
�

���������	
�����������������
����	�	�������	���������	�������������
�	������������	��������

��������������	��	��������
�������	������

�
�����������������	���������������������������

������ �	� ��� �
��� ����		� ��
�	������ ����� �������	� ���� ��� � ��� 	���� ������	��

��	�������	������� �	��
�		�������

���	��	���������������������������	����
����	���������

�����������	�
��	���
��

�

�

�

�

������������ ���

an author's https://oatao.univ-toulouse.fr/23015

 https://doi.org/10.1145/3139258.3139261

Daigmorte, Hugo and Boyer, Marc Evaluation of admissible CAN bus load with weak synchronization mechanism.

(2017) In: RTNS '17 Proceedings of the 25th International Conference on Real-Time Networks and Systems, 4

October 2017 - 6 October 2017 (Grenoble, France).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Archive Toulouse Archive Ouverte

https://core.ac.uk/display/188189826?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Evaluation of admissible CAN bus load with weak
synchronization mechanism

Hugo Daigmorte

ONERA – The French aerospace lab

2, av Edouard Belin

Toulouse, France 31055

hugo.daigmorte@onera.fr

Marc Boyer

ONERA – The French aerospace lab

2, av Edouard Belin

Toulouse, France 31055

marc.boyer@onera.fr

ABSTRACT
Scheduling frames with offsets has been shown in the literature

to be very beneficial for reducing response times in real-time net-

works because it allows the workload to be better spread over time

and thus to reduce peaks of load. In the specific case of CAN, the re-

sponse time is mainly related to the priority assignment, but offsets

can still improve the achievable bus load. When it exists a global

clock, a good offsets assignment leads to a TDMA medium access.

When each node have its own local clock the use of offsets still

spreads the workload over time.

However, on CAN, global clock is hardly implemented in practice

since using a global clock often requires dedicated hardware and

complicates the sharing of the bus with non-synchronized nodes.

That is why, we previously introduce the notion of bounded

phases, a tradeoff between global and local clocks. Bounded phases

allows an affordable synchronizationwith standard CAN controllers

and reduces delays with regard to local clocks. Through an exper-

iment on 5,000 configurations, we have shown that the maximal

bus load that can be reached is 80% in the case of bounded phases.

CCS CONCEPTS
• General and reference → Performance; • Mathematics of
computing→ Numerical analysis; • Computer systems organi-
zation→ Embedded and cyber-physical systems; Real-time systems;

KEYWORDS
worst-case traversal times, network calculus, CAN bus

Hugo Daigmorte and Marc Boyer. 2017. Evaluation of admissible CAN bus
load with weak synchronization mechanism. In Proceedings of 25th Inter-
national Conference on Real-Time Networks and Systems, Grenoble, France,
October 4–6, 2017 (RTNS ’17), 10 pages.
https://doi.org/10.1145/3139258.3139261

1 INTRODUCTION
Controller Area Network (CAN), a serial communication bus net-

work, was initially developed for automotive applications. Today

mainstream family cars contain around 30 Electronics Control Units

(ECUs) which often communicate using CAN [13]. Due to the many

advantages of CAN, including its high reliability and cost effective-

ness, it has found applications in other industries. In particular the

standard ARINC 825, was developed to standardize the use of CAN

in aerospace domain [7]. And so CAN bus is increasingly used for

transmitting real-time information. These real-time applications

often require to respect temporal constraints (deadlines) and so to

bound the communication latencies of the frames.

It has been shown that the use of offsets reduces response time

and increases the bus usage [21, 37], because their use allows the

workload to be spread over time and thus to reduce peaks load and

avoid contentions and so to reduce the worst-case response times

and to permit a better bandwidth utilisation [21].

One may wonder why to use offsets since it already exists effi-

cient algorithms assigning priority to messages and allowing to run

to a load close to 100% [1, 30]. The reason is that, in an industrial

context, priorities are constrained by design constraints. The main

one is related to reusability, and the fact that the CAN label both

fixes the identity of the message (its content) and its priority. A car

is the assembly of different components, and car manufacturers

try to maximize the reuse of components between different cars.

It simplifies the conception and debug if the same data has the

same label (and same priority) on different cars. Moreover com-

ponent outsourcing often implies that the set of data labels given

to a sub-system is set at early design stage, before the integration

and response-time analysis. Furthermore, upgrades and extensions

should not change already existing labels. Last standards may con-

straint the label assignment [7]. For example, Davis et al. [13] have

addressed the case when a subset of priorities is fixed by design.

Then, the use of offsets is another parameter that can be used

to reduce response time and increase bus load, in complement or

independently of the priorities assignment.

However using offsets requires a clock. In distributed systems

there are two main solutions: each node having a local clock or all

nodes sharing a global clock. In both, each message is sent at an

offset with regard to a clock. In case of global clock each node has (up
to some precision) the same clock value, and no contention occurs,

neither between flows from the same node, nor from different nodes.

Theoretically with a good offsets assignment (also known as Time-

Triggered schedule) it allows to run to a load close to 100%. There

are several competitive time-triggered solutions of control busses

using a global clocks, such as TTP [22], FlexRay [8], or TTCAN

https://doi.org/10.1145/3139258.3139261

RTNS ’17, October 4–6, 2017, Grenoble, France Hugo Daigmorte and Marc Boyer

[26]. However these solutions require specific hardware devices

and synchronization mechanisms which have a cost. In case of local
clocks, the scheduling remains local. Using local clocks avoids the

contentions between flows from the same node, and reduces the

contentions between flows from different nodes.

In a previous paper [9], we have presented a tradeoff between

global clock and local clocks: bounded phases. This solution, that
will be presented in details in Section 3, consists in using offsets on

a network with a weak synchronization between the nodes clocks.

Bounded phases allow an affordable synchronization with standard

CAN controllers and reduce delays with regard to local clocks.

The contribution of this paper is twofold. First, since [9] was

limited to purely periodic flows on a perfect CAN bus, then we

show how the notion of bounded phases allows to mix on the same

CAN bus periodic and sporadic flows, and how to consider the

impact of losses. Second, the gain related to offsets (in the case of a

purely periodic system and CAN bus mixing periodic and sporadic

flows) is evaluated on 5,000 configurations, with random or efficient

priority assignment. One goal is to get the “breakdown utilisation

factor” of this method, i.e. a coarse evaluation of the admissible

load of a CAN bus using bounded phases.

Section 2 presents the context of this study (the CAN bus, appli-

cation and error model). Section 3 presents in details the concept of

bounded phases. Section 4 presents an overview of the related work,

in the areas of synchronized networks, CAN priority assignment,

the response time analysis methods. Section 5 shows how to extend

the results of [9] to consider the error model and the sporadic flows.

Then, Section 6 shows the result of an experimental evaluation on

5,000 configurations.

2 CONTEXT
2.1 CAN bus
Controller AreaNetwork is a non-preemptive serial bus standard [33]

for connecting Electronic Control Units (ECUs) also known as nodes.

