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ABSTRACT
This paper presents SPARK by Example [10], a guide for people
wanting to get involved in formal verification of SPARK programs.
SPARK by Example is inspired by ACSL by Example, a similar effort
for C/ACSL programs, and provides detailed specification, imple-
mentation and proof of classic algorithms (array manipulation,
sorting, heap etc). A comparison between ACSL and SPARK is done
in the light of proof performance and ease of use.
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1 INTRODUCTION
Software security is a never ending concern, in particular for the
years to come with the rapid growth of the Internet of Things for
instance. Despite their best efforts to find the safest and most se-
cure algorithms to build their software, developers can only trust
their code if they are sure it will not encounter a runtime error and
behave as specified in the design phase. This may be accomplished
by using intensive testing, with a formal proof of the expected prop-
erties, or both. Verifying software with the help of formal methods
can give programmers complete confidence in their code. Even if
cybersecurity experts are mainly using so-called lightweight formal
methods [28], formal verification techniques can be used to verify
the correctness of high security software such as cryptography
libraries [6, 25].

Formal verification techniques for imperative languages are well-
known since the 70’s [12, 15, 18] and with the advances in automatic
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theorem proving, they may now be used for real industrial cases.
However, they remain quite complicated to get involved in: first,
theoretical background may not be known by developers and sec-
ond, developers may write their program in a language that is not
well-fitted for such task. To help integrate formal verification in the
development workflow, some languages have implemented toolsets
that synergize with the rest of the programming environment. As
such, verifying C programs with ACSL and Frama-C [9, 20] or
SPARK programs with GNATprove [3] is relatively easy once the
developer knows how to annotate code.

There is still a big learning curve to be able to use ACSL/Frama-C
or SPARK/GNATprove on complex programs and developers need
to be able to train on examples with gradually increasing difficulty.
The aim of this paper is to present a new guide for SPARK 2014,
SPARK by Example [10]. SPARK by Example is greatly inspired from
ACSL by Example [8], a similar guide for the ACSL specification
language. This guide will present classic algorithms from the Com-
puter Science literature and how to specify, implement and prove
them using SPARK 2014. Notice that this work has been performed
by two undergraduate students, with no previous knowledge of
formal methods nor Ada or SPARK programming.

The paper is organized as follows. Section 2 presents the SPARK
2014 language and toolset, and why the underlying work for this
paper is necessary; Section 3 gives an overview of the algorithms
proved in SPARK by Example; Section 4 explains the major differ-
ences between SPARK and ACSL; Section 5 compares SPARK and
ACSL/Frama-C. Finally, Section 6 is dedicated to a conclusion.

2 LEARNING HOW TO DEVELOP AND
PROVE PROGRAMS IN SPARK 2014

SPARK is both a formally analyzable subset of the Ada 2012 lan-
guage and a set of tools that enable the user to ensure the integrity
and correctness of programs through different levels (see [4] for a
complete example). First, as SPARK is a subset of the Ada language,
the user has access to most of the features making Ada a reliable
and expressive language, such as strong typing system prevent-
ing potential conversion errors or a real implementation of arrays.
SPARK also removes aspects of Ada that can be the root of soft-
ware defects, such as Access types (the equivalent of pointers in
C). Second, SPARK and its associated tool GNATprove allow the
user to use flow and information analysis to get rid of errors such
as reads from uninitialized variables or interference between pa-
rameters and global variables. Third, SPARK and GNATprove allow
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proof of the absence of run-time errors (AoRTE) like overflows or
index checks when using arrays. Finally, SPARK allows the user to
write contract-like formal specifications [22] for programs with the
Ada 2012 syntax. These functional contracts can then be proved
with the help of GNATprove. Notice that all these properties can
also be checked at runtime if the program is compiled with the
corresponding option (except flow analysis).

When using SPARK and GNATprove at their full capacity to
develop a function or a procedure, the workflow is typically the fol-
lowing: write the function in SPARK, annotate it with preconditions
and postconditions to specify its behavior, write loop invariants
and assertions in the function body, use GNATprove to generate
verification conditions, i.e. mathematical properties corresponding
to the AoRTE and functional properties to be proved on the code,
and finally prove them with automatic SMT solvers like CVC4, Z3
or Alt-Ergo1. By practising a little, this workflow comes naturally,
but there is still an important learning curve if the developer has
no previous experience in formal verification.

