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ABSTRACT  
 

Strategic Flexibility and Age-Related Cognitive Change 

 
Daniel Barulli 

 
 

This series of projects aims to explore the potential role of strategic flexibility in cognitive 

aging, and whether this construct can serve as an effective mechanistic proxy for cognitive 

reserve. Study 1 introduces the task designed for this series, based on stimuli from a classic 

test of fluid reasoning and formatted as a task-switching paradigm to explore strategic 

characteristics in a structured way. This study suggests that such a task is subject to age-

related effects. Study 2 introduces a redesigned version of this task, matching it more 

closely to existing paradigms of task-switching, and explores how covariates interact with 

measured performance. Study 3 draws upon an existing sample of extensive 

neuropsychological and neuroimaging data, and aims to describe the associations among 

this set of data and measures of strategic flexibility. Results overall indicate that age 

negatively affects strategic flexibility, but cognitive reserve may mitigate this impairment. 
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CHAPTER 1 
GENERAL INTRODUCTION 

 

Aging and dementia represent an impending public health crisis (Whalley & Smith, 2013). 

Cognitive reserve (CR) is a latent factor theorized to allow some individuals to better cope 

with the deleterious effects of aging and age-related neurological illness better than others 

who have not built up such a reserve, which has previously been associated 

epidemiologically with individual differences in exposure variables such as education, 

leisure activities, occupational history, and verbal IQ (Stern, 2002). As such, a thorough 

understanding of how such a factor operates may allow researchers and public health 

professionals to understand, predict, and potentially even intervene on the future 

prevalence and distribution of dementia and cognitive impairment within the population. 

While many studies of CR have been conducted, most of these fall into the realms of 

epidemiology on the one hand, looking at the wide-scale effects of lifestyle factors on 

disease prevalence, or neuroimaging on the other (see Barulli & Stern, 2013 for a review). 

This series of studies instead attempts to understand CR as a function of cognitive 

operations, specifically the differential utilization of and flexibility with alternative 

cognitive strategies. 

Much research within cognitive aging studying compensatory mechanisms in aging 

focuses on the neural basis of CR and attempts to explain this construct in terms of its 

underlying neural mechanisms. Neural reserve is one such proposed mechanism, and can 

be further broken down into the distinct mechanisms of the efficiency and capacity of a 
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given task-related neural network, where efficiency is commonly thought to mean the 

ability of that network to accomplish a given function with some limited amount of 

activation, while capacity refers generally to the ability of that network to activate to the 

threshold at which the function attempted can be achieved (Stern, 2009). 

While the study of CR using these hypothetical mechanisms and the tools provided 

by neuroimaging is important and valuable, as some have pointed out terms like efficiency 

and capacity are often too amorphous and hypothetical to always be truly explanatory 

(Poldrack, 2015). “Efficiency” in particular may simply be a placeholder for several much 

more detailed mechanistic explanations, including a “more efficient” network reflecting: a) 

an entirely different set of cognitive processes being performed (i.e. a different task being 

conducted altogether), b) a different neural computation being performed to complete the 

same task, or c) less metabolic resources being demanded to perform the same neural 

computation for the same duration and at the same intensity. Without understanding 

something of the cognitive processes that are occurring during fMRI imaging, and not 

merely the ultimate cognitive performance, it is impossible to disambiguate between these 

possibilities. 

Neural compensation is the second major mechanism proposed to explain CR, and 

this is deeply rooted in a wealth of neuroimaging literature considering the active 

recruitment of secondary networks and areas in order to perform some cognitive task 

when the primary network has become impaired or overwhelmed (Li et al., 2009; Reuter-

Lorenz & Cappell, 2008). The major problem with this approach is that without additional 

information it cannot make firm predictions that link secondary sources of activation with 
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performance; in some, additional activation of a secondary network may be related to 

better cognitive performance. In others however the additional compensatory activation is 

associated with diminished cognitive performance. This can be understood using the 

analogy of walking with a cane; those who require the use of a cane do not walk better than 

those who don’t require its use, but they do walk better whilst using the cane than those 

who require one but are not using it (Stern, 2009). This analogy effectively parses 

secondary networks into two distinct categories: (cane-like) compensatory networks, and 

enhancing networks. The exact role that each network plays in an individual’s performance 

may be heavily dependent on the unique attributes of that individual’s brain structure and 

function. 

Understanding the differences between such networks requires more than the 

observation of task performance and associated activation: ideally some understanding of 

the cognitive operations reflected by the distinct networks can be understood, with one 

plausible working hypothesis being that primary networks are associated with the most 

direct and explicit cognitive operations required to perform a given task, secondary 

enhancing networks are associated with additional cognitive operations that facilitate 

primary network function, and secondary compensatory networks are associated with 

some alternative set of cognitive operations that are less ideal for the given task but can 

perform it in a suboptimal fashion when the primary network is impaired due to damage. 

The introduction of primary and secondary sets of cognitive operations into this 

discourse is evocative of an existing literature that has until recently been largely isolated 

from the world of cognitive aging: cognitive strategies. While some researchers speculate 
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that fundamental cognitive capabilities such as attention (Roberson, 2013) or working 

memory (Sandry & Sumowski, 2014) may mediate between CR and overall cognitive 

performance, this line of argumentation about alternative networks potentially 

representing alternative sets of cognitive operations suggests instead that cognitive 

strategies may represent one of the dominant mechanism through which CR moderates the 

effects of age on cognitive function. Some work has already been conducted in the realm of 

mnemonic strategies (Woods et al., 2010), with one study showing that mnemonic strategy 

use moderates the effects of HIV-related dementia on verbal working memory, and such 

strategy use has been shown to be associated with proxies for higher CR such as verbal 

intelligence and socioeconomic status. 

We have previously conducted two preliminary studies of cognitive reserve in the 

context of strategy use. In the first study (Barulli et al., 2013), a computational estimation 

task was used which required participants to solve 100 two-digit 2 x 2 multiplication 

problems using one of two estimation strategies: either rounding both numbers up to the 

nearest decade and multiplying (e.g. ‘32x56’ becomes ‘40x60’), or rounding both numbers 

down to the next lowest decade and multiplying (e.g. ‘30x50’ in the example above). This 

task is designed such that all problems are amendable to either strategy, however one 

strategy will always result in a better answer in that its result will be mathematically closer 

to the actual non-rounded product (e.g. in the above example, rounding down is the better 

strategy because the result, 1500, is much closer to the actual product of 1792). 

Using this task in a sample of 20 healthy young adults (20-31 year-olds) and 18 

healthy older adults (62-77 year-olds), we found that older adults performed more poorly 
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on this task as expected, as measured using their mean percent use of the best strategy 

across all trials. However, proxy measures of CR in the form of verbal IQ moderated the 

effect of age group on strategy selection such that while verbal IQ variation did not affect 

the performance of the young group, those elders with greater verbal IQ performed better 

on the task and chose the best strategy more often than those with lower verbal IQ. These 

differential results for young and old hinted that CR specifically, above and beyond just IQ, 

may be associated with cognitive strategy selection. 