CAN was initially developed by Robert Bosch Gmbh for the auto-

motive industry in the mid 90s.

One reason for this success is the bit-wise non-destructive arbi-

tration mechanism of CAN. CAN is a broadcast bus, with a priority-

based access to the medium. Each message contains an identifier,

unique to the whole system, that is used to assign a priority to the

transmission and allows the message to be filtered at the reception.

The CAN specifications use the terms "dominant" bits and "reces-

sive" bits. If two nodes try to access the bus at the same time, they

will first send the identifier of their message. If one node transmits a

dominant bit and another node transmits a recessive bit then there

is a collision and the dominant bit "wins". The node transmitting the

lower priority message automatically stops transmitting and waits

until the bus becomes idle again before attempting to re-transmit

the message.

Thismechanism implements in a distributedway a non-preemptive

static priority medium access policy.

In CAN, six consecutive bits of the same polarity are used for

error signaling. Moreover due to “Non Return to Zero” (NRZ) cod-

ing used with CAN, drift in the receiver’s clock can occur when a

long sequence of identical bits has been transmitted. To avoid these

special bit patterns in transmitted frames, a bit of opposite polar-

ity is inserted after five consecutive bits of the same polarity. All

receiving nodes remove the “inserted” bits to recover the original

data. This technique, which is called bit-stuffing, implies that the

actual number of transmitted bits may be larger than the size of

the original frame, corresponding to an a additional transmission

delay which need to be considered in the analysis. Note that not all

bits in a message are subject to bit-stuffing (CRC, ACK and the end

of frame field), but only the one of the payload. So, if the payload

is made of nbytes bytes, the frame length is upper bounded by

55 + nbytes ∗ 8 ∗ 1.25 bits.
In the case of probabilistic schedulability analysis a lower bound

could have been used as it is shown in [31].

2.2 Model application
In this study we consider that there is a fixed set of data flows.

Each flow is characterized by a maximum payload size, a priority

and a sender. These flows can be either periodic or sporadic. A
periodic flow is characterized by a period, P > 0. A frame is sent

periodically, that is to say, the distance between the release time of

two consecutive frames is equal to the period P . A sporadic flow

is characterized by a minimum update time, MUT > 0. A frame is

sent as soon as specific events occur, however the minimal distance

between the release time of two consecutive frames is not less than

the minimum update time MUT.
Usually it is considered that each message has to respect an

implicit deadline equal to its period for periodic flows and equal to

its minimal update time for sporadic flows.

2.3 Error model
CAN has a very efficient error detection mechanism. An “error flag”

can be transmitted by each node which detects an error. The error

flag consists of six consecutive dominant bits and violates the rule

of bit stuffing. After receiving the error flag, the node transmitting

the corrupted message automatically stops transmitting and the

message will re-enter arbitration. Transmission errors are a random

phenomenon, and so it cannot be forecast. However Tindell and

Burns, in [35], have introduced the idea that the number of errors

can be upper bounded during a given time period. This upper bound

is characterized by:

• Nerror, the burst errors, is the maximal number of errors that

could occur back-to-back.

• Terror, the residual error period.

The number of transmission errors during the duration d is thus

bounded by: Nerror +
⌈

d
Terror

⌉
− 1.

2.4 CAN FD
The increasing system complexity requires to increase the band-

width. The classic CAN’s bit rate is limited to 1Mbps due to its

arbitration mechanism for media access control, and the number

of data per CAN frame is limited to 8 bytes. In order to overcome

these limitations while keeping most of the software and hardware

unchanged, R. Bosch GmbH introduced in 2012 CAN FD [23] (CAN

with Flexible Data-rate). CAN FD modifies the CAN frame format

by increasing the maximal payload size per CAN frame up to 64

Evaluation of admissible CAN bus load with weak synchronization mechanism RTNS ’17, October 4–6, 2017, Grenoble, France

A,1 B,1 A,2

C,3C,1 C,2

N

N'

BUS A,1 B,1 A,2

A,1 B,1 A,2

C,3C,1 C,2

Figure 1: Schedule example with a global clock.

bytes and by permitting to switch the bit rate to faster value inside

the CAN frame.

That is to say CAN FD does not really increase the number of

messages that can be sent on the bus but increases their payload.

And so the issue of evaluating the admissible bandwidth remains

similar. This is why this study focuses only on a classical CAN

configurations, but the results can be extended to CAN FD.

3 BOUNDED PHASES
3.1 Presentation
A periodic flow can be characterized by its period P , and an offset

O : the k-th frame of the flow i is released when the local clock is

equal to Oi + kPi . Considering a set of periodic flows, the choice

of the offset value Oi of each flow has an impact on the response

time, [21].

Nevertheless, using offsets requires a clock. In distributed sys-

tems there are two main solutions: each node having a local clock or
all nodes sharing a global clock. In both, the offset value is relative

to the considered clock. Let cN be the local clock of the node N ,

the k-th frame of the flow i is released at an instant t such that

cN (t) = Oi + kPi .
In case of global clock all nodes have (up to a certain precision)

the same clock value (∀N ,N ′, t : cN (t) ≈ cN ′ (t)). Using this com-

mon clock and with the proper time-triggered frame schedule no

contention occurs, neither between the flows from the same node,

nor from different nodes. An example of such a schedule is given in

Figure 1. A time slot is dedicated to eachmessage, and no contention

occurs between frames from flows A, B, C.

In case of local clocks, the scheduling remains local. Using lo-

cal clocks avoids the contentions between flows from the same

node, and reduces the contentions between flows from different

nodes. Two examples of schedule are given in Figure 2. Contentions

between frames from flows A and B from node 1 cannot happen.

However contentions between flows from different nodes can hap-

pen: between A and C (upper case) and between B and C (lower

case). Nevertheless, offsets with local clocks create some traffic

shaping and reduce contentions between nodes: C can be delayed

by at most A or B but never both of them.

We introduce the notion of bounded phases as a tradeoff between

global clock and local clocks: a system with a global clock but a

weak precision, that can also be seen as a system with local clocks,

where the phases between the clocks are bounded: a bound φ such

that ∀N ,N ′, t : |cN (t) − cN ′ (t) | ≤ φ. The phases between nodes

are not perfectly known but bounded, and some contentions can

be avoided. An example of schedule is shown in Figure 3. Like in

the case of local clocks, no contention will occur between the flows

A and B. But if the phase X = cN (t) − cN ′ (t) between N and N ′ is
small enough, no contention can occur between flows B and C.

A,1 B,1 A,2

C,1 C,2

N

N'

BUS

C,3

A,1 B,1 A,2C,2C,1 C,3

A,1 B,1

C,1

N

N'

BUS

B,1 A,2

C,2

A,1 B,1 A,2C,1 C,2

Figure 2: Schedule examples with local clocks.

A,1 B,1 A,2

C,3C,1 C,2

N

N'

A,1 B,1 A,2

C,3C,1 C,2

N

N'

X

X

Figure 3: Schedule example with bounded phases.

