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ABSTRACT ARTICLE HISTORY
Sampling has evolved into a universally accepted approach for Received 1 November 2017
gathering information and data mining as it is widely accepted that Accepted 27 April 2018

a reasonably modesF—sized sample can suf_ﬁciently_ characterize a KEYWORDS

much larger population. In stratified sampling designs, the whole Optimal stratification;
population is divided into homogeneous strata in order to achieve mathematical programming
higher precision in the estimation. This paper proposes an efficient problem; dynamic
method of constructing optimum stratum boundaries (OSB) and programming technique;
determining optimum sample size (OSS) for the survey variable. The stratified random sampling;
survey variable may not be available in practice since the variable of ~ Weibull distribution
interest is unavailable prior to conducting the survey. Thus, the method

is based on the auxiliary variable which is usually readily available from

past surveys. To illustrate the application as an example using a real

data, the auxiliary variable considered for this problem follows Weibull

distribution. The stratification problem is formulated as a Mathematical

Programming Problem (MPP) that seeks minimization of the variance

of the estimated population parameter under Neyman allocation. The

solution procedure employs the dynamic programming technique,

which results in substantial gains in the precision of the estimates of

the population characteristics.

1. Introduction

Businesses, organizations and government departments that rely on analytics to understand
the population have been employing the sampling phenomenon for decades. Extracting data
from a database for the purpose of data mining and statistical analyses is based on the
sampling techniques routinely used in surveys (Christopher and Blaxton 1998). For example,
Stratified sampling is an important sampling technique used in health surveys to estimating
the prevalence of diseases, diabetes, anemia, obesity hypertension, smoking and in many other
parameter estimations. It is also a common phenomenon in the disciplines of business and
sciences.

In stratified sampling, the sampling-frame is divided into non overlapping groups or strata
in such a way that the strata constructed are internally homogeneous with respect to the main
study variable that maximizes the precision of its estimate. More often the surveyors stratify
the population in most convenient manners such as the use of geographical/administrative
regions, provinces, districts, etc.) or other natural criteria such as gender and age. However,
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stratification by convenience manner is not always a reasonable criterion as the strata so
obtained may not be internally homogeneous with respect to a variable of interest. Thus, one
has to look for the OSB that maximizes the precision of the estimates.

The problem of determining OSB for a variable, when its frequency distribution is known,
is well known in the sampling literature. In order to achieve maximum precision in determin-
ing OSB, the stratum variances aﬁ should be as small as possible. When a single variable is
of interest and the stratification is made based on this study variable, then the OSB can be
determined by cutting the range of its known distribution at suitable points. This problem of
determining the OSB was first discussed by Dalenius (1950). He presented a set of minimal
equations which are usually difficult to solve because of their implicit nature. When the
frequency distribution of the auxiliary variable, x, is known, several approximation methods
of determining OSB using the auxiliary variable have also been suggested and discussed
by many authors such as Sethi (1963), Dalenius (1957), Dalenius and Hodges (1959), Taga
(1967), Serfling (1968), Singh and Sukhatme (1969, 1972, 1973), Singh (1971), Singh and
Dev Prakash (1975), Cochran (1977), Mehta, Singh, and Kishore (1996), Rizvi, Gupta, and
Bhargava (2002), Gupta, Singh, and Mahajan (2005), Jurina and Gligorova (2017), Danish
etal. (2017), Khan, Reddy, and Rao (2015), and Hidiroglou and Kozak (2017).

Attempts have also been made to determine the global OSB by many authors, such as,
Lavallee and Hidiroglou (1988) who proposed an algorithm to construct stratum boundaries
for a power allocated stratified sample. Later, Hidiroglou and Srinath (1993) presented a
more general form of the algorithm. Lavallée and Hidiroglou’s algorithm was reviewed by
Sweet and Sigman (1995) and Rivest (2002) and they proposed a modified algorithm that
incorporates the different relationships between the stratification and study variables. There
are several other algorithms available in the literature, for example, Niemiro (1999) proposed
a random search method and Nicolini (2001) suggested Natural Class Method. Later on,
Kozak (2004) presented a modified random search algorithm while Gunning and Horgan
(2004) proposed an alternative method to approximate stratification based on a geometric
progression. Horgan (2006) compared this approach with Dalenius and Hodges (1959),
Ekman (1959), and Lavallee and Hidiroglou (1988) and confirmed that the geometric pro-
gression method is more efficient. However, Kozak and Verma (2006) studied the usefulness
of Gunning and Horgan’s geometric progression method and found out a different result that
the geometric progression approach is less efficient than Lavallée and Hidiroglou’s algorithm
(see Kozak, Verma, and Zielinski 2007).

