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Abstract 

Many primates depend on resources that are dispersed non-uniformly. 

Primates able to encode the locations of such resources and navigate efficiently 

between them would gain a selective advantage. However, little is currently 

known about the cognitive mechanisms that help primates achieve this efficiency 

in the wild. The presence habitual route networks in some primate species 

suggests they may navigate using route-based “cognitive maps” for encoding 

spatial information. However, little is known about factors that influence where 

such route networks are established. Recent evidence of habitual route networks 

in wild orangutans makes them ideal candidates for examining factors that affect 

the establishment and use of such networks. I completed three studies using new 

methodology to examine ecological and cognitive factors that may affect habitual 

route networks in wild orangutans living in Kutai National Park, East Kalimantan, 

Indonesia. Results suggest that orangutan habitual route networks are likely the 

product of both local ecological considerations and how they cognitively encode 

and use spatial information. Results imply that the spatial configuration of 

habitual route networks may primarily be a product of local ecology, whereas 

how orangutans use them day-to-day may be a product of both local ecology and 

sophisticated cognitive strategies that may include cognitive maps. These studies 

demonstrate the utility of using modern mapping software and machine learning 

technology for applications in primate behavior and ecology. 
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Chapter 1: General Introduction 
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Orangutan habitual route networks: Ecological and cognitive influences on 

orangutan space use 

Wild primates travel daily to fulfil a variety of needs including but not 

limited to searching for food, accessing suitable nesting/sleeping sites, and social 

reasons. Such travel is not uniform. Even within regions of homogeneous habitat, 

primates can revisit certain areas frequently, while avoiding other areas entirely 

(Di Fiore & Suarez, 2007; Hopkins, 2010; Lührs, Dammhahn, Kappeler, & 

Fichtel, 2009; Noser & Byrne, 2010; Porter & Garber, 2012). Identifying factors 

that influence primate travel decisions can contribute to understanding what 

spatial information primates encode cognitively. This in turn has important 

applications in conservation and habitat management by contributing to the 

identification of areas on which to focus conservation efforts.  

Many primates depend on resources that are dispersed non-uniformly in 

space and time and whose availability may be hard to predict, especially species 

primarily dependent on ripe fruit (Milton, 1981). At a given time, fruit may be 

available from only a small portion of trees even within a single species and 

those trees may be distant from each other (Masi, Cipolletta, & Robbins, 2009; 

Tomoko et al., 2010; van Schaik, Marshall, & Wich, 2009). Although the 

availability of resources can vary considerably, the locations of many important 

primate resources, in particular fruit trees, remain stable over long periods of time 

offering some degree of predictability (Milton, 1981). Many frugivorous primates 

also inhabit large home ranges and eat at thousands of feeding sites (Di Fiore & 

Suarez, 2007; Janmaat, Byrne, & Zuberbühler, 2006; Knott et al., 2008; Normand 
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& Boesch, 2009). Such large home ranges combined with reliance on patchy 

resources that are available unpredictably means that primates may have to 

travel relatively long distances to find food resources.  

Since the locations of such recurring resources remain stable over time, 

primates able to encode the locations in memory and adopt strategies to 

navigate efficiently between them could increase their access to such resources, 

thereby gaining a selective advantage. The benefits of efficient travel between 

stable resource patches may have presented a significant pressure to evolve 

sophisticated cognitive abilities for spatial processing in the primate order 

(Galdikas & Vasey, 1992; Milton, 1981; Normand & Boesch, 2009). A growing 

body of evidence demonstrates that primates can indeed remember and travel 

efficiently between many locations in their habitat (Janson & Byrne, 2007). 

However, little is currently known about how primates handle these difficulties 

cognitively to help them achieve this efficiency in the wild. In the context of this 

paper, cognition refers to “all forms of knowing and awareness, such as 

perceiving, conceiving, remembering, reasoning, judging, imagining, and problem 

solving” (American Psychological Association, 2007). Spatial cognition is then 

these same mental processes applied to locations and directions in space, 

including spatial memory, navigation, and decisions based on spatial information. 

Primates have been theorized to use “cognitive maps” to encode locations 

and spatial relationships between resources in their home ranges in memory, but 

how such maps are organized remains poorly understood (Garber & Dolins, 

2014; Janson & Byrne, 2007). There are two main hypotheses: route-based or 
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coordinate-based organization, or some combination of both (Dolins & Menzel, 

2012; Garber & Porter, 2014; Poucet, 1993). 

Coordinate-based cognitive maps encode information about the relative 

angles and distances between locations. This knowledge would allow individuals 

to navigate by using direct straight-line travel routes between out-of-sight 

locations (Normand & Boesch, 2009; Poucet, 1993). Route-based cognitive 

maps encode information about how to recognize repeatedly used travel routes, 

how these routes interconnect, and information about which locations are along 

which routes (Di Fiore & Suarez, 2007). Route-based cognitive maps would allow 

individuals to navigate by following a series of known routes and changing routes 

where they intersect (Di Fiore & Suarez, 2007; Poucet, 1993).  

To determine the nature of primate cognitive maps, researchers examine 

their travel routes for indicative patterns consistent with either type of proposed 

cognitive map. For example, travel patterns consistent with coordinate-based 

cognitive maps could include primates taking travel routes directly to out of sight 

resources, more linear travel, and more flexible range use, and would be able to 

plot novel (never before travelled) travel routes (Poucet, 1993). In contrast, route-

based cognitive maps would likely yield travel patterns clustered along frequently 

re-used pathways, with infrequent travel away from such pathways, and would 

not be able to plot novel routes (Poucet, 1993). Route-based maps would allow 

for novel combinations of known route segments, but such combinations would 

be selected from a set of known, previously travelled routes. Primates using a 
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combination of such strategies would likely yield travel patterns that appear 

intermediate between these two extremes. 

Few studies have found evidence supporting coordinate-based cognitive 

maps, except for preliminary evidence from chimpanzees (Pan troglodytes) who 

may be able to plot novel routes in their home ranges (Garber & Dolins, 2014; 

Janson & Byrne, 2007; Normand & Boesch, 2009). There has been more 

evidence in support of route-based cognitive maps. Several primate species use 

networks of repeatedly reused pathways (hereafter habitual route networks), 

including several New World monkeys (Di Fiore & Suarez, 2007; Hopkins, 2010; 

Porter & Garber, 2012), at least one species of lemur (Microcebus murinus) 

(Lührs et al. 2009), chacma baboons (Papio ursinus) (Noser & Byrne, 2007a), 

and Bornean orangutans (Pongo pygmaeus) (Bebko, 2012).  

Although the presence of such habitual route networks has been 

established for some species, little is known about factors that influence where 

such routes are established. Although primate travel decisions are likely 

influenced by constraints and affordances resulting from cognitive mechanisms 

(i.e. spatial memory), their decisions are likely also based in part on current local 

ecological factors (Di Fiore & Suarez, 2007; Hopkins, 2010; Lührs et al., 2009; 

Noser & Byrne, 2010; Porter & Garber, 2012). The spatial distribution of 

resources in primates’ ranges is likely an important ecological factor influencing 

their travel. Primates that target travel towards particular locations repeatedly 

could generate habitual travel routes leading to and from such locations. 

Resource patches (e.g. fruits) are likely to be especially important travel targets 
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compared to more uniformly distributed resources that are available more readily 

(e.g., bark) (Milton, 1981). Trees of certain species could also be travel targets as 

nest sites or as sources of other foods (e.g., leaves, flowers). Food producing 

trees may be important travel targets even when they lack resources, since visits 

to monitor a tree’s phenological status could aid in accessing its resources before 

competitors once they become available (Di Fiore & Suarez, 2007).  

Ecological factors such as topography (e.g., rivers, hills, cliffs, etc.) could 

also affect primate travel decisions since they can constrain or prevent travel 

through particular areas; some may create “bottlenecks” that could funnel travel 

routes along particular pathways, contributing to the formation of habitual routes 

(Di Fiore & Suarez, 2007). Bottlenecking effects could be especially pronounced 

in arboreal species whose travel is constrained by the presence of sufficient 

canopy connectivity when maintaining arboreal travel (Di Fiore & Suarez, 2007; 

Hopkins, 2010; Lührs et al., 2009; Thorpe & Crompton, 2009). Terrestrial travel 

may provide an alternative in cases when no arboreal routes are available. 

Although the spatial configuration of habitual route networks may be linked 

to ecological factors, variation in how primates use such networks remains poorly 

understood. The presence of humans could disrupt normal use of habitual route 

networks if primates attempt to avoid or flee from them. Few studies have 

examined how human disturbances affect use of habitual route networks, but 

such encounters may provide one window into how primates encode spatial 

information in cognitive maps. Evidence for cognitive maps could be examined if 

primates target particular areas of habitat or use their habitual networks 
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differently when fleeing from humans. If primates are able to plan their travel in 

advance, we would expect that they would systematically change their behavior 

leading up escaping from humans. Such changes may include changes in activity 

budget, travel targets, travel speed, and their use of their habitual route networks. 

Furthermore, if primates who primarily show evidence for route-based cognitive 

maps deviate from their typical habitual route networks when fleeing humans, it 

could show evidence that they also use other types of cognitive maps. 

Many studies on primate ranging have examined spatial scales that affect 

entire populations (i.e. 10 – 1000 km) (Hickey et al., 2013; Palminteri, Powell, 

Asner, & Peres, 2012). Although important, such modelling does not provide a 

description of local conditions at spatial scales pertaining to individual animals or 

small groups. Modelling animals’ space use on a more local scale would allow for 

examining specific factors that affect individual travel routes. Such high-

resolution ranging analyses open additional avenues for examining cognitive 

mechanisms relating to travel choices. High resolution knowledge of habitat 

preferences could also have added benefit of improving assessments of usable 

habitat size and quality within larger ecosystems. However, higher resolution 

data are more affected by measurement error, especially travel routes recorded 

using handheld GPS devices, compared to low-resolution data. However, studies 

of primate spatial cognition and ranging at spatial scales pertaining to individual 

primates have typically not accounted for GPS error in their analyses, which can 

be substantial in densely forested and uneven terrain typical of primate habitat. 
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Environmental effects including atmospheric noise, humidity, and moisture 

can create stochastic errors causing waypoints to scatter about their true 

location. GPS signals can also reflect off nearby dense surfaces. The slight time 

delay from these reflections can cause travel routes recorded from GPS devices 

to shift by several meters in one direction. Multipathing is more likely to occur 

near large dense objects (i.e. vehicles, buildings, cliffs, mountains), large tree 

trunks, or under dense forest canopy. As a consequence of GPS error, recorded 

primate travel routes are typically noisier, longer, and slightly offset from actual 

travel routes. Therefore, GPS records may incorrectly meander back and forth 

and backtrack when travel was straight. For these reasons, it is important to 

develop methodology for field studies of primate travel patterns in fine-scale 

space that account for GPS error. 

In addition to developing methodology to address GPS error, the 

increased availability of free high-resolution satellite imagery combined with 

state-of-the-art free machine learning packages opens up new avenues for 

analysis of primate space use at smaller spatial scales. Using machine learning, 

computers may be able to learn complex patterns in satellite images that may be 

unrecognizable to humans (Ng, 2018). Animal researchers have been slow to 

adopt machine learning as an analysis tool, and to my knowledge primatologists 

have yet to apply machine learning to ranging behavior. Machine learning has 

the potential to contribute to understanding primate ranging and habitat use by 

modelling primate space use in well-studied areas and then extrapolating the 

models to areas where in-situ research is difficult or impractical. 
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Orangutans’ intelligence and flexible behavioral repertoire make them 

ideal candidates for examining spatial cognition. I recently found empirical 

evidence that a population of wild East Bornean orangutans (Pongo pygmaeus 

morio) use habitual route networks in at least part of their habitat (Bebko, 2012). 

Although the presence of this network has been established, factors that affect its 

spatial configuration and how orangutans use the network remain unknown.  

Orangutans are primarily frugivores, among the largest primates, and 

highly arboreal (Leighton, 1993; Pontzer & Wrangham, 2004; Thorpe & 

Crompton, 2009). Orangutans can also inhabit large home ranges with most sites 

reporting adult female home ranges between 150-600ha (Singleton, Knott, 

Morrogh-Bernard, Wich, & van Schaik, 2009). High frugivory (patchy resources), 

large body size, and high arboreality mean orangutans may face more difficulties 

meeting their daily energetic needs than many other primates (Milton, 1981; 

Pontzer & Wrangham, 2004). Indeed, orangutans’ caloric balance can be 

negative for large portions of the year (Knott, 1998). Consequently, orangutans 

may have some of the most sophisticated foraging strategies among primates, 

relying on a combination of many factors to make decisions about where to 

travel. 

Assessing factors that influence orangutan travel and space use is 

increasingly important since orangutans are critically endangered, with wild 

populations declining rapidly throughout their range due to extensive habitat loss 

(IUCN, 2018). Orangutans are now predominantly found in protected areas and 

small forest fragments disconnected from larger populations (Husson et al., 
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2009; Utami-Atmoko et al., 2017). Better understanding orangutan spatial 

cognition and ranging could have important applications for managing their 

remaining habitat and highlighting areas important for orangutan conservation. 

To assess factors that influence orangutan travel route networks, I 

completed studies on wild orangutans in Kutai National Park, East Kalimantan, 

Indonesia. The extent of intact orangutan habitat within the park’s boundaries is 

unknown, and parts of the park experience severe human damage and 

encroachment. For this reason, it is a key location to assess habitat quality and 

orangutan space use to highlight areas important for orangutan conservation and 

areas where habitat may be degraded. I completed three studies on orangutans 

ranging within one area of Kutai National Park for evidence of ecological and 

cognitive factors that may affect their travel decisions.  

Chapter 2 presents a two-part study that examined ecological factors that 

contribute to the spatial configuration of the orangutans’ habitual route network. I 

examined behavioral and ecological ranging data from wild orangutans in Kutai 

National Park for evidence whether the spatial distribution of resources and other 

ecological factors in the nearby local habitat were associated with intersections 

and routes in their habitual travel route network.  

Chapter 3 presents a study that examined how orangutans vary use of 

their habitual route network flexibly in response to human disturbances. This 

study examined changes in behavior and travel prior to wild orangutans escaping 

from human observers for evidence they may plan such escapes in advance. I 

examined ranging and behavioral data from wild in Kutai National Park for 
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differences in ranging and activity between days when orangutans escaped from 

our observation team and compared them to days when they did not escape. I 

also examined changes in behavior in the hours leading up to an escape for 

evidence of advanced planning of their escapes. 

Chapter 4 presents a study that developed and tested new methodology 

for modelling orangutan space use from ecological variables derived from visual 

characteristics in satellite imagery. In this study, I applied deep machine learning 

to model ecological predictors of space use in wild orangutans in Kutai National 

Park. I compared several architectures of deep convolutional neural networks 

and trained them using behavioral and ranging data paired with raw visual-

wavelength satellite imagery of the area. 
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Chapter 2: Research Paper 1: Ecological factors associated with the spatial 

configuration of habitual route networks in wild orangutans (Pongo 

pygmaeus morio) 

Adam O. Bebko, Anne E. Russon 
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Abstract 

Primates’ use of habitual travel route networks has often been interpreted as 

evidence that they cognitively encode and represent information using a route-

based mental map. Ecological factors such as travel targets, travel bottlenecks 

and heuristic foraging strategies likely contribute to the spatial configuration of 

their route networks. To examine such ecological factors, we completed two 

studies on behavioral and ecological ranging data from wild orangutans (Pongo 

pygmaeus morio) in Kutai National Park, East Kalimantan, Indonesia (Jan. 2010 - 

Dec. 2012). Intersections (Nodes) in their habitual travel route network were 

associated with nearby feeding bouts of key fruit taxa, and orangutan travel 

routes passed by more resources than control (adjacent parallel) routes through 

the same area. Our results suggest that the establishment of habitual route 

networks may in part be a product of repeated travel between nodes located near 

key fruit trees, and routes connecting nodes are selected to maintain consistent 

access to resources during travel. Our results combined with satellite imagery 

also suggest that some such connecting arboreal routes may be highly 

constrained due to arboreal bottlenecking, so orangutans must select from a 

small number of possible arboreal connections to maintain arboreal travel. Our 

evidence suggests that environmental affordances and constraints contributed 

substantially to the configuration of these orangutans’ habitual arboreal route 

network.  

Keywords: Ecology, Route Networks, Cognitive Maps, Orangutan, Ranging.  
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Ecological factors associated with the spatial configuration of habitual route 

networks in wild orangutans (Pongo pygmaeus morio). 

Wild primates travel daily to fulfil a variety of needs including but not 

limited to searching for food, accessing suitable nesting/sleeping sites, and for 

social reasons (e.g. territory defense, seeking/avoiding social partners, etc.). 

