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Abstract. ITS authoring tools make creating intelligent tutoring systems more 

cost effective, but few authoring tools make it easy to flexibly incorporate an 

open-ended range of student modeling methods and learning analytics tools. To 

support a cumulative science of student modeling and enhance the impact of re-

al-world tutoring systems, it is critical to extend ITS authoring tools so they eas-

ily accommodate novel student modeling methods. We report on extensions to 

the CTAT/Tutorshop architecture to support a plug-in approach to extensible 

student modeling, which gives an author full control over the content of the stu-

dent model. The extensions enhance the range of adaptive tutoring behaviors 

that can be authored and support building external, student- or teacher-facing 

real-time analytics tools. The contributions of this work are: (1) an open archi-

tecture to support the plugging in, sharing, re-mixing, and use of advanced stu-

dent modeling techniques, ITSs, and dashboards; and (2) case studies illustrat-

ing diverse ways authors have used the architecture.  

Keywords: Authoring tools, architectures, closing the loop, student modeling, 

learning analytics, intelligent tutoring systems 

1 Introduction 

Over the last few decades, authoring tools have made the development of intelligent 

tutoring systems (ITSs) substantially more cost effective [1, 5, 27, 35]. Yet these tools 

are not always geared towards easily and flexibly accommodating advances in student 

modeling, which may limit the degree to which they drive innovation in ITS research 

and the degree to which advances in student modeling spread across ITSs. Student 

models have long been (and remain) a key element of ITSs. They track many peda-

gogically-relevant features of student learning and behavior, including the moment-

by-moment development of student knowledge (e.g., [8, 11, 23, 43]), metacognitive 

skills (e.g., [3]), affect (e.g., [10, 14, 25]), and motivation (e.g., [4]). They are a foun-

dation for adaptive tutoring behaviors in ITSs [11], which in turn can lead to more 

effective instruction [3, 4, 10, 19, 26]. Student models, and learning analytics more 

broadly, are also increasingly being used in tools such as dashboards, open learner 
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models, and classroom orchestration tools, where they can augment the perceptions of 

teachers [19, 42] and learners [7, 26].  

However, various factors work against novel student modeling methods spreading 

widely in ITSs. These methods (e.g., [11, 23, 32, 43]) are often developed and tested 

on historical log data from educational software (i.e., “offline”). They are not com-

monly implemented or evaluated in real-world educational technologies, as we saw 

for example with AFM [6], PFA [34], and various innovative extensions to Bayesian 

Knowledge Tracing (BKT) (e.g., [23, 43]; but see [8]). Even when an advance in 

student modeling has been demonstrated in a live tutoring system, it often stays con-

fined to that system, without being taken up in other systems (e.g., [3, 4, 10, 16]). 

ITS authoring tools, and the ITS architectures with which they are integrated, could 

help address these challenges if they provided support for easy integration of a wide 

and open range of student modeling methods and analytics. Given that for many ITS 

authoring tools, many classroom-proven tutors exist, such authoring tool functionality 

could facilitate testing the generality of new student modeling methods across a range 

of tutors. Further, easy integration could facilitate further experimentation with new 

student modeling methods, beyond the initial offline testing, regarding how best to 

use these methods to enhance an ITS’s functionality (e.g., with new adaptive tutoring 

behaviors or external learning analytics tools). Eventually, researchers may conduct 

more close-the-loop studies, in which the effects of new student modeling methods 

and analytics are rigorously tested in “live” tutoring systems (e.g., [3, 4, 7]). Results 

from such studies could accelerate a cumulative science of student modeling, as well 

as extend student modeling advances into working ITSs and educational practice. 

However, ITS authoring tools rarely support extensible student modeling. For ex-

ample, prior to the work reported in the current paper, CTAT/Tutorshop, an authoring 

environment for cognitive tutors and example-tracing tutors that has been used to 

build many dozens of ITSs [1], supported only student models comprising a set of 

BKT mastery probabilities for knowledge components (KCs) within the authored 

tutors. An author could not add other types of variables to the student model (e.g., to 

track the student’s affective or motivational state, or metacognition) or easily experi-

ment with different methods for updating or using the student model.  Similarly, AS-

SISTments Builder [35] and ASPIRE [29], other major ITS authoring tools, do not 

support easy extension of their student models with new types of variables. By con-

trast, GIFT [37] does support an extensible student model based on multiple data 

sources (e.g., sensor data) with different time scales and granularity. Yet GIFT has 

been designed with a different focus than CTAT, and thus has other limitations [15]. 

