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OPAL+: Length-Specific MoRF Prediction in Intrinsically
Disordered Protein Sequences
Ronesh Sharma, Alok Sharma, Gaurav Raicar, Tatsuhiko Tsunoda, and Ashwini Patil*

Intrinsically disordered proteins (IDPs) contain long unstructured regions,
which play an important role in their function. These intrinsically disordered
regions (IDRs) participate in binding events through regions called molecular
recognition features (MoRFs). Computational prediction of MoRFs helps
identify the potentially functional regions in IDRs. In this study, OPAL+, a
novel MoRF predictor, is presented. OPAL+ uses separate models to predict
MoRFs of varying lengths along with incorporating the hidden Markov model
(HMM) profiles and physicochemical properties of MoRFs and their flanking
regions. Together, these features help OPAL+ achieve a marginal
performance improvement of 0.4–0.7% over its predecessor for diverse MoRF
test sets. This performance improvement comes at the expense of increased
run time as a result of the requirement of HMM profiles. OPAL+ is available
for download at https://github.com/roneshsharma/OPAL-plus/wiki/OPAL-
plus-Download.
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1. Introduction

Intrinsically disordered proteins (IDPs)
are proteins having large regions with-
out a stable 3D structure under physi-
ological conditions. These proteins are
frequently found and perform important
functional roles.[1,2] The function of IDPs
is oftenmanifested through their binding
to other ordered[3] and disordered[4] pro-
teins. Binding of intrinsically disordered
regions (IDRs) to ordered proteins is me-
diated by molecular recognition features
(MoRFs). MoRFs are short regions of 5–
25 residues within IDRs that undergo
disorder-to-order transition on binding a
partner protein.[5] Several computational
methods are available to predict IDRs and
their associated features,[6,7] including
MoRFs.[8–14] Some of the available MoRF

predictors include ANCHOR,[9] MoRFpred,[10] MoRFchibi,[11]

MoRFpred-plus,[13] MoRFchibi-light,[12] MoRFchibi-web,[12,15] and
OPAL.[14] ANCHOR uses the properties of binding regions lo-
cated in disordered protein sequences to identify segments of
protein regions that do not form sufficient interactions to fold
on their own, but are likely to gain energy by interacting with
globular proteins. On the other hand, MoRFpred uses the fea-
tures generated from physicochemical properties of disordered
regions such as relative solvent accessibility derived from Real-
SPINE3,[16] position specific scoring matrices computed by PSI-
BLAST,[17] flexibility (B-factor) estimated by PROFbval, and pre-
dictions of five other disorder predictors. MoRFchibi[11] employs
two support vector machine (SVM) models with local physico-
chemical properties of amino acids as feature vectors to identify
MoRFs. These models use amino acid similarity, composition,
and contrast information between MoRF and non-MoRF regions
to predict MoRFs. The scores of MoRFchibi are processed using
Bayes rule. MoRFpred-plus[13] is trained using hidden Markov
model (HMM) profiles and local physicochemical properties of
disordered protein sequences.MoRFpred-plus targets the proper-
ties of upstream/downstream flank residues of a query residue to
predict MoRFs. More accurate predictors like MoRFchibi-web[12]

and OPAL[14] are constructed by combining multiple compo-
nent predictors. Specifically, MoRFchibi-web uses scores ofMoR-
Fchibi, Espirtz,[18] a disorder predictor, and conservation infor-
mation derived from PSI-BLAST.[17] On the other hand, OPAL
is an ensemble of two predictors, MoRFchibi[11] and PROMIS.[14]

PROMIS incorporates structural information of disordered pro-
tein sequences into OPAL.[14] Both, MoRFchibi-web and OPAL
use a single model to predict MoRFs of varying lengths.
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In this study, we present amethod to improve the performance
of OPAL by developing multiple models specific for MoRFs of
different lengths. OPAL+ uses four SVM models, each trained
using MoRFs of different lengths. It also utilizes evolutionary
information of the IDRs in the form of HMM profiles ob-
tained from another MoRF predictor, MoRFpred-plus.[13] Finally,
OPAL+ combines the scores of the length-specific MoRF predic-
tor and MoRFpred-plus with those from MoRFchibi to obtain a
final MoRF score for each residue in the query disordered region.