Strategies that aid primates efficiently navigate their ranges would allow primates 

to maximize access to such resources, while minimizing time and energy spent 

on travel. Many important primate resources, in particular fruit trees, are 

accessed repeatedly from the same locations over long periods of time (Milton, 

1981). Although over the span of several years resources can disappear due to 

deaths and damage to trees and other vegetation (i.e. storms, El Niño Southern 

Oscillation events), overall, resources such as large fruit trees remain in the 

same location for long periods of time and over many fruiting cycles. Primates 

that are able to encode the locations of such recurring resources and navigate 

between them would increase their access to such resources, thereby gaining a 

selective advantage.  

While little is currently known about primate navigation strategies, a 

growing body of evidence demonstrates that primates can remember and 

efficiently travel between many locations spread of long distances (Janson & 

Byrne, 2007). Although difficult to test empirically, primates have been theorized 

to encode such spatial information in a “cognitive map”, but how such maps are 

organized remains poorly understood (Garber & Dolins, 2014; Janson & Byrne, 

2007). There are two main hypotheses regarding how such cognitive maps are 
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organized: route-based, coordinate-based, or some combination of both (Dolins 

& Menzel, 2012; Garber & Porter, 2014; Poucet, 1993). 

Coordinate-based cognitive maps involve memory of the relative angles 

and distances between locations. This allows individuals to navigate using novel 

straight-line travel routes to out-of-sight locations (Normand & Boesch, 2009; 

Poucet, 1993). Route-based cognitive maps involve memory about how to 

recognize repeatedly used routes, how the routes interconnect, and information 

about which locations are along which routes (Di Fiore & Suarez, 2007). This 

allows individuals to navigate by following a series of known routes and changing 

routes where they intersect (Di Fiore & Suarez, 2007; Poucet, 1993).  

Researchers examine primate travel routes for evidence consistent with 

such mental maps. Researchers have proposed several indicative travel patterns 

that could provide support for either type of cognitive map. Travel patterns 

consistent with coordinate based cognitive maps could include primates taking 

novel travel routes directly to out of sight resources, more linear travel, and more 

flexible use ranges (Poucet, 1993). In contrast, route-based cognitive maps 

would likely yield travel patterns clustered along frequently re-used pathways, 

with infrequent travel away from such pathways (Poucet, 1993). Primates using a 

combination of strategies would likely yield travel patterns that appear 

intermediate between these two extremes. 

Few studies have found evidence supporting coordinate-based cognitive 

maps, except for preliminary evidence from chimpanzees (Pan troglodytes) 

(Garber & Dolins, 2014; Janson & Byrne, 2007; Normand & Boesch, 2009). Such 
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chimpanzees appeared to plot direct and apparently novel paths between 

resources. More evidence has been found consistent with route-based cognitive 

maps. Several primate species have been found to have travel routes that are 

clustered along networks of repeatedly reused pathways (hereafter habitual route 

networks), including several New World monkeys (Di Fiore & Suarez, 2007; 

Hopkins, 2010; Porter & Garber, 2012), at least one species of lemur 

(Microcebus murinus) (Lührs et al., 2009), chacma baboons (Papio ursinus) 

(Noser & Byrne, 2010), and Bornean orangutans (Pongo pygmaeus) (Bebko, 

2012). Such habitual route networks consist of two components: habitual travel 

routes that are reused over a long period, and intersections of these routes called 

nodes (Di Fiore & Suarez, 2007). 

In addition to how primates cognitively represent information, ecological 

factors likely influence primate travel decisions. Topographical features (i.e. hills, 

ridges, etc.) and local resource distribution could influence travel decisions by 

reducing the likelihood of travel through certain areas (possibly preventing it 

entirely), while increasing the likelihood of travel through other areas. Several 

studies that found evidence for habitual route networks also cited possible 

ecological influences, although the importance of such factors remains poorly 

understood (Di Fiore & Suarez, 2007; Lührs et al., 2009; Noser & Byrne, 2010; 

Porter & Garber, 2012). Therefore, primate travel choices may be the result of 

decisions based on both spatial cognition and current ecological factors.  

The spatial distribution of resources in primates’ ranges is likely an 

important ecological factor influencing primate travel patterns. The locations of 
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resource patches (e.g. fruits) are likely more important travel targets than the 

locations of resources that are more uniformly distributed (e.g., bark and leaves), 

especially for primates that rely on ripe fruit (Milton, 1981). Trees of certain 

species could also be travel targets as nest sites or as sources of other foods 

(e.g., leaves, flowers, bark). Food producing trees may be important travel 

targets even when they lack resources, since visits to monitor a tree’s 

phenological status could aid in accessing its resources before competitors once 

they become available (Di Fiore & Suarez, 2007).  

Ecological factors such as topography (e.g., rivers, hills, cliffs, etc.) can 

also affect primate travel patterns since they can constrain or even prevent travel 

through particular areas; some may create “bottlenecks” that could funnel travel 

routes along particular pathways, contributing to the formation of habitual routes 

(Di Fiore & Suarez, 2007). Bottlenecking effects could be especially important in 

arboreal primate species whose arboreal travel is constrained by the presence of 

trees that have sufficient canopy connectivity (Di Fiore & Suarez, 2007; Hopkins, 

2010; Lührs et al., 2009; Thorpe & Crompton, 2009). 

It is therefore important to examine how ecological factors interact with 

cognitive processes to gain a better understanding of primate navigation 

strategies. In this study, we examine ecological factors that may influence travel 

patterns in a population of wild orangutans. There have been reports of wild 

orangutans reusing arboreal travel routes (Galdikas & Vasey, 1992; Mackinnon, 

1974; Thorpe & Crompton, 2009), although few studies have tested this 

empirically. We recently found empirical evidence that a population of wild East 
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Bornean orangutans (Pongo pygmaeus morio) in Kutai NP, East Kalimantan, 

Indonesia use habitual route networks in at least part of their habitat (Bebko, 

2012). Although the presence of this network has been established, factors that 

affect its spatial configuration (i.e. the locations of the routes and nodes in the 

network) remain unknown. 

This paper presents two studies in which we examined how ecological 

factors may contribute to the spatial configuration of these orangutans’ habitual 

route network. In Study 1, we assessed what factors may influence the locations 

of nodes (intersections) in these orangutans’ habitual route network. In Study 2, 

we examined factors that may influence the locations of orangutans’ habitual 

routes.  

Study 1  

Many primate species have shown evidence of goal-directed travel 

towards important resources in their home range (Asensio, Brockelman, 

Malaivijitnond, & Reichard, 2011; Noser & Byrne, 2014; Porter & Garber, 2012; 

Valero & Byrne, 2007), including travel to “inspect” important resource sources 

(visit and inspect but do not feed or otherwise use that source) (Galdikas pers. 

comm., Russon pers. obs.). Orangutans are primarily frugivores, preferring some 

fruit species over others, and preferring large food patches over smaller ones 

(Leighton, 1993). Accordingly, large trees of preferred fruit species are likely to 

be more important travel targets than smaller trees of the same species since 

they tend to contain more total fruit.  
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Repeated goal-directed travel to such important resources could lead to 

many travel routes intersecting at their locations, resulting in the establishment of 

nodes at important resources. In several other arboreal frugivorous primates and 

terrestrial chacma baboons (Papio ursinus), intersections of travel routes were 

associated with important resources (Asensio et al., 2011; Garber & Porter, 

2014; Hopkins, 2010; Noser & Byrne, 2010; Porter & Garber, 2012). We 

therefore predicted that nodes (intersections) in wild KNP orangutans’ habitual 

route network would be more strongly associated with the locations of feeding 

bouts on important fruit taxa than with the locations of other activities (e.g., rest, 

travel, feed on other food items/taxa).  

Method  

Subjects and setting 

We observed wild orangutans (P. p. morio) in Kutai National Park, East 

Kalimantan, Indonesia. The study area, Bendili, is situated along ~8km of the 

south bank of the Sangatta River, with a 200m grid transect system covering 

approximately 4-5 km2 (Figure 2.1). The area had not been commercially logged 

as of the 1990s (Campbell, 1992; Leighton, 1993) but shows recent signs of 

small-scale illegal logging and hunting (pers. obs.). The study area was heavily 

damaged by Borneo-wide forest fires in 1982/83 and 1997/98 that affected the 

majority of the park, but at the time of this study the area had been regenerating 

naturally from this fire damage for around 12-15 years (Russon, Kuncoro, & 

Ferisa, 2015). The original forest in this area includes two forest types, riparian 

and upland mixed dipterocarp forest which experiences masting (Leighton, 
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1993); it now consists of a mix of primary and secondary forest of both forest 

types (Russon et al., 2015). By the end of this study period, we had encountered 

over 30 orangutans and repeatedly observed, identified, and named 18 of them. 

 

Figure 2.1: Kutai National Park in Borneo, Indonesia, with Bendili study area 
highlighted. 
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Sampling and Data collection 

The authors and local field staff located orangutans by searching the 

forest on foot. Trained observers collected data within the standard framework of 

nest-to-nest focal individual follows, using continuous event-based sampling of 

the focal orangutan’s behavior. We collected travel and other behavioral data for 

this study between January 2010 and December 2012. Behavioral data included 

the orangutan’s activity (feed, rest, travel and other, plus start and end times of 

each activity bout), height in the trees, foods eaten, any social partners, and 

detailed descriptive notes. For foods eaten, we attempted to identify the taxon 

(local and scientific names). We also recorded which species part (or item) was 

consumed (i.e. leaf - young or mature, inner bark (cambium), fruit (ripe or unripe), 

flower, animal part etc.). If field identification was not possible we collected 

samples for later identification by botanical experts; if neither was successful we 

coded food items as unknown.  

To record orangutans’ location during travel, we also created GPS 

waypoints every 15 minutes throughout a follow near the trunk of the tree that the 

orangutan occupied using Garmin 60Cs and 60Csx handheld units. Analyses of 

these waypoint data incorporated corrections for GPS device error (per error 

assessments below). 

Measures 

GPS Error 

To estimate GPS device error formally, we collected additional waypoints 

from stationary locations every 15 minutes during 3-hour sessions. We 
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completed 20 such sessions on 12 days over 3 months (Feb, Mar, Jul 2011). To 

control for temperature, moisture, multipathing, and satellite position, we 

scheduled these error estimation sessions during daylight hours but at different 

times of the day and split these sessions between three locations: one in a 

clearing, one under heavy forest cover, and one next to a stream. We analyzed 

data from these sessions to estimate the average distance that the recorded 

GPS points deviated over time. We estimated GPS error from the device error 

data collection sessions. The first two waypoints were usually inaccurate 

because the GPS signal had not yet been acquired, so if they were >40 m away 

from the session’s centroid we deleted them. We drew 1-standard-deviation error 

ellipses around remaining waypoints for each session (Ministry of Environment 

B.C., 2001) and then converted the ellipses into 95% error circles (Department of 

Natural Resources WA., 2004). We used the mean circle radius as an estimate 

of GPS error that represented a 95% confidence limit on the deviation of a point 

from its true location. 

Travel Route 

We created travel routes by connecting all GPS waypoints from a day’s 

observation period. We then “noise-cleaned” all travel routes of GPS error by 

combining all waypoints that clustered within the estimated error of the GPS 

device into their centroid (Bebko, 2012, 2017). Our devices could not accurately 

represent or even detect small-scale movements within the GPS error threshold. 

Due to such error, small scale movements could be recorded as movement the 

wrong direction. Therefore, to reduce possible error in travel distance and 
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direction, we performed this noise-cleaning even in cases where our behavioral 

data indicated the orangutan moved. 

Habitual route network 

We defined habitual travel routes as overlapping clusters of travel routes 

that followed the same path (Di Fiore & Suarez, 2007). We mapped all travel 

routes recorded during the study period. Bebko (Bebko, 2012, 2017) created a 

computer algorithm programmed in Python for ESRI ArcGIS 10 to detect 

overlapping travel routes while accounting for the error in GPS devices (Figure 

2.2A). Although overlaps can occur between two or more travel routes, to be 

conservative, we considered only habitual routes where at least three travel route 

segments overlapped over a length of at least 25% of the mean daily travel 

distance of the individuals followed (Bebko, 2012, 2017). 25% was selected since 

it represents a travel distance that is important for orangutans since it represents 

a substantial portion of their daily travel. 

Nodes 

We defined a node as a location where several travel routes intersected 

(Di Fiore & Suarez, 2007). We flagged all roughly circular areas where at least 

five travel routes intersected (Figure 2.2B). To ensure that such areas 

represented intersections of travel routes (and not short segments of habitual 

travel routes) we only considered locations where the number of overlaps at that 

location was higher than individual habitual route segments entering that location 

(Bebko, 2012, 2017). The radii of these circular node areas were set to the 

estimated GPS error. 
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Figure 2.2: Hypothetical habitual route network features. (A) Overlapping travel 
routes detected as putative habitual travel route (B) Circular overlap area 

representing a putative node location. 

Key fruit taxa  

We selected four taxa that represent key fruit sources for local 

orangutans: Dracontomelon dao, Diospyros sp., Castanopsis sp., Ficus spp. 

(Table 2.1). Selection was based on analyses of our observational data for 

Bendili 2010-12 (Russon et al., 2015), the experience of local field staff, and 

previous studies of P. p. morio in the area (Campbell, 1992; Leighton, 1993; 

Rodman, 1973). We grouped all figs as one taxon for analyses due to the 

difficulty of identifying figs to the species level, a common practice in research on 

orangutans and other primate species (Hanya & Chapman, 2013; Hardus et al., 
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2013; Leighton, 1993; Morrogh-Bernard et al., 2009; Wich, Utami-Atmoko, Mitra 

Setia, Djoyosudharmo, & Geurts, 2006).  

Table 2.1 
Scientific and Local Names of Key Species 

Taxa Species Local Name 

Anacardiaceae Dracontomelon dao sengkuang 

Ebenaceae Diospyros spp. baleu1 

Fagaceae Castanopsis sp. pelele 

Moraceae Ficus spp. multiple names1 

1: Local name may include more than one species 

Locations of feeding bouts on key taxa 

Due to the 15-minute interval between recording GPS waypoints, we were 

not always able to record the exact locations of short feeding bouts. We 

estimated the location of each feeding bout as the GPS waypoint closest in time 

to the feeding bout. Long feeding bouts (> 15 min) were accurately located since 

any such bouts were necessarily recorded with at least one GPS point. The 

location of such feeding bouts was represented by the centroid of all associated 

GPS waypoints. The approximated locations of short feeding bouts (< 15 m) 

were also relatively accurate since orangutans typically travelled slowly (avg. 2-4 

m/min during travel [unpublished data]). For this reason, such short feeding bout 

locations were typically less than 25 m away from their associated GPS point. 

Control locations 

Control locations represented locations where orangutans were recorded 

not feeding on key food taxa (i.e., travel, rest, feed on other taxa, etc.). Due to 

the enormous number of control locations (> 7500), we did not condense the 
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locations into centroids (as we did above) in cases where multiple GPS points 

represented the same activity, although we did noise-clean the data for GPS 

error. Therefore, it is possible that there were multiple control points that 

represented the same activity at the same location. However, this omission 

would over-represent the control locations in the statistical models used, making 

this method of selecting control points extremely conservative statistically. 

Nearness to nodes in the habitual route network 

We considered that a location was near a node in the habitual route 

network if it was within the estimated GPS error distance from that node (Bebko, 

2012, 2017). We use the term “near” since due to GPS error, locations at the 

node could be recorded as within the 20 m radius of the node itself, or within the 

estimated GPS accuracy of the node’s 20 m circle. 

Analyses 

Relationship between node location and key resource trees 

Data include multiple observations per day and per individual, so they fail 

statistical assumptions of independence. Therefore, we used a multilevel logistic 

regression model with data nested by date of observation and individual. Our 

model assessed whether feeding bouts on key food taxa were more likely than 

the control locations to be near a node. Using R statistics software, we fit the 

model with the glmer function of lme4 package (Model 1). 
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Model 1 
R-Statistics code for the logistic regression model of nearness-to-node predicted 
by feeding bout species.  

 

Where Key Taxa was a dummy-coded variable with 4 contrasts: locations of feeding bouts on the 
four key fruit taxa were contrasted with control locations; Orangutan was the identity of the 
orangutan; and Date was the date of observation. 

Results and Discussion 

We observed 18 identified and several unidentified orangutans on a total 

of 304 days resulting in a total of 7776 useable GPS locations. The data 

represent a total of 329 feeding bouts on Dracontomelon dao, 69 on Diospyros 

sp., 48 on Castanopsis sp., and 50 on Ficus spp. The pool of useable control 

points was 7000 locations. 