Another kind of stratification method that has been proposed in the literature is due to
Biihler and Deutler (1975) and later by Khan, Khan, and Ahsan (2002), Khan (2005), Khan,
Ahmad, and Sabiha (2009), Khan et al. (2015), Nand and Khan (2009), Khan and Sushita
(2015), Khan, Reddy, and Rao (2015), and Reddy, Khan, and Rao (2016) who formulated
the problems of determining OSB as optimization problems, which are solved by developing
computational techniques using dynamic programming. Biihler and Deutler’s approach was
also used by Lavallée (1988) and Lavallee and Hidiroglou (1988) for determining the OSB
which would divide the population domain of two stratification variables into distinct subsets
such that the precision of the variables of interest is maximized.

This paper proposes a procedure of determining OSB and OSS for each stratum for the
purpose of data mining a variable of interest. Since stratification based on the survey variable
(), is not feasible in practice (as the variable is unavailable prior to conducting the survey),
the optimum stratification is made based on an auxiliary variable (x), if y holds a regression
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model (see Yong et al. 2016). The problem of determining OSB is formulated as an MPP that
seeks minimization of the variance of the estimated population parameter under Neyman
allocation (see Neyman 1934; De Gruijter, Minasny, and Mcbratney 2015). The formulated
MPP, being a multistage decision problem, is solved using dynamic programming technique.
The data set is obtained from a national nutrition survey aiming to estimate the mean of the
study variable “hemoglobin” using the auxiliary variable “iron”

2. General formulation of the problem

Let the population be stratified into L strata based on an auxiliary variable x, when the
estimation of the mean of a study variable y is of interest. If a simple random sample of size
ny, is to be drawn from hth stratum with sample mean yp,; (h = 1,2,. .., L), then the stratified
sample mean, yy, is given by

L

yst =) Wil (1)

h=1

When the finite population correction factors are ignored, under the Neyman (1934) allo-
cation, the variance of yy is given by

L 2
(Zh:l Whahy)

Var(ys) = )
n
where W), and aﬁy are the stratum weight and the stratum variance in A" stratum; h =
1,2,..., L respectively and n is the preassigned total sample size.
Consider that the study variable has the regression model of the form:
y=Ax) +e 3)

where A (x) is a linear or a nonlinear function of x and € is an error term such that E(¢|x) = 0
and V(e|x) = ¢ (x) > 0 for all x.

Under model Equation (3), the stratum mean pj,, and the stratum variance aiy of y can be
expressed as (see Singh and Sukhatme 1969):

Ky = Wi (4)
and crhzy = O‘,%)L + Whg (5)

where i), and ppg are the expected values of functions A(x) and ¢ (x), respectively, and Gl%/\
denotes the variance of A(x) in the hth stratum.

If A and € are uncorrelated, from model Equation (3), oﬁy can also be expressed as (see
Dalenius and Gurney 1951):

2 2 2
GhyZUh)u+Gh€ (6)

where aﬁe is the variance of € in the hth stratum. It can be verified that the expressions
Equations (5) and (6) are equivalent.

Let f(x); a < x < b be the frequency function of the auxiliary variable x that is used for
the stratification. If the population mean of the study variable y is estimated under (1), then
the problem of determining the strata boundaries is to cut up the range,d = b —a, at (L — 1)
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intermediate points a = xp < x; < x5 <,...,< x7_1 < x = b such that Equation (3) is
minimum.

For a fixed sample size #, minimizing the expression of the right-hand side of Equation (2)
is equivalent to minimizing Zi:l Whohy. Thus, from Equation (6), we minimize

L
> Win/op + ihg )
h=1

If f (x), A(x) and ¢ (x) are known and integrable, then the quantities W, aﬁk and jtp¢ can be
obtained as a function of the boundary points xj, and xj_1 by using the following expressions:

xp
Wh =/ f(x)dx (8)
Xh-1
1 [
o, = Wi / W ()f (x)dx — up, ©)
Xh—1
and
1 [
Hhey = Wh/ @ (x)f (x)dx (10)
Xh—1
where
1 *h
i = [ reoreoas (1)
Xh—1

and (x;_1,x3,) are the boundaries of the h'" stratum.
Thus, the objective function in Equation (7) could be expressed as a function of boundary
points (xp, x;—1) only.