Next we conducted an extension and replication of these results, incorporating a 

greater number of measures and testing subjects who had also received T1-weighted 

structural MRI scans. Performance on the cognitive control factor of the NIH EXAMINER 

(Kramer et al., 2014) battery was also assessed to obviate the possibility that executive 

abilities were mediating the relationship between age and strategy selection, which might 

suggest that any observed relationship with CR may be explained simply by the commonly 

proposed mechanistic relationship between CR and executive abilities (Hodzik & Lemaire, 

2007). Basic arithmetical abilities were also included as a covariate to preclude the chance 

that those with higher CR simply had greater domain-specific knowledge. Even including 

these measures as covariates revealed a similar effect of CR proxy variables in moderating 

the effect of age on performance, but not for executive abilities or for arithmetic scores. 

This last study also incorporated MRI measures including the cortical thickness of 

various regions that had previously (Steffener et al., 2014) been demonstrated to a) 

mediate between age and cognitive performance on a set of fluid reasoning tasks, and b) to 

be successfully subject to a moderation effect by CR as measured by verbal IQ and 
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education. Using a similar moderated-mediation model, we demonstrated that in at least 

one of these regions–the right rostral anterior cingulate cortex–an effect of age-related 

differences in cortical thickness on fluid reasoning was also moderated by the strategy 

selection measure. Significantly, this suggests that differential strategy use may not just be 

associated with CR, but may behave like it in a mechanistic fashion, to at least a partial 

degree. 

One of the major limitations of our previous research into cognitive strategies is the 

relatively narrow focus of both the domain (computational estimation), and the limited 

variability between the strategies themselves; rounding-up and rounding-down, while 

clearly distinct, do not engage fundamentally different sets of cognitive operations to 

accomplish the same end. Thus we instead sought a task with high levels of generalizability 

to other tasks, and centrality to a wider set of cognitive domains, that could be decomposed 

into a set of qualitatively distinct strategic processes. 

Project Motivation 

This project investigates the possibility that efficient cognitive strategy switching is one 

possible cognitive mechanism of cognitive reserve by using a novel adaptation of a classic 

fluid reasoning test set within the context of a task-switching paradigm. Ultimately this 

project aims to compare strategic flexibility with other proposed mechanisms of cognitive 

reserve, which could point the way to more effective cognitive interventions and 

remediation programs. 

Although the cognitive mechanisms of cognitive reserve (CR) have received a 

disproportionately low share of attention as compared to its neurofunctional 
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implementation, there has been some recent research into such mechanisms. Some work 

has hinted that the effective utilization of distinct cognitive strategies may play a role 

imbuing reserve (Barulli et al., 2013). While some researchers speculate that fundamental 

cognitive capabilities such as attention or working memory may mediate between CR and 

overall cognitive performance, another line of research suggests instead that a more 

dynamic process involving the acquisition, selection, and execution of cognitive strategies 

may represent the dominant mechanism through which CR moderates the effects of age on 

cognitive function. 

Cognitive strategies represent differential cognitive steps towards solving some 

problem or performing some cognitive task. Two distinct strategies can rely on the same 

fundamental set of cognitive abilities permuted differently (e.g. navigating a spatial grid by 

moving laterally in one direction to the desired x position, then moving in another direction 

to the desired y position), can draw on largely the same set of constituent cognitive 

operations with one or more additional operations included (e.g. navigating a spatial grid 

by moving alternately in the x and y directions, with iterative monitoring that the desired 

position is becoming closer), or can utilize entirely distinct sets of cognitive operations 

(e.g. navigation using landmarks rather than allocentric turns). For this reason, alternative 

strategy use can make performance on the same exact task simpler or more difficult 

depending on the suitability of the strategy employed, and can cause the same task to rely 

on different neural substrates, complicating interpretations of individual differences. 

Using a novel paradigm culled from the neuropsychology of fluid intelligence, we 

here study the potential of healthy younger and healthy older participants to flexibly adapt 
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their cognitive strategy use to a particular problem, and investigate the relationship 

between this capacity and their performance on various other cognitive tests. For each 

study, two groups of young (20-40) and old (60-80) subjects were enrolled from either an 

online “workforce” population (Amazon’s Mechanical Turk workforce) or from within a 

larger study conducted at Columbia University Medical Center, the Reference Ability Neural 

Network Study (Stern et al., 2014). This latter study is the source for all neuropsychological 

performance values with the exception of the main dependent variables (the strategic 

flexibility measures), as well as select MRI-derived cortical thickness and brain volume 

measures. Using these data, we intend to explicate the relationship between strategy 

flexibility and other neuropsychological constructs, as well as its relationship with 

neuroanatomical biomarkers. 

Using these subjects as well as their existing data, we aim to derive a measure of 

strategic flexibility from a modified version of a single and well-understood fluid reasoning 

task, using tools adapted from the domain of task-switching. Our working definition of 

“cognitive strategy” is: a meta-cognitive permutation of cognitive processes selected from 

memory (either implicitly or explicitly), with the intention of achieving a desired goal in the 

most optimal manner possible. “Strategic flexibility” in turn refers to the capacity of an 

individual to alternate between such permutations across time and over rapidly changing 

task demands or goals. While we assume cognitive strategies are themselves the products 

of an individual’s own experiences with a task domain or exposure to explicit 

knowledge/training about alternative approaches, they are not necessarily bound to any 

particular cognitive process. One strategy may encompass various cognitive processes 

(e.g. spatial navigation and arithmetical comparison) so long as it is permuted with an 
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intention of achieving a particular task. For this reason, investigating strategies directly can 

be methodologically challenging, since every instantiation may be unique across a task 

while simultaneously involving various disparate and neuroanatomically distinct cognitive 

processes. Localizing the neural substrates of different cognitive strategies in future 

research may well be possible with sufficient spatial and temporal imaging resolution, but 

for the purposes of this project we chose to instead analyze the more global and stochastic 

property of strategic flexibility. 

Just as different individuals have differing levels of measured intelligence, executive 

ability, and task-switching capacity, so we assume they have differing levels of flexibility 

when it comes to selecting appropriate cognitive strategies. Whereas some may have ample 

experience with a problem domain and reliably produce an optimal strategy but falter 

when given a new and slightly unfamiliar problem, others may have little experience at all 

with any domain tested yet be capable of maintaining an adequate level of strategy use 

across the two domains. Hence the ability to apply optimal strategies in some 

circumstances does not necessarily entail a high level of strategic flexibility. Expert chess 

players would be expected to generate highly optimized strategies for most games of chess, 

but they would not be expected to necessarily do the same during interspersed games of 

Monopoly. Those with more general experience playing boardgames however, while not 

always generating optimized chess strategies, could be expected to perform with greater 

”flexibility”--formulating overall decent strategies in both games. Thus generality of 

strategy exposure is likely to play an important role in an individual’s strategic flexibility. 
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Owing to the conceptual importance of this general exposure, CR is expected to 

share critical similarities with strategic flexibility. Both presumably originate with greater 

levels of intellectual engagement, both are definitionally characterized by compensatory 

ability in the wake of impairment (be it via pathology or unfamiliarity with a task domain), 

and both (we speculate) may modulate the effects of brain states on measured 

performance. Intuitively, CR can be thought of as differential lifestyles which can bring 

about more or less familiarity with a wide range of cognitive strategies, which in turn is 

reflected in differential levels of strategic flexibility. 