The interest of using bounded phases is that it is possible to

benefit from some of the advantages of a global clock with fewer

constraints on the synchronization. First as it have been shown

previously in Figure 3 there is less contentions and so a better worst

latency with regard to local clocks. Moreover it is possible to use

standard CAN controller whereas time-triggered systems require

in general to use dedicated devices
1
. Finally it is compatible with

any synchronization mechanism. This synchronization does not

have to be perfect but the weaker it is, the weaker the gain on delay

will be.

3.2 Mixing synchronous and asynchronous
flows

In the previous part, we only considered periodic flows and did not

take into account sporadic flows. How can periodic and sporadic

flows be mixed? We consider two sub-cases: either a node sends

both periodic and sporadic flows, or a node sends only one type of

flows.

In the case of global clock, for both of these cases, sporadic

flows may create contentions that had been avoided by using a

proper time trigger frame schedule. And so a contention resolution

mechanism has to be established. An alternative solution consists

in reserving specific time slots for asynchronous flows. With this

case asynchronous flows will only be released during their time

slots and so contentions can occur only between asynchronous

flows, however asynchronous flows have to wait until their next

time slot before being released which increases their delay.

In the case of local clocks and bounded phases, contentions

between frames sent from different nodes were already possible.

However in the case where a node sends both periodic and sporadic

flows, intra-node contention can occur, sporadic flows add the

obligation to manage these intra-node contentions.

1
A time-triggered system requires a bound on the clock difference cN − cN ′ smaller

that the duration of a few bits, around several micro-seconds.

RTNS ’17, October 4–6, 2017, Grenoble, France Hugo Daigmorte and Marc Boyer

In the case of CAN bus, the non preemptive static priority policy

already manages this case, however sporadic flows have an impact

on the performances.

4 STATE OF THE ART
4.1 Synchronized bus
CAN is an asynchronous serial data bus that was designed as a

simple and robust broadcast bus. In order to increase the maximal

bus load and in order to design a highly dependable protocol several

competitive time-triggered solutions of control bus, such as TTP

[22], FlexRay [8], or TTCAN [26] have been designed. Most of

them use a medium access mechanism different from CAN, the

Time Division Multiple Access (TDMA). The TDMA bandwidth

allocation scheme subdivides the time domain into different time

slots. Network nodes are assigned time windows during which,

they have the full transmission capacity of the medium for the

duration of this window: this allows multiple stations to share the

same transmission medium. The TTCAN uses the classical CAN

access and collision resolution mechanism, and adds TDMA on

top of the CAN protocol. Flexray mixes periodic and non periodic

flows. Flexray is composed of static and dynamic segments, that

are repeated periodically. The first one is used for periodic flows,

the second one for non periodic flows (as presented in section 3.2).

TTCAN by using the classical CAN access mechanism can mix

periodic and non periodic flows, without reserving a specific time

slot for non periodic flows.

In time-triggered systems, all actions are derived from a global

notion of time which requires to synchronize the local clocks of

each node. Flexray utilizes the concept ofmicroticks andmacroticks.
Microticks correspond to the node’s own internal time base, and

is not synchronized with rest of system. While macroticks repre-

sent the global notion of time used to trigger actions and to order

events, it’s an integral number of microticks, but not necessarily

the same number of microticks per node. Each node synchronizes

its macrotick by dynamically increasing or decreasing the number

of microticks per macrotick, according to a clock synchronization

algorithm.

In TTP all the nodes know the schedule. Each node measures the

difference between the a priori known expected and the observed

arrival time of a message. Then a clock synchronization algorithm

corrects the local clock in order to maintain the same global time.

The TTCAN synchronization mechanism is based on a mas-

ter/slave principle: a master node provides a global reference time

from which all other nodes on the network derive their own local

clock.

4.2 Priorities and offsets assignment algorithm
In the preemptive case, it have first been shown in [30] that, in

the case where deadline equals period, the rate-monotonic priority

assignment, which assigns priorities in a monotonic relation to

their their period, is optimum among all possible assignments. For

the more general case where deadlines are equal or less to periods,

this algorithm can be adapted to the deadline monotonic ordering

and it remains optimal, see [27]. However, in the general case where

no relation exists between periods and deadlines, these algorithms

are no more optimal, an optimal priority assignment procedure was

provided in [1], known as the Audsley priority assignment.

Contrary to the preemptive case, in the non-preemptive case

even when deadlines are less or equal to periods, the deadline mono-

tonic assignment is no longer optimal. It has been first assumed

that if the size of higher priority frame is less or equal to the size

of lower priority frame then deadline monotonic assignment is an

optimal priority assignment [18, Theorem 16]. However this theo-

rem has been proven incorrect as shown by the counter example

in [11]. The Audsley priority assignment remains optimal in the

general case [1, 18].

The specific case where some of the priorities are fixed, and a

subset may be freely assigned have been studied by Davis et al.

[13].

We have only presented the necessary work for our case study,

however a lot of work have been done on the issue of priority

assignment, see [14] for a more detailed overview.

Additionally to the priorities assignment a very important point

is the offsets assignment. The problem of choosing the best offsets

has been shown in [19] to have a complexity that grows expo-

nentially with the periods of the tasks. In [19], an optimal offsets

assignment is proposed, however due to its complexity offsets as-

signment heuristics non optimal but with lower complexity have

been proposed in [19, 20]. Importance of choosing offsets has been

shown in [21].

4.3 Analysis methods
In order to evaluate the maximal bus load, it is necessary to be able

to bound delay. The timing analysis of CAN has been the object for

various studies in the past. The worst case response times were first

provided in [36] and then revisited in [12] but without considering

offsets. They gave the exact response time for sporadic messages.

In [24, 32] it has been shown that network calculus can be also

used to compute upper bounds on CAN, but without proof of being

tight (that is to say “exact”). Response times on CAN with offsets

and local clocks have also been studied first with approximate but

lower-complexity forms of analyse in [34] and then an effective

worst-case response time analysis in the non-preemptive case with

offsets has been given in [37]. Multi-hop systems with local clocks

and offsets have also been studied using network calculus in the

case of AFDX [28, 29]. Finally response time in the case of bounded

phases using network calculus have been studied in [9, 10].

5 BOUNDING DELAYS WITH NETWORK
CALCULUS

In order to compare the use of bounded phases with regards to

systems without offsets or only local clock, we need response time

analysis for each case.

Section 5 recalls some network calculus background and presents

some new properties, required for mixing sporadic flows, errors

and bounded phases. Then we will present network calculus results

for local clocks.

Evaluation of admissible CAN bus load with weak synchronization mechanism RTNS ’17, October 4–6, 2017, Grenoble, France

5.1 Network Calculus reminds
Network calculus is a theory to get deterministic upper bounds in

networks. Network calculus mainly handles non decreasing func-

tions, null before 0. It is mathematically based on the (min,+) dioid

and beyond classical operations like addition or minimum, network

calculus relies on two basics operators the convolution and the

deconvolution.