Let ¢p(xp, xp—1) = Whopy, = W, /O'],%)L + fthg- Then, the problem of determination of

OSB can be expressed as the following optimization problem: Find x1, x2, . . ., xr, that
L
Minimize Z dn(xp, xn—1)
h=1
subjectto a=x) <x1 < <,...,<x_1 <xp=0b
(12)
We further define
y=xp, —xp—1; h=1,2,...,L (13)

where I, > 0 denotes the range or width of the 1 stratum.
Obviously, with this definition of [j,, the range of the distribution, d = b — a, is expressed
as a function of stratum width as

L L
Zlh:Z(xh—Xh_l)=b—CIIXL—x0=d (14)
h=1 h=1

The h'" stratification pointxp; h=1,2,...,Lis then expressed as

h
Xp = X0 + Zli
i1

or, xp=xy_1+1
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Adding Equation (14) as a constraint, the problem (12) can be treated as an equivalent
problem of determining optimum strata widths (OSW), I, L, . . ., I, and is expressed as the
following MPP:

L
Minimize Z on(y, xp—1)
h=1

L
subject to Z Ih=d
h=1

and [, >0h=12,...,L (15)
Initially, x¢ is known. Therefore, the first term, that is, ¢; (I;, Xo) in the objective function of
the MPP Equation (15) is a function of /; alone. Once /1 is known, the second term ¢, (L, x)
will become a function of I, alone and so on. Due to the special nature of functions, the MPP

Equation (15) may be treated as a function of I, alone and can be expressed as

L
Minimize Y ¢p(ly)

h=1
L

subject to Z Ih=d
h=1

and Ihb=>0 h=12,...,L (16)

3. The solution procedure using dynamic programming technique

The problem Equation (16) is a multi-stage decision problem in which the objective function
and the constraint are separable functions of I;;, which allows us to use a dynamic program-
ming technique (see Khan, Nand, and Ahmad 2008). Dynamic programming determines
the optimum solution of a multi-variable problem by decomposing it into stages, each stage
compromising a single variable sub-problem. A dynamic programming model is basically
a recursive equation based on Bellman’s principle of optimality (see Bellman 1957). This
recursive equation links the different stages of the problem in a manner which guarantees
that each stage’s optimal feasible solution is also optimal and feasible for the entire problem
(see Taha 2007, Chapter 10).
Consider the following subproblem of Equation (16) for first k(< L) strata:

k
Minimize Z on(ln)
h=1

k
subject to Z I, = dy
h=1

and I, >0, h=1,2,...,k (17)

where di < d is the total width available for division into k strata or the state value at stage k.
Note that dj, = d for k = L.
The transformation functions are given by

dc = h+b+---+1
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dee1 = h+b+- -+l = di— I
diy = h+bh+--+lhr = de1 — Ik

d = h+hL =di—15
d =L =d -1

Let @y (dk) denote the minimum value of the objective function of Equation (17), that is,

k k
i(dy) = min [Z $n(h)| D In = di and Iy = 0;
h=1 h=1
h=1,2,...,kand 1 <k < L] (18)

With the above definition of ®x(d), the MPP Equation (16) is equivalent to finding ®1,(d)
recursively by finding ®x(dy) fork =1,2,...,Land 0 < d < d.
We can write

k-1 k-1
P (dy) = min [¢k(lk) + Y on)| > =k — I,
h=1 h=1
and I > 0; h=1,2,...,k] (19)
For a fixed value of [;; 0 < [} < d,
k-1 k-1
Pr(di) = Pr(lk) + min [Z onw)| Y I =di — Ik
h=1 h=1
and I, >0, h=1,2,..k—1and
1<k<I] (20)

Using Bellman’s principle of optimality, we write a forward recursive equation of the
dynamic programming technique as

Op(dy) = O;Z“; 4 1900 + @@= 10, K = 2 1)

For the first stage, that is, for k = 1:
Qi(d) =1(d) = [ =d (22)

where [] = dj is the optimum width of the first stratum. The relations Equations (21) and (22)
are solved recursively for each k = 1,2,...,Land 0 < di < d, and ®(d) is obtained. From
®1 (d) the optimum width of L™ stratum, [}, is obtained. From ®;_1(d — [}) the optimum
width of (L — l)th stratum, lf_l, is obtained and so on until [, optimum width of 1! stratum,
is obtained.

4. Constructing OSB for Weibull auxiliary variable

The Weibull distribution is a two-parameter family of continuous probability distributions.
Because of its versatility in the fitting of a variety of distributions, it is one of the most widely
used distributions in applied statistics, especially in survival analysis, mortality or failure
analysis, reliability, engineering to model manufacturing and delivery times, in extreme value
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Table 1. ANOVA for regression model.

Source SS df Ms f p-Value
Regression 461.92 1 461.92 299.95 0.000
Residual 1050.61 682 1.54

Lack of fit 236.40 204 1.16 0.68 0.890
Pure error 814.21 478 1.70

Total 1512.54 683

Table 2. Summary of model parameters.

