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Abstract: 21 

Exercise stimulates mitochondrial biogenesis and increases mitochondrial respiratory 22 

function and content.  However, during high-intensity exercise muscle pH can decrease 23 

below pH 6.8 with a concomitant increase in lactate concentration.  This drop in muscle pH 24 

is associated with reduced exercise-induced mitochondrial biogenesis, whilst increased 25 

lactate may act as a signaling molecule to affect mitochondrial biogenesis. Therefore, in this 26 

study we wished to determine the impact of altering pH and lactate concentration in L6 27 

myotubes on genes and proteins known to be involved in mitochondrial biogenesis.  We 28 

also examined mitochondrial respiration in response to these perturbations.  Differentiated 29 

L6 myotubes were exposed to normal (pH 7.5), low (pH 7.0) or high pH (pH 8.0) media with 30 

and without 20 mM sodium L-lactate for 1 and 6 h.  Low pH and 20 mM Sodium L-Lactate 31 

resulted in decreased Akt (Ser473) and AMPK (T172) phosphorylation at 1 h compared to 32 

controls, whilst at 6 h the nuclear localisation of HDAC5 was decreased.  When the pH was 33 

increased both Akt (Ser473) and AMPK (T172) phosphorylation was increased at 1 h.  Overall 34 

increased lactate decreased the nuclear content of HDAC5 at 6 h.  Exposure to both high 35 

and low pH media decreased basal mitochondrial respiration, ATP turnover, and maximum 36 

mitochondrial respiratory capacity.  These data indicate that muscle pH affects several 37 

metabolic signalling pathways, including those required for mitochondrial function.   38 

 39 

Abbreviations 40 

ACTB = beta actin 41 

AMPK = AMP-activated protein kinase 42 
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B2M = Beta-2 microglobulin 43 

CaMK = Ca2+/calmodulin-depedent protein kinase 44 

COX-IV = Complex IV/cytochrome c oxidase 45 

DMEM = Dulbecco’s modified essential media 46 

FCCP = carbonyl cyanide-4-phenylhydrazone 47 

HDAC5 = Histone deacetylase 5 48 

IRS-1 = Insulin receptor substrate 1 49 

MAPK = Mitogen-activated protein kinase 50 

MCT1 = monocarboxylate transporter 1 51 

MEF2 = myocyte-enhancing factor-2 52 

MEMα = Minimum essential media α 53 

Myh2 = Myosin heavy chain-2 54 

MyoD = myogenic differentiation-1 55 

NRF-1/2 = Nuclear respiratory factor-1/2 56 

PGC-1α = Proliferator-activated receptor γ coactivator 1 α 57 

PI3-K = Phosphatidylinositol 3-kinase 58 

ROS = Reactive oxygen species 59 

SLC38A2 = System A amino acid transporter 60 
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Introduction 61 

Exercise stimulates mitochondrial biogenesis, leading to an increase in mitochondrial 62 

content and respiratory function, and this has been attributed to the cumulative effects of 63 

each single exercise session (23-25, 27, 29, 37).  This process is initiated in response to 64 

multiple perturbations of cellular homeostasis (e.g., increases in the ADP/ATP ratio) (16), 65 

which are  followed by the activation of kinases such as AMP-activated protein kinase 66 

(AMPK), Ca2+/calmodulin-dependent protein kinase (CaMK), and mitogen-activated protein 67 

kinase (p38 MAPK) (13, 29).  These signaling pathways have all been reported to activate 68 

and/or increase the expression of proliferator-activated receptor γ coactivator 1 α (PGC-1α), 69 

a transcriptional coactivator that interacts with transcription factors, such as nuclear 70 

respiratory factor 1 (NRF-1), myocyte-enhancing factor-2 (MEF2), and mitochondrial 71 

transcription factor A (Tfam) (39), to up-regulate the content  of mitochondrial genes and 72 

proteins (29).  73 

 74 

One cellular perturbation with exercise is an increase in muscle lactate concentration (28), 75 

and  blood lactate concentrations of 15 to 25 mmol.L-1 have been observed immediately 76 

post high-intensity exercise (15, 22).  Cell culture is one experimental model that can be 77 

used to investigate the effects of changes in lactate on cell signaling that are independent of 78 

contraction and the many other concommittant exercise-induced cellular perturbations. In 79 

the only study to date, genes implicated in mitochondrial biogenesis (e.g. NRF-2, COX-IV and 80 

PGC-1α) were increased up to two fold in L6 myotubes that had been incubated with 20 mM 81 

of sodium lactate for six hours (26). Thus, it was suggested that lactate may act as a 82 

signaling molecule to increase mitochondrial biogenesis (26). The authors further 83 
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hypothesized that the mechanism may be related to signaling through CaMKII and p38 84 

