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Abstract 

Chronic lung diseases are complex, progressive disorders with increasing incidence and 

mortality. Chronic obstructive pulmonary disease (COPD), asthma and pulmonary 

fibrosis are examples of chronic lung conditions that can significantly impact the quality 

of life. Minimally-invasive diagnostic methods that eliminate bronchoscopic and surgical 

biopsy from patients are ideal; metabolomics therefore holds considerable promise for 

the discovery of biomarkers that can aid diagnosis and treatment with greater sensitivity, 

specificity and precision.  

The main aim of this project was to employ ultra-performance liquid chromatography-

quadrupole time-of-flight (UPLC-QTOF) high resolution mass spectrometry (HRMS) 

and matrix-assisted laser desorption ionisation (MALDI) mass spectral imaging (MSI) 

together with multivariate statistics-based metabolomics to identify and characterize 

potential lipid biomarkers of idiopathic pulmonary fibrosis (IPF). This dissertation 

consists of the following studies: (1) literature review of metabolomics in chronic lung 

diseases; (2) application of HRMS for untargeted metabolic profiling of chronic lung 

disease including COPD and IPF; (3) investigation of a novel data-independent 

acquisition (DIA) approach to augment untargeted approaches for lipid biomarker 

identification; (4) development of a novel matrix application technique to improve 

MALDI-MSI acquisitions of tissue sections whilst maintaining spatial localisation of 

endogenous metabolites; and  (5) exploiting potassium adduct formation to resolve the 

spatial distribution of lipids in fibrotic tissues. 

A total of 65 clinical plasma samples (from 20 healthy control subjects, 21 COPD and 24 

IPF patients) were profiled using UHPLC-QTOF-MS. A fundamental challenge in using 

HRMS for untargeted profiling of complex, chronic lung diseases is the heterogeneity of 

the human samples. Various contaminations present in fibrotic tissues or adjacent non-
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fibrotic constituents can confound characterization and encumber the discovery of 

reliable biomarkers. The results of this study revealed significant correlation between 

COPD and IPF clinical phenotypes and plasma metabolite profiles. The unbiased 

metabolomics workflow and deconvolution pipeline provided end-to-end analysis from 

peak picking and annotation through to metabolite identification.  

Subsequently, the ability of the UPLC-QTOF-MS method to discriminate between lipid 

species was enhanced by the application of a DIA method to distinguish between “stable 

versus progressor” IPF patients. This DIA method is known as SONAR and uses a wide, 

continuously sliding precursor window for fragmentation, thereby allowing correlation 

of precursor and fragment ions. SONAR lipid data were processed using Progenesis QI 

and searched against LIPID MAPS for structural elucidation and metabolite confirmation. 

The lipids identified were found to be intermediates of key metabolic pathways such as 

the glycolytic/TCA cycle, mitochondrial-beta oxidation and lipid metabolism and hold 

considerable promise as biomarkers of disease.  

The matrix deposition step in MALDI-MSI is crucial for simultaneous extraction of 

metabolites from tissue sections as well as maintaining the spatial dimensionality of the 

endogenous metabolites. A novel, efficient and cost-effective preparative method referred 

to as the “freeze-spot” method was developed using wheat seed sections to demonstrate 

extraction efficiency and reliability, whilst maintaining the spatial resolution of the 

acquired MALDI-MSI images. The technique was also found to be simple and robust, 

forming fine matrix crystals that enabled efficient ionisation of surface metabolites, 

further eliminating the need for sophisticated matrix application approaches.  

In the final study, 10 healthy and 10 fibrotic tissues were compared using MALDI-MSI. 

The MSI technique developed uses potassium adduct formation to improve spatial 

resolution and dimensionality of lipid species such as triglycerides (TG), ceramides, 
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sphingolipids and glycerophospholipids. The results of this study showed changes in lipid 

composition of IPF tissues compared to healthy controls. This study identified 

lysophosphatidylcholine (LysoPC), phosphatidylcholine (PC) and 

phosphatidylethanolamine (PE) as potential lipid biomarkers of the disease and requires 

further study as targets of intervention and treatment. Both SONAR and MSI successfully 

identified similar classes of lipids (TG, PE, LysoPC and PC) which may play a role in the 

pathophysiology of the IPF lipidome. 

This project highlighted the complementarity of HRMS and MSI based metabolomics for 

the characterization of unique lipid features in fibrotic tissue and plasma samples. The 

study also demonstrated the discriminative power of the unbiased DIA approach for the 

identification of lipids via fragment ion patterns that were indicative of specific lipid 

classes. In addition, the application of chemometric principal component analysis (PCA) 

and orthogonal partial least-squares to latent structures-direct analysis (OPLS-DA) 

proved useful for the identification of statistically significant lipids. This statistical 

approach allowed for the assessment of covariance and correlation between lipids and the 

modelled lung diseases, and further illustrated lipid compositional changes in chronic 

lung diseases. 

Taken together, the experimental work presented in this thesis show the large potential 

for mass spectrometry-based metabolomics as a tool for discovery. The specificity of the 

novel methods outlined will be highly beneficial for compound identification and further 

confirmation of disease biomarkers. 
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Metabolomics in chronic lung diseases: a practical review for clinicians 

 

Adapted from Nambiar, S.; Bong, S. H.; Gummer, J. P. A.; Trengove, R. D. and 

Moodley, Y. (2018) “Metabolomics in chronic lung diseases” Accepted in Respirology 

 

1.1 Abstract 

 

Chronic lung diseases represent a significant global burden. Their increasing incidence 

and complexity render a comprehensive, multidisciplinary, and personalized approach 

to each patient, critically important. Most recently, unique biochemical pathways and 

disease markers have been identified through large-scale metabolomics studies. 

Metabolomics is the study of metabolic pathways and the measurement of unique 

biomolecules in a living system. Analysing samples from different compartments such 

as broncho-alveolar lavage fluid (BALF) and plasma has proven useful for the 

characterization of a number of pathological conditions and offers promise as a clinical 

tool. For example, several studies using mass spectrometry (MS) have shown alterations 

in the sphingolipid metabolism of chronic obstructive pulmonary disorder (COPD)-

sufferers. In this article, we present a practical review of the application of 

metabolomics to the study of chronic lung diseases; COPD, idiopathic pulmonary 

fibrosis (IPF) and asthma. The insights, which the analytical strategies employed in 

metabolomics, have provided to the dissection of the biochemistry of chronic lung 

diseases and future clinical biomarkers are explored. 

 

Keywords: metabolomics, lung, COPD, asthma, IPF 
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1.2 Introduction 

 

Chronic lung diseases are complex, progressive disorders with increasing incidence and 

mortality (Papaioannou et al., 2017). Chronic obstructive pulmonary disease (COPD), 

asthma and pulmonary fibrosis are examples of chronic lung conditions that can 

significantly impact the quality of life (Papaioannou et al., 2017; Zhao et al., 2018). The 

management of such conditions can be greatly enhanced using personalized approaches 

to direct treatment. There is growing evidence to support the role of metabolic 

dysfunction in the pathogenesis of chronic lung diseases (Kao et al., 2012; 

Karampitsakos and Gourgoulianis, 2016; Kang et al., 2016) and clinicians are now 

incorporating metabolomics as part of a holistic approach in disease diagnosis and 

prognosis.  

 

The earliest diagnoses of these diseases is achieved by integrating information derived 

from multiple sources including clinical assessment, radiology and pulmonary function 

tests (Flaherty et al., 2007; Jo et al., 2016). Histological assessment generally requires 

surgical biopsy, but this is impractical for all patients (Semendyayeva et al., 2017). 

Minimally-invasive diagnostic methods that eliminate bronchoscopic and surgical 

biopsy in patients are ideal; metabolomics therefore holds considerable promise for the 

discovery of biomarkers that can aid diagnosis and treatment with greater sensitivity, 

specificity and precision. 

 

In this review, we provide an overview of how metabolomics has been used to further 

the understanding of chronic lung diseases, as well as present some of the metabolic 

pathways that have been investigated in COPD, asthma and idiopathic pulmonary 

fibrosis (IPF). This manuscript builds on the existing work of Papaioannou et al. (2017) 
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and Zhao et al. (2018) who reviewed global metabolic changes in patients with chronic 

lung disease. In addition to a critical assessment of published outcomes, our review 

seeks to examine the experimental approaches and instrumental parameters used in 

these studies, as well as provide some insight into the emerging trends of metabolomics-

driven biomarker discovery. We anticipate that readers gain a practical understanding of 

current and emerging metabolomics approaches applicable to lung disease 

metabolomics and use the information presented to deliver robust metabolomics 

experimental designs that result in new insight and ultimately enhanced clinical 

decision-making. 

 

1.3 Metabolic pathways implicated in chronic lung diseases 

 

1.3.1 Cellular energetics 

 

Cellular energetics are important for the maintenance of lung cell function under various 

patho-physiological conditions. Metabolic homeostasis is vital in regulating cell 

proliferation and differentiation, and studies have shown that metabolic dysregulation 

contributes to various inflammatory responses and apoptosis (King, 2015; Kumar et al., 

2017). The catabolism of major nutrient substrates such as sugars, amino acids and fatty 

acids (FAs) introduces acetyl-CoA into the tricarboxylic acid (TCA) cycle to produce 

metabolites for the synthesis of nucleotides, proteins and lipids, and most importantly to 

generate energy. These cellular processes have been implicated in disease pathogenesis; 

however, the roles of these metabolic dysregulations and the underlying disease 

mechanisms are not fully understood (Zhao et al., 2018). Figure 1 illustrates the 

metabolic intermediates involved in cellular energetics and the pathways involved in 

chronic lung diseases. 
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1.3.1.1 Glycolysis and TCA cycle 

 

Glycolytic dysregulation is well-defined in lung diseases such as lung cancer (Maher, 

2015). Glycolysis is an oxygen-independent metabolic pathway that converts glucose 

into pyruvate through a 10-step biochemical reaction to produce adenosine triphosphate 

(ATP). The three main enzymatic reactions responsible for the control of glycolytic flux 

are catalysed by hexokinase, phosphofructokinase and pyruvate kinase (Hasawi et al., 

2014; Sreedhar and Zhao, 2018). Under aerobic conditions, pyruvate is commonly 

transported into mitochondria and converted to acetyl-CoA. Acetyl-CoA, which is 

derived via beta-oxidation, enters the TCA cycle to produce nicotinamide adenine 

dinucleotide (NADH) and flavin adenine dinucleotide (FADH2), the electron carriers 

that donate electrons to the electron transport chain. This subsequently leads to ATP 

generation (Koppenol et al., 2011; Sreedhar and Zhao, 2018). Regulation of the TCA 

cycle is heavily dependent on the availability of enzyme-substrates. Malate is one of the 

TCA cycle intermediates exported from the mitochondria to the cytosol, where malic 

enzyme can then regenerate NADH and pyruvate from malate for cycling back into the 

mitochondria (Hanse et al., 2017). Like malate, citrate can also cross from the 

mitochondrial membrane to the cytosol, where it is cleaved by ATP citrate lyase to 

produce cytosolic acetyl-CoA (Ren et al., 2017) for FA synthesis. Glycolytic energy 

dysregulation in lung cancer cells has been reported to cause uncontrolled proliferation 

as cells strive to meet demand for non-essential amino acids and FAs. Glutamine 

consumption, in addition to glucose, is significantly increased in diseased cells, 

resulting in its metabolism to alanine, lactate, with an increased production of 

ammonium ion by-products (Li et al., 2015). Glycolytic hyperactivity followed by lactic 

acid fermentation, as opposed to steady-state glycolysis followed by pyruvate oxidation, 

is a hallmark of lung cancer metabolism and is known as the Warburg effect (Warburg 



 Chapter 1 

 

5 

 

et al., 1927; Gatenby and Gillies, 2004). The exact mechanism of this “aerobic 

glycolysis” remains unclear; it has been suggested that cellular proliferation and 

extracellular matrix production are the results of this glycolytic change (Maher, 2015). 
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Figure 1.1 An illustration of the metabolic pathways involved in cellular energetics: yellow, blue and red zones correspond to pathways affected in 

COPD, asthma and IPF, respectively. Sections in green (COPD and IPF) and purple (asthma and IPF) illustrates overlapping pathways in the 

aforementioned diseases.
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1.3.1.2 Mitochondrial-beta oxidation and fatty acid metabolism 

 

The lungs exist in an environment of elevated oxygen. The large surface area and high 

blood supply make this organ highly susceptible to injuries mediated by oxidative stress. 

Exogenous exposure to reactive oxygen species (ROS) such as NO2, SO2, CO, and dust 

particles, as well as cigarette smoke, can lead to excessive oxidative stress and trigger 

inflammatory responses of the lung tissue (Guarnieri and Balmes, 2014). Mitochondrial 

oxidative phosphorylation can also contribute to ROS exposure and may exacerbate 

pathology. While mitochondria-derived functions (for e.g. ATP production, cellular 

signalling and differentiation, cell cycle regulation and cell growth) are efficient 

processes, high-energy electrons are released from the respiratory chain and can form 

ROS (Bartlett and Eaton, 2004). This was believed to result in mitochondrial oxidative 

stress and promote degenerative pathology (Vazquez et al., 2015).  

 

Regulation of beta-oxidation and the relationship between FA metabolism and 

carbohydrate metabolism was defined in the early 80s (McGarry and Foster, 1980). 

Fatty acid oxidation to acetyl-CoA is well studied and it has been suggested that the 

enzymes of beta-oxidation are organized into a multi-enzyme complex (Bartlett and 

Eaton, 2004). Most saturated FAs are catabolized by mitochondrial beta-oxidation, 

providing acetyl-CoA as a substrate for the TCA cycle. Through FA oxidation, ATPs 

are produced; however, this is often accompanied by ROS.  

 

1.3.1.3 Lipid metabolism  

 

Lipid metabolism plays a key role in the lung, resulting in the synthesis and oxidation of 

FAs, lipid esterification, hydrolysis of lipoproteins, synthesis of phosphatidylcholine, 
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and synthesis and secretion of prostaglandins and other eicosanoids from arachidonic 

acid precursors (Yan et al., 2017; Merino Salvador et al., 2017). The abnormal 

lipid/metabolic phenotype of COPD, asthma and IPF have been reported by the work of 

Teichgraber et al. (2008), Yang and Uhlig (2011) and Ley et al. (2014) who highlighted 

a key role for lipid metabolism in lung diseases. 

 

The oxidation of FAs during lipid metabolism also plays an important role in regulating 

glycolysis. Subsequent steps in FA synthesis is the production of palmitate, a primary 

FA that can undergo various elongation or unsaturation cycles to yield other FA 

molecules. FAs need to be activated with CoA by fatty acyl-CoA synthetases which is 

critical for phospholipid and triglyceride synthesis (Yan et al., 2017). These lipids are 

fundamental component of cellular membranes, play critical roles in cellular functions 

including energy storage, signal transduction, formation of membrane bilayer and 

cellular barriers. Hence, dysregulated FA oxidation can disrupt lipid metabolism that 

contributes to various pathological features. 

 

The dysregulation of lipid metabolism has been well-described in Alzheimer’s disease, 

diabetes, obesity, atherosclerosis and in several lung diseases such as cystic fibrosis, 

asthma and COPD (Yan et al., 2017). In the proliferating cell, there is an increase in the 

uptake of exogenous FA due to an increase in adipogenesis (Bartlett and Eaton, 2004; 

Merino Salvador et al., 2017). 

 

1.4 Metabolomics- an emerging ‘omic modality for clinical research  

 

Metabolomics is generally applied through a targeted, selective measurement strategy, 

or as part of an untargeted, global profiling approach (Wilson, 2017; Bowler et al., 
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2017; Bingol, 2018). Targeted metabolomics is a quantitative approach that allows for 

the measurement of metabolite concentrations while untargeted metabolomics 

undertakes simultaneous assessment of metabolites without any prior sample knowledge 

for hypothesis generation (Bingol, 2018). Untargeted metabolomics is a comprehensive 

strategy for identifying changes in different patho-physiological states (Wang et al., 

2010); however, a major disadvantage is that the majority of features are unidentifiable. 

Feature identification can be improved by using sophisticated data-independent 

acquisition techniques,  which will additionally collect important structural detail in the 

metabolite measurements for interpretation at a later date without the need for re-

measurement of samples (Gethings et al., 2017) since accurate mass measurement alone 

is insufficient for compound identification (Wang et al., 2010; Bingol, 2018). 

Additional orthogonal information, such as chromatographic retention time, tandem MS 

fragmentation (MS/MS), isotopic patterns and collisional cross-section, are also 

necessary for structural annotation and compound identification (Wang et al., 2010; 

Bingol, 2018). Advents in analytical technologies and bioinformatics are setting the 

stage for large-scale, harmonized metabolic profiling suitable for studies at the 

population level (Wilson, 2017). Metabolic phenotyping considers the total metabolite 

profile as a unique pattern, or fingerprint, for a specific pathological state without 

attempting to identify all the features present in the profile. 

 

Confirmatory diagnoses of lung diseases are heavily dependent on the application of 

high-resolution computed tomography and surgical biopsies (Flaherty et al., 2004; 

Elicker et al., 2008; Kaarteenaho, 2013). While surgical biopsy is still regarded as the 

gold standard, diagnostic misinterpretations has been documented (Kaarteenaho, 2013). 

Lin et al. (2014) suggested the application of metabolomics as a clinical tool to support 

disease diagnostics. Untargeted metabolomics can be useful for clinical research as it 
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provides practitioners with a systemic approach to understand global changes in 

response to an alteration in nutrition, genetics, environment and gut microbiota 

(Griffiths et al., 2010). It also allows for the interrogation of endogenous biochemicals 

involved in key metabolic processes and provides novel insights into the molecular 

mechanisms associated with an alteration or perturbation of the physiological status 

(Zhang et al., 2010). Despite the heterogeneity associated with pulmonary diseases, 

metabolomics is particularly useful for endotyping and phenotyping, and promises to 

stratify individuals based on severity and exacerbation as well as enhance the diagnostic 

accuracy of diseases such as COPD (Comhair et al., 2015; Adamko et al., 2015). 

 

1.5 Analytical techniques in metabolomics 

 

This review will focus on information rich analytical techniques such as nuclear 

magnetic resonance (NMR) spectroscopy and mass spectrometry (MS) that are routinely 

used for metabolomics research (Gowda et al., 2008). 

 

1.5.1 NMR spectroscopy 

 

NMR is widely used due its ability to simultaneously measure multiple metabolites 

within a short acquisition time and with minimal preparation (Stringer et al., 2016; 

Markley et al., 2017). As a non-destructive technique, NMR is highly advantageous as 

the samples can be re-used for multiple assays. This is especially important where 

sample amount is limited, which is common in clinical settings. The major limitation of 

NMR for metabolomics is its low sensitivity, which results in micromolar detection 

levels (Gowda and Raftery, 2015). Depending on the nature of the sample and 

experimental hypotheses, a number of NMR techniques are applied in metabolomics. 
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1H-NMR is the most commonly used NMR technique for metabolic phenotyping and 

biomarker discovery due to its simplicity, robustness and repeatability (Wilson, 2017), 

followed by 31P-NMR and 13C-NMR (Wang et al., 2010; Gowda and Raftery, 2015). 

NMR has been used to study the metabolome of lung diseases, including silicosis (Hu et 

al., 2008), asthma and COPD (Adamko et al., 2015) and respiratory syncytial viral 

infection (Adamko et al., 2016). One-dimensional (1D) 1H NMR suffers from low 

spectral resolution which limits metabolome coverage and accuracy of metabolite 

analysis (Bingol, 2018). Current NMR developments are focused on reducing spectral 

overlap. For example, two-dimensional (2D) NMR experiments have been used to 

improve resolution and sensitivity. However, the main limitation of 2D NMR is its 

longer method acquisition.  

 

1.5.2 Mass spectrometry 

 

MS-based metabolomics provide increased sensitivity and selectivity for measuring a 

range of cellular metabolites in various biological samples (Gowda and Raftery, 2015). 

MS-based metabolic profiling can also be performed using a shotgun approach based on 

direct infusion MS (Wilson, 2017) or in combination with a number of front-end 

chromatographic separation techniques (Stringer et al., 2016). 

 

Liquid chromatography (LC)-MS is the analytical approach most often used for 

metabolomics due to its ability to resolve different classes of metabolites (Wang et al., 

2010; Stringer et al., 2016). Some of the advantages of LC-MS based metabolomics are: 

1) good coverage of mass ranges, which permits the detection of metabolites with 

different chemical properties, 2) no requirement for sample derivatization and 3) high 

sensitivity at nanomolar levels (Stringer et al., 2016). Aqueous metabolites can also be 
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simultaneously assayed and recent advances are now enabling greater separation and 

detection of metabolites such as lipids. The disadvantages of LC-MS include its high 

variability across different instruments, the lack of standardized metabolite libraries as 

well as the numerous standard preparative steps and data processing workflows 

(Stringer et al., 2016). 

 

An important consideration for LC-MS based metabolomics is the type of 

chromatography column used as this determines the class of metabolites for separation. 

The polarity and pH of the solvents also influences metabolite separation (Stringer et al., 

2016). Reverse-phase columns such as C18 columns provide good retention and 

separation of non-polar compounds (Wang et al., 2010). Alternatively, hydrophilic 

interaction chromatography (HILIC) columns are preferred for the detection of polar 

compounds (Wilson, 2017). Electrospray ionization (ESI) is the preferred ion source for 

coupling LC with MS for metabolomics studies as it provides coverage of both positive 

and negative ions (Stringer et al., 2016).   

 

Quadrupole, time-of-flight (TOF) and ion traps are some of the more commonly used 

mass analyzers coupled to LC separation (Wang et al., 2010). Triple quadrupole (QQQ) 

analyzers, allow for tandem MS experiments (MS/MS) or further fragmentation of ions 

during analysis. Similarly, ion trap analyzers trap ions of interest and accumulate them 

for better sensitivity (Stringer et al., 2016). They can also trap and fragment a specific 

ion multiple times (MSn) to allow detection of selective ions (Stringer et al., 2016). In 

contrast, TOF analyzers determine the m/z by accelerating ions and then measure the 

time required to traverse a flight tube. TOF analyzers have increased mass accuracy and 

are highly sensitive (Wang et al., 2010). They can be coupled with a quadrupole (Q-

TOF; Wang et al., 2010), which is well suited for metabolite detection. Fourier 
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transform ion cyclotron resonance (FT-ICR) paired with MS detectors have the highest 

degree of mass accuracy and have MS/MS and MSn capabilities but are limited by high 

costs (Wang et al., 2010; Stringer et al., 2016). 

 

The advantages of gas chromatography (GC)-MS include high sensitive and specific for 

the separation and detection of volatile metabolites (Wang et al., 2010; Wilson, 2017). 

In addition, spectral patterns and retention times of compounds are highly reproducible 

(Stringer et al., 2016), and allows for the use of established compound libraries such as 

the National Institute of Standards and Technology (NIST) Mass Spectral Library. 

There is also lower instrument-to-instrument variability, which is a limitation of LC-MS. 

However, GC-MS based metabolomics is usually reserved for thermally stable volatile 

compounds that are of low polarity (Wang et al., 2010) and those that are amenable to 

derivatization (Wilson, 2017). GC derivatization can lead to a loss of metabolites while 

incomplete derivatization can result in spectral artifacts. 

 

1.6 Metabolomics-driven discovery of biomarkers 

 

Towards the discovery of biomarkers and in the pursuit of improved disease 

characterisation, metabolomics has been employed for the study of lung diseases to 

study a large number of sample types including urine (Adamko et al., 2016), plasma and 

serum (Kumar et al., 2017), cerebrospinal fluid (Locasale et al., 2012), exhaled breath 

condensate (EBC; Fermier et al., 2016), bronchoalveolar lavage fluid (BALF; 

Cruickshank-Quinn et al., 2017), saliva (Barnes et al., 2014), intact tissue (Hu et al., 

2008) as well as cells (Luo and Li, 2017) and their extracts. Urine and blood are the 

most commonly used biofluids for metabolomics studies as both samples contain 

thousands of detectable metabolic features and can be collected using minimally 
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invasive methods. Table 1.1 below provides an analysis of recent metabolomics studies 

of COPD, asthma and IPF and provide a summary of each study according to the 

metabolic pathways implicated, samples type assayed, and the analytical techniques 

utilized. 
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Table 1.1 Summary of recent metabolomics studies reporting the metabolic pathways associated with COPD, asthma and IPF, samples assessed, 

and analytical techniques used. Ionisation modes are described as positive (+) and/or negative (-) electrospray (ESI) or electron impact (EI) 

while MS/MS and 1D-1H and stands for tandem MS technique and one-dimensional proton NMR experiment, respectively. HILIC is abbreviated 

for hydrophilic interaction chromatography and RP denotes reversed-phase chromatography. 