Predictor Coefficient SE coef t p-Value
o 10.9449 0.1245 87.89 0.000
B 0.114115 0.009548 11.95 0.000

theory and weather forecasting. Due to its moderately skewed profile, it also characterizes well
a wide range of health data, including health monitoring data, Epidemiological data such as
episode durations of depression and gene expressions data (see Patten 2006; Wahed, Luong,
and Jeong 2009; and Wang et al. 2011).

If an auxiliary variable x follows the Weibull distribution on the interval [xo, x ], its two-
parameter probability density function with a state space x > 0 is given by:

r—1 r
flx0,r) = g (g) e x>0 (23)

where r > 0 is the shape parameter and 8 > 0 is the scale parameter of the distribution.

The shape parameter gives the Weibull distribution its flexibility. By changing the value
of the shape parameter, the distribution can model a wide variety of data that follows the
exponential distribution, the Rayleigh distribution, the normal distribution or even the
approximate log-normal distribution.

4.1. Estimating the linear regression model

To illustrate the formulation of the problem of determining OSB as an MPP for a population
with Weibull auxiliary variable, we use a set of health data of size N = 724 obtained from
2004 Fiji National Nutrition Survey on “Micronutrient Status of Women in Fiji” The data in
this problem have the characteristics: Level of Iron and Level of Hemoglobin for each woman.

Suppose that a survey on iron deficiency anaemia is to be conducted in a country, where
a sample will be collected using stratified random sampling and hemoglobin (y) will be the
variable of interest. That is, the hemoglobin will be the main stratification variable. Then, the
level of iron collected in some previous study may be a reasonable choice for an auxiliary
variable (x).

To estimate the hemoglobin content (y) in women, we fit a regression model given in
Equation (5) for the survey mentioned above. We observed that the data significantly fit a
linear regression model with iron level (x). Table 1 presents the analysis of variance (ANOVA)
and Table 2 depicts the summary of the estimates of the model parameters. From these tables,
the computational results reveal that the fitted regression model and estimated parameters are
highly significant with p-value < 0.001.

The coefficient of determination or correlation coefficient, R*? = 22—?, with a value of
30.54% obtained from Table 1 indicates a moderate strength of linear relationship between
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Haemoglobin

Iron

Figure 1. Scatterplot of iron vs hemoglobin.

the two variables. R? is found to be one of the highest for the linear model when compared
with the model summary of all the other non linear models available in statistical package.
Table 1 also reveals that there is no significant lack of fit in the linear regression with p-value
= 0.890. Thus, the model fits the data well and gives us no reason to consider an alternative
model.

Figure 1 depicts the linear association through the scatterplot for the Iron versus the
Hemoglobin. It indicates a moderately positive linear relationship.

Therefore, the hemoglobin content (y) and the iron level (x) are fairly assumed to follow a
linear regression model with the following equation

Ax) =a + Bx (24)
and the least-squares estimates of the parameters are given by

@ =109449 and B =0.1141 (25)

4.2. Estimating the distribution

To determine the distribution, f(x), for the auxiliary variable, we construct a relative fre-
quency histogram of iron level (x). Figure 2 shows that the distribution of x is a right skewed
distribution that matches the Weibull distribution.

The probability plot (q—q) of x was also obtained to determine whether the distribution of x
matches Weibull distribution. Figure 3 reveals that the points are clustered around the straight
line, thus, x is assumed to follow Weibull distribution with a probability density function given
by Equation (23).
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Figure 3. Weibull Q—Q plot of the iron level (x).
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The maximum likelihood estimate (MLE) of the parameters for Weibull distribution is
found to be
Shape,r = 2.34318488 and Scale, 6 = 13.40282496

Using the Kolmogorov-Smirnov test, the maximum difference between the observed
distribution and the Weibull distribution is found to be to be non significant (D = 0.0328
and p-value = 0.452), which supports that x follows Weibull distribution with the indicated
parameters.

4.3. Formulating the problem of OSB as an MPP

Let the auxiliary variable x follow Weibull distribution (i.e., x ~ W(r,0)) with density
function given by Equation (23). By using Equations (8), (9), (11) and (23), the quantities
Wy, thy., and thx can be obtained as a function of boundary points (x,_1, xp,) as follows:

(Y _(*n=1Y
th—e <9> —(—e (9 )) (26)
Using Equation (14), that is, substituting x;, = x3_; + I in Equation (25), Wy, is obtained as:

W, = [e‘(xhel)r _ o) } 27)

/: . £ etdt—/jo . tr etdti| (28)
() (*)

0

Ihy can be expressed as

_ . P
Hhn = o + W,

Let I'(r,x) and Q(r,s) denote the upper incomplete gamma function and the regular-
ized/normalized incomplete gamma function, respectively, given by