There are twomain resources available to the community to learn
coding and verifying programs with SPARK: the SPARK 2014 user’s
guide [3] and Building High Integrity Applications with SPARK [19].
The former requires familiarity with Ada and some previous knowl-
edge on formal verification and the latter focuses on programming
rather than verifying with SPARK. There is thus still a need for a
“recipe” document that shows how to develop and prove SPARK
programs through examples that should be classic Computer Sci-
ence algorithms. Such a document would have for target audience
developers with knowledge of imperative programming but with
no previous knowledge of formal verification and provide detailed
explanations on how to prove programs. Notice that two new on-
line courses [1, 2] from AdaCore are now available and that they
can be complemented by our document.

C programmers also have a specification and verification lan-
guage, ACSL [5], and a platform for deductive verification, namely
Frama-C [9, 20]2. Burghardt et al. have described in ACSL by Ex-
ample [8] the implementation and proof of algorithms taken from
the C++ Standard Template Library for ACSL and Frama-C users.
ACSL by Example is a good starting point for ACSL users as the al-
gorithms used in the document are normally known by developers,
specifications and hard technical details are clearly presented and
all sources are available to replay the proofs.

Our goal is therefore to write SPARK by Example, an adaptation
of ACSL by Example for the SPARK 2014 language to help begin-
ners. We will also try in the following to emphasize the differences
between ACSL/Frama-C and SPARK/GNATprove and to present
pro and cons from both worlds.

SPARK by Example is available on [10]. The repository provides
all SPARK sources and corresponding makefiles. Textual expla-
nations and code snippets are given as navigable web pages to
facilitate user interaction.

1The last step of the workflow, i.e. the interaction with the solvers to prove the
verification conditions, is also managed by GNATprove
2Notice that Frama-C also provides other verification techniques, such as abstract
interpretation for instance.

3 THE ALGORITHMS
The algorithms presented inACSL by Example are all extracted from
the C++ Standard Template Library (STL) [16, 24]. STL provides
C++ programmers with standard generic algorithms, such as binary
search or sorting algorithms. Algorithms are classified in ACSL by
Example and therefore in SPARK by Example as follows:

• the first chapter deals with non mutating algorithms. These
algorithms do not modify their input data. For instance, find
returns the first index in an array where a value is located
and count returns the number of occurrences of a value in
an array.
These algorithms are rather simple, but they serve as a start-
ing point for the reader of SPARK by Example. They will
thus be very important as they are used to present important
information (how to define a contract, ghost functions, loop
invariants, how to interpret counterexamples returned by
provers etc).

• chapter 2 deals with maxmin algorithms and is a particular
subset of non mutating algorithms. Its algorithms simply
return the maximum and minimum values of an array.

• chapter 3 is about binary search algorithms. These algo-
rithms work on sorted arrays and therefore have a tem-
poral complexity of O(logn). The classic binary-search is
presented in this chapter.

• chapter 4 deals with mutating algorithms, i.e. algorithms
that modify their input data. They all are procedures that
rotate, copy, or modify the order of elements in arrays to
match properties. The algorithms in this chapter generally
have two implementations: the first one is usually easier,
because the content of the input array is copied in another
array; the second implementation is done on the array itself
and has sometimes lead to difficulties in the proof process.
In the previous chapters, there has been no difference be-
tween the algorithm specification and implementation in
C/ACSL or SPARK, but due to the availability of “real” arrays
in SPARK, this is the first chapter in which important dif-
ferences between ACSL by Example and SPARK by Example
appear.

• chapter 5 on numeric algorithms is a special chapter because
it mainly focuses on overflow errors. For instance, when
returning the sum of the values in an array or the scalar
product of two arrays, overflow errors may occur, particu-
larly if the values are integer ones. Moreover, even if the
final result is in the right range, the intermediate results
can overflow and lead to an error. It is the only chapter that
deals with these kinds of errors so it is a little bit besides the
others.

• chapter 6 focuses on one particular data structure, namely
the binary heap. It presents a concrete implementation of the
classic heap structure as a record consisting of a fixed-sized
array and a size attribute. It implements the basic algorithms
dealing with heaps (push_heap, pop_heap) but also other al-
gorithms such as make_heap that returns a heap created from
an input array, or sort_heap that returns a heap of size 0 but
with a sorted list inside of it.
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• chapter 7 deals with sorting algorithms and is a quick chapter:
is_sorted checks whether an array is sorted or not, and
partial_sort partially sorts (with a specific definition) an
array.