 

Disease Investigators Sample Separation (method) MS (ionisation mode) Metabolic pathways 

 

 

 

 

COPD 

Kilk et al. (2018) EBC, 

serum 

LC (direct injection) MS (+ and - ESI) Sphingolipid metabolism 

Arginine metabolism 

Naz et al. (2017) Plasma, 

BALF 

LC (HILIC and RP) 

 

MS (+ and - ESI) TCA-cycle  

Glycerophospholipid metabolism 

Fatty acid metabolism  

Sphingolipid metabolism 

Adamko et al. (2015) Urine NMR (600 MHz) 1D-1H Nitric oxide pathway  

Coenzyme A biosynthesis 

 

 

 

 

Asthma 

Carraro et al. (2018) Urine LC (RP) MS (+ and - ESI) Tryptophan metabolism  

Fatty acid metabolism 

Reinke et al. (2017) Serum LC (HILIC and RP) MS (+ and - ESI) Sphingolipid metabolism 

Fatty acid metabolism 

Eicosanoid metabolism 

McGeachie et al. (2015) Plasma LC (RP) MS (+ ESI) Linoleic acid metabolism 

Arachidonic acid metabolism 
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Sphingolipid metabolism 

Fatty acid metabolism 

Taurine metabolism 

 

 

 

 

IPF 

Rindlisbacher et al. (2018) Serum LC (RP) MSE (+ and - ESI) Lysophosphatidic acid metabolism 

Zhao et al. (2017) Lung 

tissue 

LC  

GC 

MS/MS 

MS 

Sphingolipid metabolism 

Arginine metabolism 

Glycolysis  

Mitochondrial beta-oxidation  

TCA-cycle 

Kang et al. (2016) Lung 

tissue 

GC MS (EI) Glycolysis  

Glutathione biosynthesis 

Ornithine aminotransferase 

metabolism 
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In the past decade, improvements in high-throughput analytical technologies has 

allowed for a broader coverage of the metabolome and consequently, increased its 

utilization in biomarker discovery (Griffiths et al., 2010; Wilson, 2017). Biomarkers are 

classified as screening, diagnostic, or prognostic chemical markers based on their ability 

to predict, diagnose or evaluate the condition of a disease, respectively (Biomarkers 

Definitions Working Group, 2001; Fleming and Powers, 2012). Metabolomics-driven 

biomarker discovery is focused on the elucidation of patho-physiological mechanisms, 

with the ultimate objective of carrying out more accurate diagnosis and personalized 

treatment from an informed perspective (Griffiths et al., 2010). Table 1.2 below 

provides a list of published candidate biomarkers of chronic lung diseases grouped 

according to the metabolic pathways reviewed in this paper. 
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Table 1.2 Putative and candidate biomarkers of chronic lung diseases correlating to the 

glycolytic and TCA-cycle, mitochondrial beta-oxidation, fatty acid as well as lipid 

metabolism pathways. 

 

Metabolic 

pathways 

Putative biomarkers References 

Glycolysis & 

TCA-cycle 

glucose 

pyruvate 

hexokinase 

acetyl-CoA 

NADH 

FADH2 

malate 

citrate 

glutamine  

alanine 

lactate 

 

aspartate 

arginine 

myoinositol 

fumarate 

adenosine 

succinate 

threonine 

α-ketoglutarate 

pyruvate kinase  

phophofructokinase  

Hasawi et al. (2014) 

Ren et al. (2017) 

Bowler et al. (2017) 

Sreedhar and Zhao 

(2018) 

Mitochondrial-beta 

oxidation & fatty 

acid metabolism 

carnitine 

acylcarnitine 

choline 

citrate 

acyl-CoA 

acetate 

acetyl-CoA 

threonine 

linoleic acid 

palmitate  

malate 

serine  

eicosanoids  

arachidonic acid 

lysophosphatidic 

acid 

 

Mehta et al. (2010) 

Conlon et al. (2015) 

Bowler et al. (2017) 

 

Lipid metabolism phospholipids 

triglycerides  

sphingolipids  

arachidonic acid 

palmitate 

betaine 

choline  

ceramides 

Teichgraber et al. 

(2008) 

Yang and Uhlig 

(2011) 

Ley et al. (2014) 

Yan et al. (2017) 

Bowler et al. (2017) 
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1.6.1 Metabolomics studies of COPD  

 

COPD is a debilitating condition affecting millions of people worldwide and is the 

leading cause of chronic morbidity and mortality in patients with lung disease (Obi et 

al., 2018). Tobacco smoking and atmospheric pollution are the main risk factors for the 

development of COPD (May and Li, 2015). It is characterized by excess mucus 

production and small airway destruction, causing reduced lung compliance. These 

pathological changes are associated with oxidative stress and inflammatory responses 

that leads to an imbalance in cellular proliferation (Fischer et al., 2011; King, 2015). 

 

A number of recent studies has revealed metabolic dysregulation in COPD patients 

(Kao et al., 2012; Adamko et al., 2015; Naz et al., 2017; Kilk et al., 2018). For example, 

alterations in the sphingolipid metabolism was identified in COPD patients (Kilk et al., 

2018) and patients in the Karolinska smoking-related disease cohort (Naz et al., 2017), 

suggesting a dysregulation of lipid metabolism during the onset of COPD. This was 

further supported by the findings of Adamko et al. (2015) who identified an increase in 

betaine and choline levels in COPD patients. Both betaine and choline play important 

roles in methyl group metabolism and in the synthesis of membrane phospholipids 

(Lever and Slow, 2010). These studies also support a hypothesis of FA oxidation and 

tryptophan metabolism dysregulation leading to a state of high oxidative stress. An 

effect on FA oxidation was also demonstrated in COPD participants by Naz et al. 

(2017) who measured the ratio of carnitine and acylcarnitine using tandem LC-MS. The 

study found that the ratios between the medium and long-chain carnitines were 

significantly lower in the COPD samples compared to the healthy controls. 
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Altered FA oxidation due to reduced levels of free carnitine in lung tissue have also 

been implicated in progressive emphysema (Conlon et al., 2015) and COPD (Naz et al., 

2017). Smoke exposure has been shown to increase FA oxidation through reduced 

levels of circulating polyunsaturated fatty acids (PUFA) along with other inflammatory 

processes (Puri et al., 2008; Carraro et al., 2018). Baldassarre et al. (2014) outlined the 

mechanism of smoking-induced changes of plasma FAs that consequently enhanced 

peroxidative processes. It has been postulated that an increase in smoke exposure 

increases FA levels in cellular cytosol, resulting in protection against lipotoxicity. 

Conversely, impaired carnitine metabolism in COPD can cause accumulation of FA in 

the cytosol which can also lead to lipotoxicity (Baldassarre et al., 2014; Adeva-Andany 

et al., 2018). Metabolomics in COPD provides insight into the pathogenesis of the 

disease with alterations in sphingolipid metabolism and changes in lipids during 

increased oxidant stress. 

 

1.6.2 Metabolomics studies of Asthma  

 

Asthma is one of the most common chronic lung diseases of children and is caused by a 

range of inflammatory mechanisms (Reinke et al., 2017). It is typically characterised by 

shortness of breath or episodic wheeze due to airway obstruction resulting from various 

stimuli (Aziz-Ur-Rehman et al., 2017). In asthma, the symptoms of systemic 

inflammation are less prevalent than in COPD (Athanazio, 2012; Hawken et al., 2018).  

 

Recent studies by McGeachie et al., (2015), Reinke et al. (2017) and Carraro et al. 

(2018) examined inflammatory pathways consequent to lipid and amino acids 

dysregulation. McGeachie et al. (2015) used LC-MS in positive ion mode to reveal 

increased levels of taurine and glycine in children aged between one to 18 years with 
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asthma. This observation was supported by Reinke et al. (2017). Taurine and glycine 

has been shown to regulate cytokine overexpression in allergies (McGeachie et al., 

2015) and has protective effects.  Arginine, like taurine, is also strongly induced by T-

helper cytokines such as interleukin (IL)-4 and IL-13. Interestingly, lipid mediators are 

important in inflammatory responses and have well-defined roles in T-cell recruitment. 

The elevated levels of linoleic and oleic acids reported by McGeachie et al. (2015) is 

consistent with the enrichment of linoleic acid metabolism which further underpin their 

involvement in asthma pathogenesis. The role of oxidative stress in asthma has also 

been well-characterized and suggested that imbalances between oxidation and reducing 

systems can contribute to the disease state.  

 

Both endogenous and exogenous ROS including superoxide and reactive nitrogen and 

hydrogen species increase airway inflammation and are key determinants of asthma 

severity (Mehta et al., 2010). Choline therapy has been shown to reduce inflammation 

and supress oxidative stress in patients with asthma (Mehta et al., 2010). An increased 

level of choline may potentially cause an adaptive response in the lungs by depleting 

other lipid metabolites. Ried et al. (2013) showed that asthmatic patients have 

significantly lower levels of phosphatidylcholine (PC) in lung surfactant, which can lead 

to reduced lung function. Metabolomics increasingly demonstrates how inflammation of 

asthma is modified by metabolomes thus providing future therapeutic targets. 

 

1.6.3 Metabolomics studies of IPF  

 

Idiopathic pulmonary fibrosis is a chronic, progressive lung disease characterized by 

alveolar epithelial cell damage, proliferation of fibroblasts, and extracellular matrix 

accumulation leading to irreversible distortion of the lung architecture (Kang et al., 
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2016). The aetiological causes of IPF remain unknown to date. While genetic and 

metabolic determinants associated with the development of fibroses have been reported 

by Gangwar et al. (2017) and Zhao et al. (2017), the underlying disease 

pathophysiology remains unclear. 

 

Metabolic profiling studies conducted by Zhao et al. (2017) used both GC and LC-MS 

to demonstrate the abnormalities in metabolic pathways including glycolysis, 

mitochondrial β-oxidation, TCA cycle and sphingolipid metabolism in association with 

IPF. Xie et al. (2015) showed that the inhibition of glycolysis via 6-phosphofructo-2-

kinase/fructose-2,6-biphosphatase 3 (PFKFB3) protects against the development of lung 

fibrosis in mice by using similar analytical platforms. Kang et al. (2016) and Zhao et al. 

(2017) applied a range of untargeted and targeted methods to study accelerated 

glycolysis in the IPF lung. The results suggested that glycolysis plays a role in the 

fibrotic phenotype. This is consistent with the observation that an increased rate of 

glycolysis can cause increased glycine biosynthesis, resulting in its incorporation into 

collagen, a process central to lung fibrogenesis (Hamanka et al., 2018). 

 

Hamanaka et al. (2018) reported that transforming growth factor (TGF)-β promoted 

fibrogenesis which included the expression of serine and glycine synthesis pathway in 

human lung fibroblasts. As TGF-β1 increases both glycolysis and oxidative 

phosphorylation, the roles of glucose, glutamine, and fatty acid oxidation during TGF-β 

mediated fibrosis warrant further investigation. Rindlisbacher et al. (2018) used RP 

separation followed by an exploratory, high resolution, MSE method to measure 

increased levels of lysophosphatidylcholine (LysoPC) and 3-hydroxydecanoyl carnitine 

in IPF patients. Lysophosphatidylcholine is a precursor of Lysophosphatidic acid (LPA), 

a FA that induces epithelial cell damage, inflammation and fibrosis in kidney (Sakai et 
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al., 2017) and liver (Kaffe et al., 2017). The downregulation of glycolysis, 

mitochondrial beta-oxidation and TCA pathways suggested that alternative energy 

pathways have been upregulated to support lung remodelling (Zhao et al., 2017). The 

changes in lipids in IPF may in future provide insights into intracellular changes that 

occur in this progressive condition. This may improve treatments in the future. 

 

1.7 Frontiers in metabolomic analysis of chronic lung diseases 

 

Clinical metabolomics applications are presently dominated by the use of tandem MS 

platforms. These instruments are mainly used for targeted analysis of specific 

metabolites or metabolite classes such as amino acids, neurotransmitters, steroids and 

drugs (Jannetto and Fitzgerald, 2016). While technological advancements continue to 

broaden the metabolite coverage afforded by high resolution analytical instruments such 

as QTOF-MS, considerable challenges remain in data interrogation and the validation of 

metabolite identities (Bowler et al., 2017). Efforts to improve, and augment, the 

metabolomics data pipeline are currently focused on biostatistical and bioinformatics 

approaches, new resources for biochemical pathway mapping, enrichment analyses and 

even the application of machine learning principles. It is, nevertheless, well established 

that joint efforts are needed to promote data sharing, method synchrony and sample 

storage integrity, because the novelty of metabolomics methodologies and laboratory-

specific practices are highly influential to the comparability of metabolomics datasets 

across studies.     

 

This section of the review endeavours to present cutting-edge tools available for the 

metabolomics interrogation of lung diseases. In particular, the application of mass 

spectrometry imaging (MSI) techniques is of great interest due to its ability to provide 
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spatial information on metabolite distribution within tissue samples. MSI techniques 

such as matrix-assisted laser desorption/ionisation (MALDI; Caprioli et al., 1997) and 

desorption electrospray ionization (DESI; Takáts et al., 2004) show promise and offers 

investigators a means of chemically mapping samples without the requirement for 

specific staining or labelling agents (Rabinovich et al., 2012). A major advantage of 

MSI lies in its ability to measure changes in markers that can be directly correlated to 

morphological features of interest, abrogating the need for time-consuming techniques 

such as laser capture micro-dissection (Mirnezami et al., 2014). Carter et al. (2016) and 

Brioude et al. (2016) have successfully used MSI to characterize region-specific protein 

or peptide distribution within tissue sections. More recently, Matsumoto et al. (2017) 

used MSI to examine the localisation and distribution of therapeutic compounds in lung 

tissue samples; this presents clinicians with the opportunity to investigate therapeutic 

drug efficacy from an entirely novel perspective.  

 

While MALDI-MSI is effective for the study of molecules at the upper end of the mass 

spectrum, such as proteins and peptides (Mirnezami et al., 2014), its success profiling 

metabolites at the lower end of the mass range (<1000 m/z) is still advancing (Miura et 

al., 2012). The DESI approach developed by Takáts et al. (2004) may be more suitable 

for metabolomics studies as ionization occurs under ambient conditions and can provide 

improved resolution of lower m/z value molecular species. The application of MSI to 

complement histopathology for the visualisation of metabolites is a promising avenue 

for studies into chronic lung conditions, where such applications are yet to be applied 

outside of pulmonary diseases such as lung cancer.  

 

Metabolomics provides complementary insight into disease pathogenesis alongside the 

measurements of transciptomics and proteomics. Metabolomics can uniquely provide 
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detail of perturbations in fundamental biochemical pathways or mechanisms, such as 

TCA cycle and oxidant metabolism, or the identification of novel and as-yet 

undescribed biochemical processes. The great strength of metabolomics data however is 

in its interpretation. Whilst many thousands of features representing metabolism can be 

measured in any given metabolomics analysis, the unambiguous assignment of chemical 

identity continues to slow interpretative progress. Efforts of data mining and reduction, 

which allow resources to quickly channel toward the most relevant metabolite entities 

for ongoing validation, are integral to study translation. 

 

1.8 Conclusion 

 

For clinical studies, moving from exploratory metabolomics to a biochemical 

understanding, and ultimately improving patient outcomes, can only be achieved by 

strict experimental design and the fastidious collection of complementary phenotypic 

data; including but not limited to, extensive patient observations and prognoses, and 

wherever can be afforded, other functional diagnostic measurements including existing 

pathology markers and further exploratory ‘omics analyses. The extensive cataloguing 

of such metadata remains a challenge, however as the technology continues to advance 

and metabolomics data become increasingly information-rich, clinical outcomes will 

also improve, but only if the means to interpret the measurements are also considered. 

Chronic lung diseases such as COPD, asthma and IPF constitute some of the most 

common pulmonary disorders and are major causes of mortality worldwide. These 

diseases of the lung are highly heterogenous and remain difficult to define in a clinical 

context. The inherent complexity of these disease phenotypes pose difficulties for 

accurate diagnosis and prognosis, and as such expanding on the currently adopted 

diagnostic and prognostic tools by inclusion of data-rich metabolomics measurements 
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will provide new angles of discovery and insight. Here we have highlighted some of the 

major metabolic pathways perturbed in chronic lung diseases as well as provide an 

overview of the techniques commonly used for discovery metabolomics. As one of the 

most rapidly advancing fields in post-genomics research, metabolomics is a promising 

discovery tool that can facilitate a greater understanding of chronic lung diseases at the 

phenotypic level, and ultimately lead to the development of personalized approaches in 

patient diagnosis and treatment. 
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Untargeted metabolomics of human plasma reveal unique lipid markers in COPD 

and IPF patients 

 

Adapted from Nambiar, S.; Bong, S. H.; Rawlinson, C.; Gummer, J. P. A.; Moodley, 

Y.; and Trengove, R. D. (2018) “Untargeted metabolomics of human plasma reveal 

unique lipid markers in COPD and IPF patients” Ready for submission to Respiratory 

Medicine 

 

2.1 Abstract 

 

New paradigms have been proposed to describe similarities in the pathogenesis of 

chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF) 

despite their clinical, radiological and pathological differences. Here, we applied an 

untargeted metabolomics approach to profile plasma samples from patients with COPD 

and IPF compared to samples from healthy subjects. The study successfully identified a 

number of metabolites, particularly lipid constituents which may be indicative of shared 

responses of these diseases to environmental stress. A total of 65 individual plasma 

samples were analysed, 21 of which were from patients diagnosed with COPD, 24 from 

IPF and 20 from healthy control participants (HC). Untargeted metabolomics profiling 

was performed using an ultra-high performance liquid chromatography-quadrupole 

time-of-flight mass spectrometer (UHPLC-QTOF-MS) equipped with a C18 column in 

positive ion acquisition mode. Non-polar metabolites such as fatty acids and membrane 

lipids were well-resolved using the reversed-phase method and a total of 4,805 features 

(chromatographic peaks with specific retention time and mass-to-charge ratio) were 

identified following data normalisation, quality control corrections, and applications of 

dimensionality reduction techniques such as principal component (PCA) and orthogonal 
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projections to latent structures discriminant analyses (OPLS-DA). Multivariate statistics 

performed using both Progenesis QI and EZinfo software packages showed distinct 

separation between COPD and IPF compared to the healthy controls and the most 

significant features were identified using multiple database matching. Differences in 

metabolite compositions such as lipid mediators, bilirubin and dihydrotestosterone were 

observed between diseased and control groups, as well as within COPD and IPF 

diseased groups. 

 

Keywords: metabolomics, lung, plasma, COPD, IPF 

 

2.2 Introduction 

 

Chronic lung diseases are complex diseases that affect a significant portion of the 

population with increasing incidence and mortality (Papaioannou et al., 2018). COPD, a 

smoking-induced lung disease, accounts for the majority of chronic lung disease 

mortalities, while more than 15,000 deaths per year are attributed to idiopathic 

pulmonary fibrosis (Kusko et al., 2016). COPD is defined as a disease state 

characterized by exposure to a noxious agent such as cigarette smoke-induced with 

airflow limitation resulting from infiltration of inflammatory cells (Lin and Jiang, 2015; 

Naz et al., 2017). Patients diagnosed with COPD sustain destruction of lung elastin and 

other extracellular matrix proteins, increased alveolar cells apoptosis, and cellular repair 

that leads to airspace enlargement characteristic of emphysema (Kusko et al., 2016). 

IPF, on the other hand, is characterized by a pattern of ‘usual interstitial pneumonia’ 

(Chilosi et al., 2012), including active fibroblast proliferation associated with minimal 

inflammation, extracellular matrix deposition, and abnormal alveolar remodelling 

(Kusko et al., 2016; Papaioannou et al., 2018). There is growing evidence to support the 
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role of metabolic dysregulation in the pathogenesis of COPD and IPF. Metabolomics 

can provide the means to study such changes and can potentially identify biomarkers to 

improve disease diagnosis and treatment.  

 

The fundamental aim of metabolomics is to identify the changes in metabolite 

composition associated with physiological or pathological change. Both lung conditions 

are highly heterogeneous, and the lack of diagnostic and predictive biomarkers has 

hindered new therapeutic interventions and the implementation of precision treatment. 

Studies by Reinke et al. (2017) and Maniscalco et al. (2018) has demonstrated changes 

in metabolite profiles of asthma, COPD and IPF participants. These studies highlighted 

the growing appeal of using metabolomics to profile challenging lung diseases as well 

as discriminate individuals based on levels of disease severity and lung exacerbations 

(Bowler et al., 2017). Recent metabolomics studies of COPD have focused on targeted 

mass spectrometry (MS) based approaches which provided absolute quantitation of 

predetermined proteins of interest (Leung et al., 2016; Niu et al., 2017; Fujii et al., 

2017). Kang et al. (2016) and Cruickshank-Quinn et al. (2017), on the other hand, used 

untargeted MS-based metabolomics to profile changes in the lung tissue and plasma of 

IPF and COPD patients and showed changes in a number of biochemical pathways. 

Untargeted MS-based metabolomics generally result in greater metabolite coverage 

compared to targeted approaches.  

 

This study was based on the application of untargeted metabolomics to profile plasma 

samples derived from COPD and IPF patients. Data generation was followed by the 

application of multivariate statistics for both supervised and unsupervised approaches to 

identify putative biomarkers of interest. The identity of these compounds were then 
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elucidated by database matching using LIPID MAPS, Biomolecules, ChEBI, HMDB 

and Drug Bank.  

 

2.3 Materials and Methods 

 

2.3.1 Chemicals and Reagents 

 

UPLC-grade methanol (MeOH), acetonitrile (ACN), water (H2O) and chloroform were 

sourced from Fisher Scientific (Thermo Fisher, Australia). The internal standard d6 t-

cinnamic acid and formic acid were obtained from Sigma-Aldrich (New South Wales, 

Australia). 

 

2.3.2 Biological samples 

 

A total of 65 plasma samples were used in this study. 21 samples were obtained from 

patients diagnosed with COPD, 24 samples were obtained from IPF and 20 samples 

were obtained from healthy controls (HC). The associated demographic information 

(de-identified) was provided in Supplementary Table 2.1. The samples were stored in -

80°C until further analysis. Sample handling and experimental protocols were approved 

by the Royal Perth Hospital Human Research Ethics Committee (Reference number: 

REG 15-204). 

 

2.3.3 Sample preparation 

 

Plasma samples were prepared using a modified Bligh and Dyer extraction method. 

Once thawed on ice, samples were centrifuged (1 min, 4 °C, 16,100 x g) to pellet any 
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precipitate upon initial freezing. 100 µL of plasma was aliquoted into a new 

microcentrifuge tube to which 300 µL of MeOH (containing the internal standard d6 t-

cinnamic acid at 83.3 ng/mL) and 100 µL of chloroform were added. Samples were then 

vortexed for 10 s and incubated for 10 mins at 4 °C and 1,600 x rpm in a benchtop 

Thermomixer (Eppendorf). An additional 200 µL of H2O was added and vortexed for 

another 10 s. The samples were then incubated for an additional 10 mins at 4 °C and 

1,600 x rpm. After incubation, the precipitate was pelleted by centrifugation for 10 mins 

at 4 °C and 16,100 x g. The aqueous phase (250 µL; polar fraction) and organic layer 

(70 µL; non-polar fraction) were transferred to fresh microcentrifuge tubes by pipette. 