For example, unlike CTAT, GIFT does not support non-programmer authoring of 

tutors with their own tutor interface and an extended step loop. We see these related, 

somewhat divergent, efforts as synergistic and a useful point of reference. 

To address this challenge, we have extended CTAT/Tutorshop so authors can easily 

plug in an open-ended range of student modeling techniques. The extensions also 

support the authoring of an open-ended range of adaptive tutoring behaviors and facil-

itate the development of an open-ended range of student-facing and teacher-facing 
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support tools, including real-time tools for awareness and orchestration [7, 17]. We 

refer to the new architecture as the CTAT/TutorShop Analytics (CT+A) architecture. 

We aim to lower the barriers to the sharing, re-use, and re-mixing of advanced student 

modeling methods across researchers and research groups, with the goal of accelerat-

ing progress within a cumulative science of student modeling (c.f., [11, 32, 37]).  

2 The CTAT/Tutorshop Analytics (CT+A) Architecture 

2.1 Overview 

CTAT is a widely used ITS authoring tool that supports both a non-programmer ap-

proach (example-tracing tutors) and an AI-programming approach (Cognitive Tutors, 

a form of model-tracing tutors) to tutor authoring. TutorShop is a learning manage-

ment system (LMS) built for classroom use of CTAT tutors. Use of CTAT has been 

estimated to make ITS development 4-8 times as cost effective, compared to historic 

estimates of development time [1]. As evidence that CTAT and Tutorshop are robust 

and mature, CTAT has been used by more than 750 authors. Dozens of tutors built 

with CTAT have been used in real educational settings [1]. As of 2015, CTAT-built 

tutors had been used by 44,000 students, with roughly 48,000,000 student/tutor trans-

actions, for a total of 62,000 hours of student work. Since then, there has been sub-

stantial additional use.  

We first describe key elements of the CT+A architecture (shown in Figure 1) that 

existed prior to adding the new support for extensible student modeling. At a func-

tional level, each tutor created in this architecture comprises a “step loop” nested 

within a “task loop” [39, 40]. The step loop supports within-problem tutoring, the task 

loop supports problem selection. The step loop has two key components, namely, a 

tutor interface and a tutor engine, both running on the client (i.e., the student’s ma-

chine). The interface is where the student-tutor interactions happen; it is custom-

designed for each problem type. The tutor engine interprets student actions and 

decides what feedback or hints to give, employing either the model-tracing or exam-

ple-tracing algorithm, depending on the tutor type. The tutor’s task loop is imple-

mented in TutorShop and runs on the server. CT+A offers various problem selection 

algorithms that can be used within a tutor, including individualized mastery learning 

[8]. This method relies on a student model that, as mentioned, contains estimates of 

the probability that the student has mastered each of a set of KCs targeted in the cur-

rent tutor unit, computed (by the tutor engine, as part of the step loop) according to a 

standard BKT model [8]. TutorShop takes care of permanent storage of the student 

model. It also provides learning management functionality for teachers (e.g., manag-

ing student accounts and assignments), as well as content management (e.g., it stores 

tutor curriculum content). This architecture has been used to build many tutors, but it 

cannot easily accommodate new student modeling methods. To address this limita-

tion, we added the following key extensions: 

 

1. An extensible student model. An author can now add new variables to the 

student model.  
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2. An API and template for automated plug-in detectors for any new student 

modeling variables (i.e., computational processes – oftentimes machine-

learned – that track psychological and behavioral states of learners based on 

the transaction stream with the ITS). For the time being, we focus on sensor-

free detection of student modeling variables. We have started to create a li-

brary of compatible detectors [9], so as to facilitate sharing, re-use, and re-

mixing of plug-in detectors among authors; 

3. Multiple mechanisms by which authors can craft tutor behavior that adapts to 

student model extensions, in the tutor’s step loop and task loop, and  

4. A forwarding mechanism within TutorShop that allows authors to pass stu-

dent models to web-connected learning analytics displays on a broad range 

of platforms (from browser-based dashboards to wearable devices).  

