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ABSTRACT 

Continuous microfluidic technology has proven to be a potential competitor with 

established batch systems for facilitating chemical synthesis and purification, and more amenable 

to miniaturization, integration, and automation. Nevertheless, combining synthesis, purification 

and analysis remains a challenge due to the lack of development in efficient continuous flow 

purification techniques. An emerging continuous-flow purification technique is magnetophoresis, 

which utilizes surface-functionalized magnetic particles to selectively capture target molecules 

through specific binding, followed by manipulating the migration of particles through external 

magnetic force.  

This dissertation explores the synthesis of monodisperse core-shell functionalized 

magnetic nanoparticles composed of a single-core structure, and their application in magnetic 

manipulation for capture and isolation of targets in the continuous flow. First, single-cored 

magnetic nanoparticles with surface functionalities were prepared by coating functional 

triethoxysilanes onto iron oxide nanoparticles. The morphology, size, and colloidal stability of the 

resulting functionalized magnetic nanoparticles can be predicted and controlled. Second, a 

microfluidic device was fabricated from poly(dimethylsiloxane)(PDMS), consisting of two major 

components, a mixer and a separator (a diagram shown below). In the mixer, target molecules were 

captured by functionalized magnetic nanoparticles in a T-shape microchannel. Then the magnetic 

bead-target complex is directed into the separator, where the captured target molecules are 

magnetically steered out of the matrix while passing through a laminar co-flow profile. For proof 

of concept, we used a mixture of toluidine blue O (TBO) and sodium fluorescein as a model target 

and nontarget, respectively, and carboxyl functionalized magnetic beads as a receptor, leading to 

the selective complexation of TBO and magnetic beads via electrostatic binding. The device 
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allowed for complete separation of the target from the nontarget molecules with high separation 

selectivity and efficiency as well as excellent reliability and flexibility.  

 

 

Diagram of a continuous microfluidic magnetic separation system. 
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CHAPTER 1. INTRODUCTION 

1.1 Continuous Flow Synthesis 

Organic synthesis in both laboratory and industrial scale is traditionally performed in batch 

process, which combines all reagents in round-bottled flasks, test tubes, or closed vessels. Over 

the past decade, a growing interest has been focused on improving efficiency and safety, reducing 

cost, and developing automated operation units for organic synthesis.1 This is particularly 

important in the fine chemical and pharmaceutical industry, where the drug substances and active 

pharmaceutical ingredients (APIs) are highly valuable and the synthesis processes of them are 

considerably more complex than raw chemicals because it requires multiple steps of reactions and 

purifications. Continuous-flow manufacturing, which performs chemical reactions in a flowing 

stream of carrier, has become an increasingly attractive alternative to batch process as it affords a 

more flexible approach to pharmaceutical manufacturing.2 The advantages of continuous-flow 

synthesis over conventional lab-scale techniques have been widely recognized both in academia 

and industry.3,4 First, many parameters can be realized in small-scale continuous-flow synthesis 

over batch processes, such as enhanced heat and mass transfer, precise mixing and residence times, 

and safer synthesis of dangerous compounds.5 Continuous-flow reaction is a particularly useful 

option when it comes to some harsh reaction conditions requiring sharp reaction times (e.g. in 5 

seconds), hazardous material handling, and/or very high temperature/pressure.1 In addition, scaling 

can be achieved in continuous-flow synthesis without significant modification to conditions by 

simply running optimized conditions for a longer period of time or numbering up reactors in 

parallel. This is attractive for the pharmaceutical industry where production at the hundreds of 

grams to kilograms scale is necessary during preclinical and clinical trials.6 Perhaps one of the 

most compelling aspects of continuous manufacturing is the possibility of performing multiple 
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reaction steps in a streamlined and information enriched sequence. That means traditional 

discontinuous chemical transformation, separations and purifications, analysis, and even 

crystallizations, drying, and formulation are all linked together to generate one single, fully 

automated continuous process without offline holding. Such integrated process is of profound 

significance for pharmaceutical industry in terms of green production process, safety, and 

economic savings. More importantly, the implementation of in-line purification and analysis 

allows for real-time monitoring and optimization, which could maximize the reaction efficiency 

and minimize the reagent wastes. 

A few integrated continuous-flow systems have been built for continuous multistep 

synthesis of APIs, including ibuprofen,7,8 rufinamide,9 aliskiren,6,10 diphenhydramine, lidocaine, 

diazepam and fluoxetine11 (Shown in Figure 1.1). A great work has been done by the Novartis 

MIT Center for Continuous Manufacturing for API, where aliskiren hemifumarate is produced 

from a chemical intermediate to a finished tablet using a bench-scale, fully integrated, continuous 

pharmaceutical plant.6,10 This plant produces 0.8 tons of aliskiren/year using a continuous reactor 

of volume 0.7 L. The throughput of aliskiren is nominally 45 g/h, corresponding to 2.7 x 106 tablets 

per year. The flow process requires 48 h of processing time and 13 unit operations, which is much 

more efficient than the batch process requiring 300 h processing time and 21 unit operations of the 

batch process. If our target scale is 188 tons of API/year, the batch reactor volume required would 

be 1500 L, which is 10 times larger in size than using continuous-flow technique requiring only 

136 L of reactor volume. The plant layout at Novartis is very compact with a 2.4 x 7.3 m2 footprint. 

Another continuous-flow and formulation of API system uses an even smaller refrigerator-sized 

platform (1.0 m (W) x 0.7 m (L) x 1.8 m (H)) and successfully produces liquid doses of four well-

known pharmaceutical drugs.11 All those figures demonstrate that pharmaceutical manufacturing 
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will benefit from integrated and precisely controlled continuous-flow manufacturing systems with 

enhanced safety, shorter processing times, improved product quality, and reduced footprint and 

production costs.   
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Figure 1.1. Examples of APIs synthesized by integrated continuous-flow systems. 

 

1.2 Continuous-Flow Separations for Continuous-Flow Synthesis 

In spite of several examples found in literature showing the potential of integrated 

continuous-flow manufacturing APIs, building a fully integrated continuous-flow system for 

manufacturing a broader scope of APIs remains challenging, due to the limited number of available 

separation techniques that can be applied in continuous-flow synthesis. Thus, continuous synthesis 

         y           y “             ”                           . W          v    ment of 

advanced continuous-flow synthesis techniques, the development of continuous-flow separation 

and purification techniques has become highly demanding for designing the next generation of 
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fully integrated continuous-flow system for a broader scope of pharmaceutical manufacturing. 

There are several criteria needed to be considered when developing continuous-flow separation 

techniques:12 1)                    v                             v  y “   k”        molecules from 

reaction mixtures containing impurities, by-products, and unreacted reagents with minimum 

contamination; 2) the purification device must be compatible with the solvents used in the flow 

reactor; 3) the entire continuous flow system should operate in steady-state after integrating 

continuous-flow synthesis and purification. Until recently, the continuous-flow purification 

techniques satisfying these criteria are limited. Below we will briefly discuss the existing 

purification techniques that are potentially viable for integrated continuous flow chemistry system, 

including liquid-liquid extraction (LLE), simulated moving-bed chromatography (SMBC), 

electrophoresis, and magnetophoresis.  

1.2.1  Liquid-liquid extraction 

Liquid-liquid extraction is a purification technique based on the separation of two liquid 

phases with differences in the density. Extraction efficiency is determined by the polarity of each 

liquid phase and the solubility of the target solutes in each phase.12 At the micro-scale, complete 

phase separation using difference in the density is more difficult to achieve compared to batch 

LLE process because gravitational forces are small compared with surface forces.13 Thus, 

alternative driving forces for continuous phase separation in microfluidic device must be 

considered. Membrane-based LLE using surface tension effects seems to be a good candidate for 

continuous-flow separation at the micro-scale. Jensen group13 developed a membrane LLE 

separator based on hydrodynamic pressure drop and capillary pressure forces. The micro-separator 

was fabricated with a thin, porous, hydrophobic Teflon membrane sandwiched between 

microchannels, allowing only organic phase to pass through it. To achieve high-throughput 
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separation, it is crucial to have a smaller pore size of the membrane to allow higher capillary 

pressure than the hydrodynamic pressure for the organic phase to transfer. Later on, they 

implemented the same separation technique to an above mentioned fully integrated continuous-

flow pharmaceutical plant for the preparation of aliskiren.10 The same group also developed a 

second generation of membrane-based LLE separator by adding a secondary hydrophilic glass 

microfiber membrane parallel to the hydrophobic Teflon membrane.14 The dual membrane 

separator system was used for continuous separation of complex mixture of APIs with enhanced 

phase separation efficiency. However, the main problem with the membrane-based LLE is the 

clogging of, or damage to, the membrane over time. Also, LLE is very useful for carrying out 

single step extraction, but it is still challenging when separating multiple targets with different 

solubilities. One solution is to optimize the extraction of each solute by using multiple LLE units 

in series, but such systems are plagued with inefficient control of pressure drops and flow rates.5 

 

Figure 1.2. Continuous liquid-liquid extraction. A segmented flow of an aqueous solution(A) 

dispersed in an organic phase (B). The organic phase wets the hydrophobic membrane and is driven 

through the membrane pores by the imposed pressure difference leaving the aqueous solution 

behind in the top portion of the device. Reprinted with permission from Ref. 13. Copyright 2007 

Royal Society of Chemistry.  
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1.2.2 Simulated moving-bed chromatography (SMBC) 

SMBC is a continuous multi-column chromatographic process performing 

adsorption/desorption of a sample between mobile and stationary phase. It was invented in the 

early 1960s in the petrochemical and sugar industries, and later widely adapted for separation of 

enantiomers of chiral drugs in pharmaceutical industry. Traditional chromatography achieves 

separation by injecting the solute mixture into a stream of mobile phase flowing through a column 

packed with stationary phase.15 The solutes are separated based on their different affinity to the 

stationary phase, meaning the less retained solute will move faster in the column and exit the 

column earlier than a more retained one. However, single column chromatography can only carry 

one sample at a time because the separation of the first sample must be completed before the next 

injection starts in order to avoid overlapping. SMBC improves the productivity by using multiple 

smaller columns connected in series with valves placed between each column and exploiting a 

continuous countercurrent movement between mobile and stationary phases. In a SMBC setup, the 

columns are stationary still, but the inlet and outlet ports can be rotated periodically in the direction 

of fluid flow so as to simulate the continuous countercurrent movement of the columns containing 

the solid adsorbent (beds). The component that is strongly adsorbed to the resin called the raffinate 

and the component that remains in the mobile phase is called the extract. Both the raffinate and 

the extract are transported by the eluent, as shown in Figure 1.3. A sample is injected and extracted 

by automatically switching valves at appropriate points between columns, which could count as 

continuous-flow separation when operating at a steady state. 

SMBC has already been combined with flow reactor for the synthesis of APIs.16,17 A recent 

study for the synthesis of artemisinin using an integrated continuous-flow system implemented 

with SMBC afforded the product mixture with 92% purity, and 99.9% purity after crystallization 
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from the concentrated mixture.18 However, the design of SMBC is technically complex and costly 

because it requires highly precise control over the separation process using mathematical model 

and expensive solid adsorbents. Moreover, SMBC is ideal for the separation of binary mixture. 

For a more complex sample containing multiple components, such as APIs from multistep 

reactions, additional crystallization process may be required to achieve approved purity. Finally, 

the saturation capacity of the column must be considered for productivity reason.  

 

Figure 1.3. Schematic of simulated moving bed (SMB) units separating a binary mixture (A and 

B). The dashed arrows in the SMB scheme represent the port switch. Reprinted with permission 

from Ref. 15. Copyright 2009 Elsevier.  

 

1.2.3 Electrophoresis 

Another common technique for separations in continuous microflow is electrophoresis. It 

is performed in a shallow chamber, and it continuously separates target compounds from a sample 

solution by applying a homogeneous electric field perpendicular to the direction of flow. Charged 

molecules are separated because of two flow vectors: the hydrodynamic flow along the y-direction 

and the electrophoretically induced flow along the x-direction (Figure 1.4). The deflected direction 

of the molecules depends on the charges, and the extent of deflection depends on the charge to size 
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ratio of molecules, the strength of the electric field, and the hydrodynamic flow rate. 

Electrophoresis was originally applied for the continuous purification of complex biological 

samples. Recently, several research groups have demonstrated its potential in the integration of 

synthesis, separation, and analysis into lab-on-a-chip systems. Benz and co-worker19 presented an 

approach for coupling free-flow electrophoresis (FFE) through the attachment of capillaries to 

mass spectrometry. After successfully demonstrated the concept by detecting the separation 

process for fluorescent molecules, they applied this system to a [3+2]-cycloannulation reaction 

using anthranilic acid, benzaldehyde, and bis(silyl)dienediolate to form a product 

pyrrolobenzoxazinone. The reaction mixture was continuously separated by electrophoresis and 

directed across the mass spectrometric outlet for product identification. Regardless of the manner 

of electrophoresis, contamination could be difficult to avoid due to the high dependence of 

separation upon ionic strength and pH. Also, the generation of Joule heating and bubbles by 

electrolysis could be problematic for efficient separation.20 

 
Figure 1.4.  Two-dimensional electrophoretic purification system. Sample is injected in the y-

direction in a narrow band in the middle of the plate. An electric field is applied in the x-direction 

across the plate, thus separting the molecules on the basis of their charge to size ratio.  
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1.2.4 Magnetophoresis 

Purification using solid support scavengers is a common technique in batch process. 

Particularly, functionalized m                 ,                  “              ”, is a popular 

scavenger for the removal of impurities. Magnetic scavengers are most commonly seen in the form 

of iron oxide nano- or micro-particles coated with a polymer or silica layer for colloidal stability 

and functionality. Separation using an external magnetic force requires very simple handling steps, 

and no need for expensive equipment such as chromatography systems, centrifuges, or filters. A 

magnet with decent magnetic strength is enough to separate the target of interest directly from 

crude samples in a very short period. Moreover, magnetic carriers are usually in the form of 

magnetic particles that are prepared from various synthetic routes and tailored with surface 

functionalities, allowing for very high selectivity and affinity towards targets. Another unique 

feature of magnetic separation is that magnetic carriers can be recovered for multiple cycles of 

separation. It is worth mention that magnetic nanoparticles become superparamagnetic when their 

size is below a certain critical diameter (e.g., 50 nm for Fe3O4), unlike bulk Fe3O4, which is 

ferromagnetic. So they exhibit a very strong response to an external magnetic field, but have zero 

magnetic moment and no attraction to each other in the absence of the field. This property offers 

excellent colloidal stability without aggregation. Those advantages make nanoparticles good 

candidate for application in continuous-flow separation.  

In analogy to free-flow electrophoresis, which is based on electric manipulation of sample 

deflection, magnetophoresis is a method based on magnetic manipulation of the migration of 

magnetic particles using either a permanent magnet or an electromagnet. Magnetophoresis was 

first reported by a Russian group in 1977,21 but it was not until the year 2000 that the number of 

publications related to this subject started growing exponentially (Figure 1.5). Such fast-growing 
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attention is attributed to the many unique properties of magnetophoresis. First, magnetic gradients 

can penetrate a closed vessel or micro-channels, allowing for no physical contact between the 

magnet and liquid to reduce contamination. In addition, unlike electrically induced forces, 

magnetic forces do not generate heat, and they are not influenced by ionic strength, pH or surface 

charges, which could be a benefit for the separation of soft particles such as cells and other 

biological molecules. Finally, the continuous flowing process would not interrupt the flow, 

resulting in the reduce of non-specific entrapment of sample impurities in the capturing regions. 

 

Figure 1.5. Number of publications in the last 24 years related to the separation using magnetic 

nanoparticles. 

Multiple outlets and fluid streams can be introduced onto continuous microfluidic devices, 

allowing for trajectory deflection of magnetic particles from the original stream to a buffer stream 

in the presence of magnetic field (Figure 1.6). Moreover, such multi-fluid streams inside the 

microchannel would generate a laminar co-flowing profile, meaning no apparent turbulent mixing 

would occur between neighboring miscible fluids. This technique is ideal for the application of 

purifying an original input stream in a continuous mode where the input fluid solutions containing 

particles can be incorporated with washing streams in the same device.22 Based on this concept, a 

variety of applications have been recognized by continuously flowing magnetic particles within a 
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microfluidic separation system. For example, continuous microfluidic magnetic separators 

(CMMS) have been successfully demonstrated for the separation of magnetic beads and biological 

samples at small scale with high efficiency and selectivity.23  

Aside from the distinct advantages over other continuous-flow separation methods, 

magnetophoresis also has its limitations. First, individual nanoparticles can not be manipulated 

because the magnetic force on a single nanoparticle is too small, unless the nanoparticles form 

                      y “   k   ”            . I     k                                                

cube of the particle radius. But individual magnetic nanoparticles would lose the on/off magnetic 

response and become permanent magnetic nanoparticles if their size is above a certain range. 

Second, the applied flow rates tend to be slow (hundreds of µm s-1 or at most a few mm s-1), 

20because enough time is needed for the magnetic nanoparticles to deflect before they come out 

from the desired outlet. Finally, only very few materials, like red blood cells and magnetotactic 

bacteria, can be manipulated naturally by magnetophoresis, all other materials exhibiting no 

intrinsic magnetism have to be labelled with magnetic micro/nanoparticles. Fortunately, the 

magnetic labelling can be easily achieved through various surface functionalization strategies. 

 

Figure 1.6. Continuous flow magnetic separations carried out via (a) two outlets, (b)multiple 

outlets. Reprinted with permission from Ref. 20. Copyright 2007 Royal Society of Chemistry.  
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1.3 Fundamentals of Magnetophoresis in Microfluidic Environment 

1.3.1 Laminar flow 

One way to assess the flow inside a microfluidic channel is through Reynolds number (Re), 

as defined by equation (1.1).24  

                                                              𝑅𝑒 =
𝜌𝑑𝑣

𝜂
                                                                              (1.1) 

W     ρ             ’        y ( .g. H2O, 1000 kg/m3), d is the height of the separation 

channel, v is hydrodynamic velocity, and η    v       y. W    the Reynolds number is much less 

than 1, the viscous forces are greater than the inertial forces, meaning that the flow inside the 

channel is laminar. For example, the Reynolds number is 0.28 for aqueous samples flowing 

through a microchannel (3cm (L) x 300 µm (W) x 100 µm (D)), considering ρ is 1000 kg/m3, d is 

100 µm, v is 2.78 x 10 -3  /  ( 0 µL/   ), η    1.00    10-3 kg m-1 s-1.  Therefore, the flow inside 

the channel is laminar not turbulent.  