The organic layer was dried using a rotary vacuum concentrator for 10 mins and the 

dried sample stored at -80 °C until analysis. From the aqueous phase, the majority of 

MeOH were removed by rotary vacuum concentrator for 90 mins followed by the 

addition of 100 µL of H2O for the dilution of any remaining MeOH. Samples were 

frozen by submersion in liquid nitrogen and lyophilized to dryness before storage at  

-80 °C. Pooled samples were also generated for quality control (QC) normalization by 

aliquoting 20 µL from each sample into a single tube and extractions were carried out as 

per the above method. Blank extractions were also performed; however, plasma was 

substituted with 100 µL of H2O. 

 

2.3.4 Mass spectrometry acquisition 

 

Sample analysis was performed by ultra-high performance liquid chromatography 

quadrupole-time-of-flight mass spectrometry (UHPLC-QTOF-MS) using a Shimadzu 

Nexera LC30AD LC system coupled to a SCIEX Triple-TOF 5600 MS. The LC unit 

was equipped with a 1.7 µm Kinetex C18 (100 x 2.1 mm) column from Phenomenex, 

and chromatography achieved using mobile phase A at 0.2 % formic acid and ACN 
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(0.2 % formic acid, B) at a solvent flow rate of 300 µL/min. An isocratic composition of 

1 % B was used for the first min, with a subsequent solvent gradient increasing to 

99.5 % B over 36 mins and a 1 min hold, before returning to 1 % B at 39 mins and 

holding to 40 mins. The CTO-20A column oven (Shimadzu) was held at 35 °C. The ion 

source was operated at a temperature of 550 °C, using a positive ion spray voltage of 

5500 V; and nebulisers, heater and curtain gas pressures of 45, 50 and 30 psi, 

respectively. Data were acquired with a mass range of m/z 50 – 1,000 using an 

independent data mode of acquisition (IDA) including a sweeping collision energy of 35 

± 15. Analyst v1.5 (SCIEX) was used for instrumental control and data acquisition. Due 

to the limited amount of sample available, this study was focused on positive ion mode 

acquisition as a first pass. 

 

2.3.5 Data processing and statistical analysis 

 

The raw MS data were imported and processed with Progenesis QI (version 2.2, 

Nonlinear Dynamics, Newcastle, UK). After chromatographic alignment, ion patterns 

were deconvoluted between 1 and 36 mins of the acquisitions. Adduct ion signatures for 

[M+H]+, [M+Na]+, [M+K]+ and [M+NH4]
+ were deconvoluted from the acquired raw 

MS data in positive mode followed by normalisation of the detected features to all 

compounds. Background correction was performed by excluding ion patterns with a 

two-fold higher abundance in blank versus QC samples and a coefficient of variation of 

the peak area > 30 % in the QC samples, as recommended by Dunn et al. (2012), 

Wehrens et al. (2016) and Broadhurst et al. (2018). The normalized abundances of the 

remaining features were subjected to multivariate analysis with EZinfo (Umetrics, 

Umeå, Sweden) for identification of features of interest. The data was Pareto-scaled and 

principal component analysis (PCA) was performed to visualize trends and detect 
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outliers among observations in the scores plot. PCA was followed by orthogonal partial 

least square discriminant analysis (OPLS-DA) including model cross-validation to 

compare discriminant features between healthy controls (HC) and COPD, HC and IPF 

as well as between COPD and IPF samples. Results were further interrogated using a 

variable importance in projection (VIP)-plot to find discriminative metabolite 

candidates having a score of ≥ 1. Subsequently, each metabolite candidate was reviewed 

for its ion alignment and chromatographic peak shape. The features of interests were 

extracted from S-plots constructed following OPLS-DA analysis based on their 

contribution to the variation and correlation between the two groups. Selected features 

were interrogated against databases including LIPID MAPS, Biomolecules, Chemical 

Entities of Biological Interest (ChEBI), Drug Bank and the Human Metabolome 

Database (HMDB) at a mass accuracy of 10 ppm for metabolite structure and formula. 

 

2.4 Results and Discussion 

 

A total of 19,955 features were curated to 4,805 following data pre-processing and 

filtration. PCA was applied to obtain an overview of the variations between COPD, IPF, 

healthy and QC samples. Two different PCAs were applied to assess the changes in 

grouping by applying background correction or noise reduction. Figure 2.1 showed two 

PCA scores plot of which one was generated prior to background correction and the 

other was generated post-correction. An increased separation of experimental groups 

was observed upon correction and the pooled QC samples were found to be tightly 

clustered towards the centre of the scores plot. While complete discrimination was not 

achieved, a degree of separation of the IPF samples from the other HC and COPD 

(except sample 6) samples was observed. The COPD sample 6 appeared to be sitting 

within the IPF cluster while the three HC outliers were still identified prior to and 
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following QC corrections.  These were likely to have been caused by multiple sampling 

sites, inconsistencies in sample collection or mislabelled samples. 

 

 

 

 

Figure 2.1 Principal component analysis scores plots using the first two principal 

components showing all samples analysed. PCA plot (A) was generated before 

background correction and PCA plot (B) was generated after the corrections were 

applied. Black, blue, green and red squares represent pooled QC samples, IPF samples, 

healthy controls and COPD samples, respectively. 

 

 

 

A 

B 
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To further separate the disease groups, a supervised approach using OPLS-DA 

modelling was applied. OPLS-DA was performed to evaluate the differences between 

the following groups: HC and COPD, HC and IPF, and between COPD and IPF. The 

OPLS-DA models presented in Figure 2.2 resulted in acceptable model characteristics 

and showed distinct sample grouping. The remaining samples (HC versus IPF, COPD 

versus IPF) were found to be well-separated along the predictive component axis (t[1]). 

The OPLS-DA prediction model was able to classify the samples into the respective 

COPD and IPF diseased groups. The scores plot for COPD versus IPF showed a similar 

trend to the OPLS-DA model for HC versus IPF and was presented in Figure 2.3 with 

two outliers. COPD sample 6 was the same outlier identified in the PCA and was 

positioned near the IPF cluster while the IPF sample 2 outlier fell outside the disease 

cluster. To improve the modelling, both the outliers were removed and the OPLS-DA 

scores plot was fitted again. Figure 2.3B showed an improved, well clustered OPLS-DA 

model which clearly separated the two diseases.  

 

S-plots were then derived from each of the OPLS-DA models and were used to identify 

features of interest unique to each group based on covariance and correlation between 

the ion features and causative factors (Ni et al., 2008; Worley and Powers, 2013). The 

ions in the S-plot furthest away from the origin were regarded as the most significant 

endogenous features within the study-specific group. The 10 most statistically 

significant features from each group within the S-plots were then selected and subjected 

to database matching. With this approach, only metabolite features with strong model 

contribution and high reliability were selected. A total of 60 features of interest were 

annotated using LIPID MAPS, Biomolecules, ChEBI, HMDB and Drug Bank databases 

with a specified mass error of 10 ppm. By comparing the accurate mass values, 

chemical formula and isotopic similarities, seven features were putatively identified, 
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and the results were listed in Table 2.1. The fold-change of the putative identities of 

interest between COPD and HC, IPF and HC, and COPD and IPF were also calculated 

and presented in Table 2.1. All other related statistics and database information were 

summarised in Supplementary Table 2.2. 
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Figure 2.2 Orthogonal Projection to Latent Structure-Discriminant Analysis (OPLS-DA) models between HC and COPD samples (A), and HC and IPF 

samples (B). The S-plots generated from the respective OPLS-DA scores plots were presented directly below. Blue, green and red squares represent 

IPF samples, healthy controls and COPD samples, respectively. 

A B 
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Figure 2.3 Orthogonal Projection to Latent Structure-Discriminant Analysis (OPLS-DA) models between COPD and IPF samples. The two observed 

outliers (COPD sample 6 and IPF sample 2) were removed and the OPLS-DA scores plot was fitted resulting in the model on the right. The S-plot 

generated from newly fitted OPLS-DA model was presented directly below. Red and blue squares represent COPD and IPF samples, respectively. 

A B 
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Table 2.1 The m/z values, putative identification and fold changes of features of interest 

derived using multivariate statistics and database matching. Additional filtering criteria 

including CV < 30%, mass accuracy < 10 ppm and VIP ≥ 1 were also applied. 

 
Database Feature m/z Putative Identification Fold Changes 

LipidMAPS 281.2491 Linoleic acid 

COPD→HC IPF→HC IPF→COPD 

1.73 2.13 1.23 

255.2331 Palmitoleic acid 2.88 2.69 0.93 

 

283.2647 Oleic acid 2.15 2.48 1.15 

 

468.3122 Arachidonoyl tyrosine 1.30 0.85 0.65 

 

447.3488 Dihydrotesterone 0.06 0.08 1.30 

Biomolecules 281.2491 Linoleic acid 1.73 2.13 1.23 

 

255.2331 Palmitoleic acid 2.79 2.86 1.03 

 

283.2647 Oleic acid 2.06 2.53 1.23 

 

585.2721 Bilirubin 1.33 0.70 0.53 

ChEBI 281.2491 Linoleic acid 1.73 2.13 1.23 

 

255.2331 Palmitoleic acid 2.79 2.86 1.03 

 

283.2647 Oleic acid 2.06 2.53 1.23 

 

447.3488 Dihydrotesterone 0.06 0.08 1.36 

 

585.2721 Bilirubin 1.33 0.70 0.53 

HMDB 281.2491 Linoleic acid 1.73 2.13 1.23 

 

255.2331 Palmitoleic acid 2.79 2.86 1.03 

 

283.2647 Oleic acid 2.06 2.53 1.23 

 

447.3488 Dihydrotesterone 0.06 0.08 1.36 

 

223.0970 LysoPC 0.41 1.02 2.46 

DrugBank 281.2491 Linoleic acid 1.73 2.13 1.23 

 
255.2331 Palmitoleic acid 2.79 2.86 1.03 

 

283.2647 Oleic acid 2.06 2.53 1.23 
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A total of 46 discriminative features were identified after the application of multivariate 

statistical analyses. Of these, four metabolic features with m/z 468.3122, m/z 496.3437, 

m/z 313.1556 and m/z 293.0996 were not identified due to unsuccessful library 

matching. Features m/z 281.2491, m/z 255.2331, m/z 283.2647 were putatively 

identified as linoleic acid, palmitoleic acid and oleic acid, respectively. Linoleic and 

oleic acids were shown to be consistently two-folds higher in COPD and IPF samples 

compared to the HC while palmitoleic acid was more than two-fold up-regulated in both 

disease cohorts. Two features were shown to be down-regulated; m/z 447.3488 was 

identified as dihydrotestosterone which was lower in abundance in COPD and IPF 

compared to HC while m/z 223.0970 was identified as a LysoPC and was approximately 

two-fold down-regulated in COPD compared to IPF and HC. Bilirubin and 

arachidonoyl tyrosine were assigned to feature m/z 585.2721 and m/z 468.3122 and 

showed approximately two-fold decreased in abundance for the IPF cohort compared to 

COPD and HC. Interestingly, all features with significant differences in abundance were 

either lipid mediators or constituents except for bilirubin. Of note, work published by 

Bulmer et al. (2013), Vogel et al. (2017) and Suh et al. (2018) described the potential 

association between bilirubin homeostasis and lipid pathophysiology in diseases such as 

Gilbert’s syndrome, atherosclerosis and cardiovascular diseases. Bilirubin is an inert 

anti-oxidant which enhances the peroxisome proliferator-activated receptor alpha 

(PPARα) signalling pathway involved in fatty acid beta-oxidation and is a major 

regulator of the energy metabolism (Stec et al., 2016). 

 

COPD and IPF are both chronic inflammatory disorders of the respiratory system which 

are characterized by excessive matrix degradation and tissue fibrosis. Clinical 

phenotypes of COPD and IPF are largely distinguished by airflow limitation, 

destruction of alveolar cells and pulmonary emphysema in COPD and parenchymal 
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scarring, alveolar wall thickening and restrictive lung function impairment in IPF. In 

this study, we have shown that both COPD and IPF were characterized by an increased 

presence of lipid constituents such as essential fatty acids sampled from circulating 

plasma. 

 

Results from this study identified an upregulation of the levels of linoleic acid, 

palmitoleic acid and oleic acid in COPD and IPF compared to HC. De Castro et al. 

(2006), Gangopadhyay et al. (2012) and Titz et al. (2016) reported that lipid mediators, 

in particular linoleic acid and oleic acid, were up-regulated in blood samples from 

COPD patients. The work of Balgoma et al. (2016) also supported the findings of this 

current study by showing an increase in linoleic acid-derived lipid mediators in COPD 

brochoalveolar lavage fluid (BALF) samples. Plasma linoleic, palmitoleic and oleic 

acids were also found to be elevated in patients suffering from interstitial lung disease 

(Steffen et al., 2018) and cystic fibrosis (Durieu et al., 2007). This increase in fatty 

acids suggested a tighter and more structured organisation of phospholipids within the 

plasma membrane resulting in lesser fluidity. Membrane fluidity in erythrocytes have 

been shown to decrease in COPD patients (Gangopadhyay et al., 2012), causing the 

lipid rafts to become more tightly packed and less mobile in the plane of membranes 

leading to their dysfunction.  

 

Linoleic acid can enzymatically produce epoxides via CYP activity which are further 

converted to leukotoxin and isoleukotoxin diols (Balgoma et al., 2016). These diols 

have been shown to exert cytotoxicity as they decrease net ion flux in alveolar epithelial 

monolayers and increase intercellular junction permeability (Shen and Hammock, 2012). 

These are known to contribute to chronic bronchitis (Balgoma et al., 2016). Chronic 

bronchitis is a prevalent clinical manifestation among COPD patients, especially within 
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the “smokers” cohort of the disease. The role of oleic acid as an inhibitor of the Na/K-

ATPase activity have been demonstrated in rabbit lung model (Vadasz et al., 2005), 

increasing endothelial permeability. Oleic acid has also been shown to induce acute 

respiratory distress syndrome (ARDS) in experimental models and lung injury were 

associated with elevated levels of lipid mediators (Akella et al., 2014). Gonçalves-de-

Albuquerque et al. (2012) suggested the participation of the Na/K-ATPase as the main 

target of oleic acid in the mechanism of ERK activation pathway in lung inflammation.  

 

Although there are limited reports of palmitoleic acid in previous COPD or IPF studies, 

this FA may be an important biomarker of the disease as it is one of the most abundant 

FAs in serum, liver and adipose tissues (Frigolet, and Gutiérrez-Aguilar., 2017). This 

study found an approximate three-fold increase in plasma palmitoleic acid in patients 

suffering from COPD and IPF compared to HC. Palmitoleic acid have also been 

associated with some cancer types. Prostate and breast cancer risk and incidence were 

increased with augmented palmitoleic acid concentration in blood (Chavarro et al., 

2013; Pouchieu et al., 2014). The correlation of palmitoleic acid in serum and plasma to 

variation within the SCD1 gene were shown to be associated with cancer mortality 

(Byberg et al., (2014); Manni et al., 2017). Mechanistically, SCD1 promotes cell 

survival through palmitoleic acid production and is hypothesised to be the underlying 

cause of cell proliferation and survival in cancer progression (Frigolet and Gutiérrez-

Aguilar., 2017). Using a bleomycin-induced fibrosis in a mice lung model, Sunaga et al. 

(2013) reported an increase in palmitoleic acid when elongation of the long chain fatty 

acids (Elovl6) rate-limiting enzyme is deficient. Elovl6 deficiency leads to the apoptotic 

effect of alveolar type 2 cells and caspase 3 activation in the lung, which result in the 

initiation and progression of fibrosis (Sunaga et al., 2013).  
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Interestingly, this study also showed that dihydrotestosterone was severely down-

regulated in patients with COPD and IPF by approximately 90%. Dihydrotestosterone 

and its 5α-reductase precursor, testosterone, are the predominant androgens in mammals. 

Testosterone levels have been shown to be reduced in patients with asthma (Canguven 

and Albayrak, 2011; Montano et al., 2014), cystic fibrosis (Leifke et al., 2003; 

Blackman and Tangpricha, 2016), hypoxic pulmonary fibrosis (Semple et al., 1984) and 

COPD (Svartberg et al., 2007; Laghi et al., 2009; Mousavi et al., 2012; Corbo et al., 

2014). The relaxant effect of testosterone may be important for understanding the 

pathophysiology of these lung diseases as it has been shown to affect the responsiveness 

of tracheal smooth muscles as well as the integrity of epithelium (Kouloumenta et al., 

2009).  

 

Factors that decrease testosterone levels in patients with COPD includes smoking, 

systemic inflammation and ageing (Laghi et al., 2009; Daabis et al., 2016). Testosterone 

deficiency along with the aforementioned risk factors can exacerbate COPD symptoms 

through a direct impact on respiratory muscles, diminishing overall strength and 

breathing capacity. An in vivo study conducted by Montano et al. (2014) showed that 

low circulatory testosterone and its metabolite, dihydrotestosterone was positively 

associated with reduced lung function in guinea pigs with allergic asthma. Furthermore, 

these androgens have been shown to induce relaxation of airway smooth muscle and 

mediated via decreased Ca2+ influx through the L-type Ca2+ channels in tracheal 

myocytes. Testosterone supplementation have also improved skeletal muscle strength 

and exercise capacity in COPD patients by acting as bronchoactive compounds to 

prevent airway spasm (Laghi et al., 2009; Baillargeon et al., 2018).  

 



 Chapter 2 

 

56 

 

Like testosterone, LysoPC may also be associated with Ca2+ sensitisation in tracheal 

myocytes. LysoPCs are involved in eosinophils infiltration and bronchoconstriction 

(Nishiyama et al., 2014), and studies by Kume et al. (2001), Nobata et al. (2005) and 

Bansal et al. (2016) linked LysoPC to the allergic cascade in airway diseases like 

asthma. These studies showed LysoPC-induced expression of various adhesion 

molecules on the vascular endothelium and increases permeability, which led to 

inflammation in the lungs. However, the LysoPC levels reported were higher in the 

asthmatic cohort as opposed to the down-regulation observed in our study. Yoder et al. 

(2014) also supported the increased level of LysoPC by demonstrating the elevation in 

BALF samples of asthmatic patients. A lung cancer biomarker study by Dong et al. 

(2011) reported a decrease of LysoPCs in plasma samples. LysoPCs can be converted to 

phosphatidylcholines by LysoPC acyltransferase in the lung surfactant, where lung 

surface tension is maintained to preserve essential respiratory functions. Although there 

were no changes in LysoPC levels between IPF and HC, the two-fold increase between 

IPF and COPD was indicative of LysoPC’s emerging role in IPF pathogenesis. 

Rindlisbacher et al. (2018) consistently found elevated amounts of LysoPC in serum 

samples from IPF patients compared to healthy individuals. LysoPC is also a precursor 

of lysophosphatidic acid (LPA), a bioactive glycerophospholipid. LPA has been shown 

to induce fibrosis in the lungs and other organs including kidney and liver via epithelial 

cell death, vascular leakage and fibroblastic proliferation (Tager et al., 2008; Kaffe et 

al., 2016; Alsafadi et al., 2017; Sakai et al., 2017).  

 

There appeared to be no difference between the levels of bilirubin and arachidonoyl 

tyrosine in COPD and HC samples. However, the levels of both compounds were found 

to be down-regulated in the IPF cohort compared to both HC and COPD. In the haem 

degradation pathway, haem oxygenase converts haem to biliverdin which is then 
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converted to bilirubin using biliverdin reductase before being excreted (Ye et al., 2008; 

Zhao et al., 2017). Haem oxygenase and bilirubin are considered to be oxidative stress 

responsive molecules involved in the pathogenesis of lung diseases such as 

hypersensitivity pneumonitis, sarcoidosis, lung cancer, COPD and IPF (Ye et al., 2008; 

Horsfall et al., 2011; Curjuric et al., 2014; Brown et al., 2017; Zhao et al., 2017). Their 

role in the pathogenesis of IPF may be explained in two ways: the downregulation may 

either serve as an adaptive mechanism to protect the tissue against harmful effects of 

haem degradation products (Ye et al., 2008), or it may indicate a loss of protection 

against oxidative stress (Curjuric et al., 2014). The beneficial effects of serum bilirubin 

on respiratory outcomes have been reported in several lung studies. High serum 

bilirubin was associated with lower cancer mortality, including that of lung cancer 

(Brown et al., 2017). Horsfall et al. (2011) demonstrated that higher levels of bilirubin 

were associated with a lower risk of respiratory diseases such as lung cancer and COPD 

and caused mortality among patients with normal-range bilirubin levels in primary care 

practices in the United Kingdom. Zhao et al. (2017) showed that an up-regulation of 

haem degradation pathway that supported the hypothesis of an oxidant-antioxidant 

imbalance in the pathogenesis of IPF.  

 

We have also identified an endogenous lipid, arachidonoyl tyrosine, responsible for N-

arachidonoyl dopamine (NADA) biosynthesis. NADA plays an important role in pain 

and inflammation and its synthesis primarily occurs through an enzyme-mediated 

conjugation of arachidonic acid with dopamine (Grabiec and Dehghani, 2017). A study 

by Wilhelmsen et al. (2014) demonstrated that a reduction in NADA led to 

inflammatory responses in human lung microvascular endothelial cells. The study also 

reported the ability of inflammatory agonists such as bacterial lipopeptides and tumour 

necrotic factor-alpha (TNF-α) dampened the activation of the primary endothelial cells. 
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Although NADA was not detected in our study, the down-regulation of its precursor 

arachidonoyl tyrosine may potentially contribute to the inflammatory response in IPF. 

 

In this study, we identified a number of unique lipid mediators including linoleic, 

palmitoleic and oleic acids that suggest dysregulated metabolic pathways associated 

with lung inflammation and progression of fibrosis (Sunaga et al., 2013; Daabis et al., 

2016). The analysis also detected arachidonoyl tyrosine, bilirubin, dihydrotestosterone 

and lysoPC, metabolites that play key roles in regulating the lung energy metabolism 

(Brown et al., 2017; Zhao et al., 2017). While the OPLS-DA approach provided robust 

classification models, a separate validation study is required to confirm these findings. 

Future correlation studies incorporating patient demographics and metadata 

(Supplementary Table 2.1) will also strengthen the multivariate statistical models as 

well as aid in disease stratification. Targeted analysis and data-independent acquisition 

strategies reported by Gethings et al. (2017) and Moseley et al. (2018) can also be used 

to provide qualitative and quantitative measurements to establish reference levels of 

disease. 
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2.5 Conclusion 

 

COPD and IPF are complex lung disorders that are poorly defined to their 

heterogeneous phenotypes and poses considerable challenges in the development of 

accurate diagnostics. Here, we showed that untargeted profiling of plasma by UHPLC-

QTOF-MS followed by the application of multivariate statistics provided an efficient 

and robust metabolomics pipeline for the investigation of plasma from different 

pulmonary conditions. The multivariate statistical models generated were able to 

discriminate diseased patients from healthy controls. In addition, this study also showed 

potential dysregulation of the cellular energy metabolism in COPD and IPF based on 

the identification of metabolites that are associated with increased inflammation and 

oxidative stress in the lung.  
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Supplementary Table 2.1 Patient demographics and clinical characteristics including sex, age, history of smoking as well as c-reactive protein (CRP), 

soluble tumour necrosis factor receptor-1 (sTNFR1), forced expiratory volume in 1 sec (FEV1) and forced vital capacity (FVC) levels. 