The mean radius of 95% GPS error circles was 20.34 m (sd. = 9.97 m, 

range = 6.37 - 45.20 m) therefore we estimated the GPS error to be 20 m instead 

of the error estimate reported by the devices themselves, which usually ranged 

between 5 m and 14 m. 

For a given orangutan on a given day, feeding bouts on all key taxa were 

significantly more likely to have occurred near nodes than near control locations 

(Table 2.2). We also calculated odds ratios for all predicted parameters. 

Dracontomelon dao was associated with an odds ratio of 1.80, indicating that for 

a given orangutan on a given day, feeding bout locations were 1.80 times more 

likely than other activity locations to be near a node (95% C.I. = 1.16 - 2.80). 

Similarly, Castanopsis sp. was associated with an odds ratio of 15.20 (95% C.I. = 

Near Node ~ Key Taxa + (1 | Orangutan) + (1 | Date) 
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5.86 - 39.43), Diospyros sp. 1.84 (95% C.I. = 1.01 - 3.37), and Ficus sp. 1.63 

(95% C.I. = 1.14 - 2.33).  

The random effects in the model, date and individual, both had non-zero 

variances, indicating that both contributed to the variation in likelihood of GPS 

locations being near nodes. This implies that individuals differed in their amount 

of travel near nodes, and that orangutans travelled near nodes on some days 

more than others. 

Table 2.2 
Regression coefficients for distance from node of key species eaten. 

Parameter Est. S. E. z p Odds ratio (95% CI) 

(Intercept) -1.92 0.44 -4.34 < 0.001 ***  

Dracontomelon dao 0.59 0.22 2.63 0.008 ** 1.80 (1.16 - 2.80) 

Diospyros sp. 0.61 0.31 1.99 0.047 * 1.84 (1.01 - 3.37) 

Castanopsis sp. 2.72 0.49 5.60 < 0.001 *** 15.20 (5.86 - 39.43) 

Ficus spp. 0.49 0.18 2.70 0.007 ** 1.63 (1.14 - 2.33) 
Note: * significant at  = 0.05, ** significant at  = 0.01, *** significant at  = 0.001. 

We mapped the locations of significant key taxa with respect to node 

locations (Figure 2.3). Several nodes were associated with feeding bouts on key 

taxa.  
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Figure 2.3: Locations of orangutan feeding bouts on key taxa in relation to node 
locations in Kutai National Park, Indonesia (Jan 2010 – Dec 2012). 

We compared Model 1 to a simpler model in which there were random 

intercepts for individual but not for date, since we had few days in which we 

observed multiple orangutans. This simpler model was a significantly poorer fit to 

the data (BIC = 8208) than was the original model (BIC = 6390), lower BIC being 

preferable (Log Likelihood test: 𝜒2(1) = 1826.6, p < 0.001). 
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As predicted, feeding bouts on all four specified key taxa were more likely 

to be near nodes of the habitual route network than near control locations. Our 

findings are consistent with those for other arboreal frugivorous primates and 

terrestrial chacma baboons (Papio ursinus), for whom intersections of travel 

routes were associated with important resources (Asensio et al., 2011; Garber & 

Porter, 2014; Hopkins, 2010; Noser & Byrne, 2010; Porter & Garber, 2012).  

We did not differentiate between fig species, but some species may be 

more important for orangutans than others. Therefore, we also analyzed a model 

similar to the above, but separating the Ficus sp. category into two categories 

that local experts used based on local traditional knowledge: “kayu ara” – tree fig 

taxa, and “other figs” (epiphytic climbers, stranglers, creepers, lianas). Nearly all 

such “kayu ara” trees were large relative to other trees nearby, we observed 

orangutans feeding on many of their parts (leaves, cambium, fruit), and many of 

these trees contained orangutan nests.  

This division should be interpreted with caution since, as discussed above, 

fig taxa are very difficult to identify. Nevertheless, in this model “kayu ara" figs 

were significantly associated with nodes (B = 1.17, p = 0.007), whereas “other 

figs” were not (B = 0.22, p = 0.31). This suggests that certain large fig trees are 

preferred travel targets for orangutans, while many other figs are not. Many 

primates’ have preferred food resources, especially ripe fruit, many of which are 

only available seasonally, and in their absence, individuals increase consumption 

of less-preferred “fallback” resources (Marshall & Wrangham, 2007). Orangutans 

often consume fig fruits as fallback foods, mainly where or when other fruits are 
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scarce (Morrogh-Bernard et al., 2009; Tomoko et al., 2010). Although these 

findings using local traditional classification hint at the possibility that certain fig 

taxa may be more important for the establishment of habitual route networks than 

others, more detailed identification of fig taxa is needed to assess how each 

contributes to the establishment of habitual route networks. 

One limitation of this study was that short feeding bouts were treated the 

same statistically as feeding bouts lasting several hours. In particular, we 

observed orangutans feeding from individual D. dao trees continuously for 

several consecutive days, which suggests they represent extremely important 

food resources for orangutans. Note that our analyses did not adjust for feeding 

bouts based on their duration: it was the locations of such food resources (not 

the time spent at them) that were important in relation to the locations of nodes in 

the network. We aim to examine duration of feeding bouts in future studies 

assessing how primates use habitual route networks. 

Overall, many node locations were associated with large individual trees 

of key fruit taxa, consistent with orangutan preferences for fruit in large crops 

(Leighton, 1993) and suggesting that the spatial configuration of nodes in these 

orangutans’ habitual route network can be explained in part by the presence and 

location of such trees. However, not all nodes were associated with such trees, 

implying that there may be other important taxa not included here or that some 

nodes may be primarily determined by other factors, such as forest composition 

or nesting preferences. For example, we have identified several locations in the 

study area were we consistently found new, old, and repaired nests, suggesting 
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long-term reuse of these nesting sites, so some nodes may represent nesting 

sites. Further examination of these non-fruit-taxa nodes is needed to determine 

other factors that may explain their location.  

Overall, our results from Study 1 suggest that distribution of key resources 

in this orangutan population can partially explain the spatial configuration of the 

habitual route network. However, additional ecological factors likely also 

contribute to the configuration of habitual travel routes that connect nodes, which 

we examine in Study 2. 

Study 2 

Orangutans’ primarily arboreal lifestyle and large body size may result in 

their travel routes being more constrained compared to smaller-sized or more 

terrestrial primates. Orangutans require relatively large branches or lianas to 

travel between neighboring trees, trees spaced closely enough for large 

branches to interconnect, and/or trees or lianas that can be swayed close 

enough to neighboring trees so that orangutans can cross these gaps (Campbell, 

1992; Povinelli & Cant, 1995; Thorpe & Crompton, 2009). Accordingly, orangutan 

arboreal travel routes may be more likely to pass through areas of larger trees 

with large overlapping branches or interconnecting lianas and less likely to pass 

through areas with poorer arboreal connectivity. 

Although large fruit resources are likely orangutans’ major travel targets 

(as shown in Study 1), access to other resources during travel between large fruit 

resources could be important in choosing certain paths over others. Orangutans 

repeatedly selecting travel routes through areas rich in less-preferred resources 
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while on their way to more important resources may also contribute to the 

establishment of habitual travel routes.  

As a second approach to examining ecological factors that influence the 

establishment of habitual routes along particular pathways, we examined the 

number of large trees and large resource trees (i.e. trees in which local 

orangutans ate or nested) along the travel routes that orangutans took compared 

to those along computer-generated “control” routes. For our purposes, a control 

route was a route passing through the same area as an orangutan’s actual travel 

route but offset from it by a small distance (30 m). We predicted that orangutans’ 

travel routes would pass through areas with more large food resource trees and 

more large trees overall than the computer-generated control routes. 

Method 

Subjects and research setting 

The subjects and research setting were the same as for Study 1  

Measures 

Measures defined in study 1 have the same definition in Study 2. 

Large orangutan resource trees 

An orangutan resource was defined as any tree or liana of a taxon that 

orangutans were known to use for food or nesting at our study area. Forest fires 

had burned much of the area 12-14 years ago, so large trees were relatively 

uncommon in the study area. Therefore, all trees with trunk-diameter-at-breast-

height (DBH) greater than 50cm were considered large trees.  
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Control routes 

To determine the availability of orangutan resources along orangutan 

travel routes compared to nearby areas, we created matched “control” routes for 

each selected orangutan day travel route. A control route represented another 

possible travel route passing through the same area as its paired orangutan 

travel route, but one that the orangutan did not take.   

Data collection 

We collected data for this study from June - September 2011. From the 

pool of all previously recorded full-day orangutan travel routes (Jan. 2010 – Sep. 

2011), we first identified all observation days on which the orangutan’s behavior 

appeared little impacted by the presence of the observation team (i.e. low levels 

of aggression or annoyance and the majority of activity was food or travel 

oriented). Among them, we selected days on which travel routes represented 

different areas of the study site and sampled orangutans of both sexes and 

several age classes. We selected 19 travel routes that met these criteria.  

Using ESRI ArcGIS and GPS TrackMaker we created control routes by 

translating (offsetting) each actual route waypoint to one side of the route by a 

distance of 30m, perpendicular to the direction of travel (Figure 2.4). Since two 

parallel control routes were possible (one on each side of the actual route), we 

selected one side at random to use as the matched control. In cases where the 

original route turned back on itself we simplified the parallel control route so that 

it remained offset and never crossed the actual route. We did not use straight-

line control routes, since we were comparing orangutan’s routes with adjacent 
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possible routes through the same territory, and straight-line routes would not 

follow realistic trajectories through the habitat. 

 

Figure 2.4: Example control route creation. We constructed parallel control routes 
by translating the original travel routes by 30m to one side such that the two 

routes never overlapped. 
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The 30 m offset was chosen because in this study area, 30 m represented 

the closest distance between arboreal travel routes that was likely to be 

measurably distinct. Experienced field assistants who followed these orangutans 

regularly estimated the largest tree crowns in the study area were less than 30 m 

wide, therefore individuals travelling 30 m apart were unlikely to access the same 

resources or trees.  

To assess resources along both orangutan and control routes, we walked 

both routes using the GPS devices’ route-guidance function and assessed the 

range and density of orangutan food resources accessible along each route with 

the help of knowledgeable field assistants. We recorded and identified all large 

trees (>50 cm DBH) within a 20m corridor (i.e., 10 m to the left and 10 m to the 

right) along each route and whether they were local orangutan food resources. 

We used 20m corridors since (1) resources within 10m of the actual route are 

close enough to be accessible by orangutans travelling along that route (in this 

forest, crowns of large trees can often extend 10m or more from their trunks), (2) 

this left a gap of 10m between the actual and control corridors, preventing 

double-counting. 

These spacing criteria (30 m separation between actual and control 

routes, 20 m wide corridor centered along each) had the added benefit that while 

retracing the routes for data collection, we were unlikely to accidentally meander 

into the matched comparison route because of GPS error.  

Along both actual and control routes, we also recorded ad lib qualitative 

notes on changes in forest cover (open vs. canopy), ground vegetation density, 
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habitat quality/nature (forest vs. bamboo vs. shrubs), and physical features 

(rivers, steep inclines, cliffs, etc.). 

Analyses 

We compared actual orangutan travel routes with their matched parallel 

control routes on the frequency of all large trees (including non-resource trees) 

and large resource trees (food, nesting). To account for routes of differing length, 

we used the relative frequency of trees and resources along each route per 

kilometer. We also completed similar comparisons treating nest and food 

resources separately. We tested all comparisons using Wilcoxon signed-rank 

tests (Wilcoxon, 1945).  

Results and Discussion 

Overall, we collected data along 19 travel routes and their matched 

parallel control routes that totaled 9.3km in length. Data were from five adult 

females (with dependent offspring), one flanged adult male, three unflanged adult 

males (sexually mature but lacking flanges and other sexual characteristics), and 

5 adolescent males (independent, but not yet sexually mature). We recorded 735 

large trees, including 510 large resource trees of which 500 were food resources 

and 420 were nest resources (Figure 2.5). Many species were identified as both 

food and nest resources.  
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Figure 2.5: Locations of selected orangutan travel routes and matched parallel 
control routes. All trees DBH > 50cm within 20m along the routes are shown. 

Data collected in Kutai National Park, Indonesia (Jun – Sep 2011). 

As predicted, there were significantly more large trees (including both 

resource and non-resource trees) per km along actual routes vs. matched control 

routes (Figure 2.6) (Wilcoxon signed-rank test: Z = 3.14, N = 19, p = 0.002) and 

significantly more large resource trees per km along actual vs. matched control 
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routes (Wilcoxon signed-rank test: Z = 2.58, N = 19, p = 0.010). Examining large 

food trees and nest trees separately yielded similar results; there were 

significantly more large food trees (Wilcoxon signed-rank test: Z = 2.50, N = 19, p 

= 0.012) and large nest trees (Wilcoxon signed-rank test: Z = 2.58, N = 19, p = 

0.010) per km along actual travel routes than along matched control routes. 

There was one route (8/8/2011 Putri) that was an outlier with many more trees 

per km than its matched control, since a section of the control route passed along 

the Sangatta river, meaning no trees were present. We considered deleting this 

outlier, however, it was representative of possible reasons orangutans may avoid 

accessing riverbanks and rivers since they contain few trees. Furthermore, the 

statistical test was not overly affected by this outlier since it required conversion 

to ranks. 
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Figure 2.6: The difference in the number of large resource trees (DBH > 50cm) 
per km along orangutan travel routes and matched parallel control routes in Kutai 

National Park, Indonesia (Jan 2010 – Aug 2011). Data were split by age/sex 
class and resource type. 

Overall, as predicted, there were more orangutan resources (both food 

and nest resources) along actual orangutan travel routes compared to parallel 

routes passing nearby. However, there were also significantly more large trees 

(combined resource and non-resource) along orangutan travel routes compared 
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to along control routes. Our results suggest that on a very local scale, orangutans 

may target travel through areas with more large trees generally and more 

resource trees than nearby areas.  

However, length of study is highly correlated with the total number of 

resource species identified at orangutan study sites (Russon et al., 2009), and 

our study is based on only 1.5 years of data. For this reason, we may have 

under-reported the actual number of resource species. Over time, as more local 

orangutan resources are identified, resource trees may represent a larger 

proportion of all trees than currently estimated. 

The only three cases where actual routes had fewer tree resources than 

control routes were from an adolescent male (Wally) and an unflanged adult 

male (Jenggot). Although this is a small sample size, these young-male-low-

resource travel routes could reflect a combination of lacking knowledge of the 

study area (van Noordwijk, Sauren, Morrogh-Bernard, Atmoko, & van Schaik, 

2009), disturbance from human observers (Cipolletta, 2003), and/or differing 

importance of nutrition compared to other age/sex classes (Bates & Byrne, 2009; 

Normand, Ban, & Boesch, 2009). The last scenario seems to be most likely since 

both young males were longer-term residents of the area and displayed less 

disturbance from and more curiosity towards the human observers than 

newcomers typically did. 

Finally, we compared orangutans’ habitual routes with satellite imagery 

showing forest cover and qualitative notes taken during data collection. This 

comparison indicated that many orangutan routes passed near edges of forest 
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clearings but still within forest cover (Figure 2.7). Clearings in the study area 

were typically very sunny and populated by dense understory vegetation 

including lianas, shrubs, ferns, and bamboo that was difficult for humans to 

traverse. In contrast to the actual orangutan travel routes, parallel control routes 

often passed directly through these open areas, and several control routes had 

little forest cover over the length of the entire route. The orangutans’ actual travel 

routes rarely passed through clearings, and in at least two instances when 

orangutans did enter clearings, behavioral notes indicate they displayed 

increased agitation toward the human observers just before entry (i.e. threat 

vocalizations, branch throwing, etc.), suggesting that they may have been fleeing 

from or warning/threatening the observers, and not travelling for foraging 

purposes.  
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Figure 2.7: Habitual route network overlaid on satellite imagery of Kutai National 
Park, Indonesia showing possible arboreal bottlenecks (pink arrows) through 

strips of denser forest between forest clearings. Larger trees appear as darker 
green areas with more shadows whereas clearings are brighter green with fewer 

shadows. Images © Google Earth and DigitalGlobe 2018. 

Our results imply that habitual routes may in part result from repeated 

travel along routes that pass through the sequences of interconnecting large 

trees also with more large resource trees. This is consistent with the arboreal 
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habitual travel routes reported in mantled howler monkeys (Alouatta palliata), 

which passed through areas with high canopy connectivity and resource 

availability (Hopkins, 2010). 

Study 1 found that large trees of key species helped explain the locations 

of nodes in the network. Overall, Study 2 found evidence that he spatial 

configuration of the habitual route network was also explained in part by 

orangutans selecting travel routes through areas of high resource density and 

good canopy cover, while avoiding alternate more resource-poor routes and 

forest clearings.  

