrite reaches synapses

located on the dendritic surface allowing the action potential to be transmitted to the connecting

neuron. On the other hand, axons carry impulses away from the cell body onto other neurons.

The soma (see Figure 2.4) is referred to as the cell body and varies considerably from neuron to

neuron.

The neurons in the central nervous system can be classified based on the length of their

projections. Pyramidal cells (PC) and satellite cells are those with long and short axons, re-

spectively, resulting in making long range or short range local connections respectively.

Neurons may also be classified in terms of the neurotransmitters they release. The Pyramidal

Cell (PC) mentioned earlier are typically excitatory [10] while satellite cells such as interneurons

are inhibitory [42].

Cortical Hypercolumn The cortical hypercolumn was first described in Hubel and Wiesel’s

studies on the primary visual cortex [27] with the notion that these columns are highly repetitive

16

Figure 2.4: Components of a Neuron. Digital image. Bioninja. Web. 29 November 2017.
<ib.bioninja.com.au>.

modules that function in brain organization. However, considerable variability of the cortical

column between different areas and species has also been found [14]. Nonetheless, a “basic

outline” of the organization of the neocortex is provided here.

1. Layer I: Layer I is sometimes referred to as an acellular layer since it contains less than

0.5% of all cells in a cortical column [5]. This layer is known to contain almost all inhibitory

cells and provide strong mono-synaptic inhibition to LII/LIII cells.

2. Layer II/III: This layer contains pyramidal cells which receive input from excitatory

neurons in LIV and from local interneurons while projecting to LV/LVI. Reciprocal con-

nections also exist between LII/III to LV [10].

3. Layer IV: This layer contains a variety of excitatory and inhibitory neurons that receive

most of the feedforward thalamic input [10] and project their axons mostly to interneu-

rons in layers I and II providing feedforward inhibition within the same cortical column.

However, excitatory projections to LII and LIII are also present.

4. Layer V/VI: A variety of excitatory (PCs) and inhibitory (PV +,SOM) neurons exist

in Layer V [49]. The PCs in this layer provide long-range projections to other cortical

and sub-cortical structures thus playing a key role in top down control to other cortical

areas. Specifically, LVI receives and projects connections to the thalamus [10] functioning

as both an input and output. Short range efferent and afferent connections with all layers

of the same cortical column are also present [37] but particularly to LI.

Visual Cortex Information processing begins when light enters the eye and projects onto the

retina. Then, through a series of pathways information reaches the Lateral Geniculate Nucleus

(LGN). Information from the LGN is then transmitted to the primary visual cortex (V1) which

then transmit to higher order visual cortical areas [9] for more complex image processing (see

17

Figure 2.5). In this section we will provide a high level description and functions of some of the

important visual pathways and areas that are directly relevant to this thesis.

The primary visual cortex is the largest cortical area in primates and is also referred to as

V1 and the striate cortex due to its appearance. V1 provides a retinotopic map of the field

of vision. However, it is not uniformly distributed across the entire visual field. Instead, the

densest part of the retina, the fovea take up about 25% of the representation in V1 [9]. Neurons

in this area are sensitive to simple features such as visual orientations, spatial frequencies and

color.

The primary visual cortex projects to the extrastriate cortex consisting of V2,V3,V4, infer-

otemporal cortex (IT), middle temporal area (MT) and the posterior-parietal cortex (PP) [9].

The flow of information into these areas is thought to be segregated into two streams referred

to as the ventral stream (or “what” pathway) and the dorsal stream (or “where” pathway). The

ventral stream is associated with object detection and form representation and includes areas

V1,V2,V4 and IT. As such, it is sensitive to high spatial frequencies and detailed image pro-

cessing. The dorsal stream is associated with where objects may be located, their motion and

depth and include areas V1, V2, V3, MT and PP [9] amongst several others. The dorsal stream

is less sensitive to high spatial frequencies but more to high temporal frequencies allowing it to

specialize in motion processing [51].

Figure 2.5: The dorsal (“what”) and ventral (’where”) pathways project to areas V2, V4, IT and
V2, V3, MT and PP respectively. Reproduced from [94].

Connectivity There are three kinds of connectivity that are typically mentioned in the neu-

rophysiological literature which describe how neurons interact with each other. The importance

18

of the difference lies in the information they provide individually and collectively. The principle

of segregation and integration states that these three types of connectivity can be useful when

thinking about segregated networks (anatomical connectivity) that can integrate information

across a variety of different sources (effective and functional connectivity) [79].

1. Functional Connectivity : Describes the statistical dependencies between segregated brain

networks or regions and is shown to correlate with behavior in different tasks [25]. For

example, the default mode network (DMN) is one that is active when an individual is in

a resting alert state and not focused on any particular task [11].

2. Effective Connectivity : Describes the causal interactions that occur in brain networks

such as a signal change appearing in one area directly correlating with a signal change in

another area. Effective connectivity measures these time and task dependent patterns of

activation during different cognitive tasks [25].

3. Anatomical Connectivity : Describes the physical connections between brain regions thus

constraining the possible computations that may be performed [7].

2.3.2 Neural Correlates of Attention

Brain Networks Which brain areas are involved in perception, attention and coordination

of information? Several theories for the “source” of attention mechanisms have been proposed

with the general notion that attentional mechanisms may be described by the integration of

feedforward perceptual bottom up information with top down attention that reflects the organ-

isms behaviors, goals, motivations and current state [3, 12, 44]. However, this terminology of

“top-down” attention may be misleading as it suggests that there is a single control mechanism.

Instead, endogenous control of attention better reflects these internal processes as it suggests

that multiple cortical and subcortical areas work together to give rise to behavior as supported

by numerous neurophysiological studies [92].

Attentional selection is mediated by interactions between the frontal, parietal, temporal and

occipital cortex in conjunction with the thalamus and mid brain areas [12, 92]. Notable areas in

the fronto-parietal network that are known to be activated when subjects attend to a location in

space [12] include the superior parietal lobe (SPL), the intraparietal sulcus (IPS), the FEF and

the supplementary eye field (SEF). Interestingly, the interaction of the fronto-parietal network

is well studied [44] and provides valuable insights of how information flows between these two

areas under different conditions. For example, the lateral intraparietal area (LIP) in the parietal

cortex contains saliency maps [2], however, the frontal cortex is also known to contain saliency

19

maps but with a larger latency of activation with respect to stimulus presentation [44]. This leads

to the idea that bottom up capturing of attention with a salient stimulus results in activation of

the LIP followed by the frontal eye field (FEF) in the parietal and frontal networks respectively.

In contrast, internally directed attention by the memory of a target stimulus results in activation

first in the frontal network than in the parietal network [13]. The full set of networks involved

in this frontal-parietal network interaction include V1 -> V2 -> V4 -> MT -> LIP -> LPFC

-> FEF [44].

With regard to top down or endogenous attention, the PFC is thought to play a pivotal

role in cognitive control including the ability to carry out new or goal directed behavior, mo-

tor attention, short term memory, inhibition of irrelevant information, gating of information,

sequencing tasks, planning and problem solving [72]. The PFC is able to have such a diverse

role in cognitive control in part by its extensive reciprocal connections to major cortical and

subcortical brain regions. The basal ganglia is a subcortical brain region that also plays an

important role in executive functions, memory processing and computing gating functions via

a disinhibition mechanism on its output nuclei [33]. The overlap in the computations the basal

ganglia and the PFC perform is complemented by the existence of both indirect connections

through the thalamus and direct innervations between these areas. In light of this, several others

have suggested that the basal ganglia acts as a gating mechanism for representations in the PFC

by deciding when they should be maintained or updated [53].

One of the ways we know how bottom up and top down influences of attention interact is

through microstimulation and lesion studies in macaque monkeys. Stimulation in LIP results

in a bias toward the corresponding location in the visual field during a visual search task [3].

Sub and supra-threshold stimulation in the same area has also lead to covert and overt shifts of

attention respectively [3]. In FEF, stimulation of one area results in a corresponding change of

neural activations in area V4 [46] while suppressing irrelevant stimulus representations. Another

study shows that deactivation of FEF interrupts planned saccades yet has no effect on bottom-

up stimulus detection [35]. Furthermore, PFC lesions in macaque monkeys result in a deficit of

attentional shifts but has no effect when attention is grabbed by a salient stimulus [62].

In summary, there is a tremendous amount of complexity in the interaction of these brain

networks and for a more detailed review, see [3, 12, 44].

Neural Synchrony The patterns of neural activations that occur across different neurons

are shown to be dependent on the information being processed and task goals [93] and thus may

reflect the underlying mechanisms of network interactions and the selection processes of neural

20

representations [44].

Synchronous inputs arriving at downstream neurons have been shown to have a synergistic

effect on the neural firing rate [67] and such a mechanism may be involved in improving the signal

to noise ratio (SNR) while reducing the total number of spikes required to represent a stimulus

[77]. A consequence of this property is that synchronized neurons encode more information than

unsynchronized neurons as evident in both the prefrontal cortex and the parietal cortex [44].

An interesting property is the different frequency at which neurons synchronize given task

demands. For example, neurons in area V4 show an increase in gamma or alpha band activity

if the neurons represent an attended or unattended stimulus respectively [24]. This segregation

is thought to reflect a mechanism in which the signal (or attended stimulus) is separated from

the noise (or unattended stimulus) [17].

Because of the nature of these neural oscillations, it is suggested that synchrony between

different brain areas may be a mechanism in which they interact by changing their effective

connectivity. This synchrony is seen in prefrontal, parietal and visual cortical areas [13] but

also in subcortical structures such as the thalamus [65]. A notable neural signature of visual

attention shows a high frequency (gamma) synchronization of cortical areas with a low frequency

(alpha and beta) synchronization between the cortex and thalamus respectively [66]. Having

said this, to date there is no causal link between the oscillatory processes and the functions that

have been attributed to them.

2.3.3 Neural Computational Elements

Overview Up until now we have considered neurophysiological literature pertaining to the

anatomy of excitatory and inhibitory neurons, the structure of a cortical column and the different

brain areas involved in attention and decision making. The aim of this section is to outline how

neurons or groups of neurons, neural circuits, may implement neural computational elements.

More specifically, with the inspiration of Ullman’s Visual Routines, we wish to study how such

operations may be implemented within the brain with the following question in mind: “Can we

represent operations as a set of biologically plausible computations? ”.

In the context of neural computations, several lines of work suggest that there exist some

fundamental “building blocks” of the brain that may be used to form “computational units”. As

this thesis is aimed at proposing and implementing a basis set of operations for our Cognitive

Programs, these neural computations guide and constrain the possible operations we may have.

In the following sections, we begin by outlining some high level computations that may be

implemented by neurons and neural circuits followed by the introduction of important circuit

21

motifs that underlie such computations and finally provide a summary of the findings.

Computations Arguably, the neuron may be the most fundamental computational element.

Single neurons may reflect the evidence towards a decision [8, 68], be sensitive to a feature [58]

(such as a color or orientation), a task property [69], representations of sequences [18, 61, 91]

while a complex interaction of neural circuits may reflect short term memory maintenance [93].

Neural circuits have been shown to implement a variety of different computations such as

context, phase or synchrony dependent gating, gain control and integration [93]. Arithmetic

functions such as addition, subtraction, multiplication and division are also important compu-

tations reflected in input-output neural response curves [73]. An important arithmetic compu-

tation that has been found in a variety of cortical and subcortical areas is that of divisive gain

control and normalization (implementing a division/multiplication of the input-output response

curves) [87], with interneurons playing a vital role in this computation [12]. In addition, sin-

gle neurons have been shown to compute nonlinear functions possibly due to an interaction of

synaptic plasticity, synaptic noise and cell specific conductances [73].

It is interesting to note the breadth of computations within the primate brain, but much less

is known regarding how they are implemented. Thus, in order to understand the “how” behind

these computations, we will focus our attention to three computations that may give rise to

some of the other computations: gating, gain control and integration.

Circuit Motifs Dynamic circuit motifs is a concept that attempts to bridge the gap between

the structural connections of neurons, their neural signatures (such as their phase and frequency)

to the underlying computations that may be encoded by this interaction [93]. These motifs seem

to be repeatedly present across species, brain areas and modalities [87], making it an excellent

starting point for discovering the “building block” elements of vision.

In this section, we explain the implemented computations by these neurons in terms of the

spatial and temporal dimensions of neural representations as these two components are critical

to understand and characterize neural signatures as suggested by Turkheimer et al. [87]. In

doing so, there is significant explanation based on neural synchronization and oscillations that

are not part of the ST model. Here, it is important to note that an explanation of these neural

oscillations is provided to give a complete description of the computations in their original

context. Since the aim of this thesis is to propose a biological set of elemental operations,

the information gained from this section only serves to provide a computational and biological

foundation for subsequent sections.

The temporal dimension deals with the role that synchronization and phase have on the

22

computations that may be performed [10, 93]. Here, the synchronization and phase are depen-

dent on the biophysical dynamics of the excitatory and inhibitory cells that make up the circuit

motif. The spatial dimension involves the specific connectivity of groups of neurons with the

interaction between excitatory and inhibitory neurons playing a fundamental functional role in

neural computations [10]. Such connectivity exists between or within cortical and sub-cortical

brain regions. Both of these dimensions are dependent on one another and do not exist alone,

as such the circuit motifs that will be introduced shortly heavily depend on their interaction.

Feedforward Inhibition The Feedforward Inhibition (FFI) circuit motif implements nor-

malization of its input by providing a balance of excitation and inhibition. In addition, FFI is

responsible for selecting, integrating and facilitating the propagation of inputs while suppressing

or excluding irrelevant information [93]. Furthermore, such a motif has also been shown to per-

form a multiplication computation of its input-output response curves under certain conditions

[93].

The FFI motif is present in a variety of cortical areas and facilitates the transfer of informa-

tion between the thalamus and cortical layers IV, V, and VI. Between cortical layers within the

same cortical column from layers IV/V to LII/III and between cortical areas [93].

Figure 2.6 shows a generic FFI circuit composed of an excitatory pyramidal cell (PC) and

inhibitory (I) neurons. The circuit implements filtering of information across the PC neuron.

Here, stronger excitatory connections are shown as thicker arrows where the green and red colors

indicate excitatory and inhibitory connections respectively.

Figure 2.6: A generic feedforward inhibition (FFI) circuit motif consists of strong excitatory
connections to inhibitory neurons (red circles labelled “I”) with less excitation to excitatory
neurons (triangle labelled “PC”) . Reproduced from [93].

Figure 2.7 shows a FFI circuit with thalamic input projecting to cortical areas in layer IV of

the cortical column. The parvalbumin (PV) cells are inhibitory while the PC cells are excitatory.

PC cells also project to other cortical layers as discussed previously. In addition to this indirect

inhibition, direct inhibition via inhibitory neurotransmitters to excitatory cells is also considered

to be an important circuit motif for the projection of information [92].

23

Figure 2.7: A thalamo-cortical feedforward inhibition circuit motif projecting to layer IV of a
cortical column. Neurons here project to other cortical areas or columns (see text). Reproduced
from [93].

Feedback Inhibition The Feedback Inhibition (FBI) circuit motif complements the FFI

circuit motif just described by providing an additional gating and gain control mechanism using

a well characterized pyramidal interneuron gamma (PING) motif. As with FFI, the PING motif

relies on the balance between excitation and inhibition as well as the biophysical properties of

the cells that are involved for its computations. The PING motif is involved in the gating and

gain control of sensory inputs and is a likely computational candidate for the selective routing

of information in the primate brain by enhancing the throughput of attended information and

reducing the interference from irrelevant cells [93].

The aforementioned computations of gating, gain control and integration are all dependent

on the context or the state of an organism including their motivations and behavioral goals. This

context dependent gating has been well studied in hippocampus areas and two circuit motifs

involving dendritic inhibition and disinhibition of PCs have been identified for this purpose. The

first circuit motif involves dendritic disinhibition and disinhibition to segregate sensory inputs

from memory related encoding in area CA1 of the hippocampus. The second circuit involves a

top down gating of L5 PCs via an inhibitory gating mechanism that may then be used to affect

local processing.

Figure 2.8 shows a generic FBI circuit that implements input selection and gain control.

Although this FBI circuit resembles the FFI circuit presented in Figure 2.6, there are two

major differences. First, the FBI circuit has excitatory connections projecting from the PC to

the inhibitory neurons. Second, the strength of the connections is different, with weak input

connections to the inhibitory neurons shown with dotted lines.

Figure 2.9 shows a pyramidal interneuron gamma (PING) circuit motif receiving input from

layer IV of the same cortical column and possibly from higher cortical areas.

24

Figure 2.8: A generic feedback inhibition (FBI) circuit motif is almost identical to a FFI circuit
except for feedback connections from the PC to inhibitory neurons. Reproduced from [93].

Figure 2.9: A pyramidal interneuron gamma (PING) circuit motif provides frequency and phase
dependent gating and normalization computations. Reproduced from [93].

25

Figure 2.10 shows a circuit motif in Layer V of the cortical column receiving input from the

thalamus and other layers within the same cortical column. Projections from layer V have been

shown to project to other layers within the same column and to lower cortical areas implementing

a top down gating mechanism.

Figure 2.10: Feedback inhibition circuit in Layer V of the cortical column projecting to lower
cortical areas.

Other Circuit Motifs In [92], several long-range circuit motifs have been proposed that

closely resemble the ones mentioned here. The circuits in this paper also show that the prop-

agation of feedforward information from one cortical area to another is complemented with

feedforward excitation; with ∼65% excitatory connections and ∼35% of inhibitory connections

from the anterior cingulate cortex (ACC) to the lateral prefrontal cortex (lPFC). Hence, a feed-

forward excitation motif characterized by direct excitation of PCs and a disynaptic disinhibition

motif characterized by an excitation of inhibitory interneurons resulting in a downstream inhi-

bition of another interneuron resulting in a net excitatory effect of PCs are two other important

circuit motifs.

Studies have also shown that the interaction between two circuit motifs; an intrinsic bursting

cell motif with a PING feedback inhibition can lead to a memory maintenance computation by

storing the activation in PC cells as a buffer [93]. In addition it has been suggested that this

circuit motif may carry information about distinct input streams given the circuit dynamics.

Consequently, such a motif may be able to segregate the source of information when parallel

input streams are received.

Summary We have introduced several neural computations stemming from neurons and neu-

ral circuit motifs that all seem to rely on the biophysical dynamics of neurons (via a balance of

26

excitation and inhibition) and the interaction with other circuit motifs to give rise to a diverse

set of computations. Interestingly, the summary provided in Table 2.3 shows that neural circuits

can give rise to a small set of repeating computations under different conditions. For each circuit

motif, we have provided a reference to the neural circuit.

Computation Circuit Motif Figure Description

Gating

Generic feedforward
inhibition

2.6 Information routing and gating of
information from thalamus to cortical

areas
Generic feedback

inhibition
2.8 Routing of information across multiple

cortical and subcortical areas
Feedback inhibition

(PING)
2.9

Layer V FBI 2.10 Gating to lower cortical areas via
dendritic inhibition

Dendritic inhibition and
disinhibition

Figure 4b in
[93]

Input selection found specifically in
hippocampus areas

Gain Control
Generic feedforward

Inhibition
2.6 Implements normalization

(multiplication and division)
Feedback inhibition

(PING)
2.9 Implements normalization

(multiplication and division)
Feedforward Excitation Box 3,

Figure I in
[92]

Implements arithmetic computations:
addition, subtraction, multiplication,

division

Integration Generic feedforward
Inhibition

2.6 Gating and selective integration of
information

Feedback inhibition
(PING)

2.9

Table 2.3: A summary of several elementary computations performed by different circuit mo-
tifs. A small set of circuit motifs implement a variety of computations. Each circuit motifs
corresponding figure is provided for reference.

2.4 Summary

In this literature review, we have presented the concept of Ullman’s Visual Routines as a strategy

for completing a visual task using a sequence of operations. From this idea came about Cognitive

Programs which are modernized versions of Visual Routines based on what we now know of

the neurophysiological literature. Following this, some key aspects of the neurophysiological

literature were reviewed including the basic anatomy of a neuron, a cortical column and some

important brain areas with their associated computations. This anatomical basis was then used

to review the neural correlates of attention at various levels of abstraction followed by an in

depth review of the neural circuits that may underlie much of the attentional mechanisms of

visual attention. These concepts will be used to develop the foundation of Neural Primitives in

the next section.

27

3 Neural Primitive Specification

3.1 Overview

An atomic operation is defined as “...forming a single irreducible unit or component in a larger

system” [76]. We have seen atomic or elemental operations being applied in the domain of

making a sandwich [95], as processing steps that are part of some mental algorithms [97], or as

atomic operations applied sequentially by Visual Routines to complete a visual task [88].

If the neurophysiological literature suggests that a sequence of operations occur in the pri-

mate brain in support of completing a given visual task [47, 61], would it be possible to define

the computational counterparts to these biological operations such that a mechanistic version

of these operations can be realized? Furthermore, can these computational counterparts then

serve as the basis for neurally realistic algorithms? In search to answer this question, we took

inspiration from the literature suggesting that the interaction between a very small number of

neural circuits can give rise to a variety of computations under different conditions (see Ta-

ble 2.3). This section aims to propose a mechanistic definition of these biologically inspired

computations as a set of elemental operations; the Neural Primitives.

To give some context of the usefulness of these NPs within the STAR architecture, recall

that the fundamental goal of this thesis is to build a set of algorithms or Cognitive Programs

for guiding visual task execution. As part of the construction of these algorithms, NPs play

a vital role in this composition. This section is dedicated to the definition of the two major

components required for the NP framework; representations and operations. As such, we focus on

the theoretical and mathematical formulation of these components as well as the computations

implemented by each of our Neural Primitives. This section does not focus on how NPs may

be integrated within the STAR framework. On its own, the NP specification may not seem

very useful; instead the flexibility of computations of NPs is realized by their interaction and

their algorithmic sequencing and coordination with CPs. However, for now, let us assume that

this NP framework serves as the basis for composing useful computations within the Cognitive

Programs Memory framework introduced in Section 4.

At its most fundamental level, the NP framework can be modeled as a series of transforma-

tions that occur on a base or incremental representation by applying an NP operation. The

Nodes and Neural Primitives are the implementations of the representations and operations,

respectively. A brief definition of these terms is provided below.

1. Representation (Nodes): A group of neurons in some matrix of size A × B encoding some

information.

28

(a) Base Representation: Bottom up representation with no operation applied.

(b) Incremental Representation: One or more operations have been applied.

2. Neural Primitives (Operations): An operation that defines how a representation will be

transformed.

This application of an NP operation is defined as a mapping function g() applied on some

representation R at time t to yield some new representation R′ = g(R) at time t+1 (see Figure

3.1). Note that in this section we focus only on what computations these operations implement.

How these operations are sequenced, coordinated and manipulated is left for Section 4.

Figure 3.1: A high level representation of the Neural Primitive framework described as a math-
ematical transformation of the original representation.

If the application of an NP operation is simply defined as a mapping function and we have

previously seen that there are several biological operations that may be implemented in the

primate brain, then it may be useful to introduce different mapping functions. Each of these

functions may implement different neural computational counterparts and have their own neural

correlates and uses. For the purpose of the visual tasks that may be implemented within STAR,

we propose four NPs: Gating, Bias Control, Bias Feedback and Integration inspired by dynamic

circuit motifs [93] and their associated computations as summarized in Table 2.3.

29

Figure 3.2: The basic elemental operations, referred to as Neural Primitives. Each operation
consists of the connection of one or more representations (referred to as a Node) to a destination
representation (shown as Node B in the figure). A different color and symbol of the arrows is
used to indicate each of the Neural Primitives connections. The black square with a capital
“G” indicates a gating operation. The associated “Weights” are used to parameterize the Neural
Primitives given task demands.

Below we have outlined some of the operations NPs implement either directly or indirectly

in conjunction to CP algorithms. For example, the gating and integration computations heavily

rely on the CP algorithms to function. In contrast, the bias control and bias feedback operations

are able to manipulate representations with minimal algorithmic control.

1. Gating: Acts to gate task dependent information between two representations connected

together with an NP operation. Action or decision selection may be implemented with the

help of CP algorithms.

2. Bias Control: Implements a top down multiplicative bias.

3. Bias Feedback: Serves to propagate the top down multiplicative bias originating from a

Bias Control operation down to the next layer of the VH.

4. Integration: Implements evidence accumulation and feedforward information integration

with the help of CP algorithms.

In this chapter we describe the theoretical and mathematical notation and formulation of our

30

representations. This is followed by a complete description of the principles, mathematical

formulation, neural correlates and response profiles of NP operations.

3.2 Representation

A representation is defined as a group of neurons with some neural activity at a given point in

time. Equation 3.1 below is a rewritten version of equation 2.1 for ease of representation of our

NPs.

r =
1

τ

∫
[−r + b ∗ S (f)] dt (3.1)

Where f =
∑
kε↑ γkgkek(t) and S is the function used to compute the neuron’s firing rate as

a function of time t. The neuron’s firing rate S is defined by equation 3.2.

S(f) =
Zf+(t)

σδ + f+(t)
(3.2)

Where Z is the maximum firing rate, f+ is the positive half-rectified value of f , δ determines

the maximum slope of the function and σis a semi-saturation constant that determines the point

at which S reaches half of its maximum. See [63] for more details.

The b and gk terms represent a top down bias and feedforward weights, respectively. The

range of values they may take are 0 ≤ b ≤ 1 and −1 ≤ g ≤ 1. τ is a decay time constant.

These values are manipulated by the NPs and form the core mechanisms by which they operate.

However, it is important to note that the lateral weights that were originally present in equation

2.1 have been omitted here since our NPs do not manipulate them. Future work may look at

ways of incorporating the lateral inputs into the NP framework.

To extend equation 3.1 to more than one neuron such that we may perform the same com-

putations on a given representation, we define a matrix of neurons R (see equation 3.3) with a

size of A × B as a NODE as described in the Overview of this section. Similarly, we define

matrices B and F of size A x B for the bias terms and feedforward inputs, respectively.

R =

r1,1 ... r1,B
...

.

rA,1 ... rA,B

 (3.3)

To complete the matrix representation of a NODE, these matrices may then be combined

together as shown in equation 3.4. Each neuron in the matrix obeys the same equation, however

the specific b and f parameters may vary between neurons. For example, neurons may receive

31

different feedforward and feedback inputs, thus their f and b terms would differ. Note here that

the f and b terms here are part of the B and F matrices, respectively.

R(B,F) =

∫ −

r1,1 ... r1,B
...

.

rA,1 ... rA,B

+

b1,1 ... b1,B
...

.

bA,1 ... bA,B

 ∗ S

f1,1 ... f1,B
...

.

fA,1 ... fA,B

(3.4)

We will use the notation R′ to refer to the transformed representation computed after exactly

one time step; specifically Rt+1. The NODE will be denoted by RA where A is the name of

the representation. In addition, to refer to the top down bias and the feedforward inputs, we

introduce the subscript notations BA and FA, respectively. Thus, the short hand notation shown

by equation 3.5 outlines the neural activation of NODE A at the current time step with the

input parameters BA and FA. Such a convention may seem redundant but it is necessary when

we begin to talk about multiple representations in the operations section.

RA(BA, FA) (3.5)

In our work, the NODE can represent a higher cortical area (such as the PFC) providing

top down control, visual areas or areas responsible for the maintenance of information. In order

to account for the different kinds of nodes, we introduce three subtypes; Default, Memory and

Context Nodes. The definition is provided below and the representation symbols are given in

Figure 3.3.