I'(r,x) =/ T le=t dt (29)

Q(r,x) = L /oo T le7tdt, x>0 T'(r)#£0 (30)
L) Jx

Then, using Equations (28) and (29), p given in Equation (27) is derived to be

i = o + W [Q (1 e (%)) —Q <1 = (%))]
o [e(fflry(l?()%)’] (5 (52)) e (=)

(31)
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Similarly, the quantity o, is reduced to

, BT+ ) -e(i+2

Xp—1+1y,
0

))]

Opy. =

[ O]

porr2 (1+ ) [Q(1+ L (%)) -1+ 4 (

Xp—1+1y

0

bk

[ O T

(32)

Then, the formulated MPP given in Equation (17) could be expressed using Equations (8),

(26) and (31) as:

Sqrt{,BZGZ r (1 + %) [e‘(xhe_l)r _ o

xp_1+ly

[

]

i3 65 o257
g — p20? |:F (1 - %) [Q (1 + % (’%)r)
“a (2 ()]

+ Khg [e_(xhel)r _ e_(xhé#h)rr}

Minimize

L
subject to Z Ih=d
h=1

and >0, h=1,2,...,L (33)

where d = x; — xp = b — a, B is the regression coefficient, 0 and r are parameters of the
Weibull distribution, I'(-) is the upper incomplete gamma function and Q(:) is the upper
regularized incomplete gamma function. Whereas, 154 is the expected variance given in
Equation (6) for the error term in the regression model Equation (4), which can be estimated
as discussed in the following section.

4.4. Estimating the variance of the error term

In the regression model given in Equation (24), it is assumed that the variance of the error
termis V(e|x) = ¢ (x) for all x in the range (a, b) and the expected value of the function ¢ (x)
given by fup¢ is obtained by Equation (10).

Many authors have assumed that ¢ (x) may be of the form:

px)=cx¥; ¢>0, g=>0 (34)



12 (&) K.G.REDDY AND M.G. M. KHAN

where ¢ and g are constants and in many populations 0 < g < 2 (see Singh and Sukhatme
1969; Singh 1971; and Rizvi, Gupta, and Bhargava 2002).

Thus, from Equations (10), (23) and (35), we may compute /4 as a function of boundary
points as follows:

phg = rcT(r+g) [Q (r—i—g, <%)’)

)
- 9" |:e_(Xh9_1)r — e_(Xh_ﬁl+lh>ri| (35)

Therefore, one can determine the expected value of the stratum variance of the error term
using Equation (34), if the values of the constants ¢ and g are known. However, for our
sample data, when a common regression model holds across the strata, we obtain the expected
stratum variance of the error as

= MSRes (36)
—p

where SSges and MSg,s are the sum of squares of residuals and mean square of residuals
respectively, and p is the number of parameters in the regression model.

5. Results and discussion

This section presents the results by using the proposed method whereby the OSB of a
population with Weibull auxiliary variable is computed. Considering that the estimation
of the hemoglobin level for the population is of interest, the minimum and the maximum
values of x (iron), are xo = 1.5 and x; = 25.1, respectively. This implies that the range of the
distribution of iron level is d = xy — x;, = 23.6.

The problem of determining the OSB given in MPP Equation (34) is solved by reducing it
into two stages (for k = 1 and k > 2) using the recurrence equations in Equations (21) and
(22). These equations are solved to obtain optimum strata widths [}’ and the optimum strata
boundaries xj; = xj;_, — [; by implementing the dynamic programming solution procedure
via a C++ computer program.

Numerical investigations are also undertaken in this section to study the effectiveness of

the proposed method compared to the following methods available in the literature:

1. Cum \/_f method of Dalenius and Hodges (1959).

2. Geometric method of Gunning and Horgan (2004).

3. Lavallée-Hidiroglou method Lavallee and Hidiroglou (1988) with Kozak’s algorithm Kozak

(2004).

The stratification package recently developed by Baillargeon and Rivest (2011) in
the R statistical software is used to determine the OSBs for the methods mentioned above.
These OSB are then used to compute the sample size of each stratum and the variance of the
estimated mean (or the values of the objective function) so that a comparative analysis could
be carried out.
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Table 3. OSW, OSB and OFV for proposed method.

Strata osw 0SB OFV
L
) ) =X+ 2 Wion
2 If=1072 X =1222 13658
3 [5=1288
k=779 X5 =929
I5=6.15 X5 =1544 13462
5 =9.66
4 [f=6.22 X =772
5 =4.60 X5 =1231 13384
f5=498 X =17.29
[;=781
5 [¥=520 X5 =670
;=378 X} =1048
fz=375 X =14.23 13346
;=430 X; =1853
I =657

Table 4. Optimum strata boundaries for the different methods.