5. The beginnings of a library of “dashlets,” to facilitate building learning ana-

lytics tools. Dashlets are re-usable interface components that can be associat-

ed with sets of analytics and configured to visualize these analytics.  

 

 

Fig. 1.   Overview of the modular CT+A architecture, illustrating the flow of information be-

tween architectural components, with the top level (ovals) representing users. Components 

within dotted-line regions run on the same machine. Items in blue represent configurable com-

ponents. Rounded boxes indicate information being passed between architectural components. 

Dotted arrows represent pathways that are not presently implemented. 

2.2 The Extensible Student Model 

Whereas previously the student model of a tutor built in CTAT/Tutorshop comprised 

only a set of KC probabilities, the student model is now extensible, with authors hav-

ing full control over the set of variables it contains. An author can add any number of 

variables to the student model that capture student behaviors and inferred psychologi-

cal states (e.g., knowledge, metacognitive, affective, or motivational states) [11]. The 
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KC probabilities remain as variables in the student model if the author so wishes. 

With the exception of these KC probabilities, TutorShop is oblivious to the semantics 

of the analytics in the student model (i.e., it does not have any built-in functionality 

that responds to the student model analytics; all such functionality must be provided 

by the author). A key advantage of this “semantic ignorance” is flexibility and control 

on the part of authors defining and using these analytics. Transparent to the author, 

the CT+A architecture maintains, in real time, two up-to-the-second copies of the 

student model, one within the tutor engine, one within TutorShop. Within the tutor 

engine, the student model can support adaptive tutoring behaviors. Within TutorShop, 

it can support external real-time support tools an author may wish to create or hook in 

(e.g., a real-time dashboard). The copy of the student model stored by TutorShop is 

kept in between problems and student sessions and is sent back to the tutor engine at 

the beginning of each problem/session, again transparent to the author.  

 

2.3 Plug-in Detectors 

To extend the student model, an author needs to provide automated detectors for all 

new student model variables, that is, code that computes these variables. Tutor au-

thors can write plug-in detectors in Javascript, working from either previously-created 

detectors or from a generic template, available in a central, open source code reposito-

ry [9]. The template defines a small number of code modules that each detector 

should have, namely, student model variable computations, internal feature computa-

tions, and trigger conditions for each. 

To support a “remix” approach to student modeling, we have started a library of 

detectors that conform to this template. The library is freely available [9], and we 

hope it will continue to grow through community authoring. Many of the detectors 

currently available have been used in running ITSs and dashboards, including: multi-

ple variants of the Help Model [3], BKT [8], various moving average detectors [34], 

and detectors of unproductive persistence or “wheel-spinning” [21]. Paquette et al. 

have also recently developed and shared a detector of “gaming the system” behavior 

in ITSs [4] that generalizes well across a diverse range of systems [32]. 

Detectors in CT+A are plug-in agents that rely on three sources of input. First, they 

listen to the transaction stream coming from the tutor engine; each transaction de-

scribes a student action, such as an attempt at solving a step or a hint request, as well 

as the tutor’s response, such as whether the student action was correct and what KCs 

were involved. Each detector also listens for updates to the extensible student model 

(i.e., updates made by other detectors), and has access to all student model variables, 

in addition to any intermediate variables that the detector itself maintains (see below). 

Based on these inputs, each detector responds with newly computed values for its 

targeted student model variables. As a result, both copies of the student model (the 

one within the tutor engine and the one within TutorShop) are updated, transparent to 

the author. Student model updates are sent to TutorShop in a fine-grained, transaction-

based message format we have adopted, a subset of LearnSphere’s Tutor Message 

format [15, 36].  
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Each detector can maintain an internal state in the form of a set of intermediate 

variables specified to conform to the detector template. Intermediate variables are not 

considered to be part of the student model and are therefore not accessible to other 

architectural components such as other detectors or aggregators. They are, however, 

sent to TutorShop, so that TutorShop can save a (compact) “history” for each detector. 

These detector histories are sent back to the tutor engine at the beginning of each 

problem, so that the previous state of each associated detector can be restored.  