1. Default Node: In all cases, if there is no mention of the type of node, it is assumed to

be a default node. This representation computes its neural activation given by equation

3.4. Each neuron in this representation has its own version of equation 3.1. Thus far we

have identified two kinds of default nodes.

(a) Visual hierarchy (VH) nodes where they have also been referred to as sheets in [82].

(b) PFC nodes are responsible for providing as of yet undefined top down control signals.

2. Memory Node: This representation works in almost the same way as a default node.

The key difference here is that it takes its input at one time point only, after which it

maintains its activation even in the absence of neural input. Neurophysiologically, such a

neuron may be realized by recurrent excitations as these neurons are found in the prefrontal

cortex during memory maintenance. Since integrating a working memory neuron that can

32

perform this operation is beyond the scope of this thesis, this representation serves to mimic

this functionality. Future work may look into incorporating a biologically plausible working

memory neuron. Note that this is applicable to the neurons’ feedforward input only. A

top down multiplicative bias applied to this node may still change its representation. Thus

far, we have identified two kinds of memory nodes.

(a) Working Memory (WM) Nodes are responsible for predominately maintaining task

based stimuli information during visual task execution.

(b) PFC nodes may be responsible for maintaining intermediate task state information

other than stimuli based information.

3. Context Node: This representation is used when we wish to simulate input from a top

down source. For example, if task based parameters specify the location of interest, these

parameters must be translated as inputs to a representation. To serve this purpose, a

context node is used. Our implementation allows for any arbitrary input function to be

generated such as sin(x) or cos(x). This node overrides equation 3.5 and instead becomes

directly proportional to our input function R = h(x, y, t), where the input function h() is

dependent on the spatial position (x, y) and the current time step t.

Figure 3.3: Default, memory and context node representation symbols. A memory node is
depicted with an arrow pointing to itself indicating the presence of recurrent connections. A
context node is represented with params as input.

To demonstrate the distinction between a default and memory node, consider the neural

response curves shown in Figure 3.4. Here, a linear input signal is provided for 20ms after which

it is removed. Upon removal, the default representation node (in red) begins to decay until its

firing rate reaches zero (or baseline), however, a memory representation node (in blue) maintains

its activation despite removal of the input.

33

Figure 3.4: Neural activations of a neuron in Default mode (red) and Memory mode (blue) given
an input signal (black). When the input signal is removed, the Default node’s activation begins
to fall while the Memory node maintains its activation.

3.3 Operation

Thus far we have outlined the definition and mathematical formulation of representations. In

order to apply a transformation to a representations, we posit that a small set of elemental

operations - the NPs, can be used for this purpose. These operations are inspired by advances

in neuroscience and fundamentally compute a variation of one or more arithmetic computations

[73]. Importantly, NP operations form the foundation for our CP algorithms within the CPM

framework introduced in a subsequent section. Therefore, in this section, we begin by outlining

three principles which are true for all NPs. We then use these principles to define in detail the

mathematical formulation, neural correlates and response profiles for all four NPs; Gating, Bias

Control, Bias Feedback and Integration.

The NP framework relies on three key principles that define the mechanisms by which rep-

resentations are manipulated (principle 1), the constraints on these transformations (principle

2) and the neural correlates of connectivity (principle 3). These are detailed below.

Principle 1

An operation works by manipulating a representation through three core mechanisms; the bias

(B), the feedforward (F) term and selection of input via gating.
Recall that we have previously defined an NP operation as a transformation of a represen-

tation defined by a function g(x) that occurs at one time step (see Figure 3.1). This abstract

description indicates the premise of NPs but says nothing of what these functions may be. The

four NPs work by manipulating our representations through three core mechanisms; B and F ,

the bias and feedforward terms, respectively, in conjunction to gating for selection. In this

34

section we will use the notation provided in equation 3.5 to model our NP operations.

Principle 2

A single operation acts to transform one and only one representation (NODE).

Each NP operation acts to transform one and only one representation at any given time

step. However, since neurons receive inputs from a variety of different sources at any given

time, other NP operations may be transforming the same representation at the same time step.

This assertion allows an easier way of understanding what NP operations are acting upon by

constraining them to only one representation at a given time.

Principle 3

An NP operation computation can be traced back to its neural correlates of connectivity.

Since our NPs are meant to be the computational counterparts to biological operations, an

important question then is “What are the neural correlates of NPs?”. To answer this question,

we integrated a diverse set of literature indicating neural circuits that are present in different

cortical layers of a cortical column [92, 93], the presence of short and long range connections

within and across cortical columns [55, 93] and the incoming and outgoing cortical connections

within each layer [49, 50]. With respect to neural circuits and circuit motifs, there is evidence

that brain networks maximize both the number and the diversity of functional motifs while the

structural circuit motifs are small and appear repeatedly [74, 87, 93].

With this information in mind we propose the interaction of excitatory pyramidal cells (PC)

and inhibitory parvalbumin cells (PV) in the supragranular (S), feedforward layer 4 (F) and

infragranular (I) layers as shown in Figure 3.5. The supragranular and infragranular correspond

to layers II/III and layers V/VI of a cortical column respectively. The green and red solid lines

indicate excitatory and inhibitory connections respectively while the yellow and green dotted

lines indicate feedback connections between different layers of the cortical column. The solid

black arrows for the feedforward input and feedback output at layers F and I respectively indicate

where this layer may be sending and receiving information from and to other cortical layers.

On the right hand side, the abstract representation of these neural circuits is represented as a

single filled black circle to remove the redundancy from the figure. This abstract representation

will be used in subsequent sections when describing the neural correlates for each of the NP

operations.

Furthermore, subsequent sections refer to a “connectivity pattern” that indicates the source

and destination layers involved in the neural correlates of an NP operation while omitting any

35

intermediate layers the signal may propagate to. This will be written in short hand; for example

a F-S connectivity pattern describes connections originating from a feedforward layer 4 (F) and

terminating in the supragranular layer (S).

To relate Figure 3.5 back to equation 3.5 of a representation, we assume that the feedforward

layer 4 (F) and supragranular layer (S) corresponds to the feedforward F and bias matrices as

shown in equation 3.4. Although the infragranular layer (I) does not directly correspond to any

of the matrix representations, it serves an important implicit computational role for propagating

information within and between cortical layers.

An important aspect of these interactions is a distinction between anatomical and effective

connectivity. NPs utilize both short range and long range connections for their functionality.

These can be traced back to the layer of the neocortex cortical column to which a neuron sends

and receives connections. The Bias Control, Bias Feedback and Integration operations layout

the anatomical connectivity [75]. On the other hand, the Gating NP can be thought of as a

modifier for effective connectivity. That is, the communication of brain networks varies given

different cognitive tasks [41].

Finally, although Figure 3.5 shows only one circuit motif, it is important to note that any

number of circuit motifs may exist within a cortical layer. This figure was meant to show the

minimum circuits required to implement our NP computations. Several other circuits have also

been discovered and the reader is encouraged to refer to [93] and Table 2.3 for more information.

On their own, the operations are not very useful, but the complex interaction of multiple

representations by the Neural Primitives allows for a plethora of useful high level operations.

This interaction occurs via the integration of CP algorithms for the purpose of solving visual

tasks as we will see in the next section.

3.3.1 Gating

Overview A gating operation is the most intuitive and works by controlling the propagation

of information between two Nodes connected together with one of the other NP operations.

This operation can be considered as the most important since it controls whether every other

operation is active or inactive. Since a NODE can be arbitrarily defined, it need not be an entire

visual area or representation. Instead, it may be a subset of neurons within a representation

providing rich flexibility in the neurons that may be gated.

Gating may be used to gate the information from the VH to vWM or it may be used to

enable priming on the VH. Figure 3.6 shows the computational representation of Gating. The

arrow connecting Node A to Node B can represent either a Bias Control, Bias Feedback or an

36

Figure 3.5: Neural Correlates of Connectivity for the NP operations. The interaction between
excitatory pyramidal cells (PC) and inhibitory parvalbumin cells (PV) within and between
cortical layers and areas may be responsible for encoding neural computations. The solid black
arrows for the feedforward input and feedback output indicate where the layer may be sending
and receiving information from other cortical layers.

37

Integration operation. In the case when no Gating operation is attached to an operation, the

default behavior is to always allow the propagation of information between the two Nodes.

During visual task execution, the set of NPs used is defined by the CPs and thus all the NPs

that will be used are “fixed” before task execution. However, the NP parameterization can vary

on a task by task basis while the propagation of information between Nodes can be dynamically

manipulated during a task using the Gating operation. Thus, the information provided by the

vTE and vAE is critical to the execution of a CP and to appropriately gate information in a

task dependent manner.

Figure 3.6: A Gating Neural Primitive operation algorithmically controls the flow of information
between two Nodes connected together by one of the other NP operations; Bias Control, Bias
Feedback or Integration.

All gating occurs in a context dependent manner, that is, it depends on the organisms task

state, motivations and goals [92]. Thus, this gating operation does not implement any decision

making component. Instead, it is merely the result of a decision given current task demands

implemented with our CP algorithms. In other words, CP algorithms may manipulate the gating

operation to control the flow of information. For example, if we wish to enable gating of one

operation only under certain circumstances (i.e. a neuron’s activation exceeds some threshold),

this NP can be manipulated by CPs to do so.

Neural Correlates A plethora of literature exists on the role of gating in the primate brain

and can be found in [22, 54]. Gating of information is a fundamental computation seen in

the primate brain and it has been shown to be implemented via several different mechanisms

that may be associated with their neural dynamics [93] or through dendritic inhibition and

disinhibition of pyramidal cells (PC) [34].

Formulation The gating operation serves to control the flow of information between any two

representations that are connected together with a corresponding NP operation. Given RA and

RB , as source and destination nodes, respectively, information will only flow from A to B if and

only if the corresponding gating unit is enabled.

38

Response Profile Figure 3.7 shows the effect on a neuron’s activation when gating is disabled

at t = 30 ms (indicated by the dotted line). Disabling the gating function removes the flow of

information and hence results in a sharp drop in neural activation. To generate this figure, we

connected two Nodes together via an Integration operation with the source node modeled as a

context node input.

Figure 3.7: Effect of disabling gating between two connected nodes causes a reduction in neural
activation. Gating is disabled at t = 30 ms indicated by the dotted vertical line at which point
the neural activation begins to drop.

3.3.2 Bias Control

Overview The Bias Control (BC) operation implements a normalization (multiplicative or

divisive) computation through feedback connections to some destination node. Within the

ST model, the BC can be thought as a top down multiplicative bias that is fundamental to

some of the suppression, restriction and selection attentional mechanisms; namely task specific

biases such as feature of interest, location cues, suppression of task irrelevant information and

inhibition of return [82]. As we will see later, this operation is critical to allow for priming the

visual hierarchy for specific locations or features.

Figure 3.8 shows the computational representation of Bias Control while Figure 3.9 shows

its neural correlates.

Neural Correlates The exact neural mechanism for Bias Control may involve long-range

inhibitory connections to excitatory pyramidal cells (PCs). However, given that excitatory pro-

jections are more common [92], long range excitatory-inhibitory connections projecting onto

inhibitory parvalbumin (PV+) interneurons may indirectly inhibit PCs [93]. In addition, in-

hibitory SOM+ cells may be a target for feedback inhibition working to directly inhibit PCs

39

Figure 3.8: Bias Control Neural Primitive.

[93]. Furthermore, an alternative mechanism is that of disynaptic disinhibition which causes a

net excitatory effect of PCs by inhibiting inhibitory interneurons.

The bias neurons in the ST model in Layer II/III of the cortical column are the target of the

Bias Control (BC) operation. These were originally modeled as an axosomatic process resulting

in a decrease in the net post synaptic input [71, 82]. In other words, this process models a

multiplicative manipulation of the input-output curve implemented by a set of circuit motifs

[73] that is dependent on the interaction between the cell types, the current activation state and

the time the input arrives [93].

To represent the neurons and connections that may be involved in this operation, Figure 3.9

shows the descending feedback connections from a higher cortical area (NODE A) to a lower

cortical area (NODE B). Bias Control utilizes a feedforward-supragranular (F-S) connectivity

pattern as indicated by the orange filled boxes to indicate the source and destination cortical

layers the signal originates from and terminates to, respectively. The dotted lines indicate the

intermediate cortical layers and neurons the signal propagates from before finally reaching its

destination.

The existence of such connections have been found between cortico-striatal and cortico-

cortico inter-areal projections [93]. We posit that one mechanism this information may be

transmitted is first through a cortico-cortico projection from F-S-I of the same cortical area.

Then this information could be projected to I-S to implement a normalization process in lower

cortical areas. These anatomical connections may be one of the ways top down information is

projected from more frontal to posterior areas [3].

Mathematical Formulation Assume that Node A is connected to Node B using the Bias

Control operation, then Node B’s bias matrix is directly proportional to the neural activation

of Node A as indicated according to equation 3.6. Here, the neural activation RA is normalized

with respect to the maximum firing rate FRM (see Appendix C for parameters) to ensure the

bias term remains within the range 0 < BB < 1. φAB is a matrix of real numbers dictating the

connectivity weights between the two nodes, taking on values between 0 and 1.

40

Figure 3.9: Cortical layers and their corresponding neural circuit motifs involved in the Bias
Control operation. The diagram is not meant to represent all the neurons that are present in
any given cortical layer, only those that are thought to be involved in this operation. Dotted
lines indicate connections that are present but do not contribute to this circuit motif. Bias
Control utilizes a F-S connectivity pattern.

BB = φAB
RA
FRM

(3.6)

Plugging this into our matrix representation, equation 3.7 shows how Bias Control transforms

the representation. Note that the feedforward inputs FB are not manipulated by this operation.

RB(BB , FB) = RB(φAB
RA
FRM

, FB) (3.7)

The equation above works for the case when the node has only one top down source of

attentional modulation. However, what happens when there are multiple sources affecting the

bias as is the case with feedforward inputs? Multiple lines of neurophysiological evidence indicate

that neurons receive feedback from a multitude of areas, and this must be included in our

solution. A simple solution proposed in the formulation of ST was to use the minimum of all

feedback bias signals [82], however such a computation does not take into account the interaction

of the incoming signals. Instead, we choose to take the mean of all incoming bias signals since it

41

has been suggested that feature and spatial based attentional signals are summed up additively

[81]. Other approaches such as taking a weighted average or the median are also viable.

Equation 3.8 shows the generalization for any number of incoming bias signals, where Bi =
φiBRi

FRM
and γBi is the gating signal controlled by the Gating operation described earlier. If all the

gating signals are disabled, then there is no feedback suppression and the bias term remains at

1.0. Otherwise the mean of all enabled gating signals is taken.

BB =

1.0

∑
i γ

B
i = 0

∑
i γ

B
i Bi∑

i γ
B
i

otherwise

(3.8)

Response Profile Figure 3.10 shows the bias term (in red) when a normalized input (in blue)

is provided by the Bias Control operation before stimulus onset. Here, the normalized input is

initially set to 1.0 and at a later time set to 0.5. Before stimulus onset the normalized input

is simply set to 1.0 since no top down bias is applied. However, in the case when a top down

suppressive signal is provided, the normalized input value drops resulting in a decrease in the

bias term as reflected here.

Figure 3.10: Effect of the Bias Control operation on the bias terms neural tuning curve. The
normalized input indicates a Node connected to the destination representation through a Bias
Control operation. In this figure, the effect of suppressing irrelevant features or locations is
shown on the bias terms neural response curve.

3.3.3 Bias Feedback

Overview The Bias Feedback (BF) operation, like the BC operation implements a normaliza-

tion (multiplicative or divisive) computation through feedback connections to some destination

node. The difference however, arises in the specific information being propagated, the neurons

involved and the cortical layer the signals project and receive input from. Thus, whereas the

42

Figure 3.11: Bias Feedback Neural Primitive.

Bias Control operation provided some “top down control”, the Bias Feedback operation projects

this signal to lower cortical areas while playing a role in local computational processing only.

A clear way to understand this operation is the minimum bias strategy which takes the

minimum of all feedback signals and propagates this down to the next layer in the VH as

described in [82] and rewritten in equation 3.9 for ease of reference. Note that the bias term

can vary as a function of time t. None of the other NP operations allows for the propagation of

the bias term B, yet it serves as a fundamental computation for the movement of information.

This operation was designed specifically for this purpose, however the minimum bias strategy

will not be discussed until Section 4 when we begin talking about this strategy in the context

of CP algorithms.

B(t) =
min

βε ↓
Bβ(t). (3.9)

For example, if a Bias Control operation is applied at the top most layer of the VH that

encodes a spatial location, then this encoding must be recomputed for the next layer down in

the VH because of the differences in the RF size and eccentricity of the neurons in each layer.

How such global information is translated to local information is dictated by this operation.

Figure 3.11 shows the computational representation of Bias Feedback while Figure 3.12 shows

its neural correlates.

Neural Correlates Neurons in layer 5 of the cortical column have been shown to have long

range projections to other cortical and subcortical structures and may provide a computational

mechanism of top down control to other brain areas [49]. Since a variety of neurons exist in

layer 5, the nature of the top down control signal may be due to inhibitory (PV +,SOM) or

excitatory neurons. Axons and dendrites of SOM Martonitti cells have been found all across the

cortical column but particularly in layer 1. A possible mechanism of suppression of irrelevant

features or locations may be that these SOM neurons cause an inhibition of PC neurons within

43

the same cortical layer 5, thus reducing the net feedback excitation to the layers below [49].

In fact, Womelsdorf et al. [93] provide neurophysiological support for such a circuit motif. In

the Attentional Routing Circuit model of attention [7], a similar mechanism is proposed for the

propagation of a top down control signal.

Figure 3.12 illustrates the cortical layers and cells that may be involved in this operation.

The computation begins with bias neurons from the ST equation in the supragranular layer 2/3

(see Figure 2.3) projecting to infragranular layers 1/2 of the same cortical column. This signal

is then propagated to feedforward layer 4 of lower cortical areas. As with the Bias Control

operation, this operation also incorporates descending feedback connections, but utilizes a S-F

connectivity pattern.

Figure 3.12: Cortical layers and their corresponding neural circuit motifs involved in the Bias
Feedback operation. The diagram is not meant to represent all the neurons that are present in
any given cortical layer, only those that are thought to be involved in this operation. Dotted
lines indicate connections that are present but do not contribute to this circuit motif. Bias
Feedback utilizes a S-F connectivity pattern.

Mathematical Formulation This operation works opposite to that of Bias Control. It allows

for the propagation of the Bias term BA as the feedforward input FA = φABFRMBA to some

other node (see equation 3.10, where φAB is the weight matrix connecting Nodes A and B, FRM

is the maximum firing rate that serves as a scaling factor and 0 ≤ BA ≤ 1.0).

44

FB = φABFRMBA (3.10)

To manipulate the destination representation, we plug equation 3.10 into equation 3.11.

RB(BB , FB) = RB(BB , φABFRMBA) (3.11)

Response Profile Figure 3.13a shows the bias term BA under two different conditions; B ∼=

1.0 (dotted orange line) and B ∼= 0.56 (solid blue line) which serve as our source signal that will

be propagated from a higher cortical area to a lower one (see Figure 3.12). Figure 3.13b shows

the resulting neural response curves RB color coded for their corresponding input conditions.

As expected, a larger bias signal results in a greater neural activation in RB .

(a) (b)

Figure 3.13: (a) Bias term being propagated BA, and (b) the resulting neural response curve
RB , plotted under two different conditions.

3.3.4 Integration

Overview An integration operation is the most well known neural computation as it represents

the integration of information from a variety of different sources. This information is used

in conjunction with CP algorithms for sensory processing, and higher level decision making

processes such as evidence accumulation through feedforward excitation and inhibition. Note

that a critical distinction here is that the integration operation takes input from a variety of

sources whereas the Bias Control and Bias Feedback operations represent a single computational

unit between any two Nodes.

Figure 3.14 shows the computational representation of Integration.

45

Figure 3.14: Integration Neural Primitive.

Neural Correlates The process of integration is a summation of all the incoming dendritic

signals to the cell body [1].

Hence, there may be two possible mechanisms by which information may be integrated to

implement a variety of arithmetic computations (addition, subtraction, division and multiplica-

tion) [73] as well as more complex higher level decision making processes [8]. First, a feedforward

excitation via direction connections to PCs in this layer or feedforward inhibition connections

via stronger excitatory connection to inhibitory interneurons [92] . And second, direct inhibition

or indirect excitation via disynaptic disinhibition [92] may play a role in this operation.

Figure 3.15 indicates the neurons that may be involved for ascending feedforward connections

terminating in feedforward layer 4 of the destination Node B. Note here that the source of

the inputs may be direct (through a I-F or S-F connectivity pattern) or indirect since both

connections are found in the neurophysiological literature.

Mathematical Formulation This operation allows for the integration of feedforward input

and is the most well known configuration of neural connectivity. Equation 3.12 shows the

manipulation of the feedforward term FB while equation 3.13 shows how the neural activations

may be manipulated, where Ri represents the integration from the ith representation and φiB

is the weight matrix connecting Ri to RB .

FB =
∑
i

φiBRi (3.12)

RB(BB , FB) = RB(BB ,
∑
i

φiBRi) (3.13)

46

Figure 3.15: Cortical layers and their corresponding neural circuit motifs involved in the Inte-
gration operation. The diagram is not meant to represent all the neurons that are present in any
given cortical layer, only those that are thought to be involved in this operation. Dotted lines
indicate indirect connections that are present. Integration utilizes a S-F and I-F connectivity
pattern.

Response Profile The effect of the integration operation is shown in Figure 3.16. The two

curves represent the neural activation of RB when the input signal RA is set to RA = 0.5FRM

and RA = 1.0FRM denoted by the blue and orange curves, respectively.

3.4 Summary

In this section we have detailed the mathematical formulation and definition of representations

and how these may be transformed using NP operations. Two kinds of representations; default

and memory were defined to account for different kinds of neurons found within the primate

brain. Four NP operations: Gating, Bias Control, Bias Feedback and Integration dictated the

specific function computed.

To summarize the material, Table 3.1 shows the three kinds of representations defined;

default, memory and context that may have as of yet three kinds of node implementations; VH,

PFC and WM.

Table 3.2 shows the derivative computations that may be implemented by our NPs either on

47

Figure 3.16: Neural activation after applying an Integration operation under two different con-
ditions. When the source input is half (0.5FRM) and at the maximum (1.0FRM) firing rate
respectively.

Representation
Node

Implementation
Default Memory &

Context
Description

VH X Also referred to as VH sheets.

PFC
May be responsible for maintaining

task information or application of top
down control signals.

WM X Predominately maintains task based
stimuli information.

Table 3.1: Three kinds of representations (default, memory and context) may consist of one of
three types of implemented nodes.

48

their own or in conjunction to the algorithms implemented by CPs (introduced in Section 4).

Such computational counterparts were inspired by biological arithmetic computations [73, 92],

circuit motifs (see Table 2.3) [93] and network dynamics [12, 44].

Neural Primitive Computations
Gating Task dependent information routing, action or decision

selection
Bias Control Gain control, feedback inhibition
Bias Feedback Feedback inhibition
Integration Evidence accumulation, sensory processing, feedforward

inhibition, feedforward excitation

Table 3.2: The key computations implemented by our Neural Primitives.

Furthermore, the implementation of these computations was defined by a set of mathematical

transformations as shown in Table 3.3.

Neural Primitive Mathematical Formulation Description
Bias Control RB(BB , FB) = RB(φAB

RA

FRM
, FB) Manipulation of the bias term

BB . Also see equation 3.8 for
integration of more than one

top down bias signal.
Bias Feedback RB(BB , FB) = RB(BB , φABFRMBA) Feedback propagation of the

bias term BA as the feedforward
input FB to RB .

Integration RB(BB , FB) = RB(BB ,
∑
i φiBRi) Integration of feedforward

inputs Ri from a variety of
different sources.

Gating Controls the flow of information
between two representations.

Table 3.3: A summary of the mathematical formulation of Neural Primitives.

Finally, a fundamental component of this section was to answer the question “what are the

neural correlates of Neural Primitives?”. To answer this question, we proposed how groups

of neurons within and between cortical layers may interact to give rise to the computations

implemented by NPs. Table 3.4 provides a summary of the operations connectivity patterns

inspired by anatomical connections found within a cortical column [50]. For the layers we have

indicated in brackets whether this layer corresponds to a supragranular (S), feedforward (F)

or infragranular (I) layer. Note that this does not necessarily reflect direct cortical-cortical

connections between these areas since indirect connections through subcortical areas also exist.

Nonetheless, the source and destination areas remain the same. The anatomical connectivity

for the gating operation is greyed out since a variety of mechanisms are involved in this process.

49

Neural Primitive Anatomical Connectivity
Source Destination

Gating
Bias Control Layer IV

(F)
Layer II, III

(S)
Bias Feedback Layer I, II, V

(S,I)
Layer IV

(F)
Integration Layer I, II, IV, V

(S,I)
Layer IV

(F)

Table 3.4: The source and destination connectivity patterns distinguishing each of our Neural
Primitives. The letters in brackets S, F and I correspond to the supragranular, feedforward and
infragranular layers, respectively, of Figure 3.5.

50

4 Cognitive Programs Memory Specification

4.1 Overview

Recall that one of the aims of this thesis is to propose a framework for solving visual tasks by

applying a sequence of operations on representations until the goals of the task have been met.

This was originally envisioned as Visual Routines by Ullman [88].

Cognitive Programs (CPs) - a modernized version of Ullman’s Visual Routines [88] are

algorithms used to guide visual task execution. These algorithms include computations including

but not limited to providing top down control signals, selecting region of interest, dealing with

covert and overt fixations, information routing, access to memory, matching to task, priming

and coordination of bottom up and top down information [84].

A recent addition of the STAR architecture - the Cognitive Program Compiler (CPC) [32]

provides a definition of how CPs can be useful for task execution. The CPC is part of the visual

task executive (vTE), and is responsible for translating human readable text such as “a red object

will appear” into a task script that consists of a sequence of commands for task execution. Some

of these commands may be calls to CPs with parameterization such as V H.Prime({′color′ :′

red′}) while others may contain decision elements for setting up the system and deciding what to

do next. The task script generated by the CPC is the starting point for selecting and sequencing

the CPs that should be executed for a given visual task.

However, the current STAR architecture still does not provide a standardized way of assem-

bling, storing, retrieving, parameterizing and executing CPs. Because of this, each visual task is

hand coded making future development and research difficult and time consuming. Furthermore,

the components that can and cannot make up a CP had not been clearly defined. Consider,

the four proposed Neural Primitives (NPs) and their computational counterparts inspired by

circuit motifs [92, 93] in the previous section. How can we incorporate NP computations into a

sequence of operations in CPs such that they may be useful? And how can we design CPs such

that they can be reused for a variety of different visual tasks and expedite future research and

development into the STAR architecture?

This section introduces the Cognitive Programs Memory (CPM) used to solve the issues

of assembling and storing CPs as methods as well as how it interacts with the vTE for CP

execution. A method acts as a “skeleton” algorithm which cannot be executed without providing

task information while a script is an executable version of a tuned method formed when a task

specification is provided.

