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ABSTRACT

The skill of submonthly forecasts of rainfall over the East Africa–West Asia sector is examined for starts

during the extended boreal winter season (September–April) using three ensemble prediction systems (EPSs)

from the Subseasonal-to-Seasonal (S2S) project. Forecasts of tercile category probabilities over the common

period 1999–2010 are constructed using extended logistic regression (ELR), and amultimodel forecast is formed

by averaging individual model probabilities. The calibration of each model separately produces reliable prob-

abilistic weekly forecasts, but these lack sharpness beyond a week lead time. Multimodel ensembling generally

improves skill by removing negative skill scores present in individual models. In addition, the multimodel en-

semble week-3–4 forecasts have a higher ranked probability skill score and reliability compared to week-3 or

week-4 forecasts for starts in February–April, while skill gain is less pronounced for other seasons. During the

1999–2010 period, skill over continental subregions is the highest for starts in February–April and for starts

during El Niño conditions and MJO phase 7, which coincides with enhanced forecast probabilities of above-

normal rainfall. Overall, these results indicate notable opportunities for the application of skillful subseasonal

predictions over the East Africa–West Asia sector during the extended boreal winter season.

1. Introduction

The climate from East Africa to West Asia is highly

heterogeneous because of contrasting topography

and regional atmospheric processes across the three

subcontinents (i.e., East Africa, the Arabian Penin-

sula, and West Asia); however it is tightly associated

with the latitudinal migration of the intertropical con-

vergence zone (ITCZ), which modulates the north

(southeast) trades during the southern (northern) sum-

mer. This heterogeneity and north–south ITCZ mi-

gration is clear in the climatological seasonal rainfall

from September to April over the semiarid to arid

regions within the East Africa–West Asia (EA–WA)

sector Fig. 1. Over East Africa, the ITCZ migration

results in two rainy seasons: the ‘‘short’’ rains from

October to December (OND) and the ‘‘long’’ rains

from March to May (MAM). The climate of the

semiarid Arabian Peninsula is also marked by a strong

seasonality with a 6-month wet period (November–

April) during which most of the rainfall results from

tropical–temperate interactions between surface

troughs over Sudan and the Red Sea, and upper-level

Mediterranean cyclones, as well as Rossby waves asso-

ciated with the subtropical jet (Abdullah and

Al-Mazroui 1998; de Vries et al. 2013). Some areas in

south Oman are impacted by the southwest Indian

monsoon and have their rainy season during June–

September (Charabi and Abdul-Wahab 2009). The

main rainy season also occurs during boreal winter in

November–April over West Asian regions from the

Middle East to Iran, where eastward propagating syn-

optic storms are the main source of precipitation

(Barlow et al. 2005; Rubin et al. 2007).Corresponding author: N. Vigaud, nicolas.vigaud@gmail.com
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Intraseasonal rainfall variability has devastating im-

pacts in these semiarid-to-arid regions already under

seasonal hydrological stress, and forecast information

beyond the seasonal cycle could be valuable for disaster

risk and preparedness actions (World Meteorological

Organization 2013). Despite the relative scarcity of

rainfall in the region, flooding events in the Middle East

from east Egypt to parts of Saudi Arabia, such as the

2009 Jeddah flood, cause significant property damage

and loss of life. These events are often related to

tropical–temperate interactions and modulations of

stratospheric potential vorticity intrusions associated

with Rossby wave breaking alongside incursions of

tropical moisture into the subtropics from atmospheric

rivers (de Vries et al. 2018) that could thus be useful

predictors of heavy rainfall events in submonthly fore-

casts. More generally, a better understanding of climate

phenomena on subseasonal time scales such as the

Madden–Julian oscillation (MJO; Zhang 2013) together

with modeling advances (Vitart 2014) has led to in-

creased interest (Zhu et al. 2014; Vigaud et al. 2017a;

Moron et al. 2018) in predictions between medium-

range weather (up to 2 weeks) and seasonal climate

(from 3 to 6 months). Sources of predictability at these

time scales include the inertia of sea surface tempera-

ture (SST) anomalies and the MJO (Waliser et al. 2003;

Waliser 2011; Mani et al. 2014), stratospheric processes

(Baldwin and Dunkerton 2001; Scaife and Knight 2008),

and memory in soil moisture (Koster et al. 2010), snow

cover (Lin and Wu 2011), and sea ice (Holland et al.

2011). From East Africa to West Asia, the influences of

El Niño–SouthernOscillation (ENSO) and theMJO are

significant to varying degrees, depending on the location

and season, thus raising the possibility that these

sources of predictability might result in relatively

skillful S2S forecasts for the region. From this per-

spective, the skill of submonthly precipitation forecasts

with weekly (from week 1 through week 4) and bi-

weekly (weeks 3 and 4) targets [i.e., the periods from

(d1 1, d1 7) to (d1 15, d1 28) for a forecast issued on

day d] for starts, or initialization times, in September–

April (i.e., September–May targets), is examined over

East Africa, the Arabian Peninsula, the Middle East,

and Persian regions.