• finally, chapter 8 presents three classic sorting algorithms:
selection_sort, insertion_sort and heap_sort.

In the SPARK by Example repository, each algorithms has its
own .ads file for specification and .adb file for implementation.
Predicate functions used in algorithms are located in the spec
directory and lemmas used to help the provers are located in the
lemmas directory. Each algorithm has also a companion Org file that
describes the specification and implementation of the algorithm
along with details and references.

4 DIFFERENCES BETWEEN ACSL AND SPARK
2014

In this Section, we will highlight some differences between ACSL
and SPARK 2014 and their associated tools when proving algorithms
from STL.

4.1 Arrays management
The first and fourth chapters of ACSL by Example deal with al-
gorithms manipulating arrays. As SPARK is a subset of the Ada
language and ACSL annotates C code, this is a first big difference
between the two languages. On the one hand, the common way
to manipulate arrays in C is to use the fact that an array identifier
is decayed to a pointer to the first element of the array in most
expressions. This leads to complex function signatures: for each
array manipulated, a pointer to the first element of the array and
an integer representing the size of the array are mandatory.

On the other hand, arrays are first-class citizens of the SPARK
language and much information about a given array is available
through attributes: the length of the array, the first and the last
indexes (as array are not necessarily indexed from 0) and the range
of values on which the index is defined. Moreover, a syntax for
array slices is also available in SPARK: A (J .. K) allows the ex-
traction of the subarray starting from index J to index K from array
A. Algorithms and specifications are therefore easier to write and
read in SPARK.

For instance, in the chapter on non-mutating algorithms, the
predicate HasValue is defined in ACSL as shown on listing 1. In
SPARK, there is only one definition, as shown on listing 2.

Listing 1: Definition of the HasValue predicate in ACSL
predicate HasValue{A}( value_type * a, integer m,

integer n, value_type v) =
\exists integer i; m <= i < n && a[i] == v;

predicate HasValue{A}( value_type * a, integer n,
value_type v) =

HasValue(a, 0, n, v);

Listing 2: Definition of the HasValue predicate in SPARK 2014
function Has_Value (A : T_Arr; Val : T)

return Boolean is
(for some I in A'Range => A (I) = Val);

Of course, we should not fail to mention the fact that manipulat-
ing slices in SPARK induces more complexity in the proof process,
particularly for SMT solvers: using a slice creates a copy of the
existing array to reason with and using variables in slice ranges
implies universal quantification of these variables, which is usually
a serious overload on the solvers. A more detailed example on how
to manage complex assertions on slices may be found in the first
chapter of SPARK by Example with the Search function.

4.2 A richer and stronger type system
SPARK benefits from the rich type system of Ada and we can for
instance distinguish natural numbers (Natural type) from integers
(Integer type) or strictly positive natural numbers (Positive type).
These types are bounded in the Ada language and we have to
keep in mind that the proof of a function or procedure can fail
due to overflow errors. For instance, when trying to access index
J+1 of an array whose indexes are declared as Positive, we must
ensure that J < Positive'Last, where Positive'Last denotes the
upper bound of the Positive type. GNATprove emits a check to be
proved for such expressions and if J cannot be proved to be less
than Positive'Last, the check fails. Overflows are also verified for
floating point values as well as indexes belonging to their array
range (see [3] for more details). This makes writing programs and
specifications longer, but ensures absence of runtime errors (AoRTE)
if the program is proved. It also generally forces one to be more
careful when writing code. The chapter “Numeric” of both ACSL
by Example and SPARK by Example focuses on numeric overflow
handling.

When searching for a value in an arrayA, a classic C programwill
return a value that is less than the length ofA if the first occurrence
of the value is at this index in A or the length of A if the value
does not appear in A. In SPARK, the user has the possibility to use
discriminated records to return an “optional” value as shown on
listing 3.

Listing 3: Discriminated record in SPARK 2014
type Option (OK : Boolean) is record

case OK is
when True =>

Value : Integer;
when False =>

null;
end case;

end record;

With this kind of structure, the Value field is only accessible
if OK is true. Of course, a struct could have been used with the
same purpose in C, but the use of a discriminated record prevents
the access to the Value field while the search is ongoing and the
searched value not yet found, therefore forbidding the use of a
meaningless variable. This also means that while the field OK is
false, the user does not have to specify a value for Value. Of course,
using such discriminated records implies the generation of checks
to be proved.