The CPM is responsible for holding CPs that can be rapidly parameterized and executed

51

with minimal instructions, thus providing ease-of-use for simulating a variety of visual tasks. As

the CPM is only a database, it cannot be used to execute a visual task on its own. Instead, it

requires the vTE - a fundamental component of STAR, without which task execution would not

be possible. The vTE is responsible for retrieving a method from the CPM, set the parameters

given task demands to form a script and subsequently execute them. The stored methods in

the CPM are algorithms that specify what is required for task execution and are composed of

a sequence of commands. Once a CP is finished with its execution, the result is returned to

the vTE which then decides on what to do next. A detailed description of how methods are

assembled and stored by the Method Elements (CPM-ME) and Methods Database (CPM-MD),

respectively is presented in Section 4.2.

While Section 4.2 deals with how any method is assembled and stored, Section 4.3 introduces

eight implemented methods (see Table 4.1) that are useful for task execution. Each method

may also act to utilize NP computations for manipulating representations contained in one or

more modules of STAR while others may not need to manipulate them at all. As such, the

introduction of each method is accompanied by a thorough discussion of the involved Method

Elements, representations (or Nodes), NP operations and their neural correlates. Future work

may look to expand the possible set of methods and the ones listed here are only a starting

point. Finally, after thoroughly describing each of the methods, we then explain how a stored

method may be parameterized, retrieved and executed by the vTE.

Recognition Methods Fixation Control
VH.Localization FC.setFHMBias

VH.Prime
VH.Detection
VH.Recognition

VH.Categorization
VH.Identification

VH.Identification (within category)

Table 4.1: Methods are composed of Method Elements in the CPM-ME, stored in the Methods
Database (CPM-MD) and divided based on the STAR module they operate on.

4.2 Framework

Before we delve into the components of the CPM, it is important to step back and look at

the CPMs interaction with the rest of STAR as shown in Figure 4.1. Doing this, allows us to

visualize the steps required to complete a visual task.

The figure is incomplete and by no means represents all of the components that are present in

each of the STAR module as described in Section 2 and [84]. For example, the arrows indicating

the flow of information as shown in Figure 2.2 between each STAR module have been omitted

52

in Figure 4.1 for clarity. To make the material more digestible, the figure serves as a bare-

bone STAR framework where we can add in additional components such as representations and

their corresponding NP operations as required by each method that will be introduced in the

subsequent section.

For visual task execution to occur, methods must first be assembled using Method Elements

(CPM-ME). Thus far, assembled methods are hand crafted but future work may look at au-

tomatically learning new CPs given the current task demands. Assembled methods are then

stored into a Methods Database (CPM-MD).

Just before visual task execution, the vTE fetches the relevant methods from the CPM

and sets the appropriate parameters to all other STAR modules. The vTE then sequences their

execution and makes deterministic decisions on whether to terminate the task or execute another

CP depending on the current task state. The script constructor, executor and monitor in the

vTE are represented as a single block that takes in task specification as input. Further detail

of the components may be found in Section 2 and [32].

The vAE receives control signal specification from the vTE dependent on the specific CP

to be executed and these signals are propagated to other STAR modules - VH, FC, vWM and

tWM using the control signal generator. The vAE may also access the active script notepad in

the tWM to read currently set control signals in order to assess the current state of the system.

This information may be related back to the vTE to make decisions such as whether the task

is complete. Some of the possible control signals are indicated by arrows connecting the control

signal generator to the VH. Refer to [84] for further discussion of the involved control signals.

The VH receives a feedforward retinal signal and processes input through layers V1, V2, V4

and IT. Here, each layer is composed of N sheets, each representing a selectivity to a certain

feature such as color or orientation. The parameters used for the experiments are found in

Appendix C.

Now that a high level understanding of how a task may be executed is provided, it is impor-

tant to look at how methods may be assembled and stored in the CPM in more detail. Figure 4.2

shows that the CPM-ME is itself composed of several subelements: NP operations as discussed

in Section 3 and Base Methods that are of themselves composed of several subelements. The

idea of assembling methods is that Base Methods can be sequenced together to form more com-

plex ones. Once a desired configuration is achieved, they can then be stored (Stored methods)

in the CPM-MD. A detailed discussion of the CPM-ME and CPM-MD is provided in Sections

4.2.1, and 4.2.2, respectively.

53

Figure 4.1: A bare-bone STAR architecture showing a subset of the components involved.
Arrows indicating the flow of information between the various modules have been omitted as
well as several other components for clarity. Here, the Cognitive Programs Memory (CPM) is
responsible for the creation of new CPs using a set of Method Elements (CPM-ME). CPM-MEs
are then assembled and then stored into the Methods Database (CPM-MD). Stored methods
are accessible to the vTE for retrieval, parameterization and execution. Additional components
in each STAR module will be added as each CP is introduced.

54

Figure 4.2: The Cognitive Programs Memory (CPM) is composed of the Method Elements
(CPM-ME) and the Methods Database (CPM-MD). The CPM-ME uses low level NP operations
in conjunction to a set of Base Methods to compose useful methods for task execution. Such
methods are then stored into the CPM-MD. The arrow between Actions and Queries indicate
that information captured from executing a process, parameter specifications and access to
representations can be used for conditional statements. This Figure is identical to Figure 1.1
introduced in Section 1.

4.2.1 Method Elements

Just as Ullman proposed a theory that visual tasks can be solved by reducing the required

processes down to a set of atomic operations that may be parameterized for a given task, the

Method Elements (CPM-ME) as part of the CPM serves this purpose.

This component provides a set of commands - Base Methods, that can be combined in

a number of different ways to form more complex methods that may be utilized for visual

task execution. In Figure 4.2, the arrows between two categories of Base Methods - Actions

and Queries indicate that information captured from the execution of a process, parameter

specifications and access to representations can be used for making future decisions. The arrows

connecting the NP operations to the “Access to Representations” indicate that Neural Primitives

can be utilized by Base Methods to perform computations on representations, as discussed in

Section 3. Notice that the total breadth of commands that we require is beyond those computed

by the NP operations. For example, several of the control signals such as apply suppressive

surround or disengage attention are not part of the NP operations. Future work may look to

propose additional computational counterparts of biological operations that would extend the

55

current set of NP operations.

Below, we describe all of the Base Methods that are divided into two categories - Actions

and Queries. For each category, there are several implemented Base Method function calls with

their corresponding parameters. All of the methods in the CPM-MD that are discussed later

will be constructed from this set of commands.

1. Base Methods: Set of commands that can be used to construct other methods, divided

into two categories.

(a) Actions: Actions help to bring the system closer to task completion in a number

of different ways. Three kinds of actions are defined: Access to representations,

parameter specification and execute a process.

(b) Queries: Queries are encoded as conditional statements. They can be used to read

the current state of the system and the result provides information on what the next

action should be.

2. NP Operations: Operations act to transform representations (see Section 3) and are uti-

lized by the Base Methods.

Actions Access to representations includes reading the current neural activations of a Node

or enabling and disabling the NP Gating operation connecting two Nodes. Reading the current

neural activations may be useful for making decisions on what should be done next (such as task

termination), while manipulating the Gating operation allows for the movement of information

(information routing). Enabling or disabling the Gating operation is done depending on current

task demands at an instance in time. Additionally, writing to a Node is used when setting the

input parameters, as is the case for context Nodes (see Section 3.2). Table 4.2 shows three

implemented commands for this purpose.

Base Method Description
Gate <source node> to <destination node> Enables or disables NP gating between

two Nodes connected by one of three
NP operations (Integration, Bias
Feedback and Bias Control).

Read <node> Reads the current Node state.
Write <node> Writes to the Node state.

Table 4.2: Access to representations is composed of three commands. <> brackets indicate the
allowed parameterization for the functions.

Parameter specification, as shown in Table 4.3, is useful for initializing various settings before

subsequent CP execution. For example, if we wish to prime the VH using an attentional sample

56

(AS) stored in the tWM, then the appropriate input for the tWM context nodes must first be

set. Furthermore, parameter specification is also useful for specifying the decision criteria for

determining if a match operation is successful.

Base Method Description
Load <AS> to <tWM,vWM> Loads the AS to either the

tWM or vWM by utilizing the
“Write <node>” command in
Access to Representations.

Set <Decision Criteria, Mem
Consolidation> Params

Sets the parameters for
detection and the memory

consolidation signal.
Set FHM [task bias] for
<location, weight>

Sets the parameters for FHM
bias.

Table 4.3: Parameter specification commands. <> brackets indicate the possible parameteriza-
tion for the functions, each separated by a comma.

Finally, execution of a process refers to either selection of another CP for execution or another

command that should be executed. For example, after a single feedforward pass through the

VH, a winner needs to be selected at the top of the VH using the θ−WTA algorithm. Such an

action can be used to wait until a winner is selected or perform another action if no winner is

found. See Table 4.4 for a summary of commands.

Queries Queries are encoded as conditional statements and the result is used for deciding

what the next action should be. The current state of the system can be read by reading the

current neural activations of representations or by reading the current task and control signal

parameters stored in the active script notepad. Some of the useful queries we use are listed in

Table 4.5.

4.2.2 Methods Database

Thus far we have highlighted a set of Base Methods in the CPM-ME, some of which utilize NP

operations while others do not. Now, the Method Elements must be combined in meaningful and

useful ways to give rise to computations involved in a variety of visual tasks. Method element

sequencing and parameterization, independent of task specification results in the assembly and

storage of methods in the Methods Database (CPM-MD). The Methods Database (CPM-MD)

contains the implemented methods listed in Table 4.1 and a detailed description of each one is

provided in Section 4.3. This list is not meant to be exhaustive, but instead they show a proof

of concept of the required CPs for executing several visual tasks.

Methods from the CPM-MD may now be fetched by the vTE which can then set the ap-

57

Base Method Description
Feedforward (FF) retinal Signal Enables the propagation of the retinal signal

through the VH.
Select central Focus of
Attention (cFOA)

Attempts to make a selection at the specified
layer using the θ −WTA algorithm. See

Literature Review Section 2.2.
Apply suppressive surround

(SS)
See Literature Review Section 2.2.

Disengage attention Disengages any attentional mechanisms in
place.

Do Location Inhibition of
Return (L-IOR)

Engages the L-IOR mechanism. See Section
4.3.8.

Select <Layer Name, NEXT>
Layer

Selects the specified layer.

Select <Method Name>
Method

Allows for the selection of another method to
be passed off to the vTE for execution.

Build <AS> from <params> Builds a task specified AS that may be used
for other processes (for example, by “Load
<AS> to <tWM,vWM>” in Parameter

Specification).
Reset <vWM,tWM> Resets neural activations of the vWM or

tWM.
Compute Decision Computes the result of VH.Detection,

VH.Recognition, VH.Categorization,
VH.Identification using equations presented

later.

Table 4.4: Commands for executing a process. <> brackets indicate the possible parameteriza-
tion for the functions, each separated by a comma.

Base Method
Is the winner found?
Are there more layers?

Is there AS for this layer?
Start Layer Specified?

Store AS?
Decision Criterion Met?

Table 4.5: Queries are encoded as conditional statements and the result is used for deciding the
next state of the system.

58

propriate parameters to make executable scripts provided some task specification. For example,

one of the methods shown in Table 4.1 - VH.Prime is used to provide stimulus expectations

before it is presented to the system. If the system is told that “a red object will appear”, then

this parameterization must be translated into a task specification. In the next section, we will

explain how the CPM-ME constituents are used to assemble methods and how they are effected

by task specification.

4.3 Cognitive Programs Memory Methods

4.3.1 Overview

In this section we introduce each of the methods in the CPM-MD, listed in Table 4.1. For each

of the methods, two key diagrams will be presented.

The first diagram will show a flowchart-like algorithm of the Method Elements used to

compose a method, with arrows to indicate the flow of execution. As part of this, each of

the methods also require access to one or more representations.

The second diagram shows the representations as Nodes and the corresponding NP opera-

tions in the STAR modules. In order to reduce redundancy and improve clarity of our figures,

connections will be shown in the compressed view as indicated in Figure 4.3. In this example,

a Bias Control operation from each layer and sheet in the tWM makes a connection to the

corresponding layer and sheet in the VH. This imposes a constraint, namely that the number

of Nodes in both the VH and tWM are identical. A gating node is optionally shown between

an NP and its default value is set to false unless otherwise specified.

4.3.2 VH.Localization

Overview During a single feedforward pass, only the information at the top most layer is

available, and sometimes this may not be enough to correctly detect, discriminate or categorize

a stimulus. In such a case, the localization process may be invoked to iteratively traverse down

the VH while applying a suppressive surround mechanism at each layer to improve the signal-to-

noise (SNR) ratio. The VH may then be “reinterpreted” in an attempt to reclassify the stimulus

[85]. For a detailed description of the localization process see [85].

The localization process also results in the formation of the attentional sample (AS). The

result of the VH.Localization process is a reference to a partial or a fully defined AS. A partial

AS is formed when the localization process terminates early due to an interruption by another

process or by task specification. In this case, a full traversal down the VH has not occurred and

only a subset of the information is captured. This AS can be used to parameterize the input of

59

Figure 4.3: For clarity of subsequent diagrams showing the connection of Nodes between different
STAR modules, the expanded view will be represented using the compressed view convention.
See text for further description.

other CPs such as for priming the VH, recognizing the class of a target or biasing the fixation

history map (FHM).

As with any other method, VH.Localization contains Method Elements that operate on

components within STAR. Figure 4.4 shows an integration operation allowing information to

be routed from the VH to the vWM to build an AS during the localization process. Although

the active script notepad is not used in this method, it is included here to show that the state

of the vWM can be read using this module. Furthermore, several of the control signals used are

also indicated.

Method Elements - Algorithm Figure 4.5 shows the sequence of actions and decision

elements that compose this method and act on the subset of components highlighted in Figure

4.4.

This method begins with first reseting any contents that may be present in the vWM (Reset

vWM) followed by a feedforward pass (Feedforward Retinal Signal) of the VH. A winner is

then selected at the top of the visual hierarchy (Select cFOA) and the θ − WTA decision

process is invoked. If a winner is found (Is the winner found?), the resulting cFOA is gated

to the corresponding vWM Nodes using an integration operation (Gate (Selected) VH Layer to

vWM). The suppressive surround (SS) mechanism is gated algorithmically (Apply Suppressive

Surround) and further discussion of this is beyond the scope of this thesis but see [82].

Next, if there are more layers (Are there more layers?) the process is repeated in the

layer down (Select NEXT layer) and all the neurons that do not contribute to the winner in

60

Figure 4.4: During VH.Localization, an AS is built and stored in the vWM using an integra-
tion operation from the VH. The resulting AS may be read by the Active Script Notepad for
subsequent operations. The vWM contains Memory Nodes indicated by arrows pointing to
itself.

61

the higher layer are pruned, in effect improving the SNR from the figure and surround. This

process continues down the visual hierarchy and the resulting AS can then be stored into the

vWM for later use.

In some cases a full traversal down the VH may not occur given either task demands or an

interruption by some other process. For example, task demands may specify that it is sufficient to

know which quadrant the stimuli appeared in or incoming visual stimuli may prevent localization

to occur down to the lowest layers of the VH. In such cases, we end up with a partial AS which

is returned to the vTE that then decides the next course of action.

Figure 4.5: The VH.Localization algorithm shows the sequence of actions and queries that are
required for CP execution. Each box is color coded with access to representations (purple),
parameter specification (yellow), execute a process (green) and conditional statement decision
(blue).

Neural Correlates The localization process requires an integration of a variety of neural

mechanisms and is beyond the scope of this thesis. Instead, neurophysiological support for

localization, the suppressive surround mechanism amongst others can be found in [85]. The

resulting attentional sample produced by this CP may reside in a “blackboard” with neural

correlates previously proposed to be in the pulvinar [31] but more recent work suggests that the

vWM with neural correlates in the PFC may be necessary to store a full attentional sample [70].

Localization Example Figure 4.6 a shows the incoming visual stimulus to the VH which then

passes through layer V1 of the VH (Figure 4.6 b). Figure 4.6 b shows the AS representation

in the vWM after the contents of VH layer V1 have been gated. However, since the AS is a

hierarchical network of winning units, we can choose to keep only the information contained

in these winning units. In order to do this, the AS may be transformed to represent location

information only as shown in Figure 4.6 c. Here, the white area represents the subset of winning

units all of which are set to 1.0. The surrounding units, shown in grey are suppressed.

62

(a) (b) (c)

Figure 4.6: Copying an attentional sample (AS) from VH to vWM. (a) Incoming visual stimulus
to the VH. (b) The representation of an AS from layer V1 in the VH stored in the vWM and
(c) The transformed attentional sample for representing spatial location only.

4.3.3 VH.Prime with AS

Overview Priming increases the selectivity of relevant features while suppressing irrelevant

ones and in order to be effective, it must be applied 300 - 100 ms before stimulus onset [48].

Specifically, priming can be used to provide useful information to the subject as to where they

should look or the kinds of features and objects they should be searching for. Such information

can result in a reduction in reaction times and error rates [56] as well as a modulation in neural

tuning curves [39, 40].

One way to prime the VH is to present a cue to the system to be processed, build an

attentional sample and use this as a basis for priming as discussed in [84]. This method describes

how an attentional sample built from VH.Localization (see Section 4.3.2) can be used for priming

the VH for spatial, feature or object based information.

Priming with an AS requires the Nodes in the tWM and VH connected together with a Bias

Control operation as shown in Figure 4.7. The tWM is represented as a context node and takes

as input an AS for parameterization. The corresponding control signals required for priming

are also indicated by the Control signal Generator.

Method Elements - Algorithm To prime the VH using an Attentional Sample (AS), one

must already have been created by the VH.Localization process.

Depending on what we wish to prime for, we can have an AS represent three different kinds

of information as listed below. For more information about these different AS representations,

please see Appendix C.

1. Spatial AS : The captured AS only contains information about the location of the object.

2. Feature AS : The captured AS only contains information about a feature of the object (i.e.

“the object is red”).

3. Object AS : The captured AS contains both location and feature information about the

63

Figure 4.7: Priming with an attentional sample (AS) requires Memory Nodes in the tWM with
context node input provided by the vAE. The tWM primes the VH with an AS using the Bias
Control operation.

64

object.

As an example, Figure 4.8 shows an AS containing only location information on three layers of

the VH: IT , V 4, V 2 with the corresponding sizes indicated in brackets. For this example, it is

assumed that the feature information is irrelevant, hence the AS is identical for all sheets within

a given layer.

Figure 4.8: A hypothetical AS shown for four layers of the VH. Here, we assume that only
location information is captured and the AS is identical for all sheets within a layer.

The method elements involved in priming the VH with an AS are shown in Figure 4.9.

Priming at each layer is assumed to occur in discrete time steps with the completion of a

priming operation at one layer triggering priming at a subsequent layer. The process begins by

first selecting the start layer we wish to prime on Select Top Layer followed by loading the AS

into tWM (Load AS to tWM). Any previously engaged attentional mechanisms are disengaged

(Disengage Attention), the system checks if an AS for this layer exists (Is there AS for this

layer?) and then gates the contents to VH (Gate AS from tWM to VH). In the case when there

is only a partial AS available, priming with the minimum bias strategy is employed in subsequent

layers (Select VH.Prime (minimum bias)). Here, the minimum bias strategy discussed in Section

4.3.4 is used to propagate the minimum of all feedback bias signals down to the next layer (see

Figure 4.13)

4.3.4 VH.Prime without AS

Overview A second method of priming the VH can be achieved by user provided task based in-

formation such as “look left” (V H.Prime({′location′ :′ left′})) or “the object is red” (V H.Prime

({′color′ :′ red′})). Alternatively, both pieces of information can be fed into the system at the

same time (V H.Prime({′location′ :′ left′}, {′color′ :′ red′})). Here we assume that this infor-

mation is conveyed to the system by the vTE script executor.

At this time, this method has only been implemented to prime for two kinds of features

and four locations. The implemented features it can be primed for are color with three values

65

Figure 4.9: VH.Prime with AS Algorithm. Each box is color coded with access to representations
(purple), parameter specification (yellow), execute a process (green) and conditional statement
decision (blue).

[red,green,blue], and orientation with nine values: [-90,-67.5,-45,-22.5,0,22.5,45,67.5,90]. The

locations the system may be primed for are [left,right,up,bottom].

Figure 4.10 shows that priming without an AS requires Nodes in the tWM, VH and the

use of two NP operations - Bias Control and Bias Feedback. When priming without an AS,

we propagate the minimum bias term down each layer of the VH as shown by Equation 4.1.

Because of this, only the top most IT layer in tWM is used as input.

B(t) =
min

βε ↓
Bβ(t) (4.1)

Since we model two forms of priming - spatial and feature based, each originating from a

different source - two tWM nodes are utilized, indicated as a cascade of tWM AS’s in the figure.

This separation allows us to apply spatial or feature based priming independently. These two

top down signals from the tWM to the VH are combined by taking an average of all converging

bias signals as described in Section 3.3.2 for the bias control NP operation. Furthermore, there

are also Intermediate Bias Feedback Nodes connecting to the VH using Bias Feedback and Bias

Control operations. These nodes are also involved in the propagation of the minimum bias term

down each layer of the VH.

The involvement of all of these nodes in priming without an AS will be discussed shortly.

However, before any of this can occur, the tWM nodes must first be parameterized for a spatial

location or feature as discussed below.

66

Figure 4.10: Priming without an attentional sample requires task based parameterization that is
fed into the tWM. Separate nodes are used for feature and spatial based priming. The contents
of the IT layer in tWM are gated to the VH using a Bias Control operation. Propagation of the
information down the VH requires first computing the minimum bias (see equation 4.1) using
the Bias Feedback operation, followed by applying a multiplicative top down bias down the next
layer using the Bias Control operation. Note that the Bias Control condensed notation between
Intermediate Bias Feedback Nodes and VH Layers and Sheets is included for all layers except
IT .

67

Spatial Parameters The location parameterization is uniform across all sheets within a

VH layer irrespective of the feature. A specification of the spatial location to prime for is

implemented via a Gaussian as shown in equation 4.2. Parameters µx and µy specify the

location the Gaussian is centered while σ is the variance parameter assumed to be uniform

across both the x and y dimensions. All parameters were heuristically optimized. Variables

xand ydetermine how the Gaussian function value changes over the spatial dimensions.

P (x, y) = exp(− (x− µx)2

2σ2
) ∗ exp(− (y − µy)2

2σ2
) (4.2)

Feature Parameters In contrast, feature priming affects all neurons within a sheet uniformly

but the difference in parameterization arises between sheets within the same layer. The input

to feature priming is inspired by the work of Martinez-Trujillo & Treue [39]. They note that

the direction of motion of the attended stimuli resulted in different neural tuning curves of MT

neurons with nearby features showing an enhancement while features farther away showed a

suppressive effect. Figure 4.11 shows their findings and indicates that features farther away

from the attended one appear to be more strongly suppressed than those that are closer to the

attended feature.

Figure 4.11: Feature based attentional modulation parameterization. The modulation ratio
reproduced from [39]

To model these findings for task based parameterization, we introduce equation 4.3.

P (d) =

2α
L |d−D0|+ wmin |d−D0| < L

2

2α
L (L− |d−D0|) + wmin otherwise

(4.3)

Here d is the feature selectivity of the given sheet and D0 is the sheet index corresponding

68

to the attended feature. α = wmax − wmin, is a user specified normalization parameter, where

0 < wmax < 1, 0 < wmin < 1, wmin < wmax and L is the number of dimensions for the feature of

interest. For example, assume that we have ten orientations between 0 and 180 with increments

of 18◦ and we wish to attend to the feature with an orientation of 90◦. Then, since we have ten

feature dimensions, L = 10 and the attended feature corresponds to its index, D0 = 5. Figure

4.12 shows how this equation changes with varying values of wmin and wmax.

Figure 4.12: Plotting Equation 4.3 for three different pairs of values of wmin and wmax shows
how the corresponding task parameter changes.

Method Elements - Algorithm To apply priming using task based parameters, the method

elements shown in Figure 4.13 are required.

The process begins by first checking if a start layer for priming has been specified (Start Layer

Specified?). This is only used if the method for priming with an AS as discussed in Section 4.3.3

specifies. For example, if there exists a partial AS with information available only for layers IT

and V 4, the V H.Prime without an AS may be called with a start layer specification of V 4 in

order to use the minimum bias strategy to prime lower layers of the VH.

If no start layer is specified, then priming begins at the top layer Select TOP layer. Following

this, the tWM priming parameters for specifying the feature or location we are searching for are

set (Load (priming params) AS to tWM) using either either equations 4.2 or 4.3.

Any previously placed attentional mechanisms are disengaged (Disengage Attention) and

the contents of the IT layer in tWM are gated to the VH (Gate tWM to VH) using the Bias

Control operation.

To propagate the minimum bias term down to the next layer of the VH, Bias Feedback

followed by the Bias Control operation is required.

First, layer L in the VH is gated to layer L − 1 of the intermediate bias feedback (IBF)

node (Gate VH to IBF). When this gating process is enabled, the minimum bias term given by

equation 4.1 is also computed and the resulting values are used as the input to the IBF node.

Next, we need a mechanism to now propagate this computed minimum bias to the next layer

69

of the VH and this is accomplished by the Bias Control operation (Gate IBF to VH) from layer

L− 1 of IBF to the corresponding L− 1 layer in the VH.

Each of these gating processes occur at distinct time steps and the process continues down

subsequent layers if more layers are present (Are there more layers?), otherwise the process

terminates.

Figure 4.13: VH.Prime without AS Algorithm. Each box is color coded with access to repre-
sentations (purple), parameter specification (yellow), execute a process (green) and conditional
statement decision (blue).

Neural Correlates A variety of cortical areas have been implicated in top down control

that influence both behavior and neural response curves given visual tasks. Microstimulation

of the dlPFC results in a bias in behavioral target selection [52] while lesions in the PFC

have been shown to cause a loss of a top down signal to IT resulting in significant behavioral

performance deficits [78]. Inactivation of FEF have been implicated in deficit target detection

among distractors in a covert attention paradigm [90] while lesions in LIP negatively impact

task performance requiring spatial attention [3]. fMRI studies indicate that several cortical areas

have been shown to enhance stimulus and object attributes when attention is deployed to either

a spatial ’look left ’, feature ’search for the color red ’ or an object cue ’search for a car ’ [92].

In summary, the neurophysiological literature suggests that several cortical areas are involved

in attention and directing attention to a spatial or feature dimension of a visual stimuli results

in an enhancement of the corresponding neural responses and improves discriminability of the

visual stimuli amongst distractors [89].

The circuits introduced in Figure (4.10) aim to provide this top down control mechanism as

70

a multiplicative bias to layers of the VH. The gating node allows for the timed propagation of

the signal down the VH as seen in studies suggesting a latency of attentional modulation down

the VH [43]. Spatial and feature based parameterization allow us to account for the difference

in neural attention effects due to spatial and feature based attention respectively.

Spatial Priming Example Figure 4.14 shows the bias term activation map computed down

layers IT , V 4, V 2 and V 1 after priming is complete. The system has been told to “look left” by

the command VH()− >prime(‘location’:‘left’); before stimulus onset and is then transformed

into the corresponding parameters using equation 4.2. Lighter areas indicate higher bias values

while darker grey areas indicate more suppressed regions.

Figure 4.14: Node bias activation map after priming for a spatial location using user specified
task parameterization. The activation maps are drawn according to the respective size of the
layers.

Feature Priming Example Priming for a specific feature results in a uniform bias across

the entire sheet but differences between sheets in a given layer. Figure (4.15) shows three sheets

in the same layer with a top down bias imposed on the right most sheet.