Seasonal variations in rainfall over the EA–WA sec-

tor have been examined in earlier studies, which iden-

tified associations with Indian Ocean (IO) SSTs and

ENSO (Beltrando 1990; Beltrando and Camberlin 1993;

Mason 1995; Walker 1990; Goddard and Graham 1999;

Indeje et al. 2000; Behera et al. 2005; Feudale and

Kucharski 2013; Nicholson 2015; Kang et al. 2015).

ENSO’s influence on East African short rains appears to

be modulated through IO SSTs (Goddard and Graham

1999), and seasonal forecasts of the short rains are

more skillful than those of the long rains (Ogutu et al.

2017). Less is known regarding ENSO teleconnections

during the long rains (Ogallo 1988; Ogallo et al. 1988;

Hastenrath et al. 1993; Phillips and McIntyre 2000),

although relationships have been identified between

the recent drying during MAM and an increased zonal

SST gradient between the west and central Pacific

(Lyon and DeWitt 2012; Liebmann et al. 2014;

FIG. 1. Mean GPCP rainfall during (left) SON, (center) DJF, and (right) FMA (mmday21) over the 1999–2010

period of study. The blue rectangles in the left panel indicate the Arabian Peninsula, East Africa, the Middle East,

and Persian regions domains used in the following.

1514 WEATHER AND FORECAST ING VOLUME 33



Vigaud et al. 2016). Convection over the IO is modu-

lated by ENSO, in turn generating an eastward-

propagating barotropic Rossby wave response over the

Northern Hemisphere (Trenberth et al. 1998; Shaman

and Tziperman 2005) including Asia (Barlow et al.

2002). While ENSO relationships to the Indian summer

monsoon have been documented in numerous studies,

those to West Asian winter precipitation have been less

studied. Since the 1980s, however, the monsoon has

been significantly stronger during El Niño in association

with stronger Pacific SST anomalies (Kumar et al. 2007;

Yadav et al. 2010) while also impacting winter rainfall in

the Middle East (Kang et al. 2015).

At intraseasonal time scales, the MJO has a strong

influence on precipitation in the EA–WA sector, where a

similar mechanism to the ENSO one consists of simple

Gill–Matsuno dynamics (Matsuno 1966; Gill 1980) in

which large-scale equatorial waves interact with local

conditions (Barlow et al. 2005; Lau et al. 2012). During

East African long rains, the MJO contributes sub-

stantially to intraseasonal rainfall variability, including

extreme events (Pohl and Camberlin 2006b). Periods

of strong MJO influence are generally characterized

by upper-level temperature anomalies in response to

Kelvin wave dynamics with a precursive signal in

the upper-troposphere westerlies 2 weeks in advance.

However, ENSO significantly modulates MJO influence

locally (Mutai and Ward 2000; Kijazi and Reason 2005;

Pohl and Camberlin 2006a,b). Intraseasonal convection

variability in the IO is translated into a stationary wave

over Asia (Barlow et al. 2005; Hoell et al. 2013), where

MJO-induced modulations of convection have a strong

influence on continental precipitation (Barlow et al. 2002,

2005; Jones et al. 2004; Nazemosadat and Ghaedamini

2010). In particular, some regional flooding events are re-

lated to tropical moisture plumes favored during MJO

phases 5–8 (Rubin et al. 2007; Lau et al. 2012). Consistent

year-to-year MJO influence could translate into the po-

tential for predictability beyond 2 weeks, but to date has

not been demonstrated in terms of submonthly forecast

skill (Barlow et al. 2005; Lau et al. 2012).

The need for the calibration of model probabilities to

account for their deficiencies and to produce reliable

forecasts (Goddard et al. 2001; Wilks 2002; Tippett et al.

2007) has been demonstrated for probabilistic seasonal

climate and medium-range forecasting, alongside the

value of model output statistics (MOS) to improve

weather probabilistic forecasts (Hamill et al. 2004).