2. Results and Discussion

The training and test sets used to develop OPAL+ were obtained
from Disfani et al.[10] and Malhis et al.[15] These sets are called
TRAIN, TEST, TEST464, and EXP53, and are described in
Table S1, Supporting Information. To assemble TRAIN, TEST,
and TEST464 sets, sequences were collected and filtered from
Protein Data Bank (PDB) depositions made before April 2008.
The EXP53 set was assembled by combining sequences from
three different studies[7,10,19] and includes sequences containing
experimentally validated MoRFs that are disordered in isolation.
These sets were previously used to develop predictors including
OPAL,[14] MoRFchibi-web,[12] MoRFpred-plus,[13] MoRFchibi,[11]

and MoRFpred.[10] Altogether, there were 938 sequences in
training and test sets. The details of the number of MoRF and
non-MoRF residues in each set is given in Table S1, Supporting
Information. The distribution of the MoRF lengths within the
training and some test sets are shown in Figure S1, Supporting
Information. The sequences in the TEST and TEST464 sets
contain MoRFs from lengths 5 to 25 residues. The TRAIN and
TEST sets primarily contain MoRFs of length 7 to 11 residues,
while the EXP53 set contains several MoRFs as long as 30
residues or more. Given the non-uniform distribution of MoRFs
over different lengths, we divided the EXP53 dataset according to
MoRF length, i.e., EXP53SHORT containingMoRFs of length up
to 30 residues, EXP53LONG containing MoRFs of length greater
than 30 amino acids, and EXP53ALL containing all MoRFs.
An overview of the length-specific MoRF prediction scheme

is given in Figure 1. Four different models were constructed to
predict MoRFs in disordered protein sequences, each trained to

target different MoRF lengths. We partitioned MoRFs into four
groups based on their lengths from five to nine residues, ten
to 14 residues, 15 to 19 residues, and 20 to 24 residues. Table
S1, Supporting Information gives the number of MoRFs in the
training and test sets for each group. In the training step, fea-
tures were computed from MoRFs and non-MoRFs. Since the
TRAIN set has a single MoRF region and the number of non-
MoRF residues is greater than the number of MoRF residues,
balanced sampling is required. To enable balanced sampling, we
extracted upstream/downstream flanking amino acid residues
along with the MoRF region as a positive sample. We then ex-
tracted the same size of the negative sample from a non-MoRF
region (see Supporting information). For each length-specific
model, we computed bigram feature vectors[20] from each MoRF
and non-MoRF group using the BigramMoRFmethod described
in Sharma et al.[14] and the structural attributes predicted us-
ing Spider2.[21] Bigram feature representation is based on pro-
file bigrams,[20] where the feature vector is obtained by count-
ing the bigram frequencies from the evolutionary profiles of a
protein sequence. However, in this study, instead of using evolu-
tionary profiles, we used structural attributes to compute bigram
features (See Supporting information). The Spider2 structural at-
tributes include secondary structure (SS), containing the struc-
tural description of proteins such as helix, sheet and coil; acces-
sible surface area (ASA), which measures the exposure level of
amino acids to solvent in the proteins; backbone angles, which
include the dihedral angles of proteins such as Phi, Psi, Theta,
and Tau; half-sphere exposure (HSE), which gives the number of
Cα atoms in the upper (HSEu) and lower spheres (HSEd) of a
residue. Each length-specific model is trained independently as
illustrated in Figure S2, Supporting Information. During the test
phase, all four length-specific models are used for scoring and
the output scores are combined by taking the minimum score as
the output score (See Supporting information).
We selected SVM classifier with RBFkernel. The C and

Gamma values of the kernel were selected as 1000 and 0.0038,
respectively.[14] To select the structural attributes for each model
in Figure S2, Supporting Information, we performed succes-
sive feature selection scheme in the forward direction[22] and ob-
served the area under the curve (AUC) performance measure
to select the highly ranked attributes for each model. Table 1

Figure 1. Overview of the proposed MoRF prediction method.
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Table 1. Selected attributes for each of the proposed models.

Models for MoRF
lengths:

Attributes

Five to nine residues CN attribute from HSE α group

Theta attribute from backbone dihedral angles

Strand state probability attribute from SS group

HSEu attribute from HSE β group

Ten to 14 residues CN attribute from HSE α group

ASA attribute

HSEd attribute from HSE β group

Theta attribute from backbone dihedral angles

15 to 19 residues CN attribute from HSE α group

ASA attribute

Helix state probability attribute from SS group

HSEd attribute from HSE α group

Strand state probability attribute from SS group

20 to 24 residues CN attribute from HSE α group

Theta attribute from backbone dihedral angles

CN, number of contact residues; HSE, half-sphere exposure; HSEu, HSE in the upper
sphere; HSEd, HSE in the lower sphere; SS, secondary structure; and ASA, accessible
surface area. For each of the model, attributes are listed from higher to lower rank.

shows the attributes selected for each length-specific MoRF pre-
diction model. As the results indicate, different features are in-
formative at different MoRF lengths. While the contact HSE
attributes, dihedral angle and theta are important in all mod-
els, the information given by the helical or strand state of
residues in the MoRFs varies with length. This suggests that
MoRFs of different lengths bind to partner proteins in distinct
ways.
To further improve the model performance, we combined

MoRFpred-plus and MoRFchibi with the proposed model, since
they were constructed using complementary features and learn-
ing algorithms. MoRFpred-plus targets the properties of disor-
dered regions flanking the MoRF residue to identify MoRFs[13]

whereasMoRFchibi utilizes the similarity, composition, and con-
trast information of MoRFs and non-MoRFs together with differ-
ent SVM kernels[11] to predict MoRFs. To calculate the scores for
each residue, we applied the common averaging principle where
all scores are added and divided by the number of models used
(Figure S3, Supporting Information).
The final score calculation was performed for each residue

by taking a window of scores consisting of the residue score
itself and the score of its z flanking residues on either side[14]

