Generalized integral theorems for the quaternionic G-monogenic mappings

Tetyana S. Kuzmenko and Vitalii S. Shpakivskyi

(Presented by V. Ya. Gutlyanskii)

Abstract

For G-monogenic mappings taking values in the algebra of complex quaternions we generalize some analogues of classical integral theorems of the holomorphic function theory of a complex variable (the surface and the curvilinear Cauchy integral theorems).

2010 MSC. 30G35, 57R35.
Key words and phrases. The algebra of complex quaternions, G monogenic mappings, the Cauchy integral theorems.

1. Introduction

The Cauchy integral theorems for analytic functions of the complex variable are fundamental results of the classical complex analysis. Analogues of these results are also important tools in the quaternionic analysis.

In the papers [1-3], some analogues of classical integral theorems for G-monogenic mappings taking values in the algebra of complex quaternions were established. Namely, in the paper [1] the Stokes formula, a curvilinear analogue of the Cauchy integral theorem in the case where a curve of integration lies in a domain of G-monogeneity, the Cauchy integral formula, the Gauss-Ostrogradsky formula and the surface Cauchy integral theorem were proved. The analogues of the Cauchy integral theorems are of the form

$$
\begin{equation*}
\int_{\Gamma} \widehat{\Phi} \sigma=0, \quad \int_{\Gamma} \sigma \Phi=0 \tag{1.1}
\end{equation*}
$$

Received 24.10.2016

This research is partially supported by Grant of Ministry of Education and Science of Ukraine (Project No. 0116U001528).
where Γ is a closed surface (or a closed curve), σ is a special differential form, and $\widehat{\Phi}, \Phi$ are left- G-monogenic mapping and right- G-monogenic mapping, respectively.

In the paper [2], the formulae (1.1) was proved in the case where a curve of integration lies on the boundary of a domain of G-monogeneity. In the paper [3], the analogue of the Morera theorem was established.

In the present paper we generalize analogues of the surface and curvilinear Cauchy integral theorems for G-monogenic mappings to "two sides" integrals. Namely, the equality

$$
\begin{equation*}
\int_{\Gamma} \widehat{\Phi} \sigma \Phi=0 \tag{1.2}
\end{equation*}
$$

will be proved under some assumptions. In the papers [4] and [5] the formula of the type (1.2) was proved for another class of quaternionic differentiable functions.

2. G-monogenic mappings in the algebra of complex quaternions

Let $\mathbb{H}(\mathbb{C})$ be the quaternion algebra over the field of complex numbers \mathbb{C}, whose basis consists of the unit 1 of the algebra and of the elements I, J, K satisfying the multiplication rules:

$$
\begin{gathered}
I^{2}=J^{2}=K^{2}=-1 \\
I J=-J I=K, \quad J K=-K J=I, \quad K I=-I K=J
\end{gathered}
$$

In the algebra $\mathbb{H}(\mathbb{C})$ there exists another basis $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ such that multiplication table in this basis can be represented as

\cdot	e_{1}	e_{2}	e_{3}	e_{4}
e_{1}	e_{1}	0	e_{3}	0
e_{2}	0	e_{2}	0	e_{4}
e_{3}	0	e_{3}	0	e_{1}
e_{4}	e_{4}	0	e_{2}	0

The unit of the algebra can be decomposed as $1=e_{1}+e_{2}$.
Let us consider the vectors

$$
\begin{equation*}
i_{1}=e_{1}+e_{2}, \quad i_{2}=a_{1} e_{1}+a_{2} e_{2}, \quad i_{3}=b_{1} e_{1}+b_{2} e_{2} \tag{2.1}
\end{equation*}
$$

where $a_{k}, b_{k} \in \mathbb{C}, k=1,2$, which are linearly independent over the field of real numbers \mathbb{R}. It means that the equality $\alpha_{1} i_{1}+\alpha_{2} i_{2}+\alpha_{3} i_{3}=0$ for $\alpha_{1}, \alpha_{2}, \alpha_{3} \in \mathbb{R}$ holds if and only if $\alpha_{1}=\alpha_{2}=\alpha_{3}=0$.

In the algebra $\mathbb{H}(\mathbb{C})$ we consider the linear span

$$
E_{3}:=\left\{\zeta=x i_{1}+y i_{2}+z i_{3}: x, y, z \in \mathbb{R}\right\}
$$

generated by the vectors i_{1}, i_{2}, i_{3} over the field \mathbb{R}.
A set $S \subset \mathbb{R}^{3}$ is associated with the set $S_{\zeta}:=\left\{\zeta=x i_{1}+y i_{2}+z i_{3}\right.$: $(x, y, z) \in S\}$ in E_{3}. We understand topological properties of the set S_{ζ} in E_{3} as the same topological properties of the set S in \mathbb{R}^{3}.

In the paper [6] we introduced a new class of quaternionic mappings, so-called, G-monogenic mappings.

We say that a continuous mapping $\Phi: \Omega_{\zeta} \rightarrow \mathbb{H}(\mathbb{C})$ (or $\widehat{\Phi}: \Omega_{\zeta} \rightarrow$ $\mathbb{H}(\mathbb{C})$) is right-G-monogenic (or left-G-monogenic) in a domain $\Omega_{\zeta} \subset E_{3}$, if Φ (or $\widehat{\Phi}$) is differentiable in the sense of the Gâteaux at every point of Ω_{ζ}, i. e. for every $\zeta \in \Omega_{\zeta}$ there exists an element $\Phi^{\prime}(\zeta) \in \mathbb{H}(\mathbb{C})$ (or $\left.\widehat{\Phi}^{\prime}(\zeta) \in \mathbb{H}(\mathbb{C})\right)$ such that

$$
\begin{gathered}
\lim _{\varepsilon \rightarrow 0+0}(\Phi(\zeta+\varepsilon h)-\Phi(\zeta)) \varepsilon^{-1}=h \Phi^{\prime}(\zeta) \quad \forall h \in E_{3} \\
\left(\text { or } \lim _{\varepsilon \rightarrow 0+0}(\widehat{\Phi}(\zeta+\varepsilon h)-\widehat{\Phi}(\zeta)) \varepsilon^{-1}=\widehat{\Phi}^{\prime}(\zeta) h \quad \forall h \in E_{3}\right)
\end{gathered}
$$