CSRF GEO L-H Kozak DP

L 0SB OFV 0SB OFV 0SB OFV 0SB OFV
2 12.12 1.366 6.14 1.404 8.1 1.384 12.22 1.366
3 9.76 3.84 5.55 9.29

15.66 1.346 9.81 1.369 9.15 1.372 15.44 1.346
4 7.40 3.03 5.55 7.71

12.12 1339 6.14 1353 9.15 1.342 1231 1.338

16.84 1241 15.55 17.29
5 6.22 2.64 5.55 6.70

9.76 4.63 9.15 10.48

13.30 1.335 8.13 1.345 12.65 1335 14.23 1.335

18.02 14.21 17.00 18.53

Table 3 presents the OSW and OSB obtained by the proposed method (DP) together with
the objective function values Zi:l on(ly) = Zi:l Wi, /Ghzx + 1tpg (indicated as (OFV) in
the tables) for L = 2, 3,4, 5.

For comparison purposes, the OSB determined for cum \/J—‘ method (CSRF), geometric
method (GEO), Lavallée and Hidiroglou’s method (K-H (Kozak’s algorithm)) using the
stratification package with CV = 0.4575 (obtained from the data) and the proposed
dynamic programming method (DP) are presented in Table 4 for L = 2, 3,4, 5. The optimum
values of the objective function of the estimate are also presented (OFV). The optimum sample
size (OSS) for each stratum using these OSB for the different methods are presented in Table 5.

Upon careful examination of Tables 4 and 5, it is noted that the OSB and the sample
sizes obtained by the cum ,/f method are by far the closest to the proposed dynamic
programming method. These values in the other two methods, namely geometric and Lavallée
and Hidiroglou’s methods, differ vastly from that of the proposed method. It can also be seen
that geometric method produces the larger sample size towards the tailer stratum as compared
to others. Thus, it can be concluded that there seems to be a difference between the OSB
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Table 5. Optimum sample size for the different methods with n = 500.

CSRF GEO L-H Kozak DP

L h nh OFV h OFV nh OFV nh OFV
2 1 274 69 128 278

2 226 1366 431 1.403 372 1384 22 1366
3 1 190 3 56 173

2 195 165 107 206

3 15 1346 312 1369 337 1372 121 1346
4 1 109 12 57 119

2 166 59 110 163

3 139 211 215 141

4 86 1339 218 1353 118 1342 77 1338
5 1 75 8 58 88

2 15 29 110 128

3 125 95 125 129

4 122 211 124 101

5 63 1335 157 1.345 83 1335 54 1335

Table 6. Optimum stratum boundary for survey variable (y).

No. of Strata 0SB for x OSB for y OFVofy
L o) Vo =@+ Px Yh—y Whon
2 X =1222 Vi=1234 1366
3 XF=929 Vi =120
* ok

X5 =1544 Y3 =12.71 1346
4 XT:7.71 :\71":11.82

X5 =1231 V3 =1235 1338

X5=17.29 V5 =1292
5 Xf =670 =111

X5 =10.48 V3 =1214

X; =14.23 E =12.57 1.335

X; =18.53 Vi =13.06

and the sample size obtained using the different methods including the proposed dynamic
programming method.

By looking at the variances in Tables 4 and 5, it can be seen that the proposed method yields
the smallest variance for all L = 2, 3,4 and 5 as compared to all the other methods. Although
the values of the objective function for the DP method are very close to the cum ,/f method,
the other two methods produce a greater variance than the dynamic programming technique.
Thus, the study reveals that the proposed dynamic programming technique is more efficient
than the other stratification methods.

Finally, the OSB points of the survey variable, y, is obtained by using the OSB for the
auxiliary variable (Iron) and applying the regression model Equation (24). These results are
presented in Table 6.

6. Conclusion

A well-designed sampling plan and efficient data mining strategies can greatly enhance the
information that can be produced from a survey. In this paper, an optimal algorithm is
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presented for data mining using stratified sampling. The proposed technique uses auxiliary
information in the absence of the main study variable in designing the sampling plan.

The numerical example in the paper uses a real data set to illustrate the application of
the method. The results reveal that the construction of strata using an auxiliary variable
for a health population, which follows Weibull distribution, leads to substantial gains in the
precision of the estimates of the main study variable. It is also evident from the results that,
compared to other commonly used methods, the proposed technique performs much more
efficiently.

The proposed method, unlike other classical methods, does not require any initial approxi-
mate solution and is able to obtain optimum solutions. With the main variable not available to
us, the method uses the auxiliary variable and parametric assumptions of the main variable in
order to understand the characteristics of the main variable. The proposed method can surely
be extended to other statistical distributions that characterize the auxiliary information.