General Discussion 

Together, our results from these two studies provide information about the 

features that contribute to shaping the spatial configuration of these orangutans’ 

habitual route network. Nodes were often located at large individual trees of 

preferred food and/or nest resources and orangutans travelled between these 

nodes on routes that maintained arboreal access to a greater number of large 

trees and resources compared to alternative routes nearby. These results are 

consistent with those for other highly frugivorous and arboreal primate species 

that target important patchily distributed resources while maintaining access to 

less preferred resources during travel (Asensio et al., 2011; Shaffer, 2014).  

The presence of habitual route networks has been used as evidence for 

primates using route-based cognitive maps (Di Fiore & Suarez, 2007; Porter & 

Garber, 2012). Our results are consistent such findings and further suggest that 

ecological factors contribute to the spatial configuration of habitual route 
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networks. Such results are also consistent with those published on several other 

mammals including bison (Bison bison), elephants (Loxodonta Africana), and 

lynx (Lynx canadensis), for which ecological constraints contribute to the spatial 

configuration of habitual routes (Bruggeman, Garrott, White, Watson, & Wallen, 

2007; Douglas-Hamilton, Krink, & Vollrath, 2005; Squires et al., 2013).  

Since local ecology may influence the configuration of primates’ local 

habitual route networks, the routes of different populations of a given species 

may appear very different as a function of local ecological conditions despite their 

using similar foraging strategies (Presotto & Izar, 2010). Similarly, species that 

have similar travel patterns may appear to be using the same foraging strategies, 

when in reality, their travel patterns could be shaped by similar ecological factors 

yet using different foraging strategies.  

Our results are also consistent with orangutan arboreal travel being 

partially constrained by arboreal bottlenecking, since arboreal travel routes 

passing through areas with many large trees would likely have better canopy 

connectivity than areas with few large trees. In our study area, orangutans, 

especially flanged adult males, have been observed to travel on the ground, and 

the P. p. morio subspecies is known to travel terrestrially more than other 

subspecies (Ancrenaz et al., 2014; Thorpe & Crompton, 2009). Such terrestrial 

travel may reduce the effects of arboreal bottlenecking in this population, since 

alternate terrestrial travel paths are possible through areas with poor canopy 

connectivity. Although an interesting possibility, we were unable to analyze 

terrestrial travel since we had insufficient data on terrestrial travel. Our lack of 
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data owed in part to orangutans’ increased speed of travel and increased 

agitation when they descended to the ground, probably because this brought 

them closer to human observers to whom they were not fully habituated and 

aimed to avoid. As the orangutans in this population become more habituated, 

we hope to collect more data on terrestrial travel to examine how it relates to the 

use of arboreal route networks.  

Despite a small number of orangutans in this study, our data also suggest 

possible differences between age/sex classes in orangutan travel route selection. 

In contrast to all other studied orangutans, the two young male orangutans (one 

juvenile, one unflanged) chose travel routes that passed by fewer resources than 

alternate nearby routes. Rather than selecting travel routes for foraging 

efficiency, these routes could reflect travel for different priorities (e.g. social 

reasons, such as avoiding encounters with residents or flanged males). This 

difference could provide an interesting avenue of future research with a larger 

and longer term orangutan sample. 

Habitual route networks also have implications for assessing coordinate-

based cognitive maps. Many previous studies have considered circuitous routes - 

those lacking direct linear travel towards resources and a lack of novel travel 

routes - as evidence against primates using coordinate-based cognitive 

representations (Bezanson, Garber, Murphy, & Premo, 2008; Janson & Byrne, 

2007; Normand & Boesch, 2009; Poucet, 1993). Such conclusions may not be 

appropriate for orangutans and other species where circuitous travel may be 

preferred or more efficient than straight-line travel due to local ecological 
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conditions that constrain their travel or affect the distribution of travel targets. 

Individuals may use coordinate-based spatial representations of resource 

locations yet travel circuitously to reach them due to ecological affordances and 

constraints and/or maintaining access to additional resources during travel. This 

may suggest that linear travel is not necessarily an efficient foraging strategy in 

some species and/or in some areas of habitat, especially habitat areas which 

present highly variable travel conditions (Garber, 2016; Hopper, 2010). If so, 

orangutans may also use coordinate based cognitive maps (or a combination of 

both), yet choose to follow efficient habitual routes. 

Further research on important temporal factors could yield additional 

insights into how primates use habitual route networks. Many primate resources 

are only available for part of the year (including the key taxa examined in Study 

1) and for orangutans the timing of their availability can be irregular, and travel 

associated with such resources changes accordingly (Morrogh-Bernard et al., 

2009). Therefore, we predict that primates’ usage of habitual route networks is 

sensitive to the availability of temporally variable resources (e.g. ripe fruit). 

Primates capable of monitoring and predicting the availability of such ephemeral 

resources would be able target particular areas of their networks only when 

resources were likely to be present thereby improving foraging success. To 

assess this possibility, Suarez et al. (2014) compared field observations of spider 

monkeys (Ateles belzebuth) to computer-simulated models that travelled 

randomly along the same habitual route networks. Even when simulated travel 

was constrained to the route network and controlled for resource detection range, 
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the primates found resources more efficiently than the simulations, suggesting 

they used a more complex foraging strategy than random travel along the 

networks. How primates detect timing cues is of course a major question.  

Although temporal variation in resource availability likely affects travel 

decisions, the majority of orangutan resources (including fruit trees) appear at 

consistent locations spanning several years. Additionally, such locations may 

remain important orangutan travel targets when not producing fruit for other 

reasons (i.e. bark, leaves, flowers, nesting, social meeting, etc.). This could be 

especially important for the P. p. morio orangutan subspecies (studied here)¸ 

who appear to eat more plant parts/species than other orangutan taxa (Russon 

et al. 2009). Visiting important resource locations when they are not productive 

could also facilitate monitoring and updating knowledge about the phenological 

status of the resources they provide (Di Fiore & Suarez, 2007; Garber & Porter, 

2014; Janmaat, Ban, & Boesch, 2013; Milton, 1981), and orangutans have been 

reported to do this. Results of this study are consistent with the habitual route 

network enabling a monitoring strategy since it connected large key resource 

trees at nodes by passing through areas relatively rich in large tree resources. 

This possibly enabled the orangutans to monitor the status of both preferred and 

other resources during travel to destinations that currently provide resources.  

Di Fiore and Suarez (2007) hypothesized that habitual route networks may 

contribute to the construction of primates’ ecological niches. Repeated seed 

dispersal along habitual routes over long time frames could increase resources 

along these routes compared to other areas. Our results are consistent this 
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hypothesis. However, applying our findings to niche construction may be 

problematic since our study site was relatively new, so some orangutan 

resources likely remained unidentified, leading us to underestimate the total 

number of resource trees relative to all large trees. Furthermore, recent droughts, 

winds, and heavy rains, from El Niño Southern Oscillation events and earlier 

forest fires (Russon et al., 2015) may also have disrupted niche construction 

and/or forced orangutans to change their ranging patterns in the study area in the 

recent past.  

Overall, the spatial configuration of the orangutans’ habitual route network 

in our study area was well explained by current ecological conditions. This is 

likely the case for many other large-bodied arboreal primate species in which 

habitual travel route networks have been found. Primate habitual route networks 

are likely the product of how primates cognitively encode spatial information, 

combined with current/recent ecological considerations in their habitat. Our 

results highlight the importance of including ecological factors in future studies 

examining primate travel patterns for evidence of primate spatial cognition.  
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Chapter 3: Research Paper 2: Behavioral changes leading up to escapes 

from researchers in wild orangutans (Pongo pygmaeus morio). 

Adam O. Bebko, Anne E. Russon, Jin Kang 
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Abstract   

Primate travel routes can be disrupted by humans, especially in populations with 

little human contact. Primatologists typically treat these disruptions as a 

nuisance, yet they may be useful to examine strategies primates use to avoid 

threats. This study examined changes in behavior and travel prior to wild 

orangutans escaping from human observers for evidence of whether they may 

plan such escapes in advance. We predicted that wild orangutans would alter 

aspects of their activity budget and space use. We collected ranging and other 

behavioral data from wild orangutans (Pongo pygmaeus morio) in Kutai National 

Park, East Kalimantan, Indonesia. Using mixed multilevel regression models and 

mapping software, we examined travel routes and behavior on days when 

orangutans escaped from our observation team and compared them to days 

when they did not escape. Consistent with predictions, orangutans significantly 

altered their behavior leading up to escapes. Orangutans increased their time 

spent travelling and travel speed, while decreasing their time spent feeding on 

escape days compared to normal days, and this difference became greater 

leading up to an escape. Orangutans also targeted travel towards areas of 

habitat they typically avoided. Overall, our results suggest that these wild 

orangutans altered their behavior several hours in advance of successfully 

escaping human observers. Although preliminary, our results are consistent with 

orangutans deliberately attempting escapes by prioritizing traveling over feeding 

and by targeting travel away from their normal travel routes.  

Keywords: Travel, Orangutan, Spatial Cognition, Habituation, Ecology 



 
 

52 

Behavioral changes leading up to escapes from researchers in wild orangutans 

Primatologists observe primates’ travel patterns to assess how they 

encode and use spatial information cognitively. However, human presence can 

disrupt their normal travel patterns, especially in populations with little human 

contact. Typically, primatologists treat these disruptions as a nuisance to data 

collection. Yet they may be useful in themselves to examine human-influenced 

changes in behavior, and primates’ strategies for hiding, fleeing or otherwise 

responding to potential predators and threats. Increased understanding of such 

escape and avoidance strategies could be essential for effective management of 

threatened primate populations in increasingly human-impacted habitat. This 

study examined changes in behavior and travel prior to wild orangutans escaping 

from human observers for evidence that suggest they plan such escapes in 

advance. 

Many animal species alter their behavior to avoid threats, especially to 

reduce the risk of predation (Lima & Dill, 1990). Anti-predator behavioral 

strategies can involve changes in how animals travel, forage, and rest (Barnier et 

al., 2014; Christianson & Creel, 2010; Creel & Christianson, 2008; Lima, 1998; 

Lima & Dill, 1990; Nelson, Matthews, & Rosenheim, 2004). Most wild animals 

tend to perceive human activities as threatening, often triggering behavioral 

changes similar to anti-predator responses even in the absence of direct 

predation (Frid & Dill, 2002). Such human-induced changes include increased 

travel time, speed, and changed travel direction (e.g. bottlenose dolphins - 

Tursiops aduncus, elk - Cervus elaphus, southern right whales - Eubalaena 
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australis, moose - Alces alces), interrupted resting and reduced foraging success 

due to increased vigilance (e.g. elk - Cervus elaphus, caribou - Rangifer tarandus 

caribou, red-crowned cranes - Grus japonensis, harbor seals - Phoca vitulina), 

and choosing safer but less rewarding habitats (e.g.  chough - Pyrrhocorax 

pyrrhocorax, elk - Cervus elaphus, grizzly bears - Ursus arctos) (Ciuti et al., 

2012; Constantine, Brunton, & Dennis, 2004; Cristescu, Stenhouse, & Boyce, 

2013; Duchesne, Côté, & Barrette, 2000; Henry & Hammill., 2001; Kerbiriou et 

al., 2009; Lemon, Lynch, Cato, & Harcourt, 2006; Z. Li, Wang, & Ge, 2013; 

Naylor, Wisdom, & Anthony, 2009; Neumann, Ericsson, & Dettki, 2010; Rumble, 

Benkobi, & Gamo, 2005; Steckenreuter, Möller, & Harcourt, 2012; Vermeulen, 

Cammareri, & Holsbeek, 2012). As with anti-predator behavior, these human-

induced behavioral changes carry energetic costs and the associated negative 

consequences (Amo, López, & Martín, 2006; Brown, 1999; Kerbiriou et al., 2009; 

Lima, 1998; Neumann et al., 2010). 

Similar to other wild animals, wild primates generally perceive humans as 

a threat. However, individual primates’ reactions can vary greatly depending on 

their past exposure and experiences with humans. Populations with little human 

contact typically react to humans as predators, often with fear and aggression 

(Cipolletta, 2003). Some primate populations may have developed human-

specialized behavioral responses to avoid direct predation by humans (Bshary, 

2001; Dooley & Judge, 2015; Doran-Sheehy, Derby, Greer, & Mongo, 2007). 

Such responses can include threat/alarm vocalizations with a decrease in other 

vocalizations, increased travel distance and time, changes in social behavior, 
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and learning about human behavior to develop specific strategies to escape and 

evade them (Bshary, 2001; Cipolletta, 2003; de la Torre, Snowdon, & Bejarano, 

2000; Dooley & Judge, 2015; Jack et al., 2008; Masi et al., 2009). In this context, 

escaping means that primates successfully left the presence of humans and 

could not be relocated after searching. Human-specific escape strategies include 

(but are not limited to) immediately fleeing, using distraction or decoys, learning 

to discriminate human from natural threats (Bshary, 2001), changes in 

vocalization rates and types, and changes in ranging patterns (Bshary, 2001; de 

la Torre et al., 2000; Dooley & Judge, 2015). Some primates attempt to escape 

from humans even after being observed over long-duration neutral encounters. 

For example, gorillas have attempted escape from human observers even after 

observation sessions lasting several days, commonly by scattering their group 

and fleeing (Cipolletta, 2003; Doran-Sheehy et al., 2007).  

After many repeated neutral encounters with humans, primates’ reactions 

typically change gradually from fear and aggression to curiosity or ignoring 

humans they recognize (Cipolletta, 2003). This change over time is called 

habituation (Fedigan, 2010). Habituation can take several years, and may occur 

on an individual and/or group basis (Doran-Sheehy et al., 2007). When 

habituated, primates do not appear to significantly alter their behavioral patterns 

in response to humans, maintaining similar travel distance, speed, and resting 

time as measured using automated radiotelemetry (Crofoot, Lambert, Kays, & 

Wikelski, 2010).  
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Although researchers do not typically represent direct threats to primates, 

they typically disturb primates’ behavior and ranging in unhabituated populations. 

Few studies have examined the nature of such disturbances, and the few that 

have typically focused on quantifying primates’ progression towards habituation 

over long time intervals on the order of years. Such studies have examined 

gradual changes in broad travel patterns such as daily travel distance and 

frequencies of fear reactions but have not examined changes in space use and 

changes in behavior on timescales smaller than years or months. Human-primate 

encounters create challenges that may provide a unique window into how 

primates alter their behavior to avoid or mitigate novel and stressful situations. To 

our knowledge, no studies have examined primates’ strategies and use of 

knowledge about their habitat to evade observers.  

Scientific study of orangutan habituation and responses to humans, 

including human-specific escape strategies, is very limited: the most recent 

published reports we found were Mackinnon (1974) and Rijksen (1978). 

Orangutans’ intelligence and flexible behavioral repertoire make them ideal 

candidates for examining escape strategies including advance planning of 

escapes. Adult orangutans experience very low natural predation and humans 

represent their greatest threat through hunting for food, sale in the illegal pet 

trade, or conflict over human crops (Spehar et al. 2018). Orangutans typically 

react to humans by initially hiding until certain they are detected; once detected, 

they make fear/aggression displays, then typically attempt to move away 

(Mackinnon, 1974; Rijksen, 1978). During these fear/aggression displays, they 
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frequently vocalize, performing “kiss squeaks” and other low-frequency 

vocalizations including “lorks”, “gorkums”, and “grumphs”, and shake or throw 

branches at the humans (Hardus et al., 2013; Mackinnon, 1974; Rijksen, 1978). 

After initial reactions, they may remain stationary and quiet for several hours, 

sometimes building or returning to nests. Among adults, male orangutans usually 

react less fearfully to humans than females, and males occasionally descend to 

the ground to chase humans away (Mackinnon, 1974; Rijksen, 1978). 

After several consecutive days of observation, orangutans partially 

habituate to humans, but on re-encountering the same individuals at a later date, 

they can revert to fear/aggression responses (Mackinnon, 1974; Russon et al., 

2015). It can take many repeated observations (sometimes spanning several 

years) for orangutans to fully ignore the presence of humans and unfamiliar 

humans can still evoke fear/aggression responses in wild orangutans who are 

habituated to familiar humans (pers. obs.). Even after days of continual 

observation with few/no fear/aggression responses, wild orangutans often 

attempt to flee from humans by moving away quickly, sometimes taking 

advantage of diversions (i.e. noisy monkeys or fast-moving gibbons nearby) or 

waiting until humans are distracted (i.e. looking at notes, taking photos) to 

attempt escape (Mackinnon, 1974).  