Although CTAT detectors typically run in live tutoring systems, they can also be 

used, without modifications, for offline data analyses (e.g., [19, 32]). LearnSphere 

[38], a large online data repository with many analysis tools, provides a workflow 

component for CTAT detectors, in the Tigris visual workflow tool, that enables run-

ning detectors against historical log data (from the same or other CTAT tutors). 

 

2.4 Extended Support for Authoring Adaptive Tutor Behaviors 

To enable the authoring of a wide and open range of adaptive tutor behaviors, we 

added two mechanisms to CTAT by which an author can make a tutor’s behavior in 

the step loop (i.e., the within-problem tutoring support it offers [2, 40]) contingent on 

the extensible student model. We also made provisions for plugging in new task se-

lection algorithms in the tutor’s task loop. 

As a first mechanism for creating step-loop tutor behaviors that are responsive to 

the extensible student model, authors of example-tracing tutors can use Excel-like 

formulas that reference student model variables. The use of formulas, attached to the 

tutor’s behavior graph, has long been part of CTAT [1]; what’s new is that formulas 

can reference variables in the extensible student model (see Figure 2). Formulas can 

affect many aspects of tutor behavior, including how the tutor interprets a student’s 

problem-solving behavior against a behavior graph, the content of feedback and hints, 

and tutor-performed actions. Using these building blocks, an author can craft a wide 

and open-ended range of adaptive tutor behaviors, for example, presenting abstract 

hints to advanced students, presenting empathic hints to frustrated students, present-

ing unmastered steps as worked-out steps to be explained by the student, and having 

the tutor perform highly mastered steps for the student to reduce “busy work.”  Au-

thors of rule-based tutors can also craft rules that support adaptive behaviors, taking 

of advantage of the extensible student model’s availability in working memory. 

A second mechanism addresses a limitation of the first, namely, that it cannot be 

used to craft adaptive tutor behaviors that respond to the very last (i.e., the most re-

cent) student action – it lags by one student action. Sometimes, tutor behaviors are 

needed that are contingent upon updates of the extensible student model triggered by 

the very last student action. Our second mechanism lets author craft such tutor behav-

ior, although to do so, the author must write Javascript code. Specifically, all tutors 

have a dedicated plug-in agent called the “Tutor’s Ear”, that continuously listens for 

updates to the student model. The Tutor’s Ear has unique access to the tutor engine, 

meaning that it can directly trigger tutor responses. Authors can customize this detec-

tor by specifying (in Javascript code) conditions involving one or more student model 

variables under which a particular tutor response should be triggered. Authors can 
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then specify desired response actions (e.g., “ShowMessage (‘Try explaining to your-

self what needs to be done on this step’)”), via a simple API. Ideally, CTAT would 

have a single mechanism for step-loop adaptivity based on student model variables, 

but a substantial re-architecting would be necessary to merge the two mechanisms. 

In addition to supporting the authoring of adaptive behaviors in the tutor’s step 

loop, we support the plugging-in of adaptive task selection methods (i.e., plug-in task 

loops), by making the student model available to external task selection processes. 

 

2.5 Support for Using Learning Analytics in External Support Tools 

Finally, authors may use Tutorshop to forward student models to web-connected 

learning analytics displays on a range of platforms, from browser-based dashboards to 

wearable devices [17]. While detectors in CT+A operate client-side, within individual 

students’ tutors, and thus can only compute analytics for individual students, it is 

often useful for learning analytics applications (e.g., teacher dashboards) to compute 

analytics at higher units of analysis, such as groups of students or whole classes.  For 

example, in classrooms in which students work with CTAT tutors collaboratively (c.f., 

[31]), information about the relative performance and contributions of the students in 

a group might be useful to display to teachers. To address this need, the extended 

architecture provides an “aggregator” API to enable authors to compute custom 

group- or class-level analytics from student model variables across multiple students. 

Authors of learning analytics tools can write custom “aggregators” in JavaScript to 

calculate new values from detector analytics across specified sets of students. Aggre-

gator calculations can be triggered by incoming student model updates. We created 

the Aggregator House (AggHouse), a JavaScript/Node.js [30] library that can invoke 

aggregators either on the Tutorshop server, or directly on a dashboard client. Results 

from aggregators can, in turn, be used to update real-time dashboard displays. 