 

 Sex Age Smoking CRP (mg/L) sTNFR1 (pg/mL) FEV1 (L) FEV1 (%) FVC FVC %  FEV1/FVC ratio 

Healthy subjects 

 

          

1 Male 63 non-smoker 0.06 588 n/a n/a n/a n/a n/a 

2 Female 57 non-smoker 0.06 513 n/a n/a n/a n/a n/a 

3 Male 63 non-smoker 0.89 767 n/a n/a n/a n/a n/a 

4 Male 60 non-smoker 4.46 480 n/a n/a n/a n/a n/a 

5 Female 54 non-smoker 6.14 413 n/a n/a n/a n/a n/a 

6 Male 90 non-smoker 0.65 642 n/a n/a n/a n/a n/a 

7 Female 77 non-smoker 0.80 652 n/a n/a n/a n/a n/a 

8 Male 56 non-smoker 5.96 557 n/a n/a n/a n/a n/a 

9 Male 61 non-smoker 0.84 715 n/a n/a n/a n/a n/a 

10 Female 77 non-smoker 0.40 502 n/a n/a n/a n/a n/a 

11 Male 78 ex-smoker 0.39 477 n/a n/a n/a n/a n/a 

12 Male 84 ex-smoker 0.58 410 n/a n/a n/a n/a n/a 

13 Male 75 never smoked 1.01 621 n/a n/a n/a n/a n/a 

14 Male 78 ex-smoker 0.69 374 n/a n/a n/a n/a n/a 

15 Female 74 never smoked 1.00 517 n/a n/a n/a n/a n/a 

16 Male 76 ex-smoker 2.34 737 n/a n/a n/a n/a n/a 

17 Female 76 ex-smoker 0.41 529 n/a n/a n/a n/a n/a 

18 Male 83 never smoked 7.12 622 n/a n/a n/a n/a n/a 

19 Female 80 never smoked 0.85 524 n/a n/a n/a n/a n/a 

20 Female 77 ex-smoker 2.02 443 n/a n/a n/a n/a n/a 
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COPD patients 

 

          

1 Male 64 ex-smoker 10.73 297 2.07 55% 3.80 75% 0.54 

2 Male 83 ex-smoker 6.95 901 0.57 25% n/a n/a n/a 

3 Male 69 ex-smoker 11.23 503 1.01 34% 3.26 81% 0.31 

4 Male 84 ex-smoker 45.21 990 1.19 63% 2.49 89% 0.48 

5 Female 77 ex-smoker 5.80 468 0.77 38% 2.68 99% 0.29 

6 Female 60 ex-smoker 5.24 630 0.99 41% 2.97 95% 0.33 

7 Male 70 ex-smoker 2.52 351 0.60 21% 2.79 71% 0.22 

8 Female 77 ex-smoker 2.84 563 0.63 42% 1.28 63% 0.49 

9 Male 75 ex-smoker 2.84 365 1.13 47% 2.66 79% 0.42 

10 Male 76 ex-smoker 8.67 518 0.83 30% 2.28 60% 0.36 

11 Male 82 ex-smoker 6.26 599 0.99 34% 2.27 56% 0.44 

12 Male 82 ex-smoker 3.02 650 1.29 54% 2.90 84% 0.44 

13 Male 79 ex-smoker 26.15 1432 0.73 31% n/a n/a n/a 

14 Male 69 ex-smoker 26.61 449 0.86 25% n/a n/a n/a 

15 Male 65 ex-smoker 2.81 558 1.45 42% 4.12 89% 0.35 

16 Male 69 ex-smoker 38.10 854 1.43 45% 2.88 66% 0.50 

17 Female 89 ex-smoker 177.83 1321 0.67 41% 1.88 85% 0.36 

18 Female 79 ex-smoker 2.64 760 0.81 49% 1.55 69% 0.52 

19 Female 66 ex-smoker 11.69 504 0.64 26% 1.92 59% 0.33 

20 Male 81 ex-smoker 12.64 662 1.75 74% 3.56 106% 0.49 

           

IPF patients 

 

          

1 Male 64 ex-smoker n/a n/a n/a n/a 2.79 68 n/a 

2 Male 73 ex-smoker n/a n/a n/a n/a 1.38 59 n/a 

3 Male 75 ex-smoker n/a n/a n/a n/a 2.84 67 n/a 
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4 Male 69 ex-smoker n/a n/a n/a n/a 2.31 64 n/a 

5 Male 79 only teen n/a n/a n/a n/a 2.65 103 n/a 

6 Male 71 ex-smoker n/a n/a n/a n/a 3.7 85.1 n/a 

7 Female 71 ex-smoker n/a n/a n/a n/a 2.53 95.5 n/a 

8 Male 67 3 pack/years n/a n/a n/a n/a 3.43 79 n/a 

9 Male 74 ex-smoker n/a n/a n/a n/a 2.18 60 n/a 

10 Male 63 ex-smoker n/a n/a n/a n/a 1.56 48 n/a 

11 Male 73 ex-smoker n/a n/a n/a n/a 4.09 83 n/a 

12 Male 60 never smoked n/a n/a n/a n/a 3.63 69 n/a 

13 Male 63 ex-smoker n/a n/a n/a n/a 2.7 69 n/a 

14 Male 66 ex-smoker n/a n/a n/a n/a 1.72 38 n/a 

15 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 

16 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 

17 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 

18 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 

19 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 

20 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 

21 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 

22 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 

23 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 

24 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
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Supplementary Table 2.2 The m/z values, chemical formulas, mass error, percentage isotopic similarities, ANOVA p-values as well as the mean 

abundances, relative standard deviations and fold changes of metabolite features annotated using LIPID MAPS, Biomolecules, ChEBI, HMDB and 

Drug Bank databases. 

 

Database Feature 

m/z 

Adduct Chemical 

Formula 

Mass 

error 

ppm 

Isotope 

similarity 

% 

ANOVA 

p-value 

HC COPD IPF 

Mean %RSD Mean %RSD FoldChange 

(HC) 

Mean %RSD FoldChange 

(HC) 

FoldChange 

(COPD) 

LipidMAPS 281.2491 M+H C18H32O2 5.54 97.27 1.49E-02 4536.05 56.00 8064.56 53.36 1.78 9360.56 71.77 2.06 1.16 

 255.2331 M+H  C16H30O2 5.06 98.13 3.71E-03 1609.23 78.95 4631.58 80.14 2.88 4321.82 109.58 2.69 0.93 

 496.3438 M+H  C24H50NO7P 8.08 97.56 1.62E-01 39778.32 51.50 44409.52 36.73 1.12 43429.30 43.27 1.09 0.98 

 520.3439 M+H  C26H50NO7P 7.88 95.52 5.87E-02 80004.33 51.42 93608.97 48.55 1.17 101194.74 32.95 1.26 1.08 

 283.2647 M+H C18H34O2 5.36 98.25 7.68E-03 7578.42 69.48 16301.89 63.55 2.15 18783.78 86.80 2.48 1.15 

 522.3599 M+H C26H52NO7P 8.61 97.12 4.75E-02 67351.83 49.75 87303.54 40.89 1.30 82801.42 41.51 1.23 0.95 

 468.3122 M+H C29H41NO4 2.87 94.11 3.14E-01 15422.84 56.00 20010.25 77.11 1.30 13094.73 48.42 0.85 0.65 

 331.0558 M+Na C18H12O5 -6.21 87.60 1.71E-06 4708.33 230.43 100.70 96.11 0.02 1171.62 458.27 0.25 11.63 

 293.0996 M+H C15H16O6 -8.12 96.49 4.32E-09 209813.07 229.66 2847.12 440.84 0.01 52210.26 487.94 0.25 18.34 

 447.3488 M+H C28H46O4 4.26 90.74 8.20E-03 2921.88 249.00 172.58 56.53 0.06 225.02 80.78 0.08 1.30 

 585.2721 M+H C32H40O10 4.61 94.42 1.40E-01 11453.01 104.67 14930.72 66.02 1.30 7569.45 73.91 0.66 0.51 

 496.3437 M+Na C29H47NO4 8.28 98.60 1.80E-02 249023.62 50.68 270223.09 37.53 1.09 263898.71 33.44 1.06 0.98 

Biomolecules 281.2491 M+H C18H32O2 5.54 97.27 1.49E-02 4536.05 56.00 7837.51 54.66 1.73 9647.57 70.19 2.13 1.23 

 255.2331 M+H   C16H30O2 5.06 98.13 3.71E-03 1609.23 78.95 4490.77 83.51 2.79 4606.20 109.22 2.86 1.03 

 283.2647 M+H C18H34O2 5.36 98.25 7.68E-03 7578.42 69.48 15582.64 64.67 2.06 19196.91 86.39 2.53 1.23 

 468.3122 M+H C29H41NO4 2.87 94.11 3.14E-01 15422.84 56.00 20004.03 79.14 1.30 14213.15 44.43 0.92 0.71 

 429.2415 M+H C25H28N6O 4.12 96.62 4.32E-07 17499.11 282.30 18062.47 225.41 1.03 26.04 86.34 0.00 0.00 
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 313.1556 M+H C18H20N2O3 3.14 96.44 n/a 144.47 38.64 869.71 329.98 6.02 20131.64 50.55 139.34 23.15 

 315.0818 M+H C16H14N2O3S 6.44 89.81 8.65E-08 26567.24 213.41 2046.02 259.84 0.08 9644.79 413.46 0.36 4.71 

 331.0558 M+H C10H16N2O8 6.70 93.02 1.71E-06 4708.33 230.43 99.76 99.44 0.02 1390.65 422.95 0.30 13.94 

 293.0996 M+K C11H18N4O3 -5.73 93.13 4.32E-09 209813.07 229.66 2982.96 431.17 0.01 62615.82 445.68 0.30 20.99 

 447.3488 M+K C28H46O4 4.26 90.74 8.20E-03 2921.88 249.00 169.17 58.41 0.06 229.82 82.81 0.08 1.36 

 585.2721 M+H C33H36N4O6 2.32 95.97 1.40E-01 11453.01 104.67 15262.54 65.47 1.33 8041.90 74.82 0.70 0.53 

 223.0970 M+H C12H14O4 2.31 98.15 1.80E-02 4507.94 80.66 1863.27 106.55 0.41 4590.72 93.35 1.02 2.46 

 239.0920 M+H C12H14O5 2.58 97.78 4.63E-02 3225.57 66.91 1005.22 125.71 0.31 2495.10 75.73 0.77 2.48 

 496.3437 M+H C29H47NO4 8.28 98.60 3.18E-02 249023.62 50.68 269158.70 38.61 1.08 277718.21 31.27 1.12 1.03 

ChEBI 281.2491 M+Na C18H32O2 5.54 97.27 1.49E-02 4536.05 56.00 7837.51 54.66 1.73 9647.57 70.19 2.13 1.23 

 255.2331 M+H C16H30O2 5.06 98.13 3.71E-03 1609.23 78.95 4490.77 83.51 2.79 4606.20 109.22 2.86 1.03 

 496.3438 M+H C24H50NO7P 8.08 97.56 1.62E-01 39778.32 51.50 44017.40 37.79 1.11 46390.68 39.97 1.17 1.05 

 283.2647 M+H C18H34O2 5.36 98.25 7.68E-03 7578.42 69.48 15582.64 64.67 2.06 19196.91 86.39 2.53 1.23 

 522.3599 M+H C26H52NO7P 8.61 97.12 4.75E-02 67351.83 49.75 87148.02 42.02 1.29 87175.00 39.70 1.29 1.00 

 468.3122 M+H C29H41NO4 2.87 94.11 3.14E-01 15422.84 56.00 20004.03 79.14 1.30 14213.15 44.43 0.92 0.71 

 429.2415 M+H C25H28N6O 4.12 96.62 4.32E-07 17499.11 282.30 18062.47 225.41 1.03 26.04 86.34 0.00 0.00 

 308.0520 M+H C9H13Cl2N6O2 -9.78 54.88 8.99E-08 5.67 253.33 6612.98 163.54 1166.63 862.41 307.46 152.14 0.13 

 313.1556 M+H C18H20N2O3 3.14 96.44 n/a 144.47 38.64 869.71 329.98 6.02 20131.64 50.55 139.34 23.15 

 315.0818 M+H C16H14N2O3S 6.44 89.81 8.65E-08 26567.24 213.41 2046.02 259.84 0.08 9644.79 413.46 0.36 4.71 

 371.1036 M+H C19H18N2O4S -6.42 77.03 1.97E-02 26571.60 70.41 45650.74 52.16 1.72 39475.60 69.44 1.49 0.86 

 331.0558 M+H C10H16N2O8 6.70 93.02 1.71E-06 4708.33 230.43 99.76 99.44 0.02 1390.65 422.95 0.30 13.94 

 293.0996 M+H C11H18N4O3 -5.73 93.13 9.00E-03 209813.07 229.66 2982.96 431.17 0.01 62615.82 445.68 0.30 20.99 

 447.3488 M+K C28H46O4 4.26 90.74 4.32E-09 2921.88 249.00 169.17 58.41 0.06 229.82 82.81 0.08 1.36 
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 346.0119 M+K C9H13Cl2N6O2 3.50 56.12 8.20E-03 23944.57 204.03 1718.13 300.36 0.07 4754.14 425.09 0.20 2.77 

 585.2721 M+H C33H36N4O6 2.32 95.97 1.40E-01 11453.01 104.67 15262.54 65.47 1.33 8041.90 74.82 0.70 0.53 

 223.0970 M+K C12H14O4 2.31 98.15 2.08E-08 4507.94 80.66 1863.27 106.55 0.41 4590.72 93.35 1.02 2.46 

 239.0920 M+H C12H14O5 2.58 97.78 1.14E-04 3225.57 66.91 1005.22 125.71 0.31 2495.10 75.73 0.77 2.48 

 496.3437 M+H C29H47NO4 8.28 98.60 1.80E-02 249023.62 50.68 269158.70 38.61 1.08 277718.21 31.27 1.12 1.03 

HMDB 281.2491 M+H C18H32O2 5.54 97.27 1.49E-02 4536.05 56.00 7837.51 54.66 1.73 9647.57 70.19 2.13 1.23 

 255.2331 M+Na C16H30O2 5.06 98.13 3.71E-03 1609.23 78.95 4490.77 83.51 2.79 4606.20 109.22 2.86 1.03 

 496.3438 M+H C24H50NO7P 8.08 97.56 1.62E-01 39778.32 51.50 44017.40 37.79 1.11 46390.68 39.97 1.17 1.05 

 520.3439 M+H C26H50NO7P 7.88 95.52 5.87E-02 80004.33 51.42 94824.45 48.80 1.19 106630.98 31.66 1.33 1.12 

 283.2647 M+H C18H34O2 5.36 98.25 7.68E-03 7578.42 69.48 15582.64 64.67 2.06 19196.91 86.39 2.53 1.23 

 522.3599 M+H C26H52NO7P 8.61 97.12 4.75E-02 67351.83 49.75 87148.02 42.02 1.29 87175.00 39.70 1.29 1.00 

 468.3122 M+H C29H41NO4 2.87 94.11 3.14E-01 15422.84 56.00 20004.03 79.14 1.30 14213.15 44.43 0.92 0.71 

 429.2415 M+H C25H28N6O 4.12 96.62 4.32E-07 17499.11 282.30 18062.47 225.41 1.03 26.04 86.34 0.00 0.00 

 313.1556 M+H C18H20N2O3 3.14 96.44 n/a 144.47 38.64 869.71 329.98 6.02 20131.64 50.55 139.34 23.15 

 315.0818 M+H  C16H14N2O3S 6.44 89.81 8.65E-08 26567.24 213.41 2046.02 259.84 0.08 9644.79 413.46 0.36 4.71 

 604.2959 M+H C29H41N5O9 -2.95 78.11 1.71E-06 4.53 84.40 629.06 438.73 138.75 5037.93 86.00 1111.20 8.01 

 331.0558 M+H C10H16N2O8 6.70 93.02 4.32E-09 4708.33 230.43 99.76 99.44 0.02 1390.65 422.95 0.30 13.94 

 293.0996 M+H C28H46O4 4.26 90.74 8.20E-03 209813.07 229.66 2982.96 431.17 0.01 62615.82 445.68 0.30 20.99 

 447.3488 M+H C33H36N4O6 2.32 95.97 1.40E-01 2921.88 249.00 169.17 58.41 0.06 229.82 82.81 0.08 1.36 

 585.2721 M+K C12H14O4 2.31 98.15 4.63E-02 11453.01 104.67 15262.54 65.47 1.33 8041.90 74.82 0.70 0.53 

 223.0970 M+H C24H48NO7P 6.18 95.04 1.09E-01 4507.94 80.66 1863.27 106.55 0.41 4590.72 93.35 1.02 2.46 

 239.0920 M+H C12H14O5 2.58 97.78 4.63E-02 3225.57 66.91 1005.22 125.71 0.31 2495.10 75.73 0.77 2.48 

 496.3437 M+H C29H47NO4 8.28 98.60 3.18E-02 249023.62 50.68 269158.70 38.61 1.08 277718.21 31.27 1.12 1.03 
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DrugBank 281.2491 M+H C18H32O2 5.54 97.27 1.49E-02 4536.05 56.00 7837.51 54.66 1.73 9647.57 70.19 2.13 1.23 

 255.2331 M+H C16H30O2 5.06 98.13 3.71E-03 1609.23 78.95 4490.77 83.51 2.79 4606.20 109.22 2.86 1.03 

 283.2647 M+Na C18H34O2 5.36 98.25 7.68E-03 7578.42 69.48 15582.64 64.67 2.06 19196.91 86.39 2.53 1.23 

 468.3122 M+H C29H41NO4 2.87 94.11 3.14E-01 15422.84 56.00 20004.03 79.14 1.30 14213.15 44.43 0.92 0.71 

 429.2415 M+H C25H28N6O 4.12 96.62 4.32E-07 17499.11 282.30 18062.47 225.41 1.03 26.04 86.34 0.00 0.00 

 315.0818 M+H C16H14N2O3S 6.44 89.81 8.65E-08 26567.24 213.41 2046.02 259.84 0.08 9644.79 413.46 0.36 4.71 

 371.1036 M+H C20H16N2O4 9.77 73.89 1.97E-02 26571.60 70.41 45650.74 52.16 1.72 39475.60 69.44 1.49 0.86 

 293.0996 M+H C10H16N2O8 5.65 92.55 4.32E-09 209813.07 229.66 2982.96 431.17 0.01 62615.82 445.68 0.30 20.99 

 239.0920 M+H C6H12N3O4P 7.45 92.53 3.18E-02 3225.57 66.91 1005.22 125.71 0.31 2495.10 75.73 0.77 2.48 
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SONAR enhances the specificity of unbiased lipid plasma profiling of idiopathic 

pulmonary fibrosis using UPLC-QTOF-MS 

 

Adapted from Nambiar, S.; Bong, S. H..; King, A.; Moodley, Y.; and Trengove, R. D. 

(2018) “SONAR enhances the specificity of unbiased lipid plasma profiling of 

idiopathic pulmonary fibrosis using UPLC-QTOF-MS” Ready for submission to 

Analytica Chimica Acta 

 

3.1 Abstract 

 

Idiopathic pulmonary fibrosis (IPF) is a chronic interstitial disease characterized by 

fibrosis and progressive loss of lung function. The pathophysiological pathways 

involved in IPF are not well understood. IPF is believed to be caused by repetitive 

alveolar epithelial cell injury and dysregulated repair mechanisms leading to 

uncontrolled proliferation of lung fibroblasts and excessive deposition of extracellular 

matrix in the interstitial space. In this study, we used ultra-performance liquid 

chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS) to 

characterize lipid changes in plasma derived from patients with stable and progressive 

IPF. We further applied a data independent acquisition (DIA) technique to improve the 

specificity by generating class-specific fragment ions through the use of a scanning 

quadrupole positioned prior to orthogonal acceleration TOF mass analyser. This DIA 

approach, known as SONAR, allowed specific precursor (MS1) and associated product 

ions (MS2) to be aligned on the basis of the quadrupole m/z position during the scan. 

Supervised partial least-squares discriminant analysis (OPLS-DA) modelling showed 

discrimination between the stable and progressive subjects. The study revealed up-

regulation of triglycerides while phosphatidylcholines were down-regulated in the 
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progressors versus stable group. These lipids were then identified by matching 

experimental fragment ions with in silico product ion spectra from LIPID MAPS with a 

mass tolerance of 10 ppm. The result of this study suggested a role for lipid metabolism 

dysregulation and mitochondrial-beta oxidation in progressive IPF samples and 

highlighted a number of promising candidates for biomarker development. 

 

Keywords: lipids, plasma, IPF, DIA, SONAR 

 

3.2 Introduction 

 

Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive lung disease characterized 

by alveolar epithelial cell damage, proliferation of activated fibroblasts and extracellular 

matrix accumulation that leads to irreversible distortion of the lung architecture (Kang 

et al., 2016). Previous studies suggested that IPF is related to abnormalities in a number 

of biological processes including glycolysis (Kang et al., 2016), fatty acid oxidation 

(Hamanaka et al., 2018) and vascular remodelling (Zhao et al., 2017). While genetic 

and molecular mechanisms associated with the development of fibrosis have been 

reported by Gangwar et al. (2017) and Zhao et al. (2017), the underlying disease 

pathophysiology remains unclear.  

 

Advances in analytical technologies have enabled the analysis of complex biological 

matrices by liquid chromatography-mass spectrometry (LC-MS). The ability to 

determine specific biomolecules and their relative abundance has been key to the 

understanding of biochemical change. Lipidomics, like metabolomics, is a developing 

field of systems biology research that studies lipids as key intermediates of cellular 

mechanisms and their roles in diseases such as asthma (Berry et al., 2017) and chronic 
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obstructive pulmonary disorder (COPD; Telenga et al., 2014). Lipidomic studies of 

complex biological matrices (plasma and tissue extracts) are routinely performed using 

targeted tandem mass spectrometry (MS/MS) or data dependent acquisition (DDA) 

methods for their high sensitivity and selectivity (Dautel et al., 2017; Kyle et al., 2018). 

The advent of high-resolution MS and data-independent acquisition (DIA) modes can 

now provide broad coverage for both MS and MS/MS data simultaneously in a single 

analytical run (Gethings et al., 2017).  

 

A key challenge in the analysis of complex lipid extracts from crude plasma samples is 

the co-elution of isomeric lipid species that can lead to false identification and 

quantitative inaccuracies (Cajka and Fiehn, 2014; Kyle et al., 2016). Here, we apply 

SONAR, a rapidly scanning DIA method in tandem with a UPLC-TOF-MS acquisition 

to provide additional MS/MS information. SONAR utilizes a narrow quadrupole scan 

window to provide cleaner spectra (Gethings et al., 2017), increase MS/MS spectral 

quality and consequently, improve compound database matching (Moseley et al., 2018). 

The qualitative and quantitative performance of SONAR compared to conventional 

quadrupole time-of-flight (QTOF)-MS method were assessed using plasma samples 

from stable and progressive IPF patients. Healthy controls were not included in this 

study as the principal aim of the study was to investigate plasma lipid differences 

between diseased groups. 
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3.3 Materials and Methods 

 

3.3.1 Chemicals and Reagents  

SPLASH LipidoMix standard (deuterium-labelled standard, SKU 330707), normalised 

against human plasma lipid levels, was purchased from Avanti Polar Lipids (Alabaster, 

USA). UPLC–MS grade water (H2O), acetonitrile (ACN) and isopropanol (IPA) were 

purchased from Thermo Fisher Scientific (Victoria, Australia). Formic acid and 

ammonium formate were sourced from Sigma-Aldrich (New South Wales, Australia) 

and the leucine enkaphalin standard for lock-mass acquisition was supplied by Waters 

(Wilmslow, United Kingdom). 

 

3.3.2 Biological samples 

 

A total of 60 plasma samples (30 stable and 30 progressors) were obtained from the 

Australian IPF registry and stored in -80 °C until further analysis. Sample handling and 

material transfer was approved by the Royal Perth Hospital Human Research Ethics 

Committee (Reference number: REG 15-204) and the experimental protocol used for 

this work was approved by the Murdoch University Human Research Ethics Committee 

(Approval number: 2017/254). 

 

3.3.3 Sample preparation 

 

The SPLASH LipidoMix standard was initially diluted 1:50 with IPA. Plasma samples 

were thawed on ice and immediately transferred to 96-well plates. 20 µL of samples 

were pipetted into each well followed by the addition of 30 µL of H2O. The extraction 

of lipids was carried out by adding 200 µL of IPA (consisting of the diluted SPLASH 
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LipidoMix) into each well. The plates were immediately heat-sealed using Eppendorf® 

heat sealing foil and mixed briefly before incubation for 2 hrs at 4 °C. Sample plates 

were removed and centrifuged at 4,500 x g for 10 mins at 4 °C. 100 µL of the 

supernatant were then transferred into two 96-well plates corresponding to positive and 

negative modes of acquisition. Pooled samples were also generated by aliquoting 20 µL 

of every sample into a 2-mL centrifuge tube and placed on ice. 20 µL of pooled QC was 

pipetted into every 12th well as the study reference or quality control (QC) checks. The 

extractions for study reference or QC samples were performed in the same way as the 

test samples. 