Figure 4.15: Node bias activation map after priming for a feature location using user specified
task parameterization.

71

Combined Priming Example Figure (4.16) shows the effect of combining both feature and

spatial priming on the sheet activations in one layer of the VH.

Figure 4.16: Node bias activation map after applying both spatial and feature parameterizations.

4.3.5 VH.Detection

Overview A detection task is one in which one class is noise and the other represents the class

of interest. Recall from the literature review that detection is a subset of discrimination. Thus,

a single feedforward pass is sufficient for this kind of visual task. This method may be called

with an input specification of what we wish to detect (i.e. ’red circle’) or via an attentional

sample representing information of the target. Regardless of how this method is called, only

information at the top of the VH is available due to insufficient time for a feedback pass. Also

note that an AS is only available in this instance if a visual cue is provided prior to the detection

task with sufficient time to process its AS. Depending on the specific task demands, there are

three kinds of detections we can perform as shown in Table 4.6.

Detection
Type

Description Example Task Instructions

Location Detection process only requires
comparison of location

information irrespective of the
features that may appear at

that location.

“Press the spacebar if the target
appears in the left hand

quadrant”

Feature Spatially invariant detection is
performed for the provided

feature specification.

“Press the spacebar if the target
is red”

Location
and Feature

Both the location and feature
information are used for

detection.

“Press the spacebar if the red
target is in the left hand

quadrant”

Table 4.6: Three kinds of detection processes may be employed, each of which is governed by
the VH.Detection’s input specification given task demands.

The detection method requires a complex interaction of the vTE, vWM, tWM and VH as

shown in Figure 4.17. Detection allows for the comparison of one class in tWM to the contents

72

in vWM with the aid of Match Detection nodes in the vTE. The final decision of whether the

match was successful or not is made by a Decision Node in the vTE which then sends the result

to the Script Monitor to make decisions on the next course of action.

In the VH.Detection, VH.Recognition, VH.Categorization and VH.Identification tasks, the

match criterion is defined as the similarity between the AS stored in the vWM to a template

AS representing the ground truth in tWM with a detailed description of this process to follow.

Figure 4.17: Match Detection Network consisting of nodes in the tWM and vWM receiving
input from the VH. Contents are compared by the Match Detection Node and a decision node
consisting of a single neuron outputs the result. Note that only the top most IT Nodes are used
for the comparison.

73

Method Elements - Algorithm To explain how detection occurs in significantly more detail,

Figure 4.18 shows the method elements involved.

Before detection can occur, the contents of tWM must first be loaded with a specification

of the target (Load (target) AS to tWM). If an input specification is provided (i.e. ’red circle’),

then an AS is dynamically built internally. If an AS is provided as input, we assume that it

has already been captured by a visual cue presented to the VH prior to the detection task with

sufficient time to process its AS using the VH.Localization process described in Section 4.3.2.

Next, a stimulus input provided to the VH (Feedforward Retinal Signal) propagates through the

VH and a θ −WTA selection occurs (Select cFOA).

If a winner is not found (Is the winner found?), the detection process terminates. Otherwise

the VH.Localization method is employed to capture the partial AS of the incoming stimulus

composed of only the top IT layer (Select VH.Localization). Because of the result of this

operation, the captured partial AS has now been gated into the vWM with the help of the

integration NP operation.

Now that the tWM contains the target template we wish to detect and the vWM contains

the input stimulus to which we wish to compare the contents, we must now set some detection

criteria (Set Decision Criteria Params). This is discussed shortly by introducing equations

4.4 and 4.5. Next, the contents of both tWM and the vWM are gated to the Match Detection

nodes using integration and bias control operations, respectively (Gate tWM and vWM to Match

Detection).

This gating of the contents to the Match Detection causes the neural activation of the

Decision Node connected together by an Integration operation to also increase. This Decision

Node is composed of a single neuron rDN that aggregates all of the neural activations of the

Match Detection and makes a decision of whether the process was successful or unsuccessful.

Aggregation of the neural activations is done through the Integration operation and roughly

resembles equation 4.4. κ is some normalization factor, ri is the input of the ith neuron in the

Match Detection node. S() represents the nonlinear transformation of the ST equation (see

Equation 3.2 in Section 3.2).

rDN = S(
1

κ

∑
i

ri) (4.4)

The decision of whether the detection process was successful (Decision Criterion Met?) is

computed using Equation 4.5. If the firing rate rDN is within some lower and upper bound

dictated by the user specified parameters αl and αu respectively, then the operation was suc-

74

cessful if and only if it was completed within a certain period of time [tl, tu], where tl and tu are

parameters for the minimum and maximum amount of time taken for the process to complete,

respectively. Hence, if the representations differ increasingly more, this will be reflected by a

reduction in the firing rate since the cumulative activation of rDN will be significantly less.

Decision =

true αl ≤ rDN ≤ αu and tl ≤ t ≤ tu

false otherwise

(4.5)

The resulting decision is then sent to the vTE for interpretation. The program either ter-

minates if successful, or repeats the process after disengaging attention (Disengage Attention)

and applying a location based inhibition of return (Do L-IOR).

Figure 4.18: VH.Detection Algorithm. Each box is color coded with access to representations
(purple), parameter specification (yellow), execute a process (green) and conditional statement
decision (blue).

Neural Correlates The neuroscience of decision making is vast and the underlying brain

networks and circuitry even more so. In the context of decision making for stimulus selection, a

combination of task rules, prior expectations and the current state of an organism all influence

the choices and actions an organism may make. These influences, implemented by a variety

of cortical and subcortical networks, feed information to other cortical areas responsible for

integrating and implementing attentional selection [92].

75

The generic process by which decision making occurs on visual tasks may be divided into

three stages: gathering sensory evidence, integrating information over time and criterion se-

lection [8]. The gathering of the sensory evidence occurring in the visual cortex is responsible

for encoding information about the object, feature or spatial location of interest. The lateral

intraparietal cortex (LIP) and the FEF are some areas proposed for this accumulation of “sen-

sory evidence” over time to improve the signal to noise ratio [8]. Decision criterion selection is

thought to occur in both cortical and subcortical areas with a specific emphasis on the basal

ganglia (BG) reflecting action selection rules [4] and implementing a winner take all (WTA)

algorithm. The basic mechanism by which the BG exerts control over other areas is through a

process of disinhibition [54].

For example, the orbital frontal cortex (OFC) is active in the anticipation of rewards [68]

while the frontal eye field (FEF) and the intraparietal cortex are implicated in implementing

selection mechanisms [92]. Other portions of the prefrontal cortex including the lateral prefrontal

cortex (lPFC) have been shown to reflect an animals decision of the selected target [23]. Neurons

in the PFC may also play a role of biasing activity in favor of behaviorally relevant stimuli in

part by providing feedback bias signals to the inferior temporal (IT) cortex [45].

The temporal component of integrating information over time is also evident from neuro-

physiological studies. As an example, macaque monkey FEF neurons respond indiscriminately

to the target or distractor on a visual search task at first but later the neural activity evolves to

signal the location of the target stimulus [68]. A higher visual similarity results in neurons that

show higher firing rates for distractors that closely resemble the target features resulting in more

behavioral errors on the visual task [68]. Further evidence shows that eye movements occur when

some movement related neural activity in FEF increases above some threshold while a fixation

neurons activity decreases by a sufficient amount indicating that competitive mechanisms for

action selection may be at play.

In our detection method, there is no cortical area that is explicitly defined with respect to

the discussed STAR modules. Instead, this neurophysiological evidence is used only to provide

important clues for what the computational counterparts of decision making may be, irrespective

of the corresponding cortical areas involved.

The nodes and the corresponding NP operations connecting them as shown in Figure 4.17

were inspired by these computational counterparts from neuroscience by implementing gathering

of sensory evidence, integrating information over time and criterion selection. Prior expectations

of the stimulus are encoded by “templates” in the tWM representing the target we wish to find

while task rules are encoded by the vTE itself. The gathering of sensory information occurs

76

through the VH which computes the features and relevant locations given some input stimulus.

This information is moved to the vWM via the Integration NP in preparation for comparison

to the contents of the tWM. Here, the tWM and vWM connect to the Match Detection node

via an Integration and Bias Control operation implementing a multiplicative comparison of the

two signals. The Match Detection and Decision Node implement integrating evidence over time

while the decision criterion for criterion selection is defined by equation 4.5.

Example Figure 4.19 shows the response of the Decision Node (rDN). The plot is of the same

single neuron under two different conditions: when the target is validly or invalidly cued during

the Egly & Driver 1994 experiment [19]. At t = 0, the contents of vWM and tWM are gated

to the Match Detection node. The lower and upper bounds tl = 2 and tu = 4, respectively,

are indicated by dashed black vertical lines. Notice that when t > tl, the system begins to

distinguish a Valid Cue from an Invalid Cue. At t ≥ tu there is a significant different in the

neural activation in the two conditions. Hence, these values were heuristically chosen for our

detection process. Since the valid cue condition has a higher neural activation, it reaches a

threshold for detection earlier. This is reflected in a faster reaction time output of the system

in the valid cue condition, consistent with the findings in the original experiment. Further

discussion of this experiment is provided in a subsequent section. Note that each time step of a

simulation equals approximately 2.5 ms in real neural time.

Figure 4.19: Plot of the neural activations of the rDN match decision node upon presentation
of a valid or invalid cue. Vertical lines indicate the tl and tu time bounds for detection. One
time step is approximately equal to 2.5 ms in real time.

4.3.6 VH.Recognition, VH.Categorization and VH.Identification

Overview This section extends the Match Detection operation presented in the previ-

ous VH.Detection section to allow it to be usable for multiple classes. As with the Detection

77

operation, the Recognition, Categorization and Identification methods rely only on a single feed-

forward pass requiring about 150ms to complete [85]. Each of these methods rely on the same

underlying implementation, but differ in the kind of response they output.

A recognition task is one in which neither of the two classes are noise. An example task may

provide instructions ”Press ’x’ if you see a circle, press ’z’ if you see a square”. A categorization

task is one in which the system connects each stimulus to some category. For example, given

three easily separable categories - chairs, buildings and cell phones, the task is to respond

indicating to which class the stimulus belongs. In the identification task, the system assigns a

different response to each stimulus. For example, if we have an array of letters from A-Z as

visual stimuli, each one needs to be mapped to a different class.

These three methods require that we introduce additional nodes in the tWM and vTE to

accommodate the extra classes we wish to recognize, categorize or identify. In Figure 4.20, there

are three nodes each for tWM, Match Detection and Decision Nodes. The method elements used

for this process are identical as those in the VH.Detection method except that here, comparison

against multiple templates is occurring in parallel. As such, the Load (target) AS to tWM

command in Figure 4.18 is applied for each class template we are comparing against, as discussed

below.

Method Elements - Algorithm One major difference between VH.Detection and the meth-

ods described here is that now we have the existence of more than one class. Thus, equation 4.5

must be modified such that it returns the neural activation of the Decision Node rather than a

boolean value as shown in equation 4.6. The differences in the two equations are bolded.

rDN
i =

rDN
i αl ≤ rDNi ≤ αu and tl ≤ t ≤ tu

0 otherwise

(4.6)

Now, if we have multiple templates in the tWM comparing to the contents of vWM in

parallel, then we will get an array of Decision values. Applying the softmax equation 4.7 on

this output results in a probability distribution over the N possible classes.

P (j) =
rDNj∑N
i=1 r

DN
i

(4.7)

In addition, for one of the experiments that will be discussed later (see Section 6.1.3 and

Appendix (B)), we introduce a Memory Consolidation node. The role of this node is to prevent

new stimulus from interfering with identification processes that may be initiated early on by

inhibiting the VH IT layer using a Bias Control operation.

78

Figure 4.20: Match Detection Network consisting of nodes in the tWM and vWM receiving
input from the VH. Contents are compared by the Match Node and a decision node consisting
of a single neuron outputs the result. Note that only the top most IT Nodes are used for the
comparison.

79

Figure 4.21: Method elements for classification when there is more than one class, neither of
which are noise. Each box is color coded with access to representations (purple) and parameter
specification (yellow). The addition of the memory consolidation parameterization and gating
indicated by a dotted box around the corresponding components distinguishes this method from
that of Figure 4.18.

80

Example Figure 4.22 shows a plot of two different match decision nodes during a recognition

process.

Let’s assume that rDN1 and rDN2 are decision nodes representing the evidence accumulation

for two classes - a circle and square, respectively.

Looking at the figure, the approximate neural activations are rDN1 = 60 and rDN2 = 70 at

t = 4. Then, our softmax function returns P = [0, 1.0] according to equation 4.7. Taking the

largest value, the neuron rDN2 indicating that a ’square’ is most likely recognized is given as

output to the Script Monitor in the vTE. Although we have illustrated how recognition works,

this example can be extended to any number of decision nodes N such that we can apply this

process to any number of classes if required by VH.Categorization or VH.Identification methods.

This simple example indicates that the process of computing equations 4.6 and 4.7 can be used

to indicate which class is most likely recognized, categorized or identified.

Figure 4.22: Plot of the neural activations of the rDN1 and rDN2 match decision nodes when the
target symbol ‘=’ is presented to the system. One node shows higher selectivity than the other.
Vertical lines indicate the tl and tu time bounds for detection. One time step is approximately
equal to 2.5 ms in real time.

4.3.7 VH.Identification (Within Category)

Overview The within category identification task invokes a recurrent binding strategy when

more detail about a stimulus is required [85]. In other words, when information at the top most

layer is insufficient to perform a match operation, the system must traverse down to lower layers

of the visual hierarchy for more information. Within category identification takes an additional

65 ms and is prone to errors since the process may be interrupted with changes in incoming

visual stimuli. Hence, identification may require partial or full recurrence binding.

Note that the within category identification process discussed here is different than the

81

identification process described in Section 4.3.6 requiring only a single feedforward pass. The

within category identification process is included for completeness but the implementation is

left for future work.

The major difference here is that information available in lower layers of the VH is also used

to come to a decision on the targets identity. Hence, the Select VH.Localization command in

Figure 4.21 is used to retrieve an AS containing more than just the IT layer of the VH. Equations

4.6 and 4.7 are still used for determining whether the identification process is successful.

4.3.8 FC.setFHMBias

Overview The fixation history map (FHM) as part of the fixation controller (FC) is intended

to bias against revisiting previously seen locations but can be overridden by task demands [29].

It does this by storing the last several fixations each decaying over time, hence implementing a

built in location based inhibition of return (L-IOR). The representation is gaze centered, larger

than the visual field and contains a sequence of recent fixations. As an example, if we wish

to maintain attention within a 2 degree area within the visual field, a task bias can suppress

regions outside of this such that no eye movements occur.

Behaviorally, a L-IOR enhances or impairs speed and accuracy of object detection depending

on when a target appears with respect to a cue and whether the target was validly or invalidly

cued [56]. If the targets appeared 100-300 ms after stimulus onset, then speed and accuracy of

object detection is enhanced while targets appearing at a later time; 300-3000 ms showed the

opposite effect

This method sets the appropriate FHM top down (TD) bias used to explicitly influence

the FCs next eye movement given task demands. Hence, the role is to provide a task specific

attentional pull [86] triggered via an exogenous signal with influences from higher cortical areas.

An in depth review of the fixation control strategy within STAR can be found in [86].

Figure 4.23 shows that several representations residing in the FC and vWM are required for

biasing the FHM and we summarize this below.

1. FHM Bias Unit : This node is used to determine the degree of influence of a top down

bias. We can use this to completely ignore previously seen locations and rely only on task

demands. This may be the case if the system is told “hold your fixation at the centre of

the screen regardless of what you see”.

2. Bias Selection TD/BU : The TD and BU representations have excitatory and inhibitory

weights, respectively. These representations are manipulated by the FHM Bias Unit and

are also involved in determining the degree of influence of a top down bias.

82

3. FHM TD/BU : The endogenous FHM (FHMTD) is a context input node reflecting task

specific attentional pull mechanisms. It takes in user specified parameters such as “look

at the center fixation” and this may then be converted to a corresponding AS (refer

to equation 4.2 in Section 4.3.4). The endogenous FHM (FHMBU) is assumed to be

generated from the FC strategy of STAR (see [86]).

4. Combined FHM : This representation combines the FHMTD and FHMBU using an inte-

gration operation after a top down task bias has manipulated their corresponding repre-

sentations.

Method Elements - Algorithm The process for biasing the FHM in order to influence

L-IOR occurs in several steps.

First a task bias for a given location must be specified (Set FHM task bias for location) using

an AS as the input to the FHMTD nodes as described earlier.

Next, a task bias weight indicating the degree of influence for top down and bottom up

information is specified (Set FHM task bias for weight) using the FHM Bias Unit to the Bias

Selection TD/BU nodes. The intuitive way to understand this is that as the input neural

activation from FHM Bias Unit increases, the Bias Selection TD/BU will increase/decrease as

well. Namely, if the neural activation of the bias unit is high, top down influences of where to

look will be greater than bottom up influences. This bias then effects the FHMTD and FHMBU

representations since they are connected to the Bias Selection TD/BU nodes via a Bias Control

operation.

FHMTD and FHMBU are then gated to the combined FHM (Gate TD/BU FHM to com-

bined FHM) and this information is used to influence the next FOA that may be selected by the

WTA algorithm. In our TarzaNN system implementation, the Combined FHM Node is simply

implemented as a linear decay over time and does not incorporate the other elements of the FC.

In the current implementation, none of the other components described in [86] are integrated

as that is beyond the scope of this thesis. Instead, the Combined FHM Node is implemented as

a simple weight matrix that indicates that a winner is unlikely to be selected at locations where

a L-IOR signal is active.

Neural Correlates The neural correlate of the FHM are thought to be in the FEF since it has

been shown to be an important area for visual working memory representation of both retinal

and extra-retinal space [86]. The FHM is also responsible for combining the recent fixations with

task specific biases [86]- where then may such a task bias originate from? A possible candidate

83

Figure 4.23: Network unit operation required for biasing the FHM.

84

Figure 4.24: Fixation History Map Algorithm. Each box is color coded with access to repre-
sentations (purple), parameter specification (yellow), execute a process (green) and conditional
statement decision (blue).

is the LIP since stimulation here can lead to covert and overt shifts of attention [3]. However,

the dorsolateral prefrontal cortex (dlPFC) is a more promising candidate as stimulation here

has been shown to bias saccade target selection potentially by modulating the balance between

excitation and inhibition [52]. The lPFC among many other PFC areas are also implicated in

flexible shifts in attention and to encode attentional shift rules [92].

Thus we propose that a top down control signal may be responsible for modulating the FC

by providing a task bias that shifts the excitatory and inhibitory balance of the FHM. This shift

may then be reflected as our attentional pull mechanism as shown in Figure 4.23.

Example To demonstrate the competitive endogenous and exogenous mechanisms, Figure

4.25 plots the activation of one neuron in the FHMTD and FHMBU as a function of the input

task bias (shown as bias FHM in Figure 4.23) provided to the FHM Bias Unit. Note that

the values have been normalized for clarity and all other input values and parameters are kept

constant.

If the neural activation of the FHM Bias Unit is gradually increased, it will cause a cor-

responding increase and decrease of the TD and BU Bias Selection nodes, respectively. Since

these bias selection nodes are connected to the FHMTD and FHMBU using a Bias Control

operation, this will result in a multiplicative scaling of the representations.

Here, we notice that we can vary the task influence by modulating the task bias. As the

value of the task bias increases from 0.0 to 1.0, task dependent endogenous influences dominate

bottom up exogenous sources of attention.

4.4 Summary

We began this section with the aim of proposing a framework that bridges the gap between Neu-

ral Primitives (NP), Cognitive Programs (CP) and the rest of the STAR architecture. In doing

so, the Cognitive Programs Memory (CPM) was divided into Method Elements (CPM-ME)

85

Figure 4.25: Normalized response of FHMBU and FHMTD maps when the task bias is varied
between [0.0,1.0].

and the Cognitive Program Database (CPM-MD). The CPM-ME contains elements required to

assemble CPs as methods. Methods are then stored into a database-like structure called the

CPM-CPD, where they can be retrieved, parameterized and executed by the vTE.

In this thesis, eight implemented CPmethods in the CPM-CPD were introduced - VH.Localiz-

ation, VH.Prime (with and without AS), VH.Detection, VH.Recognition, VH.Identification

(within and between category) and FC.setFHMBias. Each of these methods were detailed

in terms of the representations they act on, the NP computations required and the numerous

Method Elements required for execution. Table 4.7 summarizes the Method Elements used to

compose the methods in our Methods Database.

Method Elements Description
Queries Conditional Statements Reads the current state of the

system with the result used to
decide on the next action. Uses
conditional IF-THEN-ELSE

logic.

Actions
Access to Representations Reads the current neural

activation of a representation.
Enables or disables NP Gating

operation.
Parameter Specifications Includes specification of control

signals, parameterization of
NPs, context Nodes and setting

decision criteria.
Executes Processes Executes internal processes (i.e.

Disengage Attention, Engage
L-IOR, θ-WTA selection, etc.)

Table 4.7: The Method Elements used to compose Cognitive Program Algorithms.

All in all, this framework provides prebuilt functions for executing a variety of visual tasks

86

without the need to construct new ones on a task by task basis, opening the way for rapid

development of the STAR architecture.

87

5 Framework Implementation

5.1 Overview

In this section we detail the implementation of the Neural Primitive and Cognitive Programs

Memory framework within the pre-existing TarzaNN system that was previously developed in

the lab [64]. Since then, several performance improvements and a complete restructuring of the

code has lead to subsequent versions. TarzaNN3.0 is the currently maintained version. Since

the implementation of the work in this thesis is so heavily integrated into TarzaNN 3.0, this

section first introduces the major constituents of TarzaNN 3.0

TarzaNN is a simulator for visual attention modeling that implements a subset of the func-

tionality of STAR. It was designed in C++ - an object oriented programming language that

consists of classes which act as blueprints for defining objects. Classes may inherit from one

another, for example, a class Car may inherit from Vehicle. The system was implemented in

C++ since it is a fast, powerful and efficient language. TarzaNN3.0 contains a complete im-

plementation of the visual hierarchy including feedforward stimulus processing and feedback

processing incorporating the WTA algorithm. Furthermore, definitions of key control signals

such as selection of a winner, disengaging attention, applying suppressive surround, applying

inhibition of return or setting θ−WTA selection parameters are included and interact directly

with the AttentionExecutive class to implement a visual attention executive (vAE).

This existing framework provides an excellent starting point since some of the key computa-

tions required by Cognitive Programs are already present. Furthermore, since the STAR model

requires several components including the vTE, vAE, tWM, vWM, VH, FC as well as algorithms

for fixation and selection, developing such a system from scratch would be beyond the scope of

this thesis.

Figure 5.1 shows several of the classes implemented. Classes are color coded in white and

blue representing abstract and concrete classes, respectively. The CPC class representing the

Cognitive Program Compiler used for generating the task specification is also concrete but

color coded purple to indicate that it is external to this thesis. See [32] for more details on

its implementation. An abstract class contains at least one abstract method that needs to be

implemented while a concrete class has all functions implemented. Notice that in the figure,

the NODE and NeuralPrimitive classes are abstract since their implementation is dependent

on the kind of Node - Default, Context or Memory (see Section 3) and the kind of Neural

Primitive computation - Bias Control, Bias Feedback and Integration. Each Neural Primitive

is represented in its own concrete class (not shown in the figure), the details of which will be

88

described in subsequent sections.

Connections with diamonds indicate “has-a” relationships. For example, the abstract NODE

and NeuralPrimitive classes have several classes that inherit from them as discussed in more de-

tail in the next section. On the other hand, a “has-a” relationship can be seen by the TN3Network

which contains Nodes, Neural Primitives and other TN3Networks.

The next two sections detail the major components of Figure 5.1 as summarized below.

1. Neural Primitives: This section outlines the implementation details of NODES and Neural

Primitives as formalized in Section 3. Importantly, it outlines how the Neural Primitive

operations are applied onto NODES to implement the corresponding computations given

by the equations summarized in Table 3.3. Neural Primitives are implemented via the

tn3network package shown in Figure 5.1.

2. Cognitive Programs Memory : This section explains how Method Elements (CPM-ME) -

the NP operations from the tn3network package and the Base Methods from the tn3cpm

package can be combined to form stored methods. How these methods are retrieved,

parameterized and executed by the TN3Runner and several components it interacts

with is also discussed.

5.2 Neural Primitive

5.2.1 Overview

In Section 3, the Neural Primitive Specification details a set of computational elements that are

inspired by neural computations and their correlates. One of the main goals of this chapter was

to outline a mathematical formulation of these computations as summarized in Table 3.3.

The implementation of the Neural Primitive (NP) framework is composed of representations

as NODES and operations as Neural Primitives that are encapsulated into a TN3Network. Fig-

ure 5.2 shows these components and their implemented classes with a subset of the implemented

methods and variables listed. For these methods and variables, the return type is indicated -

with most function calls returning void indicating that no value is returned. Some methods,

such as the Neural Primitive have a return type of virtual void indicating that the function

needs to be implemented by a concrete class inheriting from it.

Each of the TN3Network ’s reside in one or more of the STAR modules (VH, vTE, vWM,

tWM and FC) and are simply a way to group related Nodes and NPs together. This provides

ease of accessibility and functional segregation from other networks. For example, the priming

89

Figure 5.1: Implementation of the CPM framework requires several components with the
TN3Runner being central to task execution. Classes in the tn3network implement the Neural
Primitive Specification (see Section 3). The remaining classes, excluding the CPC implement
the Cognitive Programs Memory Specification (see Section 4). Diamonds indicate “has-a” rela-
tionships. Diamonds between groups of items indicate that each item in the group has a “has-a”
relationship with the corresponding class it is connecting to. Classes in white and blue boxes
are abstract and concrete, respectively.

network with an attentional sample (AS) described in Section 4.3.3 has a network name “Prime-

WithAS” and contains the corresponding Nodes and NPs shown in Figure 4.7. All of these

classes and their implementation exist within the tn3network package.

A TN3Network is implemented as a directed graph with each NODE representing a set of

vertices V and edges E being represented by the Neural Primitive operations. There exists a

global network G = (V,E) and subnetworks Gi = (S, T) where Gi ⊂ G, Si ⊂ V and Ti ⊂

E. Each network contains Nodes, NPs and other networks. Since each NP operation acts to

transform a destination NODE given some source NODE, a directed graph is useful for keeping

track of this directionality.

Section 5.2.2 describes how a TN3Network can be created, initialized with all of its elements

added to form a graph that can be stored for easy retrieval later. After graph creation, Sec-

tion 5.2.3 describes how the nodes are updated by computing the corresponding NP equations

described in Table 3.3.

90

Figure 5.2: A TN3Network is a graph structure with Nodes as vertices and Neural Primitives as
edges. Subgraphs may also be present as indicated by the TN3Network on the far right. Arrows
and diamonds indicate inheritance, also known as “is-a” and “has-a” relationships, respectively.
Classes in white and blue boxes are abstract and concrete respectively.

91

5.2.2 Graph Creation

Before we can perform any NP computations, we first need to create a Graph consisting of

NODES (vertices), NP Operations (edges) and subgraphs (or subnetworks). Subgraphs

are a way of providing functional segregation from other networks to make the code easier to

understand as discussed earlier. This stage is used to create all the Nodes in the various STAR

modules such as the vWM and tWM as well as to define how NPs will be used to connect them

together. Once all of the elements are added, the network is then instantiated.