1.3.2 Basic physics of magnetic separation 

When a particle flows through the microfluidic channel, forces exerted on this magnetic 

particle to drive the migration must be considered. Those forces include  (a) external force (here 

is magnetic force), (b) viscous drag force, (c) particle/fluid interactions (perturbations to the flow 

field), (d) gravity, (e) thermal kinetics (Brownian motion), (f) interparticle interactions including 

(i) magnetic dipole-dipole interactions, (ii) electric double-layer interactions, and (iii) van der 

Walls attraction force.25 Many of these forces could be ignored for microfluidic separation, 

depending on the size of the particle and the magnetic field strength. Particle/fluid interactions can 

be taken into account by solving for the flow field and particle trajectories numerically, applying 

appropriate fluidic boundary conditions of the surface of the particles during each time step. 
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Similarly, interparticle (e.g., dipole-dipole) interactions can be included in the equations of motion 

and calculated during each time step. But for dilute particle suspensions (typical concentrations 

are of the order of 1 g·L-1 ), the particle-particle and particle-fluid interactions are neglected to 

simplify the analysis.25,26 Brownian forces, referring to random movement of suspended particles 

caused by the random collisions with molecules of the fluid, can also be neglected because the 

magnetic force dominates. In a relatively high magnetic field, as produced by a permanent magnet, 

gravitational forces can be ignored as well. Based on most common conditions used for magnetic 

separation, the most dominant forces acting on a magnetic nanoparticle are the hydrodynamic 

viscous drag force and magnetic force. So the particle trajectory inside a microchannel relies on 

the balance of these two vectors. Meanwhile, to simplify the analysis, several other assumptions 

need to be considered.27 First, we assume the magnetic nanoparticle to be perfectly spherical. 

Second, the ferrofluid is assumed magnetically saturated. We further assume the z components of 

the magnetic field gradient and ferrofluid flow velocity are much smaller than those in the x and y 

direction. Therefore, the 3D system analysis can be reduced to a 2D cross section plane (x, y 

analysis),27-29 and                      q                       y N     ’                

below:28,30-33 

                                             𝐹⃗ = 𝑚𝑝
𝑑𝑣⃗⃗𝑝

𝑑𝑡
                                                                       (1.2) 

When a particle is flowing through the microchannel with existence of an external magnetic 

field, the particle will acquire the velocity 𝑣⃗𝑝 from the hydrodynamic flow velocity 𝑣⃗𝑓𝑙𝑜𝑤 and the 

magnetically induced flow velocity 𝑣⃗𝑚𝑎𝑔.  

                                                     𝑣⃗𝑝 = 𝑣⃗𝑓𝑙𝑜𝑤 +  𝑣⃗𝑚𝑎𝑔                                                           (1.3) 

The magnetic force, equation (1.4), is proportional to a product of the external magnetic 

field 𝐻⃗⃗⃗ , its gradient ∇𝐻⃗⃗⃗ , and also is proportional with particle volume 𝑉𝑝  and magnetic 
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susceptibility 𝜒𝑚 . However, if the magnetic field is strong enough to saturate the particle, the 

equation (1.4) turns in equation (1.5), because 𝑉𝑝𝜒𝑚𝐻⃗⃗⃗ represents the magnetic saturation moment 

of the particle 𝑚⃗⃗⃗𝑠. 

                                               𝐹⃗𝑚𝑎𝑔 = 𝜇0𝑉𝑝𝜒𝑚𝐻⃗⃗⃗ ∙ ∇𝐻⃗⃗⃗                                                    (1.4) 

                                                     𝐹⃗𝑚𝑎𝑔  = 𝜇0𝑚⃗⃗⃗𝑠 ∙ ∇𝐻⃗⃗⃗                                                    (1.5) 

For very low Reynolds number, the drag force is defined by equation (1.6), which came 

from the Stokes drag law. In this equation, R is the radius of particle: 

                              𝐹⃗𝑑𝑟𝑎𝑔 = 6𝜋𝜂𝑅𝑣⃗𝑝 = 6𝜋𝜂𝑅(𝑣⃗𝑓𝑙𝑜𝑤 + 𝑣⃗𝑚𝑎𝑔)                                      (1.6) 

So, what is needed for tracking the particle position as a function of time will be the 

following equation: 

                              𝑚𝑝
𝑑𝑣⃗⃗𝑝

𝑑𝑡
= 𝜇0𝑚⃗⃗⃗𝑠 ∙ ∇𝐻⃗⃗⃗ + 6𝜋𝜂𝑅(𝑣⃗𝑓𝑙𝑜𝑤 + 𝑣⃗𝑚𝑎𝑔)                                  (1.7) 

 

 

Figure 1.7. Schematic diagram of the continuous-flow magnetic separation. Reprinted with 

permission from Ref. 34. Copyright 2017 Ameican Chemical Society. 
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1.3.3 Magnetic source 

Continuous flow separation of magnetically susceptible sample components is usually 

achieved by applying an external magnetic field perpendicular to the flow direction. The degree 

of magnetic particles deflecting from the main direction of flow depends on the magnetic strength 

and the magnetization of the particle. For nano-and micro-sized magnetic particles, the observed 

trajectory is the sum of two flow vectors: the hydrodynamic velocity and the magnetically induced 

velocity. 25,27 Hydrodynamic velocity is determined by the flow rate of the liquid (usually aqueous 

solution) pumping through the microchannel. Therefore, the magnetic force of the applied 

magnetic field plays a key role for particle deflection. The magnetic force could be determined by 

the choice of magnetic sources. There are two main types of magnetic sources, permanent magnets 

(PMs) and electromagnets (EMs). Considering the application of micro-scale flow devices, the use 

of permanent magnets is more efficient and straightforward than that of electromagnets, due to the 

complexity and bulkiness of design and fabrication of an electromagnet. An electromagnet can 

give maximum gradients (~104 Tm-1 by using high current densities),35 but it usually comes with 

very large size and the magnetic inductions offered by electromagnets is about 100 times lower 

than that of a permanent magnet.22 Furthermore, current generated by electromagnets can induce 

inevitable Joule heating, evaporation, which is undesirable for some samples, especially biological 

samples.32 Recently, hybrid magnets combining a larger external magnet and a small 

microfabricated magnet are also powerful tool for continuous flow separation. The hybrid magnet 

is reported to have a three times higher magnetic gradient than applying an external magnet 

alone.36,37  
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1.4 Fabrication of Microfluidic Devices 

Early in the field, silicon and glass materials were used to fabricate microfluidic devices. 

By the late 1990s, polymer materials became great substitutes because of their simplicity, low cost, 

and disposal advantages over silicon and glass.38 The polymer microfabrication process involves 

the identification of the microfluidic chip application and requirements, the design of 

microchannel/chamber layouts, selection of proper polymer materials, and determination of the 

fabrication strategy. The two major polymer materials used in microfluidics are 

polydimethylsiloxane (PDMS) elastomer and thermoplastics such as poly(methyl methacrylate) 

(PMMA), polycarbonate (PC), polystyrene (PS), polyvinyl chloride (PVC), polyimide (PI), and 

the family of cyclic-olefin polymers.39 Also, various fabrication technologies have been developed 

based on polymers to meet different requirements for creating polymer microfluidic devices. 

Figure 1.8 summarizes the polymer microfluidic fabrication procedures and selection strategies, 

associated with different polymer materials.39 

 

Figure 1.8. Polymer microfluidics fabrication process chart. The blue line indicates the PDMS-

based microfluidics fabrication procedure, and the red line indicates the thermoplastic 

microfluidics fabrication procedure. Reproduced  from Ref. 39 with permission from Molecular 

Diversity Preservation International. 
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The flow regions of microfluidic devices are in the order of micrometers, enabling a 

noticeable reduction of surface-to-volume ratios, and thus decreased samples/reagents 

consumption. However, corresponding to small Reynolds number values, flows in such 

miniaturized regimes are predominantly laminar and not turbulent. With appropriate design and 

controlled flow rate, it is possible to force the target of interest into specific flow streamlines and 

realize high-throughput separation. For example, separators can feature either two outlets or 

multiple outlets. Multiple outlets allow for the separation of different magnetic particles from each 

other, as well as from non-magnetic material. By controlling magnetic field gradients using a small 

permanent magnet or integrated electromagnet on the chip, magnetic nanoparticles can be 

collected at the desired outlet. 

1.5 Synthesis, Surface Functionalization, and Characterization of Magnetic Nanoparticles 

Nanoparticles are a class of materials with the size range from 1 to 100 nm, presenting 

unique optical, thermal, magnetic and electrical properties, which are highly related to their size 

and morphologies. Among a broad range of nanoscale materials, magnetic nanoparticles, such as 

iron, cobalt and nickel oxides, are undergoing accelerated development for applications in 

biomedicine, separation, catalysis, and water treatment. In particular, iron oxide nanoparticles 

(IONPs) are ideal support because of their advantages over other magnetic materials, including 

low cost, ease of preparation,  low toxicity (FDA approved material) and chemical stability.40-42 

Iron atom has very strong magnetic moment because of the unpaired electrons in 3d shell (4 

unpaired electrons on Fe2+ and 5 unpaired electrons on  Fe3+). Therefore, crystals are magnetic 

when they are formed from iron ions. Magnetite (Fe3O4) has an inverse spinel structure with 

oxygen forming a face-centered cubic crystal system. The unit cell of Fe3O4 contains 32 O2- ions 

which are regular cubic close packed along the [110] direction. Generally, the crystal structure of 
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Fe3O4 contains two sites: tetrahedral sites occupied by Fe3+ and octahedral sites occupied by both 

Fe3+ and Fe2+ along the [111] direction. In most applications, the performance of IONPs greatly 

depends on their size and morphologies. Typically, IONPs present the unique physical property of 

superparamagnetism at sizes below 50 nm, meaning that each nanoparticle bears a large magnetic 

moment (as high as 90 emu g-1) in the presence of a magnetic field, yet does not permanently 

magnetize once the field is removed. 43-45 In addition, the large surface-to-volume ratios can be 

exploited for facile heterogeneous reactions at surface functionalities. 

1.5.1 Synthesis of iron oxide nanoparticles 

In the last decades, the synthesis of magnetic nanoparticles has been devoted to making 

size-/shape- tunable, highly stable, and monodisperse magnetic nanoparticles. With the progress 

in understanding the thermodynamic and kinetic mechanism of metal oxide nanocrystal growth, 

advanced technologies for the synthesis of precise size-and shape-controlled IONPs have been 

developed. Several research groups have reported different synthetic routes to prepare high-quality 

magnetic nanoparticles. The most popular methods include co-precipitation,46 thermal 

decomposition,47,48 microemulsion,49 and hydrothermal synthesis,50 with yields, shapes, and size 

distributions varying between these various methods.  

Co-precipitation is the most common and simplest method in which iron oxides (Fe3O4) 

are formed by mixing ferrous (Fe2+) and ferric (Fe3+) salts into a basic aqueous medium at a pH 

range 8~14 under non-oxygen environment. The reaction can be described as the following 

equation (Equation a). 

                              𝐹𝑒2+ + 2𝐹𝑒3+ + 8𝑂𝐻− → 𝐹𝑒3𝑂4 ↓ +4𝐻2𝑂                                           (a) 
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The quality of the magnetic nanoparticles (size, shape, and composition) is highly 

dependent on the type of salts used (e.g., chlorides, sulfates, nitrates), the Fe2+ /Fe3+ ratio, 

temperature, pH value and ionic strength of the media.43 Fe3O4 nanoparticles obtained by this 

method usually with very small size (10-20 nm), exhibiting superparamagnetic property. 

Superparamagnetism explains the state that nanoparticles at nanometer size become a single 

magnetic domain so that the total magnetic moment of the nanoparticle can be consider as one 

giant magnetic moment. Individual nanoparticles at this state behave as huge paramagnetic atom 

with a fast response to an external magnetic field with negligible remanence (residual magnetism) 

and coercivity (the field required to bring the magnetization to zero), leading to the reduction of 

agglomerating of nanoparticles at room temperature.43  

Theoretically, the magnetic nanoparticles are reproducible by chemical coprecipitation 

technique once the synthetic conditions are fixed. However, despite the advantages that it is a facile 

and convenient way to obtain IONPs in large scale, the drawbacks of coprecipitation are also 

obvious. For instance, it is very hard to control the particle size distribution because the growth of 

the crystal is only controlled by kinetic factors. In addition, severe aggregation of nanoparticles 

from this method has been found to be a hindrance to their performance and applications.51 

Therefore, monodisperse iron oxide nanoparticles are pursued.  

The mechanism for the formation of IONPs can be divided into two steps, nucleation and 

crystal growth.52 In particular, there is a short burst of nucleation when the solution is highly 

supersaturated, followed by a rapid size focusing growth process on the surface of the nuclei. The 

complete separation of nucleation and growth is critical to obtain monodisperse iron oxide 

nanoparticles. In addition, a very narrow size distribution of monodisperse nanoparticles can be 

obtained if all nuclei form at the same time, as it is the end of nucleation during the reactively short 
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period rather than the particle growth that determines the final particle number.53 Fortunately, a 

variety of methods have been used to control the nucleation and crystal growth process by precisely 

controlling the reaction temperature, choosing solvents with different boiling points, and adding 

stabilizing or reducing agents such as oleic acid, polyvinlyalcohol.54 55  

Thermal decomposition is a promising method for making high-quality magnetic 

nanoparticles, in which organometallic precursors (eg. metal acetylacetonates [M(acac)n]) are 

decomposed to metal oxides in high-boiling organic solvents in the presence of stabilizing 

surfactants. In such methods, the size, shape, magnetic characteristics, and surface properties of 

iron oxide nanoparticles can be controlled by varying experimental conditions during synthesis, 

including pH, ionic strength, temperature, nature of salts and so forth. For example, Hyeon and 

co-workers56 developed a very facile thermal decomposition method to produce monodisperse iron 

oxide nanospheres (5~22 nm) on an ultra-large-scale of 40 g in a single reaction without a further 

size-sorting procedure. In their method, iron oleate precursors were made first using inexpensive 

iron (III) chloride and sodium oleate, followed by a decomposition process of the precursors in 

high boiling point solvents, in the presence of fatty acids as capping agents. The reaction was 

carried under an inert atmosphere at a steady temperature ramp of 3.3 °C/min up to 320 °C, 

allowing for a separated nucleation and crystal growth process to form monodisperse nanocrystals. 

The size and shape of the nanocrystals could be tuned by decomposition temperature and aging 

      ,                                      v  y. I   y   ’     k,    v     with different boiling 

points were used to control the reactivity, including long-chain alkene (1-hexadecene, 1-

octadecene, e-eicosene), amine (trioctylamine), or ether (octyl ether). Similar work has been 

reported that the reaction could be faster with shorter chain length and a higher concentration of 

fatty acid. Thermal decomposition methods not only give very good control for size and shape of 
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the nanoparticles in a scalable manner, but also allows for the synthesis of both hydrophobic and 

hydrophilic nanocrystals. Gao group developed several synthetic routes for water-soluble IONPs 

by adding water-miscible solvents and capping agents. 57,58  

Hydrothermal reduction of nanocrystals is based on a phase transfer and separation 

mechanism occurring at the liquid-solid-solution interfaces. As an example, Li group developed a 

hydrothermal reduction method to synthesize monodisperse and hydrophilic magnetic beads with 

controlled size in the range of 200-800 nm.50 Typically, the reaction was carried in a sealed Teflon-

lined stainless-steel autoclave containing a mixture of FeCl3, ethylene glycol, sodium acetate, and 

polyethylene, and kept at 200 °C for 8-72 h. In this reaction, ethylene glycol worked as a reducing 

agent, sodium acetate and polyethylene worked as the stabilizer to prevent particle agglomeration. 

It is worth mentioning that this multicomponent reaction mixture worked excellently to lead the 

formation of desired materials. In addition, this process can be extended to the synthesis of a series 

of ferrite MFe2O4 (M=Fe, Mn, Co, Zn) with controllable particle size by adjusting the reaction 

time. 

Microemulsions are dispersions of oil and water stabilized by surfactant molecules. They 

are made of droplets surrounded by a surfactant monolayer and dispersed in a continuous phase.59 

There are two types of microemulsions: water-in-oil (W/O) and oil-in-water (O/W). A W/O 

microemulsion is composed of water droplets surrounded by surfactant molecules in a nonpolar 

organic phase. Vice versa, an O/W microemulsion system is formed by a stable suspension of oil 

drops in an aqueous phase. By taking advantage of the highly ordered and stable feature, a 

microemulsion can be used as nanoreactor to generate various types of nanoparticles. For example, 

a mixture of two identical water-in-oil microemulsions, each containing the desired reactants, will 

continuously collide, coalesce, and break again, resulting in the formation of magnetic 
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nanoparticles in the micelles.43 The size of the reverse micelle is determined by the molar ratio of 

water and surfactant, which finally determines the size of the resulting nanoparticles. Ganguli and 

coworkers60 prepared cuboidal Fe3O4 nanoparticles with size of 60~70 nm by the reverse 

microemulsion method in the presence of cationic surfactant cetyltrimethyl ammonium bromide 

(CTAB). Although microemulsion techniques afford very good control on the size and shape of 

resulting nanoparticles, scaling-up is rather difficult due to the requirement of large amount of 

solvents. Some other commonly used methods are also summarized in Table 1.1.  

Table 1.1 Summary comparison of synthetic methods for producing magnetic IONPs. 