We hypothesize that higher levels of CR will be associated with greater levels of 

such flexibility as represented by fewer switch costs when utilizing one strategy type 

following another. These switch costs can come in the form of greater reaction times and 

diminished accuracy following a strategy switch. Further, we expect that this relationship 

between CR and strategy switch costs will hold even while controlling for fluid intelligence 

as measured using other reasoning tasks. 

We also present evidence of the moderating role that strategic flexibility plays in the 

relationship between age-related differences in cortical thicknesses and cognitive 

performance within several cognitive domains, including reasoning, speed of processing, 

and memory. We hypothesize that strategic flexibility moderates the effect on cognitive 

performance of age-related differences in cortical thickness of several brain regions 

previously identified as being related to CR. 

The major significance of this series of studies lies in its extension of the preexisting 

strains of research on cognitive strategies and their potential role as a cognitive mechanism 



11 
 

of CR. By methodologically narrowing in on the measures of strategy use (by embedding 

them within a rigid task-switch paradigm) while broadening the cognitive range of 

available strategies, this project aims to demonstrate that strategic flexibility is a stable 

source of interindividual difference with close ties to CR. Showing that even the purest tests 

of fluid intelligence are amenable to different strategies, and understanding how the choice 

of these different strategies can be influenced negatively by age but may be preserved by 

lifetime exposures like education, cognitive psychologists could suggest a powerful 

mechanism through which environmental exposures can operate seemingly independently 

of mechanisms like neural reserve or neural compensation. This would not only reopen the 

door to much basic behavioral research in the field of cognitive aging, but it would also 

suggest an area ripe for cognitive intervention in the form of cognitive strategy training. 

Project Outline 

In the current set of studies we use a modified version of the Raven’s Progressive Matrices 

(RPM) test (Raven, 2003). Much prior work has been done investigating the structure of 

the RPM, and many researchers have suggested that there are various dimensions to this 

task which may be amenable to distinct cognitive strategies. Kirby and Lawson (1983) for 

instance suggested that 2 broad strategies could be employed, depending on the particular 

trial: so-called Gestalt strategies, utilizing visuospatial operations, and so-called analytic 

strategies, utilizing logical and sequential operations. 

Carpenter, Just, and Shell (1990) later suggested that the vast majority of RPM 

problems could be solved using just five abstract rules, some of which may be categorized 

as primarily analytical in nature and some as primarily visuospatial. Based partially on this 
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and partially on the work of Hunt (1974), DeShon, Chan and Weissbein (1995) suggested 

that all RPM problems were either of the visuospatial reasoning type, or of the analytical 

reasoning type. Furthermore, they identified two distinct sets of rules corresponding to the 

two strategies (e.g. object addition/subtraction for visuospatial problems, or quantitative 

pairwise progression for analytical problems). Based on the pattern of performance 

observed in test-takers who apply appropriate versus inappropriate rules to specific items, 

the two general types of matrix can be said to encourage the use of different strategies; 

i.e. applying one set of rules to a problem leads to performance decrements relative to 

applying another set of rules. Furthermore, such performance dissociations have been 

linked to individual differences, e.g. with males in one study outperforming females on RPM 

items requiring the application of analytic rules but no difference in visuospatial RPM items 

(Mackintosh & Bennett, 2005). 

We intend to utilize this property of RPM and RPM-like problems by introducing an 

80-item computerized Strategic Raven’s Task (STRATA). The task features 4 blocks of 20 

trials, with 2 blocks dedicated exclusively to a single strategy, visuospatial strategy items or 

logico-analytic strategy items, respectively; and 2 blocks having equal numbers of each 

strategy type items. Problem order for these blocks was randomly determined but fixed for 

all participants. Mirroring closely the procedure used in the computational estimation 

studies mentioned above, participants were first given instruction in the two distinct 

strategies (visuospatial and logico-analytic) by exposing them to trials utilizing each type of 

rule in a forced-strategy. Next they were given the STRATA and instructed to choose only 

one strategy for completing the problem. Solution times and accuracy of item completion 

were recorded. 
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Stimuli for this task come from software for automatically generating 3-by-3 RPM-

like problems (each with 8 possible solutions) based on various well-understood and 

quantifiable task parameters (Matzen et al., 2010). The particular stimuli adopted here 

were extensively piloted and equalized for difficulty within blocks: all trials across all 

blocks average .75 accuracy in piloting (either during an initial norming study as reported 

below, or during piloting during task development at Columbia.) 

All logico-analytic strategy trials require the use of one of three basic rules: OR, 

wherein subjects must add the figures together across rows or down columns to generate 

the missing figure; AND, wherein participants must generate the missing figure using only 

those elements that are present in both other cells in the row or column; and XOR, where 

subjects must take only those elements that are unique to one cell and the other and add 

them to the missing cell. 

All visuospatial strategy problems require the use of three more basic rules that 

attend to two simultaneous element features: size and number, wherein subjects complete 

the missing cell based on the size and number of elements that should be expected in the 

missing cell (e.g. the two complete rows may have 1, 2, and 3 elements of sizes small, 

medium, and large, but the incomplete row has only 1 and 2 elements of size small and 

medium, suggesting the missing cell should contain 3 large elements); orientation and size 

of elements; and shape and number of elements. 

In the first study, we administered an initial version of the STRATA to investigate its 

psychometric properties. Two groups of MTurk workers (young and old) were 

administered the task. We hypothesized that, consistent with previous research on task-
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switching, younger adults would outperform older adults both in reaction time (RT) and in 

accuracy/percent errors made (PE). Even more critical, this study intended to validate the 

task, and the notion of “strategy-shifting”; i.e., we hypothesized that subjects would overall 

perform worse (higher RT and PE) on trials wherein they needed to employ the alternative 

strategy to the one used in the immediately antecedent trial. This matches to the metric of 

local switch-costs in the task-switching literature. Furthermore we also expected that 

subjects would display so-called mixing costs in this task; i.e. subjects would display higher 

RTs and PEs in non-switch (using the same strategy as the one they had used on the prior 

item) trials within a mixed-strategy block when compared to trials during a pure-strategy 

block. 

In the second study, we revised the STRATA to reflect some of the results of the 

initial study. Here we imposed an “alternating-runs” paradigm, culled directly from the 

task-switching literature, onto the task to make the expectancy of each strategy greater for 

participants. We also revised the set of items to make them all roughly equal in difficulty 

(with around .75 accuracy in piloting results). To control for the impact of more classical 

task-switching effects rather than the intended strategy-shifting effects, we included within 

the pure-strategy blocks a matching alternating-runs pattern of rule-switches requiring 

subjects to employ a different set of cognitive operations while still relying on the same 

fundamental cognitive domain. Finally, we randomized the order of block presentation to 

control for order effects in which strategies were first utilized. Additionally, we 

administered a cognitive questionnaire intending to probe the participants for their overall 

mental status as well as various exposure variables such as education and occupational 

history, providing us with a proxy for CR. Our hypotheses for this study were 1) strategy-
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switching costs would be induced over and above task(rule)-switch costs, 2) older adults 

would experience greater strategy-switching costs than younger adults, and 3) our CR 

proxy would moderate the effect of age on performance such that older adults with higher 

CR scores would perform more akin to younger adults than those with low CR scores. 