Consider the decomposition of the mapping $\Phi: \Omega_{\zeta} \rightarrow \mathbb{H}(\mathbb{C})$ with respect to the basis $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$:

$$
\Phi(\zeta)=\sum_{k=1}^{4} U_{k}(x, y, z) e_{k}
$$

In the case where functions $U_{k}: \Omega \rightarrow \mathbb{C}$ are \mathbb{R}-differentiable in Ω, i. e. for every $(x, y, z) \in \Omega$

$$
\begin{gathered}
U_{k}(x+\Delta x, y+\Delta y, z+\Delta z)-U_{k}(x, y, z) \\
=\frac{\partial U_{k}}{\partial x} \Delta x+\frac{\partial U_{k}}{\partial y} \Delta y+\frac{\partial U_{k}}{\partial z} \Delta z+o\left(\sqrt{(\Delta x)^{2}+(\Delta y)^{2}+(\Delta z)^{2}}\right) \\
(\Delta x)^{2}+(\Delta y)^{2}+(\Delta z)^{2} \rightarrow 0
\end{gathered}
$$

the mapping Φ is right- G-monogenic and $\widehat{\Phi}$ is left- G-monogenic in the domain Ω_{ζ} if and only if the following analogues of the Cauchy - Riemann conditions are satisfied in Ω_{ζ} :

$$
\begin{equation*}
\frac{\partial \Phi}{\partial y}=i_{2} \frac{\partial \Phi}{\partial x}, \quad \frac{\partial \Phi}{\partial z}=i_{3} \frac{\partial \Phi}{\partial x} \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial \widehat{\Phi}}{\partial y}=\frac{\partial \widehat{\Phi}}{\partial x} i_{2}, \quad \frac{\partial \widehat{\Phi}}{\partial z}=\frac{\partial \widehat{\Phi}}{\partial x} i_{3} \tag{2.3}
\end{equation*}
$$

3. Cauchy integral theorem for a surface integral

Let Ω_{ζ} be a bounded domain in E_{3}. For a continuous mapping φ : $\Omega_{\zeta} \rightarrow \mathbb{H}(\mathbb{C})$ of the form

$$
\varphi(\zeta)=\sum_{k=1}^{4} U_{k}(x, y, z) e_{k}+i \sum_{k=1}^{4} V_{k}(x, y, z) e_{k}
$$

where $(x, y, z) \in \Omega$ and $U_{k}: \Omega \rightarrow \mathbb{R}, V_{k}: \Omega \rightarrow \mathbb{R}$, we define a volume integral by the equality

$$
\begin{aligned}
& \int_{\Omega_{\zeta}} \varphi(\zeta) d x d y d z:=\sum_{k=1}^{4} e_{k} \int_{\Omega} U_{k}(x, y, z) d x d y d z \\
& \quad+i \sum_{k=1}^{4} e_{k} \int_{\Omega} V_{k}(x, y, z) d x d y d z
\end{aligned}
$$

Let Σ_{ζ} be a piece-smooth surface in E_{3}. For continuous mappings $\varphi: \Omega_{\zeta} \rightarrow \mathbb{H}(\mathbb{C})$ and $\psi: \Omega_{\zeta} \rightarrow \mathbb{H}(\mathbb{C})$ of the forms

$$
\begin{gather*}
\varphi(\zeta)=\sum_{k=1}^{4} U_{k}(x, y, z) e_{k}+i \sum_{k=1}^{4} V_{k}(x, y, z) e_{k} \tag{3.1}\\
\psi(\zeta)=\sum_{m=1}^{4} P_{m}(x, y, z) e_{m}+i \sum_{m=1}^{4} Q_{m}(x, y, z) e_{m} \tag{3.2}
\end{gather*}
$$

where $(x, y, z) \in \Sigma, U_{k}: \Sigma \rightarrow \mathbb{R}, V_{k}: \Sigma \rightarrow \mathbb{R}$ and $P_{m}: \Sigma \rightarrow \mathbb{R}, Q_{m}:$ $\Sigma \rightarrow \mathbb{R}$, we define a surface integral on a piece-smooth surface Σ_{ζ} with the differential form

$$
\sigma:=d y d z+d z d x i_{2}+d x d y i_{3}
$$

by the equality

$$
\begin{aligned}
\int_{\Sigma_{\zeta}} \varphi(\zeta) \sigma \psi(\zeta) & :=\sum_{k, m=1}^{4} e_{k} e_{m} \int_{\Sigma}\left(U_{k} P_{m}-V_{k} Q_{m}\right) d y d z \\
& +\sum_{k, m=1}^{4} e_{k} i_{2} e_{m} \int_{\Sigma}\left(U_{k} P_{m}-V_{k} Q_{m}\right) d z d x \\
& +\sum_{k, m=1}^{4} e_{k} i_{3} e_{m} \int_{\Sigma}\left(U_{k} P_{m}-V_{k} Q_{m}\right) d x d y \\
& +i \sum_{k, m=1}^{4} e_{k} e_{m} \int_{\Sigma}\left(V_{k} P_{m}+U_{k} Q_{m}\right) d y d z \\
& +i \sum_{k, m=1}^{4} e_{k} i_{2} e_{m} \int_{\Sigma}\left(V_{k} P_{m}+U_{k} Q_{m}\right) d z d x \\
& +i \sum_{k, m=1}^{4} e_{k} i_{3} e_{m} \int_{\Sigma}\left(V_{k} P_{m}+U_{k} Q_{m}\right) d x d y
\end{aligned}
$$

If a domain $\Omega \subset \mathbb{R}^{3}$ has a closed piece-smooth boundary $\partial \Omega$ and mappings $\varphi: \Omega_{\zeta} \rightarrow \mathbb{H}(\mathbb{C})$ and $\psi: \Omega_{\zeta} \rightarrow \mathbb{H}(\mathbb{C})$ are continuous together with partial derivatives of the first order up to the boundary $\partial \Omega_{\zeta}$, then the following analogues of the Gauss-Ostrogradsky formula is true:

$$
\begin{gather*}
\int_{\partial \Omega_{\zeta}} \varphi(\zeta) \sigma \psi(\zeta) \\
=\int_{\Omega_{\zeta}}\left(\frac{\partial \varphi}{\partial x} \psi+\varphi \frac{\partial \psi}{\partial x}+\frac{\partial \varphi}{\partial y} i_{2} \psi+\varphi i_{3} \frac{\partial \psi}{\partial y}+\frac{\partial \varphi}{\partial z} i_{3} \psi+\varphi i_{3} \frac{\partial \psi}{\partial z}\right) d x d y d z \tag{3.3}
\end{gather*}
$$

Using the equality (3.3) and the conditions (2.2), (2.3) we obtain the following theorem.