 

Method 
Reaction and 

conditions 

Reaction 

temp. 

[°C] 

Reaction 

period 

Size 

distribution 

Shape 

control 
Yield 

Co-precipitation 
Very simple, 

ambient 
20-150 Minutes 

Relatively 

narrow 
poor 

High/ 

scalable 

Thermal 

decomposition 

Complicated, 

inert 

atmosphere 

100-350 
Hours-

days 

Very 

narrow 

Very 

good 

High/ 

scalable 

Hydrothermal 

synthesis 

Simple, high 

pressure 
150-220 

Hours-

days 

Very 

narrow 

Very 

good 

High/ 

scalable 

Microemulsion 
Complicated, 

ambient 
20-80 Hours Narrow Good Low 

 

1.5.2 Surface functionalization  

IONPs are usually considered inert, which make them ideal for imaging and separation.61 

However, the application of magnetic core alone is limited due to the instability and lack of surface 

functionality for adsorption and immobilization. First, bare IONPs are not physically and 

chemically stable, because magnetic cores have large surface-to-volume ratio and therefore tend 

to agglomerate to reduce the surface energies.  They are also chemically active and can be easily 
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oxidized in air, resulting in loss of magnetism and dispersibility. So proper surface modification 

of magnetic core is necessary to improve IONP behavior in solution, including colloidal stability, 

pH response, toxicity, and further application. Second, surface-functionalized monodisperse 

IONPs promise great advancement in a wide range of applications, including drug delivery,62 

magnetic resonance imaging (MRI),63,64 bioseparation of proteins, DNA and cells,65-67 

catalysis,68,69 ferrofluids,70 data storage,71 and adsorption,72. Fortunately, the surface of IONPs can 

be easily hybridized or coated with one or more materials, including organic materials (small 

molecules, surfactants, polymers, biomolecules) and inorganic materials (silica, carbon, noble 

metals (Ag, Au, Pt), metal oxide and sulfides), depending on the purpose of applications.51,73 Such 

surface modification process provides not only the magnetic core a shield from surrounding 

environment, but also allows for further conjugation of the magnetic particle with various targets.  

Small molecules and surfactants. High-quality IONPs generated from thermal 

decomposition method are hydrophobic due to the nonpolar groups at the end of long-chain 

capping reagents such as oleic acid and oleylamine. Ligand exchange strategies using small 

molecules or surfactants have been used to transfer IONPs from organic phase to aqueous phase, 

including using small molecules or surfactants.74 It is usually a one-step process that provides good 

dispersibility of resulting nanoparticles in aqueous solution with only a slight decrease in 

magnetization. However, the drawbacks of such strategy are also obvious, that is, IONPs modified 

by such a thin layer of small molecules or surfactants are generally not chemically stable towards 

surrounding environments. 

Polymer coating. Surface coating with polymers is a very useful strategy regarding the 

stability of IONPs and the diversity of functionalities at the surface of IONPs. Particularly, the 

hydrophobic nature of the magnetic core is not a problem because the polymer coating does not 
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involve the replacement of surface ligands on nanoparticles for solubility purposes. In general, 

polymers can be chemically anchored or physically adsorbed on IONPs to stabilize the 

nanoparticles in suspension through electrostatic repulsion or steric repulsion. Polymers used to 

coat the magnetic cores usually contain desired functional groups for target conjugation, such as 

carboxylic acids, amines, phosphates, and sulfates. Widely used polymers for coating include poly 

(lactic acids) (PLA), poly(propylacrylic acid) (PPAA), poly(ethylenimine) (PEI), poly (ethylene 

  y   )(PEG),    y(v  y         )(PV ),    y(ε-caprolactone) (PCL), poly(alkylcyanoacrylates) 

(PACA), poly(methyl methacrylate)(PMMA), poly (aniline) (PANI), poly(pyrrole) (PPy), 

poly(vinylpyrrolidone) (PVP), and their copolymers.75-77 Interestingly, polymer coating enables 

                   v     y    “     ” I NP ,                y         v     the surrounding 

conditions such as pH, temperature, and light, depending on how the polymer chains are 

functionalized. For example, poly (N-isopropylacrylamide) (PINPAAm) is a well-known thermal-

responsive polymer because of the –NH-CO-group. Polymers containing carbonyl groups (PMMA, 

PAA, PEAA) or amine groups (PEI, chitosan) are good candidates to make pH-sensitive IONPs 

for adsorption and separation applications.  

Metal coating. Magnetic nanoparticles coated with noble metals (e.g., Au, Ag, Cu, Pd, Co, 

Pt) are highly stable and exhibit unique physicochemical properties such as localized surface 

plasmon resonance and surface-enhanced Raman scatting.78 The combination of metallic NPs and 

magnetic IONPs possess great potential for applications in catalysis, contrast imaging, medicine, 

and sensing.51 The formation of IONP/metal structures involves molecular or charged links 

between IONPs and metal, or electron transfer at the interface of IONPs and metal for dumbbell 

IONP/metal structure. They can be realized through various synthetic routes, including redox 
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transmetalation, microemulsion, self-assembly, iterative hydroxylamine seeding, or other 

methods.43  

Carbon coating. Carbon-protected IONPs are also attractive surface modification strategy 

because of their high chemical and thermal stability, intrinsic high electrical conductivity, as well 

as good biocompatibility. Carbon coated IONPs can be generated by the process of polymerization 

on magnetic seeds followed by subsequent carbonization. Such approach has been used to 

successfully make large-scale monodispersed Fe3O4@C core-shell structures with different 

morphologies such as spheres, chains, and rings.79 Fe3O4/graphene hybrids are another popular 

routes to make multifunctional IONPs because of many readily available functional groups on 

graphene including carboxyl, hydroxyl, and epoxide groups. Fe3O4/graphene hybrids have shown 

some unique properties such as high conductivity, large surface-to-volume ratio, and high 

magnetism, which make them good candidates for a broad range of applications including lithium-

ion batteries, sensors, catalysts, etc.  

Silica coating. Silica coating has been one of the most popular surface modification 

strategies. Because a silica shell does not only protect magnetic cores from oxidation and acid 

erosion, but also provides –OH groups for further introduction of functionalities. There are two 

main approaches to make silica coated magnetic nanoparticles. One prevailing method is the well-

established Stöber sol-gel process, in which silica is grown on the surface of nanoparticles through 

hydrolysis and condensation in the mixture of alcohol, ammonia, and water. Silanes including 

tetraethoxysilane (TEOS), vinyltriethoxysilane (VTEOS), and octadecyltrimethoxysilane are most 

commonly used silane source. The thickness of silica shell can be controlled by varying the 

concentration of ammonia and the ratio of TEOS to water. After silica coating, the surface of 

nanoparticles is full of –OH groups that are readily modified with other functional groups. Also, 
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the silica coated IONPs present excellent dispersibility owing to the negative surface charge on 

the silica shells.  

The second method is microemulsion synthesis, which is also a sol-gel process. It utilizes 

micelles or inverse micelles in a microemulsion system to precisely confine the growth of silica 

on magnetic cores. The synthesis of core-shell structures with single IONP cores loaded into silica 

shell is challenging, because the surface energy of sub-50-nm IONPs is so high that the aggregation 

can be easily triggered either by pre-treatment of IONPs or by a vital change of the microemulsion 

composition. During the formation of core-shell nanoparticles, core-free silica beads and multi-

core loading are the two main obstacles to obtain uniform single-cored structures. The energy 

barrier for heterogeneous nucleation is lower than the homogeneous nucleation, but heterogeneous 

and homogeneous nucleations are competing with each other throughout the reaction. Multi-

loading phenomena may also be caused by the aggregation of IONPs before being injected into 

the reverse microemulsion system, or by the break of microemulsion stability during the reaction 

due to the evaporation of organic solvent and ammonia. 80  

It is noteworthy that core-shell nanoparticles with a single core and tunable silica shell 

thickness have been realized by the reverse microemulsion method.81 This phenomenon may be 

explained by La Mer theory, in which the concentration of hydrolyzed TEOS monomer (C) must 

fall in the range between its solubility concentration (Cs) and homogeneous nucleation 

concentration (Chomo) throughout the reaction process (Figure 1.9). Based on this theory, Ding 81 

found that the number of magnetic cores must match the number of reverse micelles by careful 

adjustment of the proportions among the concentration of TEOS, ammonia, surfactant, and IONP 

cores. Ding et al. have also demonstrated an equivalently fractionated drop method by adding fresh 

TEOS sequentially after the previous TEOS was consumed. Also, Chen82  demonstrated that it is 
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hard to guarantee the reproducibility of single-loaded nanoparticles from batch to batch by adding 

TEOS manually, but adding TEOS using a syringe pump help better control of the final products.  

 

Figure 1.9. (a) La Mer-like diagram: hydrolyzed TEOS (monomers) concentration against time on 

homogeneous nucleation and heterogeneous nucleation, (b) the existence of Fe3O4@SiO2 

core/shell NPs and SiO2 NPs when C > Chomo at some moment. (c) the existence of only 

Fe3O4@SiO2 core/shell NPs when C < Chomo at some moment. Reprinted with permission from 

Ref. 81. Copyright 2012 Ameican Chemical Society. 

1.5.3 Reverse microemulsion system strategies.  

Reverse microemulsions are usually described as small water droplets surrounded by a 

monolayer of surfactant in a nonpolar solvent. It is a phenomenon caused by the self-assembly of 

surfactant with its polar head groups packed towards the aqueous core. In a reverse microemulsion 

system, water-in-oil reverse micelles are of great interest in the synthesis of inorganic 

nanoparticles. Silica coating of inorganic nanoparticles in a water/polyoxyethylene(5) 

nonylphenylether (Igepal CO-520)/cyclohexane reverse microemulsion has been proven very 

effective for the synthesis of nanoparticles. These reverse micelles provide confined space of 

nanometers for silica shells to grow on nanoparticles, resulting in functionalized nanoparticles with 
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exceptionally sharp size distributions. More interestingly, the reverse microemulsion technique 

allows for the formation of uniform silica shell on single hydrophobic nanoparticles, such as 

oleate-modified hydrophobic IONPs. A surfactant-exchange mechanism has been suggested by 

several research groups for the silica shell formation,83,84 in which the capping agent of oleic acid 

on the particle surface is exchanged with a nonionic surfactant.81 To further uncover the 

mechanism of the formation of single-core type nanoparticles, Katagiri and Ritcey research groups 

studied the surfactant-exchange and shell growth of silica coated IONPs using dynamic light 

scattering (DSL).85,86 They calculated the concentration of free surfactant according to DSL data 

and found that the concentration of free surfactant and volume occupied by the surfactant within 

the polar core are not negligible. Particularly, they found that the amount of free surfactant in a 

fixed amount (15 mL) of cyclohexane exceeded 50%. After taking into consideration the free 

surfactant concentration, the volume taken up by the polar head of the surfactant within the 

micelles, and effective length of hydrophobic part of the surfactant,  Lemyre and co-workers 

developed a model to predict the hydrodynamic radius of reverse micelles, with the assumption 

that the shape of reverse micelles is spherical: 86 

                        𝑟𝐷𝐿𝑆 = √
3𝑁

4𝜋
(

𝑉𝐻2𝑂,𝑡𝑜𝑡𝑎𝑙

𝑛𝑠𝑢𝑟𝑓,   𝑖𝑛 𝑚𝑖𝑐𝑒𝑙𝑙𝑒𝑠
 + 𝑉𝑠𝑢𝑟𝑓,   ℎ𝑝ℎ𝑖𝑙𝑒)

3
 + 𝑙ℎ𝑝ℎ𝑜𝑏𝑒                                (1.8) 

Where 𝑟𝐷𝐿𝑆 is the hydrodynamic radius of the reverse micelle; N is the aggregation number, 

meaning the number of surfactant molecules per reverse micelle; 𝑉𝐻2𝑂,𝑡𝑜𝑡𝑎𝑙 is the total volume of 

water in the system; 𝑛𝑠𝑢𝑟𝑓,   𝑖𝑛 𝑚𝑖𝑐𝑒𝑙𝑙𝑒𝑠 is the number of surfactant molecules in all reverse micelles; 

𝑉𝑠𝑢𝑟𝑓,   ℎ𝑝ℎ𝑖𝑙𝑒 is  the volume of the hydrophilic part of the surfactant (Igepal CO-520, 0.35 nm3); 

𝑙ℎ𝑝ℎ𝑜𝑏𝑒 is the effective length of the hydrophobic tail of the surfactant (Igepal CO-520, 1.35 nm).  
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Figure 1.10. A ligand-exchange mechanism of silica coating in a water/Igepal CO-

520/cyclohexane reverse microemulsion system. Reprinted with permission from Ref. 81. 

Copyright 2012 Ameican Chemical Society. 

1.6 Plan of study 

Given the fact that a lot of APIs and biomolecules (proteins and nuclei acids) contain 

amines and carboxylic acids, it is of significance to develop a continuous-flow purification 

platform to selectively separate such molecules. One attractive solution is to realize selective 

attachment of desired product to the surface charged magnetic nanoparticles via electrostatic 

binding, accompanied by continuous detachment of products. The association and dissociation 

between product and magnetic nanoparticles are achieved by changing pH (Figure 1.11). The 

magnetic force assisted microfluidic separation does not require the consideration of the nature of 

products because the magnetic forces that drive the separation is free of contact with targets. 

Magnetic separation in a continuously flowing mode also avoids sharp loss of targets from multiple 

washing cycles and reduces trapping of impurities in magnetic aggregates. While most currently 

used magnetic materials are microbeads or nanoclusters, which have shown high magnetization 

by sacrificing the size and morphology control, core-shell magnetic nanoparticles with a single 

core and controlled silica shell thickness and abundantly available surface functionalities as 
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binding sites would be ideal for effective separation. Controlled silica shell thickness could provide 

enough protection for the magnetic core without significantly losing the magnetization. In addition, 

with only a thin layer of functionalities attached on the surface, the separation efficiency is largely 

increased. Moreover, single-core structures can maintain magnetization for a longer period 

because unencapsulated magnetic nanoparticles tend to aggregate over time to reduce energy, 

which could result in magnetization loss. Therefore, the first objective of this project was to 

synthesize single-cored magnetic nanoparticles with surface amines and carboxylic acids. Once 

the magnetic nanoparticles were prepared, the second objective of the project was to utilize the 

functionalized nanoparticles for affinity-based separation in a microfluidic device. The 

microfluidic device is fabricated with PDMS through a general micromold casting procedure. It is 

composed of a mixing chip and a separation chip connecting with capillary tubing. As a proof of 

principle, dye mixture of toluidine blue O (TBO) and fluorescein, resembling drug molecules, were 

separated by carboxyl functionalized IONPs Fe3O4@SiO2-COOH in the micro-channel, where 

Fe3O4@SiO2-COOH can selectively capture TBO via electrostatic binding.  
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Figure 1.11. Reversible complexation of charged iron oxide magnetic nanoparticles with   

amine/carboxyl-based products.  
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CHAPTER 2. ONE-POT SYNTHESIS OF SIZE CONTROLLABLE AMINE-

FUNCTIONALIZED CORE-SHELL MAGNETIC NANOPARTICLES  

2.1 Introduction 

Surface modified IONPs with controlled morphologies, fast magnetic responsiveness, high 

colloidal stability, and high density of surface functionalities are ideal for selective separation in a 

microfluidic device. In particular, iron oxide magnetic nanoparticles have gained popularity 

because of their low cost and ease of preparation. Among various methods of making IONPs, 

thermal decomposition has proven superior to other methods such as coprecipitation and 

solvothermal reduction, for obtaining monodisperse, size controllable, as well as 

superparamagnetic nanoparticles. In a thermal decomposition process, an iron oleate precursor is 

mixed with a surface capping agent (e.g., oleic acid), and decomposed in a high-boiling nonpolar 

solvent at temperatures above 300 °C, resulting in iron oxide nanocrystals with very high 

scalability, narrow size distributions, tunable sizes and low crystalline defects.43,87  However, 

IONPs prepared using this method are hydrophobic. Subsequent application of those IONPs for 

aqueous microfluidic separations requires the replacement of the long hydrophobic alkyl 

surfactants on their surfaces with hydrophilic or amphiphilic ligands. Ligand exchange using small 

molecules seems a very simple and straight forward strategy. For example, Liu and co-workers88 

recently demonstrated a direct conversion method from hydrophobic to hydrophilic IONPs using 

3,4-dihydroxyhydrocinnamic acid without any complicated organic synthesis. Despite the 

convenience of ligand-exchange strategy, the modified surface with such a thin layer of small 

molecules could not provide enough protection, meaning the IONPs will aggregate and even lose 

magnetization after being used several times. Therefore, a more efficient generalizable surface 

modification strategy is an important step towards the application of IONPs in separation. 
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An attractive method is coating the nanoparticles with silica shells. Because silica shells 

can not only protect the nanoparticles from being oxidized, but can also easily be further modified 

with various functionalities for a large range of desired applications. Another advantage of a silica 

coating lies in its nontoxicity, which enables the application of IONPs in a broader range of 

applications, especially in the biomedical field. Moreover, hydrophobic IONPs made from non-

polar solvents can be made hydrophilic with the coating of a silica shell due to the surface hydroxyl 

groups present. Ding and coworkers81  reported an easy way to prepare size tunable Fe3O4@SiO2 

core/shell nanoparticles with a single magnetic core by a reverse microemulsion method. They 

discovered that the ratio of IONPs, Igepal CO-520 and ammonium in the silica coating reaction is 

very important to obtain high quality of core-shell structures with a single magnetic core in the 

center of a silica shell. Also, the shell thickness can be controlled by the amount of TEOS added.  

The formation of core-shell IONPs comprising a silica layer coating onto a single magnetic 

core seems attractive towards realizing our goal of continuous separation in microfluidic devices. 