In the third and final study, we administer the STRATA to a group of participants 

who had previously been studied within the context of a broader neuroimaging study at 

Columbia University Medical Center. Again two groups of young and old subjects 

participated, but in addition to their performance scores we also utilized a rich existing set 

of data from these subjects, including a lengthy neuropsychological battery, a more detailed 

composite measure of their estimated CR, and their values for various structural MRI 

measures such as cortical thickness and regional brain volumes. Here we expected to 

replicate the prior behavioral effects observed in studies 1 and 2, but also explore the 

relationship between their STRATA performance and their neuropsychological scores as 

well as MRI measures. Specifically, we expected that STRATA performance could serve as a 

substitute for CR in a series of moderated-mediation models where previously CR had 

differentially altered the effect of age-related cortical thickness (in a set of specific regions) 

on fluid reasoning performance. 
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CHAPTER 2 
 LITERATURE REVIEW 

 

Cognitive Reserve 

Cognitive Reserve (CR) is latent variable which is meant to account for the frequently-

observed discrepancy between an individual’s actual level of cognitive functioning, and 

their expected level given their neurological status (Barulli & Stern, 2013). Such 

discrepancies have been observed and related to this concept in cases of Alzheimer’s, 

traumatic brain injury, multiple sclerosis, HIV-related dementia, normal aging, and many 

others (Stern, 2002). 

Numerous individual lifetime exposure variables have been found to be protective 

against the effects of each of these neurological insults on cognitive status, and because of 

their close features they are often grouped together to form a composite CR variable. Such 

exposure variables include years of formal education, literacy levels, complex occupational 

status, engaging leisure activities, and higher socioeconomic status. The common feature 

shared by such variables is that they either directly or indirectly lead to greater levels of 

intellectual engagement across time. 

The exact mechanisms through which sustained intellectual engagement leads to 

preserved cognitive functioning among neurologically at-risk individuals are widely 

speculated, but so far inconclusive. However, several key links have been drawn between 

CR and patterns of neurofunctional activation measured using a variety of neuroimaging 

modalities. Famously, CR is often predictive of the use of compensatory network 

activations among an at-risk population (e.g., elders), meaning patterns of task engagement 
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not observed in younger participants. In many cases, such patterns are associated with 

diminished performance on the task at hand, but this is not always the case (Steffener & 

Stern, 2009). 

Cognitive Strategies 

Alternative patterns of fMRI-related network activations may not necessarily reflect 

compensatory activity. Sanfratello et al (2014) for instance point out that the common 

practice of deriving group-wide activation patterns in neuroimaging studies often do not 

reflect the individual patterns observed among the subjects who comprise the sample of 

these studies, often as a function of confounding variables such as strategy use (c.f. Aine et 

al, 2011). Such a limitation of neuroimaging studies is especially problematic when groups 

are compared in terms of their mean activation differences, such as when younger and 

older subjects are determined to rely on different neural substrates to perform the same 

task; one especially problematic confound is the increased variability among older samples, 

which these authors speculate could derive in part from cardiovascular risk factors not 

captured by typical exclusion criteria (e.g. high blood pressure or type II diabetes). 

Another probable source of variation is alternative strategy use among the elders, 

whose brains may have been afflicted by various sources of age-related neurological 

deterioration, as well as altered by experience-dependent changes reflective of shifts in 

cognitive strategy or style. Sanfratello et al. (2014) reason that if differences in neural 

activation patterns can reliably be seen among the more homogenous group of younger 

participants, they would almost certainly generalize to a greater variety of neuroimaging 

samples including older adults. To that end they used magnetic encephalopathy to study 
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functional activation among healthy young participants engaged in a spatial working 

memory task, relying on self-reported strategy use after the MEG session. Using cluster 

analysis, subgroups of the sample were constructed reflecting different predominant 

strategy use but without any a priori assumptions about the number of strategy clusters 

that would be found. Results indicated that two predominant strategy clusters emerged, 

one broadly reflecting a verbal strategy group (indicated by phrases such as “I thought of a 

word or a phrase”), and one broadly reflecting a visuospatial strategy group (indicated by 

phrases such as “I did keep the digit locations in mind the way they were presented”); 

participants utilizing a verbal strategy performed better on the working memory task, as 

well as the co-administered California Verbal Learning Test. 

For their MEG results, participants utilizing the verbal strategy showed greater 

activation in the right medial temporal lobe, and slightly more than half of this group also 

showed activity in the left MTL. In the visuospatial strategy group, left MTL activity was 

also observed but no bilateral activation could be seen, and the right occipital cortex 

showed greater activation, and this group also had many more significant correlations 

between performance on neuropsychological tests and white matter tracts as measured 

fractional anisotropy using DTI. Of particular significance were the posterior commissure 

tract, which correlated with working memory performance, as well as the uncinate 

fasciculus (UNC); while the former has been associated with cerebellar connections to 

various regions of cortex as well as with working memory performance, the latter connects 

portions of the limbic system with the frontal cortex and was here found to correlate in its 

integrity with performance on the Rey Complex Figure Task (ibid). Like Kherif (2009), who 

found that a subset of participants engage in a particular reading strategy that activates the 
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posterior cingulate and precuneus, but that these activation patterns are often washed out 

of group averaging, Sanfretello et al. argue that individual differences in strategic 

approaches must be taken into account for accurate generalization of neuroimaging 

findings. These results also belie the common practice in aging literature to label any 

atypical neurofunctional activation patterns as “compensatory”; instead, they may be a 

function of strategy use as observed here within a young sample. 

Age-Related Strategy Differences 

Lemaire (2010) reviewed some evidence of the existence of age-related cognitive strategy 

changes. He notes that while the majority of research on cognitive aging focuses on so-

called quantitative factors that may affect cognitive decline across the lifespan, such as 

processing speed or working memory capacity, some researchers emphasize instead the 

equal importance of more qualitative factors such as cognitive style or cognitive strategy 

use. Dunlosky & Herzog (2001) for instance showed that young and old adults differ in 

their approach to solving Paired Associates-style problems. The two groups used a total 

combination of four distinct strategies, such as using mental imagery to link the words 

presented, creating a sentence that includes both words, or simply relying on rote 

repetition. While both groups had access to the same total range of strategies, the relative 

distribution of these strategies differed across groups; whereas older adults relied more 

heavily on sentence generation, younger adults relied more heavily on rote repetition 

(while both groups relied equally often on mental imagery). 