However, analysis at subseasonal time scales is limited

(DelSole et al. 2017; Vigaud et al. 2017a,b). Particular

challenges in analyzing subseasonal skill and pre-

dictability are the shorter hindcasts (reforecasts) with

fewer ensemble members as compared to seasonal

predictions, as well as generally lower skill. As for sea-

sonal (Robertson et al. 2004) and medium-range (Hamill

andWhitaker 2006) forecasting, recent studies over North

America and boreal summer monsoon regions (Vigaud

et al. 2017a,b) suggest that skill can be enhanced by mul-

timodel ensembling of submonthly forecasts.Nevertheless,

such findings remain to be demonstrated for the EA–WA

sector. In the previous studies, extended logistic regression

(ELR), which includes the quantile threshold along with

the ensemble mean as a predictor, is used to produce

mutually consistent quantile probabilities that sum to one

property (Wilks 2009; Wilks and Hamill 2007). This ELR-

based approach is used in this study to produce weekly

and week-3–4 multimodel ensemble (MME) precipitation

tercile probabilities forecasts from three individual

ensemble prediction system (EPS) reforecasts over the

EA–WA sector, and their skill is diagnosed over four

subregions: East Africa, the Arabian Peninsula, the

Middle East, and Persian regions. In this effort, ELR is

applied at each grid point of the EA–WA sector to the

individual model forecasts, which are subsequently

averaged together with equal weighting. The paper is

outlined as follows. The data and methods are pre-

sented in section 2 with diagnostics of the ELR model

setup when applied to weekly varying precipitation

tercile averages. The skill of starts during September–

November (SON), December–February (DJF), and

February–April (FMA) is examined in section 3, first at

weekly resolution. Skill in predicting week-3–4 aver-

ages is then discussed alongside ENSO and MJO re-

lationships. Conclusions are drawn in section 4.

2. Data and methods

a. Observation and model datasets

Daily precipitation fields from the European Centre

for Medium-Range Weather Forecasts (ECMWF), the

National Centers for Environmental Prediction (NCEP)

CFSv2, and the China Meteorological Administration

(CMA)week-1–4 reforecasts [i.e., the periods from (d1 1,

d1 7) to (d1 22, d1 28) for a forecast issued on day d]

were obtained from the Subseasonal-to-Seasonal (S2S)

database (Vitart et al. 2017) through the IRI Data Li-

brary (IRIDL) portal. These EPSs have different native

resolutions (from 125km at the equator with 40 vertical

levels for CMA to 16/32 km and 91 vertical levels for

ECMWF) and are archived on a common 1.58 grid. The
ensemble members (51 for ECMWF, 4 for NCEP and

CMA) and reforecasts length (between 44- and 60-day

leads from the NCEP CFSv2 to CMA) depend on the

modeling center, as indicated in Table 1; see Vitart et al.

(2017) for more details. NCEP and CMA reforecasts are
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generated four times daily from fixed model versions,

contrasting with those from ECMWF, which are gen-

erated on the fly every Monday and Thursday (11

members). We consider here ECMWF reforecasts that

were generated for Thursday starts in 2016, and matching

NCEP and CMA four-member daily reforecasts during

the common period 1999–2010, and that is the period used

in our analysis. For each model, there are 132 forecasts for

the DJF season and 144 for SON/FMA (12 starts over 11

and 12 years, respectively) used in this study. To produce

comparable sets of forecasts, S2S data are spatially in-

terpolated onto the Global Precipitation Climatology

Project (GPCP) 18 horizontal grid before the ELR

forecast probabilities obtained from the three indi-

vidual models are averaged to form MME tercile

precipitation forecasts. The skill of starts in SON,

DJF, and FMA (i.e., OND, JFM, and MAM targets at

week-3–4 leads) is then assessed separately over the

Arabian Peninsula (128–308N, 358–608E), East Africa

(108S–128N, 308–528E), the Middle East (308–438N,

248–508E), and Persian regions (248–428N8, 418–708E),
as shown in Fig. 1 and also plotted in subsequent maps.

The GPCP version 1.2 (Huffman et al. 2001; Huffman

and Bolvin 2012) daily rainfall estimates on a 18 grid,
available from 1996 to October 2015 are used as obser-

vational data for the calibration and verification of the

reforecasts over the 1999–2010 period of analysis. SON,

DJF, and FMA means plotted in Fig. 1 for 1999–2010

emphasize the arid-to-semiarid conditions of most re-

gions within EA–WA sector.

Skill relationships to ENSO and the MJO are examined

using theNiño-3.4 index fromBarnston et al. (1997) and the

MJO RMM indices from Wheeler and Hendon (2004).

b. Extended logistic regression model

Distributional regressions are well suited to proba-

bility forecasting, allowing the conditional distribution

of a response variable to be derived given a set of

explanatory predictors. Within this context, logistic re-

gression can be extended to produce the probability p of

the verifying observationV not exceeding the quantile q,

p5 probabilityfV# qg , (1)

by including an additional explanatory variable g(q),

which is a function of the quantile q as follows:

ln

�
p

12p

�
5 f (x

ens
)1 g(q) , (2)

where f 5 b0 1 b1xens and g5b2q.When computed from

Eq. (2), cumulative probabilities for smaller predictand

thresholds cannot exceed those for larger thresholds

across different values of the EPS ensemble mean xens
(Vigaud et al. 2017a,b), thus yielding logically consistent

sets of forecasts (Wilks and Hamill 2007; Wilks 2009)

and allowing the flexible choice of threshold probabili-

ties according to users’ needs (Barnston and Tippett

2014). ELR is here computed for the 33rd and 67th

percentiles of the precipitation distribution to produce

tercile category probabilities (ELR forecasts).