A stronger type system is not always in favor of SPARK: in the
partial_sort algorithm, the use of different data structures in Ada
makes the proof more complex. This algorithm takes an array as an
input, and builds a heap in order to sort only a part of the array. In
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ACSL by Example a heap is used in the implementation. This heap
is represented by a simple array and a integer representing the last
index of the heap in the array, which simplifies the program as all
the data is contained in a single memory location. In SPARK by
Example, a heap is represented by a heap data structure, which is
very optimized for manipulating heaps, but there are no operations
available in heap allowing the manipulation of “additional” data (the
rest of the input array). This requires the creation of multiple copies
of the input data (the input array, and the heap structure) as pointers
are not allowed in SPARK. This also leads to the necessity of an
auxiliary function to correctly prove the algorithm. This algorithm
can be found in the chapter on sorting of both SPARK by Example
and ACSL by Example.

Of course, one can wonder if the previously described checks
added by GNATprove (initialization checks, overflow checks, dis-
criminant checks, array index checks or range checks) do not over-
load the user. In our experience, the verification conditions gener-
ated by these checks are rather easy to prove and, when not proved,
help us to properly define forgotten conditions and ranges on our
variables. Finally, notice that using the -wp-rte option of Frama-C
enables the proof of AoRTE in C programs and that this option is
used in most examples in ACSL by Example, but the runtime errors
checked by Frama-C are less exhaustive than the ones checked by
SPARK because of limitations of the C language3.

4.3 No pointers
SPARK does not allow the use of access types (or pointers in C)
in order to avoid aliasing, which is difficult to handle when trying
to prove AoRTE or functional correctness of a function. In conse-
quence, some algorithms presented in ACSL by Example are not
directly implementable in SPARK or lose their interest due to a
better expressiveness of SPARK.

For instance, backwards-copy is an algorithmused in C/C++when
two arrays share one or more locations in memory: one is copied
in the other but “from right to left”. In some cases, it enables the
user to avoid aliasing issues when copying arrays. In SPARK, since
two arrays have necessarily two distinct locations in memory, there
would be no sense in defining a function or procedure that does
this backward copy. Another example is remove, an algorithm that
removes every occurrence of a value in an array (and therefore,
reduces the “length” of the array). The memory management of
SPARK does not allow one to change the size of an array when it
is initialized, so this algorithm was not implemented in SPARK by
Example.

4.4 Specifications are executable
The differences between SPARK and ACSL do not stop at syntactical
level, but also appear in how the user interacts with the toolset or
is helped by the verification tools to ensure that software is free
from defects.

SPARK and ACSL differ in their ability to generate runtime
checks in the executable from the code and annotations. When
compiling SPARK 2014 code, it is possible by the addition of a sim-
ple compile option to instruct the compiler to add runtime checks

3Runtime errors checked by Frama-C are mainly integer overflows, null pointer deref-
erencing and the validity of some casts.

for all the assertions, loop invariants and pre/postconditions. This
is of great help when debugging an implementation that does not
respect its specification, as some simple program tests can be writ-
ten to quickly check if an assertion fails. This can also be achieved
in ACSL, but requires the use of the E-ACSL plugin [11, 26], which
reduces the feature-set of ACSL4.

Although it is possible to generate runtime checks for both spec-
ification languages, the user has to trust the compiler to include
runtime checks at the correct place in the executable code. Whereas
there are no guarantees for E-ACSL code generation, the SPARK
compiler, GNAT, has been proven to correctly include SPARK-
relevant runtime checks and to not omit any of them for a small
subset of SPARK, therefore guaranteeing that any well-formed ter-
minating SPARK program does not lead to erroneous execution for
this subset [29] and this approach could be extended to a significant
subset of SPARK.

4.5 Axiomatic definitions
In order to correctly specify the behavior of a program, the user
may need to give axiomatic definitions. We will use the example
of the Count function that returns the number of occurrences of a
value v in an array A. Count can be defined inductively. Given an
array A of size n and a value v :

• Count(A,v) = 0 if A is empty
• Count(A,v) = 1 + Count(A[0..n − 2]) if A[n − 1] = v and
A[0..n − 2] is the same array than A but without its last
element

• Count(A,v) = Count(A[0..n − 2]) if A[n − 1] , v
Axiomatic definitions can be written directly in ACSL. For in-

stance, listing 4 presents an axiomatization of Count given in ACSL
by Example.