Other researchers have supported the finding that older adults spontaneously 

access a fewer number and diversity of strategies. Duverne and Lemaire (2004) showed 
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that in a study of arithmetical inequality verification, younger adults relied broadly on two 

classes of strategies–an exhaustive and approximate verification strategy–whereas older 

adults relied predominantly only on the exhaustive strategy. Such findings have 

implications for more ecologically valid reasoning tasks, such as the case of consumer 

decision-making; Johnson (1990) showed that when searching information about potential 

cars to purchase, young adults more frequently use a compensatory strategy (wherein less 

salient attributes can overwhelm the valence of the most salient attribute, for instance the 

comfort and color of a car leading to a decision to purchase despite its price) while older 

adults rely on a on the mentally non-compensatory strategy (focusing exclusively on the 

most salient attribute without consideration of other potential features). 

The presence and magnitude of age effects depends strongly on the strategy and 

task utilized, with some strategies leading to equal performance in young and old groups. 

In a magnitude estimation task requiring participants to estimate the number of dots 

presented on the screen, Gandini et al. (2008) showed that an anchoring strategy (wherein 

a participant counts a group of dots and adds the number of groups on screen, plus some 

estimation of remaining ungrouped dots) led to increases in reaction time for old compared 

to young subjects, but use of a perceptual strategy (wherein participants rely on their 

memory of prior numerosities, matching the currently presented array of dots to some 

remembered quantity) did not lead to any differences in RT. This particular study also 

found different underlying neural networks for each strategy. Strategy adaptivity, or the 

adjustment of strategy used in order to best fit task relevant parameters and increase 

performance, has been shown to be present in task domains ranging from arithmetic, to 

reasoning, to serial recall (Lemaire, 2010). 
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In an associative recognition test, Patterson and Herzog (2010) show that young 

adults utilizing an interactive imagery strategy (wherein they form a mental picture of the 

two words in each pair presented) perform better than older adults using this strategy, but 

when both groups instead executed an individual-plus-interactive-imagery strategy 

(wherein they first form a mental image of each word, then combine these images into 

pairs) performance was held constant. And Faulkner (1983) used a sentence-picture 

verification task to show that the linguistic strategy (relying on the verbal description of 

the picture) yielded age differences in performance while a pictorial strategy did not. 

Thus strategy use, like neurofunctional activation patterns, must be interpreted 

with caution; it is not always the case that application of an alternative strategy is 

compensatory in nature. People have been shown to vary their strategy use in response to 

the unique characteristics of the task at hand, the instructions of the given task, or even 

their own perceived competence (Schunn & Reder, 2001). To more systematically interpret 

how strategy use affects performance, Lemaire (2010) gives a useful categorization scheme 

for the factors of cognitive strategy use that may influence the underlying cognitive 

operations: 1. Strategy repertoire, or the quantity of strategies known to the individual; 2. 

Strategy distribution, or the frequency at which each particular strategy is used; 3. Strategy 

execution, or the speed and accuracy at which a particular strategy is employed; and 4. 

Strategy selection, or the cognitive processes affecting the choice of a particular strategy for 

a particular cognitive demand. 

Age effects have been found along the dimensions of both strategy repertoire and 

strategy selection in basic arithmetical tasks, such as complex addition problems. The prior 
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research above has consistently shown that in comparison to young adults, healthy older 

adults both employ a lower variety of strategies (meaning a smaller strategy repertoire), 

and that they select the optimal strategy for a particular item less often than do young 

adults (meaning impaired strategy selection) (Lemaire, 2010). 

Along the dimension of strategy distribution, Cohen and Faulkner (1983) 

demonstrated that whereas younger adults use one particular distribution of four 

strategies in a mental rotation task, older adults use an entirely different distribution on 

average. Hartley and Anderson (1983) had a similar finding in regards to inductive 

reasoning strategies. Studies such as these typically rely on verbal self-reports of the 

strategy employed, but in some cases other methods of ascertaining strategy use such as 

eye tracking were also employed to the same effect (e.g. Gandini et al., 2008). 

Lemaire (2010) suggested the findings about differences in strategy repertoire 

could be explained either by older adults simply knowing fewer strategies than younger 

adults (perhaps as a function of cohort effects deriving from changes to education policy), 

or by an age-related restriction on this set of strategies older adults are comfortable using 

as a process of some higher-order cognitive factors such as executive functioning. The fact 

that on a group level young and old participants use the same total array of strategies in 

many tasks suggest that the latter explanation is more likely. 

Along the dimension of strategy execution, Siegler and Lemaire (1997) designed a 

paradigm of choice/no choice wherein one condition forces participants to use a particular 

strategy across all items while another condition allows participants to choose the strategy 

they want to use; such a paradigm has been shown to be effective for controlling for other 
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dimensions of strategy use like repertoire, distribution, and selection. This method has 

been used to show that older adults are poorer in strategy selection in domains ranging 

from computational estimation to tasks requiring participants to select the optimal virtual 

pond at which to fish to garner the greatest number of catches. 

Along the strategy selection dimension, computational estimation tasks, like the one 

described in the introduction, have frequently been employed that can allow simple 

classification of the correct versus incorrect strategy (Lemaire, Arnaud, & Leclere, 2004), 

also finding age-related performance declines. This effect has been numerously replicated 

and has been shown to be exacerbated in Alzheimer’s patients (Lemaire & Leclere, 2014). 

However, the effect of age on the various factors of strategic performance has only been 

very partially investigated, and as noted some work has shown that protective factors like 

CR may modulate this relationship (Barulli et al., 2013). 

Cognitive Strategies and Executive Functions 

In order to better understand the interaction with age, it’s necessary to consider the 

relationship between more proximate age-related cognitive components and strategy use. 

Mediation analyses have been used to show how much variation in strategy performance 

between age groups can be accounted for by other abilities, with executive functions 

accounting for 82% of age-related variance in strategic approaches to an episodic memory 

task (Bouazzaoui et al., 2010), processing speed accounting for 70% of age-related variance 

in arithmetical strategy use (Duverne & Lemaire, 2004), and more recently executive 

function accounting for large portions of variance specifically in strategy selection and 

repertoire (Hodzik & Lemaire, 2011). Such effects might be deriving from the impairment 
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to strategy execution, or from a compensatory pattern of strategy selection (or any number 

of other potential combinations). Bouazzaoui (2010) for example has suggested that older 

adults rely more heavily on strategies that are less reliant on internal memory (e.g., the 

ample use of taking notes instead of relying on memory), which would make the 

importance of capacities like working memory particularly stand out. 

Using a taxonomy of executive functions derived from Miyake (2000), dissociating 

inhibitory function (i.e. preventing the execution of pre-potent responses), cognitive 

flexibility (i.e. shifting between multiple tasks sets), and updating (i.e. monitoring and 

encoding new information), executive function has been ontologically parsed into its 

constituent components. Much prior research in the cognitive aging literature exists to 

support the notion that with increasing age, decrements in all three of these executive 

functions can be observed. In a pair of experiments designed to test the mediational role of 

age-related changes to executive function on strategy repertoire and strategy selection, 

Hodzik and Lemaire (2011) tested a sample using measures of shifting (using the Trail 

Making Test) and inhibition (using the Stroop test). Prior research by Lemaire (2010) had 

shown that older adults tend to repeat the same strategy across multiple problems, even 

when problem characteristics change and thus would be better suited to a new strategy. 