More details, and in particular the proofs of Property 1 and

Theorem 5.4 can be found in [6, 25].

Definition 5.1. The min-plus convolution ∗ and deconvolution ⊘

of two functions f and g are defined by

(f ∗ д) (t) = inf

0≤s≤t
{ f (t − s) + д(s)}

(f ⊘ д) (t) = sup

0≤u
{ f (t + u) − д(u)}

The non-decreasing non-negative closure is defined by

[f]+
↑
(t) = max

0≤s≤t
(f (s), 0)

In network calculus, input and output flows of data are mod-

eled by cumulative functions which represent the amount of data

produced by the flow up to time t . The servers are just relations
between some input and output flows: a server S receives an ar-

rival/input flow,A(t), and delivers the data after some delay, it is the

departure/output flow, D (t). We always have the relation D ≤ A,
meaning that data can only go out after their arrival. However the

exact input/output data flows are in general unknown at design

time, or too complex, and the calculus of these cumulative functions

cannot be obtained. Nevertheless, the evolution of input/output

data flows can be bounded considering contracts on the traffics and

the services in the network. For this purpose, Network Calculus

provides the concepts of arrival curve and service curve, that have

been more widely described in [6, 25].

Definition 5.2 (Arrival curve). LetA be a flow, and α be a function.

Then, α is said to be an arrival curve for flow A, iff

∀(t ,d) ∈ R2+, A(t + d) −A(t) ≤ α (d) (1)

Eq. (1) is equivalent to A ≤ A ∗ α , see [25].

Property 1. Let A1 and A2 be two flows, and α1 (resp. α2) an
arrival curve of A1 (resp. A2).
• If α ′ ≥ α1 then α ′ is an arrival curve of A1;
• A1 ⊘ A1 is the “best” arrival curve for A1, i.e. A1 ⊘ A1 is an
arrival curve and A1 ⊘ A1 ≤ α1;
• α1 + α2 is an arrival curve of A1 +A2.

Definition 5.3 (Minimal services). A server S offers a strict min-

imal service curve β iff for all input/output A,D and for all back-

logged period (or busy period) (s,t]

D (t) − D (s) ≥ β (t − s)

Let us now present the main network calculus result which allow,

considering contracts, to compute bounds on delay.

Theorem 5.4 (Delay bound). Let S be a server offering a min-
plus minimal service curve β . If the input flow A has an arrival curve
α , then, the delay can be bounded by

delay = hDev(A,D) ≤ hDev(α , β)

d
a
t
a

time

A

t t + d

≤ α (d)

Figure 4: Arrival curve

time

d
a
t
a A

D

hDev(A,D)

Figure 5: Delay of the flow A

where hDev is the horizontal deviation (see Figure 5 for an illustration,
and [6, 25] for the definition).

Theorem 5.5. [Non-preemptive static priority, [2]] Let S be a server
offering a strict minimal service β , shared by three flows, A,AH ,AL ,
AH having a higher priority than A, and AL a lower. Then, if αH is
an arrival curve for AH , Lmax is an upper bound on the frame size
of A and Lmax

L is an upper bound on the frame size of AL , the flow A

receives a strict service curve βA:

βA =
[
β − αH −max(Lmax ,Lmax

L)
]+
↑

5.2 Mixing asynchronous flows, errors and
bounded phases

In a previous paper [9], we have developed three different methods

to bound the delay in the case of bounded phases. Each method

assumes that the bus offers, to the set of periodic flows, a strict

service of curve β . When there are only periodic flows, the service

is a constant rate β (t) = C .t , where C is the link speed.

When periodic flows share the bus with some sporadic flows,

and errors, one have to define another β function representing the

residual service offered to the periodic flows. In the case of CAN

bus with non-preemptive static priority arbitration we are going to

use theorem 5.5.

To capture the influence of sporadic flows, let S ⊂ [1,n] be the
subset of flows with sporadic behavior. Let i ∈ S be such sporadic

flow, of maximal frame size si and minimal update time MUTi . It
admits as arrival curve αi (t) = si

⌈
t

MUTi

⌉
. Now considering a set of

sporadic flows, using property 1 it is possible to deduce an arrival

curve for the set as the sum of the arrival curve of the individual

flows.

To capture the influence of errors, considering the error model

presented in section 2.3, one may consider that errors are virtual

frames of some virtual additional asynchronous flow of maximum

priority and a larger frame size (to take into account the error

frame). This virtual flow has arrival curve

αerror (d) = (Lmax + Lerror)

(
Nerror +

⌈
d

Terror

⌉
− 1

)
(2)

RTNS ’17, October 4–6, 2017, Grenoble, France Hugo Daigmorte and Marc Boyer

Then, when considering the periodic flow of priority i , the the-
orem 5.5 allows to use the results presented in [9] using β =
λR − αerror −

∑
j<i, j ∈S α j − maxj=i ..n (Lj), since it is a residual

service offered to the flow i .

5.3 Local clocks with network calculus
In the case of local clocks, as offsets rely on local clocks, flows

have to be aggregated by sender node in order to evaluate a correct

arrival curve.

Theorem 5.6 (Arrival curve for local clock scheduling).

Let A1, . . . ,An be a set of flows, and N1, . . . ,Nm a set of nodes. For
any of Ai , if s (i) is the sender of the flow, then an arrival curve of∑n
k=1Ak is:

m∑
l=1

*.
,

n∑
k=1,s (k)=l

Ak
+/
-
⊘
*.
,

n∑
k=1,s (k)=l

Ak
+/
-

(3)

Proof. Considering A′
1
, . . . ,A′n′ a set of flow sent by the same

sender. From Property 1 we can deduce that(∑n′
k=1A

′
k

)
⊘

(∑n′
k=1A

′
k

)
is an arrival curve of

∑n′
k=1A

′
k .

Now using Property 1, we know that the sum of the arrival curves

is an arrival curve of the sumof flows. And so

∑m
l=1

(∑n
k=1,s (k)=l Ak

)
⊘

(∑n
k=1,s (k)=l Ak

)
is an arrival curve of

∑n
k=1Ak □

Since the cumulative curve of a periodic flow of period P , frame

size s and offset o is known (A(t) = s
⌈
t−o
P

⌉
), the arrival curve of

the aggregate flow can be computed. It is then possible to bound

the delay using network calculus.

6 EXPERIMENTATION
6.1 Configuration Pattern
This section evaluates the effect that Bounded Phases between nodes
have on the maximum achievable bus load. In order to evaluate this

impact, we would have first to define an experimental configuration

representative of a “common” CAN configuration. However, there

is no “common” CAN configuration. CAN is widely used and so

there is huge set of configurations: only time-triggered flows, only

asynchronous, presence of a gateways that generates a large amount

of the network load... There is no universal CAN configuration.

Our choice inspired by [17, 38], considers a configuration pattern

with:

• 16 nodes connected via a single CAN bus, exchanging peri-

odic messages (except experiments 6.7).