Theorem 3.1. Suppose that a domain Ω_{ζ} has a closed piece-smooth boundary $\partial \Omega_{\zeta}$ and $\Phi: \Omega_{\zeta} \rightarrow \mathbb{H}(\mathbb{C})$ is a right-G-monogenic mapping in Ω_{ζ}, and $\widehat{\Phi}: \Omega_{\zeta} \rightarrow \mathbb{H}(\mathbb{C})$ is a left-G-monogenic in Ω_{ζ} and continuous together with partial derivatives of the first order up to the boundary
$\partial \Omega_{\zeta}$. Then

$$
\begin{align*}
& \int_{\partial \Omega_{\zeta}} \widehat{\Phi}(\zeta) \sigma \Phi(\zeta) \\
& =\int_{\Omega_{\zeta}}\left[\widehat{\Phi}^{\prime}(\zeta)\left(1+i_{2}^{2}+i_{3}^{2}\right) \Phi(\zeta)+\widehat{\Phi}(\zeta)\left(1+i_{2}^{2}+i_{3}^{2}\right) \Phi^{\prime}(\zeta)\right] d x d y d z \tag{3.4}
\end{align*}
$$

Proof. Using the conditions (2.2), (2.3) we have

$$
\begin{gathered}
\int_{\partial \Omega_{\zeta}} \widehat{\Phi}(\zeta) \sigma \Phi(\zeta) \\
=\int_{\Omega_{\zeta}}\left(\widehat{\Phi^{\prime}} \Phi+\widehat{\Phi} \Phi^{\prime}+\widehat{\Phi^{\prime}} i_{2}^{2} \Phi+\widehat{\Phi} i_{2}^{2} \Phi^{\prime}+\widehat{\Phi^{\prime}} i_{3}^{2} \Phi+\widehat{\Phi} i_{3}^{2} \Phi^{\prime}\right) d x d y d z \\
=\int_{\Omega_{\zeta}}\left[\left(\widehat{\Phi^{\prime}}+\widehat{\Phi^{\prime}} i_{2}^{2}+\widehat{\Phi^{\prime}} i_{3}^{2}\right) \Phi+\widehat{\Phi}\left(\Phi^{\prime}+i_{2}^{2} \Phi^{\prime}+i_{3}^{2} \Phi^{\prime}\right)\right] d x d y d z \\
=\int_{\Omega_{\zeta}}\left[\widehat{\Phi^{\prime}}\left(1+i_{2}^{2}+i_{3}^{2}\right) \Phi+\widehat{\Phi}\left(1+i_{2}^{2}+i_{3}^{2}\right) \Phi^{\prime}\right] d x d y d z
\end{gathered}
$$

The following statement is a consequence of Theorem 3.1.
Theorem 3.2. Under conditions of Theorem 3.1 with the additional assumption $1+i_{2}^{2}+i_{3}^{2}=0$, i. e. mappings Φ and $\widehat{\Phi}$ are solutions of the three-dimensional Laplace equation, the equality (3.4) can be rewritten in the form

$$
\int_{\partial \Omega_{\zeta}} \widehat{\Phi}(\zeta) \sigma \Phi(\zeta)=0
$$

4. Cauchy integral theorem for a curvilinear integral

Let γ_{ζ} be a Jordan rectifiable curve in E_{3}. For continuous mappings $\varphi: \gamma_{\zeta} \rightarrow \mathbb{H}(\mathbb{C})$ and $\psi: \gamma_{\zeta} \rightarrow \mathbb{H}(\mathbb{C})$ of the forms (3.1) and (3.2), respectively, where $(x, y, z) \in \gamma, \quad U_{k}: \gamma \rightarrow \mathbb{R}, V_{k}: \gamma \rightarrow \mathbb{R}$ and $P_{m}: \gamma \rightarrow \mathbb{R}, Q_{m}: \gamma \rightarrow \mathbb{R}$, we define a curvilinear integral along a Jordan rectifiable curve γ_{ζ} by the equality:

$$
\begin{aligned}
& \int_{\gamma_{\zeta}} \varphi(\zeta) d \zeta \psi(\zeta):=\sum_{k, m=1}^{4} e_{k} e_{m} \int_{\gamma}\left(U_{k} P_{m}-V_{k} Q_{m}\right) d x \\
&+\sum_{k, m=1}^{4} e_{k} i_{2} e_{m} \int_{\gamma}\left(U_{k} P_{m}-V_{k} Q_{m}\right) d y \\
&+\sum_{k, m=1}^{4} e_{k} i_{3} e_{m} \int_{\gamma}\left(U_{k} P_{m}-V_{k} Q_{m}\right) d z \\
&+i \sum_{k, m=1}^{4} e_{k} e_{m} \int_{\gamma}\left(V_{k} P_{m}-U_{k} Q_{m}\right) d x \\
& \quad+i \sum_{k, m=1}^{4} e_{k} i_{2} e_{m} \int_{\gamma}\left(V_{k} P_{m}-U_{k} Q_{m}\right) d y \\
&+i \sum_{k, m=1}^{4} e_{k} i_{3} e_{m} \int_{\gamma}\left(V_{k} P_{m}-U_{k} Q_{m}\right) d z
\end{aligned}
$$

where $d \zeta:=d x+i_{2} d y+i_{3} d z$.
If mappings $\varphi: \Omega_{\zeta} \rightarrow \mathbb{H}(\mathbb{C})$ and $\psi: \Omega_{\zeta} \rightarrow \mathbb{H}(\mathbb{C})$ are continuous together with partial derivatives of the first order in a domain Ω_{ζ} and Σ_{ζ} is an arbitrary piece-smooth surface in Ω_{ζ} with a rectifiable Jordan edge γ_{ζ}, then the following analogue of the Stokes formula is true:

$$
\begin{align*}
\int_{\gamma_{\zeta}} \varphi(\zeta) & d \zeta \psi(\zeta)=\int_{\Sigma_{\zeta}}\left(\frac{\partial \varphi}{\partial x} i_{2} \psi+\varphi i_{2} \frac{\partial \psi}{\partial x}-\frac{\partial \varphi}{\partial y} \psi-\varphi \frac{\partial \psi}{\partial y}\right) d x d y \\
+ & \left(\frac{\partial \varphi}{\partial y} i_{3} \psi+\varphi i_{3} \frac{\partial \psi}{\partial y}-\frac{\partial \varphi}{\partial z} i_{2} \psi-\varphi i_{2} \frac{\partial \psi}{\partial z}\right) d y d z \\
& +\left(\frac{\partial \varphi}{\partial z} \psi+\varphi \frac{\partial \psi}{\partial z}-\frac{\partial \varphi}{\partial x} i_{3} \psi-\varphi i_{3} \frac{\partial \psi}{\partial x}\right) d z d x \tag{4.1}
\end{align*}
$$