Simple microemulsion methods have been reported for the facile encapsulation of a variety of 

nanoparticulate cores with silica shells.81,83,84,89,90 Unfortunately, subsequent shell 

functionalization typically involves complicated multi-step procedures and polymerizations, 

which are time-consuming and labor-intensive.91 Therefore, less complicated synthetic routes 

towards functionalized magnetic nanoparticles are desirable. In this work, we demonstrated a 

simple one-pot synthesis of amine functionalized core-shell magnetic nanoparticles with a tunable 

shell thickness using a reverse microemulsion method, and its potential applicability in 

microfluidic separations.  
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2. 2. Experimental 

2. 2. 1 Materials and methods 

Ferric chloride hexahydrate (FeCl3•6 2O) was purchased from Fisher, sodium oleate was 

obtained from TCI America. Tetraethyl orthosilicate (TEOS), (3-aminopropyl)triethoxysilane 

(APTES), cyclohexane, 1-butanol, and IGEPAL®CO-520 (average Mn 441), Fmoc chloride, 

piperidine, dimethylformamide (DMF), and sodium fluorescein were purchased from Sigma-

Aldrich. Sodium acetate (NaOAc), Triton-X100 were bought from BDH chemicals; ammonium 

hydroxide (NH4OH, 28%~30%) was obtained from Caledon. All solvents were dried over 4A 

molecular sieves and filtered prior to use.  

UV-Vis spectroscopy was performed on a NanoDrop 2000c/2000 UV-Vis 

spectrophotometer. High-speed centrifugation was performed using a Baxter Biofuge 17R 

centrifuge. Sonication was performed using a Branson 450 Digital Sonifier. High temperature 

reactions were carried out in either a Welmet FT3034 or Carbolite STF 16/180 tube furnace. A 

sintered Nd2Fe14B permanent supermagnet was used for magnetically-assisted precipitation of 

nanoparticles. Morphologies and particles sizes were examined on a transmission electronic 

microscopy (TEM, Philips 2000). Powder X-ray diffraction (PXRD) spectra were run on a 

Siemens D5000 Diffractometer System operating at 50Kv/35 mA. The surface functionalities were 

determined by a Fourier transform infrared spectroscopy (FTIR, Thermo Fisher). 

2. 2. 2 Synthesis of monodisperse hydrophobic Fe3O4 nanoparticles  

Monodisperse hydrophobic IONPs were obtained using a modified thermal decomposition 

method by Hyeon.48 Iron oleate was first prepared by refluxing a mixture of FeCl3•6 2O (8 mmol, 

2.16g) and sodium oleate (24 mmol, 7.31g) in a solvent mixture of H2O, EtOH, C6H6 (12 mL, 16 
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mL, 28 mL) at 70°C for 4 h. The expected Fe(oleate)3 complex was extracted from the organic 

layer using a separatory funnel, washed with distilled water 3 times, and dried in vacuo. 4.24g 

(4.72 mmol) Fe(oleate)3 was transferred into an 80 mL tube containing 1-octadecene (29.9 mL), 

oleic acid (2.36 mmol, 0.75 mL), and made homogeneous with a votex mixer. The tube was 

transferred to a tube furnace and flushed with argon (Figure 2.1). The reaction mixture was heated 

to 320 °C and refluxed at this temperature for 30 min under a static pressure head of argon. The 

resulting black solution was cooled to room temperature and precipitated by excess ethanol. The 

precipitate was collected by centrifugation, then redispersed in hexane and precipitated with 

ethanol several times to purify the resulting Fe3O4 nanoparticles. The purified IONPs were dried 

in vacuo and stored as a suspension in cyclohexane (25 mg/mL) under Ar. 

 

Figure 2.1. A modified reaction setup for the synthesis of hydrophobic Fe3O4 nanoparticles using 

a thermal decomposition method. 
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2. 2. 3 Synthesis of amine modified Fe3O4 core-shell nanoparticles with controllable shell 

thickness 

A modified reverse microemulsion method by Ding81 was used to obtain amine 

functionalized core-shell IONPs, herein symbolized as Fe3O4@SiO2-NH2 (as shown in Scheme 

2.1). Typically, 0.25 mL of Igepal CO-520 surfactant was dissolved in 10 mL cyclohexane, and 

   j                        15    .      100 μL N 4OH was added followed by 2.5 mg Fe3O4 

(2.5 mg/mL in cyclohexane). After 30 min of continuou                   , 50 μL  E             

to the mixture via an equivalently fractionated droppi                        5 μL  v  y 16 h.  A 

certain molar ratio of APTES to TEOS was subsequently added 24 h after the TEOS was added. 

When the reaction finished, 2 mL of methanol was added to break the microemulsion. The 

hydrophilic product was purified by alternatively washing with EtOH and distilled water. The 

resulting Fe3O4@SiO2–NH2 IONPs were collected magnetically and dried in vacuo. 
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Scheme 2.1. One-pot synthesis of amine-functionalized Fe3O4@SiO2-NH2 magnetic nanoparticles. 

 

2. 2. 4 Determination of active amine groups on Fe3O4@SiO2–NH2 IONPs  

Because there are unavoidable embedded amine groups by the top layer and unreacted 

APTES, the number of active functional groups on the surface of magnetic nanoparticles was 
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examined using a reported Fmoc method.92 The experimental procedure was as follows: 20 mg 

Fe3O4@SiO2–NH2 were dispersed in 2 mL dry DMF. An excess amount of Fmoc-Cl (1.07 mmol, 

277 mg) was added and the mixture was sonicated for 40 min under argon. The nanoparticles were 

isolated by high-speed centrifugation, washed with MeOH 5 times to remove unattached Fmoc-Cl 

residues, and dried in vacuo. The attached Fmoc molecules were then cleaved by the action of 

piperidine (200 L) in DMF (800 L) under sonication for 20 min. The nanoparticles were 

removed by high-speed centrifugation, and the number of Fmoc-Cl molecules covalently bound to 

the NH2 groups was determined spectrophotometrically at 226 nm and the NH2 groups was 

calculated from a calibration curve of optical density vs. known Fmoc-Cl concentration, assuming 

that each group binds a single Fmoc-Cl molecule. 
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Scheme 2.2. Assay of active amine groups on Fe3O4@SiO2-NH2 nanoparticles. 

2. 2. 5 Surface binding capacity of Fe3O4@SiO2-NH2 IONPs  

The active amine groups were detected by reacting with Fmoc-Cl through covalent binding. 

But to realize fast capture and release in a microfluidic device, electrostatic binding is preferred. 

The binding efficiency may vary due to different binding forces. So the binding capacity of 

resulting Fe3O4@SiO2-NH2 IONPs was studied by a colorimetric method using fluorescein as 

target molecules. Briefly, 20 mg Fe3O4@SiO2-NH2 IONPs were homogenously dispersed and 
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incubated in HCl solution (pH 5), allowing for the protonation at the particle surface. Then sodium 

fluorescein (0.54 mL, 0.01 M) was added as a model target resembling carboxylate drug molecule. 

The mixture was kept at pH 5 and stirred for 1 h, then rinsed with ethanol/water by repeated 

sonication/magnetic isolation cycles, in order to remove unbound fluorescein molecules from the 

surface of IONPs. The precipitated IONPs were dried in vacuo, then sonicated into 1000 L NaOH 

to release fluorescein molecules from the IONPs. The amount of bound fluorescein was 

determined using a UV-vis spectrophotometer at 490 nm. Prior to this, a calibration curve of 

optical density vs. known fluorescein concentrations was obtained. And the calculation of binding 

capacity was based on the assumption of 1:1 ratio between the fluorescein and the NH2 groups. 

2. 3 Results and Discussion  

2. 3. 1 Monodisperse Fe3O4@SiO2 core-shell nanoparticles 

Hydrophobically-capped iron oxide cores obtained by the thermal decomposition method 

are highly reproducible, monodisperse, and size controllable. Transmission electron microscopy 

(TEM) in Figure 2.2 (a) indicates the material exists as highly monodisperse spherical 

nanoparticles having average diameter of 20 nm. Powder X-ray diffraction (PXRD) studies (Figure 

2.2 (b)) confirm that these particles are magnetite (Fe3O4). Application of the Scherrer equation 

(equation 2.1) to the broadening of the (311) reflection signal corroborate an average diameter of 

20 nm.  

                                                     D =  
𝑘𝜆

𝛽𝑐𝑜𝑠𝜃
                                                                 (2.1)              

Where D is the mean size of the crystallites (nm), k is crystallite shape factor approximate 

   0.9, λ         -  y   v       , β                                                    y        

   k,     θ                         .  
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In our experiment, the reactions were carried out in a tube furnace, obtaining the same 

spherical monodisperse IONPs nanocrystals as reported in the literature, in which the reaction was 

carried in a round flask placed in a temperature-controlled heating mantle, with the exception that 

the size of our IONPs are larger. The size of IONPs could be result of a co-effect of solvents and 

capping agents. Heyon56 reported in their work that the size of IONPs can be increased by 

increasing the boiling point of solvents. Also, the capping agents can modify the surface energy at 

the solid-liquid interface and therefore have a significant effect on the size and shape of resulting 

IONPs. Willis and coworkers54 proved that oleic acid acts like reducing reagent by losing the 

double bond on the backbone, which is necessary for the synthesis of stable monodisperse iron 

oxide nanocrystals. Thus, it is the coexistence of oleic acid and 1-octadecene in a proper proportion 

that determined morphology and size distribution of IONPs.  

 

Figure 2.2. (a) TEM image and (b) PXRD pattern of Fe3O4 cores. 

 

Fe3O4@SiO2 core-shell nanoparticles were obtained by silica coating of the Fe3O4 cores 

through a water-in-oil (w/o) microemulsion process,90 in which base-catalyzed hydrolysis of 

tetraethyoxysilane (TEOS) occurs in the interior of reverse micelles that are surrounded by a 
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monolayer of Igepal CO-520 surfactant in cyclohexane. The silica coating process actually 

undergoes a ligand exchange mechanism in the reverse microemulsion system, where the long-

chain oleic acid on the IONP surface was replaced by the surfactant and the surfactant was replaced 

by silanol again. After two ligand exchange steps, the IONPs enter the ammonia aqueous domain, 

in which each iron oxide magnetic core behaves like a nucleation site for TEOS to grow on the 

particle surface to form core-shell structures. Figure 2.3 showed the TEM images of resulting 

silica-coated nanoparticles Fe3O4@SiO2. The coating conditions were summarized in Table 2.1. 

In Figure 2.3, images 1, 2, and 8 indicate that decreasing the amount of ammonia resulted in 

obtaining no core-shell structures. According to image 1, 6, 7, and 10, no core-shell structures 

could be obtained at either low or high concentration of surfactant CO 520. Image 1 and 5 show 

that addition of cosurfactant 1-butanol is not necessary. Images 4 (T-N) and 9 (N-T) represent 

adding TEOS (T) and NH4OH (N) in different order, and the result show that reversing the 

sequence of adding TEOS and ammonia did not affect the formation of single-cored structures. So 

after figuring out the proportion of the surfactant and ammonia hydroxide to form core-shell 

structures, the core-free silica beads were minimized by increasing the amount of iron oxide 

magnetic cores. According to image 10 and 12, with more Fe3O4 cores added, no core-free 

structures were found. Image 11 and 12 indicate that the addition of TEOS only affect the shell 

thickness but not the formation of core-shell structures. Comparing the entries in table 2.1, it was 

found that the amount of surfactant added and NH4OH played a more significant role on the 

obtaining core-shell nanostructure than that of TEOS and co-surfactant 1-butanol. Therefore, to 

obtain core-shell nanostructures with a single magnetic core, and without core-free SiO2 

nanoparticles, it is crucial to match the number of magnetic cores with the number of inverse 

micelles. It is known that the size and number of inverse micelles in a base-catalyzed silica 
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microemulsion is governed by a complex interplay between the concentrations of base, 

organosilane, and surfactant.81 The competition between homogenous and heterogenous 

nucleation is highly determined by the concentration of hydrolyzed TEOS in the microemulsion 

system. If the concentration of the hydrolyzed TEOS passes a threshold for homogenous 

nucleation, core-free silica beads would be found in the products. Also, at low core to micelle 

ratios, core-free silica nanoparticles form; at high core to micelle ratios, multicore structures are 

present. We found the optimum conditions in our experiments for producing the highest yield of 

single-core structures with little or no core-free silica has a core: NH4OH : CO-520 mass ratio of 

2.5 : 0.1 : 0.25. Moreover, under these optimum conditions, the thickness of the shell can be 

controlled by the gross amount of TEOS in the reaction mixture. For example, the addition of 50 

μL     75 μL  E       .5         3O4 cores in 10.0 mL cyclohexane gave silica shell wall 

thicknesses of 15 nm and 20 nm, respectively.  

Table 2.1. A summary of condition optimization for silica coating.  

Entry Fe3O4 

(mg) 

TEOS 

(μL) 

NH4OH 

(μL) 

CO-520 

(g) 

1-butanol 

(μL) 

Core-shell formed 

1 1.25 75 100 0.50 0 no 

2 1.25 75 50 0.50 0 no 

3 1.25 50 100 0.50 0 no 

4 (T-N) 1.25 75 100 0.25 0 yes 

5 1.25 75 100 0.50 100 no 

6 2.50 75 100 0.50 0 no 

7 1.25 75 100 0.20 0 no 

8 1.25 75 75 0.25 0 no 

9 (N-T) 1.25 75 100 0.25 0 yes 

10 1.25 75 100 0.25 0 yes 

11 2.50 50 100 0.25 0 yes (no core free) 

12 2.50 75 100 0.25 0 yes (no core free) 
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Figure 2.3. TEM images of optimization of silica coating conditions with various ratios of Fe3O4, 

TEOS, NH4OH, CO-520. 
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2. 3. 2 Size-tunable amine-functionalized Fe3O4@SiO2-NH2 IONPs 

A series of amine terminated core-shell nanoparticles were obtained by adding various 

mole fractions of APTES. The IONPs after surface modification are single-cored structures with 

the magnetic cores in the center of the nanostructure. With the increment of the APTES added, the 

shell thickness increased accordingly, as shown in Figure 2.4. Compared to the surface of 

unfunctionalized core-shell nanoparticles, the surface of nanoparticles after amine 

functionalization appears to be rough. This may be because of the large amount of free -OH groups 

existing on the surface, enabling the growing of multiple layers of amine functional groups. The 

roughness could also because of the nucleation of small independent particles due to the hydrolysis 

of APTES.  

 

Figure 2.4. TEM images of size controllable Fe3O4@SiO2-NH2 IONPs with different mole ratios 

of APTES: A, 0% APTES (55nm); B, 10% APTES (76 nm); C, 20% APTES (67 nm); D, 30% 

APTES (92 nm); E, 40% APTES (86 nm); F, 50% APTES (100 nm). 

A B C 

F E D 
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Figure 2.5 shows that the thickness of the amine layer is controlled by the percent mole 

ratio of APTES (mole ratio of APTES to TEOS). The shell thickness increased from 15 to 40 nm 

with the increment of APTES added (0–50 %mol). The resulting Fe3O4@SiO2-NH2 nanoparticles 

exhibited high magnetization and were very responsive to a magnet. As shown in Figure 2.6, the 

resulting IONPs showed very fast response to a magnet. 

 

Figure 2.5.  Average SiO2 shell thickness dependence on APTES concentration. 

 

 

Figure 2.6. Separation of resulting Fe3O4@SiO2-NH2 nanoparticles using a magnet, a) particle 

suspension before separation; b) particles collected by a magnet (within 5 min). 
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The presence of surface amine groups was confirmed by IR spectroscopy. Figure 2.7 

presents the IR spectra of (a) oleate capped Fe3O4 nanoparticles, (b) Fe3O4@SiO2 core-shell 

nanoparticles, and (c) Fe3O4@SiO2-NH2 amine-functionalized core-shell structures (10% APTES). 

In spectrum (a), the absorptions at 2923 cm-1 and 1624 cm-1 are attributed to aliphatic C-H and 

carboxylate C=O, respectively, and indicate the existence of oleic acid capping groups. The 

absorptions near 1099, 947, 800, and 471 cm-1 appear in spectra b and c, and are assigned to 

vibrational modes of SiO2. The broad peak centered at 3408 cm-1 arises from the stretching 

vibration of surface Si-O-H bonds. In spectrum c, the broad peak occurred near 3400 cm-1 indicates 

the presence of Si-O-H on the particle surface due to hydrolysis. But the two distinct bands 

observed at 3392 and 3257 cm-1 can be assigned to the stretching vibrations of primary amines -

NH2. The band observed at 1506 cm-1 is assigned to the –NH2 bending mode. 

 

Figure 2.7. IR spectra of (a) oleate-capped Fe3O4 cores, (b) Fe3O4@SiO2 core-shell nanoparticles, 

and (c) Fe3O4@SiO2-NH2 10% functionalized core-shell nanoparticles. 

(a) 

(b) 

(c) 
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Assay of the active surface amine moieties was accomplished by a standard Fmoc 

quantification protocol.93 Fmoc chloride undergoes quantitative covalent binding to primary amine 

residues via an amide linkage. Thus, the Fe3O4@SiO2-NH2 nanoparticles were incubated with 

excess Fmoc chloride, then isolated and washed extensively to remove any unbound Fmoc. The 

Fmoc tagged nanoparticles were then suspended in clean DMF, and the amide linkage was cleaved 

by the action of piperidine. The concentration of released Fmoc in solution was determined 

spectrophotometrically, using the predominant absorption bands of Fmoc at 226 nm. As shown in 

table 2.2, assuming each amine group binds a single Fmoc-Cl molecule, we determined that for 

the Fe3O4@SiO2-NH2 IONPs prepared with 20 mol% APTES resulting in 67 nm size, the number 

of amine groups per nanoparticle was 1.6 ± 0.046 x 104, representing 1.2 ligands/nm2 amine 

moieties per nanoparticle. A control sample of unfunctionalized Fe3O4@SiO2 resulted in no 

detectable UV absorption.  

Table 2.2. Assay of NH2 groups on a single IONPs by Fmoc-Cl quantification. 