MAPK via increased production of reactive oxygen species (ROS), although this was not 85 

directly measured (26).    However, lactate did increase hydrogen peroxide production four 86 

fold, and it also upregulated genes known to be responsive to ROS and calcium. The authors 87 

concluded that the lactate signaling cascade involves ROS production and converges on 88 

transcription factors affecting mitochondrial biogenesis.  However, these results have not 89 

been replicated and many of the changes were small (< 1.4 fold).  90 

 91 

During high-intensity exercise, lactate accumulation does not occur in isolation and is 92 

associated with an increase in the hydrogen ion concentration; this results in a decrease in 93 

muscle pH to values as low as pH 6.8 in the soleus and 6.6 in the EDL of rats (12), with a 94 

similar decrease in the vastus lateralis muscle of active women (11).  This decrease in pH is 95 

sufficient to have an effect on metabolism (40) and to alter the expression and/or activity of 96 

some proteins (e.g., basal insulin receptor substrate-1 (IRS-1) associated 97 

phosphatidylinositol 3-kinase (PI3-K), ubiquitin, and protease subunit mRNA (1, 2, 30)).   A 98 

lower muscle pH in humans has also been associated with a reduced exercise-induced 99 

expression of genes known to be involved in mitochondrial biogenesis (e.g., PGC-1α) (20).  In 100 

rats, administration of ammonium chloride, resulting in a lowering of blood pH from 7.38 to 101 

7.16, decreased MAPK phosphorylation in the kidney (6).  In a study with HeLa cells, the 102 

lowering of intracellular pH (via the manipulation of sodium bicarbonate levels) decreased 103 

histone acetylation and affected the expression of many genes including those in the MAPK 104 

signalling pathway (34).  To date, however, no study (with the exception of an abstract by 105 
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Perez-Schindler et al (38)) has investigated the effects of manipulating pH on cell signaling 106 

pathways associated with mitochondrial biogenesis in myocytes. 107 

 108 

There is therefore, some evidence to suggest two cellular perturbations (increased lactate 109 

concentration and decreased muscle pH) may act on genes and proteins implicated in 110 

mitochondrial biogenesis.  However, although some of these factors have been studied 111 

independently in muscle cell culture, no study has looked at these two manipulations 112 

together and no study has examined in detail genes and proteins known to be involved in 113 

mitochondrial biogenesis.  The aim of this study was to determine the impact of altering pH 114 

(by changing bicarbonate concentration), with and without an increase in media lactate 115 

concentration, under tightly-controlled conditions in L6 myotubes – a model used in a 116 

similar, previous study (26).  In particular, we examined changes in genes and proteins 117 

involved in the regulation of mitochondrial biogenesis, as well as the effect of these two 118 

cellular perturbations on mitochondrial respiration.  To enable comparison with previous 119 

literature, we have performed experiments in both low (5.5 mmol/L) and high (25 mmol/L) 120 

glucose containing media.    It was hypothesized that an increase in lactate concentration 121 

would increase the phosphorylation of signaling proteins and the expression of genes 122 

associated with mitochondrial biogenesis.  It was also hypothesized that a low pH would 123 

reduce the content of these same genes and proteins.   124 

 125 

Methods 126 

Cell culture 127 
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L6 myoblasts (American Tissue Culture Collection) were cultured in Minimum Essential 128 

Media (MEM) α (5.5 mmol/L glucose, 10% foetal bovine serum, 1% 129 

antibiotic/antimycotic)(low glucose)  or Dulbecco’s Modified Essential Media (DMEM) (25 130 

mmol.L-1 glucose, 10% foetal bovine serum) (high glucose) (Thermo Fisher Scientific, 131 

Melbourne, Australia) and seeded into 6 or 96 well plates for experimental measurements. 132 

Two different glucose concentrations were used in order to compare with previously-133 

published data (26).  Cells were differentiated into myotubes by changing the serum to 2% 134 

horse serum (Thermo Fisher Scientific, Melbourne, Australia).  The differentiation medium 135 

was replaced every 48 h.  The identity of cells was assessed by surveying mRNA expression 136 

of myogenic differentiation-1 (MyoD) and myosin heavy chain-2 (Myh2) myocyte genes with 137 

qPCR and differentiation was confirmed by light microscopy.  Mycoplasma contamination 138 

tests were not carried out.  Differentiated L6 myocytes (5 to 6 days post-differentiation) 139 

were treated with normal, low, or high pH media, with and without the addition of 20 mM 140 

sodium L-lactate as used in a previous study (26), for zero, one or six hours.  The incubation 141 

values of 20 mM sodium lactate and a pH of approximately 6.8 were chosen as similar 142 

values have been observed in human skeletal muscle after physical activity (9, 10, 20).  This 143 

gave the following groups: Normal pH, Normal pH + 20 mM Sodium Lactate, High pH, High 144 

pH + 20 mM Sodium Lactate, Low pH, and Low pH + 20 mM Sodium Lactate.   The pH of the 145 

cell culture media was altered by increasing or decreasing the sodium bicarbonate 146 

concentration resulting in a pH of 8.04 ± 0.02 (high) and 6.97 ± 0.03 (low), respectively, as 147 

well as a normal pH of 7.57 ± 0.03, after incubation at 37°C and 5% CO2 for one hour.  We 148 

also verified that there were concomitant changes in intracellular pH (Figure 1, described 149 

below).  Cell viability was measured using trypan blue staining and a commercial LDH 150 

cytotoxicity assay (Thermo Fisher Scientific, Melbourne, Australia).  Glucose and lactate 151 
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concentrations in the media were measured with a Glucose Lactate analyser (YSI 2300 STAT 152 