In the next theorem we show that the right-hand side of the equality (4.1) equals zero for the right- G-monogenic mapping $\Phi: \Omega_{\zeta} \rightarrow \mathbb{H}(\mathbb{C})$ and the left- G-monogenic mapping $\widehat{\Phi}: \Omega_{\zeta} \rightarrow \mathbb{H}(\mathbb{C})$. Note that the following theorem is a generalization of Theorem 1 of [1].

Theorem 4.1. Suppose that $\Phi: \Omega_{\zeta} \rightarrow \mathbb{H}(\mathbb{C})$ is a right- G-monogenic mapping and $\widehat{\Phi}: \Omega_{\zeta} \rightarrow \mathbb{H}(\mathbb{C})$ is a left-G-monogenic mapping in a domain Ω_{ζ}, and γ_{ζ} is a rectifiable Jordan edge of some piece-smooth surface in Ω_{ζ}. Then

$$
\begin{equation*}
\int_{\gamma_{\zeta}} \widehat{\Phi}(\zeta) d \zeta \Phi(\zeta)=0 \tag{4.2}
\end{equation*}
$$

Proof. Using the formula (4.1) and the conditions (2.2) and (2.3), we obtain

$$
\begin{gathered}
\int_{\gamma_{\zeta}} \widehat{\Phi}(\zeta) d \zeta \Phi(\zeta)=\int_{\Sigma_{\zeta}}\left(\frac{\partial \widehat{\Phi}}{\partial x} i_{2} \Phi+\widehat{\Phi} i_{2} \frac{\partial \Phi}{\partial x}-\frac{\partial \widehat{\Phi}}{\partial y} \Phi-\widehat{\Phi} \frac{\partial \Phi}{\partial y}\right) d x d y \\
+\left(\frac{\partial \widehat{\Phi}}{\partial y} i_{3} \Phi+\widehat{\Phi} i_{3} \frac{\partial \Phi}{\partial y}-\frac{\partial \widehat{\Phi}}{\partial z} i_{2} \Phi-\widehat{\Phi} i_{2} \frac{\partial \Phi}{\partial z}\right) d y d z \\
+\left(\frac{\partial \widehat{\Phi}}{\partial z} \Phi+\widehat{\Phi} \frac{\partial \Phi}{\partial z}-\frac{\partial \widehat{\Phi}}{\partial x} i_{3} \Phi-\widehat{\Phi} i_{3} \frac{\partial \Phi}{\partial x}\right) d z d x \\
=\int_{\Sigma_{\zeta}}\left(\widehat{\Phi}^{\prime}(\zeta) i_{2} \Phi(\zeta)+\widehat{\Phi}(\zeta) i_{2} \Phi^{\prime}(\zeta)-\widehat{\Phi}^{\prime}(\zeta) i_{2} \Phi(\zeta)-\widehat{\Phi}(\zeta) i_{2} \Phi^{\prime}(\zeta)\right) d x d y \\
+\left(\widehat{\Phi}^{\prime}(\zeta) i_{2} i_{3} \Phi(\zeta)+\widehat{\Phi}(\zeta) i_{3} i_{2} \Phi^{\prime}(\zeta)-\widehat{\Phi}^{\prime}(\zeta) i_{3} i_{2} \Phi(\zeta)-\widehat{\Phi}(\zeta) i_{2} i_{3} \Phi^{\prime}(\zeta)\right) d y d z \\
+\left(\widehat{\Phi}^{\prime}(\zeta) i_{3} \Phi(\zeta)+\widehat{\Phi}(\zeta) i_{3} \Phi^{\prime}(\zeta)-\widehat{\Phi}^{\prime}(\zeta) i_{3} \Phi(\zeta)-\widehat{\Phi}(\zeta) i_{3} \Phi^{\prime}(\zeta)\right) d z d x=0
\end{gathered}
$$

We understand a triangle \triangle_{ζ} as a plane figure bounded by three line segments connecting three its vertices. Denote by $\partial \triangle_{\zeta}$ the boundary of the triangle \triangle_{ζ} in the relative topology of its plane. Also we assume that the triangle \triangle_{ζ} includes the boundary $\partial \triangle_{\zeta}$.

Since every triangle $\triangle_{\zeta} \subset \Omega_{\zeta}$ can be included into a convex subset of a domain Ω_{ζ}, the following statement is a consequence of Theorem 4.1.

Corollary 4.1. If $\Omega_{\zeta} \subset E_{3}$ is a convex domain, a mapping $\Phi: \Omega_{\zeta} \rightarrow$ $\mathbb{H}(\mathbb{C})$ is right- G-monogenic and a mapping $\widehat{\Phi}: \Omega_{\zeta} \rightarrow \mathbb{H}(\mathbb{C})$ is left- G monogenic, then for an arbitrary triangle \triangle_{ζ} such that $\overline{\triangle_{\zeta}} \subset \Omega_{\zeta}$, the following equality is true:

$$
\begin{equation*}
\int_{\partial \triangle_{\zeta}} \widehat{\Phi}(\zeta) d \zeta \Phi(\zeta)=0 \tag{4.3}
\end{equation*}
$$

Let us consider the algebra $\widetilde{\mathbb{H}}(\mathbb{R})$ with the basis $\left\{e_{k}, i e_{k}\right\}_{k=1}^{4}$ over the field \mathbb{R} which is isomorphic to the algebra $\mathbb{H}(\mathbb{C})$ over the field \mathbb{C}. In the algebra $\widetilde{\mathbb{H}}(\mathbb{R})$ there exist another basis $\left\{i_{k}\right\}_{k=1}^{8}$, where the vectors i_{1}, i_{2}, i_{3} are the same as in the equalities (2.1).