When executing any visual task using the provided CPs, there needs to be a specification of

the entire network or graph used for accessibility of Nodes and NPs. The TN3Runner, discussed

in more detail in later sections and shown in Figure 5.2 contains a reference to this network -

referred to as the global network implemented as a TN3Network . For example, the complete

STAR architecture as shown in Figure C.1 in Appendix C has Nodes and NPs that all reside in

this global network.

The TN3Network class contains the necessary functions for adding Nodes and NP Operations

as well as a function call to setup the network once it has been fully specified. Among the many

functions in this class, there are five important ones for graph creation.

1. TN3Network(string label): A constructor for creating a new network with a specified name.

2. addNode(Node* node): Adds the Node to the network.

3. addOperation(NeuralPrimitive* np, Node* src, Node* dst): Adds a NP operation to con-

nect two existing Nodes in the network.

4. addNetwork(TN3Network* network): Adds subnetworks to the network.

5. init(): Initializes the network and prevents further modification of the network. Also

performs error checking to ensure network validity. For example, network names must be

distinct.

In the next few sections we explain how Nodes and Neural Primitives are created before they

can be added to the network using the addNode() and addOperation() operations followed by

how the network is initialized before it is ready for computing the NP operations using the init()

function.

Vertex (NODE) Creation

A representation is implemented as a matrix of neurons encapsulated in a NODE class. It

is parameterized with a specification of the node name, the size of the matrix of neurons

92

(width, height) and the neuron type provided in its constructor. The neuron type is set to

ST_NEURON unless otherwise specified, but may also be set to LINEAR_NEURON. This

modularization allows for testing of different neuron types in the experiments and also separates

the neural encapsulation from its underlying neural equation computation.

Each Node is represented by the equation presented in Section 3 and rewritten in equation

5.1 below for reference, where RA, BA and FA are the neural activation, bias and feedforward

matrices of a Node with the name “A”, respectively. The neural activations and the bias term

matrices at the current time can be returned by the function calls getOutput() and getBias(),

respectively. The three kinds of Nodes shown in Figure 5.2 are the implementations of the

abstract NODE class.

RA(BA, FA) (5.1)

A DEFAULT NODE, such as those used in the VH and the match detection module as

shown in Figure C.1 in Appendix C, computes the neural activations of all neurons at each time

step. Additionally, to allow for compatibility with the previous implementation of the Sheet*

class in the TarzaNN3.0 framework, we can wrap a sheet into a default node. The Sheet* class

was originally used for representing neural activations within the VH. However, this class does

not provide all the functionality we require for NODES. To extend their functionality, we can use

a default node as a wrapper around the sheet with the constructor DEFAULT_NODE(Sheet*

vh_sheet). Notice here that no specification of the node name or the size of the matrix is

necessary. These parameters are automatically extracted from the Sheet*. This wrapper also

allows for a uniform representation of matrices of neurons irrespective of the module they reside

in. As such, it will be useful when performing operations on these Nodes, such as priming the

VH.

AMEMORY NODE maintains its neural activation when an input is provided for the first

time. The vWM, tWM and FC all contain memory nodes. The implementation of this node

still computes the neural activation governed by the ST equation. However, the feedforward

input to the node, FA is kept constant even if the inputs to this node change over time. Thus,

this node will maintain its activation even if the feedforward input is removed at a later point

in time. To ensure the memory node is versatile such that we can update its neural activation

to store different information when required, the resetMemNode() function is used. After this

function is called, the neural activations will be updated and maintained when any of the NP

operations connecting to this node have an enabled gating unit.

A CONTEXT NODE, utilizes a custom input function to simulate input. A typical use

93

case for this node is if we want to specify a context input to provide a top down bias at the

center of the image while suppressing irrelevant locations. For example, the tWM Nodes can

take in some “PARAMS” provided by the Cycle Controller in the vAE (see Figure C.1). This

parameter specification provided by the context nodes is our input “Attentional Sample.” The

input function is provided by a utility class called FcnGen discussed in detail in Appendix A.

FcnGen provides a useful set of prebuilt functions such as sin(k) and cos(k) as well as many

others. After a specification of the kind of function is defined, this class can also compute its

value at some point k using the call FcnGen->compute(k), returning a float. The context node

can use three independently defined FcnGen instances, one each for the spatial x and y and time t

dimensions. This specification can be provided by the constructor CONTEXT_NODE(FcnGen*

x, FcnGen* y, FcnGen* t, int width, int height) upon initialization and the neural activations

are computed at each time step as shown by the algorithm in Listing 5.1 The time_step is

provided by the TN3Network and will be discussed in a later section. Just like any of the other

Nodes, the neural activation at any given time step can be retrieved using the getOutput()

function.
1 void update (int time_step) {
2 for (int x ; x < node . s izeX () ; x++){
3 for (int y ; y < node . s izeY () ; y++){
4 return fcngen_x−>compute (x) ∗
5 fcngen_y−>compute (y) ∗
6 fcngen_t−>compute (time_step) ;
7 }
8 }
9 }

Listing 5.1: The update(int time_step) function of the Context NODE class internally computes
the neural activation of each neuron given the specification from the FcnGen class.

Figure 5.3 demonstrates the output of a context node when a Gaussian function is used for

the x and y dimensions while the time dimension is kept constant. This kind of specification

may be provided if the system is instructed that “the object will appear in the center of the

screen” and the resulting Node can then be used as the basis for priming the VH as discussed

in Section 4.3.4.

Edge (NP) Creation

The abstract Neural Primitive and all of the subclasses as shown in Figure 5.2 make up our

NP operations. Three of our NP operations that inherit NeuralPrimitive represent the edges

in our graph network. These operations are used to update the neural activations of Nodes by

implementing the corresponding NP equation specified in Table 3.3.

94

Figure 5.3: A hypothetical output of a 32×32 context node provided a Gaussian function using
the FcnGen class in the x and y dimensions. In this example, the output does not vary with
time, hence a constant input, also provided by the FcnGen class is used in the time t dimension.

A new instance of a NeuralPrimitive is created with a corresponding constructor NeuralPrim-

itive(FcnGen* x, FcnGen* y, ConnectivityType type). The first two arguments take instances of

FcnGen, one each for the x and y dimension for specifying the weight matrix φAB (see Section

3.2). Note that unlike a CNN [36] architecture where weights between neurons are automatically

computed, we leave this out and manually define them. However, future work may look at auto-

matically learning weights. The Gating NP operation is used internally by the NeuralPrimitive

to enable and disable its computation.

The ConnectivityType specifies a generic connectivity pattern connecting NODE A and

NODE B. This defines how two NODES may be connected together, and here we introduce

two useful connectivity patterns.

1. ONE-TO-ONE : A single connection exists between any two neurons connecting Node A

and Node B. Thus the φAB weight matrix is a direct mapping of every neuron from these

two nodes. Requires that NODE A and B are the same size.

2. MANY-TO-MANY : Defines connectivity between a group of neurons from Node A con-

verging onto some neuron in Node B similar to that used in CNN [36]. NODE A and B

need not be the same size.

The newly created instance of a NeuralPrimitive is then added to the TN3Network with the func-

tion call addOperation(NeuralPrimitive* np, Node* src, Node* dst). Notice here that in order

to add a NeuralPrimitive, we must specify the two nodes that will be directionally connected

together. At this point, these Nodes are assumed to already have been created as described

previously.

As an example of how Nodes and Neural Primitives may be added to the network, consider

95

Figure 5.4 which shows a portion of the network used for priming the VH without an AS. An

IT Node first needs to be created in the tWM and VH as a Context Node and Default Node

respectively. Next, a Bias Control NeuralPrimitive operation needs to be created with a ONE-

TO-ONE connectivity with the FcnGen parameters dependent on the priming specification.

Finally, we create a new TN3Network - “PrimeWithoutAS” and the created Nodes and Neu-

ralPrimitive are added. This subnetwork is then added to the global network as described

earlier.

Figure 5.4: An example creation of Nodes and Neural Primitives used while priming without
an AS as described in Section 4.3.4.

Graph Initialization

Once all the required Nodes and Neural Primitives are added to the TN3Network, it then

needs to be initialized by calling the init() function mentioned earlier. This involves adding

intermediate nodes that hold intermediate computations that will be performed by each

NP operation of the NeuralPrimitive class. This is necessary since each Node in our graph

that has one or more incoming connections from another Node in the graph needs to have the

corresponding NP operation computed. However, without an intermediate representation, only

the last operation applied on the Node would take affect, in effect ignoring all of the previous

operations applied. Initializing the network also serves as a safety mechanism since it prevents

any further modification to the network.

During the initialization of the TN3Network, there is also some error checking that must be

done. For example, due to the way a CONTEXT_NODE is defined, it cannot be a destination

node. Furthermore, a NODE created with a size of zero is not allowed and the FcnGen class

96

must have a specification of which function to use. Errors are handled via messages like “NODE

with name ’x’ in the TN3Network with name ’y’ could not be initialized. Invalid node size

provided.”

Figure 5.5 shows an example of how a graph specification provided by the user consisting of

two src nodes connecting to a dst node require additional intermediate nodes indicated by

orange boxes to hold intermediate representations. Another class, called the TN3Runner which

will be discussed in more detail in later sections is responsible for combining these intermediate

representations and updating the dst Node.

Figure 5.5: Given a graph specification, an initialized graph requires the creation of interme-
diate nodes (in orange) that temporarily hold computations performed by each NP operation.
Solid and dotted arrows indicate the computations performed by the NeuralPrimitive and the
TN3Runner class respectively.

Graph Storage

Since we can now create many TN3Networks, each with its own purpose such as one for priming

with an AS and another for priming without an AS, networks are now modular. This allows

for easier accessibility for someone that is new to TarzaNN by only considering the subnetworks

they wish to modify. Furthermore, adding new networks can be easily done by adding to an

existing network.

The TN3NetworkStorage class contains all of the stored TN3Networks, encapsulating

Nodes and NPs that are required for all of our CPs. See the complete STAR architecture Figure

C.1 in Appendix C. They can be retrieved by simple function calls that return the corresponding

network. For example, to return the VH network, consisting of the predefined specification of the

Nodes for layers in V1, V2, V4 and IT, we can simply call TN3NetworkStorage::getVHNetwork()

and add this to our global_network using the addNetwork() operation mentioned earlier. See

Appendix A for a complete list of stored networks.

97

5.2.3 Updating Nodes

A fully created TN3Network can now be used by another class called the TN3Runner to update

all of the neural activations for each Node. The update() method in the TN3Runner class is

responsible for executing the fundamental computations implemented by each of the Neural

Primitives to transform the Nodes at each time step. The process of updating Nodes occurs

by traversing through each Node in the global_network, including those in all of the subnet-

works. For each Node, we look at the set of incoming connections and ask the corresponding

NP operation to compute the intermediate node by calling the compute() function of the

NeuralPrimitive class.

As an example, consider the priming network without an AS as discussed in Section 4.3.4.

Here, the IT Node in the VH can have either a spatial or feature bias applied to it from nodes in

the tWM, each of which is connected by a Bias Control NP operation. The intermediate nodes

are first computed independently for each incoming connection and they are then combined

together to form a new intermediate representation by taking the average of the Nodes (see

Figure 5.5 as an example). The combined representation is then applied to the dst node as

either feedforward input or as a multiplicative bias (see equation 5.1) depending on the specific

operation used - Integration, Bias Control or Bias Feedback.

Listing 5.2 shows the pseudo algorithm to accomplish this. Notice that there are separate

combined representations - combined_inter_node_0 and combined_inter_node_1 since the

Bias Control operation applies this representation as a multiplicative bias on the dst node while

the Bias Feedback and Integration operation applies it as feedforward input.

1 void update () {
2 for each Node in global_network{
3 combined_inter_node_0 = []
4 combined_inter_node_1 = []
5 for each incoming connect ion (edge / Neura lPr imit ive) {
6 inter_node = Neura lPr imit ive−>compute ()
7 i f (Neura lPr imit ive−>getType () == BiasContro l) {
8 combined_inter_node_0 += inter_node
9 num_bias_control_connections += 1
10 } else
11 combined_inter_node_1 += inter_node /num_connections
12 }
13 i f (Neura lPr imit ive−>getType () == BiasContro l)
14 Node−>se tB ia s (combined_inter_node_0)
15 else
16 Node−>set Input (combined_inter_node_1)
17 }
18 }

98

Listing 5.2: Pseudo algorithm for the update() function in the TN3Runner class for updating
Nodes in the global network. The intermediate nodes are first computed and then combined
together. The result is applied either as feedforward input (setInput()) or as a multiplicative
bias (setBias()).

5.2.4 Summary

This section highlighted how three kinds of NODES - Default, Memory and Context and three

kinds of NP Operations - Integration, Bias Control, Bias Feedback could be initialized, and

added to a graph in the TN3Network class which is then initialized.

The TN3Runner then traverses through each Node in the TN3Network and updating its

neural activation given the corresponding Neural Primitive operation Nodes are connected with

at each time step. In the next section, we describe how CPs can be assembled, retrieved and

executed. As part of this, an important aspect will be to show how NPs can be dynamically

gated given task demands.

5.3 Cognitive Programs Memory

5.3.1 Overview

The section introduces how CPs are built from Method Elements (CPM-ME) and then stored

into the Methods Database (CPM-MD). Furthermore, the execution of visual tasks given a task

specification provided by the Cognitive Program Compiler [32] is explained. Figure 5.6 shows a

detailed view of the major components involved in these processes.

The implementation of the CPM-ME consisting of NP operations and Base Methods are

present in separate classes. NP operations and theNODES on which they operate are combined

in different configurations but serve a similar purpose such as priming the VH and encapsulated

in the TN3Network as discussed in the previous section (shown as tn3network in Figure 5.6)

. On the other hand, Base Methods are implemented as function calls in the BaseMethods

class and have direct access to the TN3Network in order to provide functionality for Access

to Representations.

Stored Methods in the CPM-MD are implemented in separate classes as they were intro-

duced in Section 4. For example, the Prime and Detection methods reside in the VH class

while the setFHMBIas(args) resides in the FC class. These classes utilize the functions in the

BaseMethods class to compose the corresponding CPs.

The TN3Runner deals with all aspects of visual task execution as it interacts with several

other classes. It communicates with the vae to provide access to methods in the CPM-MD, the

TN3Network to update the NODES given the NP operations and the rig for handling changes

99

in exogenous stimulus in the experiment and collecting neural activations for experimental data.

This class is abstract and provides a template from which a task specification can be provided

using the CPC class. It contains two abstract functions color coded in red - init() and main()

that must be implemented by a concrete class inheriting from the TN3Runner.

The CPC class is part of the Cognitive Program Compiler [32] and is provided here for

reference. It outputs a task script given the task specification which contains a sequence of

commands including the execution of CPs after retrieval from the CPM, decision points and

other functions relevant for completing a visual task. Since the CPC is beyond the scope of this

thesis, we simulate its output.

In the next few sections, each of these classes just described are discussed in more detail and

divided as follows.

1. CP Assembly and Storage: Describes how CPs in Section 4 are assembled using Method

Elements and then stored for later retrieval.

2. Task Specification: Stored CPs need to be retrieved, parameterized and executed in a par-

ticular order given a visual task specification. As an example, a task specification of “press

‘x’ if you see a red circle ” would require a VAE()->VH()->Prime and VAE()->VH()-

>Detection operation. This section describes how CPs can be sequenced appropriately to

accomplish this.

3. Task Execution: Describes how a task specification is executed to update the state of the

entire system until task completion criteria has been met.

5.3.2 CP Assembly and Storage

The first step in executing a visual task is to build a CP such as VAE()->VH()->Detection

from sequencing one or more Base Method functions in the BaseMethods class with additional

definition of variables, and IF-THEN-ELSE logic. CPs are stored in either the VH or FC class

and are accessible through the vae.

The functions in this class are all static and hence do not require the class to be instantiated

before being used. These functions take input directly from the parameters when the function

is called. Hence, BaseMethods acts as a utility class where the code can be shared by multiple

instances of CP methods.

Some of the Base Methods that we discussed in Section 4 are encapsulated as functions in

the BaseMethods class while others such as the conditional statements are hand coded using

IF-THEN-ELSE logic. The complete list of functions in this class can be found in Tables A.3,

100

Figure 5.6: Detailed implementation of the key components in the CPM framework required for
visual task execution. Red functions in the TN3Runner class are abstract. The set of functions
listed for these classes is not exhaustive. See Appendix A for a complete definition of functions
in each class.

A.4, A.5 and A.6 for Access to representations, Parameter Specification, Execute a Process and

Queries, respectively. Below, we will discuss some of the important functions implemented in

Base Methods.

Access to Representations involves enabling or disabling the gating of nodes and this is

achieved by a call to BaseMethod::enableGating(NeuralPrimitive* np, bool val). Notice that this

static method takes in two arguments. First, the NP operation we wish to toggle gating on is

specified followed by a boolean value indicating whether to enable (true) or disable (false) gating.

Since the TN3Network class provides direct access to Nodes, a similar method can be used

for reading and writing to a Node. Writing to a Node is useful when manually parameterizing

input nodes. For example, if the tWM needs to be loaded with an AS that was previously built,

we can directly set its input using a predefined method call.

Loading an attentional sample (AS) into tWM is a Parameter Specification Base Method

which is called by BaseMethod::loadAStoTWM(AttentionalSample* as, TN3Network* tWM_net).

The AS contains a vector of context Nodes each of which has a unique name indicating the layer

and feature information it is storing.

When applying the AS onto the TN3Network, the function finds the corresponding Nodes

101

in the tWM with the same name and applies the AS by copying the values of the neural

activations from the AS to the TN3Network. For example, if the AS contains Nodes relevant

for representing layer V 4 of the VH, it finds the corresponding Nodes in the tWM_net to load

the AS. If the AS is invalid such that no corresponding Nodes in the tWM_net are found, the

function skips over the Node and produces the following warning to the user “Warning. Invalid

AS specified for loading into tWM.”

Base Methods involving Execute a Process include those for setting the relevant control

signals such as disengaging attention or resetting the contents of tWM that were previously

loaded. Some of these base methods are fairly involved such as the one used for the θ −

WTA algorithm. However, the previous implementation of TarzaNN provided a subset of this

functionality reducing the total work load required. For a definition of how these functions are

called, refer to Table A.5.

Listing 5.3 shows the CP implementation for priming with an AS (see Section 4.3.3 and

Figure 4.9). Lines 4, 5, 7 and 8 are used to initialize variables and retrieve the TN3Networks.

Line 10 utilizes the BaseMethod class to select the top layer of the VH and return its index

- an internal variable used for indexing layers within a network. Line 12 loads the entire AS

supplied as input arguments into the tWM. Since the AS is a vector containing Nodes, this

Base Method matches the AS Node name to the tWM Node name and writes the value using

the BaseMethod::writeNode(args) described earlier. Line 14 is used to disengage any previous

attention mechanisms in place. Lines 16-37 are used to iterate through each layer of the VH

starting at the top IT layer, check if an AS exists for this layer and enable gating (line 24). In

the case that a partial AS was provided as input, the priming without an AS method is called

(line 33). At each iteration, the CP also calls the TN3Runner’s update function (line 36) to

update the state of the TN3Network at each time step as described in Section 5.2.3.

1 void Prime (TN3Network∗ attent iona l_sample) {
2 cout << "Prime () . Begin Priming\n" ;
3 // Var iab le s p e c i f i c a t i o n
4 s t r i n g layer_name ;
5 Neura lPr imit ive ∗ np ;
6 // Get the Networks
7 TN3Network∗ VH_net = global_network−>getNetwork ("VH") ;
8 TN3Network∗ tWM_net = global_network−>getNetwork ("tWM_0") ;
9 // S e l e c t TOP Layer
10 int layer_indx = BaseMethod : : s e l e c tLaye r (VH_net , "IT") ;
11 // Load AS to tWM
12 BaseMethod : : loadASTotWM(attent ional_sample , tWM_net) ;
13 // Disengage Attent ion
14 vae−>disengageAl lAttent ionMechanisms () ;
15 // Are the re more l a y e r s ?
16 while (layer_indx > 0) {

102

17 // I s the re AS f o r t h i s l a y e r ?
18 i f (BaseMethod : : i sASExist (attent ional_sample , layer_indx)) {
19 // Spec i f y the l ay e r names to be gated .
20 layer_name = VH_net−>getNodeLayerName (layer_indx) ;
21 np = global_network−>getNetwork ("PrimeWithAS")
22 −>getOperat ion (layer_name) ;
23 // Gate (AS from) tWM to VH
24 BaseMethod : : enableGating (np , true) ;
25 cout << "Prime () . Working on l ay e r (" << i
26 << ") \n" ;
27 // S e l e c t Next Layer
28 layer_indx = BaseMethod : : s e l e c tNextLayer (VH_net ,

layer_name) ;
29 }
30 else {
31 // S e l e c t VH. Prime W/O AS.
32 cout << " Incomplete AS. Begin priming with minimum bia s

s t r a t e gy . "
33 vae−>VH()−>Prime () ;
34 break ;
35 }
36 runner−>update (LAYER_DELAY) ;
37 }
38 cout << "Prime () . F in i shed Priming\n" ;
39 }

Listing 5.3: Assembling of the CP for priming with an attentional sample requires the use of
several Base Method functions as well as boolean logic.

5.3.3 Generate TN3Runner Task Specification

Once all of the required CPs have been assembled and stored into the VH and FC class as

described above, a visual task may be executed using these CPs. In order to execute a visual

task, a task specification needs to be provided that indicates which CPs to use, their order

of execution and their parameters. Kunic’s CPC [32] provides the basis for this specification.

However, since work is still underway to harmonize the implementation of the CPC with the

CPM framework described here, we opted for an alternative method for generating the task

specification.

Task script specification is the starting point for visual task execution and it begins with a

visual task specification provided by the CPC class. Each task script is different depending on

the visual experiment but shares some similarities. A task script is a subclass of TN3Runner

and is composed of code blocks relevant for initialization and CP execution.

The TN3Runner shown in Figure 5.6 is abstract while the Driver94 and Folk92 are two

example concrete classes with a task specification. Code relevant to all aspects of visual task

execution is implemented here. In order to implement a concrete class, the two functions shown

in red in Figure 5.6 - init() and main() must be implemented.

103

Code blocks for initialization (init()) include information about the sequence in which stimuli

will be presented to the system, their duration and the directory they are located in. It also

specifies useful run time parameters such as for θ−WTA and the duration of L−IOR. This code

block may also include tweaking the filter parameters for the VH to optimize feature selectivity

or indicating the number of tWM TN3Networks to create for holding multiple AS’s. Listing

5.4 shows a sample initialization function divided into three aspects. Line 3 calls the super

constructor to initialize the VAE, RIG and the TN3Runner global_network. The VAE class

is responsible for communicating with all major components of STAR; the VH, FC, vWM and

tWM. This includes setting any relevant control signals and parameterizations. The RIG class

is used for recording neural activations of either all the neurons within a Node or a subset -

useful for collecting experimental data for analysis. It is also used for displaying stimulus to the

system and specifying its duration.

Line 5 is used to retrieve and initialize all of the stored TN3Networks and then add them to

the global network (line 8). Once all of the networks are added, the global network is initialized

(line 11). In the experiments that will be presented in Section 6, this function initializes the

complete network shown in Figure C.1 (see Appendix C). Parameter specifications are then

provided (line 13) followed by a definition of all stimuli that will be presented to the system

(line 16). The addStimulus(...) function takes in as argument the name of the image file that

will be used as stimulus onset, the internal name of the stimulus and an integer specifying its

duration. During visual task execution, the relevant stimulus is automatically provided to the

system.

1 void i n i t () {
2 /∗ −−− Cal l the s up e r c l a s s con s t ruc to r −−− ∗/
3 TN3Runner : : i n i t () ;
4 // Get TN3Networks
5 TN3Network∗ vh_net = TN3NetworkStorage : : getVHNetwork () ;
6 . . .
7 // Add TN3Networks to global_network
8 global_network . add (vh_net) ;
9 . . .
10 // I n i t i a l i z e the TN3Network
11 global_network . i n i t ()
12 /∗ −−− Parameter S p e c i f i c a t i o n Code Block −−− ∗/
13 VAE()−>setWTATheta (2 0 . 0) ;
14 . . .
15 /∗ −−− Stimulus Onset S p e c i f i c a t i o n −−− ∗/
16 RIG()−>addStimulus (" in t e r−t r i a l . png" , " in t e r−t r i a l " ,500) ;
17 . . .
18 }

104

Listing 5.4: A sample initialization function init() includes all the relevant code for setting up
the TN3Network and task dependent parameter specification before visual task execution.
For a full list of parameter specification see Implementation.

The second code block is the main() function which includes all the relevant commands for

CP execution. User specified commands such as “press ‘x’ if you see a red circle ” are converted

into function calls (i.e. VAE()->VH()->Prime({‘color’:‘red’})) by the CPC class. Listing 5.5

shows the implementation of this code block for one of the experiments that will be discussed in

more detail in a subsequent section. The structure typically follows some variable initialization

(lines 3, 4 and 6) followed by visual task execution (lines 8-37).
1 void main () {
2 // Var iab le I n i t i a l i z a t i o n
3 bool de t e c t i on ;
4 Attent ionalSample ∗ prime_as ;
5 // Retr i eve the s to r ed AS f o r t a r g e t de t e c t i on
6 Attent ionalSample ∗ square_as = StoredAS : : getSquareAS () ;
7 // Display in t e r−t r i a l image
8 VAE()−>waitForStimulus (" Inter−t r i a l ") ;
9 // Look at the f i x a t i o n c r o s s
10 VAE()−>FC()−>setFHMBias ({ " l o c a t i o n " : " cent r e " } , 0 . 8) ;
11 // A f i x a t i o n c r o s s with two r e c t ang l e s w i l l appear .
12 VAE()−>waitForStimulus (" Fixat ion ") ;
13 // A cue w i l l appear f o r 100 ms then d i sappear .
14 VAE()−>waitForStimulus ("Cue Onset") ;
15 // Get Attent i ona l Sample
16 prime_as = VAE()−>VH()−>getAS () ;
17 // Transform AS to r ep r e s en t l o c a t i o n in fo rmat ion only .
18 transformAStoLocationAS (prime_as) ;
19 // Prime the VH
20 VAE()−>VH()−>Prime (prime_as) ;
21 // Load the AS to tWM
22 BaseMethod : : loadAStoTWM(square_as ,
23 global_network−>getNetwork ("tWM_net_0")) ;
24
25 // A ta rg e t w i l l appear on the s c r e en f o r < 2 ,000 ms .
26 VAE()−>waitForStimulus ("Target Onset") ;
27 // When you see the square , respond .
28 de t e c t i on = VAE()−>VH()−>Detect ion (FEATURE_DETECTION) ;
29 i f (d e t e c t i on == true)
30 cout << "Target detec ted . Task Complete" ;
31 else {
32 cout << "Target not found . L i f t i n g a l l a t t en t i on mechanisms" ;
33 // Disengage a l l a t t en t i on mechanisms .
34 VAE()−>disengageAl lAttent ionMechanisms () ;
35 // Try to f i nd the t a r g e t again .
36 de t e c t i on = VAE()−>VH()−>Detect ion (FEATURE_DETECTION) ;
37 i f (d e t e c t i on)
38 cout << "Target detec ted . Task Complete" ;
39 else
40 cout << "Target not detec ted . Task Complete" ;
41 }
42 }

105

Listing 5.5: The sequence of commands required for executing the Egly and Driver ‘94 experi-
ment by the TN3Runner class (See Section 6)

Now that a description has been provided of the constituents of a task script including how

all of the relevant TarzaNN system parameters are initialized and the commands called for CP

execution, we look at how CP methods are assembled and executed.