Plus, John Morris Scientific, Melbourne, Australia).     153 

 154 

Intracellular pH measurement 155 

Intracellular pH was measured using 5-(-6)-carboxy SNARF®-1, acetoxymethyl ester, acetate 156 

(Thermo Fisher Scientific, Melbourne, Australia) in fully-differentiated L6 myocytes.  The 157 

method was adapted from Behbahan et al (5).  Briefly 10 µM SNARF-1 with Pluronic F127 158 

(Thermo Fisher Scientific, Melbourne, Australia) diluted in 1x EBSS with 1 g/L glucose and 24 159 

mM NaHCO3 was loaded into the cells for 50 min at 37°C.  Cells were then washed with PBS 160 

to remove excess dye and incubated with the different pH medias (pH 7.0, 7.5 and 8.1), with 161 

and without 20 mM sodium lactate, for 1 or 6 h.  To establish a calibration curve, individual 162 

wells were incubated with calibration buffer (135 mM KCl, 2 mM K2HPO4, 20 mM HEPES, 1.2 163 

mM CaCl2, 0.8 mM MgSO4) at the following pH: 6.0, 6.5, 7.0, 8.0 and 8.5 with 10 µM 164 

nigericin for 5 minutes at 37°C.  Fluorescence was read on a plate reader with excitation at 165 

530 nm and emission at 580 nm and 640 nm.  Intracellular pH was calculated ratiometrically 166 

using a sigmoidal 4-parameter curve fit (SoftMax Pro 6.5.1). 167 

  168 

Western blotting 169 

Total protein was extracted for analysis in ice cold lysis buffer (0.05M Tris pH 7.5, 1mM 170 

EDTA, 2mM EGTA, 10% glycerol, 1% Triton X-100, 1mM DTT) with the addition of a Protease 171 

and Phosphatase Inhibitor cocktail (Cell Signaling Technologies, Danvers, MA).  Separation 172 

and purification of cytoplasmic and nuclear extracts from L6 myocytes was performed using 173 
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a NE-PER Nuclear and Cytoplasmic Extraction kit (Thermo Fisher Scientific, Melbourne, 174 

Australia).  Lysed samples were assayed for protein content and 5 to 10 µg protein was 175 

loaded onto TGX Stain-Free FastCast Acrylamide gels.  Proteins were separated by 176 

electrophoresis and then transferred onto PVDF membrane using a standard protocol.  177 

Membranes were then blocked for 1 h at room temperature in TBST (TBS with 0.05% Tween 178 

20 pH 7.4) with either 1% bovine serum albumin (BSA) or 5% skim milk powder.  179 

Membranes were then probed with the following primary antibodies overnight at 4°C at 180 

1:1000 in TBST (all antibodies from Cell Signaling Technologies unless otherwise noted), 181 

phospho-Thr180/Tyr182 p38 MAPK (#9211), total p38 MAPK (#9212), phospho-Ser473 Akt 182 

(#9271), total Akt (#9272), phospho-CaMKII (#12716), total CaMKII (#3362), 183 

phosphoT172AMPKα (#2531), total AMPKα (#2532), HDAC5 (#2082), PGC-1α (#ST1202, 184 

Calbiochem – Merck Millipore, Darmstadt, Germany), Histone H3 (#4499).  Blots were then 185 

washed with TBST prior to incubation with the appropriate HRP-linked secondary antibody 186 

(Anti-rabbit, NEF81200, anti-mouse, NEF82200, Perkin Elmer) for 1 h at room temperature.  187 

Blots were developed using Clarity ECL and visualised using a ChemiDoc.  All bands were 188 

quantified using ImageLab software (Bio-Rad Laboratories, Hercules, CA).  All 189 

phosphorylated and individual protein expression was normalized to total protein.  190 

Purification of nuclear and cytosolic protein was confirmed by probing for Histone H3 and 191 

LDH.  PGC-1α and HDAC5 abundance was determined in nuclear fractions. 192 

 193 

qPCR 194 

RNA was extracted using TRIzol® Reagent (Thermo Fisher Scientific, Melbourne, Australia) as 195 

described in the manufacturer’s instructions. The purity of each sample was assessed from 196 
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the A260/A280 absorption ratio using a BioPhotometer (Eppendorf AG, Hamburg, 197 

Germany).  Total RNA concentration was also measured using the BioPhotometer. RNA 198 

integrity of a subset of the samples was measured using a Bio-Rad Experion microfluidic gel 199 

electrophoresis system (Bio-Rad, Hercules, CA) and determined from the RNA quality 200 

indicator (RQI). All samples were of a good quality (RQI 9.9 ± 0.01) and protein 201 

contamination was low (A260/A280 ratio was 2.03 ± 0.01). RNA was reverse transcribed  to 202 

first strand cDNA from 1 µg of template RNA using a Thermocycler (Bio-Rad, Hercules, CA) 203 

and Bio-Rad iScriptTM RT Supermix (Bio-Rad, Hercules, CA) according to the kit instructions. 204 

qPCR for the following genes, MCT1 (Forward 5’-CGT TGA TGG ACC TCG TTG GA, Reverse 5’-205 