References

Baillargeon, S., and L. P. Rivest. 2011. The construction of stratified designs in R with the package
Stratification. Survey Methodology 37 (1):53-65.

Bellman, R. E. 1957. Dynamic programming. Princeton, NJ: Princeton University Press.

Bithler, W, and T. Deutler. 1975. Optimal stratification and grouping by dynamic programming.
Metrika. 22 (1):161-75.

Christopher, W., and T. Blaxton. 1998. Data mining solutions: methods and tools for solving real-world
problems. New York: John Wiley and Sons.

Cochran, W. 1977. Sampling techniques. Wiley and Sons. New York: 98:259-61.

Dalenius, T. 1950. The problem of optimum stratification. Scandinavian Actuarial Journal (3-4):
203-13.

Dalenius, T. 1957. Sampling in Sweden: Contributions to the methods and theories of sample survey
practice. Stockholm: Almqvist and Wiksell.

Dalenius, T., and M. Gurney. 1951. The problem of optimum stratification. II. Scandinavian Actuarial
Journal (1-2):133-48.

Dalenius, T., and J. L. Hodges. 1959. Minimum variance stratification. Journal of the American Statistical
Association 54 (285):88-101.

Danish, E, S. E. H. Rizvi, M. L. Jeelani, and J. A. Reashi. 2017. Obtaining strata boundaries under
proportional allocation with varying cost of every unit. Pakistan Journal of Statistics and Operation
Research 13 (3):567-74.

De Gruijter, J. J., B. Minasny, and A. B. Mcbratney. 2015. Optimizing stratification and allocation for
design-based estimation of spatial means using predictions with error. Journal of Survey Statistics and
Methodology 3(1):19-42.

Ekman, G. 1959. An approximation useful in univariate stratification. The Annals of Mathematical
Statistics 30 (1):219-29.

Gunning, P, and J. M. Horgan. 2004. A new algorithm for the construction of stratum boundaries in
skewed populations. Survey Methodology 30 (2):159-66.

Gupta, R. K., R. Singh, and P. K. Mahajan. 2005. Approximate optimum strata boundaries for ratio and
regression estimators. Aligarh Journal of Statistics 25:49-55.

Hidiroglou, M. A., and M. Kozak. 2017. Stratification of skewed populations: A comparison of
optimisation-based versus approximate methods. International Statistical Review.

Hidiroglou, M. A., and K. P. Srinath. 1993. Problems associated with designing subannual business
surveys. Journal of Business & Economic Statistics 11 (4):397-405.

Horgan, J. M. 2006. Stratification of skewed populations: A review. International Statistical Review 74
(1):67-76.



16 K. G. REDDY AND M. G. M. KHAN

Jurina, I, and L. Gligorova. 2017. Determination of the optimal stratum boundaries in the monthly
retail trade survey in the Croatian Bureau of Statistics. Romanian Statistical Review 65 (4):41-56.
Khan, M. G. M., N. Ahmad, and K. Sabiha. 2009. Determining the optimum stratum boundaries
using mathematical programming. Journal of Mathematical Modelling and Algorithms 8 (4):409-23,

doi:10.1007/s10852-009-9115-3.

Khan, M. G,, K. G. Reddy, and D. K. Rao. 2015. Designing stratified sampling in economic and business
surveys. Journal of Applied Statistics 42 (10):2080-99.

Khan, M. G. M., N. Nand, and N. Ahmad. 2008. Determining the optimum strata boundary points
using dynamic Programming. Survey Methodology 34 (2):205-14.

Khan, E. A., M. G. M. Khan, and M. J. Ahsan. 2002. Optimum stratification: A mathematical program-
ming approach. Calcutta Statistical Association Bulletin 52:323-33.

Khan, M. G., N. Sehar, and M. ]. Ahsan. 2005. Optimum stratification for exponential study vari-
able under Neyman allocation. Journal of the Indian Society of Agricultural Statistics 59 (2):
146-50.

Khan, M. G, D. Rao, A. H. Ansari, and M. J. Ahsan. 2015. Determining optimum strata boundaries
and sample sizes for skewed population with log-normal distribution. Communications in Statistics-
Simulation and Computation 44 (5):1364-87.

Khan, M. G. M., and S. Sushita. 2015. Determining optimum strata boundaries and optimum allocation
in stratified sampling. Aligarh Journal of Statistics 35:23-40.

Kozak, M. 2004. Optimal stratification using random search method in agricultural survey. Statistics in
Transition 6 (5):797-806.

Kozak, M., and M. R. Verma. 2006. Geometric versus optimization approach to stratification: A
comparison of efficiency. Survey Methodology 32 (2):157-163.