They reason that this observation would be explained by changes in cognitive flexibility 

and inhibition across age, limiting the ability of older adults to flexibly adopt a new and 

more optimal strategy. Using a test consisting of two-digit addition problems, along with 

self-reported strategy use immediately following each trial, these authors showed that in a 

sample of 40 young and 38 older adults the latter significantly use fewer strategies than 

young adults. While verbal reports indicated that the total range of strategies (nine 
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reported in total) was represented by both age groups, younger adults use an average of 

three of these strategies whereas older adults use an average of 2.1, and that this difference 

was exacerbated with increasing item difficulty. However, using a composite of the 

executive scores within a mediation analysis reduced the age-related variance in 

performance by 63%; controlling for executive function, the age effect on performance was 

no longer significant. Furthermore, younger adults also solved problems faster and more 

accurately than the older adults as expected, and had better executive function scores. 

In another experiment designed to investigate the relationship between executive 

functioning and strategy selection, these researchers expected to find age-related 

decreases in performance that would again be mediated by executive functions. They used 

a computational estimation task in which participants are asked to solve two digit 

multiplication problems (e.g. 57 x 49) by employing only one of two unique strategies–

either rounding up (60 times 50) or rounding down (50 times 40); such problems have the 

advantage of having a mathematically optimal solution (i.e. in the above example, rounding 

up would yield an estimate of 3000 which is only 207 units away from the actual answer, in 

comparison to the rounding down strategy which would yield an estimate 793 units off). In 

a sample of 40 young and 40 old participants, age affected performance as measured using 

the mean percent use of the best strategy (with younger subjects using the best strategy 

87.7% of the time, and older subjects using the best strategy only 77.3% of the time). Again 

testing for the mediation effect of an executive function component, age-related variance in 

performance was found to be reduced by 39%; while the main effect of age on performance 

still remained after controlling for executive functions, executive function did explain a 

relatively large proportion of the performance decrements. 
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Such prior literature on the relationship between age, executive functions, and 

strategy use suggests that the presence of mediators is a serious possibility, and just as 

strategy use must be taken into account when considering neurofunctional results, so must 

basic cognitive abilities be considered within the context of strategy selection and 

execution. 

Fluid Intelligence: Raven’s Matrices 

While the prior literature on cognitive strategies has begun to paint an overall consistent 

picture of age-related decline, many of the “strategies” studied lack obvious ecological 

validity; while rounding down versus rounding up undoubtedly engage different 

underlying cognitive operations, their existence within the same narrow domain of 

arithmetical computation belies the argument that differential strategy use may be 

immensely important in accounting for all sources of age-related cognitive variance. To 

investigate this claim more fairly, a far more domain-general type of task amenable to 

strategic manipulation is required, and fluid intelligence is one potential such domain. 

The Raven’s Progressive Matrices task (RPM) is widely considered to be a gold 

standard for measuring fluid intelligence because of its high correlations with other 

measures of cognitive processing, and high correlations with measures of intellectual 

achievement (Korte and Raven, 1982). The pattern of individual differences observed on 

the Raven’s task also correlate highly with such differences observed in other complex 

cognitive tests (Jensen, 1987), and even correlates with biomarkers such as nerve 

conduction velocity (Reed and Jensen 1992). Each item of the RPM consists of a 3 x 3 
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matrix wherein the bottom right entry is missing and must be selected from a set of eight 

potential responses. 

Despite its wide use and psychometric centrality, the question of whether or not the 

task is best represented by a single underlying cognitive component or multiple such 

components was a matter of extensive debate. Early exploratory factor analyses (Dylan, 

1981) suggested that RPM performance is best modeled as a function of two distinct 

factors, an “addition/subtraction” factor and a “detection of pattern progression” factor. 

However, a later confirmatory factor analysis (Arthur and Whor, 1993) suggested that a 

two-factor model did not sufficiently improve model fit over a one-factor model to warrant 

the conclusion that two distinct factors are represented by the task. 

Hunt (1974) suggested that two general problem-solving algorithms could be 

applied to the majority of APM problems: first, a visual strategy (relying on perceptual 

reasoning, continuing perceptual patterns such as lines, and superimposition of elements 

onto one another; and second an analytic strategy that applies logical operations to 

features of the problem. While these two strategies can be simultaneously employed for a 

large number of RPM problems, such simultaneous application has been shown to lead to 

the verbal overshadowing effect, wherein concurrent verbal processing can impair spatial 

processing of visuospatial stimuli (Schooler & Englster-Schooler, 1990). These authors 

argued that when a propositional representation is available to solve a problem, it is much 

more likely to be used; furthermore such propositional processing has led to decreased 

performance on other visual-spatial tasks such as face recognition tasks (1990), mental 

rotation tasks (Brandimonte, Hitch, & Bishop, 1992), as well as visual insight problems 
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(Brandimonte & Gerbino, 1993), but does not lead to decreases in performance on 

primarily propositional or verbal problems. 

Carpenter, Just, and Shell (1990) further sought to provide a detailed taxonomy of 

the types of rules required by the RPM. Using behavioral data of college students who took 

the test, and relying on such metrics as verbal reports, eye fixations, and error patterns in 

the different problem types, these authors designed two computer simulations to model 

performance on the RPM. One of the simulations is designed to model the performance of a 

median college student in their sample (the FAIRRAVEN model); and another is designed to 

model the performance of one of the top performers in their sample (the BETTERRAVEN 

model). These models differ in two respects: 1. The better model can form more abstract 

relational representations, and 2. the better model has a greater working memory capacity. 

These authors’ investigation into the structure of the RPM problems yielded a 

taxonomy of five different rule types, with each item differing in the necessary combination 

of these rules. The first rule is the constant in a row rule, wherein the same elements will 

occur throughout a row but change down a column. The second rule is the quantitative 

pairwise progression rule, wherein adjacent cells differ according to some quantitative 

increment, be it in size, position, or number. The third rule is the figure addition or 

subtraction, wherein a figure from one column is either superimposed onto the figure from 

another column, or subtracted from it. The fourth rule is the distribution-of-three-values 

rule, wherein three distinct values of a particular category (e.g. figure type) are distributed 

throughout a row. The fifth rule is the distribution-of-two-values rule, wherein two values 

from a particular category are distributed throughout a row while the third value is null. 
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These rules are usually equally applicable if applied row-wise as if they were applied 

column-wise, but behavioral analysis suggests that most test-takers rely on a row-wise 

strategy of rule application. Determining which figural elements correspond to which rule 

is a source of cognitive complexity in the RPM; it is termed by these authors 

“correspondence finding”. Two common heuristics are employed to complete this process 

of correspondence finding: first is the matching-names heuristic, wherein participants 

assume that figures having the same name (such as line) correspond to each other and are 

governed by the same rule set; the second heuristic is the matching-leftovers heuristic, 

wherein participants assume that if all but one of the features in adjacent cells have been 

grouped then the remaining features correspond to the same rule set. This, along with the 

pure number of rules to be applied, are the two main theoretical contributions to the 

difficulty of each problem. In two series of experiments on a small sample of undergraduate 

students performing a sub-selection of the RPM items, the authors used verbal reported 

strategies as well as eye tracking to monitor the application of rules to each item. 