To facilitate building analytics tools that can be used in conjunction with CTAT-

built tutors (e.g., dashboards and orchestration tools), we provide an API called the 

CT+A Live Dashboard, which includes the beginnings of a library of “dashlets,” in-

terface components for analytics tools. Authors may use the built-in dashlet compo-

nents or create new dashlets (using Javascript). In addition to supporting the building 

and deployment of web browser-based dashboards, Tutorshop can also forward ana-

lytics to tools running on external hosts, via a real-time event stream in JSON format, 

to support analytics tools across a range of hardware interfaces.  

2.6 Lessons Learned: Guiding Principles for Extensible Student Modeling 

In designing CT+A so it can support an open range of student modeling applications, 

with provisions for real-time support tools, a set of guiding architectural principles 

has emerged. These principles capture the key architectural elements added to CT+A.  

Maximize tutor-side computations. We have structured detectors to promote in-

cremental (e.g., per transaction) computation of analytics. This supports offloading of 

student model computations to the tutor clients, rather than the LMS, since incremen-

tal computations spread processing load over time. 
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Keep data streams “lean”.  In designing key data streams (i.e., the transaction 

stream into the detectors, and the student model update stream from tutor to LMS), 

we settled on a small subset of the information CTAT tutors currently send to Learn-

Sphere [24]. We originally attempted to anticipate many possible author needs and 

build these into the transaction messages [36] that serve as primitive inputs to plug-in 

detectors, but decided against this approach. Keeping this set small can reduce unnec-

essary message traffic and redundancy by acknowledging the wide range of analytics 

authors may wish to compute and enabling them to compute only those needed.  

Maintain the student model both locally and centrally. Prior to these architec-

tural extensions, an up-to-the-second copy of the student model was maintained on 

the tutor side, but the LMS-side copy was updated only as needed to preserve the 

student model in-between problems. We have found it valuable to instead maintain 

both a local (tutor-side) and central (LMS-side) up-to-the-second copy of the student 

model, with each copy supporting different use cases, namely, tutor adaptivity versus 

analytics tools; the latter typically require both class-level analytics and real-time 

updating, which is why central copies of the student models are useful. 

Support easy re-mixing of existing components. In addition to supporting plug-

and-play of architectural components, we have found it valuable to make individual 

components easily-customizable. For example, each detector contains a module that 

exposes configurable parameters. This feature is intended to facilitate the creation of 

variants of student modeling techniques, including those created and shared by others, 

to support authors not only in comparing against each other’s’ models, but also in 

building upon and contributing to each other’s modeling work (c.f. [22, 37, 38]). 

3 Case Studies 

In this section, we present case studies of prototype systems that use the CT+A archi-

tecture to enhance tutoring systems’ adaptive capabilities and/or to support teachers. 

 

3.1 A Prototype Tutor that Provides Metacognitive Scaffolding 

The experience of some of the participants during our yearly summer school illus-

trates how a detector library can be helpful in quickly prototyping adaptive tutor be-

haviors. During this summer school, designers, teachers, and researchers build their 

own systems using CT+A. This past year, participants were able to author detector-

enhanced ITSs, by re-using pre-existing detectors available in the detector library. 

They embedded pre-existing detectors into their tutors and authored custom adaptive 

tutor behavior based on detectors’ outputs. 

A team of two students, Dennis Bouvier and Ray Martinez, used the CT+A archi-

tecture to implement an ITS prototype that provided metacognitive feedback in addi-

tion to feedback at the domain level, which is standard in CTAT tutors. This tutor, the 

Binary Search tutor, was intended to help undergraduate Computer Science students 

learn binary search algorithms. It allows students to practice applying a binary search 

algorithm to an array of numbers. The Binary Search Tutor  uses a plug-in implemen-

tation of the Help Model, which can identify patterns in student-tutor interactions that 
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indicate abuse (e.g., rapidly clicking through hints without reading) or avoidance 

(e.g., not using hints in situations where they are likely to be needed) of the tutoring 

software’s built-in hints [3]. Using custom response actions authored in the Tutor’s 

Ear, the Binary Search Tutor responds to both types of student behavior. In the case 

of hint avoidance, the tutor prompts the student to ask for a hint. In the case of hint 

abuse, the tutor encourages the student to try attempting more steps without hints. 