Listing 4: ACSL axiomatic definition of Count
axiomatic Count {

logic integer Count{L}( value_type* a, integer m,
integer n, value_type v)

reads a[m..n-1];

axiom CountSectionEmpty{L}:
\forall value_type *a, v, integer m, n; n <= m

==>
Count(a, m, n, v) == 0;

axiom CountSectionHit{L}:
\forall value_type *a, v, integer n, m; m < n

==> a[n-1] == v ==>
Count(a, m, n, v) == Count(a, m, n-1,

v) + 1;

axiom CountSectionMiss{L}:
\forall value_type *a, v, integer n, m; m < n

==> a[n-1] != v ==>
Count(a, m, n, v) == Count(a, m, n-1,

v);

axiom CountSectionRead{K,L}:

4This plugin was not used for the verification of the functions in ACSL by Example, to
the best of our knowledge.
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\forall value_type *a, v, integer m, n;
Unchanged{K,L}(a, m, n) ==>

Count{K}(a, m, n, v) == Count{L}(a, m,
n, v);

}

Count is defined as a function that takes an array a, two integers
m and n representing the array slice in which the value v has to
be counted. The L parameter indicates that Count can be evaluated
at different locations (C labels or ACSL logic labels likeLoopEntry
for instance). Axiom CountSectionEmpty defines the behavior of
Count when the slice is empty (n ≤ m), axioms CountSectionHit and
CountSectionMiss give the inductive property of Count and axiom
CountSectionRead specifies that array a has not changed between
program location K and L, then Count should return the same result
when evaluated at location K and at location L (Unchanged is a logic
function defined elsewhere).

Listing 5 presents a definition of the Count function in SPARK
2014. This definition is available as an example in Section 7.9 of [3]
where Count is called Occ.

Listing 5: The definition of Count in SPARK 2014
function Remove_Last (A : T_Arr) return T_Arr

is
(A (A'First .. A'Last - 1))

with Pre => A'Length > 0;

function Count_Def (A : T_Arr; Val : T) return
Natural is

(if A'Length = 0 then 0
elsif A (A'Last) = Val then

Count_Def (Remove_Last (A), Val) + 1
else Count_Def (Remove_Last (A), Val))

with Post => Count_Def 'Result <= A'Length;
pragma Annotate (Gnatprove , Terminating ,

Count_Def);

function Count (A : T_Arr; Val : T) return
Natural is

(Count_Def (A, Val))
with Post => Count 'Result <= A'Length;

All functions are contained in a package with Ghost aspect omit-
ted here for readability. Ghost functions or variables are only used
for specification purposes and cannot be used in “real” code. Let us
also notice that a restriction in SPARK does not allow it to use the
postcondition of a recursive function when called from an assertion.
We thus need to wrap Count_Def inside Count to be able to use the
postcondition defined in Count_Def. As for any recursive function,
the termination of Count_Def is not supported by SPARK, hence the
pragma indicating that Count_Def terminates.

The definition of Count_Def provided in listing 5 is not an ax-
iomatic definition per se. Count_Def is defined as an expression func-
tion, i.e. a function without a body but defined with a single expres-
sion. The axioms presented before are implemented as if-then-else
constructs. Therefore, even if axiomatic definitions are not directly
available in SPARK, expression functions may be used to define
Ada functions that represent such definitions. Notice that ghost
imported functions without a body but with contract cases to rep-
resent the axiom may also be used to represent such axiomatic

definitions, but we have not evaluated such a solution in SPARK by
Example.

4.6 Getting counterexamples
One of the features of GNATprove is the fact that each time a check
(assertion, loop invariant, precondition or postcondition) fails to
prove, the tool will use the model generated by the solvers to find, if
possible, a counterexample, which can greatly help the user to detect
uncovered cases in annotations [17]. Obtaining counterexamples
in ACSL is possible only using a subset language from ACSL, E-
ACSL, which enables the execution and runtime verification of
ACSL contracts, and with the StaDy plugin [23]. Unfortunately,
the examples are generated through testing, which can lead to an
explosion in the number of cases to cover by testing if the cyclomatic
complexity of the program is big .

Although counterexamples are of great help in the process of
correctly annotating a program, the generation of these counterex-
amples is not yet perfect. In some cases the user can be given a
spurious counterexample, particularly when the provers are inter-
rupted during their proof trial (see again [17] for more details). In
that case, the user has to turn to manual testing in order to find the
cause of the proof failure.