5.3.4 Task Execution

Once a TN3Runner subclass with task dependent specification has been created, a visual

task may now be executed by calling TN3Runner’s run() method. This function initializes

the system by calling the init() method and executes the relevant task script by calling the

main() method as shown in Listing 5.6. This function is already implemented in the abstract

TN3Runner class and does not need to be specified again by the user.

1 void run () {
2 // I n i t i a l i z a t i o n be f o r e v i s u a l task execut ion .
3 i n i t () ;
4 // Task s p e c i f i c a t i o n and v i s u a l task execut ion .
5 main () ;
6 }

Listing 5.6: Task execution by the TN3Runner occurs by calling the run() method.

5.3.5 Summary

In this section we introduced how Cognitive Programs (CPs) can be assembled using methods

in the BaseMethods class as well as additional logic where necessary. Assembled CPs are

accessible through either the VH or FC class depending on the recognition method they belong

to.

Given these CPs, we then described how a task specification can be used to implement a

concrete TN3Runner class where the user must specify what needs initialization (init()) and

what needs to be executed for a given visual task (main()). While the initialization method

deals with setting up parameters, TN3Networks and stimulus onsets and durations, the main

method deals with the ordering in which CPs are executed and which parameters they require.

Finally, a visual task may be executed by calling the TN3Runner’s run() method. During

execution, the state of the system including variables and TN3Networks are updated at each

time step until the task termination criterion has been met.

106

6 Evaluation

This section contains visual attention and neural tuning curve experiments which demonstrate

several CPM-M’s within the CPM framework.

6.1 Visual Attention Experiments

The goal of these visual attention experiments is to demonstrate a variety of the CPs func-

tionality in our CPM. Here we show that the task dependent execution of these CPs results

in qualitatively similar reaction times and correct task decision output with respect to three

psychophysical experiments: a) Egly & Driver ‘94 [19], b) Folk et al. ‘92 [21], and c) Raymond

et al. ‘92 [57].

The reaction times obtained by the system have the same relative ordering of the reaction

times across the different test conditions in our experiments. Since the CPs are a proof of

concept at this point, only a qualitative comparison of the reaction times is provided.

For each of these visual experiments, a C + + version of the set of CPs the vTE executes

are shown. This code is a modified version of the commands executed by the output of Kunic’s

CPC [32], and although it isn’t a one-to-one reproduction, the major CPs executed remain the

same.

6.1.1 Egly & Driver ‘94

In Egly & Driver ‘94, the authors looked at how shifts in visual attention between objects and

locations were reflected in the behavioral performance of subjects using a spatial cue [19]. They

found that there was an advantage in reaction time when the target appeared on the same

object versus a different object in an invalid cue condition indicating an object based attention

component.

However, in our demonstration of some key Cognitive Programs - those involved for spatial

priming and detection, we focus only on the effects of spatial attention. In this regard, the

authors found that spatial attention resulted in behavioral performance on a validly cued trial

compared to the invalidly cued trial irrespective of which object the target appeared.

Two rectangles and a fixation cross were presented and the subject is cued by a whitening

of any of the four corners of the rectangle. After the presentation of the inter-stimulus interval

(ISI) a target is presented at either the cued or any of the uncued locations (see Figure 6.1).

The user is asked to respond by pressing a button if they have detected the target “as rapidly

as possible” while maintaining fixation at the centre of the display in a covert attention only

107

paradigm. The target remains on the screen for up to 2000 ms or until the user responds.

The results of the experiment showed that spatial attention negatively effected behavioral

performance when an invalid cue was presented (mean 364 ms with target appearing at same

object different location and different object uncued location), resulting in a reaction time cost

of 40 ms higher than in the valid cue condition (324 ms) [19].

Figure 6.1: Experiment sequence for Egly & Driver 1994 on a correctly cued trial. Reproduced
from [19].

vTE CP Execution Listing 6.1 shows the CPs executed by the vTE during this visual task.

1 void main () {
2 // Var iab le I n i t i a l i z a t i o n
3 bool de t e c t i on ;
4 Attent ionalSample ∗ prime_as ;
5 // Retr i eve the s to r ed AS f o r t a r g e t de t e c t i on
6 Attent ionalSample ∗ square_as = StoredAS : : getSquareAS () ;
7 // Display in t e r−t r i a l image
8 VAE()−>waitForStimulus (" Inter−t r i a l ") ;
9 // Look at the f i x a t i o n c r o s s
10 VAE()−>FC()−>setFHMBias ({ " l o c a t i o n " : " cent r e " } , 0 . 8) ;
11 // A f i x a t i o n c r o s s with two r e c t ang l e s w i l l appear .
12 VAE()−>waitForStimulus (" Fixat ion ") ;
13 // A cue w i l l appear f o r 100 ms then d i sappear .
14 VAE()−>waitForStimulus ("Cue Onset") ;
15 // Get Attent i ona l Sample
16 prime_as = VAE()−>VH()−>getAS () ;
17 // Transform AS to r ep r e s en t l o c a t i o n in fo rmat ion only .
18 transformAStoLocationAS (prime_as) ;
19 // Prime the VH
20 VAE()−>VH()−>Prime (prime_as) ;

108

21 // Load the AS to tWM
22 BaseMethod : : loadAStoTWM(square_as ,
23 global_network−>getNetwork ("tWM_net_0")) ;
24
25 // A ta rg e t w i l l appear on the s c r e en f o r < 2 ,000 ms .
26 VAE()−>waitForStimulus ("Target Onset") ;
27 // When you see the square , respond .
28 de t e c t i on = VAE()−>VH()−>Detect ion (FEATURE_DETECTION) ;
29 i f (d e t e c t i on == true)
30 cout << "Target detec ted . Task Complete" ;
31 else {
32 cout << "Target not found . L i f t i n g a l l a t t en t i on mechanisms" ;
33 // Disengage a l l a t t en t i on mechanisms .
34 VAE()−>disengageAl lAttent ionMechanisms () ;
35 // Try to f i nd the t a r g e t again .
36 de t e c t i on = VAE()−>VH()−>Detect ion (FEATURE_DETECTION) ;
37 i f (d e t e c t i on)
38 cout << "Target detec ted . Task Complete" ;
39 else
40 cout << "Target not detec ted . Task Complete" ;
41 }
42 }

Listing 6.1: The sequence of Cognitive Programs executed by the vTE.

Initialization Before the experiment begins, the system must have been told the range of

output activations that constitute a positive match of the target, specified by the decision

criteria. Note here, that we assume that the attentional sample of the target has already been

built and stored in tWM, here on referred to as square_as. The minimum and maximum

detection values in the function below are heuristically chosen.

1 VAE()−>VH()−>se tDe t e c t i o nC r i t e r i a (0 . 1 , 0 . 2 6) ;

Building an Attentional Sample The cue is presented to the system by the vTE at t = 0

ms. At a later time, t = 90 ms a selection is made at IT and the system now begins to build

an attentional sample. Recall that this process can be terminated earlier if there is not enough

time to fully traverse down the VH. Our system stops after layer IT because a selection is no

longer made in lower layers due to the removal of the cue stimulus. Once this process returns,

the attentional sample is transformed to represent location information only and abstract away

any feature information. See Section 4.3.2 for a discussion.

1 prime_as = VAE()−>VH()−>getAS () ;
2 transformASToLocationAS (prime_as) ;

109

Priming the VH After an attentional sample has been built and transformed, the system is

ready to prime the visual hierarchy. The process begins upon ISI onset and continues until it

is interrupted by a change of visual stimulus or the process is complete down all layers of the

visual hierarchy. The process works by gating the contents of the AS, now stored in tWM to

the VH.
1 VAE()−>VH()−>Prime (prime_as) ;

Target Detection Target detection begins when the target stimulus is presented at t = 300

ms after cue onset. First, a selection is made at the very top of the VH, then these contents

are gated to vWM. The vWM is then compared against the attentional sample in tWM and a

decision is made given the detection criteria.

1 r e s u l t = VAE()−>VH()−>Detect ion (FEATURE_DETECTION) ;

Decision If the target is successfully detected, then the CP execution terminates indicating

the time the target was detected. If the process fails, then the system disengages attention and

attempts to locate a new winner.

1 VAE()−>disenageAl lAttent ionMechanisms () ;

After attention is disengaged, the detection process mentioned previously is initiated for a

second time. If the system still fails to find the target, the program terminates indicating that

there was no target found.

Results Table 6.1 shows the selection, priming and target detection times at each layer of

the visual hierarchy. Note that some layers are greyed out indicating that the process did not

occur. In the cue presentation, there was insufficient time for a feedback pass due to the limited

presentation time, thus only information at the top most IT layers are available. In the target

detection, the cells are greyed out since the information available at the top of the VH was

sufficient for the matching process. Note that a minimum bias strategy is employed at layers

V4, V2, V1.

This experiment thus demonstrates the functionality of three CPs: VH.Detection, VH.Localization

and VH.Prime (with AS).

110

Layer Cue
Selection Time

(ms)

ISI
Priming Times (ms)

Valid Target
Target Detection Time

(ms)

Invalid Target
Target Detection

Time (ms)
IT 90 110 390 420
V4 120
V2 130
V1 140

Table 6.1: Cue detection, priming and target detection times for each process and the current
stimulus presented to the system. Greyed out boxes indicate that the process was not initiated
at this layer of the VH.

Figure 6.2 qualitatively compares the reaction times found in Table 6.1 to those in the original

psychophysical experiment indicating that the system is able to reproduce the authors original

findings. Note the limitation of this comparison to the original experiment is that the invalidly

cued target RTs are all collapsed together with the mean taken of the target presented at the

same object different location and different object uncued location since the aim was to show the

usage of key Cognitive Programs - those involved in priming and detection. Future work may

look at testing the object based attentional component differences in RT in this experiment.

Figure 6.2: Qualitative comparison of the reaction times for target detection in Experiment 1
of [19] and in our simulation results. The normalized RT in the invalid cue is the mean of the
target presented at the same object different location and different object uncued location.

Listing 6.2 shows the terminal output of the experiment on an invalidly cued trial. The

numbers on the left hand side indicate the time (in ms) the command was initiated. Notice

that the system attempts to detect the target at t = 1850 ms but fails because the detection

criterion is not met.

0 AE::updateStimulus(). Presenting Stimulus (Intertrial)
50 FC::setFHMBias({"location": "center"}).
500 AE::updateStimulus(). Presenting Stimulus (Fixation)
1500 AE::updateStimulus(). Presenting Stimulus (Cue)
1570 AE Selection signals 1,0,0,0,0
1570 VH::getAS(). Begin retrieving attentional sample.

1600 AE::updateStimulus(). Presenting Stimulus (Fixation)
1600 VH::Prime(). Begin Priming
1610 VH::Prime(). Working on layer 4
1620 VH::Prime(). Working on layer 3

111

1620 VH::Prime(). Attentional Sample Not Found. Using minimum bias.
1630 VH::Prime(). Working on layer 2
1640 VH::Prime(). Working on layer 1
1640 VH::Prime(). Finished Priming

1800 AE::updateStimulus(). Presenting Stimulus (Target)

1800 VH::Detection(). Begin Detection
1840 AE Selection signals 1,0,0,0,0
1850 VH::getMatchDetectionResult: 0.03
1850 Target not found. Lifting all attention mechanisms.

1860 VH::disengageAttention(). Working on layer 5
1870 VH::disengageAttention(). Working on layer 4
1880 VH::disengageAttention(). Working on layer 3
1890 VH::disengageAttention(). Working on layer 2
1900 VH::disengageAttention(). Working on layer 1

1900 VH::Detection(). Begin Detection
1940 AE Selection signals 1,0,0,0,0
1950 VH::getMatchDetectionResult: 0.12
1950 Target detected. Task Complete.

Listing 6.2: Terminal output of the experiment in an invalidly cued trial.

6.1.2 Folk et al. ‘92

The Folk et al. 1992 experiment [21] is a recognition pop-out search task requiring covert

attention only. Four square boxes are presented peripherally and one square box centrally. A

cue indicated by four red filled circles around one of the square boxes indicates the expected

location the target will appear. The uncued boxes were all surrounded by white unfilled circles.

Here, the subject is told before the experiment begins whether this trial will have a valid or

invalid cue. Hence, the subject must use this information when discriminating the target. A

fixation display is presented after the color cue followed by a color target. The target is a solid

‘X’ or ‘=’ and the distractors are non-solid stimuli all shown in the peripheral squares. The

central square never has a target present. The user is asked to discriminate the target (was it

an ‘X’ or ‘=’?) and respond accordingly as fast as possible. The goal of this experiment is to

investigate how reaction times are affected by the interaction between the cue and the properties

required for task performance due to involuntary shifts of covert attention. The authors found

that costs only occur during the presentation of an invalid cue that represents the same property

(for example, color or location) as the target, in this condition there was an increase in reaction

times.

112

Figure 6.3: Experiment sequence for Folk et al. 1992 on a correctly cued trial. Reproduced
from [21].

vTE CP Execution The sequence of CPs executed by the vTE during the visual task is

shown in Listing 6.3.

1 void main () {
2 // Var iab le I n i t i a l i z a t i o n
3 int r e s u l t ;
4 Attent ionalSample ∗ prime_as ;
5 Attent ionalSample ∗ equal_as = StoredAS : : getEqualsAS () ;
6 Attent ionalSample ∗ x_as = StoredAS : : getLetterXAS () ;
7 // Display f i x a t i o n image
8 VAE()−>waitForStimulus (" Fixat ion ") ;
9 // Look at the cente r f i x a t i o n box .
10 VAE()−>FC()−>setFHMBias ({ " l o c a t i o n " : " cent r e " } , 0 . 8) ;
11
12 // A cue w i l l appear f o r 50 ms then d i sappear .
13 VAE()−>waitForStimulus ("Cue") ;
14
15 prime_as = VAE()−>VH()−>getAS () ;
16 VAE()−>VH()−>Prime (prime_as , { ' c o l o r ' : ' red ' }) ;
17
18 // Load AS in to tWM
19 BaseMethod : : loadAStoTWM(equal_as ,
20 global_network−>getNetwork ("tWM_net_0")) ;
21 BaseMethod : : loadAStoTWM(x_as ,
22 global_network−>getNetwork ("tWM_net_1")) ;
23
24 // A ta rg e t w i l l appear f o r 50 ms then d i sappear .
25 VAE()−>waitForStimulus ("Target ") ;
26
27 // Press '0 ' or '1 ' i f you see a '= ' or 'X ' r e s p e c t i v e l y .

113

28 r e s u l t = VAE()−>VH()−>Recognit ion (FEATURE_DETECTION) ;
29 i f (r e s u l t == 1)
30 cout << "Target d i s c r im ina t ed . 'X ' found . Task Complete" ;
31 i f (r e s u l t == 0)
32 cout << "Target d i s c r im ina t ed . '= ' found . Task Complete" ;
33 }

Listing 6.3: The sequence of Cognitive Programs executed by the vTE.

Initialization Where as the V H.Detection decision criterion in the previous experiment takes

in two numbers as arguments - the minimum and maximum threshold values, V H.Recognition

decision criterion requires a vector of minimum and maximum threshold values. For this ex-

periment, the decision criterion is provided with two elements in the vector to indicate how

well the contents of the tWM match the incoming stimulus. The contents of tWM contain two

templates for the targets ‘X’ and ‘=’, from here on referred to as equals_as and x_as as partial

attentional samples. To ensure there is no ambiguity, the discrimination task returns the integer

of the index of the template that matches if and only if it meets the search criterion defined

below.
1 VAE()−>VH()−>se tRe c ogn i t i o nCr i t e r i a ({ 0 . 2 , 0 . 4 } ,
2 { 0 . 2 , 0 . 4 }) ;

Building an Attentional Sample After presentation of the cue at t = 1500, a winner is

selected at the top most layer IT . In the valid cue condition, the system knows that the cue

is 100% indicative of the location the target will appear. Likewise, the invalid cue condition

indicates that the target will never appear at this location. However, since these control signals

are assumed to be involuntary as suggested by the authors, the same priming effect occurs.

Once the cue is detected by the system, it is almost immediately removed due to its short

presentation duration of 50 ms. Hence, only course spatial location information is extracted

at IT . Note that the inferotemporal (IT) neurons can have receptive fields as large as 23◦ in

diameter from the centre of gaze [26], and, hence priming will be spatially course down the VH.

The attentional sample is then transformed to represent location information only abstracting

away feature information.

1 prime_as = VAE()−>VH()−>getAS () ;
2 transformASToLocationAS (prime_as) ;

Priming the VH The visual hierarchy is primed using the partial attentional sample and the

minimum bias strategy is employed at layers V4, V2 and V1. Task knowledge indicating that

114

we are looking for a red target is applied at the same time.

1 VAE()−>VH()−>Prime (prime_as , { " c o l o r " : " red " })

Loading AS into tWM Prebuilt AS’s representing the two possible targets - an ’X’ and a ’=’

are loaded into separate tWM Networks. The networks are retrieved from the global_network

by its name - tWM_net_1 and tWM_net_2.

1 BaseMethod : : loadAStoTWM(equal_as ,
2 global_network−>getNetwork ("tWM_net_1")) ;
3 BaseMethod : : loadAStoTWM(x_as ,
4 global_network−>getNetwork ("tWM_net_2")) ;

Target Recognition Upon target presentation, we assume that the target is salient and de-

tected via a ‘pop-out’ bottom up process since it was primed for earlier and since it automatically

captures bottom up attention due to its distinct features with respect to distractors [80].

1 r e s u l t = VAE()−>VH()−>Recognit ion (FEATURE_DETECTION) ;

Results Table 6.2 shows the selection and priming times during the cue and ISI stimulus

respectively.

Layer Cue
Presentation
Selection Time

(ms)

ISI Presentation
Priming Times (ms)

IT 50 (0) 60
V4 70
V2 80
V1 90

Table 6.2: Cue detection and priming times.

Table 6.3 shows the selection and recognition times of the target after cue onset. In addition,

the output of the system is also shown by the Discriminated Target. The similarity vector shown

in the last column indicates how well the contents in the vWM match those of the tWM. Here,

higher values indicate a better match. Note how the similarity values are lower for the invalid

cue condition

115

Cue Condition Ground Truth Target Discriminated
Target

Recognition Time
(ms)

Similarity
Vector

100% Valid Cue X (Valid Cue) X 240 0.32
= (Valid Cue) = 242.5 0.24

100% Invalid Cue X (Invalid Cue) X 285 0.18
= (Invalid Cue) = 287.5 0.10

Table 6.3: Target selection and recognition times after cue onset. The similarity vector shows
how well the detected target matches the template target stored in the tWM. Higher values
indicate a closer match.

Figure 6.4 shows the reaction times the system outputs in the valid and invalidly cued

condition plotted against the findings in the original experiment.

Figure 6.4: Qualitative comparison of the reaction times outputted by the system to those found
in the original Folk et al. 1992 experiment [21].

Listing 6.4 shows the terminal output during the execution of the task.

0 AE::updateStimulus(). Presenting Stimulus (Fixation)
50 FC::setFHMBias({"location": "center"}).
1000 AE::updateStimulus(). Presenting Stimulus (Cue)

1050 AE::updateStimulus(). Presenting Stimulus (Fixation)

1060 AE Selection signals 1,0,0,0,0
1060 VH::getAS(). Begin retrieving attentional sample.

1050 VH::Prime(). Begin Priming
1050 VH::Prime(). Working on layer 4
1060 VH::Prime(). Working on layer 3
1060 VH::Prime(). Attentional Sample Not Found. Using minimum bias.
1070 VH::Prime(). Working on layer 2
1080 VH::Prime(). Working on layer 1
1090 VH::Prime(). Finished Priming

1100 AE::updateStimulus(). Presenting Stimulus (Target)

1160 VH::Recognition(). Begin Discrimination

116

1160 AE Selection signals 1,0,0,0,0
1250 VH::getMatchDetectionResult(0): 0.03
1250 VH::getMatchDetectionResult(1): 0.24
1250 Target discriminated. ‘X’ found. Task Complete.

Listing 6.4: Terminal output of the experiment in an validly cued trial.

Summary This experiment shows that involuntary shifts in attention can increase the reaction

times for recognition of the target if the cue and target share similar properties. Here, we

showed that cueing was processed in exactly the same way irrespective of whether the target

was incorrectly or correctly cued. However, the key finding here was that since there was more

noise on an incorrectly cued trial, the recognition process took longer to reach a threshold in

order to reach a decision, reflected in the reaction times between the tested conditions.

6.1.3 Raymond et al. ‘92

In the Raymond et al. 1992 [57] experiment, subjects were presented with a series of letters in a

rapid serial visual presentation (RSVP) paradigm. Within the stream of letters the subject was

asked to identify the white target and detect a partially specified probe appearing some time

after target presentation.

From here on in, a probe presented immediately after the target is denoted as (+1), while

a probe appearing one stimuli after the target is denoted as (+2) and so on. The authors

found that the probability of detection of the probe increased if it was presented immediately

after the target or much later in the visual stream with respect to the target. However, during

an intermediate duration there appeared to be a temporary suppression mechanism in place

suggested by a significantly decreased probability of detection.

The source of this temporary deficit is thought to be due to target identification processes

that interfere with probe detection since the effect was not seen when a brief blank interval

followed target identification. In our paradigm, all stimuli including the probe were green in

color while the white target was modeled as a red color. See Appendix C for more details about

stimulus parameterization.

In the work by Sengupta et al. [70], this temporary deficit in probe detection was hy-

pothesized to be due to a top down inhibitory signal to the visual hierarchy which is initiated

immediately following target feature detection during the memory consolidation phase. In other

words, after a target has been detected the system is in the state "I have found a white target,

but I do not know what letter the target is." In order to ensure accurate target identification,

subsequent stimuli in the VH stream need to be suppressed from reaching the vWM. During

this period of time, subsequent incoming stimuli have a reduced probability of being detected.

117

At the current time, CPs are deterministic,. Because of this, we will not be able to directly

show the probability of detection and identification of the probe and target, respectively. Instead,

we show that the similarity between the template and incoming stimuli stored in vWM directly

correlate with the probability of detection of the probe.

Figure 6.5: Raymond et al. 1992 experiment paradigm.

vTE CP Execution The sequence of CPs executed by the vTE during the visual task is

shown in Listing 6.5.
1 void main () {
2 bool TARGET_FOUND = fa l se ;
3 int TARGET_IDENTITY = −1;
4 bool PROBE_FOUND = fa l se ;
5 // Display f i x a t i o n image
6 VAE()−>waitForStimulus (" Fixat ion ") ;
7 // Look at the cente r f i x a t i o n box .
8 VAE−>FC−>setFHMBias ({ " l o c a t i o n " : " cent r e " } , 0 . 8) ;
9 // Load AS ' s i n to tWM
10 for (int i = 0 ; i < NUM_RAYMOND_AS; i++){
11 Attent ionalSample ∗ as = StoredAS : : getRaymondAS(i) ;
12 BaseMethod : : loadAStoTWM(as ,
13 global_network−>
14 getNetwork ("tWM_net_" + to_str ing (i))

) ;
15 }
16
17 // A sequence o f l e t t e r s w i l l appear .
18 for (int i = 0 ; i < NUM_IMAGES; i++){
19 VAE()−>waitForStimulus (l e t t e r [i]) ;
20 i f (!TARGET_FOUND){
21 TARGET_FOUND = VAE()−>VH()−>Detect ion ({ " c o l o r " : " red " }) ;
22 TARGET_IDENTITY = VAE()−>VH()−>
23 I d e n t i f i c a t i o n (OBJECT_DETECTION) ;
24 cout << "Target found . " ;
25 continue ;

118

26 }
27 i f (!PROBE_FOUND && TARGET_FOUND){
28 PROBE_FOUND = VAE()−>VH()−>Detect ion (letter_x_template) ;
29 cout << "Probe Found . " ;
30 }
31 }
32 cout << "Task complete . " ;
33 }

Listing 6.5: The sequence of Cognitive Programs executed by the vTE.

Initialization Before running the experiment, templates of all letters used in the experiment

were created as partial attentional samples and stored into tWM. In the code listing above, this

is referred to as a vector of attentional samples: letter_templates. The identification criteria

indicates the range the output neural activation should be in of the chosen class in order to

correctly identify the target. If the neural activations do not fall within this threshold, then the

system returns −1 indicating that it has not been detected.

1 VAE()−>VH()−>s e t I d e n t i f i c a t i o nC r i t e r i a (args) ;

Next, the strength and duration of the memory consolidation signal must also be specified.

This signal is initiated by the execution of the VH.Identification process immediately after target

detection and modeled as a multiplicative top down bias using the Bias Control operation. This

aims to suppress any incoming stimuli while the target is in the process of being stored into

vWM. See Appendix B for an effect of this on neural tuning curves in area IT . The function

takes in as argument the initial maximum strength (1.0) and the length of the signal (500) in

ms. The values are heuristically chosen here to best represent the duration the interference

occurred in the original experiment.

1 VAE()−>VH()−>setMemConsolidationParams (1 . 0 , 500 . 0) ;

Target Detection During the RSVP, the system must continuously monitor to see if the

target has been detected. Since we employ detection twice in this experiment (once during

detection of the target and once during detection of the probe), we may specify the criteria for

each just before calling the VH.Detection CP.

1 VAE()−>VH()−>se tDe t e c t i o nC r i t e r i a (0 . 2 5 , 0 . 4) ;
2 r e s u l t = VAE()−>VH()−>Detect ion ({ " c o l o r " : " red " }) ;

119

Target Recognition If a target has been detected, the system attempts to identify the target.

Note that this process also initiates the memory consolidation signal at the top of the VH.

1 r e s u l t = VAE()−>VH()−>I d e n t i f i c a t i o n (OBJECT_DETECTION) ;

Probe Detection After the above process is complete, the memory consolidation signal is

still engaged at IT . Even so, the system continues to proceed and attempts to detect the probe.

We set the detection criteria as we did for target detection.

1 runner−>VAE()−>VH()−>se tDe t e c t i o nC r i t e r i a (0 . 0 9 , 0 . 4 0) ;
2 r e s u l t = VAE()−>VH()−>Detect ion (OBJECT_DETECTION) ;

Results The terminal output has been omitted due its large length. Instead, we provide

evaluation of the detection and identification times. The first portion of this experiment deals

with correctly detecting and identifying the target and the results are shown in Table 6.4. Notice

that detection precedes identification as reflected in the times the respective process finished

executing.

Ground Truth Target Detected Target Detection Time
(ms)

Identification Time
(ms)

Similarity Vector

A A 60 73.5 0.33
E E 62.5 75 0.28
X X 62.5 75 0.39

Table 6.4: Target detection and identification times in ms from time of stimulus onset. The
similarity vector indicates how well the target represents the template stored in tWM. Higher
values are better.

The next stage revolves around probe detection. After target detection, a top down memory

consolidation signal is initiated at the top most layer of the VH. When the signal reduces in

intensity, matching the incoming stimuli becomes more reliable as reflected in the similarity

vector shown in Table 6.5.

The last row of the table indicates the result of probe detection when it is presented anytime

after target onset, but no target identification processes have been initiated, serving as a control.