 

  

Fig. 2. Left: The Fraction Addition Tutor uses multiple plug-in detectors to decide whether to 

provide more scaffolding. Right: Authoring the Fraction Addition Tutor in CTAT. 

3.2 A Prototype Fraction Addition Tutor with Hybrid Adaptivity 

Using CT+A, we have also created a tutor prototype that implements a form of “hy-

brid adaptivity” [2], meaning that it adapts to combinations of student states. This 

tutor, an example-tracing tutor for 4th and 5th grade fraction addition problems, adjusts 

the level of scaffolding provided based jointly on the values of cognitive variables 

(skill mastery) and metacognitive variables (hint use, unproductive persistence). For 

example: if a student is detected as having low knowledge on KCs involved in the 

current step (by a plug-in of BKT [8]) and the student is detected as “using all availa-

ble hints yet remaining stuck” (by the Help Model [3]) but the student is not currently 

detected as necessarily “unproductively persisting” (by a detector of wheel-spinning 

[21]), then the Fraction Addition Tutor will dynamically convert the student’s current 

problem into a completion problem, by filling out all steps except one, and prompt the 

student to study the worked-out steps and fill in the remaining step (Figure 2, left). 

This capability was authored using a formula (expressed in CTAT’s formula language) 

that references student model variables (i.e., the first of the two mechanisms described 

above for authoring adaptive tutor behavior). This formula was attached to a new path 

in the behavior graph (the main representation of domain knowledge in an example-

tracing tutor), added by the author (Figure 2, right). The path specified the tutor-

performed actions needed to fill in the worked-out steps. 

 

3.3 Teacher Smart Glasses that Support Real-time Classroom Orchestration 

The CT+A architecture has been used to implement Lumilo [17, 19], a mixed reality 

smart glasses application, co-designed with K-12 math teachers, and developed for 
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the Microsoft HoloLens [28]. Lumilo is designed to aid teachers in orchestrating per-

sonalized class sessions, in which students work with ITSs at their own pace. When a 

teacher puts these glasses on, she/he can see visual indicators floating over students’ 

heads (Figure 3), based on changes in a student’s extensible student model. The 

teacher can also view more detailed student-level analytics, as well as class-level 

summaries. Lumilo has been used in fifteen K-12 classrooms so far [17, 19]. 

All student model updates are computed within students’ tutor clients (using sever-

al plug-in detectors) and forwarded to TutorShop, which forwards them to Lumilo. 

Although Lumilo is not browser-based (and was thus authored outside of Live Dash-

board, described above), TutorShop provides hooks for Lumilo to connect to each 

classrooms’ analytics streams. Lumilo’s dashlets are then updated by aggregators on 

the Lumilo client. 

 

    

Fig. 3.   Left:  Point-of-view screenshot of teacher using Lumilo to monitor a class of students 

(taken directly after class). Right: Teacher’s view through Lumilo after selecting a student, to 

view more detailed information for that student [17]. 

3.4 A Tablet-based Real-time Dashboard for Personalized Class Sessions 

In addition to the smart glasses interface of Lumilo, a tablet-based companion app is 

being developed within the Live Dashboard and AggHouse tools. The tablet compan-

ion to Lumilo provides the same analytics and allows teachers to toggle between al-

ternative display formats. For example, teachers can use Live Dashboard’s Table-

View component to display student model updates in a student-by-variable matrix 

format. Alternatively, teachers can use Live Dashboard’s Seating-Chart component to 

display a “real-time, real-place” visualization [18, 41] of the classroom, using a teach-

er-provided seating chart, and draggable student components (Figure 4). 

 

3.5 A Prototype Dashboard that Supports Data-informed Lesson Planning  

The CT+A architecture was used to develop Luna, a prototype browser-based dash-

board front-end for K-12 teachers. Unlike Lumilo, which is designed to support real-

time monitoring, Luna supports teachers in lesson planning, using analytics generated 

by an ITS for algebraic equation solving [20, 42]. Luna allows teachers to review 

students’ knowledge and amount of practice on each of a number of fine-grained 

skills and error categories, either at the level of a class summary, or at the individual 

student level. In addition, teachers can use Luna to review individual students’ pro-

gress through the software, relative to the time they have spent working (Figure 4). 
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Luna was developed using the Live Dashboard and AggHouse tools. As with Lumilo, 

the primitive level of data upon which Luna relies are student model updates, com-

puted by plug-in detectors which are distributed across students’ client machines. 