• Each priority was randomly, with uniform distribution, allo-

cated to a message (except experiments 6.4).

• The periods of the frames were uniformly chosen from the

set {20, 25, 40, 50, 100, 200}ms.

• An 8 bytes payload and an 11-bit identifier.

• There were 35-55 messages (more details further).

• The assignment of offsets that was used in this study is the

SOPA algorithm available in the RTaW-Pegase software from

the company RTaW [4].

• The deadlines of each message was set equal to their period,

i.e. implicit deadlines (except experiment 6.4).

• Each message was randomly, with uniform distribution, al-

located to one of the source (except experiment 6.6).

6.2 Methods for delay evaluation
We are going to compare the gain given by the use of bounded

phases w.r.t. local clocks and no offset. Here are presented the

methods used to do the evaluation of delay for each solution (already

presented in section 4.3).

For bounded phases, three methods based on Network Calculus

(NC) have been defined to compute upper bound on delays in [9].

None is better than the others, but all the three give a valid upper

bound. Then, in this paper, the three methods have been aggregated

into a single one: the three analysis were run but only the best (i.e.
smaller) result was kept. Results will be plotted in red.

For local clocks, the reference algorithm is the one of [37]. It

computes a worst response time exact up to one frame length. We

used the implementation available in RTaW-Pegase tool [4]. Results

will be plotted in blue.

Nevertheless, this computation takes a lot of time, so we also

used Theorem 5.6 which computes an upper bound. Results will be

plotted in green.

When the computation time was acceptable, both have been run.

When it was not, only the NC-based was run. For example, in the

second experiment that will be presented (section 6.5), the mean

computation time of RTaW-Pegase was 435s per configuration (over

5,000 configurations), whereas the NC-based evaluation (computing

both local clocks and bounded phases delays) took only 65s. For

the first experiment, that will be presented in section 6.4, we run

the RTaW-Pegase tool only on 100 configurations, and gave up,

since the mean computation time was 2h10mn per configuration,

whereas the NC-based code took only 72s. When both can be run,

their results are quite close (1-2% in average).

For the cases where no offsets are used, the classical response

time algorithm was used [12]. It computes an exact worst response

time. Results will be plotted in black.

6.3 Breakdown utilisation
Now that we have defined the characteristics of our reference CAN

configuration pattern, we have to define a criterion to evaluate

what is the nominal load of a CAN bus. In order to answer this

question we use the breakdown utilisation [15–17]. The breakdown

utilisation is defined as the part of the minimal link speed required

to guarantee that all deadlines are respected. For example, if nodes

send on the network 150 kilobytes of data per second and if, in

order to meet all the deadlines, the link speed has to be at least

300kbit/s then the breakdown utilisation for this configuration is

50%.

Now that we have a criterion to compare no offsets, local clocks

and bounded phases we can describe the experiment. First, 5,000

configurations will be generated. For each of them the total load

sent on the bus is 150kbit/s, i.e. the total bus load on the network

at 500kbit/s is 30%. Then for each configuration we compute the

delay for each flow with all the different methods described in the

previous section, first with a link speed equal to 1000 kbit/s. At

1000 kbit/s all the messages meet their deadline. Then we decrease

the link speed, and compute the new delay for each message in

Evaluation of admissible CAN bus load with weak synchronization mechanism RTNS ’17, October 4–6, 2017, Grenoble, France

40 50 60 70 80 90 100
Breakdown Utilisation

0

200

400

600

800

1000

Nu
m

be
r o

f c
on

fig
ur

at
io

n

No offsets: implicit deadline
Bounded Phases 1ms: half implicit deadline
No offsets: half implicit deadline
Local Clocks NC based: half implicit deadline

Figure 6: Breakdown utilisation in case of deadline mono-
tonic assignment.

order to obtain, for each method, the breakdown utilisation
2
(up

to 5kbit/s).

Such an experiment results lead to an histogram. Nevertheless

for ease of readability, we will not plot the histograms but a con-

tinuous approximation call “kernel density estimation” in python

(scipy.stats .дaussian_kde), like the one on Figure 7 (notice that, for

readability, only range 35%-100% is plotted).

We want to compare the different methods, so in order to com-

pare them (for example Figure 7) we used on the same 5,000 config-

urations the different methods. Each of them will result on different

breakdown utilisations and so we can compare them.

Note that since the bounded phases principle requires a synchro-

nization flow, such a flow with a period of 200ms is added to each

configuration when considering bounded phases.

6.4 First Experiment: deadline monotonic
Let start with an experiment where priorities are assigned using

deadline monotonic priority assignment.

First consider the common case where the deadline of each flow

is equal to its period (implicit deadline). In Figure 6 is plotted the

breakdown utilisation factor without offsets (black plain line). For

the 5,000 configurations, the breakdown utilisation is always bigger

than 85%. And the mean value of the bus load is 95%, confirming

the performances of this strategy. In these conditions, the use of

offsets would not be very useful

Second, consider a more challenging constraint, setting the dead-

line to be half of the period. In this case, three strategies are used:

no offsets, local clocks and bounded phases (with a 1ms clock accu-

racy).

Without offsets, the deadline monotonic assignment allows to

reach a 73% mean load. The use of local clock slightly increases it, to

75%. With a phases between nodes bounded by 1ms, the bandwidth

utilisation is close to 100%, between 85% and 97%.

This first experiment shows that priority assignment and the

use of offsets are complementary.

2
We used a binary search for the RTaW method and a linear search for the network

calculus methods due to implementation constraints.

40 50 60 70 80 90 100
Breakdown Utilisation

0

200

400

600

800

1000

Nu
m

be
r o

f c
on

fig
ur

at
io

n

Bounded Phases: 0.5 ms
Bounded Phases: 1 ms
Bounded Phases: 2 ms
No offsets
Local Clocks NC based
Local Clocks RTaW

Figure 7: Breakdown utilisation, with phases bounded by
0.5ms, 1ms and 2ms.

In order to evaluate the gain related to offsets only, the others

experiments will consider random priority assignment and implicit

deadlines.

Last, note that the delays with local clocks were evaluated only

using the NC-based methods, since the RTaW implementation was

too long in this case (cf. section 6.2).

6.5 Second Experiment: uniform sources
The second experiment will consider randomly assigned priorities

(to model a choice due to some unknown design criteria), with

different inter nodes clock accuracy.

The gain due to a network weakly synchronized is directly depen-

dent on the bound on the phase between clocks. The weaker the

synchronization, the lower the gain. The bound on the phase be-

tween clocks is the consequence of the synchronization mechanism

chosen. Our method does not assume a specific synchronization

mechanism, we consider that it requires at most sending one frame

at each hyper period (in this case 200ms). In [10] we demonstrate

that with a simple synchronization mechanism a precision around

1ms can be achieved. That why, we will compare the breakdown

utilisation of three solutions: no offsets, local clocks and bounded

phases with precisions of 0.5ms, 1ms and 2ms. Results are presented

in Figure 7.