Here, the values are averaged when the probe is presented +1, +2, +3 and +4 after target onset.

Notice that the similarity value is significantly higher than when target identification processes

are initiated. This is in line with the authors prediction that the probability of probe detection

is negatively effected only when the user is instructed to perform target identification [57].

120

Detected Probe Presentation Relative
to Target

Detection Time
(ms)

Similarity

X +1[180 ms] 60.0 0.09
X +2 [270 ms] 62.5 0.12
X +3 [360 ms] 62.5 0.13
X +4 [450 ms] 62.5 0.16
X +7 [450 ms] 60.0 0.35
X Control, no identification. 60.0 0.35

Table 6.5: Probe detection times in ms from time of stimulus onset. The similarity value
indicates how well the target represents the template stored in tWM. Higher values indicate a
better match.

To evaluate our results to those found by the authors, we look at Figure 3A in [57]. Here,

the authors plot the % correct probe detection as a function of the relative serial position of the

probe. Figure 6.6 shows a plot of the experimental findings reproduced from [57] reported as

’Data.’ The values reported for the ’System’ are those found in Table 6.5. Note that we were not

able to replicate the findings in the (+1) and (+2) conditions due to the memory consolidation

signal taking place immediately after target identification. Additional mechanisms may be

needed to account for this anomaly.

Figure 6.6: Comparison of the % Correct Probe Detection found in [57] reported as ’Data’, with
respect to the similarity reported as ’System.’

Summary This experiment is unique as it demonstrates a variety of CPs that can be “stitched”

together to simulate larger and more complex experiments. Here, we have demonstrated that

the Raymond et al. 1992 experiment can be composed of a detection followed by identification

of the target followed by the detection of the probe. In addition, we have also highlighted how

121

target identification processes can ballistically initiate an inhibitory memory consolidation signal

as the source of interference the authors in the original experiment had found.

6.2 Neural Tuning Curve Experiments

In addition to testing the implemented CPs on visual attention experiments, we also wanted to

test whether applying a subset of the CPs on the Visual Hierarchy result in neurally realistic

tuning curves. Here we look at the effect of spatial and feature attention on the neural tuning

curves and compare the findings to known neural tuning curves under these conditions. In order

to record neural activation, we attach a probe in one sheet in layer V4 of the VH and plot one

neurons activation across all conditions.
1 // Create a probe
2 Probe∗ probe = new Probe (tn3_network−>getNetwork ("VH") ,
3 "V4_0_0") ;
4 // Attach the probe .
5 RIG()−>addProbe (probe) ;

6.2.1 Spatial Attention

In a spatial attention paradigm, oriented stimuli are presented within the receptive field of the

neuron being recorded in V4 area of macaque monkeys [40]. The monkeys are trained to either

pay attention to the stimulus within or outside the receptive field in a match to sample task. The

authors found that the effect of spatial attention was a multiplicative scaling of all orientations.

Figure 6.7 shows the sequence of images presented to the TarzaNN system reproduced from

the original experiment by McAdams & Maunsell [40]. The fixation, delay and sample period

were 500 ms each, while the test period could last up to 1000 ms. The experiment begins

with the presentation of a fixation. The system is instructed to fixate here as only covert

attention is allowed. Following this, a location cue indicated by a green circle is presented and

the system uses this to build an attentional sample. During the inter-stimulus interval (ISI), a

top down spatial bias is applied using the attentional sample as parameters. The target is then

displayed and the system must now respond when it finds the target. This paradigm was run

with orientation bars ranging from [0◦ − 180◦] in increments of 9◦ for a total of 20 orientation

bars presented. In the attend toward and attend away conditions the target was presented at

the cued and uncued location, respectively.

122

Figure 6.7: Spatial attention experimental sequence adapted from [40].

vTE CP Execution The vTE code listing for this experiment is shown in Listing 6.6. Note

that the detection process here is used to ensure neural activations converge before terminating

the experiment. In this simple experiment, the localization process is initiated to get the atten-

tional sample from the VH. Unlike in the visual attention experiments, there is sufficient time

for a full feedback traversal of the VH, thus a complete attentional sample is captured. The

attentional sample is parameterized, then used to prime the VH.

1 void main () {
2 // Var iab le I n i t i a l i z a t i o n
3 bool de t e c t i on ;
4 Attent ionalSample ∗ prime_as ;
5 // Display f i x a t i o n image
6 VAE()−>waitForStimulus (" Fixat ion ") ;
7 // Look at the cent r e f i x a t i o n box .
8 VAE()−>FC()−>setFHMBias ({ " l o c a t i o n " : " cent r e " } , 0 . 8) ;
9
10 // A cue w i l l appear f o r 500 ms then d i sappear .
11 VAE()−>waitForStimulus ("Cue") ;
12
13 prime_as = VAE()−>VH()−>getAS () ;
14 // Transform the r ep r e s en t a t i on f o r s p a t i a l l o c a t i o n only .
15 transformASToLocationAS (prime_as) ;
16 VAE−>VH−>Prime (prime_as) ;
17
18 // A ta rg e t w i l l appear f o r 500 ms then d i sappear .
19 VAE()−>waitForStimulus ("Target ") ;
20
21 // Detect the t a r g e t
22 de t e c t i on = VAE()−>VH()−>Detect ion ({ " c o l o r " : " red " })
23
24 cout << "Target found : " << de t e c t i on << "\n" ;
25 }

Listing 6.6: The commands executed by the vTE for simulating this experiment.

123

Results In Figure 6.8, we show that spatially priming the VH before target onset results in a

multiplicative scaling effect as seen in the original experiment.

Figure 6.8: Spatial attention causes a multiplicative scaling of neural tuning curves. (A) The
orientation tuning curves averaged across a population of V4 neurons reproduced from [40]. (B)
TarzaNN 3.0 simulation results.

6.2.2 Feature Attention

Feature based attention is thought to occur from a different source than spatial based attention.

Martinez-Treujilo & Treue [39] show the effects of feature based attention on neural tuning

curves with directionally selective cells in Middle Temporal (MT) area of Macaque Monkeys.

They note that the direction of motion of the attended stimuli resulted in different neural tuning

curves of MT neurons with nearby features showing an enhancement while features farther away

showed a suppressive effect.

McAdams & Maunsell [40] show the presence of orientation selective neurons in V4 and while

in this experiment there was no sharpening of neural tuning curves found, this discrepancy may

have been attributable to the differences in attentional strategy used [59]. In our experiment we

qualitatively compare the results of a sharpening of the neural tuning curve of V4 neurons for

feature based attention to those found in area MT in [39].

The experimental paradigm is almost identical to spatial attention except that here, the

location cue is fixed across conditions and the neuron contralateral to the attended stimulus

is recorded. In this way, the effects of spatial attention are controlled for. Feature based

attention is always directed to the shown stimulus while the recorded neuron is sensitive only

124

to a particular orientation. Attention was directed to either the fixation, or the stimulus in the

contralateral receptive field. The key findings of the authors were that the multiplicative scaling

due to feature based attention is proportional to the similarity of the attended feature with

respect to the preferred feature of the neuron. This finding is also referred to as a sharpening

of the neural tuning curve. The experimental paradigm is shown in Figure 6.9.

Figure 6.9: Feature attention experiment paradigm.

vTE CP Execution To run this experiment, we highlight some of the commands executed

by the vTE in the code snippet shown in Listing 6.7. In the attend same condition, the system

is manually primed to the orientation of the target (see Line 12 of code listing).

1 void main () {
2 // Var iab le I n i t i a l i z a t i o n
3 bool de t e c t i on ;
4 Attent ionalSample ∗ prime_as ;
5 // Display f i x a t i o n image
6 VAE()−>waitForStimulus (" Fixat ion ") ;
7 // Look at the cent r e f i x a t i o n box .
8 VAE()−>FC()−>setFHMBias ({ " l o c a t i o n " : " cent r e " } , 0 . 8) ;
9
10 // A cue w i l l appear f o r 500 ms then d i sappear .
11 VAE()−>waitForStimulus ("Cue") ;
12
13 prime_as = VAE()−>VH()−>getAS () ;
14 // Transform the r ep r e s en t a t i on f o r s p a t i a l l o c a t i o n only .
15 transformASToLocationAS (prime_as) ;
16 VAE()−>VH()−>Prime (prime_as , { " o r i e n t a t i o n " : "X"}) ;
17
18 // A ta rg e t w i l l appear f o r 500 ms then d i sappear .
19 VAE()−>waitForStimulus ("Target ") ;
20
21 // Detect the t a r g e t
22 de t e c t i on = VAE()−>VH()−>Detect ion ({ " c o l o r " : " red " })
23
24 cout << "Target found : " << de t e c t i on << "\n" ;

125

25 }

Listing 6.7: The commands executed by the vTE for simulating this experiment.

Results Figure 6.10 compares the qualitative effect of feature based attention on neural re-

sponse curves of one neuron in MT (Figure 6.10A reproduced from [39]) and V4 (Figure 6.10A).

Here we show that the system is able to replicate the non-multiplicative scaling of the neural

tuning curve. The data was generated by taking the neural activation at one time point after

target detection when the neural activation’s had converged.

Figure 6.10: Feature based attention effects neural tuning curves in area V4. (A) The neural
response curves recorded in layer MT of macaque monkeys from [39] and (B) from the system
when attention was directed to the stimuli contralateral to the receptive field (Attend Toward)
or toward the fixation (Attend Away).

126

7 Discussion and Conclusion

In this thesis we have introduced a Cognitive Programs Memory framework that acts as a

“database” for storing Cognitive Programs which can be parameterized, reused and adapted

for a variety of different visual tasks. As part of this framework, four Neural Primitives that

function on the basis of transforming one representation to another are proposed that are not

only biologically plausible but provide useful low level computations that can be sequenced

together to form CPs. To allow CPs to have their full functionality, three other constituents were

introduced: productions, control signals and parameterizations allowing us to create algorithms

involving: top down control signals, selecting region of interest, dealing with covert and overt

fixations, information routing, access to memory, matching to task and priming.

The motivation for introducing the CPM was two fold. First, there was no standardized

way of executing a visual task in STAR, and designing algorithms on a task by task basis was

difficult and slowed research and future development of ST. Second, taking inspiration from the

neurophysiological literature, we wanted to design these algorithms around the idea of a basis

set of elemental operations that can be combined together in different ways to provide a breadth

of functionality. For this, we introduced the NPs.

To assess the CPM, we tested on three psychophysical experiments employing distinct pro-

cessing strategies to demonstrate a variety of different CP functionalities. In addition, we also

tested the CPs on a spatial and feature attention paradigm and showed that the system is able

to replicate qualitatively similar neural tuning curves to neurophysiological data.

Despite this, there are several limitations to the CPM framework that can be expanded

upon in future work. First, this framework relies on hard coded weights between any two

Nodes that are connected by some NP operation. Although this simplifies the implementation,

it significantly limits the functions that we can compute. As a solution, one may look at

approximating these weights based on a desired function, much like how it is described in

the NENGO framework [6]. Second, the execution of a CP requires a tremendous amount

of parameterizations since each experiment contains stimuli at different scales and intensities

requiring one to hand pick values such as θ for the θ−WTA algorithm. Furthermore, as part of

the constituents of CPs we defined productions and manipulation of control signals using simple

IF-THEN rules. Future work may look at encoding productions using neural representations

and some form of a competitive WTA algorithm as theoretically defined in the human Turing

machine [97] or as implemented in the NENGO framework [6]. Then, the manipulation of these

control signals may be interpreted as a “firing” of some of these productions using a neural

production system.

127

References

[1] Larry F Abbott. “Lapicque’s introduction of the integrate-and-fire model neuron (1907)”.

In: Brain research bulletin 50.5 (1999), pp. 303–304.

[2] Fabrice Arcizet, Koorosh Mirpour, and James W Bisley. “A pure salience response in

posterior parietal cortex”. In: Cerebral Cortex 21.11 (2011), pp. 2498–2506.

[3] Farhan Baluch and Laurent Itti. “Mechanisms of top-down attention”. In: Trends in neu-

rosciences 34.4 (2011), pp. 210–224.

[4] Chiara Baston and Mauro Ursino. “A biologically inspired computational model of basal

ganglia in action selection”. In: Computational intelligence and neuroscience 2015 (2015),

p. 93.

[5] Andre M Bastos et al. “Canonical microcircuits for predictive coding”. In: Neuron 76.4

(2012), pp. 695–711.

[6] Trevor Bekolay et al. “Nengo: a Python tool for building large-scale functional brain mod-

els”. In: Frontiers in neuroinformatics 7 (2014), p. 48.

[7] Bruce Bobier, Terrence C Stewart, and Chris Eliasmith. “A unifying mechanistic model

of selective attention in spiking neurons”. In: PLoS computational biology 10.6 (2014),

e1003577.

[8] Rafal Bogacz. “Optimal decision-making theories: linking neurobiology with behaviour”.

In: Trends in cognitive sciences 11.3 (2007), pp. 118–125.

[9] RhEInIschE FRIEDRIch-WILhELMs-UnIvERsIT2AT Bonn. “VOCUS: A Visual Atten-

tion System for Object Detection and Goal-directed Search”. In: (2006).

[10] Conrado A Bosman and Francisco Aboitiz. “Functional constraints in the evolution of

brain circuits”. In: Frontiers in neuroscience 9 (2015).

[11] Randy L Buckner, Jessica R Andrews-Hanna, and Daniel L Schacter. “The brain’s default

network”. In: Annals of the New York Academy of Sciences 1124.1 (2008), pp. 1–38.

[12] Timothy J Buschman and Sabine Kastner. “From behavior to neural dynamics: an inte-

grated theory of attention”. In: Neuron 88.1 (2015), pp. 127–144.

[13] Timothy J Buschman and Earl K Miller. “Top-down versus bottom-up control of attention

in the prefrontal and posterior parietal cortices”. In: science 315.5820 (2007), pp. 1860–

1862.

[14] Daniel P Buxhoeveden and Manuel F Casanova. “The minicolumn hypothesis in neuro-

science”. In: Brain 125.5 (2002), pp. 935–951.

128

[15] Marisa Carrasco. “Visual attention: The past 25 years”. In: Vision research 51.13 (2011),

pp. 1484–1525.

[16] Patrick Cavanagh. “Attention routines and the architecture of selection”. In: (2004).

[17] Marlene R Cohen and John HR Maunsell. “Attention improves performance primarily by

reducing interneuronal correlations”. In: Nature neuroscience 12.12 (2009), pp. 1594–1600.

[18] Stanislas Dehaene et al. “The neural representation of sequences: from transition proba-

bilities to algebraic patterns and linguistic trees”. In: Neuron 88.1 (2015), pp. 2–19.

[19] Robert Egly, Jon Driver, and Robert D Rafal. “Shifting visual attention between objects

and locations: evidence from normal and parietal lesion subjects.” In: Journal of Experi-

mental Psychology: General 123.2 (1994), p. 161.

[20] Chris Eliasmith and Charles H Anderson. Neural engineering: Computation, representa-

tion, and dynamics in neurobiological systems. MIT press, 2004.

[21] Charles L Folk, Roger W Remington, James C Johnston, et al. “Involuntary covert orient-

ing is contingent on attentional control settings”. In: Journal of Experimental Psychology

Human Perception and Performance 18 (1992), pp. 1030–1030.

[22] Michael J Frank and David Badre. “Mechanisms of hierarchical reinforcement learning in

corticostriatal circuits 1: computational analysis”. In: Cerebral cortex 22.3 (2011), pp. 509–

526.

[23] David J Freedman et al. “Visual categorization and the primate prefrontal cortex: neuro-

physiology and behavior”. In: Journal of Neurophysiology 88.2 (2002), pp. 929–941.

[24] Pascal Fries et al. “Modulation of oscillatory neuronal synchronization by selective visual

attention”. In: Science 291.5508 (2001), pp. 1560–1563.

[25] Karl J Friston. “Functional and effective connectivity: a review”. In: Brain connectivity 1.1

(2011), pp. 13–36.

[26] CG Gross et al. “Cortical visual areas of the temporal lobe”. In: Multiple visual areas.

Springer, 1981, pp. 187–216.

[27] David H Hubel and Torsten N Wiesel. “Ferrier lecture: Functional architecture of macaque

monkey visual cortex”. In: Proceedings of the Royal Society of London B: Biological Sci-

ences 198.1130 (1977), pp. 1–59.

[28] Stanley Jacobson and Elliott M Marcus. Neuroanatomy for the Neuroscientist. Springer

Science & Business Media, 2011.

129

[29] Raymond M Klein. “Inhibition of return”. In: Trends in cognitive sciences 4.4 (2000),

pp. 138–147.

[30] Iuliia Kotseruba. “Visual Attention in Dynamic Environments and Its Application To

Playing Online Games”. In: (2016).

[31] Wouter Kruijne and John K Tsotsos. Visuo-cognitive routines: reinterpreting the theory of

visual routines as a framework for visual cognition. Tech. rep. TR CSE-2011-05. Toronto,

ON: Department of Computer Science and Eng., York University, 2011.

[32] Toni Kunic. “Cognitive Program Compiler”. In: (2017).

[33] José L Lanciego, Natasha Luquin, and José A Obeso. “Functional neuroanatomy of the

basal ganglia”. In: Cold Spring Harbor perspectives in medicine 2.12 (2012), a009621.

[34] Matthew Larkum. “A cellular mechanism for cortical associations: an organizing principle

for the cerebral cortex”. In: Trends in neurosciences 36.3 (2013), pp. 141–151.

[35] Kyoung-Min Lee, Kyung-Ha Ahn, and Edward L Keller. “Saccade generation by the frontal

eye fields in rhesus monkeys is separable from visual detection and bottom-up attention

shift”. In: PloS one 7.6 (2012), e39886.

[36] Alianna J Maren, Craig T Harston, and Robert M Pap. Handbook of neural computing

applications. Academic Press, 2014.

[37] Henry Markram. “A network of tufted layer 5 pyramidal neurons.” In: Cerebral cortex

(New York, NY: 1991) 7.6 (1997), pp. 523–533.

[38] David Marr and Tomaso Poggio. “A computational theory of human stereo vision”. In: Pro-

ceedings of the Royal Society of London B: Biological Sciences 204.1156 (1979), pp. 301–

328.

[39] Julio C Martinez-Trujillo and Stefan Treue. “Feature-based attention increases the selec-

tivity of population responses in primate visual cortex”. In: Current Biology 14.9 (2004),

pp. 744–751.

[40] Carrie J McAdams and John HR Maunsell. “Effects of attention on orientation-tuning

functions of single neurons in macaque cortical area V4”. In: Journal of Neuroscience 19.1

(1999), pp. 431–441.

[41] AR McIntosh and F Gonzalez-Lima. “Network interactions among limbic cortices, basal

forebrain, and cerebellum differentiate a tone conditioned as a Pavlovian excitor or in-

hibitor: fluorodeoxyglucose mapping and covariance structural modeling”. In: Journal of

Neurophysiology 72.4 (1994), pp. 1717–1733.

130

[42] Maria Medalla and Helen Barbas. “Synapses with inhibitory neurons differentiate anterior

cingulate from dorsolateral prefrontal pathways associated with cognitive control”. In:

Neuron 61.4 (2009), pp. 609–620.

[43] Ashesh D Mehta, Istvan Ulbert, and Charles E Schroeder. “Intermodal selective attention

in monkeys. I: distribution and timing of effects across visual areas”. In: Cerebral Cortex

10.4 (2000), pp. 343–358.

[44] Earl K Miller and Timothy J Buschman. “Cortical circuits for the control of attention”.

In: Current opinion in neurobiology 23.2 (2013), pp. 216–222.

[45] Earl K Miller, Cynthia A Erickson, and Robert Desimone. “Neural mechanisms of visual

working memory in prefrontal cortex of the macaque”. In: Journal of neuroscience 16.16

(1996), pp. 5154–5167.

[46] Tirin Moore and Katherine M Armstrong. “Selective gating of visual signals by micros-

timulation of frontal cortex”. In: Nature 421.6921 (2003), pp. 370–373.

[47] Sancho I Moro et al. “Neuronal activity in the visual cortex reveals the temporal order of

cognitive operations”. In: Journal of Neuroscience 30.48 (2010), pp. 16293–16303.

[48] Hermann J Müller and Patrick M Rabbitt. “Reflexive and voluntary orienting of visual

attention: time course of activation and resistance to interruption.” In: Journal of Exper-

imental psychology: Human perception and performance 15.2 (1989), p. 315.

[49] Alexander Naka and Hillel Adesnik. “Inhibitory circuits in cortical layer 5”. In: Frontiers

in neural circuits 10 (2016).

[50] Walle JH Nauta, Michael Feirtag, and Carol Donner. Fundamental neuroanatomy. Freeman

New York, 1986.

[51] Joel Norman. “Two visual systems and two theories of perception: An attempt to recon-

cile the constructivist and ecological approaches”. In: Behavioral and brain sciences 25.1

(2002), pp. 73–96.

[52] Ioan Opris, Andrei Barborica, and Vincent P Ferrera. “Microstimulation of the dorsolateral

prefrontal cortex biases saccade target selection”. In: Journal of Cognitive Neuroscience

17.6 (2005), pp. 893–904.

[53] Randall C O’Reilly. “Biologically based computational models of high-level cognition”. In:

science 314.5796 (2006), pp. 91–94.

131

[54] Randall C O’Reilly and Michael J Frank. “Making working memory work: a computational

model of learning in the prefrontal cortex and basal ganglia”. In: Neural computation 18.2

(2006), pp. 283–328.

[55] Hae-Jeong Park and Karl Friston. “Structural and functional brain networks: from con-

nections to cognition”. In: Science 342.6158 (2013), p. 1238411.

[56] Michael I Posner and Yoav Cohen. “Components of visual orienting”. In: Attention and

performance X: Control of language processes 32 (1984), pp. 531–556.

[57] Jane E Raymond, Kimron L Shapiro, and Karen M Arnell. “Temporary suppression of

visual processing in an RSVP task: An attentional blink?” In: Journal of experimental

psychology: Human perception and performance 18.3 (1992), p. 849.

[58] John H Reynolds, Leonardo Chelazzi, and Robert Desimone. “Competitive mechanisms

subserve attention in macaque areas V2 and V4”. In: Journal of Neuroscience 19.5 (1999),

pp. 1736–1753.

[59] John H Reynolds and David J Heeger. “The normalization model of attention”. In: Neuron

61.2 (2009), pp. 168–185.

[60] Pieter R Roelfsema. “Elemental operations in vision”. In: Trends in cognitive sciences 9.5

(2005), pp. 226–233.

[61] Pieter R Roelfsema, Paul S Khayat, and Henk Spekreijse. “Subtask sequencing in the

primary visual cortex”. In: Proceedings of the National Academy of Sciences 100.9 (2003),

pp. 5467–5472.

[62] Andrew F Rossi et al. “Top–down attentional deficits in macaques with lesions of lateral

prefrontal cortex”. In: Journal of Neuroscience 27.42 (2007), pp. 11306–11314.

[63] Albert L Rothenstein and John K Tsotsos. “Attentional modulation and selection–an

integrated approach”. In: PloS one 9.6 (2014), e99681.

[64] Albert L Rothenstein, Andrei Zaharescu, and John K Tsotsos. “TarzaNN: A general pur-

pose neural network simulator for visual attention modeling”. In: WAPCV. Springer. 2004,

pp. 159–167.

[65] Yuri B Saalmann and Sabine Kastner. “Cognitive and perceptual functions of the visual

thalamus”. In: Neuron 71.2 (2011), pp. 209–223.

[66] Yuri B Saalmann et al. “The pulvinar regulates information transmission between cortical

areas based on attention demands”. In: Science 337.6095 (2012), pp. 753–756.

132

[67] Emilio Salinas and Terrence J Sejnowski. “Impact of correlated synaptic input on output

firing rate and variability in simple neuronal models”. In: Journal of neuroscience 20.16

(2000), pp. 6193–6209.

[68] Jeffrey D Schall. “Neural basis of deciding, choosing and acting”. In: Nature Reviews Neu-

roscience 2.1 (2001), pp. 33–42.

[69] Nicolas W Schuck et al. “Human orbitofrontal cortex represents a cognitive map of state

space”. In: Neuron 91.6 (2016), pp. 1402–1412.

[70] Rakesh Sengupta et al. “Attentional blink as a product of attentional control signals: A

computational investigation”. In: Journal of Vision 17.10 (2017), pp. 1197–1197.

[71] Zhengwei Shao and Andreas Burkhalter. “Role of GABA B receptor-mediated inhibition

in reciprocal interareal pathways of rat visual cortex”. In: Journal of neurophysiology 81.3

(1999), pp. 1014–1024.

[72] Shazia Veqar Siddiqui et al. “Neuropsychology of prefrontal cortex”. In: Indian journal of

psychiatry 50.3 (2008), p. 202.

[73] R Angus Silver. “Neuronal arithmetic”. In: Nature reviews. Neuroscience 11.7 (2010),

p. 474.

[74] Olaf Sporns and Rolf Kötter. “Motifs in brain networks”. In: PLoS biology 2.11 (2004),

e369.

[75] Olaf Sporns, Giulio Tononi, and Rolf Kötter. “The human connectome: a structural de-

scription of the human brain”. In: PLoS computational biology 1.4 (2005), e42.

[76] “The American Heritage® Science Dictionary”. In: (Dec. 2017). url: http : / / www .

dictionary.com/browse/atomic.

[77] PHE Tiesinga et al. “Information transfer in entrained cortical neurons”. In: Network:

Computation in Neural Systems 13.1 (2002), pp. 41–66.

[78] Hyoe Tomita et al. “Top-down signal from prefrontal cortex in executive control of memory

retrieval”. In: Nature 401.6754 (1999), pp. 699–703.

[79] Giulio Tononi, Olaf Sporns, and Gerald M Edelman. “A measure for brain complexity:

relating functional segregation and integration in the nervous system”. In: Proceedings of

the National Academy of Sciences 91.11 (1994), pp. 5033–5037.

[80] Anne M Treisman and Garry Gelade. “A feature-integration theory of attention”. In: Cog-

nitive psychology 12.1 (1980), pp. 97–136.

133

http://www.dictionary.com/browse/atomic
http://www.dictionary.com/browse/atomic

[81] Stefan Treue and Julio C Martinez Trujillo. “Feature-based attention influences motion

processing gain in macaque visual cortex”. In: Nature 399.6736 (1999), pp. 575–579.

[82] John K Tsotsos. A computational perspective on visual attention. MIT Press, 2011.

[83] John K Tsotsos. “Complexity Level Analysis Revisited: What Can 30 Years of Hindsight

Tell Us about How the Brain Might Represent Visual Information?” In: Frontiers in psy-

chology 8 (2017), p. 1216.

[84] John K Tsotsos and Wouter Kruijne. “Cognitive programs: software for attention’s exec-

utive”. In: Frontiers in psychology 5 (2014).

[85] John K Tsotsos et al. “The different stages of visual recognition need different attentional

binding strategies”. In: Brain research 1225 (2008), pp. 119–132.

[86] John Tsotsos, Iuliia Kotseruba, and Calden Wloka. “A Focus on Selection for Fixation”.

In: Journal of Eye Movement Research 9.5 (2016).

[87] Federico E Turkheimer et al. “The brain’s code and its canonical computational motifs.

From sensory cortex to the default mode network: A multi-scale model of brain function

in health and disease”. In: Neuroscience & Biobehavioral Reviews 55 (2015), pp. 211–222.