The observed climatological weekly tercile categories

corresponding to the 33rd and 67th percentiles from

GPCP weekly cumulated precipitation estimates are

defined using 3-week windows formed by the forecast

target week and a week on either side. This is done

separately at each grid point for each start within

the September–April season (1 September–28 April

Thursdays start dates) and each lead (weeks 1–4)

following a leave-one-year-out approach (i.e., using the

33 and 30 weeks from the remaining 11 and 10 years for

SON/FMA and DJF starts, respectively). Equivalent to a

‘‘dry mask,’’ ELR forecasts are produced only when and

where the 33rd percentile is nonzero, since the lower

tercile boundary is not well defined otherwise. For week-

3–4 targets (from d1 15 to d1 28 for forecasts issued on

day d) that correspond to a 2-week target at 2-week lead

(Zhu et al. 2014), observed climatological biweekly ter-

cile categories are computed on a 6-week window formed

by the 2-week target and 2 weeks on either side.

For each model, grid point, calendar start date, and

lead, ELR parameters are then estimated separately

based on all years except the one being forecast before

predicting forecasted tercile probabilities for the left-out

year (validation set) that are averaged across models

with equal weights to produce MMEs of the individual

forecast probabilities (MME forecasts). Further details

can be found in Vigaud et al. (2017a,b).

c. Skill metrics

Maps of ranked probability skill scores (RPSSs;

Epstein 1969;Murphy 1969, 1971;Weigel et al. 2007) are

TABLE 1. ECMWF, NCEP, and CMA forecast attributes as ar-

chived in the S2S database at ECMWF. Ensemble size corresponds

to the number of forecast members produced at the respective

operational centers and RFC size to the number of members ar-

chived in the corresponding reforecast database.

Attributes ECMWF NCEP CMA

Time range (days) 0–46 0–44 0–60

Resolution Tco639/319 L91 T126L64 T106L40

Ensemble size 51 16 4

Frequency Twice per week Daily Daily

Reforecasts (RFC) On the fly Fixed Fixed

RFC length Past 20 years 1999–2010 1994–2014

RFC frequency Twice per week Daily Daily

RFC size 11 4 4
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FIG. 2. RPSSs for ECMWF, NCEP, and CMA tercile precipitation forecasts as well as their MMEs for starts in SON. The different

columns correspond to leads from 1 to 4 weeks.White shadings correspond to the ‘‘dry mask’’ for which no forecast is produced. Similarly

to Fig. 1, the Arabian Peninsula, East Africa, the Middle East, and Persian regions domains used in the following are indicated by

rectangles in the top-left panel.
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first used to quantify the extent to which the ELR-

calibrated predictions are improved compared to cli-

matological frequencies. The RPSS is a one of the most

commonly used strictly proper skill scores (i.e., that

cannot be increased by hedging) since it is based on both

the shape and overall tendency of the forecast distribu-

tion and is thus generally preferred to other scores that

are also sensitive to distance (Daan 1985; Wilks 1995;

FIG. 3. As in Fig. 2, but for starts in DJF.
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Weigel et al. 2007).RPSS values tend to be small, even for

skillful forecasts. For reliable forecasts, a deterministic

forecast with correlation r will have an RPSS of approx-

imately 1 2
ffiffiffiffiffiffiffiffiffiffiffiffi
12 r2

p
, which means that an RPSS value

of 0.1 corresponds to a correlation of about 0.44 (Tippett

et al. 2010). To complement the spatial information from

RPSS maps, reliability diagrams are next computed by

pooling all land points over each subregion separately to

FIG. 4. As in Fig. 2, but for starts in FMA.
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evaluate reliability, resolution, and sharpness (Wilks

1995; Hamill 1997) of the ELR-based tercile category

precipitation forecasts.

d. Significance testing

RPSS averaged for starts during specific phases of

ENSO and theMJO are tested for statistical significance

using Monte Carlo simulations based on many random

forecasts subsets (i.e., 100 000) drawn from the entire

pool of forecasts with starts in SON, DJF, and FMA,

from which the 90th percentile RPSS is compared to

these from ENSO/MJO phase samples. Monte Carlo

simulations are also used to assess the significance of the

correlations of area averages of week-3–4 MME RPSSs

with the observedNiño-3.4 index,MJORMMs and their

best linear combination.

3. Results

a. Weekly averages

Maps of RPSSs for individual models and theirMMEs

are shown in Fig. 2 for starts in SON. During week 1,

maximum RPSS over land is found over East Africa,

northern parts of the Middle East, and Persian regions,

which still exhibit the largest RPSS in week 2 but with

much lower magnitude. RPSS values for weeks 3 and

4 are near zero or negative everywhere, except for

ECMWF inweek-3 over East Africa and Persian regions.