CGA TGA TGA GGA TCA CGC CA), CD147 (Forward 5’- GGC GGG CAC CAT CGT AA, Reverse 5’- 206 

CCT TGC CAC CTC TCA TCC AG, NRF1 (Forward 5’-CTA CTC GTG TGG GAC AGC AA, Reverse  207 

5’-AGC AGA CTC CAG GTC TTC CA), NRF2 (Forward 5’- AGT AGC GCA AAG GCA GCT AA,  208 

Reverse 5’- CCA TTG TTT CCT GTT CTG TTC CC), COXIV Forward 5’- GCA GCA GTG GCA GAA 209 

TGT TG, Reverse 5’-CGA AGG CAC ACC GAA GTA GA), Tfam (Forward 5’- AAT GTG GGG CGT 210 

GCT AAG AA, Reverse 5’- ACA GAT AAG GCT GAC AGG CG), PGC-1α (Forward 5'- ATA CAC 211 

AAC CGC AGT CGC AAC, Reverse 5'- GCA GTT CCA GAG AGT TCC ACA C) , PGC-1α1 (Forward 212 

5’-ATG GAG TGA CAT CGA GTG TGC Reverse 5’- GAG TCC ACC CAG AAA GCT GT), PGC-1α4 213 

(Forward 5’-TCA CAC CAA ACC CAC AGA GA, Reverse 5’- CTG GAA GAT ATG GCA CAT), 214 

cytochrome c (Forward 5’- ATG GTC TGT TTG GGC GGA A, Reverse 5’- TCC CCA GGT GAT ACC 215 

TTT GTT C), MyoD (Forward 5’- CAC TAC AGC GGC GAC TCA GA, Reverse 5’- TCA CTG TAG 216 

TAG GCG TC), Myh2 (Forward 5’- GTG AAA ACT GAA GCA GGA GCG, Reverse 5’- AGA GGC 217 

CCG AGT AGG TGT AG) and SLC38A2 (Forward 5’- CTG ACC AAT GCG ATT GTG GG, Reverse 218 

5’- TAA AGA CCC TCC TTC GTT GGC)  was performed using iTaq Universal SYBR Green 219 

Supermix (Bio-Rad laboratories).  RefFinder (41) was used to establish the stability of the 220 
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reference genes, and based on this and similar reaction efficiency to the target genes, 221 

cyclophilin (Forward 5’-TCT GCA CTG CCA AGA CTG AG, Reverse 5’- GTC CAC AGT CGG AGA 222 

TGG TG), B2M (Forward 5’- TGC TGT CTC CAT GTT TGA TGT ATC T Reverse 5’-TCT CTG CTC 223 

CCC ACC TCT AAG T) and ACTB (Forward 5’- CGA TAT CGC TGC GCT CGT, Reverse 5’- ATA CCC 224 

ACC ATC ACA CCC TG) were used as reference genes. qPCR was performed with a 225 

QuantStudio 7 Flex (Applied Biosystems, Foster City, CA). Primers were either adapted from 226 

existing literature or designed using Primer-BLAST 227 

(http://www.ncbi.nlm.nih.gov/tools/primer-blast/) to include all splice variants, and were 228 

purchased from Sigma-Aldrich. Primer specificity was confirmed from melting curve 229 

analysis.  The PCR reaction contained 0.3 μM of each forward and reverse primer. A serial 230 

dilution analysis was used to determine the amount of template cDNA. The standard 231 

thermocycling program consisted of a 95°C denaturation pre-treatment for 10 min, followed 232 

by 40 cycles of 95°C for 15 s and 60°C for 60 s. All samples were run in duplicate with 233 

template free controls, and the mean Ct values were calculated. ΔCt was calculated as the 234 

difference between the target gene and the three reference genes. ΔΔCt was obtained by 235 

normalizing the ΔCt values of the treatments to the ΔCt values of Normal pH control at 0 h.   236 

 237 

Bioenergetics and mitochondrial respiration analyses  238 

L6 myotubes were treated with normal, high and low pH media, with and without lactate, 239 

for five hours.  They were then returned to normal media for 16 h before measurements of 240 

the bioenergetics profile of the cells were taken using the Seahorse XF24 Flux Analyser 241 

(Seahorse Bioscience).  On the day of the measurements cells were washed and media 242 

replace with unbuffered DMEM (25 mM glucose, 1 mM pyruvate, 1 mM glutamate).  Cells 243 
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were incubated at 37 °C in a non-CO2 incubator for 1 h prior to bioenergetics assessment to 244 

allow the cells to adjust metabolism to 25 mM glucose.  Three basal oxygen consumption 245 

rate (OCR) measurements were performed using the Seahorse analyser and measurements 246 

were repeated following injection of  1 µM oligomycin, 1 µM FCCP, 1 µM rotenone and 1 247 