For the element $a:=\sum_{k=1}^{8} a_{k} i_{k}, a_{k} \in \mathbb{R}$, we define the Euclidian norm

$$
\|a\|:=\sqrt{\sum_{k=1}^{8} a_{k}^{2}}
$$

Accordingly, $\|\zeta\|=\sqrt{x^{2}+y^{2}+z^{2}}$ and $\left\|i_{1}\right\|=\left\|i_{2}\right\|=\left\|i_{3}\right\|=1$.
Now we apply a scheme of the proof of the corresponding lemma for a function given in the complex plane (see, e.g., [7]) to the proof of the following statement.

Lemma 4.1. Suppose that $\varphi: \Omega_{\zeta} \rightarrow \mathbb{H}(\mathbb{C})$ and $\psi: \Omega_{\zeta} \rightarrow \mathbb{H}(\mathbb{C})$ are continuous mappings in a simply connected domain Ω_{ζ}, and γ_{ζ} is a rectifiable curve in Ω_{ζ}. Then for an arbitrary $\varepsilon>0$ there exists a broken line $\Lambda_{\zeta} \subset \Omega_{\zeta}$, vertexes of which lie on the curve γ_{ζ}, and such that

$$
\begin{equation*}
\left\|\int_{\gamma_{\zeta}} \varphi(\zeta) d \zeta \psi(\zeta)-\int_{\Lambda_{\zeta}} \varphi(\zeta) d \zeta \psi(\zeta)\right\|<\varepsilon \tag{4.4}
\end{equation*}
$$

Proof. Let us consider a closed domain $\bar{D}_{\zeta} \subset \Omega_{\zeta}$, containing inside the curve γ_{ζ}. Since φ and ψ are continuous at every point of the domain \bar{D}_{ζ}, then it is uniformly continuous in this domain. It means that the product of these mappings is uniformly continuous too. Thus, for an arbitrary $\varepsilon_{1}>0$ there exists a number $\delta(\varepsilon)>0$ such that

$$
\begin{equation*}
\left\|\varphi\left(\zeta^{\prime}\right) \psi\left(\zeta^{\prime}\right)-\varphi\left(\zeta^{\prime \prime}\right) \psi\left(\zeta^{\prime \prime}\right)\right\|<\varepsilon_{1} \tag{4.5}
\end{equation*}
$$

if $\left|\zeta^{\prime}-\zeta^{\prime \prime}\right|<\delta(\varepsilon)$, where $\zeta^{\prime}, \zeta^{\prime \prime}$ are any points of the domain \bar{D}_{ζ}. In addition, under the same assumptions, the following inequalities are true:

$$
\begin{align*}
& \left\|\varphi\left(\zeta^{\prime}\right) i_{2} \psi\left(\zeta^{\prime}\right)-\varphi\left(\zeta^{\prime \prime}\right) i_{2} \psi\left(\zeta^{\prime \prime}\right)\right\|<\varepsilon_{2} \tag{4.6}\\
& \left\|\varphi\left(\zeta^{\prime}\right) i_{3} \psi\left(\zeta^{\prime}\right)-\varphi\left(\zeta^{\prime \prime}\right) i_{3} \psi\left(\zeta^{\prime \prime}\right)\right\|<\varepsilon_{3} \tag{4.7}
\end{align*}
$$

Let us divide the curve γ_{ζ} into the $n \operatorname{arcs} Q_{\zeta}^{0}, Q_{\zeta}^{1}, \ldots, Q_{\zeta}^{n-1}$ so that the length of each of them was less than δ and enter the broken curve Λ_{ζ} so that their broken links $L_{\zeta}^{0}, L_{\zeta}^{1}, \ldots, L_{\zeta}^{n-1}$ tied these arcs. By ζ_{0}, $\zeta_{1}, \ldots, \zeta_{n-1}, \zeta_{n}$ denote the vertexes of the broken curve Λ_{ζ}. Since the
length of every arc Q_{ζ}^{k} is less than δ, the distance between any two points on the same arc especially less than δ. The same is true for links L_{ζ}^{k}.

We compare the value of integral along the curve γ_{ζ} with the value of the same integral along the broken curve Λ_{ζ}. For this goal we consider a sum, which is an approximate value of the integral $\int_{\gamma_{\zeta}} \varphi(\zeta) d \zeta \psi(\zeta)$:

$$
\begin{equation*}
S:=\varphi\left(\zeta_{0}\right) \Delta \zeta_{0} \psi\left(\zeta_{0}\right)+\varphi\left(\zeta_{1}\right) \Delta \zeta_{1} \psi\left(\zeta_{1}\right)+\cdots+\varphi\left(\zeta_{n-1}\right) \Delta \zeta_{n-1} \psi\left(\zeta_{n-1}\right) \tag{4.8}
\end{equation*}
$$

Since $\Delta \zeta_{k}=\int_{Q_{\zeta}^{k}} d \zeta$, the equality (4.8) can be represented in the form

$$
\begin{equation*}
S:=\int_{Q_{\zeta}^{0}} \varphi\left(\zeta_{0}\right) d \zeta \psi\left(\zeta_{0}\right)+\int_{Q_{\zeta}^{1}} \varphi\left(\zeta_{1}\right) d \zeta \psi\left(\zeta_{1}\right)+\cdots+\int_{Q_{\zeta}^{n-1}} \varphi\left(\zeta_{n-1}\right) d \zeta \psi\left(\zeta_{n-1}\right) \tag{4.9}
\end{equation*}
$$

On the other hand, the integral $\int_{\gamma_{\zeta}} \varphi(\zeta) d \zeta \Psi(\zeta)$ can be represented in the form of the sum of the integrals along the $\operatorname{arcs} Q_{\zeta}^{k}$:

$$
\begin{gather*}
\int_{\gamma_{\zeta}} \varphi(\zeta) d \zeta \psi(\zeta)=\int_{Q_{\zeta}^{0}} \varphi(\zeta) d \zeta \psi(\zeta) \\
+\int_{Q_{\zeta}^{1}} \varphi(\zeta) d \zeta \psi(\zeta)+\cdots+\int_{Q_{\zeta}^{n-1}} \varphi(\zeta) d \zeta \psi(\zeta) \tag{4.10}
\end{gather*}
$$