Behaviorally, error rates are highly correlated with reaction times at .87, suggesting 

that these problems are not subject to a speed-accuracy trade-off but that participants will 

take additional time for more difficult problems. The strongest task-specific feature 

predictive of error rates was the number of rules that had to be applied to a problem, 

suggesting a strong influence of goal management and working memory on performance. 

The main finding from this experiment was that problem-solving was fundamentally 

incremental in nature, with participants decomposing the problem into smaller sub-

problems, including processing one rule at a time, and within each individual rule 

processing each adjacent pair of cells in an incremental fashion before moving on to 



30 
 

considering additional rules. This pattern of processing was universal among the small 

sample, and was not a source of individual differences. This general pattern was borne out 

both by the verbal reports, and by the eye tracking data. To test their hypothesis that goal 

management and working memory capacity are critical to performance on this task, the 

authors conducted an additional study in which they tested young subjects on both the 

RPM problems, as well as the Tower of Hanoi, a task heavily reliant on breaking goals into 

subgoals and managing the subgoals and memory. The correlation between the error rates 

on these two tasks was very high (.77). 

Using models to simulate a test-taker of the RPM, the authors included a set of 

algorithms roughly grouped into three categories: perceptual analysis, concept analysis, 

and response generation and selection. The fourth component that differed between these 

two simulations was working memory. Perceptual analysis functions to encode information 

about the figures, conduct the correspondence finding between rules and figural elements, 

and compare figures in adjacent cells, resulting in a pattern of pairwise similarities. 

Conceptual analysis by contrast attempts to determine the rule type to be applied to each 

problem, and this operates directly on the set of pairwise similarities computed earlier. The 

response generation and selection mechanism then applies the set of computed rules to 

generate the missing cell, and searches the offered answer set for a matching entry. This 

method of generating a potential response before searching solution alternatives is in line 

with the behavioral performance of higher scoring subjects, which differs from 

performance among lower scoring subjects who often rely on a response elimination 

strategy (searching alternatives to eliminate based on incremental application of the rules, 

rather than directly generating a potential solution and then matching it to the answer 



31 
 

choices). This FAIRRAVEN model’s performance closely matched that observed in the 

authors’ sample of undergraduates, with a point biserial correlation between the error rate 

for each problem and the dichotomous score (solved or unsolved) from the model’s 

performance being .67. 

The BETTERRAVEN model made several changes to the FAIRRAVEN model which 

improved performance, allowing it to match top human performers. First and foremost, a 

goal monitor was added as a separate module that allows for recursive sub-levels of the 

goals to be flexibly taken into account, and backtracked when either a particular subgoal is 

reached or a particular rule is found to be invalid. On the perceptual level, more abstract 

algorithms for correspondence finding were included, and on the conceptual level rule 

types were prioritized such that they could be tested in a serial fashion. These changes 

resulted in this model being able to solve all but two of the problems. By simulating 

“lesions”, or limits to specific portions of the new model, the authors were further able to 

demonstrate that performance was most heavily reliant both on the goal monitor, and on 

the inclusion of new abstraction rules (such as the distribution of two rule); performance 

was intermediate when these were degraded in some piecemeal fashion. 

Following Hunt (1974) and Carpenter et al. (1990), DeShon, Chan, and Weisbein 

(1995) decomposed all previously identified rules into sets of distinct visuospatial rules 

and verbal-analytic rules, and attempted to induce an experimental dissociation to these 

two problem types. Visual-spatial rules consisted of superimposition of item elements, 

superimposition with cancellation, object addition/subtraction, movement, rotation, and 

mental transformation. Verbal-analytic rules and their taxonomy refers to constant-in-a-
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row, quantitative pairwise progression, distribution-of-three-values, and distribution-of-

two-values. In a large sample of undergraduate participants, they tested for the impact of 

concurrent verbalization on item performance, after systematically labeling each APM 

problem as predominantly visuospatial or predominantly verbal analytic; as expected 

concurrent verbalization decreased performance in the primarily visual-spatial problems, 

but not in the verbal analytic problems. 

While verbal strategies may be a source of error for some subjects in some 

conditions, there is evidence that they can also bolster performance. Some research has 

suggested that the visual appearance of items in the RPM can affect their difficulty, with so-

called contextual matrices designed by Richardson (1991) improving children’s 

performance on the reasoning problems when abstract and unidentifiable shapes are 

replaced with socially meaningful contexts. Thus instead of elements that were unfamiliar 

and difficult to name, common items such as furniture or toys were used instead. To test 

the impact of element salience further, Meo et al. (2007) devised a paradigm wherein either 

European letters or invented letters were used as elements, appearing in non-overlapping 

or overlapping conditions. The authors found that as expected the greatest decrements in 

performance occurred when item elements are both unfamiliar and overlapping, and when 

elements are either unfamiliar or overlapping there are moderate decrements to 

performance as compared to when elements are nonoverlapping and familiar. These 

authors suggest that this effect is driven by the potential strategy of applying verbal tags to 

item elements, which reduces working memory load; such verbal tags are possible with 

familiar and non-overlapping items, but not necessarily in other conditions. 
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Verguts & De Boeck (2002) attempted to determine if continual use of the same 

rules during RPM performance biases individuals towards them in subsequent items. They 

suggest further that RPM performance might be subject to the sequence effect (Sweller & 

Gee, 1978) wherein if problems are ordered from easy to hard, they are much easier to 

solve than in the reverse ordering. Using a talk-aloud methodology, which according to 

Erikson and Simon (1984) is useful to determining how people solve complex tasks so long 

as it is employed during the problem-solving process and not after, they speculated that 

induction of the appropriate rule occurs during RPM performance early with easy items, 

and that these rules are then biased towards repetition in later, harder items. The authors 

suggest a formal model of rule induction wherein the prior activation of a rule biases it’s 

later application to the problem, weighted by some individual learning parameter. They 

furthermore include a parameter for a lag effect (a preference for items that were shown 

recently versus items that were shown before). In one of their experiments utilizing newly 

created RPM-type problems and providing explicit feedback on performance, learning 

effects are much stronger than in the other experiment, wherein the actual RPM problems 

were presented and no explicit feedback was provided. This suggests that explicit 

information about rules can greatly increase the learning rate in problem-solving tasks 

such as the RPM. Explicit instruction therefore can improve overall task performance, as 

mediated by appropriate strategy selection and/or execution. 