First of all we will take an interest in the case where no offsets are

used. It has to be compared to the result obtained when a deadline

monotonic scheduling is used. The maximum bus load is much

lower, between 40% and 65%, with a mean value around 50%, which

is almost two times less than previously. Once more, it confirms

the folk result that the CAN load has to be less than 35%, to ensure

that all deadlines are met [5, 16] (keep in mind that the 35% load

considers “typical” error rate, not considered here).

Second, consider the case of local clocks, where bounds are

computed using two methods. We used two methods because even

if network calculus is not exact it requires a much lower calculation

time. The maximum bus load is bigger, between 55% and 70%, with

a mean value around 58%. It means that using local offsets permits

to increase the number of messages sent on the network by more

RTNS ’17, October 4–6, 2017, Grenoble, France Hugo Daigmorte and Marc Boyer

than 20% with regard to the maximal number of messages than can

be sent in order to ensure that all deadlines are met without using

offsets.

Third, consider bounded phases. With a bound on phases be-

tween nodes of 1ms, the maximum bus load is much bigger, between

75% and 95%, with a mean value of 83%. This gain is very important.

It means for example that it is possible to ensure the respect of all

deadlines with 50% of additional messages comparing to offset with

only local clocks.

As the precision of the synchronization in the case of bounded

phases is primordial, other calculations have been done with a

precision of 0.5ms and 2ms (see Figure 7). As expected the weaker

the synchronization (i.e. larger bound), the lower the gain. However
even with a synchronization of 2ms, the gains remain important

(about 15% more with regard to local clocks). And the maximal

bus load achievable with bounded phases is always better than

the maximal bus load achievable without synchronization between

nodes.

The results are summarised in Table 1.

Table 1: Breakdown utilisation, uniform sources.

Breakdown Utilisation (%) Minimum Maximum Mean

No offsets (periodic or sporadic) 38.79 79.57 51.67

Local clocks (NC) 45.86 82.45 58.18

Local clocks (RTaW) 46.59 86.68 59.16

Bounded phases 0.5ms 81.36 97.11 86.94

Bounded phases 1ms 77.19 94.5 83.35

Bounded phases 2ms 70.63 88.54 77.15

No offsets, errors 37.37 69.34 49.51

Local clocks, errors 43.92 69.65 55.41

Local clocks, 20% sporadic 45.54 69.65 57.64

Local clocks, errors, 20% sporadic 44.22 69.65 54.97

Bounded phases, errors 71.67 91.22 77.55

Bounded phases, 20% sporadic 59.03 91.23 73.23

Bounded phases, errors, 20% sporadic 55.75 86.4 69.13

6.6 Third Experiment: Gateway
In the next experiment we decide to examine the impact of a non

uniform distribution of senders. It is often the case in practice: it

can be a gateway for example that sends a large part of the traffic.

Thereafter this node will be design as the gateway.
In the first case we consider that the gateway sends 30% of the

traffic (70% shared by the 15 other nodes), whereas in a second case,

the gateway generates 60% of the traffic. The results are presented

in Figure 8.

Using a master slightly increases the breakdown utilisation in

the case of local clocks (from 58% to 61% in the case of 30% gateway

traffic and 67 % in the case of 60% gateway traffic).

Considering bounded phases, it has a negligible impact: in Fig-

ure 8 the three red plain, dotted and dashed lines (representing no

gateway, 30% gateway and 60% gateway) quite collapse in a single

one.

This result was predictable, since in the case of local clocks it

reduces the contentions of messages from different flows (as they

are mainly sent by the gateway) and so the delays. Whereas in

the case of bounded phases, contentions between messages from

40 50 60 70 80 90 100
Breakdown Utilisation

0

200

400

600

800

1000

Nu
m

be
r o

f c
on

fig
ur

at
io

n

Bounded Phases 1ms, no gateway
Local clocks RTaW, no gateway
Bounded Phases 1ms, 30% gateway
Local clocks RTaW, 30% gateway
Bounded Phases 1ms, 60% gateway
Local clocks RTaW, 60% gateway
No offsets

Figure 8: Breakdown utilisation, with a gateway sending 30%
or 60% of the traffic.

0 10 20 30 40 50 60 70 80 90
Breakdown Utilisation

0

100

200

300

400

500

Nu
m

be
r o

f c
on

fig
ur

at
io

n

Local clocks NC based, no gateway
Local clocks RTaW, no gateway
Local clocks NC based, 30% gateway
Local clocks RTaW, 30% gateway
Local clocks NC based, 60% gateway
Local clocks RTAW, 60% gateway

Figure 9: Comparison of methods for local clocks on same
configurations that Figure 8.

different flows have already been reduced. However even with more

than half of the traffic sent by a single node, using bounded phases

remains the best solution in term of bus load.

For readability, NC based results for local clocks were not pre-

sented in Figure 8. They are presented in Figure 9, together with

ones provided by RTaW-Pegase. Once more, results from the NC

based method show it gives a good approximation of the delays for

local clocks.

6.7 Fourth Experiment: errors and sporadic
messages

In this last experiment we decide to examine the impact of errors

and sporadic messages. To capture the influence of errors, we used

the model presented in section 2.3, with Nerror = 2 and Terror =
100ms . And to capture the influence of sporadic flows, we used

the same set of configuration than previously but changing 20%

of the periodic messages into sporadic messages. This lead us to 3

experiments: one with only periodic flows and errors (Figure 10),

one with sporadic flows and no errors (Figure 11) and a last one with

errors and sporadic flows (Figure 12). The results are summarised

in Table 1.

First consider the case with errors (Figure 10). Obviously taking

into account errors increases the delay and so reduces the admis-

sible bus utilisation, around 2% for no offset, 3.5% for local clocks

and 6% for bounded phases. This result was predictable: in the case

Evaluation of admissible CAN bus load with weak synchronization mechanism RTNS ’17, October 4–6, 2017, Grenoble, France

40 50 60 70 80 90 100
Breakdown Utilisation

0

200

400

600

800

1000

Nu
m

be
r o

f c
on

fig
ur

at
io

n

Bounded Phases 1ms, no errors
Local clocks NC based, no errors
No offsets, no errors
Bounded Phases 1ms, with errors
Local clocks NC based, with errors
No offsets, with errors

Figure 10: Breakdown utilisation: errors, no sporadic.

40 50 60 70 80 90 100
Breakdown Utilisation

0

200

400

600

800

1000

Nu
m

be
r o

f c
on

fig
ur

at
io

n

Bounded Phases 1ms, no sporadic
Local clocks NC based, no sporadic
Bounded Phases 1ms, 20% sporadic
Local clocks NC based, 20% sporadic
No offsets

Figure 11: Breakdown utilisation: no errors, 20% sporadic.

of bounded phases, offsets have been chosen in order to avoid con-

tentions without considering errors. With errors, some contentions

may occurs. It is the same phenomenon that occurs for local clocks,

but only intra-nodes contentions, and so the bus utilisation is less

impacted.