 

Name NH2 / IONPs (ligands/nm2) % error 

Fe3O4@SiO2-NH2 1.2  .6% 

Fe3O4@SiO2 0.0 0.0% 

 

2. 3. 3 Magnetic separation of anionic organic targets by Fe3O4@SiO2-NH2 nanoparticles 

We demonstrate the potential of our surface-functionalized core-shell magnetic 

nanoparticles for use in a microfluidic separation device, by electrostatically binding fluorescein 

carboxylate as a model target, magnetically separating the target-nanoparticle complex from the 

target solution, and releasing the target into fresh solvent by pH induced desorption from the 

nanoparticle, as illustrated in Scheme 2.3. Fluorescein is a convenient model target, as its intense 
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visible fluorescence can be readily detected by the naked eye under UV illumination, and 

accurately assayed fluorometrically.  

The Fe3O4@SiO2-NH2 suspension was first brought to pH 5. At low pH, the amine groups on 

the surface of IONPs were protonated. This suspension is then added to an aqueous solution of 

sodium fluorescein, in which the anionic fluorescein electrostatically adsorbs to the cationic 

surface of nanoparticles. The formed fluorescein-attached IONPs were symbolized as 

Fe3O4@SiO2-NH3
+ FL- (FL means fluorescein). The fluorescein-bound nanoparticles are then 

isolated from the target solution by magnetic separation and, after several washings with ethanol 

to remove any unbound fluorescein, ultrasonically suspended in a clean aqueous solution. This 

suspension shows no visible fluorescence, indicating that the fluorescein is likely bound through 

its (non-fluorescent) open-ring carboxylate form. By adding NaOH to raise pH, the ammonium 

groups on the nanoparticle surface were deprotonated, causing the fluorescein molecules to be 

released in the solution in their fluorescent conformation (Figure 2.8 (a)). The unbound 

nanoparticles were then completely removed from the supernatant by high-speed centrifugation. 

Fluorescence of the solution was observed, indicating the successful adsorption and desorption of 

model molecules from IONPs by adjusting the pH of environment. 
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Scheme 2.3. Adsorption/desorption of an anionic target on Fe3O4@SiO2-NH2 nanoparticles. 
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Figure 2.8.  Fluorescence of released fluorescein molecules under UV light, a) Fe3O4@SiO2-NH2, 

fluorescence observed after release of free fluorescein; b) Fe3O4@SiO2 (control group), no 

fluorescence. 

 

At high pH, fluorescein exists in its highly fluorescent lactone-phenolate form, causing the 

solution of released target to glow visibly under long-wave UV light. Fluorometric analysis of 

fluorescein concentration in the supernatant indicated an average of 2.8 x 103 adsorbed target 

molecules per nanoparticle, nearly six times lower than the number of active amine moieties, as 

determined by Fmoc quantification. This discrepancy is likely due to the difference in binding 

mechanism – the target is electrostatically bound, whereas the binding of Fmoc is covalent. 

2. 4 Conclusion 

Core-shell structures of amine functionalized magnetic nanoparticles with tunable shell 

thickness have been successfully fabricated using a one-pot reverse microemulsion method. The 

nanoparticles prepared by this method are predominantly single-core and highly monodisperse. 

The silica shell can be readily functionalized with a wide variety of target-specific moieties, while 

the superparama                                                   y “      -   ”               
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mixture. Fluorescein was used as a model carboxylate molecule to demonstrate the potential 

separation ability of Fe3O4@SiO2-NH2 nanoparticles towards cationic targets. This system shows 

great promise for use in a microfluidic separation device.   
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CHAPTER 3. PREPARATION OF MULTIFUNCTIONAL CORE-SHELL MAGNETIC 

NANOPARTICLES USING FUNCTIONALIZED TRIETHOXYSILANES 

PRECURSORS BY THIOL-ENE CLICK REACTION 

3. 1 Introduction 

Primary functional groups are tailored onto the surface of IONPs through various chemical 

approaches to prevent nanoparticle agglomeration and provide binding sites for further association 

with targets of interest. For example, amines and carboxylic acids are high-affinity functional 

groups and present remarkable adsorption properties.94 Nanoparticles with charged carboxylic 

acids and amines are excellent candidates for the purification and adsorption of molecules and 

noble metals such as gold and silver.95 Unfortunately, there are few commercially available anchor 

molecules containing amine and carboxylic acids. Thus, very intense research activities have been 

devoted to make amine and carboxyl functionalized ligands. One simple and direct route is to use 

hydrolyzable organosilanes that are derivatized with functional organic fragments. Such 

organosilanes could be covalently bond to IONPs surface via hydrolysis reaction, with functional 

groups stretching out for further conjugation. In our previous work, we have demonstrated a facile 

one-pot method of making size controllable amine functionalized core-shell magnetic 

nanoparticles using amine terminated APTES. This approach showed potential of making surface 

modified magnetic nanoparticles by directly using functionalized triethoxysilanes, which can be 

added as a second silanol source to form uniform core-shell magnetic nanoparticles without 

sacrificing their morphology and other properties. Therefore, it is promising to simplify the surface 

modification process by making trialkoxysilane precursors with a variety of functional groups on 

the end. Under such circumstance, the functionalized trialkoxysilanes enables the terminal silanes 

to be attached onto the surface of magnetic nanoparticles via hydrolysis; and the other end with a 
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variety of functional groups to be utilized for a specific purpose including adsorption, detecting, 

purification, etc. However, the synthetic routes are limited due to the moisture sensitive feature of 

organotrialkoxysilanes,  

In the past decade, click chemistry has emerged as a powerful tool to tailor a variety of 

functionalities on material surfaces. The use of click chemistry in material chemistry has proven 

to be unique and superior due to its versatile mechanisms, mild reaction conditions, rapid reaction 

rates, clean products, high yields, excellent selectivity, and good biocompatibility. A highly 

effective and most widely used click chemistry is the Cu(I)-     yz     ky  − z     y            

(CuAAC).96-98 Functional organotralkoxysilanes have been reported by using the CuAAC reaction 

under anhydrous conditions. By applying microwave activation, organotriethoxysilanes can be 

synthesized with high yield and easy purification steps. 99 But using copper as the catalyst can be 

disadvantageous for some materials. For example, due to the strong coordination between copper 

and silica, complete removal of the copper species from the silica surface is difficult even under 

harsh conditions including highly acidic/basic solutions, which may be undesirable for many 

applications such as catalyst loading and biomolecule binding.100 Some groups reported catalyst-

free click reactions such as strain-promoted cycloaddition by using cyclooctyne and derivatives.101 

The catalyst-free click reaction works well for biological applications, but it resulted in low 

reaction selectivity and functionalities loading due to the stereo hindered effect.102 The radical-

mediated thiol-ene reaction as one type of click reaction has become increasingly attractive to 

material scientists. It contains all the desirable features of a click reaction as mentioned above, in 

addition to the advantages of metal-free and easy accessibility to numerous starting 

marterials.103,104 Examples of surface modification via thiol-ene click reactions found in the 

literature mostly involve a two-batch reactions: the synthesis of surface modified nanomaterials 
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with terminated alkene (or thiol), followed by the reaction of the nanoparticles with functionalized 

thiol (or alkene) under UV light in the presence of the photoinitiator. Nevertheless, such two-batch 

procedures cannot guarantee high surface coverage, and again it requires multiple steps for 

obtaining the final products. Very recently, several groups have been focusing on the thiol-ene 

synthesis of functional water-sensitive organotrialkoxysilanes precursors for surface coating.99,105 

The thiol-ene reaction is tolerant of a broad range of functional groups using fewer organic 

synthesis steps, and it is of significance to provide access to a diversity of commercially-

unavailable-functionalized-trialkoxysilanes with quantitative yields and high purity even on large 

scale.95 However, they were more likely to focus on the organic synthesis and less on the surface 

coating. More detailed study of making well-defined nanoparticles using these trialkoxysilanes is 

necessary for future applications.  

Herein, we used a facile one-pot method for making single-loaded core-shell magnetic 

nanoparticles terminated with a variety of functionalities using thiol-ene clicked triethoxysilanes. 

These triethoxysilanes contain functional groups including amine, carboxylic acid, and ester. None 

of them are commercially available but easy to synthesize using inexpensive and easily accessible 

materials such as triethoxyvinylsilane, cysteamine, 3-mercaptopropionic acid, and ethyl 

mercaptoacetate. The products are very clean, high yielded, and ready to use for surface coating 

without any post-synthesis work-up steps. The significance of this strategy are that we provided a 

less tedious but more efficient one-pot synthetic route using the commercially unavailable 

organotriethoxysilanes; and the nanoparticles are size- and morphology-controllable with 

terminated amine and carboxyl groups, but not limited to the functional groups we discussed in 

this chapter. Such well-prepared functionalized nanoparticles show the potential of fulfilling a 
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broad range of highly demanded applications, like microfluidic separations, biomolecule 

adsorption, drug targeting, and catalyst loading. 

3. 2 Experimental  

3.2.1 Chemicals 

Ferric chloride hexahydrate (FeCl3•6 2O) was purchased from Fisher, ammonium 

hydroxide (NH4OH, 28%~30%) was obtained from Caledon. Tetraethyl orthosilicate (TEOS), 

sodium azide, (3-chloropropyl) triethoxysilane (95%), triethoxyvinylsilane (98%), trimethylamine 

(TEA, 99%), 3-(triethoxysilyl)propyl isocyanate (IPTEOS, 95%), cysteamine (95%), 3-

mercaptopropionic acid (99%), ethyl mercaptoacetate (97%), 2,2-Dimethoxy-2-

phenylacetophenone (DMPA, 99%), IGEPAL®CO-520 (average Mn 441), propargyl alcohol, 

cyclohexane, dimethyl sulfoxide (DMSO), dichloromethane (DCM) and all other solvents were 

purchased from Sigma-Aldrich.   

3. 2. 2 Characterization techniques. 

High temperature reactions were carried out in a Welmet FT3034 or Carbolite STF 16/180 

tube furnace. High-speed centrifugation was performed using a Baxter Biofuge 17R centrifuge. 

Sonication was performed using a Branson 450 Digital Sonifier. Morphologies and particles sizes 

were investigated by a transmission electronic microscopy (TEM, FEI Tecnai 20). The samples 

were prepared by depositing a drop of a diluted colloidal solution on carbon-film-coated copper 

grid (200 mesh). The surface functionalities were determined by a Fourier transform infrared 

spectroscopy (FTIR, Bruker StepScan). The samples were prepared by making pellets with dried 

KBr powder. Nuclear magnetic resonance (NMR) spectra for all synthesized triethoxysilanes were 

recorded on Bruker AV 400 MHz spectrometer. Energy-dispersive X-ray spectroscopy (EDX) was 

run on a Thermo Fisher Scientific Quanta 3D equipment operating at 2.0 kV. The magnetization 
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of resulting IONPs was measured using a Quantum Design MPMS SQUID magnetometer. UV-

Vis spectroscopy was performed on a NanoDrop 2000c/2000 UV-Vis spectrophotometer. A 

sintered Nd2Fe14B permanent supermagnet was used for magnetically-assisted precipitation of 

nanoparticles.   

3.2.3 Synthesis of functional triethoxysilanes 

A variety of triethoxysilanes with different terminal functionalities were synthesized. The surface 

modification of the IONPs can be done through two routes. One method is forming azido/ alkyne 

functionalized IONPs in reverse microemulsion, followed by an in situ CuAAC reaction, in which 

Cu (I) was formed by adding CuSO4 and sodium ascorbate to catalyze the 1,3-dipolar azide-alkyne 

cycloaddition. Another method is using thiol-ene reaction to directly synthesize triethoxysilanes 

precursors with various functional groups, then adding them into reverse microemulsion for 

coating a thin outer layer of functionality on particle surface. Both those two methods were carried 

in our work for comparison.  

NaN3

Cl Si(OEt)3

DMSO (15 mL), 60 °C, overnight

(EtO)3 Si N3

Pale yellow oil, 77% yied.(1.01g, 15.5 mmol)
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Scheme 3.1. Synthesis of functional triethoxysilanes using various synthetic strategies. 
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3. 2.3.1 Synthesis of (3-azidopropyl)triethoxysilane (Compound 1) 

(3-azidopropyl)        y            y      z                J   ’        :106 sodium 

azide (1.01 g, 15.5 mmol) and dimethyl sulfoxide (DMSO, 15 mL) was added into a flame dried 

and Ar filled 100 mL-round flask. The mixture was heated with an oil bath up to 60 ◦C until sodium 

azide was dissolved. Then (3-chloropropyl) triethoxysilane was added into above preheated 

mixture and stirred overnight. After the reaction finished, water (10 mL) was added and the 

aqueous phase was quickly extracted with diethyl ether one time, the organic layer was transferred 

to an Erlenmeyer flask and dried over anhydrous Na2SO4. Clear yellow oil was obtained after 

filtration and removal of the solvent.  

(3-azidopropyl)triethoxysilane (Compound 1): (77% yield) The spectra for the product 

is: 1H-NMR (400 MHz, CDCl3) δ  .78 ( , J = 6.8 Hz, 6H), 3.22 (t, J = 6.8 Hz, 2H), 1.65 (m, J = 

7.2 Hz, 2H), 1.58 (t, J = 7.2 Hz, 9H), 0.62 (t, J = 8.4 Hz, 2H). All the peaks assigned are consistent 

with the literature reported. 

3.2.3.2 Synthesis of [(2-Propynylcarbamate)propyl] Triethoxysilane (PPTEOS) (Compound 

2). 

PP E        y      z         L ’        :107 propargyl alcohol (2.25g, 40 mmol) and 

trimethylamine (TEA, 3.64g, 36 mmol) were added into a 50 mL round flask and dissolved in 

dichloromethane (DCM, 20 mL). The mixture was cooled in an ice bath. 3-(triethoxysilyl)propyl 

isocyanate (IPTEOS, 8.9 g, 36 mmol) dissolved in 10 mL of DCM was added drop wise under 

argon. The ice bath was removed after finishing dropping and the reaction mixture was stirred at 

room temperature overnight. DCM and excess propargyl alcohol were removed under vacuum, 

resulting in the product as colorless oil. 
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[(2-Propynylcarbamate)propyl] Triethoxysilane (PPTEOS)(Compound 2): (79% 

yield) The spectra for the product is: 1H-NMR (400 MHz, CDCl3) δ 5.05 (s, 1H), 4.65 (s, 2H), 3.82 

(m, J = 7.2 Hz, 6H), 3.20 (m, J = 6.4 Hz, 2H), 2.45 (S, 1H), 1.62 (m, J = 8.0 Hz, 2H), 1.25 (t, J = 

7.2 Hz, 9H), 0.62 (t, J = 8.4 Hz, 2H). All the peaks assigned are consistent with the literature 

reported. 

3. 2. 3.3 Thiol-ene synthesis of 3-(2-(triethoxysilyl)ethylthio)propanoic acid.  (Compound 3)  

Compound 3 was synthesized via a modified radical mediated photochemical click reaction 

by Tucker-Schwartz,105 Typically, triethoxyvinylsilane (5.22 mL, 25 mmol) and 3-

mercaptopropionic acid (2.18 mL, 25 mmol) were added into a flame dried pyrex tube flask, and 

mixed with photoinitiator DMPA (128.15 mg, 2mol%). The flask was sealed with a plastic septa 

and the mixture was vacuumed and purged with argon for 3 times. After that, the mixture was 

stirred till all solid starting materials dissolved. A thiol-ene reactor was equipped with a steel 

cabinet, inside an ACE photochemical UV medium pressure quartz mercury lamp (CN, PC451050, 

450 watt) was placed in a water-reflux-quartz-well. The flask was attached onto the water-reflux-

quartz-well using elastic bands. The reaction mixture was irradiated at 0 ◦C by turning on the UV 

lamp from an adaptor outside the steel cabinet and refluxed with tap water for 24h.  The reaction 

was run neat in the absence of any solvent. Afterwards, the product obtained was light yellow oil 

with quantitative yield. No further work-up or purification steps are required for the next step of 

surface modification.  

3-(2-(triethoxysilyl)ethylthio)propanoic acid (Compound 3): (>95% yield). The spectra 

for the product are: 1H-NMR (400 MHz, CD3 D) δ  .85 (q, J = 6.8 Hz, 6H), 2.80 (t, J = 7.2 Hz, 

2H), 2.68-2.60 (m, 4H), 1.22 (t, J = 7.2 Hz, 9H), 0.95 (t, J = 8.4 Hz, 2H). 13C-NMR (100 MHz, 

CD3OD): 174.20, 58.10, 34.08, 26.08, 25.46, 17.16, 11.19.  
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3. 2. 3. 4 Thiol-ene synthesis of 2-(2-(triethoxysilyl)ethylthio) ethanamine. (Compound 4) 

Compound 4 was synthesized via the photoinitiated click reaction mentioned above. 

Typically, cysteamine (192.88 mg, 2.5 mmol) and DMPA (12.82 mg, 2 mol %) were added into a 

flame dried pyrex tube flask. The flask was sealed with a plastic septa and the mixture was 

vacuumed and purged with argon for 3 times. After that, triethoxyvinylsilane (0.522 mL, 2.5 mmol) 

and anhydrous chloroform (5 mL) were added into the mixture with an argon-purged-syringe. The 

mixture was stirred till all starting materials dissolved. The tube flask was placed in the thiol-ene 

reactor by attaching it onto the water-reflux-quartz-well. The reaction mixture was irradiated 0 ◦C 

for 24h. The product obtained was clear oil with quantitative yield. The product was kept in a glass 

vial filled with argon and ready to use for the surface modification. 

2-(2-(triethoxysilyl)ethylthio) ethanamine (Compound 4): (>95%) The spectra for the 

product is: 1H-NMR (400 MHz, CDCl3) δ  .80 (q, J = 6.   z, 6 ),  .85 (t, J = 6.4 Hz, 2H), 2.62 

(m, 4H), 1.35 (bs, 2H), 1.20 (t, J = 7.2 Hz, 9H), 0.92 (t, J = 8.4 Hz, 2H). 13C-NMR (100 MHz, 

 D   ): δ 58.  ,  0.9 ,  5.97,  5.87, 18.11, 11.8 . 