Similar results are found for DJF and FMA starts (Figs. 3

and 4), but with maximum RPSS values over the Middle

East and East Africa-Persian regions, respectively, in

relation to the seasonality of rainfall linked to the ITCZ

latitudinal migration. Positive RPSS values for ECMWF

remain until week 3 in FMAover EastAfrica.HighRPSS

values there in DJF coincide with climatologically fairly

dry conditions (Fig. 1) except during El Niño events,

which tend to be wet and for which forecasts are highly

skillful (Fig. 11). CMA is the least skillful model and

multimodel ensembling results in a slight RPSS increase

in weeks 1–4 compared to the most skillful individual

model (ECMWF), particularly over East Africa and

Persian regions in SON and FMA, by removing the small

negative RPSS values present in individual model fore-

casts, as evidenced over other regions of the globe

(Vigaud et al. 2017a,b).

Reliability diagrams for weekly ECMWF precipita-

tion tercile category forecasts from all weekly starts in

SON and each land grid point from the subregions

shown in the top-left panel of Fig. 2 (except the Middle

East since there is less skill) are displayed in the top- and

bottom-left panels of Fig. 5 for the below- and above-

normal categories, respectively. At week-1 lead, fore-

casts are characterized by reasonable reliability and

resolution with blue curves close to the diagonal and

distant from the climatological 0.33 horizontal line (zero

resolution line; not plotted), respectively. ECMWF-

forecasted categories exhibit high sharpness as shown

by corresponding histograms spread across all bins.

Sharpness decreases with increasing lead time with

maximum frequencies concentrated around climatology

(0.33, i.e., fourth bin), while reliability and resolution

also sharply drop from weeks 1 and 2 onward as

FIG. 6. RPSSs for the MMEs of ECMWF, NCEP, and CMA tercile precipitation week-3–4 forecasts for starts in

(left) SON, (center) DJF, and (right) FMA.
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indicated by decreasing slopes. Qualitatively similar

results are found for the NCEP and CMA models (not

shown), which are overall less skillful than ECMWF.

By comparison to individual models, MME forecasts

exhibit slightly greater slopes, in particular for week-

2 leads (Fig. 5, right), suggesting increased reliability

and resolution, while sharpness becomes very low at

long lead (histograms in Fig. 5, right). At week-3 and

week-4 leads, MME forecasts lack reliability and display

only small deviations from equal odds. Qualitatively

comparable results are identified in DJF and FMA

(not shown).

b. Week-3–4 averages

Maps of RPSS for week-3–4MMEoutlooks and SON,

DJF and FMA starts are shown in Fig. 6 and reflect more

skill for week-3–4 averages than weekly forecasts at

week-3 lead (Figs. 2–4, bottom). This is indicated by

higher RPSS values over East Africa, the Arabian

Peninsula, the Middle East, and Persian regions for

FIG. 7. Mean RPSSs from (left) ECMWF and (right) MME over the Arabian Peninsula, East Africa, Middle

East, and Persian regions in (top) SON, (middle)DJF, and (bottom) FMA. TheArabian Peninsula, EastAfrica, the

Middle East, and Persian regions domains used in the following are indicated by rectangles in the left panel of Fig. 6.
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SON and FMA starts, and the Arabian Peninsula and

Persian regions in DJF, illustrating the added value of

pooling week-3 and -4 leads. RPSS values averaged over

the four subregions are shown in Fig. 7 for week-3, week-

4, and week-3–4 forecasts from ECMWF and the MME.

Higher RPSS values are found for week-3–4 averages

compared to week-3 and -4 forecasts over East Africa

for ECMWF and over the Arabian Peninsula and the

Middle East for the MME in SON, the Middle East and

Persian regions in DJF, and all subregions in FMA. The

average week-3–4 RPSS is greater for theMME than for

ECMWF everywhere, except East Africa in SON.

Figure 8 shows reliability diagrams computed over the

Arabian Peninsula, East Africa, and Persian regions for

FIG. 8. Week-3–4 reliability diagrams for the (top) below- and (bottom) above-normal categories from ECWMF (black), NCEP (red),

and CMA (green) forecasts with starts in SON together with their MMEs (blue) computed for land points across the (left) Arabian

Peninsula, (center) East Africa, and (right) Persian regions. Frequencies with which each category is forecasted are indicated as bins

centered on integer multiples of 0.10 in histograms plotted under the respective tercile category diagrams for each forecast in their

respective colors. Bins are projected along the same x axis (forecast probabilities from 0 to 1) and scaled from 0% to 100%. Note that only

bins with more than 0.5% of the total number of forecasts in each category are plotted.