µM antimycin A.  Respiratory parameters of mitochondrial function were calculated as 248 

described previously (33).  249 

 250 

Statistical analysis 251 

All values are expressed as mean ± SEM.  All protein content and gene expression results 252 

were normalized to the 0 h Normal pH sample.   Glucose, lactate and pH data were analysed 253 

for statistical significance using the Univariate Analysis of Variance test. For comparisons of 254 

protein phosphorylation or mRNA content between treatments a One way ANOVA was 255 

used. SPSS Statistics 22 was used for all statistical analysis.  Significance was set at p  ≤ 0.05. 256 

 257 

Results 258 

pH, and glucose and lactate concentrations, in incubation media 259 

The media pH was significantly higher in the high pH manipulation groups and significantly 260 

lower in the low pH manipulations, when compared with the 0 h normal pH condition, when 261 

either the low or high glucose media was used (Figure 1a, 1b).  The intracellular pH showed 262 

a similar pattern (Figure 1c, 1d). Lactate concentration remained constant throughout the 263 

incubations (Low glucose normal lactate 0.1 ± 0.0 to 1.3 ± 0.1, 20 mM Sodium lactate 15.7 ± 264 
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0.5 to 17.8 ± 0.3 mM, and High glucose normal lactate 0.3 ± 0.0 to 1.0 ± 0.1, 20 mM Sodium 265 

Lactate 17.5 ± 0.3 to 18.3 ± 0.4 mM) (Figure 1e, 1f).  Glucose concentrations remained 266 

consistent between groups, with the exception of the low pH manipulations in both the low 267 

and high glucose media that did not see a drop in glucose concentration at 6 h (Low glucose 268 

media: Normal pH 4.8 ± 0.1, low pH 5.3 ± 0.1, low pH + lactate 5.3 ± 0.1 mM) (High glucose 269 

Normal pH 24.6 ± 0.3, low pH 25.2 ± 0.2, low pH + lactate 25.9 ± 0.3 mM) (Figure 1g, 1h).     270 

 271 

Cell viability 272 

Measurements of cell viability, using trypan blue staining and a commercial cytotoxicity 273 

assay, showed that increasing the pH of the cell culture media to 8.1 or decreasing it to 7.0 274 

does not result in significant changes in cell viability in either the low or high glucose media. 275 

The addition of 20 mM sodium L-lactate to the cell culture media also did not negatively 276 

affect cell viability, although in the high glucose media trypan blue staining did indicate an 277 

increase in cell viability with the addition of 20 mM sodium lactate (Figure 2).   278 

 279 

Effects of altered pH and lactate concentration on protein phosphorylation and localization 280 

Low glucose media 281 

In conditions where the pH and lactate concentration were similar to that seen following 282 

high-intensity exercise (i.e., low pH and higher lactate concentration) (4), Akt (Ser473) 283 

phosphorylation was decreased at 1 h compared to Normal pH, whilst AMPK (T172) did not 284 

change significantly in the low glucose media (Figure 3a).  After 6 h, Akt and AMPK 285 
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phosphorylation were not significantly different from normal in any condition (Figure 3a,b), 286 

but the nuclear relative abundance of HDAC5 was decreased in both low pH conditions 287 

(Figure 4a).   288 

 289 

When the pH was increased there was no significant effect on  Akt (Ser473) phosphorylation 290 

(Figure 3a), or nuclear HDAC5 relative abundance (Figure 4).   CaMKII phosphorylation at 291 

Thr286 was not altered with any of the treatments (Figure 3c and f), nor was p38 MAPK 292 

phosphorylation (Figure 3G).  In all three 20 mM lactate conditions there was decreased 293 

nuclear localization of HDAC5 at 6 h, but not at 1 h (Figure 4a).  PGC-1α nuclear localization 294 

was not altered significantly with any treatment (Figure 4c).   295 

High glucose media 296 

In cells incubated in high glucose media none of the manipulations resulted in any 297 

significant changes in phosphorylation or localization of the proteins studied (Figures 3 and 298 

4). 299 

 300 

Gene expression 301 

Less HDAC5 in the nucleus is linked with de-repression of gene transcription (36), which is 302 

consistent with previous research reporting that increased lactate can increase the 303 

transcription of MCT1, basigin (also known as CD147), and PGC-1α (26).  Therefore, we then 304 

looked at the mRNA content of a genes encoding transcription factors or proteins with a 305 

role in lactate transport or mitochondrial biogenesis.  306 
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 307 

No change in the expression of genes encoding proteins important for lactate transport 308 

The mRNA content of MCT1 was not changed with any of the treatments (Figure 5a and c).  309 

There were also no significant change in CD147 (basigin) mRNA content (Figure 5b and d).  310 

 311 

Genes implicated in the activation of mitochondrial biogenesis 312 

There were no significant changes in the mRNA content of NRF1, NRF2, Tfam, COXIV, or 313 

cytochrome c with either high or low pH or an increased media lactate concentration (Figure 314 