3. 2. 3. 5 Thiol-ene synthesis of ethyl 2-(2-(triethoxysilyl)ethylthio)acetate. (Compound 5) 

The synthesis procedure of compound 5 was similar to what described above. The reaction 

was set up by mixing equimolar amount of triethoxyvinylsilane and ethyl mercaptoacetate in the 

presence of 2 mol % of DMPA and running under neat condition at 0 ◦C for 24h. After the reaction 

finished, clear oil product was obtained with quantitative yield. The product was kept in a glass 

vial filled with argon and was ready to use for the surface modification. 

Ethyl 2-(2-(triethoxysilyl)ethylthio)acetate (Compound 5): ( >95% ) The spectra for the 

product are: 1H-N R ( 00   z,  D   ) δ  .16 (q, J = 6.8  z,   ),  .80 (q, J = 6.8  z, 6 ),  . 1 
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(s, 2H), 2.73 (t, J = 8.8 Hz, 2H), 1.26 (t, J = 7.2 Hz, 3H), 1.20 (t, J = 6.8 Hz, 9H), 0.97 (t, J = 8.4 

Hz, 2H). 13C-NMR (100 MHz, CDCl3): 170.40, 61.08, 58.38, 33.39, 27.00, 18.11, 14.01, 11.14. 

3. 2. 4 Synthesis of monodisperse hydrophobic Fe3O4 nanoparticles. 

Monodisperse hydrophobic Fe3O4 IONPs were prepared according to literature with a little 

modification.108,109 FeCl3•6 2O was recrystallized from distilled water before use. Then 

FeCl3•6 2O (20 mmol, 5.41 g) was dissolved in the solvent mixture of distilled water, ethanol and 

hexane (60 mL, 80 mL, 140 mL). After that, oleic acid (60 mmol, 19 mL) was added and the 

mixture was stirred at room temperature for 30 min. Then 2.4 g NaOH was added to the above 

solution. The reaction mixture was heated up to 70 °C and stirred under refluxing for 4 h.  The 

product Fe(oleate)3 complex was obtained by extracting the organic layer from the aqueous layer 

using a separatory funnel, washing with distilled water for 3 times, and removing the organic 

solvent with a rotary evaporator. After the precursor Fe(oleate)3 was made, 4.5 g (5 mmol) 

Fe(oleate)3 was transferred into a 80 mL tube flask containing 1-octadecene (32 mL), oleic acid 

(2.5 mmol, 0.79 mL), and magnetically stirred to homogeneous. The tube flask was then placed in 

a tube furnace, flew with argon, and heated to 320°C and refluxed at this temperature for 30 min. 

The resulting black solution was cooled to room temperature and precipitated by adding excess 

ethanol. The precipitates were collected by centrifugation, then redispersed in hexane and 

precipitated with ethanol for several times in order to purify the resulting Fe3O4 nanoparticles. The 

purified Fe3O4 nanoparticles were stored as a suspension in cyclohexane (25 mg/mL) filled with 

Ar, with an adding of several drops of oleic acid to stabilize the colloid.   
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3. 2. 5 Synthesis of surface functionalized core-shell magnetic nanoparticles by a CuAAC 

strategy and by directly adding thiol-ene synthesized triethoxysilanes. 

The multi-functional magnetic nanoparticles were prepared based on our previous work 

described in Chapter 2. Here, two click reaction strategies were carried out for comparison. As a 

proof of principle, carboxyl functionalized IONPs Fe3O4@SiO2–COOH was made by the CuAAC 

click reaction in one-pot. Briefly, 0.25 mL surfactant Igepal CO-520 was dissolved in 10 mL 

cyclohexane and subjected to sonication for 15 min, and then 100 L NH4OH was added followed 

by adding 2.5 mg Fe3O4 (2.5 mg/mL in cyclohexane). After 30 min of continuous magnetic stirring, 

50 L TEOS was added into the mixture via an equivalently fractionated dropping method (adding 

 5 μL     16  ).                    E              , ( -azidopropyl)        y       ( ,   .5 μL, 

9.0 x 10-5 mol) was added into the microemulsion system for another 24 h. Grounded CuSO4•5H2O 

(1.1 mg, 4.5 x 10-6 mol), sodium ascorbate (1.1 mg, 5.4 x 10-6    ),     y          (11.  μL, 9.0 

x 10-5 mol) were added to allow for the azide-alkyne cycloaddition reaction to start. 48 hours later, 

2 mL of methanol was added to break the microemulsion. Products precipitated in the layer of 

methanol and were obtained by washing with EtOH and distilled water alternatively. The resulting 

Fe3O4@SiO2–COOH IONPs were collected and dried under vacuum.  

 

Scheme 3.2. Synthetic procedure of one-pot CuAAC-catalyzed carboxyl functionalized IONPs 

in reverse microemulsion.  
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The second surface modification strategy was carried out using the thiol-ene synthesized 

functional triethoxysilanes. By using this method, IONPs with a broad range of surface 

functionality were prepared in a reverse microemulsion system described in our previous work. 

As shown in scheme 3.3, the surface modification process involves a two-steps reaction in one-

pot. First, 0.25 mL surfactant Igepal CO-520 was dissolved in 10 mL cyclohexane and subjected 

                  15    ,          100 μL N 4OH was added followed by adding 3.0 mg Fe3O4 

( .5   / L     y         ).        0                                    , 50 μL  E             

into the mixture using a syringe pump at rate 2.5 mL/h. Afterwards, 20 mol% thiol-ene synthesized 

triethoxysilanes to TEOS was added 24 h after TEOS being added. When the reaction finished, 2 

mL of ethanol was added to break the reverse microemulsion. The products precipitated in the 

layer of ethanol and were obtained by washing with EtOH and distilled water alternatively. The 

resulting products were named as Fe3O4@SiO2–COOH, Fe3O4@SiO2–NH2, and Fe3O4@SiO2–

COOEt, respectively. 

 

Scheme 3.3. Synthesis of functionalized IONPs in reverse microemulsion. 
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3. 2. 6 Characterization of surface functionalities. 

The ionic dye molecules have shown to be excellent candidates to test the potential 

adsorption ability of the resulting amine functionalized IONPs Fe3O4@SiO2-NH2 in our previous 

work. Here, a toluidine blue o (TBO) staining method was used to determine the capture and 

recovery efficiency of carboxyl functionalized Fe3O4@SiO2-COOH nanoparticles.110 First, 10 mg 

of Fe3O4@SiO2-COOH nanoparticles were homogenously dispersed in a plastic vial with 10 mL 

PBS solution buffer (pH=8) containing TBO (0.2 mM). The mixture was incubated for 1h to allow 

for the formation of ionic complex between the surface –COOH groups and cationic dye molecules. 

After that, the amount of TBO loaded onto IONPs was determined by measuring the UV 

absorbance of residual concentration. To be specific, after adsorption, the concentration of the 

residual coloring in the solution was measured using UV-vis spectrophotometer at 590 nm. Prior 

to this, a calibration curve of known TBO concentration was obtained. So the amount of bound 

TBO molecules was calculated by subtracting the residual concentration of TBO in the solution 

from the initial concentration.  

To determine the recovery efficiency of functionalized nanoparticles, the IONP-TBO 

complex was rinsed with acetone and then PBS buffer to remove unbound TBO. After dried in air, 

the bound dye moieties were released from the material surface by adding into 5 mL of acetic acid 

solution (50% v/v), and the mixture was subjected to sonication for 15 min. The release procedure 

was repeated 3 runs for each sample. Then the amount of TBO released from the IONPs was 

determined at wavelength 590 nm-1. The percentage of recovered TBO was calculated according 

to a calibration curve of optical density vs. known TBO concentrations, with the assumption that 

each -COOH group binds a single TBO molecule.   
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3. 3 Results and Discussion 

3. 3. 1 Synthesis of core-shell magnetic nanoparticles using Cu-catalyzed azide-alkyne 

cycloaddition click reaction. 

In our previous work, the one-pot synthesis has highlighted the potential of functional 

trialkoxysilanes for surface modifications of magnetic nanoparticles in a reverse microemulsion 

reaction system. With such a one-pot, two step procedures, meaning the pre-functionlization of 

magnetic core with an inner silica shell, followed by an outer layer grafting with functional 

triethoxysilanes, we hope to prepare well controlled functionalized core-shell IONPs.  

The CuAAC click strategy allows for introducing click reactive sites on the surface for 

further surface modification. In this work, both azide and alkyne triethoxysilanes were made to 

graft azide and alkyne terminated IONPs and click desired functional groups via the cycloaddition 

reaction. As shown in Figure 3.1, both azide and alkyne functionalized IONPs resulted clear core-

shell structures. However, the nanoparticles were cross-linked to each other after CuAAC reaction. 

This might be attributed to the unreacted azide ligands remaining in the one-pot reaction system, 

causing the cycloaddition to occur in the microemulsion other than on the particle surface. This is 

consistent with the IR spectra (Figure 3.2 (c)), showing incomplete azide-alkyne cycloaddition. 

 

Figure 3.1.  TEM images of Fe3O4 (A), Fe3O4@SiO2-N3, (B) Fe3O4@SiO2- ≡ -H, (C) 

Fe3O4@SiO2-COOH via CuAAC reaction. 

 

A B C 
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The IR spectra (Figure 3.2) proved the successful surface modification with azide and 

alkyne groups. Because the absorbance at 2180 cm-1 refers to the stretching vibration of azide was 

found from curve (a). Aslo, on curve (b) peaks at 3296, 1703, and 1539 cm-1 are corresponding to 

    v                    ky y  ( ≡ -H), carbonyl (C=O), and amino (N-H), respectively, 

indicating the successful alkynyl-functionalization of magnetic nanoparticles with PPTEOS. 

According to Figure 3.2 (c), the peak at 2104 cm-1 representing azide is not fully disappeared; 

while a very weak absorbance at 1680 cm-1 was observed, indicating the low yield of CuAAC 

cycloaddtion on the surfaces of magnetic nanoparticles.  

 

Figure 3.2. IR spectra of core-shell magnetic nanoparticles with terminal functional groups. 
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3. 3. 2 Synthesis of core-shell magnetic nanoparticles using thiol-ene clicked precursors. 

As summarized in Table 3.1, the catalyst-free thiol-ene click reaction can give all 

functional triethoxysilane very high yield and purity. Efficient mixing is very important to obtain 

high yield of products. Also, Ar atmosphere and well-sealed flask is crucial to make the radicals 

active for reaction completion. The reactions require 1:1 molar ratio of starting materials, with 

very tiny amount of photoinitiator, as well as nearly free of solvent, which make this method very 

cost effective. More importantly, the resulting products are readily for use in surface 

functionalization. This greatly reduced the time for post-synthesis work-up process and enhanced 

the efficiency for surface functionalization. 

Table 3.1. Summary of the thio-ene click synthesis of functional triethoxysilanes. 

 

 

We found that the reproducibility of monodisperse single-loaded core-shell IONPs is 

crucially dependent on the addition rate of triethoxysilanes. The morphology of functionalized 

IONPs varies from batch to batch by adding triethoxysilanes manually. However, reproducible 

functionalized magnetic nanoparticles were obtained from each batch by adding triethoxysilanes 

using a syringe pump (New Era Pump Systems, Inc., NE-300) at controlled rate. As shown in 

Figure 3.3, in the preparation of Fe3O4@SiO2–COOH, a low pumping rate 0.5 mL/h and 1 mL/h, 

homogeneous nucleation dominate, and a large amount of core-free structures were observed. At 

rate 2.5 mL/h, reproduceable core-shell IONPs were obtained, with single-loaded core . One might 

Entry R Molar 

ratio 

Time 

(h) 

DMPA 

(mol%) 

Solvent Temperature 

(◦C) 

Yield 

(%) 

1 -COOH 1:1 24 2 neat 0 >95 

2 -COOH 1:1 24 2 CHCl3 0 >95 

3 -COOEt 1:1 24 2 neat 0 >95 

4 -NH2 1:1 24 2 CHCl3 0 >95 
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assume that the concentration of hydrolyzed silanes is higher at higher adding rate of TEOS, which 

could cause homogeneous nucleation to form core-free silica nanoparticles. However, we obtained 

core-free silica beads at lower addition rates and core-shell IONPs at higher adding rate. This result 

seems contradictory to the La Mer theory that heterogeneous nucleation is favored at lower 

hydrolyzed TEOS concentration. The reverse microemulsion is not highly stable system due to the 

volatile organic phase.  Also, at very low addition rate, the IONPs might not overcome the gravity 

force and tend to precipitate before silica start growing on the particle surface. While at very high 

addition rate, the local concentration of TEOS might be overly high so as to favor homogeneous 

nucleation. Therefore, the lower adding rate of silanes may not necessary to form single-cored 

structures due to the complexity of reverse microemulsion system. 

 

Figure 3.3. TEM images of Fe3O4@SiO2-COOH by adding silanes by hand (A), and by syringe 

pumping at different rate: 0.5 mL/h (B),1 mL/h (C), 2.5 mL/h (D). 

A 

C 

B 

D 



 

65 
 

The amount of thiol-ene clicked triethoxysilanes used for surface modification was studied 

in order to gain the desired density of surface functional groups without sacrificing the morphology. 

The result shows that, at low mole ratio of 3-(2-(triethoxysilyl)ethylthio)propanoic acid 

(Compound 3), core-shell structures were kept. But when the mole ratio was raised up to 30 mol%, 

Compound 3 started to polymerize between core-shell nanoparticles and a big block of polymer 

encapsulating the nanoparticles was formed (Figure 3.4 (C)). Therefore, economically and 

morphologically, the amount of thiol-ene clicked triethoxysilanes needs to be considered.  

 

Figure 3.4. TEM images of Fe3O4@SiO2-COOH with different mole ratio of compound 3 to TEOS: 

5 mol % (A), 20 mol % (B), 30 mol % (C). 

 

The TEM images in Figure 3.5 show that, after condition optimization, the iron oxide 

magnetic cores after surface modification using the thiol-ene clicked triethoxysilane precursors 

were single loaded monodisperse core-shell structures. The average size measured by ImageJ with 

50 counts were 30 ± 2 nm, 75 ± 3 nm, 79 ± 5 nm and 94 ± 5 nm for Fe3O4, Fe3O4@SiO2–COOH, 

Fe3O4@SiO2–COOEt, and Fe3O4@SiO2–NH2, respectively. The result indicates that the one-pot 

method of making single-loaded core-shell magnetic nanoparticles terminated with various 

functionalities using thiol-ene clicked triethoxysilanes was successful. More importantly, by 

synthesizing the commercially unavailable organotrialkoxysilanes, well size- and -morphology 

C A B 
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controlled nanoparticles with a broad range of functional groups, not limited to the functional 

groups we presented in this work, are readily prepared. 

 

Figure 3.1. TEM images of Fe3O4 (A), Fe3O4@SiO2-COOH (B), Fe3O4@SiO2-COOEt (C), 

Fe3O4@SiO2-NH2 (D). 

 

The magnetic properties of iron oxide cores and functionalized IONPs after surface coating 

were investigated. According to Figure 3.6 (a), the saturation magnetization of Fe3O4 core and –

COOH, –COOEt, and –NH2 functionalized IONPs were 36.0, 10.8, 6.9, and 6.1 emu·g-1, 

respectively. The amount of decrease in the saturation magnetization after surface coating is in 

accordance with the increase of the shell thickness. However, the decrease in magnetization of 

IONPs is not because of the silica coating but the decrease in mass of magnetic cores for 

measurements. For example, the magnetization of 10 mg iron oxide magnetic cores would be much 

higher than that of 10 mg IONPs after silica coating because the silica shell contributes more than 

half of the total mass used for measurements. Therefore, after normalizing the magnetization curve 

A 

C D 

B 
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by the mass of Fe3O4, as shown in Figure 3.6 (b), the magnetization did not change after silica 

coating. Also, they are all superparamagnetic at 300K, as no hysteresis loop was observed. The 

resulting functionalized IONPs show fast on/off response to an external magnetic field. 

 

Figure 3.2.  Field-dependent magnetization curve at 300K: (a) core-shell IONPs, (b) core-shell 

IOPNs after normalizing by the mass of Fe3O4. (For measurement, the Fe3O4 magnetic cores were 

dispersed in hexane, and the core-shell particles were dispersed in water.) 

 

 

By using the thiol-ene synthesized triethoxysilane precursors, all functional groups were 

successfully introduced onto the surface of IONPs. The surface functional groups of magnetic 

nanoparticles were demonstrated by FTIR spectra (Figure 3.7). For all the curves, there are 

absorption peaks near 579 cm-1, representing the stretch vibration mode of Fe-O bonds. And peaks 

near 1090, 798, and 474 cm-1 can be ascribed to the unsymmetrical stretching vibration, 

symmetrical stretching vibration and bending vibration modes of Si-O-Si, respectively. For the 

curves from top to bottom, the absorbance at 3420, 1710, and 1420 cm-1 is indexed to -OH, C=O, 

C-O-H of carboxylic acids, peaks at 3420, 1650, 1380 and 947 cm-1 are corresponding to -OH, 

C=O, C-O of esters, bands at 3350, 3270, and 1620 cm-1 can be derived from the stretch vibration 

and bending vibration of amines. The results indicate the successful functionalization of magnetic 

nanoparticles with thiol-ene clicked triethoxysilanes.  
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Figure 3.7. FTIR spectra of core-shell functionalized IONPs with thiol-ene clicked 

triethoxysilanes. 