 

3.3.4 UPLC configuration 

 

UPLC separation was performed using an ACQUITY I-class system (Waters 

Corporation, Milford, MA, U. S. A) equipped with a Waters CSH C18 column (2.1 x 

100 mm, 1.8 µm). Mobile phase A consisted of ACN/H2O (60:40, v/v) containing 10 

mM ammonium formate with 0.1 % formic acid, while mobile phase B was IPA/ACN 

(90:10, v/v) with 0.1 % formic acid. Chromatographic separation was achieved with a 

gradient of 40 to 99 % mobile phase B over 18 mins. Solvent flow rate and column 

temperature was maintained at 0.4 mL/min and 55 °C, respectively.  The lock-mass 

compound, leucine enkaphlin (200 pg/μL) was prepared in ACN/H2O (50:50, v/v), and 

was delivered at 10 µL/min to the reference sprayer source of the mass spectrometer. 

 

3.3.5 Mass spectrometry acquisition 

 

MS-based lipid analysis was performed using a Xevo G2-XS QTOF mass spectrometer 

(Waters Corporation, Wilmslow, United Kingdom) in both positive and negative 
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electrospray ionisation (ESI) modes. The source temperature was set to 120 °C and the 

capillary voltage set to 2.0 kV and 1.0 kV for positive and negative mode respectively. 

The time-of-flight (TOF) mass analyser of the mass spectrometer was calibrated using a 

sodium formate mixture for m/z 50 to 1200. TOF-MS data were collected for the time-

of-flight-mass spectrometry (TOF-MS) method as well as SONAR DIA. During 

SONAR acquisition the quadrupole was rapidly scanned between m/z 350 to 950 and 

m/z 150 to 750 for positive and negative modes, respectively, using a quadrupole 

transmission window of 10 Da. For each quadrupole transmission window, the 

orthogonal-TOF mass spectra were recorded as the quadrupole scans into 200 discrete 

bins. Two data functions (modes) were acquired in an alternating fashion, differing only 

in the collision energy applied to the gas cell. In the low-energy function mode, data 

were collected with a constant gas cell collision energy of 6 eV. In the high-energy 

function mode, the gas cell collision energy was ramped from 20 to 40 eV. As such, the 

resulting data contained both lipid precursor ions as well as associated fragment ions. 

Collision energies were not applied for the TOF-MS method. The spectral scan time in 

each mode was 0.1 s and both TOF-MS and SONAR acquisitions were performed in 

sensitivity mode. The reference sprayer was sampled every 60 s and the data were lock-

mass corrected post-acquisition using leucine enkaphlin at 200 pg/µL. This provides a 

“snapshot” of the reference mass that can be used to perform exact mass measurements 

with a high degree of accuracy. 

 

3.3.6 Data processing 

 

All MS acquisitions were processed using Progenesis QI (Nonlinear Dynamics, 

Newcastle upon Tyne, United Kingdom) where samples were chromatographically 

aligned with respect to the mid-acquisition reference (QC3). Peak picked features were 
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statistically analysed using EZinfo (MKS Data Analytics Solutions, Umeå, Sweden) and 

the significant features of interest were imported back into Progenesis QI. 

Identifications were achieved whereby experimental fragments were matched against 

the theoretical fragmentation product ion spectra from LIPID MAPS (Lipidomics 

Gateway, United Kingdom). A mass tolerance of 10 ppm was applied for both precursor 

and product ions. The fragmentation scores and relative isotopic compositions of 

matched fragment ions derived from LIPID MAPS were used for structural elucidation 

and identification purposes. Additional manual annotation was also conducted using the 

Lipid Reporter toolkit and reported according to the shorthand nomenclature defined by 

Liebisch et al. (2013). 

 

3.3.7 Statistical analysis 

 

QC features with CV < 30% were applied for overall statistical analyses. Principal 

component analysis (PCA) and orthogonal projection to latent structures-discriminant 

analysis (OPLS-DA) were performed using EZinfo (Umetrics, Umeå, Sweden). The 

data were mean-centered and pareto-scaled prior to PCA and OPLS-DA. The features of 

interests were extracted from S-plots constructed following OPLS-DA analysis based on 

their contribution to the variation and correlation between the two groups (stable versus 

progressors). The variable importance in projection (VIP) scores of each feature was 

also calculated using the OPLS-DA model, and the features with VIP scores ≥ 1 were 

considered as significant (Bujak et al., 2016). The potential lipid features with p-value 

of less than 0.05 and VIP score of ≥ 1 were subjected to database searching against 

LIPID MAPS for fragment matching and lipid identification. 
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3.4 Results and Discussion 

 

Using the TOF-MS method, approximately 9,000 features in positive mode and 5,000 

features in negative mode were resolved in each analytical run. In comparison, SONAR 

detected 5,000 and 800 features for positive and negative mode respectively. Figures 3.1 

and 3.2 illustrate the sensitivity and selectivity of both the TOF-MS and SONAR 

acquisition methods by overlaying the total ion chromatograms (TIC) of a 

representative QC sample in positive and negative modes. Signal intensities of the TOF-

MS TICs were approximately five-fold (positive mode) and ten-fold (negative mode) 

greater than the TICs generated from SONAR. The TICs from the positive modes also 

displayed a typical lipid spectral pattern consistent with the work of Knittelfelder et al. 

(2014) and Cajka and Fiehn (2014). 

 

Figure 3.1 Overlaid total ion chromatograms of both TOF-MS (red) and SONAR 

(green) acquisitions in positive mode. The highlighted regions of the chromatogram 

illustrate the elution of lysophosphatidylcholine (LysoPC), 

lysophosphatidylethanolamine (LysoPE), phosphatidylcholine (PC), 

phosphatidylethanolamine (PE), phosphatidylserine (PS), phosphatidylinositol (PI), 

phosphatidic acid (PA), phosphatidylglycerol (PG), sphingomyelin (SM), diacylglycerol 

(DG), triglyceride (TG) and ceramide (Cer). 

LysoPC, 

LysoPE 

PC, PE, PS, PI, PA, PG, SM, DG 

TG, Cer 



   Chapter 3 

 

86 

 

 

Figure 3.2 Overlaid total ion chromatograms of both TOF-MS (red) and SONAR 

(green) acquisitions in negative mode showing poor lipids resolution. 

 

 

Although the sensitivity of the SONAR method was lower than that of TOF-MS, the 

results showed good selectivity for SPLASH LipidoMix fragment ions. SONAR utilizes 

the scanning quadrupole technique to filter ions over the mass range of m/z 350 to 950 

and as a result, provided spectra with considerably less background (Moseley et al., 

2018). The selectivity and specificity of the method was further demonstrated where 

precursor ions from deuterium labelled-lipid standards were successfully extracted. 

Figure 3.3 represents the extracted ion chromatogram (XIC) of lipids in positive ion 

mode, showing that all lipid classes were equally resolved using both SONAR and 

TOF-MS. However, only four lipids were detected using SONAR in negative mode 

while nine lipids were detected by TOF-MS acquisitions (Figure 3.4).  
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Figure 3.3 The extracted ion chromatograms of spiked deuterium-labelled SPLASH 

LipidoMix standards in positive ion mode showing peaks corresponding to 15:0-

18:1(d7) PC, 15:0-18:1(d7) PE, 15:0-18:1(d7) PS, 15:0-18:1(d7) PG, 15:0-18:1(d7) PI, 

15:0-18:1(d7) PA, 18:1(d7) LysoPC, 18:1(d7) LysoPE, 18:1(d7) Chol Ester, 18:1(d7) 

MG, 15:0-18:1(d7) DG, 15:0-18:1(d7)-15:0 TG, 18:1(d9) SM and cholesterol (d7).  
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Figure 3.4 The extracted ion chromatograms of spiked deuterium-labelled SPLASH 

LipidoMix standards in negative ion mode showing peaks corresponding to 15:0-

18:1(d7) PC, 15:0-18:1(d7) PE, 15:0-18:1(d7) PS, 15:0-18:1(d7) PG, 15:0-18:1(d7) PI, 

15:0-18:1(d7) PA, 18:1(d7) LysoPE, 18:1(d7) Chol Ester and 18:1(d9) SM. 
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Features of interest from both the stable and progressor groups were then interrogated 

using Progenesis QI and EZinfo. To assess the contribution of experimental variability, 

QC samples were used for the filtration of features that experienced a variation 

coefficient higher than those measured in the QC data set (Calderón-Santiago et al., 

2017). The number of features in pooled QC samples with CV ≥ 30% were 3,716 and 

1,880 in positive mode TOF-MS and SONAR, and 969 and 402 in negative mode TOF-

MS and SONAR, respectively. A filter to remove these features were generated within 

the software and applied to all groups based on the acceptable bioanalytical variation 

limit of ≤ 30% relative standard deviation (Naz et al., 2014; Schoeman et al., 2018). 

PCA of QC samples were then applied to assess experiment quality. Figure 3.5 

illustrates the clustering of pooled QC samples in both positive and negative modes for 

TOF-MS acquisition and in negative mode for SONAR only. It was noted that the final 

two run-order QCs for the positive mode of SONAR did not cluster. Further evaluation 

of the raw data showed a rising baseline shift of the entire chromatogram from samples 

51 through to 66.  A rising baseline is typically observed in LC-MS acquisitions due to 

the systemic noise of gradient elution (Urban and Štys, 2015); however, it was possible 

that the total baseline shift observed was caused by detector drift (Yang et al., 2011). An 

increased chemical noise by the addition of new mobile phase or inconsistency in 

sample preparation can also contribute to the baseline shift but this was highly unlikely 

as the same extracted samples and mobile phases were used for both TOF-MS and 

SONAR acquisitions in both modes. 
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Figure 3.5 PCA score plots generated from all stable (ST, black), progressor (PR, red) and QC (QC, green) samples in all four modes of acquisition. 

The clustering of the pooled QC samples in each acquisition modes were shown encircled in green.  
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Using MatrixAnalyzer software (SpectralWorks Ltd, United Kingdom), the global 

intensities of QCs 5 and 6 acquired using SONAR in positive mode were shown to be 

considerably increased. A QC correction was then applied for sample intensities from 

injection number 50 to 60 to normalize the data (Figure 3.6). This normalization 

approach was based on the assumption that the QCs were technical replicates and that 

their intensities were independent of batch label and injection number (Wehrens et al., 

2016). The QC correction function from MatrixAnalyzer plug-in (Hill and Roessner, 

2013; Tolstikov et al., 2014) was then applied to improve data normalisation. In line 

with Wehrens et al. (2016), the corrections for this study were based only on features 

present within QC pooled samples. 
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Figure 3.6 Global sample projection of positive SONAR showing an overall intensity of uncorrected data for QCs 5 and 6 (circled), and normalised 

intensity post-correction using the MatrixAnalyzer tool. Correction lines (dotted blue) were fitted through the QCs and the samples and QCs were 

represented by the red and blue dots. 
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For statistical analysis, PCA was initially performed to decompose the stable and 

progressive patient dataset; however, unsupervised multivariate analysis did not reveal 

significant differences between both groups. The heterogenous nature of the grouping 

between these two diseased datasets supported similar assumptions made by Chang and 

Keinan (2014) where diseases with similar underlying mechanisms were more likely to 

cluster together in a principal component space. Supervised multivariate data analysis 

OPLS-DA was then used to generate a biased regression model to disentangle group-

predictive and group-unrelated variation in the measured data (Worley and Powers, 

2016). The OPLS-DA model clearly distinguished the stable and progressor groups and 

a scores plot (S-plot) was then generated. An S-Plot is a statistical tool for visualizing 

both the covariance and correlation between the endogenous features and the modelled 

group designation (ST versus PR). The S-Plot is useful for the identification of 

biochemically atypical features with statistical significance based on both the 

contributions to the model and their reliabilities (Dong et al., 2017). 
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Figure 3.7 OPLS-DA and S-plots comparing stable versus progressors plasma samples 

in positive mode TOF-MS (A), negative mode TOF-MS (B), positive mode SONAR 

(C) and negative mode SONAR (D). The ten features of interest in each group (circled) 

were exported into Progenesis QI software for identification. 
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By consolidating the S-plots from the OPLS-DA model as well as features with VIP 

scores ≥ 1, the top 10 features of interest in each group were exported into Progenesis 

QI software for identification. The differential features between the groups were 

analysed and database searched against LIPID MAPS. From the 20 features exported 

using EZinfo, 15 lipids from positive TOF-MS, 11 lipids from negative TOF-MS and 11 

lipids from positive SONAR mode were putatively identified. Negative mode SONAR 

experiment did not yield metabolite identifications with sufficient stringencies. 

 

The spiked deuterium-labelled SPLASH LipidoMix standards were then used to 

confirm the identity of putative lipids based on their retention times and m/z values. The 

TOF-MS experiments were successful at resolving the lipid classes chromatographically 

as shown in Figures 3.3 and 3.4; however, compound identification was still challenging 

due to the lack of precursor-product assignments. A number of features were not 

successfully resolved (Table 3.1). In particular, phosphatidylethanolamine (PE) and 

phosphatidylcholine (PC) were indistinguishable for a number of putative features; this 

was a commonly encountered problem with phospholipids due to the large number of 

structural isomers (Godzien et al., 2015). Resolving lipids chromatographically by class 

may aid in identification; however, with TOF-MS where no quadrupole isolation occurs, 

co-eluting species can still be challenging (Gethings et al., 2017). The precursor and 

product ions generated by SONAR contributed to the specificity of the method by 

providing additional MS/MS information for structural elucidation, and therefore 

increased the probability of successful lipid library matching (Satomi et al., 2017; 

Gethings et al., 2017). The advantages of SONAR DIA is evident in positive mode 

where each triglyceride (TG) was accurately identified by matching the generated 

fragmentation pattern with the theoretical product ion spectra from LIPID MAPS with > 

90% probability scores. Putative lipid identifications were annotated using the 
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shorthand nomenclature defined by Liebisch et al. (2013) that builds upon the current 

LIPID MAPS terminology. 

 

In addition to the successful identification of the lipid species, the relative quantitation 

of lipids identified was also achieved using known amounts of spiked deuterium-

labelled standards. The quantitative values were calculated by comparing the 

chromatographic peak area of each analyte to the peak area of the internal standard of 

the representative lipid class (Table 3.1). All other related statistics are presented in the 

Supplementary Table 3.1. 
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Table 3.1 Table showing the plasma lipids that were identified for stable and 

progressors of IPF through different acquisition modes and their associated fold changes. 

 

MS mode Feature 

m/z 

Putative 

ID 

Stable Progressor Fold Changes 

mmol/L mmol/L 

Positive  

TOF-MS 

820.7382 TG [48:2] 1.29 1.22 0.95 

      

 524.3730 PE [21:0] 0.01 0.37 0.90 

  PC [18:0] 33.46 29.99  

  PC [O-18:0]    

      

 879.7440 TG [52:3] 0.98 1.05 1.08 

      

 924.8041 TG [56:6] 0.56 0.63 1.11 

      

 794.7233 TG [46:1] 0.46 0.43 0.92 

      

 920.7704 TG [56:8] 0.52 0.66 1.27 

      

 822.7558 TG [48:1] 0.62 0.58 0.95 

      

 951.7406 TG [58:9] 0.07 0.10 1.38 

      

 788.6164 PC [36:1] 60.63 56.68 0.93 

  PE [39:1] 0.01 0.69  

      

 834.5986 PC [40:6] 16.42 13.80 0.84 

  PE [43:6] 0.01 0.17  

      

 784.5851 PC [36:3] 59.40 57.57 0.97 

  PE [39:3] 0.01 0.71  

      

 878.8198 TG [52:1] 1.00 0.98 0.98 

      

 812.6164 PC [38:3] 44.66 39.08 0.88 

  PC [36:0]    

  PE [39:0] 0.01 0.49  

  PE [41:3]    

  PA [43:4] 1.07 0.94  

      

 785.5885 PA [O-40:0] 1.10 1.04 0.94 

      

 881.7600 TG [54:5] 0.92 0.98 1.06 

  TG [52:2]    
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Negative 

TOF-MS 

856.6105 PS [41:2] 0.07 0.06 0.83 

 768.5570 PC [35:3] 13.41 11.88 0.89 

  PE [38:3] 0.01 0.01  

 828.5780 PS [39:2] 0.16 0.14 0.89 

      

 480.3094 PE [18:0] 0.02 0.01 0.85 

  LysoPE [18:0] 0.60 0.51  

  PC [15:0] 17.66 14.95  

      

 832.6102 PS [39:0] 0.08 0.07 0.87 

      

 830.5927 PS [39:1] 0.34 0.31 0.90 

      

 770.5717 PC [35:2] 26.37 23.78 0.90 

  PE [38:2] 0.03 0.02  

  PS [O-37:1] 0.13 0.12  

  PS [P-37:0]    

      

 797.6063 PG [O-40:2] 0.36 0.37 1.01 

  PG [P-40:1]    

  PA [43:2] 0.08 0.08  

  TG [50:9] 30.35 30.70  

      

 802.5605 PS [37:1] 0.50 0.48 0.95 

      

 885.5519 PI [38:4] 0.05 0.05 0.84 

      

Positive 

SONAR 

923.7138 TG [56:9] 0.04 0.05 1.37 

 868.7379 TG [52:6] 

 

0.10 0.10 1.01 

 894.7547 TG [54:7] 

 

0.38 0.42 1.09 

 920.7718 TG [56:8] 

 

0.99 1.19 1.21 

 896.7703 TG [54:6] 

 

0.20 0.21 1.04 

 922.7879 TG [56:7] 

 

0.81 0.89 1.09 

 603.5333 DG [O-34:1] 

 

n/a n/a 1.09 

 784.5847 PC [36:3] 

 

136.01 132.54 0.97 

 806.5665 PC [36:3] 49.84 44.75 0.90 

 808.5829 PC [36:2] 

 

118.50 108.08 0.91 

 812.6160 PC [38:3] 

 

100.89 80.86 0.80 
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3.4.1 Lipid markers correlated to IPF 

 

Abnormal lipid metabolism has been shown to result in lung diseases including asthma 

(Zehethofer et al., 2015; Yuan et al., 2018) and COPD (Higham et al., 2012; Naik et al., 

2014). However, its potential role in IPF pathogenesis remains unclear. In this study, a 

scanning DIA technique facilitated improved lipid identification of a number of spiked 

lipid standards. In addition, the lipid profiles from 30 patients diagnosed with 

progressive IPF showed changes in lipid plasma composition when compared to the 30 

stable subjects. The fold changes calculated revealed minimal variability (+/- 20%) in 

levels of the identified lipids between the two groups. This was expected as both groups 

were derived from diseased individuals. Healthy controls were not included in this study 

as the aim was to investigate the ability of the DIA technique to discriminate plasma 

lipid differences between diseased groups only.  

 

Using SONAR, a number of triglycerides (TG), diglyceride (DG) and PCs that were 

unique lipid markers of IPF progression were identified and this was shown to be 

consistent with the findings of Hu et al. (2015) and Yan et al. (2017). The levels of 

these TGs (56:9, 54:7, 56:8 and 56:7) and DG (O-34:1) appeared to be elevated while 

PCs (36:3, 36:2 and 38:3) was reduced in the samples of progressors compared to stable 

patients.  A recent study by Yan et al. (2017) showed that 6 DGs (16:0/18:1/0:0, O-

16:0/18:1, 18:0/18:2/0:0, 16:0/18:2/0:0, 18:1/18:3/0:0 and 18:1/18:2/0:0) and 9 TGs 

(16:0/18:2/18:2, 16:0/18:1/18:2, 16:0/18:1/20:3, 16:0/18:3/20:0, 16:0/16:1/18:1, 

18:4/20:3/22:0, 17:0/18:1/19:1, 18:1/20:3/20:4 and 16:0/20:3/20:5) were found to be 

increased while 13 PCs (22:6/16:0, 16:0/18:2, 0:0/16:0, 22:4/18:2, 20:2/18:2, 18:1/18:1, 

18:0/18:1, 18:0/0:0, 22:6/18:2, 20:3/P-18:1, 20:5/0:0 and 17:0/19:1) were  decreased in 

IPF patients compared to healthy control subjects. Using a bleomycin mouse model of 
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pulmonary fibrosis, Kulkarni et al. (2018) observed a four-fold upregulation of DG but 

showed unchanged levels of TG. Both DGs and TGs are the most abundant lipids found 

in circulating plasma (Ishikawa et al., 2016; Tham et al., 2018) and are important 

bioactive mediators of cell membranes (Yan et al., 2017; Dautel et al., 2017). DG is not 

only an important source of free fatty acids but is also a precursor for the synthesis of 

more complex lipids. The conversion of phosphatidic acid into DG is crucial for the 

synthesis of PC, PE, and phosphatidylserine (PS; Sarri et al., 2011; Ferraz-Nogueira et 

al., 2014). DG synthesis has been shown to be implicated in several lung diseases 

including cystic fibrosis (Aureli et al., 2016), asthma and COPD (Hichami et al., 2005) 

as well as IPF (Hu et al., 2015).  

 

TG was only found to be elevated in smokers with exacerbated COPD suggesting a 

causal effect of smoking on the inhibition of lipoprotein lipase by nicotine (Titz et al., 

2016). Lipoprotein lipase activity is rate limiting for the removal of TG from the 

circulation of blood. Pro-inflammatory cytokines such as tumour necrosis factor α 

(TNF-α) are known to be mediators of hyperlipidemia in infection and in severe stress 

because they both inhibit lipoprotein lipase activity (Popa et al., 2007). We 

hypothesised that the TG clearance was decreased due to the inhibition of lipoprotein 

lipase activity thereby stimulating lipogenesis. Although cytokine concentrations were 

not measured, Figueroa et al. (2002) speculated that hypertriglyceridemia (elevated TG) 

in cystic fibrosis patients may be positively correlated with TNF-α concentrations. 

 

Changes in phospholipids such as PCs in lung diseases have been reported since the late 

80s in animal models of rapidly developing pulmonary fibrosis (Baker et al., 1986; Low, 

1989). Guerrera et al. (2009) revealed significant decrease in plasma PCs in cystic 

fibrosis patients using matrix-assisted laser desorption (MALDI)-TOF experiment. This 
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study also suggested that a decrease in PCs levels by 20% may be correlated with the 

progression of disease. This decrease is further supported by Yan et al. (2017) who also 

found lower levels of plasma PCs in patients with IPF.  PCs are lipids that incorporate 

choline as head group and form the most abundant component in the outer leaflet of the 

cell membrane (Nicolson and Ash, 2014; Pöyry and Vattulainen, 2016). Phospholipase 

A2 converts phospholipids into lysophosphatidic acid and arachidonic acid via 

hydrolysis (Yamamoto et al., 2011), which are then modified into eicosanoids that 

include proinflammatory mediators such as prostaglandins and leukotrienes (Yui et al., 

2015). Bleomycin-induced overproduction of proinflammatory cytokines such as 

thromboxane and leukotrienes are significantly reduced in mice with phospholipase 

inhibition, implicating a direct role for phospholipase as well as a putative role for PC in 

the pathogenesis of pulmonary fibrosis (Zhu et al., 2010; Cheng et al., 2015). The 

surfactant proteins SP-B and SP-C as well as phospholipid PCs are key components of 

lung surfactant produced by alveolar epithelial cell type 2 (Han and Mallampalli, 2015). 

An alteration in the composition of lung surfactants which are predominantly comprised 

of PCs can cause reduced elasticity and lead to an overall decrease in lung compliance. 