4.7 Handling complex proofs
The proof of some verification conditions often requires reasoning
on properties that can not be directly handled by SMT or automatic
solvers, for instance inductive properties. In this case, the proof
may be achieved with a proof assistant like Coq or the new proof
assistant embedded in GPS (see Section 7.9.3.5 of [3]), or discharged
by an automatic solver guided by lemmas. Lemmas are mathemat-
ical theorems, possibly with hypotheses, that must be added to
the theories available to the SMT solvers to prove the verification
condition. Of course, lemmas must also be proved, either using a
proof assistant or by an automatic prover.

In SPARK, there is no proper construction of lemmas as in Frama-
C. To work around this limitation, the user has to define a procedure
and use contract-based programming to write the lemma: hypothe-
ses of the lemma are the preconditions of the procedure, conclusions
of the lemma are its postconditions. This “emulation” requires them
to be instantiated within the code to prove, whereas lemmas in
Frama-C are automatically used by the provers when necessary.
The main advantage of the SPARK approach is the fact that the user
can help the solver to prove the lemma using an actual implemen-
tation of the procedure, whereas some lemmas in ACSL by Example
have to be proven with Coq when the SMT solvers fail to prove
them.

Let us take an example: in ACSL by Example lemmas are defined
for Count. Let us consider the first one stating that the number of
occurrences of v in a[0..n] is the number of occurrences of v in the
slice a[0..n-1] plus the number of occurrences of v in the singleton
a[n..n] as presented on listing 6.

Listing 6: A lemma about Count in ACSL
lemma

CountOne:
\forall value_type *a, v, integer n;

0 <= n ==>
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Count(a, n+1, v) == Count(a, n, v) +
Count(a, n, n+1, v);

In SPARK, this lemma can be expressed as a procedure, as shown
on listing 7.

Listing 7: A lemma about Count in SPARK
procedure Lemma_Count_Section_One (A : T_Arr)
with Pre => A'Length > 0,

Post => (for all V in T => Count.Count (A,
V) =
Count.Count (A (A'First .. A'Last -

1), V)
+ Count.Count (A (A'Last .. A'Last), V)

);

Before using lemmas in proofs, they have to be proved. With
ACSL, a direct proof of lemmas with Frama-C and automatic solvers
or proof assistants can be attempted, but SPARK requires lemmas
to have an implementation to prove using automatic solvers5. This
might seems counter-intuitive, as lemmas represents mathematical
properties, but the implementation of a lemma can be viewed as a
proof sketch to help the solvers. Implementation of the previous
lemma is presented on listing 8. We first define an auxiliary lemma
that proves that the main lemma is correct for a particular value
V. The implementation of the auxiliary lemma is the sketch of the
proof: just check the last element of the array and prove that Count
behaves correctly on the slice of the array only with the last element.
This auxiliary lemma is finally used in the implementation of the
main lemma.

Listing 8: The implementation of the lemma on Count

procedure Lemma_One_Single (A : T_Arr; V : T) with
Pre => A'Length /= 0,
Post => Count.Count (A, V) =

Count.Count (A (A'First .. A'Last - 1),
V) +

Count.Count (A (A'Last .. A'Last), V);

procedure Lemma_One_Single (A : T_Arr; V: T) is
begin
if A (A'Last) = V then
pragma Assert(Count.Count(A (A'Last..A'Last), V)

= 1);
else
pragma Assert(Count.Count(A (A'Last..A'Last), V)

= 0);
end if;

end Lemma_One_Single;

procedure Lemma_Count_Section_One (A : T_Arr) is
begin

for V in T loop
Lemma_One_Single (A, V);

end loop;
end Lemma_Count_Section_One;

Fortunately, certain forms of “templates” appear when imple-
menting lemmas for proving them, so it becomes easier when using
5Notice that lemmas may have a null implementation and be discharged by a proof
assistant.

the same predicates. The example above presents a common way to
prove a property on every value of a type T. The method used here
can be adapted to a lot of contexts: a lemma to prove the property
on a single value is written (Lemma_One_Single), and another lemma
is written, using a loop that calls the previous lemma each time,
and storing the property for every value before the current one
(Lemma_Count_Section_One). It has been useful for instance in the
chapter on heaps, where a lot of lemmas are used in order to prove
the algorithms, but they are all proven in a similar way. Therefore,
the only big step is understanding how to help solvers to prove
lemmas by decomposing the proof in several procedures. After that,
writing lemmas is not overwhelming.