Even with experienced observers, orangutans can disappear, and even 

when their direction of escape is known, it can be difficult to relocate them (pers. 

obs.). Their skill in escaping also suggests that they alter their behavior in some 

way prior to and during escapes to increase their chance of success. After 1-2 
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yrs. experience following/observing orangutans in Kutai National Park, East 

Kalimantan Indonesia, our observation teams reported being able to predict that 

an orangutan would try to escape up to several hours in advance of their actually 

doing so. Evidence of behavior changes in advance of escaping observers would 

be consistent with their using some form of prior planning. Wild orangutans have 

demonstrated some behavioral evidence of advance planning of travel direction. 

Adult “flanged” male orangutans announced their future travel directions up to 24 

hours in advance through long-distance vocalizations (long calls) aimed in the 

direction in which they actually traveled (up to 24 h in advance), and re-emitted 

long calls when changing directions (van Schaik, Damerius, & Isler, 2013). 

If orangutans plan their escapes ahead of their actual attempt, we would 

expect that they would systematically change their behavior in the hours leading 

up to an escape. We hypothesized that wild orangutans would display behavioral 

changes leading up to successfully escaping from observers. Specifically, we 

predicted the orangutans would alter aspects of their activity budget including 

changes in time spent feeding, travelling, resting, threat vocalizations, and 

defecation. We included defecation since local experts claimed that orangutans 

defecate more when stressed. We would also expect them to change their space 

use including their location, speed, and direction of travel, to access habitat 

suitable for escapes over habitat suitable for foraging and other normal activities. 

Therefore, we also hypothesized that before an escape, orangutans would alter 

their ranging patterns. Specifically, we predicted that they would increase travel 
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speed, and deviate from their typical travel routes and target areas of habitat they 

normally avoided. 

Method 

Subjects and Setting 

We observed wild orangutans (Pongo pygmaeus morio) in Kutai National 

Park, East Kalimantan, Indonesia. The study area spans 4-5 km2 along ~8 km of 

the south bank of the Sangatta River, accessed by a 200 m grid transect system 

covering approximately half the area plus several old local trails. The forest has 

evidence of small-scale illegal logging and hunting in the recent past (pers. obs.). 

Habitat in the study area was highly disturbed by Borneo-wide forest fires in 

1982/83 and again in 1997/98 that heavily damaged the forests in the majority of 

Kutai N.P. (Setiawan, Nugroho, & Pudyatmoko, 2009), although some small 

patches of primary forest remain. Burned forest in the study area has been 

regenerating, and now consists of a mix of primary and secondary lowland 

riverine and hill forest. The original rainforest in this area was a mixture of 

riparian and upland mixed dipterocarp forest which experiences masting (Ashton, 

Givnish, & Appanah, 1988; Leighton, 1993). 

Project facilities are ca 1km downriver of Mentoko, the orangutan study 

site used previously by Rodman, Leighton, Mitani, and Campbell from 1970 

through the mid 1980s and near study areas used by Suzuki from 1983 through 

2014. The presence of previous research sites suggest that some older 

orangutans could have had contact with researchers. However, because the 

population in our study area consisted of many immature/young adult orangutans 
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and few older adults, previous contact with researchers likely had minimal impact 

on this study. The area’s orangutans may also have had recent contact with 

humans from encounters with Kutai National Park staff and local people. Our 

research team found evidence of small-scale use of this part of the national park 

by local people (hunting traps, logging, fishing) and surveys conducted by nearby 

industries. Our early contacts with local orangutans sometimes elicited 

threat/aggression displays; some continued for several hours and recurred 

intermittently for several days. On the other hand, several other orangutans 

reacted very little to early encounters with our research team; reasons may 

involve unusually good feeding conditions in the first year of our project relating 

to El Niño Southern Oscillation events (Russon et al. 2015, pers communication). 

Sampling 

We found orangutans by searching the study area on foot. Once found, 

we recorded the orangutan’s behavior (feed, travel, rest, social, other) during full-

day focal individual follows using a continuous event sampling procedure. We 

considered a full day observation to be observation spanning an orangutan’s 

entire active period - from the time an orangutan arose from its nest in the 

morning until resting in its evening nest (Morrogh-Bernard et al., 2009) 

We attempted to follow orangutans continuously, to a maximum of 10 

days to limit stress. When we lost an orangutan during a follow, we noted the 

time and any relevant details.  
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Data Collection 

Data collection for this study spanned January 2010 to December 2012. 

During that period, we observed more than 30 orangutans, of which 18 were 

observed repeatedly, identified, and named. We recorded behavioral data on the 

orangutan’s activity (feed, rest, travel, social, other), height in the trees, type of 

locomotion, foods eaten, and any defecation, vocalization, or nesting.  

We collected orangutan travel data by creating GPS waypoints every 15 

minutes as close as possible to the trunk of the tree that the orangutan occupied 

using Garmin 60cs and 60csx handheld units. We made an accompanying 

record of the orangutan’s behavior at each data point to facilitate combining 

behavioral and GPS data and improve detection of data collection errors. In rare 

cases, behavioral observation sheets and GPS data sheets were lost or 

damaged and some observer errors were detected; we excluded these 

observation days from analysis. 

To estimate GPS error, we collected waypoints from stationary locations 

over 3 months using the method described in Bebko (2017). 

Measures 

Orangutan escape 

An orangutan escape was any instance when observers lost contact with 

an orangutan they were following for at least one hour. Days on which 

orangutans escaped and were found again were also coded as escape days. We 

considered an escape day to be any day on which an orangutan escaped. A non-

escape day was considered a “normal day”. 
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Orangutan behavior and activity budgets 

We recorded orangutan behavior in four standard categories: rest, feed, 

travel, and other (Morrogh-Bernard et al. 2002). Rest consisted of orangutans 

remaining stationary in one location without performing other actions (usually 

sleeping or sitting on a branch). Feed consisted of orangutans consuming any 

item. A feeding bout ended when we recorded a pause in food consumption 

longer than 5 minutes. Travel consisted of the orangutan changing location, 

either arboreally or on the ground, including travel within the same tree. “Other” 

activity consisted of any behavior that could not be classified as rest, eat, or 

travel (e.g. social behavior, nesting).  

As a basis for assessing behavioral change within a day, we calculated 

hourly orangutan activity budgets, including the total time spent on feeding, 

eating, and travelling during 60 min periods. We excluded “Other” behavior from 

these analyses because it was rare, which made comparisons between days 

impossible. Orangutans frequently performed two activities at once (e.g. eating 

while travelling) so activity categories were not mutually exclusive; therefore, total 

activity time within a one-hour period could be greater than 60 min. 

Travel routes 

Orangutan travel routes were estimated by connecting the sequence of 

GPS waypoints marking the focal orangutan’s locations over the course of a day. 

Full day travel routes spanned an orangutan’s entire active period. 
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Orangutan Travel Speed 

For GPS data, small travel segments are indistinguishable from GPS error 

(Mason & Knight, 2001). Therefore, to calculate orangutan travel speed we first 

noise cleaned all orangutan travel routes. Noise cleaning involved collapsing 

consecutive GPS points falling within the estimated error of the GPS device into 

their centroid (Bebko, 2017). Since we could not measure smaller movements 

than the GPS error, orangutans were considered stationary at such centroids. 

We calculated the orangutan’s travel speed for every noise-cleaned travel 

segment by dividing the distance travelled by the duration of the travel. Since we 

were interested in the speed of travel when an orangutan was travelling 

(excluding stops), we calculated travel speed only for travel segments which did 

not include stops longer than 15 minutes (i.e., at least two consecutive GPS 

points). 

Direction of travel at the end of a travel route 

Calculating travel direction directly from the last segment of the travel 

route was problematic since GPS error could lead to large deviations from the 

actual travel direction. Therefore, we estimated an orangutan’s final travel 

direction by averaging over the final four GPS waypoints (i.e., final 45 min) of 

their route. We drew vectors connecting each of these final waypoints to the last 

point of the route. For example, if the final waypoint is labeled point A, and each 

preceding waypoint labeled B, C, D, we drew vectors BA, CA, DA then averaged 

the three vectors. This method estimated the orangutan’s “average” travel 
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direction leading up to the final point; note that it could not detect last-minute 

changes in direction. 

Analyses 

GPS Error Estimation 

We calculated GPS error to account for inaccuracies during analyses. 

Using the methodology from Bebko (2017), we calculated the estimated 95% 

error circles for all GPS error data collection sessions and determined the mean 

radius of such circles. (Department of Natural Resources WA., 2004). This 

represented a 95% confidence limit on the distance a recorded GPS point may 

have deviated from its true location. 

Changes in behavior before an escape 

To examine behavioral changes prior to escape, we compared each 

orangutan’s behavior in the hours leading up to an escape with their behavior 

during the same time period on a normal day. For all escape days, we calculated 

the orangutan’s hourly activity budget in the four hours leading up to their escape 

(henceforth, the “pre-escape interval”). To assess other behaviors possibly 

related to escaping, we also counted the hourly frequency of defecations and 

kiss-squeaks over the same 4-hour time interval. In cases where there was 

insufficient pre-escape observation time for a complete pre-escape interval, or 

where the 4-hour interval extended into the orangutan’s overnight sleep period, 

we used as much time as possible without including any sleeping. For a matched 

comparison to these 4-hour pre-escape intervals, we randomly selected normal 

days from the same orangutan. To control for time of day, we selected the same 



 
 

64 

time interval at the same time of day as the pre-escape interval from the selected 

normal day. We omitted from analyses all individuals with too few observation 

days to yield a matched interval. 

Since there were many observations from each orangutan, and since 

many observations were recorded on the same observation day, our data violate 

the assumption of independence required for many statistical tests. Therefore, to 

account for this nesting of data into days of observation and individuals, we used 

multilevel regression models. We created separate models for each activity 

(feed, rest, etc.) to examine whether being an escape day and/or the number of 

hours before an escape predicted the hourly time spent for each activity (Model 

2a - Model 2e). Since we predicted hourly behavioral changes on escape days 

but not on normal days, we included an interaction term in each model between 

hour and escape day. We allowed random intercepts in the model, but the 

models assume the same relationship between variables based on orangutan 

and observation day (non-random slopes). In other words, for the example of 

feeding time, we allowed the model to account for the fact that some orangutans 

might spend more time feeding than others, and that orangutans feed more on 

some days than on others, but the model “averaged” any observed changes in 

behavior across individuals and days. 
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Model 2 (a-e) 
R-Statistics code for the multilevel regression models of orangutan activities 
predicted by time before escape or comparison time and escape day (random 
intercepts only). 

 
Where Activity was one of the orangutan activities (1a: Travel, 1b: Feed, 1c: Rest, 1d: Defecation 
freq., 1e: Kiss squeak frequency), Hour was the time in hours before the escape or comparison 
point, Escape Day was a dummy coded variable contrasting escape days vs. normal days, and 
Hours * Escape Day was the interaction term. Orangutan was the identity of the orangutan, and 
Date was the date of observation. 

Changes in orangutan travel speed leading up to an escape. 

To examine whether orangutans changed their travel speed on escape 

days vs. normal days, we calculated orangutan travel speed for all travel 

segments from escape day and normal day travel routes. To compare escape 

days and normal days, and to examine whether speed changed over the course 

of a day, we then created a random slopes multilevel model (accounting for 

nesting within an individual orangutan and day of observation as above) of travel 

speed predicted by the time of day and whether it was an escape day (Model 3). 

Model 3 
R-Statistics code for the multilevel regression model of orangutan travel speed 
predicted by time of day and escape day (random intercepts and slopes). 

 
Where Travel Speed was orangutan travel speed for one travel segment, Time was the time of 
day, Escape Day was a dummy coded variable contrasting escape days vs. normal days, and 
Time * Escape Day was the interaction term. Orangutan was the identity of the orangutan, and 
Date was the date of observation. 

Activity ~ Hour + Escape Day + (Hour * Escape Day)  

+ (1 | Orangutan) + (1 | Date) 

 

Travel Speed ~ Time + Escape Day + (Time * Escape Day)  

+ (1 | Orangutan) + (1 | Date) 
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Spatial distribution and direction of orangutan escapes 

To examine the spatial distribution of orangutan escapes we mapped all 

escape points along with the final points of the matched time period on normal 

days using ESRI ArcGIS 10. To examine if orangutans were altering their travel 

routes during escapes compared to their typical travel routes, we mapped the 

locations of escape with respect to the orangutans’ habitual route network 

previously identified in orangutans ranging in the central part of our study area 

(Bebko, 2012, 2017). The habitual route network represents travel routes that 

were frequently reused, shared by multiple individuals. Using a multilevel 

regression model with random intercepts (Model 4), we compared closest 

distance to the habitual route network between escape locations and normal day 

“control” locations. 

Model 4 
R-Statistics code for the multilevel regression model of closest distance to 
habitual route network predicted by escape location vs. “control” location 
(random intercepts only). 

 
Where Distance was the distance in meters from nearest habitual route, and Escape Location 
was a dummy coded variable contrasting escape location vs. “control” location. Orangutan was 
the identity of the orangutan, and Date was the date of observation. 

We also mapped the direction of travel at the end of the travel routes for 

all escape days and matched normal days relative to the habitual route network. 

To calculate direction of travel, we averaged the direction vector from the final 3 

waypoints to the final waypoint. We then projected this direction vector forward 

by 50 m to examine whether the travel direction was related to the habitual route 

Distance ~ Escape Location  

+ (1 | Orangutan) + (1 | Date) 
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network. We classified these travel directions according to the criteria described 

in Table 3.1, then assessed whether travel direction changed on escape days vs. 

normal days with a chi-squared test for independence. 

Table 3.1 
Coding system for travel direction relative to habitual route network. 

Category Criteria 

Moving along network Both location and end of the direction vector 
within habitual route network. 

Moving towards network Location outside network and end of direction 
vector within network. 

Moving away from 
network 

Location within network, end of direction vector 
outside network. 

Far from network Both location and end of direction vector outside 
network. 

 

 

Results 

We used a total of 85 observation days from 12 orangutans for the 

analysis of behavioral changes before an escape on 42 escape days, and 45 

normal days. Note: These numbers are not equal since some days had 

observations from multiple orangutans and some days had multiple escapes. 

GPS error estimation 

The average radius of 95% GPS error circles calculated from stationary 

locations was 20.34 m (sd = 9.97, range = 6.37 - 45.20), therefore we estimated 

the GPS error to be 20 m, instead of the error estimate reported by the devices 

themselves, which usually ranged between 5-14 m (pers. obs.). 
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Changes in Orangutan Activity before escape 

Regression analysis for changes in orangutan activity on escape vs. non-

escape days are summarized in Table 2.  

Table 3.2 
Regression coefficients for orangutan activities 

Random Effects Fixed Effects 

 S. D. Predictor Est. S. E. t p 

Model 1a: Travel 

Date 5.75 (Intercept) 8.40 2.34 3.59 0.0003*** 

Orangutan 4.40 Hour 0.48 0.65 0.73 0.4653 

Residual 8.89 Escape Day 14.26 2.73 5.23 < 0.0001*** 

   Hour*Escape Day 3.89 0.94 4.15 < 0.0001*** 

Model 1b: Feed 

Date 13.12 (Intercept) 27.05 4.32 6.26 < 0.0001*** 

Orangutan 8.33 Hour -0.10 1.09 -0.09 0.9278 

Residual 14.83 Escape Day -12.88 4.95 -2.60 0.0093** 

   Hour*Escape Day -4.10 1.58 -2.60 0.0094** 

Model 1c: Rest 

Date 15.20 (Intercept) 22.69 4.56 4.98 < 0.0001*** 

Orangutan 8.55 Hour -0.65 1.11 -0.58 0.5625 

Residual 15.06 Escape Day -3.39 5.28 -0.64 0.5206 

   Hour*Escape Day 0.37 1.61 0.23 0.8163 

Model 1d: Defecation 

Date 0.20 (Intercept) 0.10 0.08 1.30 0.1948 

Orangutan 0.00 Hour -0.02 0.03 -0.68 0.4956 

Residual 0.38 Escape Day 0.07 0.11 0.61 0.5415 

   Hour*Escape Day 0.03 0.04 0.74 0.4569 

Model 1e: Kiss Squeak 

Date 6.13 (Intercept) 0.72 1.71 0.42 0.6740 

Orangutan 3.82 Hour -0.18 0.32 -0.56 0.5728 

Residual 4.28 Escape Day 2.46 1.77 1.39 0.1652 

   Hour*Escape Day -0.16 0.46 -0.34 0.7321 

Note: *** Significant at p < 0.001, ** Significant at p < 0.01, S.D.: Standard deviation, S. E.: 
Standard error of the mean 
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Changes in travel 

Consistent with predictions, we found significant results from the 

regression model for travel (Table 3.2). The hour term was not statistically 

significant. Probing the model for normal days indicated that on normal days, 

orangutans’ time spent on travel did not change during the 4-hour pre-escape 

periods. The escape day term and hour*escape day interaction terms were 

statistically significant and positive. Probing the model for escape days indicated 

that on escape days, the total average time of travel was higher than on normal 

days and travel time increased during the 4-hour pre-escape period. 