However, our findings were in contrast to those of Kulkarni et al. (2018), who reported 

a marked increase of approximately two-fold in the relative content of PCs (12:0/20:4, 

18:2p/15:1, 16:1p/15:1, 15:1/20:4, 18:0e/20:4, 4:0/19:0, 24:6/24:7, 16:0e/20:4, 

16:1/20:4, 16:1p/13:0, 15:0/20:4, 18:0/19:1, 16:0p/18:2, 16:1/18:2, 18:1/18:2, 

18:0p/18:2, 22:6/24:7, 16:0e/18:2 and 18:0/18:1) in bleomycin-treated mice. Previous 

interstitial lung disease studies comparing IPF and sarcoidosis revealed a reduced 

amount of saturated fatty acids, in particular palmitic acids in the PC fraction of 

bronchoalveolar lavage. This supported our finding of decreased levels of PCs in IPF 

progressors (Honda et al., 1988; Schmidt et al., 2002).  
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Negative TOF-MS data revealed a number of lipid species such as PE (38:3, 18:0 and 

38:2), PS (41:2, 39:2, 39:0, 39:1 and 37:1) and phosphatidylinositol (PI; 38:4). The 

down-regulation of these lipids in the progessors of IPF lent further support to Yan et al. 

(2017) observations of reduced PE (20:0/17:2 and 22:6/19:0), PS (20:0/19:0, 22:0/0:0, 

0-20:0/20:0 and P-18:0/19:0) and PI (Cer d20:0/16:0) levels. PE is the second most 

abundant phospholipid in biological membranes and along with PC forms the 

hydrocarbon-backbone linkage of most cell membranes. PE is crucial for cell division 

as PE deficient cells show abnormal mitochondrial morphology and are unable to 

complete cell division and separate. However, studies by Poyton et al. (2016) and 

Calzada et al. (2016) reported that an increase in cellular PE leads to increased lipid 

oxidation, a common hallmark in neurological diseases. A separate study by Fahrmann 

et al. (2016) showed evidence of elevated PE (34:2, 36:2 and 38:4) as important 

biomarkers to distinguish between malignant and benign lung cancers. Although PS and 

PI are not as well understood as PC and PE, their elucidation using negative TOF-MS 

warrants further investigation. These phospholipid classes are associated with 

inflammation and cellular apoptosis and may be associated with IPF and its severity. 

 

A potential limitation in this study was the small cohort size. Nevertheless, the 

availability of the two diseased sample groups (stable versus progressors) allowed us to 

study global lipid changes associated with disease progression. The selectivity of the 

SONAR DIA approach was highlighted in this study using the deuterium-labelled lipid 

standards that were representative of the different classes of lipids found in human 

plasma. The isolation of the molecular ions prior to fragmentation allowed fragment 

ions to be easily assigned to its relevant precursors for specific compound identification 

(Gethings et al., 2017). Although the sensitivity of SONAR was lower than the TOF-

MS acquisition, a reduction in the total number of features resolved generated cleaner 
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lipid spectra and less interferences (Meyer and Schilling, 2017). Another advantage of 

SONAR is that the data generated were significantly smaller in size compared to other 

acquistion data files. This has considerable operational and resource benefits in terms of 

data processing, handling and storage. 

 

3.5 Conclusion 

 

This project successfully profiled plasma samples obtained from two groups of IPF 

patients using a DIA approach to enhance the specificity of unbiased lipid profiling 

derived from UPLC-QTOF-MS. In particular, this study demonstrated the advantages of 

the SONAR DIA technique for the characterization of lipid signatures such as TGs and 

PCs in IPF plasma samples. The use of labelled lipid internal standards allowed for the 

identification and quantitation of markers involved in pathways associated with disease 

pathogenesis such as lipid metabolism and mitochondrial-beta oxidation pathways. 
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Supplementary Table 3.1 Progenesis output of the features detected including m/z, chemical formula, mass error, putative identification (ID) as well as 

the calculated mean abundance, percentage relative standard deviation (%RSD), fold-changes and the relative concentrations based on the SPLASH 

LipidoMix standards.  

 
MS 

mode 

Feature Chemical Mass 

error 

Putative Stable (ST) Progressor (PR) 

 m/z Formula ppm ID Mean  %RSD Concentration 

(mmol/L) 

Mean  %RSD Concentration 

(mmol/L) 

Fold-

Change 

Positive 

TOF-MS 

820.7382 C51H94O6 -5.70 TG 

[48:2] 

3922230.27 35.27 1.29 3708641.14 43.31 1.22 0.95 

            

 524.3730 C26H54NO7P 3.69 PE 

[21:0] 

1181324.53 28.33 0.01 1058805.34 23.63 0.37 0.90 

  C26H54NO7P 3.69 PC 

[18:0] 

  33.46   29.99  

  C26H54NO7P 3.69 PC [O-

18:0] 

       

            

 879.7440 C55H100O6 -1.47 TG 

[52:3] 

3162371.36 20.35 0.98 3411677.49 10.60 1.05 1.08 

            

 924.8041 C59H102O6 3.20 TG 

[56:6] 

1938446.34 30.97 0.56 2161005.90 22.05 0.63 1.11 

            

 794.7233 C49H92O6 -4.82 TG 

[46:1] 

1359110.87 43.81 0.46 1252028.51 66.42 0.43 0.92 

            

 920.7704 C59H98O6 7.12 TG 

[56:8] 

1787751.49 42.00 0.52 2264408.98 31.17 0.66 1.27 



 Chapter 3 

 

115 

 

            

 822.7558 C51H96O6 1.60 TG 

[48:1] 

1876332.83 33.05 0.62 1779940.41 36.50 0.58 0.95 

            

 951.7406 C61H100O6 -0.62 TG 

[58:9] 

257870.68 32.51 0.07 354931.15 36.26 0.10 1.38 

            

 788.6164 C44H86NO8P -0.02 PC 

[36:1] 

3221172.70 30.93 60.63 3011316.08 23.61 56.68 0.93 

  C44H86NO8P -0.02 PE 

[39:1] 

  0.01   0.69  

            

 834.5986 C48H84NO8P -2.55 PC 

[40:6] 

923395.13 38.88 16.42 776133.27 35.49 13.80 0.84 

  C44H83NO13 5.86 PE 

[43:6] 

  0.01   0.17  

            

 784.5851 C44H82NO8P -0.02 PC 

[36:3] 

3139547.70 26.30 59.40 3043281.89 26.72 57.57 0.97 

  C44H82NO8P -0.02 PE 

[39:3] 

  0.01   0.71  

            

 878.8198 C55H104O6 3.16 TG 

[52:1] 

3250208.57 31.44 1.00 3183352.66 26.92 0.98 0.98 

            

 812.6164 C46H86NO8P 0.01 PC 

[38:3] 

2445269.59 35.04 44.66 2139828.78 30.90 39.08 0.88 

  C44H88NO8P 3.06 PC 

[36:0] 

       

  C44H88NO8P 3.06 PE   0.01   0.49  
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[39:0] 

  C46H86NO8P 0.01 PE 

[41:3] 

       

  C46H83O8P 0.01 PA 

[43:4] 

  1.07   0.94  

            

 785.5885 C43H87O7P 8.54 PA [O-

40:0] 

2362037.61 28.48 1.10 2219762.12 24.44 1.04 0.94 

            

 881.7600 C57H100O6 0.81 TG 

[54:5] 

3077766.22 20.66 0.92 3257735.02 8.23 0.98 1.06 

  C55H102O6 3.63 TG 

[52:2] 

       

            

Negative 

TOF-MS 

856.6105 C47H88NO10P 1.31 PS [41:2] 74416.05 25.10 0.07 62036.87 35.15 0.06 0.83 

            

 768.5570 C43H80NO8P 1.45 PC 

[35:3] 

67730.51 18.77 13.41 60031.62 30.03 11.88 0.89 

  C43H80NO8P 1.45 PE 

[38:3] 

  0.01   0.01  

            

 828.5780 C45H84NO10P 2.59 PS [39:2] 165448.74 18.33 0.16 147108.90 29.87 0.14 0.89 

            

 480.3094 C23H48NO7P -0.24 PE 

[18:0] 

55791.69 17.18 0.02 47244.98 30.48 0.01 0.85 

  C23H48NO7P -0.24 LysoPE 

[18:0] 

  0.60   0.51  

  C23H48NO7P -0.24 PC   17.66   14.95  
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[15:0] 

            

 832.6102 C45H88NO10P 3.49 PS [39:0] 86008.62 22.56 0.08 74745.40 28.41 0.07 0.87 

  C46H87NO9 3.43         

            

 830.5927 C45H86NO10P 1.24 PS [39:1] 359209.72 10.82 0.34 324924.30 29.37 0.31 0.90 

            

 770.5717 C43H82NO8P 1.57 PC 

[35:2] 

133594.03 12.05 26.37 120452.91 30.95 23.78 0.90 

  C43H82NO8P 1.57 PE 

[38:2] 

  0.03   0.02  

  C43H84NO9P 1.53 PS [O-

37:1] 

  0.13   0.12  

  C43H84NO9P 1.53 PS [P-

37:0] 

       

  C43H82NO8P 1.57 PE-

NMe2 

[36:2] 

       

  C44H81NO7 1.40 DGTS 

[34:2] 

       

            

 797.6063 C46H89O9P -0.34 PG [O-

40:2] 

67610.32 10.95 0.36 68389.40 22.07 0.37 1.01 

  C46H89O9P -0.34 PG [P-

40:1] 

       

  C46H87O8P -0.35 PA 

[43:2] 

  0.08   0.08  

  C53H84O6 -3.24 TG 

[50:9] 

  30.35   30.70  
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 802.5605 C43H82NO10P 0.20 PS [37:1] 515132.53 10.28 0.50 487701.69 27.47 0.48 0.95 

  C43H82NO10P 0.20 PT 

[36:1] 

       

            

 885.5519 C47H83O13P 2.36 PI [38:4] 154232.67 22.78 0.05 129368.60 29.20 0.05 0.84 

  C47H83O13P 2.36 Glc-GP 

[38:4] 

       

            

Positive 

SONAR 

923.7138 C57H102O6 2.55 TG 

[56:9] 

3076.29 62.00 0.04 4224.01 81.20 0.05 1.37 

 868.7379 C55H96O6 1.21 TG 

[52:6] 

7640.05 86.83 0.10 7706.59 72.50 0.10 1.01 

 894.7547 C57H98O6 -4.19 TG 

[54:7] 

30733.15 69.55 0.38 33646.03 63.16 0.42 1.09 

 920.7718 C56H94O6 9.16 TG 

[56:8] 

81674.38 51.30 0.99 98617.58 45.81 1.19 1.21 

 896.7703 C57H100O6 1.73 TG 

[54:6] 

16442.49 61.27 0.20 17179.25 55.30 0.21 1.04 

 922.7879 C55H104O6 2.18 TG 

[56:7] 

67636.37 38.61 0.81 74015.93 51.46 0.89 1.09 

 603.5333 C37H72O4 1.83 DG [O-

34:1] 

69975.54 46.43 n/a 76449.96 65.02 n/a 1.09 

 784.5847 C44H78NO8P -1.12 PC 

[36:3] 

354079.28 29.03 136.01 345040.15 39.73 132.54 0.97 

 806.5665 C46H82NO8P -1.44 PC 

[36:3] 

129744.46 25.50 49.84 116483.47 39.00 44.75 0.90 

 808.5829 C44H84NO8P -0.64 PC 

[36:2] 

309271.88 24.07 118.50 282083.51 31.34 108.08 0.91 
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 812.6160 C46H86NO8P -0.19 PC 

[38:3] 

272053.56 33.73 100.89 218044.34 43.11 80.86 0.80 
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MALDI-mass spectrometry imaging by freeze-spot deposition of the matrix 

 

Adapted from Nambiar, S.; Trengove, R. D..; and Gummer, J. P. A (2018) “MALDI-

mass spectrometry imaging by freeze-spot deposition of the matrix” Ready for 

submission to Analytical Chemistry 

 

4.1 Abstract 

 

Imaging mass spectrometry is emerging as a powerful tool for the visualisation of 

metabolite distribution as well as the measurement of metabolites without the loss of 

spatial dimensionality in a sample. In MALDI-MSI, deposition of the chemical-matrix 

onto the sample serves to simultaneously extract biomolecules to the sample surface and 

concurrently render the sample amenable to MALDI. However, the mechanism of 

matrix application can mobilise the metabolites and together with the matrix-crystal size 

formation limit the spatial resolution which may otherwise be achieved by MSI. The 

chosen method of matrix deposition is thus integral to maintaining the spatial 

dimensionality endogenous to a sample. Here, we described a matrix application 

technique, herein referred to as the “freeze-spot” method. The method was conceived as 

a low-cost preparative approach requiring minimal amounts of chemical matrix which 

maintains the spatial dimensionality of the sample for MALDI-MSI. Matrix deposition 

is achieved by spot or spray application of the matrix solution, solubilised within an 

organic solvent with a freezing step using a chilled sample stage to which the sample 

section is mounted. The matrix solution freezes upon contact with the sample and the 

solvent is removed by lyophilisation. The technique was found to be particularly useful 

for MALDI-MSI of small sample sections and is well suited to efficient and cost-
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effective method development whilst maintaining the spatial dimensionality that 

traditional spotting methods lack.   

 

Keywords: MALDI, MSI, matrix, freeze-spot, adduct  

 

4.2 Introduction 

 

Mass spectrometry imaging (MSI) is a powerful tool for the measurement of 

metabolites which captures the spatial dimensionality of metabolite distribution of a 

sample. MSI has wide-ranging application in all areas of biological (Rompp et al., 

2015), biomedical (Liu and Ouyang, 2013), clinical research (Addie et al., 2015) and 

diagnostics (Ye et al., 2013; Norris et al., 2017), with a diversity of dedicated sample 

preparative approaches. MSI is performed by positioning the sample within a purpose-

build ion source of a mass spectrometer, whereby the ionisation process which starts 

from a single focal point of the sample is then rastered across the sample surface and a 

mass spectrum generated at each pixel coordinate. These mass spectra can be assembled 

into an ion-map image representing the relative signal intensity and spatial distribution 

of the measured biomolecular species co-registered to the original sample section. From 

sample collection through to MS acquisition, MSI experiments require a number of key 

preparative steps which serve to influence the final interpretative outcome and are 

therefore worthy of careful consideration. Each has been well described in the literature 

(McDonnell and Heeren, 2007; Amstalden van Hove et al., 2010) as well as in a recent 

systematic review by Boughton et al. (2016). 

 

Matrix-assisted laser desorption ionisation (MALDI) continues to dominate as the most 

common ionisation mechanism in MSI (Boughton and Hamilton, 2017). A key step in 
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preparing a sample for MALDI-MSI is application of the chemical matrix (Vergeiner et 

al., 2014), and consequently, consideration of the choice of MALDI matrix and methods 

for its deposition onto a sample are critical. A uniform matrix application is crucial to 

extract and desorb molecules efficiently from within the section, to the sample surface. 

Uneven matrix deposition may result in sample coordinates with less than desirable ion 

signal intensity due to insufficient amount of matrix, or biomolecule delocalization 

caused by excessive or lengthy contact with the solvated matrix (Gemperline et al., 

2014).  

 

Matrix application plays a critical role in the quality of the mass spectral images 

generated, specifically when aiming to achieve the highest spatial resolution images. 

The spatial dimensionality and reproducibility are limited by matrix crystal size 

(Gemperline et al., 2014), solvent composition (Li et al., 2016) and availability of 

elemental species which lend themselves to ion/adduct formation upon ionisation. 

Conventional methods for matrix application include the use of airbrush, automatic 

sprayer, and sublimation (Gemperline et al., 2014). These methods share a common 

goal of achieving small matrix crystal size formation and minimising contact with the 

liquid solvent.  Application of the matrix solution by airbrush spraying is commonly 

used in MALDI imaging and is relatively simple and quick, requiring relatively 

inexpensive apparatus (Gemperline et al., 2014; Li et al., 2016). The major limitation of 

this technique is that the sprayer and the velocity of the spray are controlled manually 

which causes the quality of the application to be user dependent and may greatly affect 

the reproducibility of data. Variations in the spray velocity and duration cause 

inconsistent application and applying too much solvent to the tissue can cause analyte 

delocalization, and predominantly of the small molecules (Baluya et al., 2007). 

Automatic sprayer systems, such as the TM-Sprayer from HTX Technologies, have 
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been developed to remove the variability seen with manual airbrush application by 

robotically controlling the temperature, solvent flow rate, velocity of the matrix 

spraying nozzle during each pass, and number of passes (Gemperline et al., 2014; Li et 

al., 2016). With appropriate optimisation of methodology an automatic sprayer system 

can achieve uniform matrix density and crystal size formation, and experimental results 

more reproducible. This specialised equipment however, is not always readily available 

to researchers. Recently, the solvent-free sublimation technique has gained popularity 

for MSI of small molecules (Gemperline et al., 2014; Van Nuffel et al., 2018). 

Sublimation reduces analyte diffusion because the matrix deposits onto the sample 

surface free of liquid solvent which may otherwise delocalize molecules within the 

sample (Van Nuffel et al., 2018). Murphy et al. (2011), Weishaupt et al. (2015) and 

Yang et al. (2017) previously reported that the formation of fine matrix crystals by the 

sublimation method translates to improved spatial measurements of the metabolites. 

However, one considered drawback of this method is if the liquid solvent does not make 

contact with the sample surface and thus not being available as an analyte extractant. 

This may result in some compound classes going undetected, though maintaining the 

superior spatial resolution of those that do. 

 

While these presently applied techniques are routinely used in MALDI-MSI, matrix 

deposition techniques such as the “dried droplet” method, achieved by simple pipette-

spotting, are still used when maintaining the spatial dimensionality. Traditionally in this 

approach the matrix solution is combined with the sample and spotted onto the target 

surface for analysis (Gabriel et al., 2014). The sample/matrix droplet is subsequently 

dried. This approach lends itself to rapid method optimisation by permitting small 

amounts of matrix solution of any desirable composition to be applied to a sample 

section for rapid screening. The ease and robustness of the method validates its more 
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recent application in studies involving peptide identification (Schlosser et al., 2009), 

lipid profiling (Murphy et al., 2011) and pharmocatherapy (Grove et al., 2011). 

However, the critical problems associated with this method is the sample preparation 

and the creation of “hot spots”, regions of relative high sample intensity. This is due in 

part to the uncontrolled matrix crystallisation. These “hot spots” present a major 

challenge to the detection and quantitation of analytes due to certain regions containing 

high intensity data while some regions may not have sufficient signal to generate a 

spectrum (Gabriel et al., 2014; Fukuyama et al., 2015).   

 

In this study, we introduce a novel matrix application technique coined “freeze-spot”. 

This technique was conceived as a low-resource-intensive matrix application for 

spatially small samples for MALDI-MSI. This method is hypothesised to improve the 

throughput of method optimisations whilst maintaining the spatial localisation of 

metabolites endogenous to the sample.  Matrix application is achieved by pipette-

spotting the matrix solution onto the sample which is mounted on a chilled sample stage. 

When using a relatively high freezing point solvent, the matrix solution freezes upon 

contact with the sample and the solvent is then removed by lyophilisation. The “freeze-

spot” method was found to be quick, cost-effective; requiring minimal amounts of 

chemical matrix, quantitative; with data not suffering from hot spots, and with the 

spatial resolution of the acquired MALDI-MS image maintained. 
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4.3 Experimental section 

 

4.3.1 Chemicals  

 

Ultra-pure LC-MS grade solvents including acetonitrile (ACN), isopropanol (IPA) and 

water (H2O) as well as trifluoroacetic acid (TFA) were purchased from Thermo Fisher 

Scientific (Massachusetts, USA). Sodium acetate (NaOAc), potassium acetate (KOAc) 

and 2,5-dihydroxybenzoic acid (DHB) were obtained from Sigma-Aldrich (Castle Hill, 

Australia) and used without further purification. 

 

4.3.2 Sample preparation 

 

The technique is demonstrated using wheat seed. Wheat seed sections were embedded 

in boiled-egg white matrix as recently described in Bøgeskov Schmidt et al. (2018). 

Briefly, commercial chicken eggs were boiled, and the denatured egg white composed 

of albumin was collected. Wheat seedlings of the Chara cultivar were harvested directly 

from the plant and embedded in a 2 cm cube of denatured albumin. The albumin block 

was then gently frozen by placing it directly above liquid nitrogen, and subsequently 

mounted to a cryotome chuck using an optimal cutting temperature (OCT) compound. 

Wheat seeds were cryo-sectioned at -20 °C and at 20 µm thickness, taking care to avoid 

OCT material contact with the sectioned tissue. The seed sections were transferred onto 

pre-chilled glass microscope slides by thaw-mounting. All microscopy glass slides were 

thoroughly rinsed with IPA and chilled in the cryotome prior to sample mounting. All 

sections were stored at -80 °C. 
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4.3.3 Matrix application 

 

To prepare for matrix application, the same sections were lyophilised to dryness under 

vacuum of approximately 50 Torr for 30 mins using a Labconco Freezone 2.5 Plus 

freeze-dryer depressurized with a JLT-10 JAVAC high vacuum pump.  

 

For freeze-spot matrix application, DHB matrix was prepared at a concentration of 20 

mg/mL in 80 % ACN (0.1 % TFA). Where reported, the matrix solution also contained 

10 mM of either sodium acetate (NaOAc) or potassium acetate (KOAc), to promote 

sodium ([M+Na]+) or potassium ([M+K]+) adduct formation, respectively. The mounted 

sample sections were placed onto a stainless-steel stage, pre-chilled on dry ice and 5 µL 

DHB (20 mg/mL) matrix was transferred onto the sample section by pipette. The 

solvent immediately froze upon contact with the sample. The glass slides were 

transferred to a polypropylene 50-mL centrifuge tube, which was sealed, submerged 

briefly in liquid nitrogen and the solvent removed by lyophilisation. 

 

Similarly, DHB matrix prepared at 20 mg/mL in 80 % ACN (0.1 % TFA) was also used 

for the dried droplet and the automated matrix application techniques. For the dried-

droplet approach, 5 µL of DHB was pipetted onto the lyophilised section and the matrix 

droplet was left to dry for 15 mins at room temperature. For the automated approach, a 

TM-Sprayer (HTX Technologies; North Carolina, U.S.A.) fitted with a Shimadzu 

LC20-AD HPLC pump (Shimadzu Australia, New South Wales, Australia) was utilised. 

The sample loop was filled with 6 mL of DHB matrix solution and deposited onto the 

section using a flow rate of 0.25 mL/min; spray nozzle temperature and velocity at 

110 °C and 700 mm/min, respectively, with four passes at 2 mm spacing, followed by 
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alternate passes at 90° offset. Slides from both the dried droplet and automated 

approaches were then placed in the freeze-dryer for lyophilisation. 

 

4.3.4 Microscopy 

 

The dimensional distribution of the DHB crystals formed under different matrix 

application techniques were examined by optical microscopy using an Olympus BX51 

(Olympus Australia Pty Ltd, Victoria, Australia) with an objective magnification of 40x 

and sensitivity set at ISO200. Microscopy images were acquired using an “auto” 

exposure mode with an exposure time of 1/2,000 s at 50 µm scale. 

 

4.3.5 MALDI-MSI acquisition 

 

All MALDI-MSI analyses were performed using a Waters Synapt G2S mass 

spectrometer equipped with an orthogonal MALDI ion source and Nd:YAG laser 

(Waters Corporation, Manchester, U.K.). Prior to the analytical acquisition, digital scans 

of the tissue sections were obtained using an Epson WorkForce Pro WP-4540 scanner 

(Epson America, Inc.) and imported into the MALDI Imaging Pattern Creator software 

(Waters Corporation, Manchester, UK). Data were acquired from the selected regions of 

interest using positive ionisation mode, operating at a 350 J laser energy, with a 1,000 

Hz firing rate. All data were acquired over the mass range m/z 50 to 1,200 using an 

“automatic” scan speed setting.  Raw signal intensities of the mass spectra were 

extracted using MassLynx version 4.0 (Waters Corporation, Manchester, UK). The MSI 

images were acquired at a spatial resolution set at 600 laser shots per position and ion 

images were generated with Biomap 3.7.5.5 software. 
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4.4 Results and Discussion 

 

Mass spectrometry imaging approaches typically require optimization for each 

parameter, including the screening of appropriate matrix application techniques. The 

initial work was focused on the uniformity of matrix deposition across a microscopy 

glass slide. Three commonly used technique, automatic sprayer and manual spotting, 

along with the newly developed freeze-spot method, were employed using the prepared 

DHB matrix at 20 mg/mL.  