Kozak, M., M. R. Verma, and A. Zielinski. 2007. Modern approach to optimum stratification: Review
and perspectives. Statistics in Transition 8 (2):223-50.

Lavallée, P. 1988. Some contributions to optimal stratification. Ottawa, Canada: Carleton University.

Lavallee, P, and M. Hidiroglou. 1988. On the stratification of skewed populations. Survey Methodology
14 (1):33-43.

Mehta, S. K., R. Singh, and L. Kishore. 1996. On optimum stratification for allocation proportional to
strata totals. Journal of Indian Statistical Association 34:9-19.

Nand, N., and M. G. M. Khan. 2009. Optimum Stratification for Cauchy and power type study variable.
Journal of Applied Statistical Science 16 (4):453-462.

Neyman, J. 1934. On the two different aspects of the representative method: the method of strat-
ified sampling and the method of purposive selection. Journal of the Royal Statistical Society
97 (4):558-625.

Nicolini, G. 2001. A method to define strata boundaries. Universita di Milano, Dipartimento di
economia politica e aziendale, Milano.

Niemiro, W. 1999. Optimal construction of strata using random search method. Wiadomosci statysty-
czne 10:1-9.

Patten, S. B. 2006. A major depression prognosis calculator based on episode duration. Clinical Practice
and Epidemiology in Mental Health 2 (1):1-13.

Reddy, K. G., M. G. M. Khan, and D. K. Rao. 2016. A Procedure for computing optimal stratum
boundaries and sample sizes for multivariate surveys. Journal of Software 11 (8):816-32. doi:
10.17706/jsw.11.8.816-32.

Rivest, L. P. 2002. A generalization of the Lavallée and Hidiroglou algorithm for stratification in business
surveys. Survey Methodology 28 (2):191-8.

Rizvi, S. E. H,, J. P. Gupta, and M. Bhargava. 2002. Optimum stratification based on auxiliary variable
for compromise allocation. Metron 60 (3-4):201-15.

Serfling, R. J. 1968. Approximately optimal stratification. Journal of the American Statistical Association
63 (324):1298-309.

Sethi, V. K. 1963. A note on optimum stratification of populations for estimating the population means.
Australian Journal of Statistics 5 (1):20-33.

Singh, R. 1971. Approximately optimum stratification on the auxiliary variable. Journal of the American
Statistical Association 66 (336):829-33.



COMMUNICATIONS IN STATISTICS—THEORY AND METHODS @ 17

Singh, R., and D. Dev Prakash. 1975. Optimum stratification for equal allocation. Annals of the Institute
of Statistical Mathematics 27 (1):273-80.

Singh, R., and B. V. Sukhatme. 1969. Optimum stratification. Annals of the Institute of Statistical
Mathematics 21 (1):515-28.

Singh, R., and B. V. Sukhatme. 1972. Optimum stratification in sampling with varying probabilities.
Annals of the Institute of Statistical Mathematics 24 (1):485-94.

Singh, R., and B. V. Sukhatme. 1973. Optimum stratification with ratio and regression methods of
Estimation. Annals of the Institute of Statistical Mathematics 25 (1):627-33.

Sweet, E. M., and R. S. Sigman. 1995. Evaluation of model-assisted procedures for stratifying
skewed populations using auxiliary data. Proceedings of the Section on Survey Research Methods
1:491-6.

Taga, Y. 1967. On optimum stratification for the objective variable based on concomitant variables using
prior information. Annals of the Institute of Statistical Mathematics 19 (1):101-29.

Taha, H. A. 2007. Operations research: An introduction 8th edition, New Jersey: Pearson Education, Inc.

Wang, H., Z. Wang, X. Li, B. Gong, L. Feng, and Y. Zhou. 2011. A robust approach based on Weibull
distribution for clustering gene expression data. Algorithms for Molecular Biology 6 (1):1-14.

Wahed A. S., T. M. Luong, and J. H. Jeong. 2009. A new generalization of Weibull distribution with
application to a breast cancer data set. Statistics in Medicine 28 (16):2077-94.

Yong, E. H., L. Tian, S. Yu, T. Cai, and L. J. Wei. 2016. Optimal stratification in outcome prediction using
baseline information. Biometrika 103 (4):817-28.



	Abstract
	1.  Introduction
	2.  General formulation of the problem
	3.  The solution procedure using dynamic programming technique
	4.  Constructing OSB for Weibull auxiliary variable
	4.1.  Estimating the linear regression model
	4.2.  Estimating the distribution
	4.3.  Formulating the problem of OSB as an MPP
	4.4.  Estimating the variance of the error term

	5.  Results and discussion
	6.  Conclusion
	References