(Figure S4, Supporting information). Figure S5, Supporting In-
formation shows the AUCs for varying the value of flank size
z from 1 to 30 for the four proposed models presented in
Figure S2, Supporting Information. Varying the value of residue
flank size, z, and observing the AUC, we selected z equal to 25 to
process the output scores of the four proposed models (model 1,
model 2, model 3, and model 4). In addition, to obtain average
performance from the combined scheme, we processed MoR-
Fchibi scores with z equal to 15, MoRFpred-plus scores with z
equal to 4 and the final combined model scores with z equal to 8.

The final AUCs are listed inTable 2. As seen, OPAL+ performs
well across all the test sets. Compared to the benchmarked pre-
dictors, MoRFchibi-web and OPAL, the performance improve-
ment of 2.2% and 0.7% is obtained for the TEST set, 1.5% and
0.4% for the TEST464 set, and 1.1% and 0.2% for EXP53ALL,
respectively. To predict long MoRFs (EXP53LONG), OPAL+,
OPAL, and MoRFchibi-web achieved AUCs of 0.822, 0.822, and
0.758, respectively, while to predict shortMoRFs (EXP53SHORT)
AUCs of 0.876, 0.870, and 0.886 were observed (Figure S6–S9,
Supporting Information). This shows that OPAL+ provides
more accurate prediction for long MoRFs. On the other hand,
MoRFchibi-web produces better prediction results for short
MoRFs, though OPAL+ improves on the performance of OPAL
in this case as well. To analyze the performance of OPAL+, we
calculate performancemeasures including precision, F-measure,
accuracy, and false positive rate (FPR) for different values of
TPR as shown in Table S2–S4, Supporting Information. Thus,
it is observed that OPAL+ achieves a minor increase in perfor-
mance measures for certain TPR values, while performing simi-
lar to OPAL for other TPR values. Figures S10–S13, Supporting
Information show specific examples of MoRF prediction where
OPAL+ outperforms OPAL.
To determine the statistical significance of the difference in

the prediction performance of OPAL+ and OPAL, we used the
paired t-test with 5% significance level. We computed the paired
t-test for different output threshold probabilities of the classifier
and averaged the results. The statistical significance of the differ-
ence between the performance of OPAL+ and OPAL for the test
sets TEST464, EXP53ALL, and EXP53SHORT are 0.068, 0.082,
and 0.050, respectively. Although the performance of OPAL+
shows a statistically significant improvement over OPAL for the
EXP53SHORT test set, it is above the significance levels for
TEST464 and EXP53ALL. Thus, we conclude that the prediction
accuracies obtained by OPAL+ using the length-specific scheme
for MoRF prediction are very similar to those of OPAL.
To test the efficiency of the state-of-the-art predictors, Table S5,

Supporting Information shows the comparison of AUCs, predic-
tion speed in residues min–1 (r min–1) and multiple sequence
alignment information. The results show that predictors like AN-
CHOR and MoRFchibi are fast in terms of prediction speed,
whereas the remaining predictors requiring multiple sequence
alignment are comparatively slow. MoRFchibi-web, OPAL, and
OPAL+ are constructed by combining multiple component pre-
dictors, therefore, their architecture is complex and prediction
speed is much lower compared to the other predictors.

3. Conclusion

In summary, we present a novel MoRF predictor, OPAL+,
which is unique in its use of separate models to pre-
dict MoRFs of varying lengths and evolutionary profiles
of disordered regions. It is available for download at
https://github.com/roneshsharma/OPAL-plus/wiki/OPAL-plus-
Download. OPAL+ shows a marginal performance improve-
ment over OPAL. Additional improvement in MoRF prediction
will require exploring novel features of protein sequences with
model training strategies.
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Table 2. AUCs of MoRF predictors and models.

Predictors/models TEST TEST464 EXP53 ALL EXP53 LONG EXP53 SHORT

ANCHOR 0.600 0.605 0.615 0.586 0.683

MoRFpred 0.673 0.675 0.620 0.598 0.673

MoRFchibi 0.740 0.743 0.712 0.679 0.790

MoRFpred-plus 0.755 0.724 0.712 0.670 0.821

PROMIS 0.791 0.788 0.818 0.815 0.823

MoRFchibi-light 0.775 0.777 0.799 0.770 0.869

MoRFchibi-web 0.800 0.805 0.797 0.758 0.886

OPAL 0.815 0.816 0.836 0.822 0.870

Length-specific model 0.781 0.777 0.812 0.805 0.830

Length-specific model + MoRFpred-plus 0.813 0.810 0.821 0.807 0.856

OPAL+ (Length-specific model + MoRFpred-plus + MoRFchibi) 0.822 0.820 0.838 0.822 0.876

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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