Consider the difference of the equations (4.10) and (4.9):

$$
\begin{gathered}
\int_{\gamma_{\zeta}} \varphi(\zeta) d \zeta \psi(\zeta)-S=\int_{Q_{\zeta}^{0}}\left(\varphi(\zeta) d \zeta \psi(\zeta)-\varphi\left(\zeta_{0}\right) d \zeta \psi\left(\zeta_{0}\right)\right) \\
+\int_{Q_{\zeta}^{1}}\left(\varphi(\zeta) d \zeta \psi(\zeta)-\varphi\left(\zeta_{1}\right) d \zeta \psi\left(\zeta_{1}\right)\right) \\
+\cdots+\int_{Q_{\zeta}^{n-1}}\left(\varphi(\zeta) d \zeta \psi(\zeta)-\varphi\left(\zeta_{n-1}\right) d \zeta \psi\left(\zeta_{n-1}\right)\right) \\
=\int_{Q^{0}}\left(\varphi(\zeta) \psi(\zeta)-\varphi\left(\zeta_{0}\right) \psi\left(\zeta_{0}\right)\right) d x+\int_{Q^{0}}\left(\varphi(\zeta) i_{2} \psi(\zeta)-\varphi\left(\zeta_{0}\right) i_{2} \psi\left(\zeta_{0}\right)\right) d y
\end{gathered}
$$

$$
\begin{aligned}
& +\int_{Q^{0}}\left(\varphi(\zeta) i_{3} \psi(\zeta)-\varphi\left(\zeta_{0}\right) i_{3} \psi\left(\zeta_{0}\right)\right) d z \\
& +\cdots+\int_{Q^{n-1}}\left(\varphi(\zeta) \psi(\zeta)-\varphi\left(\zeta_{0}\right) \psi\left(\zeta_{0}\right)\right) d x \\
& +\int_{Q^{n-1}}\left(\varphi(\zeta) i_{2} \psi(\zeta)-\varphi\left(\zeta_{0}\right) i_{2} \psi\left(\zeta_{0}\right)\right) d y \\
& +\int_{Q^{n-1}}\left(\varphi(\zeta) i_{3} \psi(\zeta)-\varphi\left(\zeta_{0}\right) i_{3} \psi\left(\zeta_{0}\right)\right) d z
\end{aligned}
$$

Since on the every arc Q_{ζ}^{k} the inequalities (4.5) - (4.7) are true, we obtain

$$
\begin{array}{r}
\left\|\int_{\gamma_{\zeta}} \varphi(\zeta) d \zeta \psi(\zeta)-S\right\|<\left(\varepsilon_{1} Q_{x}^{0}+\varepsilon_{2} Q_{y}^{0}+\varepsilon_{3} Q_{z}^{0}\right)+\ldots \\
\cdots+\left(\varepsilon_{1} \cdot Q_{x}^{n-1}+\varepsilon_{2} Q_{y}^{n-1}+\varepsilon_{3} Q_{z}^{n-1}\right)<\varepsilon Q^{0}+\cdots+\varepsilon Q^{n-1}<\varepsilon L \tag{4.11}
\end{array}
$$

where $Q_{x}^{j}, Q_{y}^{j}, Q_{z}^{j}$ are lengths of the projections of the arc Q^{j} into the axes $O x, O y, O z$, respectively, $\varepsilon:=\max \left\{\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}\right\}$ and L is the length of the curve γ_{ζ}.

In the same way we estimate the difference $\int_{\Lambda_{\zeta}} \varphi(\zeta) d \zeta \psi(\zeta)-S$ and obtain

$$
\begin{equation*}
\left\|\int_{\gamma_{\zeta}} \varphi(\zeta) d \zeta \psi(\zeta)-S\right\|<\varepsilon L \tag{4.12}
\end{equation*}
$$

Taking into account the inequalities (4.11) and (4.12), we have

$$
\begin{aligned}
& \left\|\int_{\gamma_{\zeta}} \varphi(\zeta) d \zeta \psi(\zeta)-\int_{\Lambda_{\zeta}} \varphi(\zeta) d \zeta \psi(\zeta)\right\| \leq\left\|\int_{\gamma_{\zeta}} \varphi(\zeta) d \zeta \psi(\zeta)-S\right\| \\
& +\left\|S-\int_{\Lambda_{\zeta}} \varphi(\zeta) d \zeta \psi(\zeta)\right\|<2 \varepsilon L
\end{aligned}
$$

Now, using Corollary 4.1 and Lemma 4.1, we prove the following analogue of the Cauchy theorem for an arbitrary rectifiable curve in a convex domain.

Theorem 4.2. Suppose that $\Phi: \Omega_{\zeta} \rightarrow \mathbb{H}(\mathbb{C})$ is a right- G-monogenic mapping and $\widehat{\Phi}: \Omega_{\zeta} \rightarrow \mathbb{H}(\mathbb{C})$ is a left-G-monogenic mapping in a convex domain Ω_{ζ}. Then for any closed rectifiable Jordan curve $\gamma_{\zeta} \subset \Omega_{\zeta}$ the equality (4.2) is true.

Proof. Basing on Lemma 4.1, we inscribe the broken curve Λ_{ζ} into the curve γ_{ζ} so that the inequality (4.4) holds. Then we divide Λ_{ζ} into triangles by the diagonals starting from a fixed vertex of Λ_{ζ}. Since the domain Ω_{ζ} is convex, all obtained triangles contained in Ω_{ζ}. By Corollary 4.1, the integral along the every triangle equals to zero. Then the integral along the broken curve equals to zero too:

$$
\begin{equation*}
\int_{\Lambda_{\zeta}} \varphi(\zeta) d \zeta \psi(\zeta)=0 \tag{4.13}
\end{equation*}
$$

Now, the equality (4.2) is a consequence of the relations (4.4) and (4.13).

In the case where Ω_{ζ} is an arbitrary domain, similarly to the proof of Theorem 3.2 [8], we can prove the following statement.

Theorem 4.3. Let $\Phi: \Omega_{\zeta} \rightarrow \mathbb{H}(\mathbb{C})$ be a right-G-monogenic mapping and $\widehat{\Phi}: \Omega_{\zeta} \rightarrow \mathbb{H}(\mathbb{C})$ be a left-G-monogenic mapping in a domain Ω_{ζ}. Then for every closed Jordan rectifiable curve γ_{ζ} homotopic to a point in Ω_{ζ}, the equality (4.2) is true.