As already written, an important aspect of SPARK lemmas is that
they need to be instantiated in order to be taken into account by the
provers. Manually inserting the lemmas in the code to be proved
might seem tedious, but the output of GNATprove, indicating for
each assertion or loop invariant the missing preconditions, is of
great help for locating the right placement of the lemmas, or even
knowing if a lemma is required at all.

5 RESULTS
There are two aspects of SPARK that we want to evaluate through
the production of SPARK by Example: proof performance and user-
friendliness. Notice that all results for SPARK by Example has been
produced using GNAT Community 2018 Linux version on a com-
puter with an Intel Core i7-4810MQ CPU and 16GB of RAM. A
timeout of 10 seconds per verification condition is sufficient for all
the proofs.

5.1 Proof performance
SPARK by Example and ACSL by Example both provide a rich set of
algorithms on which we can base a comparison on the respective
proof performances of SPARK and ACSL/Frama-C. Of course, all
presented algorithms are proved in both projects. To compare them,
we have chosen two metrics: the number of verification conditions
generated for each algorithm/chapter and the proof success rate
from the SMT solvers. The first one gives an idea of the work
that has to be done by the solvers. The second one shows if the
specification and the implementation proposed in both projects is
suitable for automatic verification.

Concerning the first metric, the results presented in Table 1 were
obtained by counting all the verification conditions generated from
algorithms in the chapter on binary heaps, the one with the most
difficult algorithms to prove. These verification conditions include
all the runtime checks, such as variable initialization and range
checks. Looking at the detailed example of pop_heap algorithm on
Table 3, such verification conditions represent about half of the
total verification conditions and most of them are easily proved,
either by flow analysis or by SMT solvers. Table 2 shows the results
for the chapter on heaps in ACSL by Example. When looking at
the number of verification conditions (excluding initializations and
runtime checks that are natively available in SPARK/Ada), they are
around the same between ACSL by Example and SPARK by Example.
Notice that these results do not represent a comparison of CVC4,
Z3 and Alt-Ergo capacities.
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algorithm total VCs CVC4 Z3 unproved flow

is_heap_p.adb 30 25 1 0 4
push_heap_p.adb 203 155 3 0 44
pop_heap_p.adb 377 304 2 0 71
make_heap_p.adb 131 101 4 0 26
sort_heap_p.adb 31 29 1 0 1
total 772 614 11 0 146

Table 1: Verification conditions generated for the chapter on
heaps in SPARK by Example

algorithm total VCs Qed AE CVC4 Z3 Coq unproved

is_heap 24 6 18 0 0 0 0
push_heap 96 30 59 3 3 1 0
pop_heap 93 44 45 2 0 1 1
make_heap 34 10 23 0 1 0 0
sort_heap 50 10 38 1 0 1 0
total 297 100 183 6 4 3 1

Table 2: Verification conditions for the chapter on heaps in
ACSL by Example

analysis total VCs CVC4 Z3 unproved flow

initialization 71 0 0 0 71
check 123 123 0 0 0
assertion 50 49 1 0 0
loop 45 45 0 0 0
precondition 74 74 0 0 0
postcondition 6 5 1 0 0
contract 8 8 0 0 0
total 377 304 2 0 71

Table 3: Verification conditions for the pop_heap algorithm

One can wonder if the greater number of verification conditions
generated by GNATprove for the pop_heap algorithm (377 against
93 for ACSL by Example) may not be a serious drawback. First, as
stated before, a great part of these verification conditions is easily
checked and does not take a big amount of time to be proved. The
most difficult verification conditions to prove are the ones about
loop invariants or postconditions and contract cases. These are the
real bottlenecks in term of proof difficulty for the solvers. Moreover,
from our point of view, these extra verification conditions give a
lot of confidence in the code, as they cover typical programming
faults that should not appear (initialization of local variables etc).
Finally, notice that a postcondition of pop_heap is not yet proved in
ACSL by Example, namely the one stating that the resulting array
is a permutation of the original one. This postcondition was one
of the most difficult to prove in SPARK by Example and needed
complicated lemmas, which may explain the difference.

On the machine described at the beginning of the Section, the
proof of all chapters of SPARK by Example with “unlimited” par-
allel processes takes 11 minutes. The proof of the corresponding
chapters of ACSL by Example in sequential mode6 takes 12 minutes.
Parallelizing proofs in ACSL by Example reduces the global proof
time to 8 minutes. Using Memcached [21] with SPARK allows to
cache proofs of lemmas heavily used instead of reproving them
each time they are needed and hence diminishes the time needed
to prove all chapters of SPARK by Example to 8 minutes. We can
conclude that even if there are more assertions to prove in SPARK
by Example, the time needed to prove all chapters is roughly the
same as for ACSL by Example.