[88] Shimon Ullman. “Visual routines”. In: Cognition 18.1 (1984), pp. 97–159.

[89] Nobuhiko Wagatsuma et al. “Spatial and feature-based attention in a layered cortical

microcircuit model”. In: PloS one 8.12 (2013), e80788.

[90] Claire Wardak et al. “Contribution of the monkey frontal eye field to covert visual atten-

tion”. In: Journal of Neuroscience 26.16 (2006), pp. 4228–4235.

[91] Benjamin Wilson, William D Marslen-Wilson, and Christopher I Petkov. “Conserved se-

quence processing in primate frontal cortex”. In: Trends in neurosciences (2017).

[92] Thilo Womelsdorf and Stefan Everling. “Long-range attention networks: circuit motifs

underlying endogenously controlled stimulus selection”. In: Trends in neurosciences 38.11

(2015), pp. 682–700.

[93] Thilo Womelsdorf et al. “Dynamic circuit motifs underlying rhythmic gain control, gating

and integration”. In: Nature neuroscience 17.8 (2014), pp. 1031–1039.

[94] Takao Yamasaki et al. “Motion perception in autism spectrum disorder”. In: Advances in

psychology research 82 (2011), pp. 197–211.

[95] Weilie Yi and Dana Ballard. “Recognizing behavior in hand-eye coordination patterns”.

In: International Journal of Humanoid Robotics 6.03 (2009), pp. 337–359.

134

[96] Ariel Zylberberg et al. “A neuronal device for the control of multi-step computations”. In:

Papers in physics 5.2 (2013), pp. 1–15.

[97] Ariel Zylberberg et al. “The human Turing machine: a neural framework for mental pro-

grams”. In: Trends in cognitive sciences 15.7 (2011), pp. 293–300.

135

Appendix A Implementation

A.1 TN3Network

Three kinds of Nodes may be created with a specification of its name and size (lines 2-4) while

a Neural Primitive is instantiated as shown on line 6 in Listing A.1.

1 // Creat ing the three k inds o f Nodes with a s i z e o f 5x5 .
2 DEFAULT_NODE∗ node = new DEFAULT_NODE(s t r i n g name , int w, int h) ;
3 CONTEXT_NODE∗ node = new CONTEXT_NODE(s t r i n g name , int w, int h) ;
4 MEMORY_NODE∗ node = new MEMORY_NODE(s t r i n g name , int w, int h) ;
5 // Abstract Class Constructor
6 Neura lPr imit ive ∗ op = new Neura lPr imit ive (FcnGen∗ x , FcnGen∗ y ,

ConnectivityType type) ;

Listing A.1: Node Instantiation with a specified width (w) and height (h).

Listing A.2 shows the TN3Network for priming the VH with an AS. Line 2 is used to create

a new instance of the priming network, while line 3 is used to retrieve all of the Nodes in the

VH. Creation of the Nodes and NP operations then occurs by first retrieving the width and

height of the Nodes (lines 7 and 8) followed by dynamic specification of the Node name (lines 9

and 10). After Node creation (line 11), the NP operation is created (line 14) with a parameter

specification provided by the FcnGen class (line 13). The input and VH node as well as the

NP operation are then added to the network (lines 15-17). The initialized TN3Network is then

returned (line 20).

1 TN3Network∗ initPrimeAS (TN3Network∗ vh_network) {
2 TN3Network∗ network = new TN3Network("PrimeAS") ;
3 vector<NODE∗> vh_nodes = vh_network−>getNodes (vh_network) ;
4 // Create a NODE fo r each VH sheet .
5 for (int i = 0 ; i <vh_nodes . s i z e () ; i++){
6 NODE∗ vh_node = vh_nodes . at (i) ;
7 int width = vh_node−>getOutput ()−>getXSize () ;
8 int he ight = vh_node−>getOutput ()−>getYSize () ;
9 s t r i n g node_name = network_name + "_" + vh_node−>getName () ;
10 s t r i n g input_node_name = node_name + "input_node" ;
11 CONTEXT_NODE∗ input_node = new CONTEXT_NODE(input_node_name ,
12 width , he ight) ;
13 FcnGen∗ weight_fcn = new FcnGen () ;
14 fcn−>se tL inea r (1 . 0) ;
15 BiasContro l ∗ bc = new BiasContro l (fcn , fcn ,ONE_TO_ONE) ;
16 network−>addNode (input_node) ;
17 network−>addNode (VH_node) ;
18 network−>addOperation (input_node ,VH_node , bc) ;
19 }
20 // Return the network .
21 return network ;
22 }

136

Listing A.2: Network creation for priming with an AS algorithm.

Networks can then be added iteratively to other networks by either retrieving them from

storage in the TN3StorageNetwork class or from manually defined TN3Networks (lines 3-8).

The network is then initialized (line 10) as shown in Listing A.3.

1 // Global network to encapsu l t e subnetworks
2 TN3Network∗ global_network = new TN3Network("GLOBAL") ;
3 // I n i t i a l i z e VH with d e f au l t parameters
4 TN3Network∗ vh_network = TN3StorageNetwork : : getVHNetwork () ;
5 // I n i t i a l i z e Priming Network
6 TN3Network∗ prime_as_network = TN3StorageNetwork : : PrimeAS(vh_network)

;
7 // Add the networks to the g l oba l network
8 global_network−>addNetwork (as_prime_network) ;
9 global_network−>addNetwork (vh_network) ;
10 // I n i t i a l i z e the Network
11 global_network−>i n i t ()

Listing A.3: A toy network showing how subnetworks are added to the main network and passed
to the runner for updating.

In Section 4, we described several Cognitive Programs, all of which rely on a set of fixed

networks to be initialized before a visual task can be executed. The functions below in the

TN3NetworkStorage class show the prebuilt networks used for this thesis. Each of which

returns a TN3Network* as shown in Table A.2. Notice that the TN3Neworks rely on other

networks to be initialized before their own initialization. This is also due to the connectivity

defined in the complete STAR architecture (see Figure C.1.

Base Arguments Description
TN3NetworkStorage::

getVHNetwork
N/A Initializes the VH

network using default
parameters. See
Appendix C.

TN3NetworkStorage:: getVWM TN3Network*
vh_network

Requires an existing
instance of a VH network

to initialize.
TN3NetworkStorage::

getPrimeAS
TN3Network*
vh_network

See Above.

TN3NetworkStorage::
getPrimeLocAndFeature

TN3Network*
vh_network, float
min_bias_weight

A minimum bias weight
specifies the maximum
suppression allowed.

TN3NetworkStorage:: getTWM TN3Network*
vh_network, int

num_slots

The number of slots
indicates the maximum
number of attentional

samples that we can store
at any given time.

137

TN3NetworkStorage::
getMatchDetection

TN3Network*
vh_network,
TN3Network*
vwm_network,
TN3Network*
twm_network

Requires the existence of
the VH, vWM and tWM

networks.

TN3NetworkStorage::
getConsolidationNetwork

TN3Network*
vh_network

Requires the existence of
the VH network.

Table A.2: TarzaNN 3.0 pre-stored networks for initialization. See Section 4 for more details.

A.2 CPM-ME Base Methods

Base Method Implementation Description
Gate <source
node> to

<destination
node>

enableGating(NeuralPrimitive*
np, bool value)

Enables or disables all the nodes
in the specified subgraph

network.

Read <node> readNode(Node* node) Reads the current Node state.
Write <node> writeNode(Node* node, Matrix*

write_data)
Uses the FcnGen class to set
the input to a context node.

Table A.3: “Access to representation” Base Method implementation.

Base Method Implementation Description
Set <Decision Criteria>

Params
Set <Decision Criteria>

Params
See Table A.10.

Set <Decision Criteria>
Params

Set <Mem
Consolidation> Params

Load <AS> to
<tWM,vWM>

loadASToTWM(AttentionalSample*
as, TN3Network* dst_net)

Loads the attentional
sample. We may store
multiple AS’s in tWM,
each accessible by its

index.

Table A.4: “Parameter Specification” Base Method implementation.

138

Base Method Implementation
Feedforward (FF) retinal Signal runner->update(int time)

Select cFOA vae->getIsWinnerSelected(int Layer)
Apply suppressive surround

(SS)
Internally computed and beyond the scope of

this thesis.
Disengage attention See Table A.10.

Do Location Inhibition of
Return (L-IOR)

vae->doLIOR();

Reset <vWM,tWM> vae->resetVWM() or vae->resetTWM()
Select <Layer Name> BaseMethod::selectLayer

(TN3Network* network, string name)
Select <NEXT Layer> BaseMethod::selectNextLayer

(TN3Network* network, string name)

Table A.5: “Executing a Process” Base Method implementation.

Base Method Implementation
Is the winner found? vae->isWTAFound()
Are there more layers? vae->isNextLayer()

Is there AS for this layer? isASExist(AttentionalSample*
as)

Table A.6: “Queries” Base Method implementation.

A.3 Recognition Methods

Base Arguments Description
void VH()->Prime vector<pair<string, string»

params
Returns when priming complete
down all layers of the VH or if
the process is terminated earlier.

void VH()->Prime AttentionalSample* as See above.
void VH()->Prime vector<pair<string, string»

params, AttentionalSample*
as

In the case when we want to
prime with an Attentional
Sample and something else

(such as color). Useful for the
Folk et al experiment (see

Section 6.1.2) where we have to
prime for the location and the

target stimulus color.
boolVH()->Detection int TYPE = {FEA-

TURE_DETECTION,
OBJECT_DETECTION,

LOCATION_DETECTION}

Detection using an attentional
sample (AS) with a specification

of the kind of detection.
Assumes the tWM contains the

AS.
intVH()->Recognition int TYPE See above.

int
VH()->Categorization

int TYPE See above.

int
VH()->Identification

int TYPE See above.

bool VH()->Detection map<string, string>
class_params

Specification of feature or
location we wish to detect.

139

int
VH()->Recognition

map<string, string>
class_params_a,

map<string, string>
class_params_b

Two classes, neither of which
are noise. Returns a int

representing class selection. 0 =
class A, 1 = class B

int
VH()->Categorization

vector<map<string, string» N classes, neither of which are
noise.

int
VH()->Identification

vector<map<string, string» See above.

AttentionalSample*
VH()->Localization

N/A Gets the FOA from each layer
of the VH and returns it as an

attentional sample.
AttentionalSample*

VH()->getAS
N/A Identical to VH.Localization

void
FC()->setFHMBias

AttentionalSample* as, float
td_bias

Bias’s the FHM using an AS as
input. Top down bias value is

used to weigh top down
influences with respect to
bottom up influences. See
Section 4.3.8 for more

information.

Table A.8: Complete list of Cognitive Program methods, all of which are accessible through the
VAE().

1 // Feature Priming
2 VH()−>prime ({ " o r i e n t a t i o n " : "0" })
3 // Detect ion f o r two f e a t u r e s : Or i enta t i on and co l o r
4 VH()−>Detect ion ({ " o r i e n t a t i o n " : "0" , " c o l o r " : " red " })
5 // Detect ion us ing an AS
6 VH()−>Detect ion (OBJECT_DETECTION)
7 // Recognit ion o f one o f two c l a s s e s . Ne i ther o f which i s no i s e
8 VH()−>Recognit ion ({ " o r i e n t a t i o n " : "0" , " c o l o r " : " red " } , {" o r i e n t a t i o n " : "

0" , " c o l o r " : " green "})
9 // Returning an Attent i ona l Sample from l ay e r 'V1 '
10 VH()−>getLayer ("V1")
11 // Se t t i ng a FHM fo r the cente r
12 FC()−>setFHMBias ({ " l o c a t i o n " : " cente r " })

Listing A.4: Example CPM method calls with task specification

140

A.4 Auxiliary Functions

Base Arguments Description
VAE()->VH()-

>setDetectionCriteria
float lowThresh, float

upperThresh, int minTime,
int maxTime

Specifies the minimum and
maximum thresholds for

detection and the time range the
detection must be made. See

equation 4.5. If a minimum and
maximum time has not been
specified, the detection criteria
only relies on the threshold.

VAE()->VH()->
setRecognitionCriteria

vector< struct
decision_criteria>

Takes in a vector of struct for
the decision criteria. Vector

must only contain two elements
given the definition of a

Recognition task. See Section
4.3.6 for more information.

VAE()->VH()-> setI-
dentificationCriteria

See above. Takes in a vector of struct for
the decision criteria.

VAE()->VH()->
setMemConsolidation

Params

int max_inhibition, float
duration

Specifies the initial maximum
inhibition within a range of [0.0,

1.0] to apply for a
predetermined duration. See

Section 4.3.6 for more
information.

transformAS
toLocationAS

AttentionalSample* as Transforms an attentional
sample to represent only
location information. See

Section 4.3.5.
VAE()->

waitForStimulus
string stimulus_name Waits until the stimulus with

the provided name appears
before continuing CP execution.

VAE()-> disengageAl-
lAttentionMechanisms

None Disengages attention
mechanisms.

RIG()->
addStimulus

string file_name, string
stimulus_name, int
onset_duration

Adds the stimulus with the
given file name to the list of

stimuli to present to the system
for a given duration.

Table A.10: Auxillary TN3Runner functions

A.5 Function Generator

A function generator is used to test the system based on some hypothetical input and is im-

plemented using the FcnGen class. Furthermore, it also serves to define the weight matrix φ

shown in equation A.1 connecting two representations together. Note that in C.N.N. and deep

learning approaches the weight function is learnt through back propagation [36], while in the

Neural Engineering Framework [20] the weight function is approximated based on an arbitrary

141

function they wish to approximate. Both of these aspects is beyond the scope of this thesis

work. Instead, we allow this to be a user set parameter and leave it open for future work for

automatically determining appropriate values.

φ =

γ1,1,k1,1g1,1,k1,1 ... γ1,B,k1,Bg1,B,k1,B

...
.

γA,1,kA,1
gA,1,kA,1

... γA,B,kA,B
gA,B,kA,B

 (A.1)

This class provides a useful set of predefined functions; point wise, linear, gaussian, gabor, sin,

cos and tan to simulate a variety of inputs. Rather than having the output of some other node

as its input, a function generator is used to generate some hypothetical function. For example,

top down task dependent bias’s may be converted into inputs to another node to simulate top

down control. Here we do not argue that this is biologically plausible, instead it is provided

as a means of modeling a neurons behavior as a function of its input. NENGO [6] a popular

neural simulator based on the NEF introduces a similar concept. Since this is implemented

in TarzaNN, a neural simulator would not be complete without a way of simulating input. It

consists of the following functions:

1. void setLinear (float value): Sets the function to a constant value.

2. void setExpDecay (int begin_time, int INHIBITION_LENGTH): Sets the func-

tion to an exponential decay that begins at a specified time with respect to the Neural

Primitives clock time.

3. void setPoint (int k): Set’s a point where the value is 1. All other points have a value

of 0.

4. void setGauss (float sigma, float center)

5. void setGabor (float lambda, float orientation, float phase, float sigma, float

aspect_ratio)

6. void setSin/setCos/setTan (float amplitude, float phase)

7. float compute (int k): Computes the function at k. k may represent the spatial position

or time.

float compute (int k) is the key function in this class responsible for computing the specified

function. In later sections, we will see how this is used by our Nodes and NP operations.

142

Appendix B Supplementary Results and Figures

This section includes supplementary experimental data, results and figures that were not in-

cluded in the Methods and Evaluation Section.

B.1 Copying to vWM

Figure B.1 shows the neural activation of one neuron in each layer of the VH and the corre-

sponding neuron in the vWM where the contents are copied to. The dotted blue vertical line

indicates the time contents of VH were gated to vWM.

Figure B.1: Copying the contents of the VH to the vWM. Plot showing a chosen neurons neural
activations at each layer of the VH. Dotted blue vertical line indicates the time the contents
were gated to vWM.

B.2 Building an AS

Figure B.2 shows the neural activation map of three layers of the VH that have been gated to

the vWM using the gating scheme shown in Figure B.1. Sheet 1 and Sheet 2 represent two

feature maps within the same layer of the VH out of the total of 12 sheets per layer in our full

network. Here, these two sheets are shown to indicate how the highest neural activation does

not necessarily reflect the winner chosen at the top of the VH.

143

Figure B.2: Building an Attentional Sample by gating contents of VH to vWM. Two sheets
are shown here for clarity and activation maps are displayed proportional to the size of the VH
layer.

B.3 Transforming an AS

Figure B.3 shows how Figure B.2 can be transformed to represent spatial location only. Here,

the winning region consisting of the set of neurons that contributed to the selection of the winner

at the top of the VH are determined. This winning region is set to a maximum value since the

signal is allowed to propagate unattenuated.

1. Spatial AS : If we wish to only prime for a certain location without worrying about features,

then a gaussian around the winner region is selected as the attentional beam pass. This

winner region is all set to a maximum bias value such that none of this location is inhibited.

2. Feature AS : If we wish to attend to a certain feature such as a color without the need for

location information, we can parameterize our AS accordingly. This transformation sets

the AS bias value parameterization to 1.0 for the sheets representing the feature with the

maximum activation while all other sheets are set to a predefined value (parameterized

during run time).(i.e. “the object is red”).

3. Object AS : The captured AS contains both location and feature information about the

object. When both pieces of information are relevant, no further parameterization is

necessary and the AS can be passed to the priming method directly.

144

Figure B.3: Transforming the AS to represent spatial information only.

B.4 Priming the VH

Recall that priming the VH can occur via some top down user specified parameters or with the

use of an attentional sample Figure B.4 shows the neural activation of one neuron in each layer

of the VH. The dotted blue vertical line indicates the time the attentional sample was used to

prime the VH.

Figure B.4: The neural activation of one neuron in each layer of the VH during priming the
VH using an attentional sample. The dotted vertical blue lines indicate the time the attentional
sample was used to bias the VH at the given layer.

145

B.5 Memory Consolidation Signal

Figure B.5 shows the neural activation of one neuron as a function of the relative serial position

of the probe with respect to the target. A probe presented after the target is likely to be

suppressed due to a top down memory consolidation signal. Here, the memory consolidation

signal is modeled as an exponential decay, shown as a dotted line in the figure. The dotted

vertical lines represents the probe onset time. The distance between any two vertical lines is 90

ms as in the original experiment. The memory consolidation signal was parameterized to have

a decay period of 500 ms.

When generating the figure, no other stimulus properties were changed other than the serial

position of the probe. Similar results were found in [70].

Figure B.5: Neural activation of one neuron in IT plotted in response to the probe. The dotted
line shows the degree of the top down inhibitory signal applied

B.6 Egly & Driver 1994

The Egly & Driver 1994 experiment discussed in Section 6.1.1 is presented in detail here. For

the following figures, only two of the twenty-four feature maps of each of the VH layers are

shown for clarity. On the left and right hand side of the figures, a feature map selective for

orientations of 0◦ and 90◦ respectively are shown.

The experiment begins with the presentation of a visual cue to the system (see Figure B.6).

The system correctly identifies the cue as shown by the whiter areas indicating a higher neural

146

activation than the surrounding regions.

Figure B.6: Input cue presented and processed by the VH. Whiter areas indicate neurons with
higher activations.

During the presentation of the cue, the CP for retrieving an AS from the VH is called. This

initiates the process of storing information from the VH to the vWM using an Integration Neural

Primitive operation (see Section 4.3.2).

1 prime_as = VAE()−>VH()−>getAS () ;

The AS is then transformed to represent location information only and abstracts away any

feature information since we only want to use the AS to prime the system of the location it

should expect the target will appear. The resulting AS is shown in Figure B.7.
1 transforAStoLocat ionAS (prime_as) ;

Figures B.8 and B.9 show the VH processing the target stimulus without and with priming

respectively. Figure B.8 is shown here for comparison purposes only. Notice that areas away

from the primed zone are inhibited in Figure B.9.

In the previous two Figures, we have only shown stimulus input for a correctly cued target.

However, the system also processes input for an incorrectly cued target - when the filled square

on one of the ends of the rectangle appears somewhere other than the cued region. Figure B.10

shows the contents of the vWM of two feature maps in the IT layer during the presentation

147

Figure B.7: The AS consisting of the feature maps (or sheets) in the IT layer are stored in the
vWM using an Integration operation. The captured AS is transformed to represent location
information only. See text for more information.

148

Figure B.8: Incoming target processed by the VH when no priming operation in place. Whiter
areas indicate higher neural activations.

Figure B.9: Incoming target processed by the VH when priming operation in place. Whiter
areas indicate higher neural activations.

149

of a correctly and incorrectly cued target. Notice that on a correctly cued target, the neural

activations are significantly higher since neurons have not been suppressed due to the priming

CP that was placed earlier.

Figure B.10: During the presentation of a correctly or incorrectly cued target, contents are
stored into the vWM. Whiter areas indicate higher levels of activation.

The contents of the tWM are then loaded with a prebuilt AS of a “square” using the command

below.
1 BaseMethod : : loadAStoTWM(square_as ,
2 global_network−>getNetwork ("tWM_net")) ;

Following this, the feature detection process is initiated and the Match Detection Nodes

150

output one of two results as shown Figure B.11. The system then waits for the result of

this computation using equations 4.4 and 4.5 and outputs True or False for the correctly or

incorrectly cued target respectively due to the differences in their neural activations.

1 de t e c t i on = VAE()−>VH()−>Detect ion (FEATURE_DETECTION) ;

Figure B.11: The Match Detection Nodes receive information from the vWM and tWM. Used
as part of the detection criteria. See text for more details.

151

Appendix C STAR Parameters

C.1 Visual Hierarchy Parameters

All of our images are 256x256 in size and the formula for the visual angle V = 2arctan(S2D) was

used to calculate the approximate size S in pixels of the stimuli within the images. The size of

each layer was V1: 128x128, V2: 64x64 V4: 32x32, ITINT : 16x16 and ITTOP : 16x16.

The VH module represents the full ventral and dorsal streams of the visual processing areas

implemented as a four layer network: V1->V2->V4->IT. The IT layer is divided into ITINT

and ITTOP , the intermediate and top layer respectively. ITINT is called as such since it is one

of the intermediate layers of the VH and contains category information about the stimulus. On

the other hand, ITTOP is the top layer with respect to the VH processing feedforward input

and is used as a selection layer necessary for the θ −WTA algorithm.

Each layer except for ITTOP contains 8 feature sensitive Nodes for orientations: [-90,-67.5,-

45,-22.5,0,22.5,45,67.5] and 3 feature sensitive Nodes for color: [red, green, blue] for a total of

8x3 = 24 Nodes. Since ITTOP is a selection layer, it contains only a single Node. To simulate

orientation selectivity, a Gabor filter was used from the input stimulus to layer V1 while Gaussian

filters were used for connecting layers V1 -> V2 -> V4 -> IT.

C.2 Experiment Parameters

Egly & Driver 1994

In this experiment, the fixation point was 0.1◦x0.1◦ and the two rectangles of size 1.7◦x11.4◦

with a stroke width of 0.2◦, centered 4.8◦ from the fixation cross. The cue was represented

by a 0.2◦ thickening of any of the corners of the rectangle. The target appeared at any of the

corners of the rectangle as solid squares of size 1.7◦x11.4◦. Using these parameters, the size of

the fixation was 2x2 px. The rectangle was 29x194 px with a width of 4 px. The cue width was

4 px and the target 29x29 px. During this detection experiment, the decision criteria was set in

the range of [0.1, 0.26]. The cue and ISI were presented for 100 and 200ms. Target presentation

occurred for 2,000 ms or until the subject responded with a button press and the fixation was

presented for 1,000 ms.

Folk et al. 1992

In this experiment, each box was 1.15◦x1.15◦ and the cue circles were 0.36◦x0.36◦. The center

to box distance was 4.7◦ and the targets presented within a box were 0.57◦. Using these visual

angles, and an image size of 256x256, the size of the box was 20x20 px, the cue circles 6x6

152

px, the center to box distance 80 px, and the target size 10x10 px. The fixation display was

presented for 1000 ms, while the cue, ISI and target displays were presented for 50 ms each.

Raymond et al. 1992

All stimuli were upper case letters spanning 0.82◦x0.82◦. All stimuli including the probe was a

green color while the white target was modeled as a red color. Each target appeared for a brief

15 ms period followed by a 75 ms interval where a blank white mask was shown. To allow neural

activations to stabilize, 2 pre-target items were presented on each condition. The identity of

the pre-target items did not influence the system output. Hence, the target was always the 3rd

letter in the stream.

When building partial attentional samples as templates to be stored into tWM, only the

neural activations at the ITINTERMEDIATE layer are recorded since there is insufficient time

for getting information at lower layers due to the short stimulus presentation time. These

were collected in the same way a regular experiment would be run. Namely, the stimulus was

presented, a selection allowed to occur at the top of the VH and the resulting information at

ITINTERMEDIATE used to build an AS. This is then stored into one of the slots of tWM.

We decided to choose a subset of letters to present to the system based on their distinguisha-

bility. Hence, all stimuli were only the following letters: A,B,C,D,G,E,H,I,O,Q.

Spatial and Feature Attention

In the McAdams & Maunsell 1999 [40] paper, the fixation point was 0.7◦ visual angle, the spatial

frequency was set to 1-5 cycles/degree and the size of the stimuli was 0.6◦ − 2.2◦. The authors

noted that they had chosen the stimuli size and spatial frequency that resulted in maximal

responses of the neuron being recorded. Using these parameters, we set the fixation point to

be 12x12 px, and the size of the stimuli to be 38x38 px. The width of the orientation bar was

adjusted within this range to yield a maximal response of the neuron with its preferred feature.

The image size was 256x256.

153

C.3 Complete STAR Architecture

Figure C.1: Complete STAR Architecture

154

	Abstract
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	List of Program Listings
	List of Abbreviations
	Introduction
	Motivation
	Significance and Contributions
	Thesis Outline

	Literature Review
	Visual Routines
	ST Model
	Cognitive Programs
	STAR

	Neurophysiological Literature
	Anatomy
	Neural Correlates of Attention
	Neural Computational Elements

	Summary

	Neural Primitive Specification
	Overview
	Representation
	Operation
	Gating
	Bias Control
	Bias Feedback
	Integration

	Summary

	Cognitive Programs Memory Specification
	Overview
	Framework
	Method Elements
	Methods Database

	Cognitive Programs Memory Methods
	Overview
	VH.Localization
	VH.Prime with AS
	VH.Prime without AS
	VH.Detection
	VH.Recognition, VH.Categorization and VH.Identification
	VH.Identification (Within Category)
	FC.setFHMBias

	Summary

	Framework Implementation
	Overview
	Neural Primitive
	Overview
	Graph Creation
	Updating Nodes
	Summary

	Cognitive Programs Memory
	Overview
	CP Assembly and Storage
	Generate TN3Runner Task Specification
	Task Execution
	Summary

	Evaluation
	Visual Attention Experiments
	Egly & Driver `94
	Folk et al. `92
	Raymond et al. `92

	Neural Tuning Curve Experiments
	Spatial Attention
	Feature Attention

	Discussion and Conclusion
	Bibliography
	Appendix Implementation
	TN3Network
	CPM-ME Base Methods
	Recognition Methods
	Auxiliary Functions
	Function Generator

	Appendix Supplementary Results and Figures
	Copying to vWM
	Building an AS
	Transforming an AS
	Priming the VH
	Memory Consolidation Signal
	Egly & Driver 1994

	Appendix STAR Parameters
	Visual Hierarchy Parameters
	Experiment Parameters
	Complete STAR Architecture