 

Changes in feeding 

Consistent with predictions, we found significant results from the 

regression model for feeding (Table 3.2). After probing the model, the 

interpretation of the results was similar to travel although feeding decreased 

rather than increased on escape days. On normal days, orangutans’ time spent 

on feeding did not change over the 4-hour pre-escape period (hour term not 

statistically significant). On escape days, the total average time spent of feeding 

was lower than on normal days (escape day term statistically significant and 

negative), and feeding time decreased through the 4-hour pre-escape period 

(hour*escape day interaction term statistically significant and negative). 

Changes in rest, defecation, and kiss squeak 

Contrary to predictions, regression models for changes in rest, defecation, 

and kiss squeaks were not statistically significant (Table 3.2), indicating that rates 
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of these activities did not differ reliably between escape and normal days, and 

that there were no detectable changes in these activities over the 4-hour time 

period between escape and normal days.  

Summary of changes in orangutan activity 

Together, the results of the models on orangutan activity show that on 

normal (non-escape) days, all the activities measured remained consistent over 

the 4-hour pre-escape period. However, in the four hours culminating in an 

escape, orangutans spent increasingly more time travelling and less time feeding 

than they did on normal days (Figure 3.1). Resting, kiss squeaks, and defecation 

did not differ significantly on escape days vs. normal days and did not change 

over the 4-hour interval. Orangutans also travelled terrestrially during the four-

hour pre-escape interval (73%) more often than on normal days (11%) (t (298) = 

11.82, p < 0.0001). 
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Figure 3.1: Changes in hourly orangutan activity budget over 4 hours either 
before an escape or on a normal day in Kutai National Park, Indonesia. Thick 

lines show the regression line for time spent on each activity during each hour, 
and small dots show the individual data points. Shaded grey areas represent 
95% confidence intervals on the regression lines. Frequency of defecation not 

included on graph. 

Changes in orangutan travel speed 

Consistent with predictions, the regression model for orangutan travel 

speed was significant (Table 3.3). There was no average change in travel speed 

over the course of a normal day (time term not significant). Similarly, there was 

no average difference in travel speed between escape days and normal days 
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(escape day term not significant). However, on escape days, the average travel 

speed increased over the course of the day, whereas on normal days, travel 

speed did not increase (interaction term significant and positive) (Figure 3.2).  

Table 3.3 
Regression coefficients for orangutan travel speed. 

Model 2: Orangutan Travel Speed 

Random Effects Fixed Effects 
  S. D. Predictor Est. S. E. t p 

Obs. day (Intercept) 2.19 (Intercept) 3.32 0.65 5.10 < 0.0001*** 

 (Slope) 0.15 Time -0.02 0.05 -0.48 0.6411 

Orangutan (Intercept) 0.33 Escape Day -1.50 0.89 -1.69 0.0915 
 (Slope) 0.04 Time*Escape Day 0.18 0.07 2.55 0.0109* 

Note: *** Significant at p < 0.001, * Significant at p < 0.05. 
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Figure 3.2: Changes in travel speed on escape days vs. normal days. Thin lines 
represent individual observation days, large thick line represents regression line 

for estimated speed over the course of a day. Shaded grey area is the 95% 
confidence limit for this regression line. 

Changes in habitat use 

Escape locations were significantly farther from the orangutans’ habitual 

route network compared to the last location from selected normal days (Table 

3.4). The model indicated that escape locations were 62.06 m farther from the 

habitual route network than normal day “control” locations (Figure 3.3). 



 
 

74 

Table 3.4 
Regression coefficients distance to habitual route network of escape locations. 

Model 3: Orangutan Travel Speed 

Random Effects Fixed Effects 

  S. D. Predictor Est. S. E. t p 

Orangutan (Intercept) 582.4 (Intercept) 453.80 136.99 3.31 0.0009*** 

Date (Intercept) 0.0 Escape Location 62.06 29.46 2.11 0.0352* 

Note: *** Significant at p < 0.001, * Significant at p < 0.05. 
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Figure 3.3: Location and travel direction where orangutans escaped our 
observation team (red) mapped with respect to the final locations of matched 

“normal” day control locations (blue) in Kutai National Park, Indonesia. Data are 
overlaid on the orangutans’ habitual route network (orange). 

Orangutans’ travel direction leading up to their escape was more likely to 

be far from the habitual network, whereas the travel direction at the same time of 

day on randomly selected normal days was more likely to be along the routes in 

the habitual network, but escape days and normal days did not differ in the 
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proportion of routes travelling away from or towards the network (χ2 (3) = 8.37, p 

= 0.039) (Figure 3.3-4). Field observers reported that orangutans typically 

travelled towards clearings and areas with little canopy cover during escapes, but 

we were unable to test this statistically. 

 

Figure 3.4: Mosaic plot of the orangutans’ travel direction at normal day “control” 
locations vs. escape locations. Mosaic plots show contingency tables with the 
heights of the boxes matching between columns if data matches the expected 
cell counts. The area of each cell represents its frequency. Data collected in 

Kutai National Park, Indonesia. 

Discussion 

Similar to previous reports on orangutans (Mackinnon, 1974), this study 

found orangutans to be adept at escaping human observers and did so 

frequently. Consistent with predictions, these orangutans significantly altered 

their behavior leading up to escapes. Their activity budget changed at least four 

hours before an escape compared to that of a normal day. In particular, they 
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spent more time traveling and less time feeding on escape days compared to 

normal days. This is consistent with findings from many other animals that 

prioritize threat avoidance over foraging success and travel longer distances 

when threatened (Ciuti et al., 2012; Constantine et al., 2004; Cristescu et al., 

2013; Duchesne et al., 2000; Henry & Hammill., 2001; Kerbiriou et al., 2009; 

Lemon et al., 2006; Z. Li et al., 2013; Naylor et al., 2009; Neumann et al., 2010; 

Rumble et al., 2005; Steckenreuter et al., 2012; Vermeulen et al., 2012). 

Travelling increased and feeding decreased every hour leading up to an escape, 

whereas activity budgets remained stable over the same time period on normal 

days. On escape but not normal days, orangutans also increased travel speed 

over the course of the day; on escape days, they were also more likely to travel 

terrestrially. Together, these results suggest that leading up to an escape, 

orangutans were using time that they normally spent on feeding to travel farther. 

Increased terrestrial travel during escapes may suggest that the 

observation team had more difficulty following terrestrial orangutans. However, 

there were at least two re-used terrestrial routes reported by field staff, one of 

which was classified as a habitual route. Such routes were reported to be 

relatively free of dense ground vegetation and were not difficult for the 

observation team to follow the orangutans. This suggests that at least some 

terrestrial routes may be habitual, however, more data is required to assess this 

in our population. It follows that a portion of the escape routes could represent 

as-yet-undetected habitual routes (although see below for a counter-argument). 
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 Previous studies have established that during habituation, primates tend 

to travel longer distances than when they become habituated. Our results 

suggest that escape days may contribute substantially to this change, This is 

consistent with Cipolletta (2003) and Doran-Sheehy et al. (2007), who suggested 

that gorillas’ longer daily travel distance in the early stages of habituation was 

due to groups actively fleeing human observers. Several of the orangutans we 

studied were not well habituated during the time these data were collected, and 

we lacked remote tracking technology, so we could not assess such changes in 

travel distance directly. 

Contrary to predictions, there were no statistically detectable differences 

between escape days and normal days in resting, kiss-squeaking, or defecating. 

Although orangutans likely felt threatened on escape days, they may have 

inhibited kiss-squeaking to increase stealth. The lack of increased defecation 

could owe to the reduced amount of time spent feeding on escape days. 

Although our results are consistent with orangutans deliberately changing 

their behavior in advance of an escape from human observers, results could also 

be explained if orangutans were simply switching to an established alternative 

daily routine that we rarely observed. For example, during times of resource 

scarcity, orangutans may be less tolerant of observation. Our observation team 

may have been more likely to lose orangutans due to their changed routine - 

rather than because orangutans deliberately attempted to evade them. However, 

several of our results make this alternative unlikely. Prior to escapes, we found 

that orangutans targeted locations in areas where they do not typically travel, far 
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from their habitual route network. If such escapes were an alternative routine, we 

would expect that in some instances the observation team would not lose them 

and observe them using this rarely visited habitat for other reasons (e.g. for 

rarely accessed but important resources). However, this had not yet been 

observed in our study area, and in the instances where the orangutans were 

relocated after escaping, they were typically back along their network. 

Additionally, although not tested statistically, field staff reported that orangutans 

often escaped at locations where there was little forest canopy cover and dense 

ground vegetation, making human travel difficult. We suggest that rather than 

orangutans adopting alternative routines on escape days, our results are more 

consistent with orangutans deliberately leaving their habitual route network and 

targeting such areas to evade humans.  

Anticipatory behavior, increasing speed when nearing goals, and targeted 

movement towards specific locations have often been used as indicators of goal-

directed travel and planning in other primate studies, and our results are 

consistent with this interpretation (Janson & Byrne, 2007; Noser & Byrne, 2007b; 

van Schaik et al., 2013). Based on the fact that orangutans alter their behavior 

and space use hours before escaping, we suggest that orangutans may encode 

spatial knowledge about the locations of forest clearings and use this information 

to escape unwelcome visitors, including human observers. In this study, due to 

limited manpower (and the orangutans’ skill in escaping), we were usually unable 

to relocate the orangutans once they escaped and so could not assess their 

behavior afterwards. Future studies with more manpower and methods designed 
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to better relocate orangutans after escaping might be able to examine whether 

orangutans target these forest clearings for other reasons than escape by 

examining their behavior after escapes. If orangutans return to normal activities 

after an escape, it would suggest they use clearings as part of an alternative 

daily routine. If, on the other hand, they remain irritated at the presence of 

humans, and attempt re-escape, it would provide support for deliberate escapes 

using spatial memory and planning. Longer-term observation of this orangutan 

population will also yield more information about whether the observed travel 

away from the habitual route network is a rare but normal occurrence, or only 

occurs during escape events. 

This study was successful in showing how a situation that many 

researchers treat as an annoyance can be used to learn more about the 

organization and flexibility of orangutan behavior. Previous studies have typically 

focused on comparing primate behavior before and after habituation, 

demonstrating that individuals gradually shift from human-altered behavior to 

their more normal behavior (Cipolletta, 2003; Doran-Sheehy et al., 2007; Jack et 

al., 2008). Typically, such researchers treat data collected during habituation as 

less useful. In this study, we demonstrate that semi-habituated primates provide 

unique situations in which to examine their behavior and its determinants.  

Overall, our results suggest that wild unhabituated orangutans alter their 

behavior several hours in advance of successfully escaping human observers. 

Although preliminary, our results are consistent with orangutans deliberately 

attempting escapes by prioritizing traveling over feeding, and by targeting travel 
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away from their normal travel routes towards areas where humans are less able 

to follow them. 
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Chapter 4: Research Paper 3: Deep neural networks can model wild 

orangutan space use from satellite imagery at resolutions approaching ten 

meters 

Adam O. Bebko 
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Abstract 

Animals do not use their home ranges uniformly, visiting certain areas frequently 

while avoiding other areas entirely. Previous studies have typically examined 

animal space use on spatial scales that affect entire populations. Modelling 

animal space use on a more local scale would allow examining the areas and the 

proportion of a given habitat that animals actually use regularly as well as areas 

they tend to avoid. In this study, I applied deep machine learning to model space 

use in a population of wild orangutans (Pongo pygmaeus morio) in Kutai National 

Park, East Kalimantan, Indonesia. I predicted that neural networks would be able 

to learn patterns in satellite images to successfully model orangutan space use in 

our study area. I compared several architectures of deep convolutional neural 

networks and trained them using behavioral and ranging data paired with raw 

visual-wavelength satellite imagery of the area. I evaluated the effectiveness of 

the neural network by validating the model using a variety of machine learning 

diagnostics. The final model accurately predicted orangutan space use in our 

study area with resolutions approaching 10 m. The model used visible-

wavelength satellite images alone, indicating orangutan space use must be 

related to local visual characteristics of their habitat. Possible factors may include 

different colors/brightness of local vegetation and ecological features. This study 

demonstrated the potential of using machine learning technology for applications 

in animal behavior and ecology. 

Keywords: Orangutan, Habitat, Deep Neural Networks, Modelling, Ecology 
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Deep neural networks can model wild orangutan space use from satellite 

imagery at resolutions approaching ten meters 

Animals do not use their home ranges evenly. Even within regions of 

similar habitat (e.g., rainforest), animals can visit certain areas frequently, while 

avoiding other areas entirely (Di Fiore & Suarez, 2007; Hopkins, 2010; Lührs et 

al., 2009; Noser & Byrne, 2010; Porter & Garber, 2012). Understanding and 

predicting areas of habitat that animals prefer has important applications for 

conservation and management. The ability to identify and model preferred areas 

of habitat would be beneficial for assessing a habitat’s population carrying 

capacity, detecting areas of degraded habitat, and/or flagging areas important for 

conservation. 

Previous studies that model animal space use have typically examined 

spatial scales that affect entire populations (i.e. 10 – 1000 km) (Hickey et al., 

2013; Laundré, Hernández, & Altendorf, 2001; Palminteri et al., 2012; Squires et 

al., 2013). Although important, such modelling does not provide a description of 

local conditions at spatial scales pertaining to individual animals or small groups. 

Modelling animals’ space use on a more local scale would allow examining the 

areas and the proportion of a given habitat that animals actually use regularly as 

well as areas they tend to avoid. This would allow for more detailed assessment 

of usable habitat size and quality. However, collecting the data required for such 

models at resolutions pertaining to individuals can be very expensive and time 

consuming. In-situ surveys often involve large, highly trained teams working for 

time spans of several months, and satellite-derived data are often low in 
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resolution (especially in developing countries) so typically they can only be 

applied to larger-scale population-level applications. In the few studies that have 

examined more local scale data, researchers have typically focused on the 

animals’ preferences for broad habitat types, regional topology, and/or 

anthropogenic disturbance, rather than the characteristics of localized habitats 

within their study areas (i.e Howard et al. 2015). 

Freely available data from scientific satellites are improving in resolution 

but lag considerably behind the resolution of commercial mapping and navigation 

satellites. Mapping applications such as Google Earth now provide global maps 

at resolutions of less than one meter (in some areas resolution approaches 10 

cm). However, these commercial satellites are typically based on visible 

wavelengths which, compared to multi-band scientific satellites (i.e. LANDSAT), 

are less useful for classifying vegetation and other habitat characteristics 

important to animals (Xie, Sha, & Yu, 2008). Nevertheless, the field of deep 

machine learning has recently made great advances in computer image 

recognition and analysis (F. F. Li, Johnson, & Yeung, 2018; Zeiler & Fergus, 

2014). Using machine learning, computers are now able to learn complex non-

linear patterns within large image datasets that may be unrecognizable to 

humans (Ng, 2018). Despite these great advances in machine learning 

technology, animal researchers have been slow to adopt it in their research 

(Phillips, Anderson, & Schapire, 2006). The recent availability of free high-

resolution satellite imagery combined with state-of-the-art free machine learning 
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packages opens up new avenues for analysis of animal space use at smaller 

spatial scales. 

Some researchers, especially in the field of ecology, have begun applying 

machine learning algorithms to habitat modelling using Maximum Entropy 

(MaxEnt) models (Hickey et al., 2013; Howard et al., 2015; Phillips et al., 2006). 

MaxEnt models outperform generalized linear models and generalized additive 

models in modelling animal distributions (Phillips et al., 2006). However, MaxEnt 

requires a suite of ecological predictor variables to input into the model and can 

only detect exponential relationships and interactions between predictors.  

A more modern group of machine learning algorithms, called deep neural 

networks, could provide an alternative to MaxEnt models. Deep neural networks 

consist of a network of many artificial “neurons” that are linked mathematically in 

processing layers. No assumptions are made about the structure or relationships 

within the data, so the network can learn extremely complicated patterns in the 

data that other models, including MaxEnt, would not be able to detect. Deep 

neural networks can be specialized for processing image-related data (F. F. Li et 

al., 2018; Ng, 2018; Zeiler & Fergus, 2014) and could yield improved results with 

satellite imagery compared to other models. To date, very few studies have used 

deep neural networks in animal research (i.e. Browning et al., 2018) and I found 

none relating to modelling space use. However, ecologists examining continent 

or country-scale habitat classification have been using deep neural networks for 

at least a decade, albeit rarely (Xie et al., 2008). 
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Orangutans provide an excellent candidate species for the application of 

machine learning in modelling space use. Orangutans are now critically 

endangered, with wild populations declining rapidly throughout their range due to 

extensive habitat loss (IUCN, 2018). Orangutans inhabit tropical rainforest on the 

islands of Borneo and Sumatra and are now predominantly found in protected 

areas and small forest fragments disconnected from larger populations (Husson 

et al., 2009; Utami-Atmoko et al., 2017). Modelling orangutan habitat preferences 

could have important applications for managing this remaining habitat and 

highlighting areas important for orangutan conservation. Such modelling could 

also contribute to designing reforestation efforts and the creation of habitat 

corridors to reconnect separated populations.  