6).  PGC-1α mRNA content was not changed after one hour of altered pH or lactate; 315 

however, a 6-h exposure to a high pH significantly decreased PGC-1α expression by 316 

approximately 40% with and without additional lactate. This effect was consistent in both 317 

the low and high glucose media (Figure 7a and d).  The mRNA content of splice isoforms 318 

PGC-1α1 and PGC-1α4 was not significantly altered in most conditions and at most time 319 

points (Figure 7b – f).  320 

 321 

SLC38A2 gene expression 322 

mRNA content of SLC38A2 was measured as it is as thought to be affected by extracellular 323 

acidosis (8).  There were no significant changes in mRNA content in the low glucose media 324 

manipulations (Figure 6k), however, mRNA content was significantly increased after a 6-h 325 

exposure to high pH with additional lactate (Figure 6l).    326 

 327 
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Bioenergetics and mitochondrial respiration analyses 328 

Exposure to both high and low pH media decreased basal mitochondrial respiration, ATP 329 

turnover, and maximum mitochondrial respiratory capacity.  However, this effect was only 330 

significant for low pH media.  There was no effect of lactate alone on mitochondrial 331 

respiration; however, addition of lactate to the ‘high’ and ‘low’ media appeared to return 332 

mitochondrial function to normal or at least blunt the effects of the high or low pH (Figure 333 

8). 334 

 335 

Discussion 336 

This is the first study to examine the impact of a low, normal, or high pH, with and without 337 

high physiological concentrations of lactate, on markers of mitochondrial biogenesis and 338 

function in L6 myocytes.  In general, there were few significant effects of these 339 

manipulations.   However, a low pH (approximately 6.8) decreased p-Akt relative abundance 340 

in the cytoplasm and also decreased HDAC5 relative abundance in the nucleus.  Increasing 341 

media pH also decreased the expression of PGC-1α mRNA at 6 h.  The most consistent 342 

finding was that increasing the lactate concentration for 6 h decreased the relative 343 

abundance of HDAC5 in the nucleus.  Mitochondrial respiration was decreased with a low 344 

media pH.   345 

 346 

In this study we examined the response of genes and proteins known to have a role in 347 

mitochondrial biogenesis to physiologically-relevant changes in pH and lactate (12), which 348 

did not negatively affect cell viability. While greater, non-physiological changes may have 349 
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produced different results, greater changes have also been reported to negatively affect cell 350 

viability (42).  By changing the media pH we were able to also alter the intracellular pH 351 

(Figure 1).  As expected, due to the buffering capacity of cells (21), the alteration in 352 

intracellular pH was not as great as the changes in extracellular pH.  To enable comparison 353 

with previous literature, we completed two sets of experiments; we performed one 354 

manipulation in low and one manipulation in high glucose containing media.  We observed 355 

that most of the significant changes occurred in low glucose αMEM incubated cells, which is 356 

most similar to blood glucose levels in vivo. 357 

 358 

A decrease in pH was associated with a decrease in p-Akt relative abundance, but only when 359 

accompanied by an increase in lactate concentration (as occurs during muscle contraction).  360 

Metabolic acidosis, in an animal model of chronic kidney disease, has previously been 361 

reported to be associated with a decrease in p-Akt content (2).  However, another study in 362 

human carcinoma cells and immortalized fibroblasts found that acidification of the cell 363 

culture medium from 7.4 to 6.4 did not affect phosphorylation of Akt (3).  Previous reports 364 

have also shown that the Akt and MAPK pathways interplay at different levels and that they 365 

may be part of a negative feedback loop (17).  However, despite the observed changes in p-366 

Akt relative abundance we did not see changes in p-p38 MAPK content in the current study.  367 

Thus, the implications of a decrease or increase in p-Akt in response to a change in pH are 368 

unclear. However, given the role of Akt in muscle protein synthesis and metabolism (32), a 369 

decrease in pH may have a negative effect on muscle cell growth and metabolism.  This is 370 

reflected by the higher glucose concentration in the media after 6 h incubation in low pH 371 

media in this study. 372 
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 373 

Another important signalling protein, activated in response to stress, is AMPK (19).  In the 374 

present study, there was a trend for a decrease in p-AMPK relative abundance in the low pH 375 

condition (p = 0.098). Consistent with our study, Zhao et al (42) observed that an acidic pH 376 

decreased p-AMPK relative abundance, whilst an alkaline pH increased p-AMPK relative 377 

abundance in cultured cardiomyocytes (42).  Another study in cultured fibroblasts also 378 

found that an acidic or low pH decreased p-AMPK relative abundance (3).  An increase in p-379 

AMPK relative abundance has been linked to increased mRNA content of proteins favouring 380 

oxidative phosphorylation, such as PGC-1α and cytochrome c (7, 14, 16, 19).  This 381 

inducement of mitochondrial biogenesis by p-AMPK is thought to occur by alteration of the 382 

binding activity of transcription factors, such as NRF1 and MEF2, as well as altered 383 

localization of HDACs (7, 29, 31, 35).   Therefore, a decrease in AMPK phosphorylation 384 

suggests a potential for decreased mitochondrial biogenesis with a lowered pH.   385 