 

  

Fig. 4.   Left: prototype of the Lumilo Tablet real-time dashboard, with students displayed as 

blocks within a Live Dashboard “Seating Chart” component. Right: a prototype of the Luna 

lesson-planning dashboard, showing the class-level view. 

3.6 A Fractions Tutor with a Custom Adaptive Task Selection Policy 

Finally, the CT+A architecture was used to develop an adaptive fractions tutor [12, 

13] which can use a variety of custom instructional policies [12] to drive adaptive task 

selection (e.g., adaptive policies learned via reinforcement learning). The Fractions 

Adaptive tutor makes its student model available to external, custom task selection 

processes (Python web applications) via the TutorShop LMS. TutorShop, in turn, 

selects a next task for each student based on the output of this plug-in task loop. 

4 Discussion and Future Work 

If advances in student modeling made by the AIED, EDM, and LAK communities are 

to have a measurable impact on the design and effectiveness of real-world systems, 

and contribute to a cumulative science of student modeling, it is critical to develop 

authoring tools that can support these goals. Toward this end, we have introduced 

CT+A, an open architecture to support extensible student modeling. This architecture 

supports the plugging in, sharing, re-mixing, and use of advanced student modeling 

techniques in ITSs and associated analytics tools. The work is unique in that it sup-

ports extensible student models in the context of non-programmer ITS authoring tools 

that support building tutors with a dedicated problem-solving interface and elaborate 

step loop. In addition to the architecture itself, we present a set of “lessons learned,” 

in the form of principles summarizing the main architectural elements. We hope they 

will inform other projects focused on extensible student modeling. 

Our case studies illustrate some of the range and flexibility of CT+A and demon-

strate progress towards four key goals for an analytics-integrated architecture. We 

have demonstrated that authors can add new variables to the student model by em-

bedding detectors in running tutoring systems. We have presented an API and tem-
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plate for creating these plug-in detectors, requiring only that authors are familiar with 

basic JavaScript. We demonstrated as well that existing detectors can be reused and 

that authoring new adaptive tutoring behavior is feasible without programming. Final-

ly, we have shown that the CT+A architecture can support the development of a varie-

ty of teacher support tools, including both real-time and lesson-planning dashboards, 

and both web-based and wearable tools.   

Limitations of the work are, at least for the time being, that we focus on transac-

tion-based (in other words, sensor-free) student modeling [11]. Although transaction-

based student modeling is a practical, proven, and widely useful approach (e.g., [4, 

11, 15, 25, 38]), we leave for future work any issues related to how a student model 

can be updated with multiple data streams of different granularity (transactions and 

sensor output). As mentioned, such issues are being explored in the GIFT architecture 

[37]. An additional limitation of the current architecture is that, in authoring tutoring 

behaviors responsive to the extensible student model, immediate tutor responses in-

volve a different mechanism than tutor responses in subsequent tutor cycles. A more 

flexible and general solution might be give detectors and the tutor engine equal status, 

with a coordinating agent that has the final word regarding the tutor response [36]. 

Finally, adding student model extensions requires some programming (namely, to 

create detectors in Javascript) and thus falls outside CTAT’s non-programmer para-

digm. The amount of programming required can be reduced, however, by re-using 

existing detectors, shared among authors in the CT+A detector library [9]. In the fu-

ture, new practices developed and tested within architecture might inform extensions 

to support their use without programming. 

It is our hope that CT+A will help lower the barriers to sharing advanced student 

modeling methods between researchers, which in turn may accelerate progress within 

a cumulative science of student modeling (c.f., [11, 32, 37]). Support for plugging in 

– and sharing student modeling methods – can support authors and researchers not 

only in comparing against each other’s’ models (e.g., by evaluating systems that use 

these models in classroom experiments), but even in building upon and contributing 

to others’ student modeling work (c.f., [22, 37, 38]). Also, they might help increase 

the number of close-the-loop studies that researchers undertake. We also hope that 

architectures like CT+A will result in broader representation of advanced student 

modeling methods in both research and real-world educational software.  
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