Orangutan behaviors, especially travel decisions, are likely based in part 

on local ecological factors, similar to other arboreal primates (Di Fiore & Suarez, 

2007; Hopkins, 2010; Lührs et al., 2009; Noser & Byrne, 2010; Porter & Garber, 

2012). Some such ecological factors, especially the distribution of tree species 

that orangutans use for resources, could be among the visual characteristics 

detectable from satellite imagery. For example, visible-spectrum satellite images 

may show particular patterns of colors and shadows for trees of certain species, 

or particular colors for areas devoid of trees including dirt and grass. If such 

visual characteristics are consistently present in areas orangutans visit often and 

absent in areas they avoid, deep machine learning algorithms should be able to 

learn and correctly identify these associations after extensive training with pre-

coded data. 
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In this study, I apply deep machine learning to model orangutan space use 

in a population of wild orangutans (Pongo pygmaeus morio) in Kutai National 

Park, East Kalimantan, Indonesia. Rough surveys have estimated the park’s 

orangutan population at around 1700 individuals  (Utami-Atmoko et al., 2017) 

with some 2000 more living outside the park boundaries per the most recent 

estimate (Meijaard et al., 2010). However, the extent of intact orangutan habitat 

within the park’s boundaries is unknown, and parts of the park experience severe 

human damage and encroachment. The recently established Bendili orangutan 

study area is located along the park’s northern border between areas facing 

major human encroachment, and areas relatively free of human presence. For 

this reason, it is a key location to assess habitat quality and orangutan space use 

to highlight areas important for orangutan conservation and areas where habitat 

may be degraded. 

Using orangutan ranging data collected in the Bendili study area, I trained 

a deep neural network by combining behavioral and ranging data with raw 

satellite imagery of the area. I predicted that the neural network would be able to 

successfully learn patterns from the satellite images to model orangutan space 

use. I evaluated the effectiveness of the neural network by validating the model 

using a variety of machine learning diagnostics. 

Method 

Setting 

Project facilities were in Kutai National Park, East Kalimantan, Indonesia 

ca. 1 km downriver of Mentoko, the orangutan study area used by Rodman, 



 
 

89 

Leighton, Mitani, Campbell, and Suzuki from 1970 through the mid 1980s. The 

Bendili study spanned 4-5 km2 along ~8 km of the south bank of the Sangatta 

River, accessed by a 200 m grid transect system covering approximately half the 

area plus several old local trails (Figure 4.1); orangutans had been studied there 

since the study area was established in January 2010. The forest had evidence 

of small-scale illegal logging and hunting in the recent past (pers. Obs.). Habitat 

in the study area was highly disturbed by Borneo-wide forest fires in 1982/83 and 

again in 1997/98 that heavily damaged the forests in the majority of Kutai N.P. 

(Setiawan et al., 2009), although some small patches of primary forest remained. 

Burned forest in the study area had been regenerating naturally, and the area 

consisted of a mix of primary and secondary lowland riverine and hill dipterocarp 

forest at the time of this study (Russon et al., 2015). The original rainforest in this 

area was a mixture of riparian and upland mixed dipterocarp forest (Leighton, 

1993). 
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Figure 4.1: Map of Bendili study area inset on map of Kutai National Park, East 
Kalimantan, Indonesia. 

Data Collection 

Data on local orangutan habitat use used in this analysis spanned January 

2010 to December 2012. We observed wild orangutans (Pongo pygmaeus morio) 

by searching the study area on foot. Once found, we recorded the orangutan’s 

behavior during full-day focal individual follows using a continuous event 
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sampling procedure. We attempted to follow orangutans continuously to a 

maximum of 10 days to limit stress. In addition to behavioral data, we collected 

orangutan travel data by creating GPS waypoints every 15 minutes as close as 

possible to the trunk of the tree that the orangutan occupied using Garmin 60cs 

and 60csx handheld units. To estimate GPS error, we collected waypoints from 

stationary locations over 3 months using the method described in Bebko (2012). 

During this study period, we observed more than 30 orangutans, of which 18 

were observed repeatedly, identified, and named.  

Measures 

Travel routes 

Orangutan travel routes were estimated by connecting the sequence of 

GPS waypoints marking the focal orangutan’s locations over the course of a day. 

Full day travel routes were routes spanning an orangutan’s entire active period. 

For GPS data, small travel segments are indistinguishable from GPS error 

(Mason & Knight, 2001). Therefore, to calculate orangutan travel speed we first 

noise-cleaned all orangutan travel routes. Noise-cleaning involved collapsing 

consecutive GPS points falling within the estimated error of the GPS device into 

their centroid (Bebko, 2012). Since we could not measure smaller movements 

than the GPS error, orangutans were considered stationary at such centroids. 

GPS Error Estimation 

We calculated GPS error to account for inaccuracies during analyses. 

Using the methodology from Bebko (2017 [in press]), we calculated the 

estimated 95% error circles for all GPS error data collection sessions and 
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determined the mean radius of such circles (Department of Natural Resources 

WA., 2004). This represented a 95% confidence limit on the distance a recorded 

GPS point may have deviated from its true location. 

Orangutan space use 

I created a procedure for categorizing the study area into locations that 

orangutans revisited, did not use, or used infrequently. To determine revisited 

areas, I mapped all travel routes recorded during the 2010-12 study period then 

used an algorithm programmed in Python for ESRI ArcGIS 10 to detect 

overlapping travel routes while accounting for the error in GPS devices (Bebko, 

2012, 2017). The result of this algorithm produces a map showing the number of 

times orangutans revisited locations in the study area (Figure 4.2).  
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Figure 4.2: Map of number of revisits to locations in the study area. Overlapping 
travel routes were calculated accounting for GPS error. 

To allow for analysis of these locations, I converted this map into raster 

data with each pixel representing a 10x10 m cell. Each cell’s value was the 

number of times an orangutan was observed to have visited that cell (Figure 4.3). 

This raster data set included many areas in our study area where our team rarely 

searched for orangutans, and we likely targeted our searching to areas where we 

previously found orangutans rather than areas where we hadn’t previously found 

orangutans. To control for this probable under-sampling of some areas, I used 

the raster “buffer” function, to discard all empty cells that were farther than 4 cells 
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away from a visited cell. This means that raster cells coded with zero visits were 

excluded if they were far (> 40 m) from any orangutan data we collected. This 

process ensured that regions in the study area that the observation team did not 

visit were excluded from analysis. 

 

Figure 4.3: Raster image showing number of visits per cell, excluding empty cells 
distant from an observed orangutan travel route. 

Revisited locations 

To differentiate repeatedly visited areas, which are likely preferred areas 

for orangutan travel, from areas with zero or few visits, I binned all values in the 
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above raster into two categories “revisited” and “less visited”. Although by 

definition revisited refers to two or more visits, to be conservative, and to 

represent areas that were revisited frequently, I defined revisited areas as cells 

with three or more visits, and not revisited areas as cells with two or fewer visits. 

This had the added benefit of excluding locations where only travel routes The 

resulting binned raster image represents orangutan space use in our study area 

as areas that were revisited/ not revisited.  

Local Habitat 

I created a high-resolution color image spanning the entire study area by 

collecting the highest possible resolution Google Earth Pro images (Images © 

2018 DigitalGlobe and Google Earth) from all areas of our study area, then 

joining them together in ESRI ArcGIS to create one large GeoTIFF image of the 

study area (Figure 4.4).  Each pixel of the resulting image represents an area of 

1.40x1.41 m.  
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Figure 4.4: Satellite image of study area derived from a mosaic of high-resolution 
Google Earth Pro images (Images © 2018 DigitalGlobe and Google Earth). 

To represent local habitat at each location, I created a 50x50 m moving 

window centered on each cell of the rasterized space use image created above. 

For each cell, I clipped the large Google Earth image using the moving window, 

resulting in a color image of the habitat around the cell. This 36x36 pixel image 

contains 3 data points for each pixel representing the red, green, and blue color 

bands. 
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Analysis 

Deep Neural Network 

Neural network models are similar to Generalized Linear Models (GLMs). 

Like GLMs, neural networks use many data examples to create a mathematical 

model that predicts a dependent variable from a set of predictors while 

minimizing prediction error. However, unlike GLMs, neural networks can quickly 

predict very complex non-linear relationships from extremely large data sets.  

Neural networks use different language to describe concepts familiar to 

users of GLMs (Ng, 2018). Data “examples” consist of a “label” (y) and a set of 

“features” (x). The features and their associated labels are similar theoretically to 

the predictors and the dependent variable (respectively) in standard GLM 

regression. Neural networks are created naïve in the sense that they are 

initialized with no information from the dataset. To learn patterns in the data to 

arrive at their predictions, the network is “trained” by feeding examples into the 

network. The network uses the examples’ features (x) to calculate predictions (𝑦̂), 

which are then compared to the examples’ actual labels (y). The network “learns” 

by adjusting its internal structure to reduce the error between predictions and 

labels.  

The internal structure of neural networks consists of “neurons” which are 

units that take several inputs, that are weighted and summed using functions 

(typically sigmoid or ReLu functions) that produce binary output (on or off). These 

neurons are stacked in layers. Each layer in the network can learn progressively 

complex patterns in the data. Data enter each layer successively up to the final 
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layer which represents the network’s predictions. As more data are fed into the 

network, the network reduces error between predictions and labels by minimizing 

a function representing total error of all examples fed into the network. Rather 

than minimizing such error using least squares or other standard regression 

functions, neural networks use a custom function called a cost function. The 

appropriate cost function depends on the type of data being used, the importance 

of computational speed, amount of training data available, and the specifics of 

each use-case. Minimizing the cost function adjusts the connections between 

neurons in the network to reduce the network’s prediction error. 

During training, the cost function is minimized using a process called 

gradient descent. Although it is possible to feed all data examples into a neural 

network at once, this is extremely demanding computationally, so researchers 

typically use a process called mini-batch stochastic gradient descent (SGD) 

(Bottou, 1998). Mini-batch SGD involves creating small batches of examples by 

randomly selecting subsamples (with replacement) from the data set and feeding 

them into the network; this ensures gradient descent is only performed on a very 

small number of examples at a time, greatly speeding computation time. This 

process balances computation time with predictive power and is currently the 

standard technique used in academic and industrial applications (Bottou, 1998; 

Google inc., 2018). This process is typically repeated thousands of times during 

training.  

The performance of the model’s predictions can be evaluated during 

training by periodically calculating the accuracy of the model’s predictions. The 
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most useful measure of accuracy is training accuracy, which refers to the 

percentage of examples that were correctly predicted (Ng, 2018). As the model is 

exposed to more batches during training, its accuracy typically improves and 

then stabilizes asymptotically at a maximum value. This maximum value is the 

model’s final training accuracy. Graphing this stabilization process (accuracy 

over time) is called a learning curve (Ng, 2018). Learning curves are typically 

very noisy, so the graphs are typically smoothed to clarify overall trends. 

Examining learning curves allows for assessing and comparing the performance 

of different neural network models.  

Since neural networks are trained from examples taken from one dataset, 

they eventually learn to predict this training data to a very high accuracy. 

Therefore, it is also important to assess performance of the network on data it 

has never seen. To accomplish this goal, a percentage of the total data set is set 

aside for validation of the model separate from the examples used for training. 

This validation dataset is never used to train the network, rather it is used to 

assess how the network performs on new data. Typically up to 30% of the total 

data is reserved for validation purposes (Ng, 2018). The percentage of correct 

predictions on the validation dataset is called the model’s validation accuracy. 

Validation accuracy learning curves are typically tracked alongside training 

accuracy to compare the performance of different models on new data. 

Data preparation for neural network training 

I created one example from each cell in the raster image. For each 

example, its features were the RGB pixel values of the local habitat image 
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(described above), and its label was whether the cell was revisited or not 

revisited. This process resulted in 24184 total examples. To validate the model’s 

performance, I reserved 20% of the data (4836 randomly selected examples) for 

validation and therefore used 19348 training examples. 

Neural Network Architecture 

To create the neural network I used Google TensorFlow, a freely available 

state-of-the-art package for neural network applications in the python 

programming language. For this study, I used a convolutional neural network, 

currently the best method to analyze image data (F. F. Li et al., 2018; Zeiler & 

Fergus, 2014).  

The first layers in the neural network were convolutional layers. 

Convolutional layers use filters to allow the network to learn patterns relating to 

subsections of images, combined with a pooling layer to ready the data for the 

next layers (F. F. Li et al., 2018). The first convolutional layer had 64 such filters, 

and each subsequent convolutional layer doubled the number of filters to allow 

the network to learn increasingly complex patterns on smaller portions of the 

images. I determined the number of convolutional layers to use by training 

separate networks using three or four convolutional layers then comparing the 

two results (Figure 4.5). Comparing these model architectures demonstrated 

better performance with four layers, so I used four layers in the final model.  
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Figure 4.5: Comparison of smoothed learning curves of the most successful 
models on training accuracy (A) and validation accuracy (B), using three (grey) 
vs. four (orange) convolutional layers. Higher values are more accurate (perfect 

accuracy is 1.0). The network with four layers (orange, top curve) yielded the 
best performance. The noisier curves displayed in faded colors display the 

models’ unsmoothed learning curves. 

After the convolutional layers, data were then fed into a layer to flatten the 

results from the final convolutional layer back into one dimension. This flattening 

layer was followed by a dense layer. Dense layers, in contrast to convolutional 

layers consist of basic neurons with no filters or pooling applied. This dense layer 

finally fed into a logits layer. This logits layer stored the predicted probability of 

each example being labelled revisited or not revisited. These probabilities 

represent the model’s confidence its predictions are accurate. 

I calculated the model’s cost function using TensorFlow’s softmax cross 

entropy function on the logits layer of the network. The softmax cross entropy 
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function is a logistic function that classifies the probabilities from the logits layer 

into distinct classes (Bishop, 2006; Zeiler & Fergus, 2014). It used values from 

the final logits layer to determine the most likely classification of the inputs, and 

the confidence in these classifications. During training, I minimized this cost 

function using Google TensorFlow’s AdamOptimizer, which uses the ADAM 

algorithm (Kingma & Ba, 2015) to efficiently minimize this cost function (calculate 

gradient decent) on complex functions including softmax.  

I visualized the final neural network model architecture using Google 

TensorBoard (Figure 4.6). 
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Figure 4.6: Google TensorBoard graph visualizing the selected neural network 
model architecture with four convolutional layers. Models using 3 convolutional 
layers performed worse. Inputs (x) flow from bottom to the top of the network, 
where accuracy is calculated by comparing predictions to observed values (y). 

Network Training and Diagnostics 

After selecting neural network architecture, I completed several diagnostic 

tests to determine the appropriate values of certain model parameters to ensure 
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successful training. For such diagnostic tests, I trained the network over 20 000 

iterations (called steps) using examples from the training dataset. I used mini-

batch SGD. In each step I fed one batch into the neural network. After each step, 

I calculated the training accuracy on the batch and validation accuracy on the 

entire validation dataset. For diagnostic tests, neural network performance is 

evaluated using a combination of maximum training accuracy, maximum 

validation accuracy, and the speed at which the learning curves stabilize. 

If batches contain a majority of one label the network can run into 

problems during training. This is because the network can achieve high accuracy 

by simply learning to always predict one label no matter the inputted examples 

(Ng, 2018). In my training dataset, batches contained mostly cells labelled “not 

revisited” and few (sometimes none) labelled “revisited”. Consequently, initial 

attempts to train the network achieved relatively high training accuracy by 

predicting “no revisit” no matter the inputs, since the data primarily consisted of 

examples labeled “no revisit”. To prevent this problem from occurring, I ensured 

that batches consisted of 50% positive and 50% negative examples so such 

“guessing” would yield an accuracy of only 50%.  

The size of batches in mini-batch SGD is typically selected by training the 

network using several values and using the value that yields the best 

performance. I trained several neural networks that used different batch sizes 

(Figure 4.7) and selected the batch size (128) that yielded the best performance 

in all three performance metrics.  
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Figure 4.7: Comparison of smoothed learning curves of the models on training 
accuracy (A) and validation accuracy (B), using different batch sizes. Higher 

values are more accurate (perfect accuracy is 1.0). A batch size of 128 (orange, 
top curve) yielded the best performance. The noisier curves displayed in faded 

colors display the models’ unsmoothed learning curves. 