 

The freeze spot approach performed comparably to deposition of matrix by automatic 

spray application, whilst manual spotting lacked uniformity and inconsistency in 

application (Figure 4.1). Chemical matrices can be applied in a controlled manner using 

an automated device to spray the matrix onto the sample in a programmable way. 

Commercially available automatic sprayers although differing in mechanism, use the 

same basic principle of spraying a fine aerosol of matrix which deposits onto the surface 

of the sample (Mounfield and Garrett, 2012). Multiple offset spray coats were required 

to deposit enough of the chemical matrix to sufficiently cover the section of interest 

(Figure 4.1), which made this more time intensive and a more chemical matrix-

consuming approach to the freeze spot. The advantage of this automatic system over the 

manual approach is to achieve reproducibility in application, particularly of large 

sample sections, with another benefit that the conditions of coating can be adjusted in a 

systematic way to optimize the coating procedure for the given sample tissue 

(Gemperline et al., 2014).  

 

Manual spotting of chemical matrices has the advantage that it is inexpensive and easy 

to implement. Earlier studies have used this approach to coat specific sample regions of 
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interest with the matrix, for a focussed MSI acquisition. For the trained user, this 

technique can be used to generate very high-resolution images of the tissue; however, 

the major disadvantage of manual spotting is that it is user dependant and it is difficult 

to standardize across multiple samples (Figure 4.2; Gemperline et al., 2014). Matrix is 

deposited directly onto the tissue and then allowed to dry. Each of these demonstrated 

manual spot applications (Figure 4.1) were performed with a single pipetting step, and 

with just 5 µL of DHB. The spotting techniques were further investigated to understand 

the resultant matrix crystal formation and uniformity (Figure 4.2). 

 
 

 

Figure 4.1 The different matrix application approaches using DHB prepared at 20 

mg/mL. (A) Automatic sprayer; (B) manual spotting with an ambient dry-out step; (C) 

manual spotting on dry ice followed by a dry-out step; and (D) freeze-spotting 

technique. 
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The capture of phase-contrast images (Yin et al., 2012) by conventional light 

microscopy allowed the morphology of the matrix crystals to also be examined (Figure 

4.2). Crystallisation of the DHB matrix after deposition by automatic sprayer (Figure 

4.2; A) was compared to deposition by manual spotting; one was dried at room 

temperature and the other on dry ice, respectively (Figure 4.2; B, C).  The matrix 

crystals formation using the freeze-spot approach is also presented for comparison 

(Figure 4.2; D). A comparatively fine “web” of crystals was observed using the freeze-

spot approach, which together with the observed depth of matrix presented a far more 

homogeneous application (Figures 4.1 and 4.2). 
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Figure 4.2 Light microscopic images of the matrix crystals obtained by the different 

application approaches using DHB prepared at 20 mg/mL. (A) Automatic sprayer; (B) 

manual spotting with an ambient dry-out step; (C) manual spotting on dry ice followed 

by a dry-out step; and (D) freeze-spotting technique. 

 

 

 

 

 

 

 

A B 

C D 
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Direct application of the chemical matrix onto cryo-sectioned samples can be 

challenging due to the thaw rate of samples (Xu et al., 2016). Differing sample moisture 

content may also introduce inconsistencies by changing the solvent composition and 

conditions of matrix application. Previously, a two-step approach for matrix application 

has been reported in which the samples are dried by vacuum at room temperature or 

oven prior to matrix deposition (Li et al., 2016). Metabolite degradation is a concern 

when using dehydration procedures, particularly with prolonged heat treatments 

(Goodwin et al., 2010; Shariatgorji et al., 2014). As such, here we dried the sample 

section by lyophilisation prior to matrix application. This allowed preservation of native 

metabolite species and improved reproducibility in matrix application. Lyophilisation of 

the matrix-applied sample section was also employed as the final step in the freeze-spot 

approach, to maintain sample integrity. The removal of the solvent by lyophilisation 

also promotes the formation of a very fine crystal structure (Figure 4.2).  

 

The simplicity of the freeze-spot method compared to other commercial sprayers makes 

the technique easy to adapt. In our initial experiments, the freeze-spot method was 

investigated using 3 µL of DHB at 20 mg/mL in ACN:H2O (4:1, v/v) onto a cryo-

section of wheat seed. Although the volume of matrix was sufficient to cover the entire 

surface of the seed, the MSI image generated had reduced spatial information. A 

concern with spotting-based application is always the possibility of analyte 

delocalization. However, the time from application of the liquid matrix to freezing is on 

a sub-second time-frame and delocalisation needs to occur during this brief moment. To 

estimate the magnitude of delocalization, the increase in the spotting volume directly 

deposited onto the seed section was measured. Increasing the freeze-spot volume to 5 

µL not only ensures the complete coverage of the seed section to be acquired but also 

the increased diameter was measured from extracted ion images of DHB (m/z 585) as an 
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assessment of analyte spread from the origin. As shown in Figure 4.3, a slight 

broadening of the spot boundary was observed with both spot volumes. The measured 

delocalization is within the raster size for these images, suggesting that analyte 

redistribution should not affect image quality at the current image resolution. The 5 µL 

DHB solution at 20 mg/mL was ultimately selected in this application, as this 

composition provided the best spatial resolution for the assessment of surface 

metabolites on wheat seed sections. Typically, after matrix application, samples are 

dehydrated to prevent solvent/metabolite evaporation (Li et al., 2016). 

 

 

Figure 4.3 MALDI-MSI images comparing the signal intensity of m/z 585 ions found on 

seed sections when extracted using 3 µL (left) and 5 µL (right) of DHB solution at 20 

mg/mL. 
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The formation of salt adducts upon ionisation in MALDI-MSI can present a challenge 

to the analyst (Schaiberger and Moss, 2008; Keller et al., 2018); however, it can also 

provide benefit to efforts of metabolite identification (Petković et al., 2009; Lai and 

Wang, 2017). Some molecules undergoing ionization in the positive ion mode, will 

form adduct ions as [M+Na]+, [M+K]+ or [M+NH4]
+ (Mortier et al., 2004) rather than 

formation of a pseudomolecular ion [M+H]+. Sodium and potassium are abundant in 

biological systems, such that [M+Na]+ and [M+K]+ cations of metabolite species are 

commonly observed in MALDI-MSI analyses (Berry et al., 2011). Petkovic et al. 

(2009) have demonstrated adduct formation with sodiated DHB as well as adding 

complexity to spectral interpretation. Berry et al. (2011) also observed both [M+Na]+ 

and [M+K]+ ions of lipids in their analyses. In the described freeze-spot approach, 

sodiated and potassiated adduct formation was promoted by addition of sodium and 

potassium salts to the matrix solution.  The resultant effects on measured signal 

intensities were observed (Figure 4.4). Sucrose was applied to the centre of the sample 

followed by freeze-spot application of the DHB matrix (10 mM of NaOAc and/or 

KOAc). The overall signal intensity was at its highest when the DHB solution was 

potassiated, as demonstrated for the extracted ion image of sucrose (Figure 4.4). The 

sodiated adduct was also more pronounced than the protonated. The spatial resolving 

power also looked to improve with inclusion of KOAc; however, it is unclear if this is 

artefactual to the improved signal of the ion images. 
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Figure 4.4 MALDI-MSI images comparing the signal intensities of sucrose (m/z 343, 

m/z 365 and m/z 381) when extracted with the different variations of matrix: DHB only 

(A), DHB+NaOAc (B), and DHB+KOAc (C). The ion maps illustrated in the top row 

are from controls whilst images in the second row show a comparison with sections 

spotted with sucrose standard (1 mg/mL). 

 

The addition of potassium to the matrix prior to freeze-spot application proved 

particularly well suited to the spatial measurement of more complex sugars of 12 

carbons or greater, which readily form sodiated and potassiated adducts. Extracted ion 

images were generated for sugars up to and including the hexasaccharides (Figure 4.5). 

Whilst this demonstrated method was successful at providing comparable ion images 

for complex sugars including tetrasaccharide, pentasaccharide and the lesser complex 

disaccharides and trisaccharides, no signal was observed for the monosaccharides. Both 

sucrose (m/z 381) and 1-kestose (m/z 543) were also identified and well-resolved along 

with their region-specific spatial distributions, which is consistent with the fructan 

metabolism of barley (Peukert et al., 2014). These analyses demonstrated the freeze-

A  B  C  

[M+H]+ [M+Na]+ [M+K]+ 



 Chapter 4 

 

136 

 

spot approach to be particularly well suited to small sample sections such as these, with 

all of the anticipated benefits already described.  

 

 

Figure 4.5 Wheat saccharide distribution across the surface of the cryo-sections using 

the developed MALDI-MSI method. The figure outlines the various sugars present with 

their associated adduct formation. 

 

The freeze-spot approach was initially conceived as a low-resource intensive approach 

to matrix-application for MALDI-MSI acquisitions. It was to be a matrix-application 

intermediate between precipitation of a dry matrix by sublimation and other common 

methods whereby the sample makes contact with the liquid matrix solution. The chilled 

stage permits higher freezing point solvents (or aqueous dilutions of), including 
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acetonitrile, to freeze rapidly, such that the sample is only exposed to the liquid solvent 

for a sub-second period of time. From a method development standpoint, the choice of 

and composition of chemical matrices for any given sample type can be easily 

determined and optimised using these described methods, whilst maintaining the spatial 

distribution that other pipette spotting approaches fail to accomplish. We also propose 

here that traditional MALDI may benefit substantially from use of the freeze-spot 

approach and/or the simple use of drying the applied matrix by lyophilisation, because it 

prevents hot-spot formation and therefore will likely improve the quantitation which can 

be achieved by MALDI. A more through assessment of the benefit of freeze-spot over 

application by sublimation in terms of the momentary contact of solvent with the 

sample surface will be determined in future studies. The resulting desorption of 

metabolites to the sample surface and the risk of metabolite losses will also warrant 

further investigation. 

 

4.5 Conclusion 

 

The described simple and robust freeze-spot method for MALDI-MSI is cost effective, 

requiring substantially less chemical matrix, eliminating the requirement for large 

volumes of matrix solution or the need for sophisticated automated sprayers for matrix 

application to small sample sections. The delocalization of analytes was successfully 

minimised by the rapid freezing of the matrix, and lyophilisation to maintain the native 

spatial dimensionality of metabolites in the sample, whilst also forming a fine crystal 

structure for efficient ionisation without the formation of hotspots. The affordability and 

simplicity of this method makes the approach practical and readily adaptable by other 

users for various matrices. 
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Optimisation of MALDI-MSI matrix improves spatial resolution of lipid species in 

fibrotic lung tissue 

 

Adapted from Nambiar, S.; Trengove, R. D.; Gummer, J. P. A.; Moodley, Y.; and 

Bong, S. H. (2018) “Optimisation of MALDI-MSI matrix improves spatial resolution of 

lipid species in fibrotic lung tissue” Ready for submission to Progress in Lipid Research 

 

5.1 Abstract 

 

Idiopathic pulmonary fibrosis (IPF) is an irreversible, chronic and progressive lung 

disease with unresolved aetiology. Lipids present promising targets for diagnostic and 

therapeutic intervention due to their role in signalling and as critical determinants in 

cellular energetics. A number of studies have recently highlighted the pathophysiology 

of lipid dysregulation in chronic lung diseases, such as chronic obstructive pulmonary 

disease (COPD; Telenga et al., 2014; t’Kindt et al., 2015) and asthma (Berry et al., 

2017; Hough et al., 2018). Mass spectrometry imaging (MSI) provides the means to 

spatially resolve the distribution of biomolecules, pharmaceuticals and xenobiotics in 

tissue sections without the use of labels, tags or reporters (Schultz et al., 2019). This 

approach promises to offer fresh insights into the biochemistry of complex interstitial 

lung diseases like IPF. Specifically, we employed MSI to characterize changes in lipid 

signatures between IPF and healthy control tissues and identify putative biomarkers 

associated with IPF. It is well-know that the addition of ammonium salts can lead to 

suppression of matrix-assisted laser desorption ionisation (MALDI) matrix clusters; the 

salt dissociates potential matrix adducts and decreases matrix cluster formation (Ucal 

and Ozpinar, 2018). We further refined the MSI technique by optimising the amount of 

inorganic salts in MALDI matrix to improve the intensity and spatial resolution of lipid 
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species such as ceramides, lysophosphatidylcholines, phosphatidylcholines, 

phosphatidylethanolamines, sphingomyelins and triglycerides. The lipids in healthy and 

IPF tissue sections (20µm) were then resolved using MALDI-quadrupole time-of-flight 

(Q-TOF) MSI and data were interrogated by High Definition Imaging (HDI) software 

by Waters to generate ion intensity maps. Putative identification of lipids was achieved 

by accurate mass measurement and matched against lipid databases including LIPID 

MAPS and LipidBlast. This optimised method provides a new approach to enhance the 

visualisation of lipid distribution in IPF and may provide users with additional 

metabolite information that can complement existing histopathological assessments, as 

well as aid in the diagnosis of disease. 

 

Keywords: MALDI, imaging, lung, lipids, IPF 

 

5.2 Introduction 

 

Idiopathic pulmonary fibrosis is a chronic, progressive and fibrosing interstitial 

pneumonia with unresolved aetiology (Diamantopoulos et al., 2018). The underlying 

histopathological pattern is one of interstitial pneumonia in the absence of secondary 

causes or associations (Raghu et al., 2011). Idiopathic pulmonary fibrosis has a poor 

prognosis with a median survival of three to five years from diagnosis (Raghu et al., 

2011; Fabrellas et al., 2018); however, there is considerable heterogeneity among 

patients in disease course (Poletti et al., 2013). At present, there are limited therapeutic 

interventions available to patients. 

 

Clinicians and researchers currently rely on clinical data such as patient history, 

physical examinations including radiology, pulmonary function tests and 
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histopathological identifications to diagnose patients with IPF (Nakamura and Suda, 

2015; Fabrellas et al., 2018). These tests, however, do not reflect the underlying 

pathophysiological mechanisms of disease and does not adequately allow for the sub-

phenotyping of patients with IPF. This presents a major limitation for both clinical care 

and research. 

 

Lipidomics is a promising strategy for disease-specific biomarker discovery as there is 

growing evidence to suggest a role of cellular energy metabolism in lung fibrogenesis 

(Dautel et al., 2017). Lipids are key cell membrane constituents (Pöyry and Vattulainen, 

2016) and serve critical physiological roles including regulation of energy metabolism 

(Dautel et al., 2017), cellular signalling (Kyle et al., 2018) and trafficking of immune 

cells (Hubler and Kennedy, 2016). Dysregulated lipid (Carter et al., 2017) and energy 

(Kang et al., 2016) metabolism have been shown to influence fibrosis. Current methods 

for chemical localisation of metabolites such as staining with Ehrlich’s reagent (Jarman 

et al., 2014) and Nile Red (Sunaga et al., 2013) can be applied to frozen diseased lung 

sections. However, these can only reveal the distribution of a defined number of 

biomolecules. Mass spectrometry imaging (MSI) techniques, on the other hand, offer a 

means of mapping thousands of ionised lipid signatures within different tissue subtypes, 

and can potentially generate a global profile of disease based on metabolite distribution 

and abundance. 

 

A number of studies have applied MSI to spatially resolve small molecules in lung 

diseases. Römpp and Spengler (2013) identified region-specific phospholipids and 

peptides in lung carcinoma samples showing high correlation with histological 

assessment, while Baijnath et al. (2016) used MSI to explore the distribution of small 

molecules and drug metabolites in inflated lungs of a rat model. More recent advances 
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in global lipidomic approaches have shown lipid compositional changes in post-natal 

lung development (Dautel et al., 2017) and in radiation-injured lung (Carter et al., 2017).  

MALDI-MSI is the most widely used method applied to lipids (Bowman et al., 2018). 

Sectioned tissues coated with MALDI matrix are rastered by a laser beam across the 

tissue surface while the MS measures the ionised lipids at each coordinate (Walch et al., 

2008; Carter et al., 2016). This technique is appealing because the distribution and 

composition of many analytes can be assessed in a single experiment. Image generation 

is achieved by plotting the intensities of analyte ions as a function of the x-y coordinates 

of the sample section (Prentice et al., 2015). MALDI-MSI has been commonly used to 

investigate spatial distribution of intact proteins and peptides on various mammalian 

tissues (Berry et al., 2011; Prentice et al., 2015). The high mass resolution of the 

technique has also been found to resolve isobaric lipid distribution in tissue (Carter et 

al., 2017). Studies by Desbenoit et al. (2014) and Carter et al. (2017) further 

demonstrated that the abundance of lipid signatures in MALDI images strongly 

correlates with lipid accumulation within specific regions of the tissue.  

 

Here, we utilized a recently optimised matrix application technique termed “freeze-

spot” to address the optimisation requirements associated with MSI-based sample 

preparation including the amount of matrix required and, matrix uniformity (Nambiar et 

al., unpublished). To improve the sensitivity of the method, we optimised the formation 

of adducts using various salts such as sodium, potassium and ammonium acetate. In 

particular, the addition of potassium acetate resulted in improved mass spectra quality 

as well as feature intensities of MALDI images. We then applied this technique to 

spatially-resolve the changes in lipid composition and distribution in IPF as well as 

healthy control tissue samples. 
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5.3 Materials and Methods 

 

5.3.1 Chemicals  

 

Ultra-pure LC-MS grade solvents including acetonitrile (ACN), isopropanol (IPA), 

water (H2O) and trifluoroacetic acid (TFA) were purchased from Thermo Fisher 

Scientific (Massachusetts, USA). Sodium acetate (NaOAc), potassium acetate (KOAc), 

ammonium acetate (NH4OAc) and MALDI matrix 2,5-dihydroxybenzoic acid (DHB) 

were obtained from Sigma-Aldrich (Castle Hill, Australia). Lipid standards including 

ceramide (Cer d18:1/17:0), phosphatidylethanolamine (PE 15:0), phosphatidylcholine 

(PC 15:0) and sphingomyelin (SM d18:1/17:0) were purchased from Avanti Polar 

Lipids (Alabaster, USA) while lysophosphatidylchole (LysoPC 15:0) and triglyceride 

(TG 15:0) standards were sourced from Sigma-Aldrich. Stock lipid standards were 

prepared in methanol (MeOH) and the working concentrations of all lipids at 1 µg/mL 

were prepared by dilution in IPA. 

 

5.3.2 Biological samples 

 

A total of 20 frozen lung biopsied samples (10 from IPF patients and 10 healthy 

controls) were obtained from the Alfred Lung Fibrosis Biobank (Alfred Health, Victoria, 

Australia) and stored at -80 °C until further analysis. Sample handling and material 

transfer was approved by The Alfred Ethics Committee (Approval number: 336/13) and 

the experimental protocol used for this work was approved by the Murdoch University 

Human Research Ethics Committee (Approval number: 2017/253). 
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5.3.3 Sample preparation 

 

All microscopy glass slides were thoroughly rinsed with IPA and placed in the 

cryotome at -17 °C prior to being used. Frozen biopsied lung sample were mounted to a 

chuck by placing the tissue immediately on a drop of water (on the chuck) upon transfer 

into the cryotome.  Each tissue sample was then cryo-sectioned to 20 µm thickness and 

subsequently transferred onto a clean, pre-chilled glass slides. This was achieved by 

gently warming the rear of the slide with a finger to allow the section to thaw and attach 

to the slide. All prepared sections were stored at -80 °C until matrix application. 

 

5.3.4 Freeze-spot matrix application 

 

An acidified hydroxyl matrix DHB was chosen as the matrix of choice as it has been 

shown to be suitable for the detection of lipids (Stoyanovsky et al., 2014; Dowlatshahi 

et al., 2016). The DHB matrix was prepared at a concentration of 20 mg/mL in 80 % 

ACN (0.1 % TFA). To promote sodium ([M+Na]+), potassium ([M+K]+) or ammonium 

([M+NH4]
+) adduct formation, the DHB matrix solution was prepared with 10 mM of 

either NaOAc, KOAc or NH4OAc,  respectively. 

 

Application of the DHB matrix solution was performed using the freeze-spot approach 

(Nambiar et al., manuscript in preparation). Briefly, the mounted sample sections were 

placed onto a stainless-steel stage, pre-chilled on dry ice and 5 µL DHB (20 mg/ml) 

matrix was transferred onto the sample section by pipette. The solvent immediately 

froze upon contact with the sample. The glass slides were transferred to a polypropylene 

50-mL centrifuge tube, which was sealed, submerged in liquid nitrogen and the solvent 
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removed by lyophilisation with a Labconco Freezone 2.5 Plus freeze-dryer that is 

depressurized with a JLT-10 JAVAC high vacuum pump. 

 

5.3.5 MALDI-MSI acquisition 

 

All MALDI-MSI analyses were performed using the Water Synapt G2S mass 

spectrometer equipped with an orthogonal MALDI ion source and an Nd:YAG laser 

(Waters Corporation, Manchester, U.K.). Prior to analytical acquisition, digital scans of 

the tissue sections were obtained using an Epson WorkForce Pro WP-4540 scanner 

(Epson America, Inc.) and then imported into MALDI Imaging Pattern Creator software. 

All data were acquired in positive mode operating with a 1,000 Hz firing rate and 350 J 

laser energy over a mass range of m/z 50 to 1200. From each irradiated spot, a full mass 

spectrum consisting of signals from protonated molecular species from the desorbed 

tissue region was noted. The spectra generated were then processed in MassLynx 

(Waters Corporation, Manchester, UK) to allow for signal intensities of the 

corresponding ions to be determined. The MSI images were acquired at a spatial 

resolution at 600 laser shots per position and ion images were generated with High 

Definition Imaging (HDI) software (Waters Corporation, Manchester, U.K.). The heat 

maps of specific ions generated corresponded to the relative abundance of ions present 

over the entire imaged surface. 
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5.4 Results and Discussion 

 

5.4.1 Potassium adducts enhanced MALDI-MSI intensities of lipids 

 

The formation of adducts during ionisation can potentially compromise the quality of 

the mass spectra generated (Leite et al., 2004; Bauer et al., 2018). The unintended 

formation of salt adducts due to exposure from the storage vials, pipette tips or even the 

glass slides used can present difficulties for the detection and identification of molecules 

at low abundances. The resulting adducts reduce signal intensities by splitting the ions 

into multiple mass peaks and supress the ionisation of low abundance peaks (Leite et al., 

2004). The presence of these inorganic lipid adducts are inevitable in MALDI-based 

techniques and its formation upon ionisation have been reported by Angel et al. (2012), 

and Wang et al. (2017). Studies by Zhu and Papayannopoulos (2003) and Leite et al. 

(2004) showed that the reduction or removal of these adduct ions can improve the 

detection of peptides at low concentration. However, mobile-phase additives such as 

ammonium acetate is commonly used to improve both LC separation and detection of 

lipids (Cajka and Fiehn, 2014). Due to their strong affinity for alkali metals, various 

adducts of alkali metals and ammonium cations have been used to improve the intensity 

of lipids such as triacylglycerols (Hsu and Turk, 1999; Lin and Arcinas, 2008) and 

phospholipids (Knittelfelder et al., 2014) using electrospray ionisation (ESI) techniques. 

 

Angel et al. (2012), Wang et al. (2017) and Rush and Breemen (2018) used DHB as the 

matrix of choice for lipid extraction and promotion of ionisation. In this study we 

encouraged the formation of lipid [M+Na]+, [M+K]+ and [M+NH4]
+ adducts using DHB 

prepared with inorganic salts that consists of a metal cation to investigate their effects 

on lipid resolution and intensity. Figure 5.1 shows the total ion chromatogram (TIC) of 
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lipid standard mixture extracted with DHB and DHB spiked with NaOAc, KOAc and 

NH4OAc. The TIC from DHB spiked with KOAc showed the highest intensity at 

approximately 2 x 106 counts. This was consistent with the observations of Birdsall et al. 