 

 

The energy dispersive X-ray spectra (EDX) also show strong evidence of successful 

surface modification. Peaks referring to sulfur were found in EDX spectra for sample 

Fe3O4@SiO2–COOH, Fe3O4@SiO2–COOEt, and Fe3O4@SiO2–NH2. The number of functional 

groups grafted on the particle were estimated by S/Si ratio on the EDX spectra, as shown in Figure 

3.8. For the addition of 20 mol% of triethoxysilanes to TEOS, the S/Si ratio were 2.8 mol%, 2.5 

mol% and 5.3 mol% for Fe3O4@SiO2–COOH, Fe3O4@SiO2–COOEt, and Fe3O4@SiO2–NH2, 

respectively. Those numbers are corresponding to 1.1, 0.9, 1.3 ligands/nm2 of -COOH, -COOEt, 

and -NH2 groups on the nanoparticles. Compared to the theoretical S/Si ratio of 16.7 mol%, these 

measured values were much lower. One reason is that the packing surfaces of sample must be very 

flat for standard quantification using EDX method, but our particles are so small that the X-ray 

emitted from the nanoparticles may not be collected by the detector because of random diffraction.  
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Figure 3.8. EDX spectra of core-shell functionalized IONPs with thiol-ene clicked 

triethoxysilanes: a) Fe3O4@SiO2–COOH, b) Fe3O4@SiO2–COOEt, c) Fe3O4@SiO2–NH2. 
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3. 3. 3 Adsorption ability of surface functionalized IONPs using dye molecules. 
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Scheme 3.4. Capture of TBO with Fe3O4@SiO2-COOH IONPs at high pH and release of TBO at 

low pH. 

For the proof of principle, TBO was used to demonstrate the reversible interaction of 

targets with carboxyl functionalized nanoparticles by changing the surface charges. As shown in 

Scheme 3.4, the nanoparticles are first incubated in base solution, which will deprotonate the 

surface and result in a negatively charged surface. When TBO is added, it will immediately bind 

onto the particle surface via electrostatic binding, leading the residual solution to become clear. 

Lowering the pH value of the solution allows for the release of bound TBO molecules from the 

surface and the regeneration of nanoparticles, presenting a blue solution. When the pH of the 

solution is raised, it became clear again. As shown in Figure 3.9, the capture and release of target 

molecules are simply realized by adjusting the pH of solution. In addition, the regenerated 

nanoparticles can be used for repeated cycles of capture and release. These features are ideal for 

running separation in microfluidic devices.   

 

Figure 3.3. Reverse association and dissociation between Fe3O4@SiO2-COOH and TBO by 

changing pH of solution. 

Low pH High pH 

pH=10 pH=3.5 pH=10 
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In our study, Fe3O4@SiO2-COOH nanoparticles and TBO molecules were chosen to 

examine the interaction between resulting functionalized IONPs and target compounds. The 

adsorption equilibrium experiment was carried by adding increased concentration of TBO 

solutions into same amount of nanoparticles. As shown in Figure 3.10, the adsorption of 

nanoparticle for TBO reached its maximum when the concentration of TBO increased to 2.0 x 10-

6 mol. The maximum loading of TBO molecules onto IONPs at this point calculates as 1.9 x104 

TBO per nanoparticle, referring to 0.5 TBO/nm2. Compared the TBO loading with the density of 

-COOH functional groups 1.1 ligands/nm2 from the EDX spectra, half of the -COOH groups were 

not accessible because they were imbedded in the silica matrix. Therefore, only the functional 

groups on the outer layer are available for the adsorption of target molecules.  

 

Figure 3.4.  The effect of TBO concentration on loading ratio of TBO on Fe3O4@SiO2-COOH 

IONPs (error bars: stdev of 3 replicates). 

 

The reusability of resulting nanoparticles was examined spectroscopically through cycling 

experiments. The capture and release procedures were described in the Experimental section 3.2.6. 

After the nanoparticles and TBO molecules were incubated in PBS buffer for 1 hr, the optical 
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absorbance of residual solution was measured, from which the TBO concentration of the residual 

solution could be calculated using a calibration curve, along with equation 3.1: 

                                   % loading = (1 −
𝑐𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙

𝑐𝑖𝑛𝑖𝑡𝑖𝑎𝑙
) × 100                                                            (3.1) 

Second, the nanoparticle precipitates were rinsed with PBS buffer to remove unbound TBO 

molecules, and acetic acid (50% v/v) was added to release TBO from nanoparticles. The UV 

absorbance of the solution was measured to calculate the TBO recovery according to calibration 

curve again (Eq. 3.2).  

                                % recovery = (
𝑁𝑟𝑒𝑙𝑒𝑎𝑠𝑒𝑑

𝑁𝑙𝑜𝑎𝑑𝑒𝑑
) × 100                                                                     (3.2) 

where Nreleased is the number of TBO molecules released from the IONPs, Nloaded is the number of 

TBO molecules loaded on the IONPs. After such capture-release process, the nanoparticles were 

dried, and the same procedure was repeated for 5 cycles.  As shown in Figure 3.11, both the TBO 

loading and recovery were decreased gradually during the 5 cycles.  One reason is that each cycle 

of capture-release experiment involves several wash steps, in which large mass loss of 

nanoparticles was observed. In addition, samples before and after the cycling experiments were 

examined by TEM to study the effect of solution on structural deformation. As shown in Figure 

3.12, slight decomposition of silica shell was observed after 5 cycles of adsorption-release 

experiments, due to the exposure of nanoparticles in high pH solutions over time. According to 

Figure 3.11, a gap between the percentage loading and recovery was found. On the one hand, there 

is possibly unbound TBO residuals on the particle surface that increased the percentage loading. 

On the other hand, the mass loss of nanoparticle during the wash steps, as well as incomplete 

dissociation of TBO from nanoparticles due to equilibrium, might cause the low percentage 

recovery. Repeated release procedures using fresh acetic acid might improve the percentage 
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recovery. But there must be a balance between washing and repeated releasing procedures, 

considering the mass loss of nanoparticles caused by wash steps.  

 

Figure 3.5.  Percentage loading and recovery of TBO of 5 cyclesa. (a: The percentage numbers of 

each column were obtained from the average value of two parallel samples. And the measurement 

for each sample was repeated 3 times.) 

 

 

Figure 3.6. TEM images of Fe3O4@SiO2-COOH IONPs before (A) and after (B) 5 cycles. 

 

3. 3. 4 Binding capacity of Fe3O4@SiO2-COOH to natural product 

The carboxyl terminated IONPs we synthesized has not only shown good affinity to 

cationic dye molecules, but also promising to natural products. Ephedrine hydrochloride is a drug 

0

10

20

30

40

50

60

70

80

90

100

cycle 1 cycle 2 cycle 3 cycle 4 cycle 5

Pe
rc

en
ta

ge
(%

)
Loaded TBO

Released TBO

A B 



 

74 
 

used to prevent low blood pressure and asthma. Here we used it as another model compound to 

test the binding capacity of Fe3O4@SiO2-COOH for potential drug molecules. The release of 

ephedrine from nanoparticles was repeated 3 times by adding fresh acid solution, in order to 

increase the percentage recovery. As shown in Figure 3.13, the result shows that 94.0% of 

ephedrine hydrochloride molecules were bound to nanoparticles and 76.9% were recovered from 

the solution after 3 repeated release procedures. This demonstrated the potential of using our 

functionalized nanoparticles for separation in a microfluidic synthesis system.  

 

Figure 3.7.  Percentage loading and recovery of ephedrine hydrochloride (error bars: stdev of 3 

replicates). 

 

 

3.3.5 Specific binding vs. non-specific binding. 

In Chapter 2, we synthesized amine functionalized nanoparticles, and they have shown 

highly selectivity for fluorescein molecules. The surface was positively charged after incubation 

in acid solution. The non-functionalized silica coated IONPs Fe3O4@SiO2 showed zero affinity to 

fluorescein molecules, as shown in Table 2.2. However, because the surface of Fe3O4@SiO2 

present negative charges, non-specific adsorption of target cationic compounds due to silica has to 
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be considered for the carboxyl functionalized nanoparticles, in addition to the adsorption 

mechanism of Fe3O4@SiO2-COOH via deprotonation of the surface. The adsorption of target 

cationic compounds using Fe3O4@SiO2-COOH comes from two parts: specific binding though -

COOH groups on particle surface and non-specific binding due to negative charges of silica. In 

Figure 3.14, the percentage of each binding was investigated by using Fe3O4@SiO2 as control 

groups. The result shows that the loading ratio of Fe3O4@SiO2-COOH for TBO molecules was 

98.9%, while the loading ratio of Fe3O4@SiO2 for TBO molecules was 64.0%, indicating that 34.9% 

TBO molecules were selectively bound onto the nanoparticle due to the surface functionalities. 

However, the recovery of TBO improved after functionalization. Therefore, the release of TBO 

molecules from selective binding is easier than the non-specific binding.  

 

Figure 3.8.  Comparison of specific binding and non-specific binding on Fe3O4@SiO2-COOH 

nanoparticle (error bars: stdev of 3 replicates). 

 

 

3. 4 Conclusion   

Click chemistry was successfully applied for making functionalized precursors for core-

shell magnetic nanoparticles in a facile synthesis strategy. By synthesizing organotrialkoxysilanes 
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precursors via thiol-ene click reaction, a variety of commercially unavailable 

organotrialkoxysilanes are easy to access with high yield and purity. Also, the steps of making 

functionalized magnetic nanoparticles were largely reduced using these organotrialkoxysilanes. 

Tedious wash steps and grafting stage were avoided without undergoing the morphology changes. 

The resulting uniform single-loaded core-shell magnetic nanoparticles terminated with a variety 

of functionality are promising to be applied for a wide range of applications in microfluidic 

separations.  



 

77 
 

CHAPTER 4. MICROFLUIDIC CONTINUOUS SEPARATION USING 

FUNCTIONALIZED MAGNETIC NANOPARTICLES 

4.1 Introduction  

Purification and separation of target molecules using microfluidic devices have received 

growing interest in recent years due to its potential applications in biological and chemical 

industries.32,111,112 Traditional separation techniques, such membrane-based filtering, 

chromatography, electrophoresis, and precipitation,113 usually involve problems like clogging, 

vast solvent consumption, pH gradient formation, low throughput, and contamination. External-

fields-based separation on microfluidic platforms, including magnetic magnetophoresis,111 optical 

tweezers,114,115 dielectrophoresis,116,117 acoustophoresis,118 have become great alternatives in terms 

of selectivity and recovery. Particularly, magnetic manipulation of continuous microfluidic 

separation using functionalized magnetic nanoparticles is attractive because of multiple 

advantages, such as free of pH gradients, less contaminations, reduced clogging, mild reaction 

conditions, and enhanced surface area-to-volume ratio to allow for high throughput.3 For example, 

separations using electric fields is usually dependent greatly on solution conditions such as ionic 

strength and pH, and can cause problems such as bubble generations.119-121 But for magnetic 

separation, those problems are left behind, and the separation efficiency is highly dependent on 

the microfabricated channels and the control of the magnetic field strength. Also, continuous 

magnetic separation in flow overcomes some limitations of magnetic separation in batch systems, 

including prolonged duration of operation, complicated fluidic handling, and nonspecific trapping 

of impurities. 122 

Microfluidic magnetic separation involves the interaction between magnetism and fluid 

flow on a microscale. There are several key forces that need to be considered for magnetic 
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microfluidic separation: magnetic force, gravitational force, drag force, lift force, and Brownian 

force The magnetic force and drag forces are more dominant than other forces when considering 

applications in a microfluidic environment.123 At a microscopic level fluid exhibit laminar flow, 

and the inertial and gravitational effects are negligible because of the small particle volume.32 

Therefore, the main challenge of continuous-flow separation lies in the fabrication of microfluidic 

device so as to guide nanoparticles to desired outlet to achieve both high efficiency and throughput. 

In addition, high magnetization and superparamagnetic behavior of nanoparticles are prerequisites, 

considering the fact that high magnetization gives strong magnetic force for high capture 

efficiencies, and that superparamagnetic particles have zero magnetization in the absence of an 

external magnetic field so that separation can be fast and efficient without aggregation.  

To ensure high magnetization and superparamagnetic behavior, researchers has been 

directed towards different types of magnetic particles, such as micron-sized magnetic beads and 

magnetic nanoclusters.119 It is reported that nano-sized magnetic clusters can not only maintain the 

same level of magnetization as micron-sized beads, but also have a much higher loading capacity 

than micron-sized magnetic particles.124 On the other hand, nanoclusters might cause clogging in 

the micro channel, and the colloidal stability of nanoclusters might be affected by some pH-

sensitive separation process.125 Therefore, uniform sized and single cored nano-sized magnetic 

particles with reasonable magnetization are ideal for separation of small molecules. They offer 

high surface-to-volume ratios for loading capacity and high colloidal stability without causing 

aggregation of nanoparticles or diminishing of magnetic moments. By taking advantage of a well-

developed surface chemistry and a tailor-made functionalization, ready-to-use functionalized 

magnetic particles are increasingly available with well-controlled surface chemistry providing a 

high specific binding capacity and low non-specific adsorption.29 However, the price of those 
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commercialized magnetic nanoparticles are very expensive. In our previous work, we have 

successfully synthesized a number of uncommercialized core-shell magnetic IONPs with selected 

surface functional groups. And they have shown their potential applicability for use in reversible 

and quantitative affinity-based microfluidic separation.108  

To our best knowledge, continuous separation of small molecules using single-cored 

magnetic nanoparticles on a microfluidic device has not yet been reported. For the purpose of proof 

of principle, blue (Toluidine blue O) and yellow (fluorescein) dye molecules were used as model 

targets to demonstrate a continuous microfluidic molecular separation process. Our functionalized 

magnetic nanoparticles are able to selectively interact with TBO in the dye mixture, resulting in 

the formation of TBO-nanoparticle complex via electrostatic binding, then collected online by 

magnetophoresis. The microfluidic separation system is shown in Scheme 4.1. It consists of two 

microfluidic chips: mixing and separation. The mixture coming out from the mixing chip enters 

the separation microchannel in laminar co-flow with a cushion buffer and extraction buffer. When 

an external magnetic field is applied on the side of extraction buffer, the nanoparticle-TBO 

complex would travel across the microchannel and enter into the extraction buffer streamline, 

where TBO molecules are released from nanoparticles caused by the change of surface charges at 

lower pH. The released TBO molecules are collected at the desired outlet, leaving fluorescein 

molecules in the original fluid stream to exit through another outlet. In order to improve the 

separation efficiency, the middle stream between the extraction buffer stream and the original 

mixture stream work as cushion buffer to prevent the diffusion of fluorescein into the extraction 

                 .          ,              “                  ”         v                        

occurs through selective adsorption on nanoparticles that are moving along with the fluids. And 
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our method can be potentially applied to affinity-based separations for a wide range of small ionic 

molecules and biomolecules by using well established functionalized magnetic nanoparticles.  

 

Scheme 4.1.  A continuous microfluidic magnetic separation system. 

 

4. 2 Experimental 

4. 2. 1 Synthesis of carboxyl functionalized IONPs 

All chemicals were purchased from Sigma-Aldrich and used as received. Functionalized 

IONPs were synthesized using the functionalized precursors we synthesized previously.109 First, 

Fe3O4 magnetic cores were synthesized by heating a mixture of 5 mmol of Fe(oleate)3, 2.5 mmol 

of  oleic acid, and 32 mL of 1-octadecene up to 320 °C, and refluxed at this temperature for 30 

min. The resulting black precipitates were alternatively washed with cyclohexane and ethanol for 

several times, and dried under vacuum, then stored under Ar as a suspension in cyclohexane with 

adding of a few drops of oleic acid to stabilize the colloid. Second, carboxyl functionalized 

triethoxysilane was synthesized via a radical mediated photochemical click reaction by exposing 

the mixture of triethoxyvinylsilane (5.22 mL, 25 mmol), 3-mercaptopropionic acid (2.18 mL, 25 
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mmol), and photoinitiator DMPA (128.15 mg, 2 mol%) under UV lamp for 24 hrs at 0 ºC. The 

reaction was running neat in the absence of any solvent and yielded 95% product. Thirdly, the 

surface coating of magnetic cores with the thiol-ene synthesized triethoxysilane was conducted in 

a reverse microemulsion system containing 0.25 mL surfactant Igepal CO-520, 10 mL 

 y              100 μL N 4OH. By adding 3.0 mg Fe3O4 (2.5 mg/mL in cyclohexane) into the 

reverse microemulsion under controlled conditions, followed by adding TEOS and carboxyl 

functionalized triethoxysilane, a silica layer was able to grow on the surface of each single 

magnetic core, and form single cored core-shell structures with carboxyl groups on the outer layer.  

4. 2. 2 Fabrication of microfluidic devices 

The microfluidic devices were fabricated from PDMS elastomer using a 3D printing 

technique. 39,126 First, a negative micro-mold of micro-channels was printed out using a Polyjet 

printer (Stratasys Objet260 Connex3) with resolution of 16 µm.  Then PDMS casting procedure is 

performed by mixing a PDMS base with a curing reagent in a 10:1 ratio (Sylgard 184, Dow 

Corning, Midland, MI) followed by pouring the degassed mixture onto the micro-mold and curing 

at 70 ºC for at least 3 h. After curing, the PDMS replica was then carefully peeled off from the 

micro-mold and bonded onto a glass slide (75(L) x 25 (W) x 0.15 (H) mm3) by oxygen plasma 

treatment to form an O–Si–O covalent bond at the PDMS interface.  

4. 2. 3 Microfluidic mixing and separation   

The mixing and separation efficiency of the chips were examined separately. First, 

magnetic nanoparticles (2mg/mL) in PBS buffer (2 mM, pH=8) and TBO solution (0.05 mM) were 

loaded in different syringe pumps, injected into a T-shape mixing chip (250µm (W) x 250µm (D) 

x 2cm (L) ) at the same flow rate.  The outlet of the mixing chip was connected to a 0.5 m long 

tubbing (Scientific Products & Equipment, 200 µm ID) to allow sufficient target molecules to be 
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adsorbed onto the particles before entering the separation microchannel. The loading efficiency 

was studied by changing flow rate and dye solution concentrations. Also, all control experiments 

were done under the same condition except in batch. TBO concentration was determined by 

measuring the UV-vis absorbance of TBO supernatant (590 nm) collected from the outlet, and 

compared to standard calibration curve. Then loading efficiency was calculated by comparing the 

collected TBO concentration and the original TBO concentration.  