Concerning the second metric, we wanted to verify if every
verification condition generated by SPARK by Example can be dis-
charged by SMT solvers, hence avoiding developers to use manual
proof assistants like Coq. This has been effectively verified, as all
verification conditions in all chapters are proved by CVC4 and Z3,
without the help of Coq. Of course, this implies that lemmas has to
be written and instantiated in the code, but our experience shows
that writing such lemmas helps to understand better the specifica-
tion and the implementation of the algorithms. On the other hand,
in ACSL by Example some lemmas need to be discharged with Coq,
hence forcing the user to be familiar with such a proof assistant.
Of course, these manual proofs mainly concerns mathematical lem-
mas that can be reused in many programs, hence the effort. Notice
also that we have not tried to use instantiated lemmas in ACSL by
Example code to verify if manual proof can be avoided in ACSL by
Example.

5.2 Ease of use of SPARK and GNATprove
The other, and less objective, aspect of SPARK that can be evaluated
through SPARK by Example is its ease of use, and how beginner-
friendly it can be. As mentioned previously, any software developer
that wishes to enter the world of software reliability and formal
verification should learn some theoretical work (Floyd-Hoare’s
logic for instance), a specification language, and the associated
workflow to prove a program. The work described in SPARK by
Example was at 90% done by two undergraduate students with
no prior knowledge of Ada nor formal verification methods and
with only a background in functional programming and imperative
programming in C. In the span of three months, they learned the
basics of formal verification, translated, proved and documented
the proof of around 50 algorithms fromACSL by Example. Of course,
lots of implementations and proofs are almost directly translated
from ACSL/C to SPARK, but some of them, particularly in the
chapter on heaps or mutating algorithms, need special care.

For programmers coming with a C background, the first SPARK
programs are easy and pleasant to write, mainly due to the efficient
type system and array management. Using GNATprove to check
AoRTE is also a great advantage as they were not obliged to use
manual proof assistant to discharge verification conditions. On
the other hand, understanding why counterexamples are “wrong”,
managing complex quantifiers imbrication in assertion or writing

6This means that solvers are used in a sequential pipeline, each solver passing on the
next solver the proof obligations it cannot prove.
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lemmas may be difficult, but we hope that SPARK by Example gives
beginners a good starting point to understand these points.

From our point of view, this work shows that formal verification
of complex algorithms through SPARK is accessible to a beginner
and can be quickly learned, even more with the help and experience
of people who went through the learning curve, and documented
their tips and tricks in SPARK by Example.

6 CONCLUSION
We have presented in this paper as summary and analysis of SPARK
by Example, a guide for beginners to learn how to specify, im-
plement and prove SPARK programs with GNATprove and SMT
solvers. As in ACSL by Example, the examples given in SPARK by
Example are provided by the Standard C++ Library and range from
classic non-mutating algorithms to binary heap implementation.
Our implementations of the algorithms are all proved with auto-
matic SMT solvers in a reasonable time, both for absence of runtime
errors and functional correctness.

Our main objective was not only to produce a complete guide to
share our experience with other users, but also to show that formal
verification through deductive methods with SPARK/GNATprove
is feasible for beginners, as the two main contributors of SPARK
by Example had not previous knowledge of formal methods nor
SPARK before.

Of course, we have several directions to improve and continue
this work. First, we may try to compare more accurately SPARK
and ACSL by trying to use the same proof techniques in the im-
plementation of complex algorithms like the one on heaps. The
greater number of verification conditions generated for some com-
plex algorithms in SPARK by Example not only comes from the
AoRTE checks provided by GNATprove but also from the use of
lemmas to help the automatic provers. We should try to use the
same techniques for the algorithms of the chapter on heaps in ACSL
by Example to objectively compare both approaches. Second, new
algorithms may be included in SPARK by Example, for instance
the work on Red-Black trees done by Claire Dross and Yannick
Moy [13]. This may lead to a gallery of certified programs in the
spirit of what has been done for the Why3 platform [7, 14, 27].
A future objective would also be to show how to integrate more
closely formal specifications and proofs with testing by providing a
simple framework to generate test cases from specifications. Finally,
a more formal document should be produced with more theoretical
explanations on formal methods.
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