(2016) where the intensities of the [M+K]+ ions were two-fold the intensity of [M+Na]+ 

ions generated by ESI. Wang et al. (2017) also reported increase in [M+K]+ ions of 

phospholipid species from MALDI imaging using DHB. These studies utilised matrices 

prepared in solvents without salt additives. Rush and Breemen (2018) were also unable 

to selectively reduce the formation of both [M+K]+ and [M+Na]+ adducts using 

ammonium salts; however, they were successful at suppressing the ionisation of PCs.  

 

Figure 5.1 The total ion chromatograms (TIC) of the lipid standards mixture spotted on 

a glass slide at 1 µg/mL and extracted with (A) DHB with NH4OAc ([M+NH4]), (B) 

DHB with KOAc ([M+K]), (C) DHB with NaOAc ([M+Na]) and (D) DHB only 

([M+H]). 
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To further demonstrate the effects of adduct formation, six lipid classes including 

LysoPC, Cer, PE, PC, SM and TG were examined. The ions corresponding to each of 

the four adducts were extracted from the TIC. The proton adduct [M+H]+ has previously 

been found to be the dominant ion formed during ESI (Dudkowska et al., 2018) while 

[M+Na]+ and [M+K]+ are the most common when using MALDI (Jovanovic et al., 

2018). While [M+NH4]
+ ions are routinely generated due to the addition of solvent 

buffers and during metabolite extraction, these results showed poor formation of 

[M+NH4]
+ lipid adducts during ionisation by DHB containing NH4OAc. This further 

confirmed the observations of Rush and Breemen (2018) who showed the suppression 

of PC ionisation when ammonium additives were applied. 

 

Interestingly, the addition of NaOAc resulted in the formation of the [M+H]+, [M+Na]+ 

and [M+NH4]
+  adducts, with the [M+NH4]

+ adduct showing the highest intensities for 

all six lipids tested. This finding is potentially indicative of impurities in the salt 

additive but this observation is still relevant since the NH4 was in excess relative to the 

other species been demonstrated. Figure 5.2 shows the extracted ion chromatograms 

(XICs) of each of the four adducts for each lipid when ionised using DHB containing 

NaOAc. The peak quality of all adducts were comparable to each other except for the 

potassium adduct where the associated [M+K]+ ions for CE and PE were not evident. In 

addition, the [M+K]+ spectra for PC, SM and TG showed increased background. This is 

consistent with the observations of Rush and Breemen (2018) who also demonstrated 

that the use of ammonium buffers affected the relative abundance of [M+H]+, [M+Na]+ 

and [M+K]+. We therefore hypothesise that the ion signal of [M+NH4]
+ species were 

improved when ammonium buffers were used in combination with the DHB matrix. To 

the authors’ knowledge the exact mechanism by which sodium promoted the formation 

of ammonium adducts is yet to be reported. However, we speculate that by increasing 
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competition for ionisation sites on the lipid molecule in favour of the ammonium cation, 

the lesser-abundant cations are less likely to adduct unless they were usually the most 

preferentially formed. For lipids, the [M+H]+ was less readily formed during ionisation, 

and as such the ammonium addition decreases the adduction. However [M+Na]+ and 

[M+K]+ which were more readily formed were still observed as they were conceived to 

be more favourable than [M+NH4]
+ formation. 

 

Of note, the use of KOAc to encourage adduct formation of these lipids was shown to 

have improved the relative abundance of [M+K]+ compared to [M+H]+, [M+Na]+ and 

[M+NH4]
+ ions by at least two orders of magnitude. All four adduct species were 

identified for LysoPC. For PC, SM and TG, [M+K]+ showed improved abundance while 

[M+H]+ and [M+NH4]
+ showed poor ion spectra (Figure 5.3). For Cer and PE, only the 

[M+K]+ ions were detected. In summary, [M+K]+ ions were the only adduct type that 

were well-resolved in all six lipids whilst supressing the signal of [M+H]+, [M+K]+ and 

[M+NH4]
+ ions. Figure 5.3 illustrates the MALDI-MSI ion intensity maps which 

showed the abundance of these adduct species within the extracted lipids. 

 

The addition of cations was clearly important in MALDI-MSI experiments for the 

detection of lipid species. Sugiura and Setau (2009) and Griffiths and Bunch (2012) 

have reported that the addition of either NaOAc or KOAc to the matrix led to reduced 

signal intensities of the protonated adducts of lipids by MALDI. However, Griffiths and 

Bunch (2012) showed increased [M+K]+ formation of PCs in rat brain homogenate by 

the addition of KOAc but with a suppression of the ion counts, in agreement with 

Sugiura and Setau (2009). Other additives such as caesium chloride and lithium nitrate 

have also been applied to MALDI matrices. These appeared to reduce the spectral 

complexity and improved identification of unidentified metabolites by allowing 
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unambiguous assignment of caesium-lipid and lithium-lipid adducts (Griffiths and 

Bunch, 2012; Griffiths et al., 2013). 
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Figure 5.2 Extracted ion chromatograms of the lipid adducts [M+NH4]
+, [M+K]+, [M+Na]+ and  [M+H]+ denoted by A, B, C and D, respectively. All 

six lipid standards were extracted with DHB containing NaOAc. 
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Figure 5.3 Extracted ion chromatograms and ion intensity maps of the lipid adducts generated by MassLynx and HD Imaging software, respectively. 

All six lipid standards were extracted with DHB containing KOAc and their associated adducts [M+NH4]
+, [M+K]+, [M+Na]+ and  [M+H]+ are 

denoted by A, B, C and D, respectively.  
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5.4.2 MALDI images of biopsied lung sections 

 

This study builds on the published research of Carter et al. (2015 and 2017) which 

focused on the characterisation of lipids in lung parenchyma using MALDI-MSI. Here, 

we optimised the addition of KOAc in DHB matrix to promote [M+K]+ adduct 

formation to investigate the spatial distribution of various lipid species including 

sphingolipids, phospholipids and triglycerides in IPF and healthy tissue biopsies. 

 

Figure 5.4 shows the spatial resolution of two ions m/z 494.24 and m/z 897.75 compared 

to optimal light microscopy images obtained at 40x objective magnification. The 

extracted ion m/z 494.24 was shown to be well-distributed within the rastered tissue 

region, whereas ions of m/z 897.75 were distributed along the tissue periphery. A closer 

inspection of both the optical image and ion intensity map revealed that m/z 897.75 was 

likely to be a matrix-related ion and not a lipid-specific ion. The m/z value did not 

match any of the calculated theoretical masses of the lipid adducts of interest and the 

ion was peripherally distributed around the rastered tissue. This was important as it 

demonstrated the ability of the method to discriminate between lipid-specific ion and 

matrix ions in cryo-sectioned lung tissues. 
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One of the challenges of MALDI ionisation is the high matrix background resulting 

from the use of organic matrices like DHB (Fujimura and Miura, 2014). Studies by Le 

et al. (2013), Fujimura and Miura (2014) and Lee et al. (2016) recognised that some 

background matrix ions can have similar intensities to analyte ions and can interfere 

with detection and identification of the target analytes. In this study, the enhanced signal 

intensities resulting from the addition of KOAc was advantageous as it allowed for the 

improved discrimination of lipid analytes from the background ions. Of note, features 

with m/z 520.29, m/z 744.38 and m/z 702.33 were identified as LysoPC, PC and PE 

based on their [M+K]+ adduct accurate mass. Figure 5.5 illustrates a loss of signal 

intensities for LysoPC, PC and PE ions in IPF tissue sections compared to healthy 

control tissues.  

Figure 5.4 The optical 

images (A and C) of 

sectioned lung tissue 

obtained by light 

microscopy at 40x 

magnification with an 

auto exposure mode and 

the corresponding 

MALDI-MSI images (B 

and D) generated at 20 

µm resolution. 

A B 

C D 
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Figure 5.5 MALDI-MSI images showing decreased signal intensities of LysoPC, PC 

and PE ions in IPF tissues compared to healthy control samples. Representative 

hemotoxylin and eosin (H&E) stained IPF and healthy tissues were also shown for 

comparison. 
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The changes in lipid profiles of diseased lung tissues are well-studied. Naz et al. (2017) 

used LC-Orbitrap MS to elucidate the role of lysophosphatidic acid (LysoPA) in lung 

function, specifically forced expiratory volume in 1s (FEV1), from COPD patients, 

smokers with normal lung functions and healthy (never-smoked) individuals. In this 

study, we showed that LysoPC, which is a precursor of LysoPA, was down-regulated in 

IPF compared to health control tissues. This suggested that the LysoPA signalling 

pathway may be involved in disease mechanism or symptoms. LysoPA, a bioactive 

glycerophospholipid, has been shown to be associated with asthma (Ackerman et al., 

2016), atherosclerosis (Gu et al., 2017), cancer (Ha et al., 2018) and fibrosis (Rancoule 

et al., 2017). LysoPA is produced through the hydrolysis of phosphatidic acids by 

phospholipase which are located in cell membranes. The majority of LysoPA is 

produced by the enzymatic cleavage of LysoPC and lysophosphatidylserine by 

lysophospholipase D activity. In IPF, type 2 alveolar epithelial cell injury is believed to 

initiate the fibrotic process. Following an injury, dipalmitoylphosphatidylcholine 

(DPPC), a major surfactant lipid component, is degraded to LysoPC by phospholipase 

A2 activity in the type 2 alveolar epithelial cells. However, our study appeared to 

contradict this as the IPF tissue sections showed reduced intensities of LysoPC 

compared to healthy samples. The precise reduction in LysoPC levels in IPF tissue has 

not been determined as the current method was unable to quantitate lipid abundance. 

Further quantitative work has been envisioned where known concentrations of lipid 

standards will be spiked to generate calibration curves based on MSI spectral intensities. 

 

Lung surfactant consists of type 2 alveolar cells and is a complex mixture of 

phospholipids, with PCs accounting for approximately 90% of surfactant composition. 

The PCs play an important role in reducing surface tension at the air-water interface of 

the alveolus. Compared to healthy tissues, IPF tissues have a lower composition of PCs 
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and this appeared to be consistent with our observations of PC intensities in Figure 5.5. 

A loss or reduction of PCs has adverse effects on the surface tension of the lungs and 

can lead to alveolar collapse. In lung diseases such as acute respiratory distress 

syndrome (ARDS; Fessler and Summer, 2016), pneumonia (Facco et al., 2014), 

sarcoidosis (Devendra and Spragg, 2002) and IPF (Schmidt et al., 2002; Tan et al., 

2016), a decrease in PCs and large surface aggregates have been associated with 

impairment of the surface tension-lowering properties of surfactant. Pulmonary 

surfactant also plays a key role in protecting the underlying epithelium from toxins and 

microbes that are inhaled into the lungs. Fessler and Summer (2016) noted that 

pathogens may drive some of these changes in lipids since Pseudomonas aeruginosa 

(Agassandian et al., 2007) and human adenovirus type 5 (Miakotina et al., 2007) were 

both reported to reduce PC secretion from the type 2 alveolar cells.  

 

We observed a reduction in PC intensities in IPF tissue sections and this agreed with the 

published research of Schmidt et al. (2002) and Sunaga et al. (2013) on altered fatty 

acid (FA) composition of surfactant lipids. Pathway analysis conducted by Yin et al. 

(2017) and Menon et al. (2017) revealed that PCs and FAs such as palmitoleic acid and 

oleic acid are involved in mTOR signalling pathway. Tan et al. (2016) showed that the 

mTOR complex was a highly conserved intracellular serine/threonine kinase and mTOR 

expression in pulmonary fibrosis patients were significantly correlated with fibrosis and 

decreased lung function. This suggested that PC may be conceived as a prognostic 

marker of pulmonary fibrosis as hypothesised by Park et al. (2014). Phosphatidic acid 

interacts directly with the binding domain in mTOR, and this interaction affects the 

mTOR’s ability to activate downstream effectors such as PCs (Menon et al., 2017).  
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PE is the second most abundant phospholipid found in biological membranes. The 

reduction in intensities of PE in the IPF tissue compared to healthy control supported 

the observations of Hu et al. (2015) where the hepatic PE levels were significantly 

reduced in a bleomycin-induced mice model. Hu et al. (2015) suggested that the 

reduction of PE species was due to the compartmental effects of phosphatidylserine 

(PS) biosynthesis which occurs in the mitochondria. Farine et al. (2015) and Leithner et 

al. (2018) further reported significant reductions in both PC and PE levels in cancer 

cells as a consequences of increased PS biosynthesis. A recent study by Vazquez-de-

Lara et al. (2018) demonstrated that PE induced an anti-fibrotic phenotype in an 

experimental model of lung fibrosis. The study showed that PE contributes to the 

inhibition of collagen expression and that early administration of PE diminishes lung 

fibrosis in vivo.  

 

MSI is a rapidly emerging application of mass spectrometry that allows for the analysis 

and spatial visualisation of thousands of analytes without the need for tissue labelling. It 

is clear that more research is required to develop methods that can provide absolute 

quantitation as a function of ionisation intensity. While recent work by Hansen and 

Janfelt (2016), Nishimura et al. (2017) and Nazari et al. (2018) has introduced internal 

standards for quantitative MSI, such efforts needs further refinement due to matrix 

inhomogeneity, ion suppression or analyte extraction efficiencies that can result in 

suppressed signal (Gemperline et al., 2014). Bergman et al. (2016) and Duncan et al. 

(2018) further demonstrated that the addition of deuterated standards to a nano-

desorption electrospray ionisation (DESI) solvent beam enabled compensation of 

sample-matrix effects, which enhanced visualisation and interpretation of the ion 

images. Bergman et al. (2016) and Duncan et al. (2018) also performed tandem mass 

spectrometry (MS/MS) on both deuterated standards and endogenous compounds such 
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as neurotransmitters and eicosanoids to determine the ratio of analyte intensity to 

standard intensity as the basis of quantitation. These present promising avenues for 

future work.  

 

5.5 Conclusion 

 

Here, we demonstrated the utilization of a new matrix application technique, termed the 

“freeze-spot” method, and successfully promoted potassium adduct formation for MSI 

of lung tissues. The improvement in mass spectral quality and enhanced signal 

intensities resulted in the generation of high-quality images with the resolution of six 

lipid species of interest. The MALDI-MSI method allowed for the visualisation of the 

lipids and demonstrated the differences in relative intensities and abundances of PC, PE 

and LysoPC between diseases and healthy control tissue biopsies. Significant 

differences were observed in lipid species involved in LysoPA and mTOR signalling 

pathways, as well as surfactant PCs. Further studies are envisioned using quantitative 

MSI approaches and potential further co-registration of ion maps to conventional 

hematoxylin and eosin stained sections to allow for a deeper investigation of lung 

pathology. 
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6.1 General Discussion 

 

This PhD project has demonstrated the effectiveness of using UPLC-QTOF-MS and 

MALDI-MSI to deliver improved resolution, specificity and dimensionality for the lipid 

profiling of plasma and tissue samples of chronic lung diseases. Chapter 1, entitled 

“Metabolomics in chronic lung diseases: a practical review for clinicians”, presented a 

comprehensive examination of experimental strategies and its utility in improving the 

understanding of biochemical changes associated with diseases such as COPD, asthma 

and IPF. This chapter provided a critical review of recent published outcomes, 

highlighting the major metabolic pathways associated with pathogenesis as well as 

identifying potential biomarkers of interest that can aid in the diagnosis, prognosis and, 

ultimately, treatment of disease.  

 

Chapter 2 is focused on the application of untargeted metabolomics to provide global, 

unbiased profiling of COPD and IPF. A total of 65 clinical plasma samples were 

assessed using UPLC-QTOF-MS, of which 21 were obtained from COPD patients, 24 

from IPF diagnosed patients and 20 from healthy control subjects. The aim of this study 

was to use metabolomics to further the understanding of changes that underpinned both 

chronic lung conditions. The use of multivariate statistics including PCA and OPLS-DA 

showed distinct differences in the metabolomic profiles of plasma from COPD and IPF 

patients compared to healthy individuals. This study identified unique lipid mediators 

such as linoleic, palmitoleic and oleic acids which suggested a dysregulated lipid 

metabolism indicative of severe lung inflammation and progression of fibrosis (Sunaga 

et al., 2013; Daabis et al., 2016). This study also revealed significant down-regulation 

of arachidonoyl tyrosine, bilirubin, dihydrotestosterone and lysoPC in both COPD and 
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IPF samples that implied increased oxidative stress within the lung (Brown et al., 2017; 

Zhao et al., 2017).  

 

Chapter 3 involved the application of a data independent acquisition method, termed 

SONAR, to complement the UPLC-QTOF-MS resolution of lipid species between 

“stable versus progressor” IPF patient groups. The availability of two diseased groups 

of IPF were important as it allowed for the characterisation of global lipid changes 

associated with disease progression. SONAR DIA technique facilitated improved lipid 

identification of a number of spiked deuterium-labelled lipid standards that were 

representative of lipids found in human plasma. The isolation of the molecular ions 

prior to fragmentation allowed fragment ions to be readily assigned to its relevant 

precursors for specific lipid identification using LIPID MAPS for structural elucidation 

and confirmation. In addition, the lipid profiles from 30 patients diagnosed with 

progressive IPF showed changes in lipid plasma composition when compared to the 30 

stable subjects. A number of triglycerides and glycerolipids that were unique lipid 

markers of IPF progression were identified. These lipids were found to be intermediates 

of key signalling pathways associated with lung inflammation and fibrosis (Yui et al., 

2015; Yan et al., 2017; Kulkarni et al., 2018) and hold considerable promise as 

biomarkers for IPF. While the current sensitivity of SONAR was lower than 

conventional TOF-MS acquisition, the generation of quantitative MS/MS data with 

reduced background interferences were highly advantageous. In addition, SONAR-

acquired data were significantly smaller in size compared to the DIA methods such as 

MSE and were comparable in performance in terms of identification precision and 

quantitation accuracy (Meyer and Schilling, 2017).  
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In Chapter 4, a novel and cost-effective preparative method for MALDI referred to as 

“freeze-spot” was demonstrated. The deposition of matrix in MALDI-MSI was 

important to enable simultaneous extraction of metabolites from tissue sections as well 

as maintain the spatial dimensionality of endogenous metabolites (Fujimura and Miura, 

2014; Gemperline and Li, 2014). The study used wheat seed sections to demonstrate 

extraction efficiency and reliability, whilst maintaining the spatial resolution of the 

acquired MALDI-MSI images. This freeze-spot approach utilized a chilled stage which 

permitted rapid freezing of matrix followed by a lyophilisation step to prevent hot-spot 

formation and further improve image quality. The addition of sodium and potassium 

acetate to the matrix prior to freeze-spot application resulted in improved spatial 

measurement of complex sugars of 12 carbons or greater, which readily form sodium 

and potassium adducts. Both sucrose (m/z 381) and 1-kestose (m/z 543) were identified 

and well-resolved along with their region-specific spatial distributions, which was 

consistent with the fructan metabolism of barley (Peukert et al., 2014). These analyses 

demonstrated that the freeze-spot approach using DHB matrix prepared with inorganic 

salts resulted in increased spatial resolving power of small molecules such as 

oligosaccharides in seed sections.    

 

In the final study, 10 healthy and 10 fibrotic tissues were profiled using MALDI-MSI 

previously optimised with the freeze-spot methodology. The MSI technique developed 

was further enriched by promoting potassium adduct formation to improve spatial 

resolution of lipid species such as triglycerides, sphingolipids and glycerophospholipids. 

The results of this study showed a number of interesting changes in lipid composition of 

IPF tissues compared to healthy controls. MALDI-MSI of tissues were achieved using 

DHB matrix spiked with sodium and potassium acetate salts for the visualisation of a 

number of lipids of interest. The method showed differences in relative intensities and 
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abundances of PC, PE and LysoPC between diseases and healthy control tissue biopsies. 

Significant differences were also observed in lipid species involved in LysoPA and 

mTOR signalling pathways, as well as surfactant PCs. Of note, both SONAR DIA 

acquisition (Chapter 3) and MSI analysis (Chapter 5) identified similar classes of lipids 

(TG, PE, LysoPC and PC) that were potential determinants in the pathophysiology of 

the IPF lipidome. 

 

6.2 Current challenges  

 

As an emergent sub-discipline of metabolomics, lipidomic profiling is generating 

considerable interest due to the ubiquity of lipids as functional building blocks and its 

roles in health and disease. Nonetheless, a number of technical challenges remain. 

 

In particular, current lipidomic pipelines are unable to resolve more than fifty percent of 

lipid species that constitute the lipidome (Lydic and Goo, 2018). The existing analytical 

limits of detection mean that the analysis of some classes of lipids such as eicosanoids 

require specialised analysis using targeted methodologies (Sorgi et al., 2018). 

Additional derivatisation or hydrolysis may also be required for total lipids in some 

cases (De Paola et al., 2017; McDonald et al., 2012). Moreover, the large number of 

isobaric species may require bespoke chromatographic separation unique to the lipids of 

interest. Some of these limitations can be overcome by the improvements in MS 

platforms and modalities which continue to improve in sensitivity, specificity and 

resolving power. Next-generation MS instrumentation with more effective 

chromatography and sample ionisation, such as nano-ESI or gas-phase separation 

techniques such as ion-mobility, show promise (Keating and Glish, 2018). Indeed, the 

application of ion-mobility MS has the potential to enhance the separation of lipids and 
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improve isomer resolution due to its ability to exact cross-collisional information (Hinz 

et al., 2017). 

 

6.3 Future Work 

 

The work presented herein highlighted the importance of lipids as potential indicators of 

disease and presents a pipeline to assess compositional changes of lipids in a number of 

disease states. Future work will immediately focus on larger sample cohorts to increase 

statistical significance and validation of lipids identified in this study, as well as 

evaluate their utility as clinical diagnostics using targeted methodologies such as 

tandem LC-MS or enzyme-linked immunosorbent assay (ELISA).  

 

An important aspect of future work will be the correlation of clinical metadata (such as 

age, sex, disease state, smoking history and lung function tests) against the lipidomic 

profile of the sampled individual or groups.  Observational data, when used to 

complement the findings of metabolomics analyses, can offer additional means to 

phenotype disease (Trivedi et al., 2017). This is especially evident where 

complementary metabolite and clinical metadata can contribute to the effectiveness of 

subsequent lines of inquiries such as chemometrics (Trivedi et al., 2017). 

 

Additional lipidomic profiling of other chronic lung diseases such as asthma and 

sarcoidosis will also be interesting to determine if the biochemical changes encountered 

in this work prevails across a larger spectrum of chronic lung conditions. Future work 

can also be performed to measure lipid kinetic and flux using stable isotope-labelled 

standards in diseased versus healthy samples. In-depth fluxomics analyses is expected to 
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provide additional insights into the rate of lipid metabolism at the molecular level and 

can facilitate a deeper understanding of their roles in IPF. 

 

Future work will also be focused on the development of new quantitative approaches to 

MSI. This will involve the generation of calibration curves by spiking of isotopically-

labelled internal standards directly onto the tissue section followed by MALDI-MSI 

acquisition. Gentler, ambient ionisation techniques including desorption electrospray 

ionisation (DESI) and atmospheric pressure (AP)-MALDI can also be evaluated directly 

on untreated histological samples and has the potential to provide in situ analysis in 

clinical settings. 

 

6.4 Conclusion 

 

The application of untargeted metabolomics and imaging mass spectrometry in 

combination with multivariate statistical approaches were successful at revealing unique 

markers which can be used to correlate metabolic mechanisms and pathways 

fundamental to disease development. The application of a unique DIA mode such as 

SONAR can potentially enhance the specificity of data acquired using UPLC-QTOF-

MS. Finally, the use of the freeze-spot approach optimised with potassium adduct 

formation for MSI acquisition provides a new avenue to improve the visualisation of 

lipid distribution in IPF tissues and may provide users with additional metabolite 

information that can complement existing histopathological assessments, and aid in the 

diagnostic of the disease. 
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... and looks like I’ve hit my lipid. 

 

 