 386 

We next examined the nuclear localisation of HDAC5.  We observed a decrease in HDAC5 387 

nuclear relative abundance after a 6 h incubation with additional lactate and/or a low pH.  388 

Less nuclear HDAC5 suggests an increased opportunity for gene transcription (18).    Thus, 389 

the decrease in nuclear HDAC content after the addition of lactate is consistent with the 390 

increased transcription of PGC-1α reported in a similar, previous study (26).  In contrast, we 391 

did not observe any significant increases in gene transcription in the present study (with the 392 

exception of a decrease in PGC-1α mRNA content with an increased pH), despite using an 393 

identical lactate concentration and the same cell line.  It is difficult to explain these 394 

contrasting findings, but we note that the changes reported by Hashimoto et al (26) were 395 
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small (mostly less than 1.5 fold).   Additionally, as we did not observe a decrease in HDAC5 396 

nuclear protein abundance until 6 h, it may be that greater time is required for this change 397 

in the nuclear content of HDAC5 to promote significant increases in gene transcription. 398 

 399 

In addition to the changes we saw in protein phosphorylation and localization, and minor 400 

changes in mRNA content, altering the media pH above or below its normal range decreased 401 

mitochondrial function (as measured by parameters such as basal mitochondrial respiration, 402 

ATP turnover and maximum mitochondrial respiratory capacity); this effect was significant 403 

only with a low pH.  To account for the time effects of mitochondrial adaptations, these 404 

measurements were undertaken 16 h after the exposure to the altered pH medium. Our 405 

results suggest that alterations in extracellular pH may either have prolonged effects 406 

beyond the time of actual pH change or that changes in mitochondrial respiration (and 407 

associated signaling events) may not occur immediately upon a pH change but at later time 408 

points.  Therefore, it may be useful for future research to also examine protein 409 

phosphorylation and expression changes at time points beyond those measured in this 410 

study.   411 

 412 

Conducting this study in tissue culture had advantages, but also disadvantages.  One 413 

advantage is that we were able to tightly control both lactate concentration and H+ and to 414 

examine the effects of changing these ions on factors associated with mitochondrial 415 

biogenesis.  However, the use of a tissue culture model meant that we were examining 416 

these manipulations in the absence of the many other concomitant homeostatic 417 
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disturbances that occur in response to exercise.  It may be that without the wider systemic 418 

and physiological effects of muscle contraction that the effects of pH and lactate on 419 

mitochondrial biogenesis are small, or not present, or follow a different time course to that 420 

seen in vivo.  421 

 422 

In conclusion, we observed that short-term physiological alterations in extracellular pH and 423 

lactate result in alterations in Akt phosphorylation and HDAC5 localization, suggesting the 424 

potential for alterations in mitochondrial biogenesis and function.  Indeed, we found that 425 

mitochondrial function was decreased with a low pH.  There were also changes in the mRNA 426 

expression of PGC-1α with a high pH.  However, we did not observe any alterations in the 427 

expression or activation of a number of other proteins or genes proposed to be involved in 428 

mitochondrial biogenesis.  Due to the transient nature of changes in mRNA expression and 429 

protein activation, it is possible we were not able to detect some changes that may have 430 

occurred. Future work will be required to establish if changes in mRNA expression occur at 431 

time points beyond 6 h.  432 

 433 
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Figure 1: Incubation of L6 myocytes in low or high glucose media with normal, high, or low 439 

pH and +/- 20 mM Sodium Lactate. A. Low glucose media pH B. High glucose media pH C. 440 

Low glucose intracellular pH D. High glucose intracellular pH E. Low glucose media lactate F. 441 

High glucose media lactate G. Low glucose media glucose H. High glucose media glucose * 442 

significantly different from Normal pH group using the Univariate Analysis of Variance test 443 

(SPSS). P ≤ 0.05.  Values are means ± SEM. All measurements were performed in duplicate 444 

on four separate occasions.  445 

 446 

Figure 2: Cell viability after incubation of L6 myocytes in low or high glucose media. A. 447 

Trypan blue staining in low glucose media cells B. Low glucose media cytotoxicity C.  Trypan 448 

blue staining in high glucose media cells D. High glucose media cytotoxicity * Significantly 449 

different from Normal pH group at the corresponding time using a One-way ANOVA, P ≤ 450 