Proof. Let a curve γ_{ζ} be defined by the equality $\zeta=\phi(t), 0 \leq t \leq 1$, where $\phi(0)=\phi(1)=\zeta_{0}$, and let γ_{ζ} be homotopic to the point ζ_{0}. Then there exists a continuous on the square $Q:=[0,1] \times[0,1]$ mapping $H(s, t)$ of two real variables s and t, which takes values in the domain Ω_{ζ} and such that

$$
\begin{gathered}
H(0, t)=\phi(t), \quad H(1, t) \equiv \zeta_{0} \quad \forall t \in[0,1] \\
H(s, 0)=H(s, 1)=\zeta_{0} \quad \forall s \in[0,1]
\end{gathered}
$$

Since the mapping H is continuous on a compact set Q, its image $K:=\{H(s, t):(s, t) \in Q\}$ is a compact set in Ω_{ζ}.

Denote by $\rho:=\min _{\zeta^{\prime} \in K, \zeta^{\prime \prime} \in \partial \Omega_{\zeta}}\left\|\zeta^{\prime}-\zeta^{\prime \prime}\right\|$.
The mapping H is also uniformly continuous on the set Q. It means that there exists $\delta>0$ such that

$$
\begin{equation*}
\forall(s, t),\left(s^{\prime}, t^{\prime}\right):\left|s^{\prime}-s\right|<\delta,\left|t^{\prime}-t\right|<\delta \Rightarrow\left\|H\left(s^{\prime}, t^{\prime}\right)-H(s, t)\right\|<\frac{\rho}{2} \tag{4.14}
\end{equation*}
$$

Let us choose a set of numbers $0=t_{0}<t_{1}<\ldots<t_{n}=1$, which are satisfying the inequalities $t_{j}-t_{j-1}<\delta, j=1,2, \ldots, n$, and put $s_{1}=t_{1}$. Let $\zeta_{0, j}:=H\left(0, t_{j}\right), \zeta_{1, j}:=H\left(s_{1}, t_{j}\right)$ for $j=1,2, \ldots, n-1$ and denote by L_{ζ}^{j} a segment, beginning at the point $\zeta_{0, j}$ and ending at the point $\zeta_{1, j}$. Also consider a curve $\gamma_{\zeta}^{[1]}:=\left\{H\left(s_{1}, t\right): 0 \leq t \leq 1\right\}$.

For a Jordan oriented curve γ_{ζ}, by $\gamma_{\zeta}\left[\zeta_{1}, \zeta_{2}\right]$ denote the arc beginning at the point ζ_{1} and ending at the point ζ_{2}.

Since of the inequality (4.14), the $\operatorname{arcs} \gamma_{\zeta}\left[\zeta_{0}, \zeta_{01}\right], \gamma_{\zeta}^{[1]}\left[\zeta_{0}, \zeta_{11}\right]$ and the segment L_{ζ}^{1} are contained in the ball $S\left(\zeta_{0}\right):=\left\{\zeta \in E_{3}:\left\|\zeta-\zeta_{0}\right\|<\right.$ $\rho\}$. Since $\zeta\left(\zeta_{0}\right)$ is a convex set and is contained in the domain Ω_{ζ}, the following equality is a consequence of Theorem 4.2

$$
\begin{equation*}
\int_{\gamma_{\zeta}\left[\zeta_{0}, \zeta_{01}\right]} \widehat{\Phi}(\zeta) d \zeta \Phi(\zeta)+\int_{L_{\zeta}^{1}} \widehat{\Phi}(\zeta) d \zeta \Phi(\zeta)=\int_{\gamma_{\zeta}^{[1]}\left[\zeta_{0}, \zeta_{11}\right]} \widehat{\Phi}(\zeta) d \zeta \Phi(\zeta) \tag{4.15}
\end{equation*}
$$

The next inequalities follows from the inequalities (4.14):

$$
\begin{gathered}
\left\|\zeta-\zeta_{0, j}\right\|<\frac{\rho}{2} \quad \forall \zeta \in \gamma_{\zeta}\left[\zeta_{0, j}, \zeta_{0, j+1}\right] \\
\left\|\zeta-\zeta_{1, j}\right\|<\frac{\rho}{2} \quad \forall \zeta \in \gamma_{\zeta}^{[1]}\left[\zeta_{1, j}, \zeta_{1, j+1}\right], \quad\left\|\zeta_{1, j}-\zeta_{0, j}\right\|<\frac{\rho}{2}
\end{gathered}
$$

for $j=1,2, \ldots, n-2$. Then the $\operatorname{arcs} \gamma_{\zeta}\left[\zeta_{0, j}, \zeta_{0, j+1}\right], \gamma_{\zeta}^{[1]}\left[\zeta_{1, j}, \zeta_{1, j+1}\right]$ and the segments $L_{\zeta}^{1}, L_{\zeta}^{j+1}$ are contained in the ball $S\left(\zeta_{0, j}\right):=\left\{\zeta \in E_{3}\right.$: $\left.\left\|\zeta-\zeta_{0, j}\right\|<\rho\right\}$ for $j=1,2, \ldots, n-2$. Since $S\left(\zeta_{0, j}\right)$ is a convex set and is contained in Ω_{ζ}, the next equalities follows from the Theorem 4.2

$$
\begin{align*}
& -\int_{L_{\zeta}^{j}} \widehat{\Phi}(\zeta) d \zeta \Phi(\zeta)+\int_{\gamma_{\zeta}\left[\zeta_{0, j}, \zeta_{0, j+1}\right]} \widehat{\Phi}(\zeta) d \zeta \Phi(\zeta)+ \\
& +\int_{L_{\zeta}^{j+1}} \widehat{\Phi}(\zeta) d \zeta \Phi(\zeta)=\int_{\gamma_{\zeta}^{[1]}\left[\zeta_{1, j}, \zeta_{1, j+1}\right]} \widehat{\Phi}(\zeta) d \zeta \Phi(\zeta) \tag{4.16}
\end{align*}
$$

for $j=1,2, \ldots, n-2$.
Finally, similarly to the equality (4.15) we obtain the equality

$$
\begin{equation*}
-\int_{L_{\zeta}^{n-1}} \widehat{\Phi}(\zeta) d \zeta \Phi(\zeta)+\int_{\gamma_{\zeta}\left[\zeta_{0, n-1}, \zeta_{0}\right]} \widehat{\Phi}(\zeta) d \zeta \Phi(\zeta)=\int_{\gamma_{\zeta}^{[1]}\left[\zeta_{1, n-1}, \zeta_{0}\right]} \widehat{\Phi}(\zeta) d \zeta \Phi(\zeta) \tag{4.17}
\end{equation*}
$$