Then consider the case without errors and 20% of sporadic mes-

sages (Figure 11). In the case of no offsets, it has of course no impact,

because the use of no offsets is equivalent to 100% sporadic. It has

a very small impact on local clocks (1.5%), but a significant one on

bounded phases (10%).

In the case of local clocks, offsets are used in order to avoid intra-

node contentions and in order to spread the traffic over time, but

inter-node contentions are not avoided in the case of local clocks.

And so changing a flow from periodic to sporadic will mostly impact

themessages sent by the same node.Whereas in the case of bounded

phases, changing a flow from periodic to sporadic will impact all

the messages of the system.

Last consider the case with errors and sporadic messages (Fig-

ure 12). The perturbations are accumulated (5% for local clocks, 14%

for bounded phases) but the use of offsets, either with local clocks

or bounded phases, still improves the admissible load.

40 50 60 70 80 90 100
Breakdown Utilisation

0

200

400

600

800

1000

Nu
m

be
r o

f c
on

fig
ur

at
io

n

Bounded Phases 1ms, no errors and no sporadic
Local clocks NC based, no errors and no sporadic
No offsets, no errors and no sporadic
Bounded Phases 1ms, errors and 20% sporadic
Local clocks NC based, errors and 20% sporadic
No offsets, errors and 20% sporadic

Figure 12: Breakdown utilisation: errors, 20% sporadic.

7 CONCLUSION
A data flow, periodic or sporadic, is characterized by several pa-

rameters: size, period/minimum update time (MUT), priority and

deadline. The period/MUT, the size and the deadline are applicative

constraints and can not be freely assigned whereas priority can be

assigned. The priority assignment is one way to meet deadline, a

lot of work have been done on this subject [1, 14, 30].

In the case of periodic flows, it exists another parameter that

also greatly influences the bus latency: the offset [21]. This notion

of offset is related to a clock value. This clock is commonly either

local to each node, or global to all nodes (implying some synchro-

nization mechanism). In a previous paper [9], we have proposed

a new mechanism, a kind of trade-off between both: the notion

of “bounded phases”, the use of offsets with a weak inter-node

clock synchronization. We also have given an analysis method for

bounded phases, based on network calculus.

The analysis method have been extended in this paper in three

directions:

(1) it can now analyse systems where periodic and sporadic

flows share the same bus,

(2) errors are also modelled (as a virtual sporadic flow),

(3) an approximation of the delay in the case of local clocks has

been proposed.

Then, we have evaluated the performances of bounded phases

with regards to other mechanisms: when offsets are related to a

local clock, and when no offsets are used. Given a configuration

pattern, we have generated 5, 000 configurations to see what is the

maximal admissible load, for each method, requiring that each flow

respects its deadline.

Our experiments confirm well known results: with implicit dead-

line, deadline-monotonic allows to reach 95% bus load, whereas

random priority assignment only allows about 50%. We also con-

sider the case where the deadline of each flow is set to half of its

period. In this case, deadline-monotonic priority allocation and

bounded phases can be combined to reach a 90% load.

Since some design constraints can prevent from a free choice

of priorities, the other experiments assume randomly assigned

priorities, and implicit deadlines.

RTNS ’17, October 4–6, 2017, Grenoble, France Hugo Daigmorte and Marc Boyer

Then, on the same configurations, the use of bounded phases

allows to get a mean load of 83%, with a clock precision of 1ms (87%

with a 0.5ms precision, and 77% with a 2ms precision).

The previous experiments assume a uniform distribution of the

load per node. We also investigate the common case where one

node generates more traffic than others (up to 60%), and found that

it does not change dramatically the performances.

Last, we consider to take into account the errors than may occur

on the bus, and to change 20% of the periodic messages into sporadic

messages. These cases reduce the benefits due to offsets, since they

increase the number of contentions. However we have shown that

bounded phases allows to get a load of 70% even in these conditions.

On a large set of experiments, our approximation of delays in the

case of local clocks have been compared with the analyse method

presented in [37]. The results are very similar, but our approxima-

tion is about 10 times faster for experiments in section 6.5 (5,000

runs) and more than 100 times faster for experiments in section 6.4

(100 runs only).

To sum up, it is well known that the use of offsets can improve

the bus utilisation. In a previous work [9], we have proposed a new

way to use offsets, called bounded phases, and in this paper, we have

shown that it is very beneficial, by itself as well as in combination

with priorities assignment.

In the future, we would like first to enhance the analysis method

by considering the case where some message offsets are fixed and

only a subset may be freely assigned. Onemay in particular consider

the case where the offsets are set by the task scheduling, as in [3].

We would like also to develop a method that combines the priorities

assignment and the offsets assignment instead of studying them

separately.

REFERENCES
[1] Neil C Audsley. 2001. On priority assignment in fixed priority scheduling. Inform.

Process. Lett. 79, 1 (2001), 39–44.
[2] Anne Bouillard, Laurent Jouhet, and Eric Thierry. 2009. Service curves in Network

Calculus: dos and don’ts. Research Report RR-7094. INRIA. 24 pages. http:

//hal.inria.fr/inria-00431674/en/

[3] Marc Boyer and David Doose. 2012. Combining network calculus and scheduling

theory to improve delay bound. In Proc of the 20th International Conference on
Real-Time and Network Systems (RTNS 2012). Pont á Mousson, France.

[4] Marc Boyer, Jörn Migge, and Marc Fumey. 2011. PEGASE, a robust and efficient

tool for worst case network traversal time. In Proc. of the SAE 2011 AeroTech
Congress & Exhibition, Toulouse, France.

[5] Darren Buttle. 2012. Real-time in the prime-time. In Keynote speech at the 24th
Euromicro Conference on Real-Time Systems.

[6] Cheng-Shang Chang. 2000. Performance Guarantees in communication networks.
Springer.

[7] Airlines Electronic Engineering Committee et al. 2011. ARINC Specification

825-2: General standardization of CAN (Controller Area Network) bus protocol

for airborne use. Annapolis, Maryland (2011).

[8] FlexRay Consortium et al. 2005. FlexRay communications system-protocol speci-

fication. Version 2, 1 (2005), 198–207.

[9] Hugo Daigmorte and Marc Boyer. 2016. Traversal time for weakly synchronized

CAN bus. In Proc. of the 24th International Conference on Real-Time Networks and
Systems (RTNS 2016). ACM, 35–44.

[10] Hugo Daigmorte, Marc Boyer, and Jörn Migge. 2016. Reducing CAN latencies by

use of weak synchronization between stations. (2016).

[11] Robert I Davis and Alan Burns. 2009. Robust priority assignment for messages

on Controller Area Network (CAN). Real-Time Systems 41, 2 (2009), 152–180.
[12] Robert I Davis, Alan Burns, Reinder J Bril, and Johan J Lukkien. 2007. Controller

Area Network (CAN) schedulability analysis: Refuted, revisited and revised.