DECEMBER 2018 V IGAUD ET AL . 1523



the below- and above-normal categories of week-3–4

forecasts from individual models and their MMEs for

SON starts. The slopes for week-3–4 averages are lower

than those of week-3 forecasts but greater than for week

4 (Fig. 5), suggesting increased reliability. Multimodel

ensembling leads to increased skill gain for week-3–4

forecasts compared to weekly averages; however, the

skill is overall lower over Persian regions than for other

subregions. As a complementary measure of sharpness,

the percentage of forecast probabilities that do not fall

in the climatology bin 0.3–0.4 is next computed in Fig. 9,

suggesting higher proportions of forecasts with proba-

bilities different from climatology, and thus increased

sharpness, for week-3–4 averages compared to week-3

and week-4 forecasts over Persian regions in SON and

FMA, and over the Arabian Peninsula in FMA. Oth-

erwise, the sharpness of week-3–4 averages is between

those of weeks 3 and 4, except in DJF over the

Middle East.

c. Skill relationships to ENSO and the MJO

Significant correlations between weekly GPCP rain-

fall and the Niño-3.4 index and MJO RMM indices of

Wheeler and Hendon (2004) in Fig. 10 suggest that

forecasts and forecast skill might be related to both

large-scale signals. From this perspective, the top panels

in Fig. 11 show week-3–4 MME RPSS values averaged

over land grid points of the four subregions for starts

during distinct ENSO conditions (neutral when the ab-

solute value of Niño-3.4 is smaller than 0.5; El Niño and

La Niña for Niño-3.4 greater and lower than 0.5, re-

spectively) and MJO phases to get further insights into

how skill varies with these tropical forcings. The Indian

Ocean dipole (IOD; Saji et al. 1999) is also known to

FIG. 9. Percentages of forecasts in all bins except for the fourth bin (0.33) shown in Fig. 8 for week-3, week-4, and week-3–4 forecasts

from (left) ECMWF and (right) MME with starts in (top) SON, (middle) DJF, and (bottom) FMA for the above- and below-normal

categories.
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have significant climate impacts within the EA–WA

sector; however, there are strong covariations between

the IOD and ENSO associated with subsurface ocean

variability. Since ENSO canmodulate the IOD intensity

and frequency (Wang et al. 2016) but also trigger the

IOD (Yu and Lau 2005; Wang and Wang 2014), skill is

not discretized on IOD phases in the following. In SON

and FMA, skill is significantly enhanced in all subregions

FIG. 10. Spatial correlation patterns of (left) GPCPweekly precipitation and observedweekly Niño-3.4 index and (center)MJORMM1

and (right) RMM2 indices of Wheeler and Hendon (2004) in (top) SON, (middle) DJF, and (bottom) FMA. Only correlations significant

at the 0.05 level using Monte Carlo simulations are plotted.
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for starts during El Niño, except in DJF and over the

Middle East in FMA, when maximum RPSS is found

during neutral ENSO phases. Even though the small 11-yr

1999–2010 sample contains no strong El Niño events,

these dependences are confirmed by positive correlations

between mean RPSS and Niño-3.4 index results in

Table 2. Figure 12 indicates that highest RPSS during

El Niño generally coincides with enhanced forecasted

probabilities for the above-normal category. Conversely,

skill is lower on average during La Niña, when forecasts

FIG. 11.MeanMMEweek-3–4RPSSs averaged over theArabian Peninsula, East Africa, theMiddle East, and Persian regions for starts

in (left) SON, (center) DJF, and (right) FMA during (top) observed phases of the Niño-3.4 index and (bottom)MJO phases measured by

the RMM1 and RMM2 indices of Wheeler and Hendon (2004). Dashed lines correspond to a 0.1 level of significance using Monte Carlo

simulations.
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tend to be for drier than normal conditions. Because we

aimed at producing comparable sets of forecasts across

models, the robustness of such results was not tested

for the longer ECMWF and CMA reforecast periods;

however, this aspect could be further investigated, in

particular, regarding skill relationships to ENSO. In

SON, these could be explained by El Niño relationships

to increased East African short rains (Beltrando 1990;

Beltrando and Camberlin 1993; Goddard and Graham

1999; Indeje et al. 2000; Nicholson 2015) and boreal

winter rainfall over the Arabian Peninsula (Kang et al.

2015), the Middle East, and Persian regions (Hoell et al.

2013). Maximum RPSS during neutral ENSO phases

over the latter three regions in DJF and theMiddle East

in FMA could be evidence of increased modulations of

ENSO relationships by the IO (Hoell et al. 2014) as the

winter season unfolds, while the highest values for El

Niño over East Africa in FMA could reflect the long

rains relationships with the west-central Pacific SST

gradient (Lyon and DeWitt 2012; Liebmann et al. 2014;

Vigaud et al. 2016).

Mean RPSS also varies with MJO phases (Fig. 11,

bottom) in agreement with regional MJO relationships

(Hoell et al. 2013). The highest RPSS is found across

most subregions around MJO phase 7, when convection

is enhanced over the western Pacific and RMM1 and

RMM2 are, respectively, negative and positive. This

behavior is consistent with mean RPSS anticorrelations

toRMM1 for EastAfrica in SON, positive correlation to

RMM2 for Persian regions in DJF, and for the Arabian

Peninsula, Middle East, and Persian regions in FMA

(Table 2). In DJF and FMA, Fig. 12 displays systemati-

cally higher forecasted probabilities for the above-normal

category during MJO phase 7 everywhere. Overall, the

highest mean RPSS and probability ranges across MJO

phases compared to ENSO suggest stronger MJO mod-

ulations of skill and subsequent probabilistic forecasts.