As described above, after each batch, the network’s internal structure is 

adjusted slightly to reduce error. The speed at which the network makes such 

adjustments is called the learning rate. Smaller values mean that the network 

adjusts very slowly to new information, but higher values can result in the 

network over-adjusting to new information and never learning patterns from 

previous batches. The learning rate is typically selected by training the network 

using several values and using the value that yields the best performance. To 

determine a suitable learning rate for this network, I trained several neural 

network models that used different learning rates (Figure 4.8) and selected the 



 
 

106 

model (learning rate of 10-4) that yielded the best performance in all three 

performance metrics. 

 

 

Figure 4.8: Comparison of smoothed learning curves of the models on training 
accuracy (A) and validation accuracy (B), using different learning rates. Higher 
values are more accurate (perfect accuracy is 1.0). A learning rate of 10-4 (light 

orange, top curve) yielded the best performance. The noisier curves displayed in 
faded colors display the models’ unsmoothed learning curves. 

Overall, these diagnostics took over seven days to complete on a modern 

personal desktop computer. Based on the above diagnostics, the final network 

used a batch size of 128 and a learning rate of 10-4. 

Results 

Initially, I used several different model architectures involving “dense” 

(simple non-convolutional) neural networks, but these models’ predictions 
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performed no better than chance. For this reason, I selected a convolutional 

neural network (described above) which was successful at learning patterns in 

the mini-habitat images.  

As predicted, the model was able to learn patterns in the Google Earth 

images to correctly predict orangutan space use. I trained the final network with 

20 000 steps, and the network converged successfully. These iterations 

completed in just under 13 h on a personal desktop computer. The training 

accuracy of the model reached 100% after 6000 steps, meaning the model 

learned to correctly predict all training examples. However, at this point in training 

the model only achieved 77% validation accuracy.  

Although the network had reached 100% training accuracy after 6000 

steps, further training continued to improve its validation accuracy, and it reached 

an apparent asymptote at 84% validation accuracy after 16 000 batches, 

meaning it correctly predicted orangutan space use on 84% of examples to which 

it had never been exposed. Further training beyond 16 000 batches did not 

improve the model. 

Since the model had very high training accuracy, but lower accuracy on 

the validation data, it is possible that the model experienced ‘overfitting’ (Ng, 

2018). Overfitting occurs when neural networks are trained repeatedly on specific 

patterns unique to the training data, but such patterns do not apply generally to 

other data (e.g. validation data). However, adopting techniques to address 

overfitting (i.e. regularization, simplification of model, early stopping) did not 

improve the model’s validation accuracy. This suggests that a larger dataset 
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allowing for more training examples or more features may be needed to improve 

this model’s validation accuracy beyond 84% (Ng, 2018). 

Discussion 

Using machine learning, this study demonstrated the utility of deep 

convolutional neural networks as a novel method of modelling orangutan space 

use on a very local scale. This method was able to accurately predict orangutan 

space use in our study area with resolutions approaching 10 m. Previous studies 

typically examined animal space use on scales on the order of kilometers (Hickey 

et al., 2013; Laundré et al., 2001; Palminteri et al., 2012; Squires et al., 2013), 

indicating that this methodology gives researchers an important new tool for an 

examining space use on smaller scales.  

Since our deep neural network model successfully made predictions on 

the basis of visible-wavelength satellite images alone, orangutan space use must 

somehow be related to local visual characteristics of their habitat. Possible 

factors may include different colors of vegetation depending on the species 

present, shadows (darker areas) caused by larger trees, clearings (lighter colors 

of green) and areas with no vegetation (river or dirt). However, it is notoriously 

difficult to interpret which factors/patterns neural networks learn to make their 

predictions, especially using satellite imagery (Xie et al., 2008), so it is not 

currently possible to assess the visual characteristics important to this network. 

Nevertheless, there have been important advances in network 

visualization/interpretation in recent years (F. F. Li et al., 2018; Zeiler & Fergus, 
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2014) which may improve interpretations of neural networks in the near future, 

allowing for examination of potential predictive factors. 

Although this neural network performed successfully based on visual 

imagery alone, model accuracy may improve with inclusion of data from other 

sources. The inclusion of data from other satellite-derived sources including 

elevation, slope, rainfall, forest composition, reflectance from non-visible 

wavelengths, etc. would likely improve predictive power of the model (Hickey et 

al., 2013; Phillips et al., 2006; Xie et al., 2008). Similarly, including data collected 

by field teams such as forest structure, canopy cover, resource distribution etc. 

may also improve models by providing neural networks with more features on 

which to base predictions. I aim to implement some of these data sources in 

future studies. In addition, acquiring higher-resolution aerial data from sources 

such as drones and aircraft, could greatly improve the model’s spatial resolution 

(Koh & Wich, 2012). Accessing data from three-dimensional sources such as 

LIDAR mapping technology may allow for the assessment of space use in three 

dimensions, which would be especially useful for arboreal species. 

Because orangutan movement data spanned several years, seasonal 

variation that may occur in satellite imagery is not of concern since the model 

examines overall features of the habitat, not small details such as small fruit, 

flowers or leaves. Such details may have very small impacts on the color of a 

pixel (i.e. browner during dry times, yellower with new leaf growth), but such 

changes are likely extremely minor from season to season. More major events 

such as fires, major droughts, etc., that cause large-scale changes to forest 
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structure would likely reduce the accuracy of the model and may require the 

model to be re-trained using updated satellite imagery. Examining models on 

trained on seasonal data with associated seasonal satellite imagery may provide 

interesting predictions on where orangutans seasonal space use, however, 

satellite images in rural parts of Southeast Asia are updated in intervals spanning 

more than a year. 

 

Because the deep neural network model was based on satellite imagery 

alone, it was not possible to compare it to MaxEnt Models directly. However, 

since the simpler non-convolutional deep neural networks failed to accurately 

predict the data, it is highly likely that MaxEnt models would have also failed to 

perform successfully. Such simpler neural networks, with enough training, should 

have been able to learn any relationships that MaxEnt is capable of detecting but 

failed to do so. Only the convolutional neural network, which was specifically 

tailored to image processing, was able to accurately predict the data. 

This study could have important applications for extrapolating animal 

space use. Although the model performed well on validation data, these data 

were from the same area as the training data. Using a model trained from our 

study area, it may be possible to extrapolate outside the study area to predict 

areas where orangutans may be likely to range, which could help plan better 

focused population surveys or highlight areas that may be important for 

conservation. To test this possibility, I am currently developing this methodology 

to use as a tool for extrapolation. In theory, this method could be applied to any 
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habitat that shares the same visual characteristics as the habitat used for training 

the model. Field expeditions to targets identified by the model would be important 

in order to ground-truth the model’s predictions and assess the success of such 

extrapolation. For this reason, focusing on the habitat adjacent to our study area 

is an important first step in validating our model for use as an extrapolation tool. 

Predicting space use on a very local scale from satellite imagery could 

have important applications for conservation initiatives. Machine learning 

applications similar to those used in this study could aid in remotely estimating 

regions of high habitat quality quickly, without extensive field surveys. 

Applications might extend to local population estimates, if combined with 

knowledge of local species densities. Also, areas demarked for conservation may 

be large but useable habitat within them may be considerably smaller, so using 

machine learning could enable stakeholders to estimate the location(s) and 

proportion of suitable habitat within such areas. Machine learning could also 

have important applications for the management of ecotourism, by identifying 

where best to allow/restrict human visitors based on predictions made by neural 

network models and could aid in monitoring and predicting human-caused 

disturbance over time. 

Overall this study was successful in using a deep neural network to predict 

orangutan space use. The neural network’s predictions were based solely on free 

and widely accessible data, meaning these methods can easily be tested and 

applied to other orangutan populations and other species. Machine learning 

remains a nascent field, and to date animal researchers have been slow to adopt 
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this new technology. Although preliminary, this study demonstrates the potential 

of using machine learning technology for applications in animal behavior and 

ecology. 
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Chapter 5: Conclusion 
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Together, these studies improved understanding of the habitual travel 

route network of wild orangutans in Kutai National Park. Results from Chapters 2 

and 4 suggest that ecological features likely shape the spatial configuration of the 

orangutans’ habitual route network. Results from Chapter 2 demonstrated that 

the habitual routes connected large fruit trees of certain key species, and the 

routes passed through areas with more orangutan resources than alternate 

routes nearby. Results also implied that orangutan travel routes may in part be 

constrained by ecological factors including arboreal bottlenecking. Results from 

Chapter 4 demonstrated that a deep neural network model was able to 

successfully classify areas orangutans revisit and those they do not, meaning the 

model was able to broadly estimate locations that were likely to be part of the 

habitual route networks. This model used visible-spectrum satellite images, 

meaning that visual characteristics of local ecology were able to identify the 

spatial configuration of orangutan habitual route networks.  

Together, these results suggest that local ecological factors may be 

important drivers behind the spatial configuration of the habitual route network. 

Though outside the scope of these studies, other ecological and cognitive factors 

may contribute to orangutan travel decisions. For example, elevation and slope 

were associated with habitual route networks in spider and wooly monkeys (Di 

Fiore & Suarez, 2007), and the presence of rival conspecifics altered the routes 

of chacma baboons (Noser & Byrne, 2007a). Further study into other ecological 

factors could yield important information about which types of local habitat 

orangutans prefer. 
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These findings could also have implications for studying geographic 

variation in orangutans. Comparing populations and assessing variation in 

habitual route networks and associated cognitive strategies could yield important 

information regarding orangutan behavioral flexibility and intelligence. Habitual 

route networks of different populations may have very different spatial 

configurations based on their local ecology. Such differences could result in 

orangutans using different foraging strategies (Presotto & Izar, 2010), which in 

turn could also drive differentiation in cognitive maps and other differences in 

spatial cognition between populations. Examining population differences in how 

ecology and habitual route networks relate to orangutan navigation strategies 

could shed light on this possibility. 

The presence of habitual route networks has previously been used as 

evidence for primates using route-based cognitive maps (Di Fiore & Suarez, 

2007; Porter & Garber, 2012). However, habitual route networks have also been 

identified in several non-primate animal species that likely rely on more limited 

spatial information and use heuristic navigation strategies (Bruggeman et al., 

2007; Douglas-Hamilton et al., 2005; Squires et al., 2013; Wehner, Boyer, 

Loertscher, Sommer, & Menzi, 2006). Like the orangutans in Kutai National Park, 

such habitual route networks also connected important spatially-stable 

resources, and connecting routes were influenced by ecological variables 

including resource distribution and topography. Consequently, I argue that it is 

problematic to assume that the orangutans relied on cognitive maps that are 
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more sophisticated than these species from the spatial configuration of habitual 

route networks alone.  

The fact that ecological conditions are important in shaping the locations 

of orangutans’ travel routes does not mean that cognition plays a minimal role in 

their navigation. Like many other behaviours, orangutans likely apply 

sophisticated and flexible cognitive strategies when navigating (e.g., in deciding 

which particular route to take through trees, which locations to target, etc.). 

However, based on results from the above studies, I argue that such abilities 

can’t be determined from the spatial configuration of the routes alone. The 

configuration of habitual routes was consistent with route-based cognitive maps, 

but may also have alternate explanations. For example, some ants use habitual 

route networks, and their configuration shares characteristics with the 

orangutan’s network (e.g. connecting resources, avoiding topographical 

obstacles, etc.) (Collett & Collett, 2009; Wehner et al., 2006). However, the ants 

cannot use them flexibly; small disruptions to their travel prevent them from 

navigating successfully (Collett & Collett, 2009; Wehner et al., 2006). Orangutans 

undoubtedly use more flexible and sophisticated navigation strategies compared 

to ants, but evidence is required to ascertain their nature. For these reasons, I 

argue that caution should be used when inferring that primates use more 

sophisticated cognitive maps compared to other animals from the presence of 

habitual route networks alone.  

One possible avenue for exploring orangutan navigation strategies and 

cognitive maps may be through combining knowledge of factors affecting the 
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spatial configuration of habitual route networks with data concerning how 

individuals use such networks. For example, examining behaviour that shows 

that an individual’s travel is based on choices, spatial information, flexible 

responses to disruptions, and perhaps planning could yield more insight into the 

information encoded in cognitive maps. 

 Following this reasoning, results from Chapter 3 provide support that 

orangutans were able to use their habitual route network flexibly when they 

escaped human observers. Many previous studies have considered a lack of 

direct linear travel towards resources and a lack of novel travel routes as 

evidence against primates using coordinate-based cognitive representations 

(Bezanson et al., 2008; Janson & Byrne, 2007; Normand & Boesch, 2009; 

Poucet, 1993). However, orangutan travel may be partially constrained within 

habitual route networks, meaning the most efficient route may not be linear. 

Furthermore, novel routes may occur very rarely, and are therefore difficult to 

observe. It is also difficult to ascertain whether a route is truly novel, or if it had 

been used previously without detection.  

Results from Chapter 3 show preliminary evidence that orangutans may 

be able to plot travel routes away from their habitual route networks toward less-

used areas when escaping from humans, suggesting they may encode more 

information than would be expected from route-based cognitive maps alone 

(Poucet, 1993). Orangutans typically travelled along their habitual route network, 

but when they escaped, they travelled “off road” leaving the network for areas 
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that they typically avoided. Such routes were often novel1 in that the observation 

team had not previously observed them, although since we do not know the 

entire history of the orangutans we cannot be certain. Escaping orangutans 

altered their behavior and space use hours before escaping from human 

observers and targeted areas away from their habitual route network. 

Orangutans prioritized traveling quickly over feeding, and targeted travel away 

from their normal travel routes towards areas where humans were less able to 

follow them. Such results are consistent with orangutans deliberately changing 

their behavior in advance based on spatial knowledge that includes little-used 

areas that may increase chances of escaping from humans. This suggests that 

orangutans’ cognitive map may encode information that allows them to 

differentiate areas along their habitual route network where humans can easily 

follow them from areas away from the network where they can better escape and 

navigate to such areas using novel or little-used routes. Although preliminary, 

planning travel routes to out-of-sight areas that not typically accessed is 

consistent with orangutans using a coordinate-based cognitive map, although 

more research is required to confirm this possibility. 

Many orangutan resources are only available at particular times of the 

year, especially ripe fruit. Examining how orangutans modify their use of habitual 

route networks in response to the availability of temporally variable resources 

may contribute to understanding whether they use cognitive maps to navigate. 

However, the majority of orangutan resources (including fruit trees) appear at 

                                                      
1 Recall that in this context, novel refers to never-before taken routes, not novel configurations of 
known routes 
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consistent locations spanning several years. Additionally, such locations may 

remain important orangutan travel targets when not producing fruit for other 

reasons (i.e. bark, leaves, flowers, nesting, social meeting, etc.). Visiting 

important resources when they are not productive could facilitate monitoring and 

updating spatial and temporal information (Di Fiore & Suarez, 2007; Garber & 

Porter, 2014; Janmaat et al., 2013; Milton, 1981). Examining whether orangutans 

revisit resources more as they near productivity could provide evidence for such 

monitoring behavior. 

The studies presented above also contribute to developing improved 

methodology for modelling primate travel at a local scale. Previous studies 

typically examined animal space use on scales on the order of kilometers and did 

not account for GPS error (Hickey et al., 2013; Laundré et al., 2001; Palminteri et 

al., 2012; Squires et al., 2013). The new methods presented in the above studies 

allow for assessing orangutan space use on a very local scale with resolutions 

approaching 10-20 m while accounting for GPS error. Such high-resolution 

analysis is important for understanding local factors that may influence primate 

travel decisions and may play a role in cognitive maps. 

Local-scale information also has important uses for conservation through 

improved identification of locations of high habitat quality. Such data could be 

applied to improved estimates of local population carrying capacity, useable 

habitat within conservation areas. Knowledge of locally important areas of habitat 

for primates could help identify locations where best to allow/restrict human 

disturbance and help manage human-primate conflict. 
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The combined results from these studies suggest that primate space use 

is likely the product of both ecological factors and how they encode and use 

spatial information. The spatial configuration of habitual route networks was well 

explained by local ecology, and orangutans used them flexibly with evidence 

consistent with advance planning, suggesting they may rely on information 

encoded in cognitive maps to navigate within (and when leaving) the route 

network. Results also show preliminary evidence consistent with orangutans 

using coordinate-based mental maps, although more research is required to 

assess this possibility in more detail. These studies demonstrate the utility of 

using modern mapping software and machine learning technology combined with 

extensive field observations for applications in primate behavior and ecology. 
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