0.05.  Values are means ± SEM. All measurements were performed in duplicate on four 451 

separate occasions.  452 

 453 

Figure 3: Protein phosphorylation A. Akt (Ser473) in low glucose media B. AMPKα (T172) in 454 

low glucose media. C. CaMKII (Thr286) in low glucose media D. Akt (Ser473) in high glucose 455 

media E. AMPKα (T172) in high glucose media. F. CaMKII (Thr286) in high glucose media. G. 456 

p38 MAPK (Thr180/Tyr182) in low glucose media. H.. p38 MAPK (Thr180/Tyr182) in high 457 

glucose media * Significantly different from the Normal pH group at the corresponding time 458 

using a One-way ANOVA P = ≤ 0.05. Values are means ± SEM. Samples are from five 459 

independent experiments for the low glucose manipulations and from four independent 460 
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experiments for the high glucose manipulations.  All measurements were performed in 461 

duplicate.  An internal standard was loaded onto all gels in order to allow comparison 462 

between blots, and samples from different treatment groups were derived and analysed at 463 

the same time.   464 

 465 

Figure 4: Nuclear localization. A. Low glucose HDAC5 nuclear localization (n = 3 independent 466 

measurements). B. High glucose HDAC5 nuclear localization (n = 3 independent 467 

experiments). C. Low glucose nuclear PGC-1α localization (n = 4 independent experiments). 468 

* Significantly different from Normal pH group at the nominated time using the Univariate 469 

Analysis of Variance test P = ≤ 0.05.  Values are means ± SEM   Measurements were in 470 

duplicate.  An internal standard was loaded onto all gels in order to allow comparison 471 

between blots, and samples from different treatment groups were derived and analysed at 472 

the same time. 473 

 474 

Figure 5: mRNA expression of A. MCT1 and B. CD147 when cells were incubated in low 475 

glucose media and mRNA expression of C. MCT1 and D. CD147 when cells were incubated in 476 

high glucose media.  Values are means ± SEM and expressed relative to 0 h Normal pH.  477 

There were no significant differences between conditions. Samples are from four 478 

independent experiments for the high glucose manipulations and to five independent 479 

experiments for the low glucose manipulations.  Measurements were in duplicate. 480 

 481 
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Figure 6: mRNA expression of mitochondrial genes in cells treated with low or high glucose 482 

media. A. Low glucose NRF1, B. High glucose NRF1 C. Low glucose NRF2, D. High glucose 483 

NRF2, E. Low glucose COXIV, F. High glucose COXIV, G. Low glucose Tfam, H. High glucose 484 

Tfam, I. Low glucose cytochrome c, J. High glucose cytochrome c. K. Low glucose SLC38A2, L. 485 

High glucose SLC38A2. * Significantly different from normal pH group at nominated time 486 

using a One-way ANOVA P = ≤ 0.05.  Values are means ± SEM relative to 0 h Normal pH.  487 

Samples are from four independent experiments for the high glucose manipulations and five 488 

independent experiments for the low glucose manipulations.  Measurements were in 489 

duplicate. 490 

 491 

Figure 7: mRNA expression of Peroxisome proliferator-activated receptor gamma 492 

coactivator 1-alpha (PGC-1α) and two of it’s isoforms in cells treated with low or high 493 

glucose media A. Low glucose PGC-1α, B. Low glucose PGC-1α1, C. Low glucose PGC-1α4, D. 494 

High glucose PGC-1α, E. High glucose PGC-1α1, F. High glucose PGC-1α4 495 

* Significantly different from normal pH group at the corresponding time using a One-way 496 

ANOVA. P = ≤ 0.05.  Values are mean ± SEM relative to 0 h normal pH.  Samples are from 497 

four independent experiments for the high glucose manipulations and five independent 498 

experiments for the low glucose manipulations.  Measurements were in duplicate. 499 

 500 

Figure 8: The effects of manipulating cell media pH and lactate concentration on 501 

mitochondrial function in L6 myocytes.  A. Basal mitochondrial respiration B. ATP turnover 502 

C. Maximum mitochondrial respiratory capacity D. H+ leak E. Spare respiratory capacity * 503 
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Significantly different from normal pH group using a One-way ANOVA P = <0.05. Values are 504 

mean ± SEM. 6-8 biological replicates over two independent experiments. 505 

 506 

Table 1: Summary of main findings.   507 

 508 
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 612 

 613 

Table 1 – Summary of results 614 

pH   Normal   High   Low         615 

Lactate   - +  - +  - + 616 

Protein Signalling 617 

p-Akt   - -  - -  - ↓ 618 

p-AMPK  - -  - -  _ - 619 

p-CaMKII  - -  - -  - - 620 

Nuclear PGC-1α  - -  - -  - - 621 

Nuclear HDAC5  - ↓  - ↓  ↓ ↓ 622 

Gene Expression 623 

PGC-1α   - -  _ ↓  - - 624 

Mitochondrial Respiration 625 

Basal mt. resp.  - -  _ -  ↓ - 626 

ATP turnover  - -  _ -  ↓ - 627 
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Max. mt. resp. capacity - -  _ _  ↓ - 628 

 629 

Abbreviations: AMP-activated protein kinase (AMPK), Ca2+/calmodulin-dependent protein 630 

kinase II (CaMKII), Peroxisome proliferator-activated receptor gamma coactivator 1-alpha 631 

(PGC-1α), histone deacetylase 5 (HDAC5), basal mitochondrial respiration (Basal mt. resp.), 632 

maximum mitochondrial respiratory capacity (Max. mt. resp. capacity). ‘p’ prefix refers to 633 

phosphorylation. 634 

 635 

 636 
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