For SON starts, however, RPSS values over the Arabian

Peninsula, East Africa, and Persian regions aremaximum

during MJO phase 2 and over the Middle East during

phase 5, when convection is enhanced over the IOand the

Maritime Continent (MC), respectively. InMJO phase 2,

RMM1 is negative and the highest skill over East Africa

in SON is consistent with mean RPSS anticorrelations to

RMM1 (Table 2), while Fig. 12 indicates barely signifi-

cant above-normal probabilities. Highest RPSSs forMJO

phases 2 and 7 over the Arabian Peninsula corroborate

MJO relationships identified in probabilistic forecasts

(Tippett et al. 2015) and increased precipitation for neg-

ative values of RMM1 (Barlow et al. 2005). Higher skill

with enhanced above-normal probabilities over Persian

regions in DJF and FMA could reflect more frequent

tropical moisture plumes during phases 5–8 (Rubin et al.

2007; Lau et al. 2012). Maximum RPSS over East Africa

in FMA agrees with reduced long rains during MJO

phase 5 (Berhane et al. 2015), when RMM2 is positive,

consistent with Table 2.

A principal component analysis (PCA) is applied to

week-3–4 MME RPSS values (total values; the mean is

not removed) over land points of each subregion at

weekly resolution to examine if the regional structure of

skill can be decomposed in geographically coherent

patterns of variability. Spatial correlations typical of the

first principal components (PCs) are plotted in Fig. 13

for each region, where they account for a substantial

part of the total variance explained (20%–40%) and are

TABLE 2. Correlations between week-3–4MMERPSSs averaged over the four continental regions (except East Africa inDJF in regard

to the break between short and long rains) indicated in Fig. 2 and the observed Niño-3.4 index (second column), MJO measured by the

RMM1 (third column), and RMM2 (fourth column) indices of Wheeler and Hendon (2004), and their best linear combination (fifth

column). Scores in parentheses correspond to correlations with RPSS PC1 for each regions shown in Fig. 1, and those significant at the 0.1,

0.05, and 0.01 levels of significance using Monte Carlo simulations are indicated with *, **, and ***, respectively.

Niño-3.4 RMM1 RMM2 MJO

SON

Arabian Peninsula 0.26*** (0.25***) 0.11 (0.13) 0.03 (0.12) 0.11 (0.19**)

East Africa 0.26*** (0.30***) 20.14* (-0.10) 0.07 (0.08) 0.16** (0.14*)

Middle East 0.10 (0.17*) 0.11 (0.14*) 0.18** (0.20**) 0.20** (0.24***)

Persian regions 0.27*** (0.26***) 0.20** (0.19**) 0.03 (0.07) 0.20** (0.20**)

DJF

Arabian Peninsula 0.20** (0.22**) 20.05 (-0.04) 0.12 (0.13) 0.12 (0.14)

Middle East 0.19** (0.22**) 0.04 (0.03) 0.07 (0.06) 0.09 (0.07)

Persian regions 0.14* (0.16*) 20.08 (0.14*) 0.16* (0.16*) 0.18** (0.20**)

FMA

Arabian Peninsula 0.20** (0.16*) 0.04 (0.03) 0.27*** (0.24***) 0.27*** (0.24***)

East Africa 0.21*** (0.27***) 0.02 (0.05) 20.02 (0.05) 0.02 (0.07)

Middle East 0.21*** (0.24***) 0.02 (0.03) 0.25*** (0.26***) 0.25*** (0.26***)

Persian regions 0.23*** (0.23***) 20.06 (-0.07) 0.27*** (0.26***) 0.27*** (0.27***)
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highly correlated to the mean RPSS (between 0.72 and

0.99). Over the Arabian Peninsula, maximum PC1

loadings from the Red Sea coast across to the Oman Sea

coastline coincide with some of the positive correlations

between weekly rainfall and Niño-3.4, but most simi-

larities are found with RMM2 correlations in DJF and

FMA (Fig. 10), agreeing with Table 2. East African

rainfall correlations to Niño-3.4 in SON are not signifi-

cant (Fig. 10), which might reflect the small sample of

events across the short period of study and IO mod-

ulations of ENSO teleconnections during the short

rains (Hoell et al. 2014). However, PC1 loadings re-

semble those of weekly rainfall anticorrelations to

RMM1 in agreement with the mean RPSS (Table 2).

ENSO relationships in Fig. 10 are more significant in

FMA andmatch parts of the PC1 loadings consistently

with Table 2, also corroborating similarities between

PC1 patterns and Niño-3.4 correlations in FMA over

the Middle East and in SON over Persian regions,

where PC1 coincides with RMM2 correlations in DJF

and FMA.