Real-Time Systems 35, 3 (2007), 239–272.
[13] Robert I Davis, Alan Burns, Victor Pollex, and Frank Slomka. 2015. On priority

assignment for controller area network when some message identifiers are fixed.

In Proceedings of the 23rd International Conference on Real Time and Networks
Systems. ACM, 279–288.

[14] Robert I Davis, Liliana Cucu-Grosjean, Marko Bertogna, and Alan Burns. 2016. A

review of priority assignment in real-time systems. Journal of systems architecture
65 (2016), 64–82.

[15] Robert I Davis, Steffen Kollmann, Victor Pollex, and Frank Slomka. 2011. Con-

troller area network (can) schedulability analysis with fifo queues. In Real-Time
Systems (ECRTS), 2011 23rd Euromicro Conference on. IEEE, 45–56.

[16] Robert I Davis, Steffen Kollmann, Victor Pollex, and Frank Slomka. 2013. Schedu-

lability analysis for Controller Area Network (CAN) with FIFO queues priority

queues and gateways. Real-Time Systems 49, 1 (2013), 73–116.
[17] Robert I Davis and Nicolas Navet. 2012. Controller area network (CAN) schedula-

bility analysis for messages with arbitrary deadlines in FIFO andwork-conserving

queues. In Factory Communication Systems (WFCS), 2012 9th IEEE International
Workshop on. IEEE, 33–42.

[18] Laurent George, Nicolas Rivierre, and Marco Spuri. 1996. Preemptive and non-
preemptive real-time uniprocessor scheduling. Technical Report.

[19] Joël Goossens. 2003. Scheduling of offset free systems. Real-Time Systems 24, 2
(2003), 239–258.

[20] Mathieu Grenier, Joël Goossens, and Nicolas Navet. 2006. Near-optimal fixed

priority preemptive scheduling of offset free systems. In 14th International Con-
ference on Real-Time and Networks Systems (RTNS’06). 35–42.

[21] Mathieu Grenier, Lionel Havet, and Nicolas Navet. 2008. Pushing the limits of

CAN-scheduling frames with offsets provides a major performance boost. In 4th
European Congress on Embedded Real Time Software (ERTS 2008).

[22] TTA Group et al. 2001. Time Triggered Protocol (TTP/C), Version 1.0. (2001).

[23] Florian Hartwich et al. 2012. CAN with flexible data-rate. In Proc. iCC. 1–9.
[24] Ulrich Klehmet, Thomas Herpel, Kai-Steffen Hielscher, and Reinhard German.

2008. Delay bounds for CAN communication in automotive applications. In

Measuring, Modelling and Evaluation of Computer and Communication Systems
(MMB), 2008 14th GI/ITG Conference-. VDE, 1–15.

[25] Jean-Yves Le Boudec and Patrick Thiran. 2001. Network calculus: a theory of
deterministic queuing systems for the internet. Vol. 2050. Springer Science &

Business Media.

[26] Gabriel Leen and Donal Heffernan. 2002. TTCAN: a new time-triggered controller

area network. Microprocessors and Microsystems 26, 2 (2002), 77–94.
[27] Joseph Y-T Leung and Jennifer Whitehead. 1982. On the complexity of fixed-

priority scheduling of periodic, real-time tasks. Performance evaluation 2, 4 (1982),
237–250.

[28] Xiaoting Li, Jean-Luc Scharbarg, and Christian Fraboul. 2010. Improving end-to-

end delay upper bounds on an AFDX network by integrating offsets in worst-case

analysis. In IEEE Conf. on Emerging Technologies and Factory Automation (ETFA
2010). IEEE, 1–8.

[29] Xiaoting Li, Jean-Luc Scharbarg, Christian Fraboul, and Frédéric Ridouard. 2011.

Existing offset assignments are near optimal for an industrial AFDX network. In

Proc. of the 10th International Workshop on Real-time Networks (RTN 2011). Porto,
Portugal.

[30] Chung Laung Liu and James W Layland. 1973. Scheduling algorithms for multi-

programming in a hard-real-time environment. Journal of the ACM (JACM) 20, 1
(1973), 46–61.

[31] Thomas Nolte, Hans Hansson, Christer Norström, and Sasikumar Punnekkat.

2001. Using bit-stuffing distributions in CAN analysis. In IEEE Real-Time Embed-
ded Systems Workshop at the Real-Time Systems Symposium.

[32] William Mangoua Sofack and Marc Boyer. 2012. Non preemptive static priority

with network calculus: Enhancement. In International GI/ITG Conference on
Measurement, Modelling, and Evaluation of Computing Systems and Dependability
and Fault Tolerance. Springer, 258–272.

[33] ISO Standard. 1993. 11898: Road Vehicles-Interchange of Digital Information-

Controller Area Network (CAN) for High-Speed Communication. International
Standards Organization, Switzerland (1993).

[34] Ken Tindell. 1994. Adding time-offsets to schedulability analysis. Technical Report.
University of York, England.

[35] Ken Tindell and Alan Burns. 1994. Guaranteed message latencies for distributed

safety-critical hard real-time control networks. Dept. of Computer Science, Uni-
versity of York (1994).

[36] KW Tindell, Hans Hansson, and Andy J Wellings. 1994. Analysing Real-Time

Communications: Controller Area Network (CAN). In Real-Time Systems Sympo-
sium, 1994., Proceedings. IEEE, 259–263.

[37] Patrick Meumeu Yomsi, Dominique Bertrand, Nicolas Navet, and Robert I Davis.

2012. Controller area network (CAN): Response time analysis with offsets. In

Factory Communication Systems (WFCS), 2012 9th IEEE International Workshop
on. IEEE, 43–52.

[38] Haibo Zeng, Marco Di Natale, Paolo Giusto, and Alberto Sangiovanni-Vincentelli.

2010. Using statistical methods to compute the probability distribution of mes-

sage response time in controller area network. IEEE Transactions on Industrial
Informatics 6, 4 (2010), 678–691.

http://hal.inria.fr/inria-00431674/en/
http://hal.inria.fr/inria-00431674/en/

	Abstract
	1 Introduction
	2 Context
	2.1 CAN bus
	2.2 Model application
	2.3 Error model
	2.4 CAN FD

	3 Bounded phases
	3.1 Presentation
	3.2 Mixing synchronous and asynchronous flows

	4 State of the art
	4.1 Synchronized bus
	4.2 Priorities and offsets assignment algorithm
	4.3 Analysis methods

	5 Bounding delays with network calculus
	5.1 Network Calculus reminds
	5.2 Mixing asynchronous flows, errors and bounded phases
	5.3 Local clocks with network calculus

	6 Experimentation
	6.1 Configuration Pattern
	6.2 Methods for delay evaluation
	6.3 Breakdown utilisation
	6.4 First Experiment: deadline monotonic
	6.5 Second Experiment: uniform sources
	6.6 Third Experiment: Gateway
	6.7 Fourth Experiment: errors and sporadic messages

	7 Conclusion
	References