Adding all the equalities (4.15)-(4.17), we obtain the equality

$$
\begin{equation*}
\int_{\gamma_{\zeta}} \widehat{\Phi}(\zeta) d \zeta \Phi(\zeta)=\int_{\gamma_{\zeta}^{[1]}} \widehat{\Phi}(\zeta) d \zeta \Phi(\zeta) \tag{4.18}
\end{equation*}
$$

Then we put $s_{j}=t_{j}$ and consider the curve $\gamma_{\zeta}^{[j]}:=\left\{H\left(s_{j}, t\right): 0 \leq\right.$ $t \leq 1\}$ for $j=1,2, \ldots, n$. Similarly to the equality (4.18), we obtain the equalities

$$
\int_{\gamma_{\zeta}^{[1]}} \widehat{\Phi}(\zeta) d \zeta \Phi(\zeta)=\int_{\gamma_{\zeta}^{[2]}} \widehat{\Phi}(\zeta) d \zeta \Phi(\zeta)=\ldots=\int_{\gamma_{\zeta}^{[n]}} \widehat{\Phi}(\zeta) d \zeta \Phi(\zeta)
$$

Hence, we have

$$
\int_{\gamma_{\zeta}} \widehat{\Phi}(\zeta) d \zeta \Phi(\zeta)=\int_{\gamma_{\zeta}^{[n]}} \widehat{\Phi}(\zeta) d \zeta \Phi(\zeta)
$$

where the curve $\gamma_{\zeta}^{[n]}$ degenerates to the point, because $H(1, t) \equiv \zeta_{0}$. Now, taking into account the equality

$$
\int_{\gamma_{\zeta}^{[n]}} \widehat{\Phi}(\zeta) d \zeta \Phi(\zeta)=0
$$

we complete the proof of the theorem.

Now, let us consider a curvilinear Cauchy integral theorem for G monogenic mappings in the case where a curve of integration lies on the boundary of a domain of G-monogeneity.

Let a closed Jordan rectifiable curve $\gamma_{\zeta} \equiv \gamma_{\zeta}(t)$, where $0 \leq t \leq 1$, which is homotopic to an interior point $\zeta_{0} \in \Omega_{\zeta}$, be given on the boundary $\partial \Omega_{\zeta}$ of the domain Ω_{ζ}. It means that there exists a mapping $H(s, t)$, which is continuous on the square $[0,1] \times[0,1]$, and such that $H(0, t)=$ $\gamma_{\zeta}(t), H(1, t) \equiv \zeta_{0}$, and all curves $\gamma_{\zeta}^{s} \equiv \gamma_{\zeta}^{s}(t):=\{\zeta=H(s, t): 0 \leq t \leq 1\}$ for $0<s<1$ are contained in the domain Ω_{ζ}.

Consider also the curves $\Gamma_{\zeta}^{t} \equiv \Gamma_{\zeta}^{t}(s):=\{\zeta=H(s, t): 0 \leq s \leq 1\}$. By mes denote the linear Lebesque measure of a rectifiable curve.

The following theorem can be proved similarly to the proof of Theorem 2 in [2] and Theorem 4 in [9].

Theorem 4.4. Suppose that $\Phi: \bar{\Omega}_{\zeta} \rightarrow \mathbb{H}(\mathbb{C})$ and $\widehat{\Phi}: \bar{\Omega}_{\zeta} \rightarrow \mathbb{H}(\mathbb{C})$ are continuous mapping in the closure $\bar{\Omega}_{\zeta}$ of a domain Ω_{ζ}, Φ is right- G monogenic and $\widehat{\Phi}$ is left-G-monogenic mapping in Ω_{ζ}. Suppose also that $\gamma_{\zeta} \subset \partial \Omega_{\zeta}$ is any closed Jordan rectifiable curve homotopic to a point $\zeta_{0} \in \Omega_{\zeta}$ such that the curves of the family $\left\{\Gamma_{\zeta}^{t}: 0 \leq t \leq 1\right\}$ are rectifiable and the set $\left\{\right.$ mes $\left.\gamma_{\zeta}^{s}: 0 \leq s \leq 1\right\}$ is bounded. Then the equality (4.2), is true.

References

[1] V. S. Shpakivskyi, T. S. Kuzmenko, Integral theorems for the quaternionic G monogenic mappings // An. Şt. Univ. Ovidius Constanţa, 24 (2) (2016), 271-281.
[2] T. S. Kuzmenko, Curvilinear integral theorem for G-monogenic mappings in the algebra of complex quaternion // Int. J. Adv. Research Math., 6 (2016), 21-25.
[3] V. S. Shpakivskyi, T. S. Kuzmenko, On monogenic mappings of a quaternionic variable // J. Math. Sci., 221 (5) (2017), 712-726.
[4] O. F. Herus, On hyperholomorphic functions of the space variable // Ukr. Math. J., 63 (4) (2011), 530-537.
[5] V.V. Kravchenko, M. V. Shapiro, Integral representations for spatial models of mathematical physics, Pitman Research Notes in Mathematics, Addison Wesley Longman Inc, 1996.
[6] V.S. Shpakivskyi, T.S. Kuzmenko, On one class of quaternionic mappings // Ukr. Math. J., 68 (1) (2016), 127-143.
[7] I. I. Privalov, Introduction to the Theory of Functions of a Complex Variable, GITTL, Moscow, 1977. [in Russian]
[8] E. K. Blum, A theory of analytic functions in banach algebras // Trans. Amer. Math. Soc., 78 (1955), 343-370.
[9] S. A. Plaksa, V. S. Shpakivskyi, Integral theorems for differentiable functions in a threedimensional harmonic algebra // Reports of the NAS of Ukraine, 5 (2010), 23-30 [in Russian].

Contact information

Tetyana Sergiivna Kuzmenko

Institute of Mathematics of the NAS of Ukraine, Kiev, Ukraine
E-Mail: kuzmenko.ts15@gmail.com

Institute of Mathematics
of the NAS of Ukraine, Kiev, Ukraine E-Mail: shpakivskyi86@gmail.com