4. Conclusions

The skill from S2S precipitation forecasts using

ECMWF, NCEP, and CMA week-1–4 leads has been

examined, over the 1999–2010 common hindcast period

for the East Africa–West Asia sector (Fig. 1), including

the Arabian Peninsula, East Africa, the Middle East,

and Persian subregions, where probabilistic tercile cat-

egory forecasts are constructed using extended logistic

regression (ELR). For each start and lead, terciles are

defined with a 3-week window centered on the target

week and the same pool of weeks is used to train the

ELR model out of sample. Forecasts are only produced

where and when the lower tercile is nonzero to accom-

modate the discontinuity between zero rain and rainy

events in the observed precipitation distribution. Resulting

FIG. 12. Mean week-3–4 RPSS vs above-normal probabilities averaged over the Arabian Peninsula, East Africa, the Middle East, and

Persian regions for starts in (left) SON, (center) DJF, and (right) FMA during observed (top) ENSO and (bottom)MJO phases. El Niño,
neutral ENSO, and La Niña phases are indicated by plus signs (1), open circles (o), and exes (x), respectively, and those of the MJO by

their respective number. Dashed lines correspond to a 0.1 level of significance using Monte Carlo simulations.
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weekly precipitation tercile forecasts have reasonable

skill at week-1 lead as shown by the high RPSS values in

Figs. 2–4, as well as good reliability, resolution, and

sharpness in Fig. 5. Skill sharply drops after weeks 1 and

2 for individual models as well as their MMEs every-

where, while skill is low for longer leads when forecasts

are characterized by low sharpness (Figs. 2–5).

Week-3 and -4 leads are next combined together as an

attempt to improve the skill and produce week-3–4

precipitation tercile probabilities (Fig. 6). Biweekly

terciles are defined using data from 6-week windows

centered on the week-3–4 targets. The model is trained

for each start separately and then applied to out-of-

sample data. The skill of the week-3–4 averages is en-

hanced from week-3 and -4 forecasts in terms of RPSS

and reliability for starts in February–April but the skill

gain is less pronounced in other seasons, and sharpness

still remains low (Figs. 7–9).

Observed weekly rainfall correlations to Niño-3.4 and
MJO RMM indices (Fig. 10) suggest skill relationships

to both large-scale signals and these are examined by

averaging RPSSs, as well as forecasted probabilities,

over land grid points of each subregion (Table 2 and

Figs. 11 and 12), where a PCA is separately applied to

week-3–4 MME RPSSs (Fig. 13). The part of the total

variance explained by each PC1 is reasonable, with

significant correlations to spatially averaged RPSSs in-

dicating that PC1 represents the spatially coherent

component of the RPSS variability in each region. The

patterns associated with the first PCs bear some simi-

larities to correlations between weekly GPCP rainfall

and the Niño-3.4 index across most subregions (Fig. 10),

where the skill is greater for starts during El Niño
compared to La Niña and neutral conditions (Fig. 11)

and coincides with maximum forecasted probabilities of

the above-normal category (Fig. 12). Despite the small

sample of ENSO episodes during the 11-yr period, the

asymmetry between both phases could be explained by

El Niño relationships to increased East African short

rains (Beltrando 1990; Beltrando and Camberlin 1993;

Goddard and Graham 1999; Indeje et al. 2000; Nicholson

2015) and boreal winter rainfall over the Arabian

Peninsula (Kang et al. 2015), Middle East, and Persian

regions (Hoell et al. 2013). The highest skill for neutral

ENSO phases over the latter three regions from DJF to

FMA and for El Niño over East Africa in FMA could,

respectively, reflect increased modulations of ENSO

teleconnections by the IO (Hoell et al. 2014) and the

FIG. 13. Spatial correlation patterns of week-3–4 MME leading RPSS PC1 for starts in (top) SON, (middle) DJF, and (bottom) FMA.

Only correlations significant at the 0.05 level using Monte Carlo simulations are plotted. The fraction of total variance explained by each

PC is indicated in the different panels (%) as well as their correlations to spatially averaged RPSSs.
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long rains relationships to the west-central Pacific SST

gradient (Lyon and DeWitt 2012; Vigaud et al. 2016).

The highest skill in MJO phase 7 (Fig. 11), when con-

vection is enhanced over the western Pacific, coincides

with maximum above-normal probabilities (Fig. 12) that

are more substantially modulated by the MJO compared

to ENSO, and agrees with RPSS relationships to RMM

indices (Table 2 and Fig. 13). Maximum RPSSs over the

Arabian Peninsula, East Africa and Persian regions in

SON during MJO phase 2, when convection is enhanced

over the IO, corroborate the local MJO relationships

(Barlow et al. 2005; Tippett et al. 2015). The highest skill

and above-normal probabilities over Persian regions in

DJF/FMA and over East Africa in FMA could be ex-

plained by more frequent tropical moisture plumes dur-

ing phases 5–8 (Rubin et al. 2007; Lau et al. 2012) and

reduced long rains during phase 5 (Berhane et al. 2015).

Overall, these results suggest opportunities for applica-

tion of skillful predictions in the EA–WA sector espe-

cially during El Niño and specific MJO phases.
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