 By connecting the mixing chip with the separation chip, the target-nanoparticle complex 

generated from the mixing chip entered the separation microchannel, at the same time with another 

two additional streams, water and acetate buffer. These two streams worked as a cushion streams 

to prevent diffusion of separated dye molecules, and an extraction stream to release the captured 

target molecules from nanoparticles, respectively. In the straight separation channel, laminar co-

flow of the three streams is dominated. Therefore, when an external magnetic field is applied on 

the side of acetate buffer, the nanoparticle-TBO complex travel across the microchannel and enter 

the acetate buffer stream, where TBO molecules are released from nanoparticles and come out 

from the bottom outlet, while the fluorescein molecules remain in the original fluid stream and exit 

through the top outlet (shown in Figure 4.1). Effects on separation efficiency were studied by 

varying flow rate, magnetic forces, and dimension of microfluidic chips.   

 

Figure 4.1. Particle trajectory in a laminar co-flow on the separation chip. 
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4. 3 Results and Discussion 

4. 3. 1 Laminar co-flow profile in the separation microchannel 

  

 

 

 

Figure 4.2. Laminar co-flows using colored dye solutions. 

 

Laminar co-flow profile without disturbance between two streams was proved by running 

different colored dye solutions. As shown in Figure 4.2, the three streamlines enter into the micro-

separation channel with little diffusion with each other (<5 % diffusion by measuring UV 

absorbance of solution collected from each outlet). Also, it is necessary to add a buffer gap in the 

middle of the other two streamlines to further prevent diffusion of the separated target molecules 

and original mixture. So when we run real reaction using magnetic nanoparticles, we will be sure 

that the target molecules we collect are due to separation by microfluidic magnetophoresis instead 

of diffusion.  

4. 3. 2 Experimental results for microfluidic magnetically separation of target molecules  

For the proof of principle, a dye mixture of TBO and fluorescein (0.1:1 mM) was picked 

as model target and nontarget molecules for selective extraction of TBO using our single-cored 

carboxyl functionalized magnetic nanoparticles in flow. At pH 8, the carboxyl groups were 

deprotonated and give negative surface charges on the nanoparticles, which allows for fast 

electrostatic interaction between positively charged TBO at the particle surfaces. It is reported that 
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at such low Reynolds number, fluid is running in laminar flow, but laminar flow decreases by 

increasing the angle between two fluids at joint.127 Therefore we chose 180° for our design to make 

a T-shape mixing chip, in order to minimize the laminar flow and allow efficient mixing and high 

capture. As shown in Figure 4.3, the mixing efficiency using our T-shape chip was not affected so 

much by varying flow rate.  The sharp corner of at the T-junction allows for intense collision 

between the two coming fluids. The efficient mixing may also be attributed to the long travel 

distance (0.5 m) in the connecting tubing, which gives target molecules and nanoparticles enough 

time to interact with each other.  

 

Figure 4.3. Mixing efficiency at different flow rate (error bars: stdev of 3 replicates). 

 

For comparison, the mixing experiments were conducted both in batch and in flow, with 

increased TBO concentration. In batch, 0.5 mL TBO solutions were mixed with 0.5 mL 

nanoparticle suspension (2 mg/mL) in a vial and subjected to sonication for 15 min. In flow, TBO 

solutions and nanoparticle suspension were continuously mixed at the T-mixer at flow rate of 20 

L/min, resulting in mixing at 1:1 volume ratio. UV absorbance of residual solutions were 

measured in order to determine the amount of TBO molecules loaded on the particle surface at 
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different TBO concentration.  All the residual concentrations were calculated from a calibration 

curve and the mixing efficiency calculated by equation 3.1. According to Figure 4.4, the percentage 

loading of TBO in flow was very close to that in batch. In the experiment, laminar flow was 

observed at outlet of the T-shape mixer, but a maximum of 91.4% TBO loading was achieved. 

This could due to the long extended tubing, allowing enough diffusion of two fluids while traveling 

through.  

 

Figure 4.4. Comparison of mixing efficiency between batch and flow (error bars: stdev of 3 

replicates). 

 

 

After demonstrating the mixing efficiency of the mixer, a continuous separation system 

was set up by combining the mixer and separator together. To examine the separation efficiency 

of the magnetic microfluidic separator, dye mixture of TBO and fluorescein were used. As shown 

in Figure 4.5, with decreasing flow rate, more nanoparticles captured with TBO molecules 

successfully traveled across the micro channel. When they were entering in to the acid stream, 

TBO molecules were released from the IONPs and continuously collected from the desired outlet 

3. With further decrease of flow rate to 1 L/min, aggregates were observed in the micro channel 
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and trapped on the side wall of the microchannel by the magnet. At flow rate 10 L/min, the 

separation efficiency in continuous flow was close to that in batch. As control experiment, only 

less 5% percent of TBO molecules was detected from outlet 3 when no magnet was placed beside 

the microchannel, indicating that the release of TBO molecules happened in the acid stream while 

they were deflected by external magnetic field.  

 

Figure 4.5. Separation efficiency of dye mixture (error bars: stdev of 3 replicates). 

 

 

The color of collected solutions from each outlet also further proved the successful 

separation (Figure 4.6). Solution from outlet 1 was the yellow color of fluorescein, while solution 

from outlet 3 was blue, (the original color of acetate buffer was clear) which was the color of TBO, 

indicating the successful releasing of TBO molecules from INOPs while they are flowing through 

the acid stream. Also, separation efficiency could be estimated by the observed amount of INOPs 

at the bottom of the vials. After centrifugation, IOPNs were observed in acid solution collected 

from outlet 3, with no INOPs observed in original mixture stream collected from outlet 1, and only 
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a few IONPs from outlet 2, meaning IONPs traveled across the streams and entered the side close 

to the magnet.  

 

Figure 4.6.  Fluids collected from each outlet (a) solutions before centrifugation, b) solutions after 

centrifugation.  

As we discussed in the Introduction chapter, the trajectory of each single magnetic 

nanoparticle in a microchannel is the result of the balance of the hydrodynamic drag force and 

magnetic force acting on this nanoparticle. Therefore, the magnetic strength plays a crucial role 

for successful separation. In a microchannel, we want the magnetic strength strong enough for 

directing magnetic nanoparticles to come out from the desired outlet, yet not too strong for 

nanoparticles being trapped in the microchannel and causing clogging. Fortunately, this can be 

realized by choosing right magnetic source and adjusting the distance between the microchannel 

and magnet.   

We used high-pull neodymium permanent magnets (bought from McMaster-Carr) with 

different strength to study the effect of magnetic strength on separation efficiency. The magnet 

was kept a 2 mm distance from the microchannel. A previously described TBO method was used 

to quantify the amount of nanoparticles collected from each outlet. The magnetic strength closed 
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to the microchannel was measured using a digital guassmeter (Weite Magnetic Technology Co., 

Ltd, WT10A) As shown in Figure 4.7, with the increment of magnetic strength, shifts of IONPs 

occurred among these three outlets. In absence of a magnet, 85.7% IONPs came out from outlet 1, 

representing the original stream. This result was reversed while increasing the magnetic strength. 

When the magnetic strength increased to 220 mT, 85.2% of nanoparticles successfully entered the 

desired outlet 3, representing the extraction stream.  

 

Figure 4.7. Effect of magnetic strength on the separation efficiency (error bars: stdev of 3 

replicates). 

 

 

4.4 Conclusion 

A proof of principle continuous microfluidic magnetic separation system was developed. 

We have demonstrated the magnetophoretic process for continuous separation of small molecules 

in which carboxyl functionalized IONPs selectively interact with TBO molecules in a mixture with 

fluorescein via electrostatic binding, and the resulting TBO-IONP complex are recovered online 
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using magnetophoresis.  The high magnetization of magnetic nanoparticles, coupled with dynamic 

aggregation phenomena after molecule-particle association, allows for the fast deflection of 

molecules for separation.  This microfluidic separation system has shown comparable mixing and 

separation efficiency with that in batch. Our results reveal the importance of designing and 

fabricating the microfluidic device, as well as controlling the magnetic strength across the 

separation channel to achieve efficient separation. We envision this method to eventually enable 

separation of a wide range of desired target molecules by using the silica-coated IONPs with 

different affinity ligands, and integration with continuous microfluidic synthesis. Our ongoing 

efforts include modification of the surface of IONPs with broader scope of functionalities using 

existing methods to extend the applicability of our separation phase to non-electrostatic based 

separation. In addition, a multi-stage version of this separation process by connecting single 

separation units in serial could possibly further increase the separation efficiency.   

  



 

90 
 

CHAPTER 5.  LIMITATIONS, CONCLUSIONS, AND FUTURE WORK 

5.1 Limitations 

Separation based on electrostatic binding allows for fast association and dissociation 

between target compounds and nanoparticles. The most significant limitation for existing 

magnetophoresis technology is that it is best suited for molecules with large difference in pKa 

values. The affinity-based separation can be carried out by connecting multiple separators flowing 

with solutions at different pH. But for organic species with close pKa values, they will have same 

charge and may not be completely separated by one single separation technique. So purification 

of such species may be optimal using a different separation technique, and most likely 

discontinuous.  

With respect to the integration of the magnetophoresis with continuous flow synthesis, 

limitations associated with magnetophoresis are uncertain because it has just recently been 

hypothesized as a complement for continuous flow synthesis. In this dissertation, we have 

demonstrated the potential of using magnetophoresis for non-interrupted continuous flow 

purification, which is the most important factor to realize an automated continuous flow synthesis 

process. However, several issues need to be addressed to eventually apply those functional 

nanoparticles for an integrated continuous-flow synthesis system. First, pre-treatment of crude 

products by acid/base quenching might be needed to transfer the products into ionic species. This 

could be solved by implementing a work-up stage before the magnetophoresis, so any 

protonable/deprotonable organic species will be transferred into aqueous solution and captured by 

magnetic nanoparticles. Second, there is limitation of using silica-coated magnetic nanoparticles 

in continuous flow purification, because the base solution could decompose the silica layer and 

result in losing the functional groups for selective binding eventually. Polymers are not ideal solid 
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scavengers for continuous flow synthesis, because most of them either swell in organic solvent or 

are not acid/base tolerant. Alternative solid supports such as carbon nanotubes and graphene 

decorated with magnetic nanoparticles might be good candidates for continuous flow purification. 

Third, precise control of the magnetic field strength across the whole separation region is crucial 

for efficient purification. This is difficult to realize by simply placing one or two permanent 

magnets beside the microchannel. Placing multiple small magnets at different spots or using hybrid 

magnets might improve the separation efficiency. Also, simulating the magnetic field across the 

separation region would help us predict the particle trajectories. Furthermore, the device 

geometries have been optimized to enhance the separation efficiency by adding a cushion buffer 

between the original fluid stream and the extraction stream. But there is still diffusion observed 

from the middle stream which is the cushion buffer. This could be solved by increasing the flow 

rate of the cushion buffer. New design should be optimized to control pressure at each outlet so 

that the proportion of solution coming out from each outlet could be precisely predicted. Scaling-

up is another issue for all the existing continuously flow purification techniques. For the 

magnetophoresis technique, scaling-up can be achieved by continuously running the flow 

purification for a long period of time, because theoretically magnetophoresis does not interrupt the 

flow.  
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5.2 Conclusions 

Integrated multistep continuous-flow synthesis and purification is pursued in current 

pharmaceutical industry. However, the lack of efficient separation technology limits the 

development of such integrated system. A continuous microfluidic magnetic separation 

technology which utilizes surface-functionalized magnetic particles to selectively capture target 

molecules is promising to realize this goal. In the microchannel, the migration of magnetic 

particles is manipulated through an external magnetic force. We developed a facile method to make 

high quality of core-shell magnetic nanoparticles with versatile surface functionalities for potential 

application in continuous-flow synthesis, including catalyst loading and product purification.  

First, triethoxysilanes with a variety of functionalities have been successfully synthesized 

using work-up-free thiol-ene click reactions. Then core-shell functionalized IONPs composed of 

a single-core structure were made by a reverse microemulsion sol-gel process. The morphology, 

size, and colloidal stability of resulting nanoparticles are well controlled. Furthermore, we have 

successfully demonstrated the separation efficiency of resulting nanoparticles by using two dye 

molecules: toluidine blue O (TBO) and sodium fluorescein. More importantly, our model can be 

potentially used for other types of magnetic-based separation by introducing different 

functionalities on the particle surface.  

Second, we fabricated a microfluidic device using PDMS to realize continuous separation 

of target compounds. The combination of a mixer with a separator allows for the automated 

continuous isolation. On-line capture and release of TBO molecules from a mixture of toluidine 

blue O (TBO) and fluorescein has been successfully realized in this separation device through 

magnetic-field-directed migration of nanoparticles. The laminar co-flow profile allows for the 

continuous dissociation of TBO molecules from nanoparticle surface by entering an undisturbed 
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acid stream with the assistance of an external magnetic force. The device has shown high 

separation selectivity and efficiency, along with excellent reliability and flexibility to be modified 

using an 3D printing technique.  
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5.3 Future Work 

Up until now, proof-of-principle studies of functional magnetic nanoparticles for 

continuous separation in microfluidic device have been conducted and demonstrated. The 

separation using magnetophoresis technology is based on the migration of nanoparticles, which is 

determined by hydrodynamic viscous drag force and magnetic force acting on a magnetic 

nanoparticle. The particle trajectory inside a microchannel relies on the balance of these two 

vectors. So an in-depth understanding of the theory will help us predict the particle movement in 

the microchannel as well as improve separation efficiency by adjusting parameters such as 

nanoparticle size, dimensions and design of microfluidic device, and flow rate. Therefore, the next 

step will be focused on finding the optimized parameters for continuous separation in microfluidic 

device by mathematical modeling, or using existed software such as COMSOL Multiphysics, to 

simulate the particle trajectories.  

In our lab, an automated synthetic system has been created by implementing an in-line gas 

chromatography mass spectrometry (GC/MS) analytical instrument with a microwave assisted 

continuous organic synthesis (MACOS) flow reactor system. This system is aimed to run, analyze 

and optimize a synthetic transformation in a fully automated and continuous mode. The 

development of a continuous flow purification device would fill the vacancy of in-line purification 

for our existing MACOS system. Therefore, we are interested in exploring the separation 

efficiency of our functionalized IONPs for a broader scope of compounds from organic synthesis. 

The proof of principle studies using dye molecules in this work have shown the potential of the 

functionalized IONPs for separation in microfluidic devices. The amine and carboxylic acid 

functional groups on the IONPs allows for the separation of a variety of drug candidates containing 

deprotonable/protonable species, such as carboxylic acid, hydroxide, amine, via ionic interactions. 
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We will investigate the continuous flow separation by running some classic organic reactions. Our 

previous colleagues have demonstrated the capabilities of the MACOS system by running a scope 

of organic synthesis, including Suzuki-Miyaura cross-coupling, Heck cross-coupling, 

Nucleophilic aromatic substitution, Claisen rearrangement, Diels-Alder cycloaddition, and 

Hydrosilylation.128 We can use those chemical transformations to investigate the continuous 

magnetically steered flow purification. For example, we can apply the Claisen rearrangement of 

allyl phenyl ether to 2-allyl phenol to explore the capabilities of the magnetically-steered 

continuous flow separation device and then implement it with the MACOS system. The work-up 

process of this reaction involves the deprotonation of the 2-allylphenol in base and transferring it 

into aqueous layer. At this point, connecting the magnetic separator with the work-up would allow 

for the adsorption of 2-allyl phenol by the carboxyl functionalized IONPs. 

With the versatile strategies for surface modification, we also want to exploit other types 

affinity-based separations. Additionally, the interactions between nanoparticles and target 

molecules are 1:1 binding ratio using current thiol-ene strategy for surface modification. In the 

future, we want to explore selective binding of one ligand for multiple molecules.  

Also, we want to focus on developing a closed-cycled continuous microfluidic magnetic 

separation system for integrated multi operation units for separation, including selective binding, 

separation, and regeneration of nanoparticles. As shown in the figure below, it consists of three 

microfluidic chips: mixing, separation, and recycle. The chips are connected using plastic tubing. 

On the mixing chip, pre-activated nanoparticle suspension and crude solution are injected into a 

T-shape mixing chamber. Target molecules are able to be captured by the magnetic nanoparticles 

from crude mixture. On the separation chip, the nanoparticle-target complexes are separated from 

the original stream by traveling across the microchannel in the presence of an external magnetic 
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field.  By removing the magnet, the nanoparticles and buffer wastes enter into the third chamber, 

where buffer wastes are collected, and the nanoparticles are regenerated by washing with neutral 

buffer. After regeneration, the nanoparticles can be activated, and the next cycle of separation can 

be started. Therefore, a closed cycled continuous-flow separation is achieved since the separation 

occurs through selective adsorption on nanoparticles that are moving along with the fluids. 

 

Scheme 5.1. A closed-cycled magnetically steered continuous microfluidic separation system. 
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APPENDIX - NMR SPECTRA OF MOLECULES SYNTHESIZED IN CHAPTER 3 

1H-NMR spectrum of (3-azidopropyl)triethoxysilane (Compound 1) 
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1H-NMR spectrum of [(2-Propynylcarbamate)propyl] Triethoxysilane (PPTEOS ) 

(Compound 2) 
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1H-NMR spectrum of 3-(2-(triethoxysilyl)ethylthio)propanoic acid (Compound 3) 
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13C-NMR spectrum of 3-(2-(triethoxysilyl)ethylthio)propanoic acid (Compound 3) 
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1H-NMR spectrum of 2-(2-(triethoxysilyl)ethylthio) ethanamine. (Compound 4) 
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13C-NMR spectrum of 2-(2-(triethoxysilyl)ethylthio) ethanamine (Compound 4) 
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1H-NMR spectrum of ethyl 2-(2-(triethoxysilyl)ethylthio)acetate (Compound 5) 
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13C-NMR spectrum of ethyl 2-(2-(triethoxysilyl)ethylthio)acetate (Compound 5) 
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