Other evidence exists that prior knowledge may affect strategic approaches to the 

RPM. Schulze, Beauducel, and Brocke (2005) speculated that figural reasoning tasks 

containing semantically meaningful objects would have higher crystallized intelligence (Gc) 

loadings than figural reasoning task containing only abstract objects. Despite its high G 
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loadings, the RPM has been criticized under the supposition that not all test-takers will be 

equally familiar with the figural elements included within it, a fundamental assumption of 

fluid intelligence testing. They note that fluid intelligence (Gf) is often measured using 

figural reasoning tasks while Gc is often measured using verbal tasks, but both of these 

tasks could have a confounding influence of prior exposure relevant to their measured 

constructs; in response they recommend an analysis model wherein verbal, numerical, and 

figural abilities are separately estimated for Gc and Gf, and controlled in analyses. The 

researchers designed non-abstract figural reasoning scales and hypothesized that these 

would load onto Gc. Using confirmatory factor analysis, these authors demonstrated that 

figural reasoning tasks designed with abstract elements loaded differently on Gf and Gc 

factors than those designed with concrete elements. These results show that while the RPM 

may be a particularly strong measure of Gf, the impact of Gc on an individual’s performance 

must be carefully considered. 

In support of Carpenter’s (1990) finding that in general participants employ serial 

rule induction on the RPM, often considering more basic rules before moving on to more 

complex rules. Primi (2001) decomposed problem-solving behavior into three basic stages: 

first, creating a mental representation of the problem and problem rules (sometimes called 

encoding and inference, perceptual and conceptual analysis, pattern 

comparison/decomposition, or transformational analysis and rule generation); second, 

recognition of similarities between the problem rules in a novel analogous situation 

(sometimes called mapping, perceptual and generalized conceptual analysis, or rule 

comparison); and third, applying rules to generate an appropriate solution representation 

and or select an appropriate presented answer (sometimes called application, comparison-
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response, or response generation and selection). He notes that research utilizing structural 

equation models has previously linked Gf to the central executive components or the 

controlled attention component of working memory. He also attempted to disambiguate 

the sources of complexity factors in RPM problems, and theorized that this factors may 

derive from 1. The number of elements in a problem, 2. The number of transformations or 

rules required for that problem, 3. The types of rules, and 4. Perceptual organization. 

Salthouse (1994) divided working memory into three separate components: 1. Storage 

capacity, 2. Processing efficiency, and 3. Coordination effectiveness. While the latter two 

components have been shown to be highly correlated with fluid reasoning tasks, the former 

is less critical. Bethel-Fox (1984) investigated analogical reasoning problems and 

suggested that two distinct strategies could be applied: constructive matching wherein a 

mental representation of an answer is generated and compared to existing options, and 

response elimination wherein partial solutions are generated based on isolated elements of 

the problem and incorrect answers are systematically ruled out. Constructive matching is 

the more dominant strategy in simple items and is used more often by high Gf participants. 

Perceptual organization involves the grouping of visual perceptions into a Gestalt, 

for instance grouping by proximity, similarity, continuity, or common region. It has been 

found to either increase or decrease the complexity of a given problem (Primi, 1995). A 

rather intangible property of specific items here might be termed harmony, referring to the 

aesthetic elegance of a particular figural grouping that can make certain items less difficult. 

In a study of 313 undergraduates, this author related the amount of information in an item 

to individual differences in goal management, variables like rule complexity and perceptual 

organization to individual differences in selective encoding and abstraction; systematically 
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controlling for each of these four variables in a repeated measures design showed that 

abstraction significantly affects item complexity while goal management does not. 

Beyond strategy and stimuli-specific consideration, executive functions can also be 

evoked to account for differences in RPM performance. Working memory capacity has such 

a strong correlation with fluid intelligence that some researchers have even suggested that 

they are reflective of the same underlying construct (Martinez, 2011). Unsworth and Engel 

(2005) tested Carpenter’s hypothesis that working memory would become more critical as 

the RPM increased in item difficulty, finding instead that working memory correlates 

equally to RPM items requiring fewer rules as those requiring multiple rules. Wiley et al. 

(2011) instead proposed and tested the interference/distraction model, finding evidence 

that the application of new rules on items is most strongly associated with working 

memory capacity; however, as noted by Harrison (2015), these conclusions may have been 

confounded by methodological limitations, including a fixed order in their first study 

making the potential for idiosyncratic characteristics of the particular items potentially 

problematic, as well as a small sample size in their second study. Furthermore in an 

attempted replication with 99 subjects, Engel (2005) was not able to replicate their 

findings. In another experiment utilizing a new set of RPM-type problems with varying 

item orders set to counterbalance the exposure to novel and repeated rules, Harrison 

(2015) found that the correlation between working memory capacity and novel rule 

problems was lower (.36) than that between working memory capacity and repeated rule 

problems (.50), supporting instead the learning efficiency account. Moreover, using a 

median split of fluid intelligence composite scores, he found that this relationship did not 

differ between low Gf and high Gf participants. Such results suggest that Gf should be highly 
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predictive of the ability to disengage from irrelevant information stored in memory, and to 

instead apply the relevant rule to any repeating item. 

These investigations into the RPM and RPM-type problems suggests 1) that there 

are at least two distinct classes of strategies which might be applied to the overall set of 

RPM items, reflecting a broadly verbal-analytic strategy on the one hand, and a broadly 

visuospatial one on the other; and 2) that there are a variety of factors that can affect 

performance on this task, but that unstructured experiments can easily lose sight of what 

manipulation is making a difference to performance. In order to gain tractable ground on 

the problem of decomposing Gf tasks into discrete strategies, a well-controlled and 

extensively studied paradigm would be ideal. The next section will discuss the potential for 

investigating cognitive strategies within the context of task-switching paradigms. 

Strategy Flexibility and Task Switching 

While many computational models of strategy selection have been proposed (including the 

ACT-R model, the RCCL model, the adaptive decision-maker model, the SSL model, and that 

SCADS model, etc.) all of them assume that strategies are selected on a problem by problem 

basis. However, only one such model (the SCADS model) allows for the potential impact of 

a strategy interruption mechanism, wherein a participant may choose a particular strategy 

but may realize mid-execution that an alternative strategy would be preferable. While 

there is little direct empirical support for such an idea, one study of two-digit multiplication 

problems using either a mental strategy or a calculator strategy to achieve the answer 

found that in a subset of items participants could be seen to initiate cursor movement 

towards the on-screen calculator before abandoning this approach and using a mental 



38 
 

solution strategy (Walsch & Anderson, 2009). This suggests that for some items, the initial 

strategy selection can indeed be abandoned and a new strategy adopted. From a theoretical 

perspective, such within-item strategy revision may be strongly related to the executive 

function components of inhibition and cognitive flexibility, both of which have previously 

been seen to mediate the effect of age on strategy selection. 

In two experiments utilizing the same computational estimation task described 

above, Ardiale and Lemaire (2012) hypothesized that such within-item strategy revisions 

would result in greater accuracy despite potentially greater reaction time, and that younger 

adults would engage in this practice more than older adults due to the effects of age on 

executive function. In their sample 37 young and 37 older adults they found that older 

adults did indeed engage in fewer within-item strategy revisions, that the strategy 

revisions resulted in greater overall RTs, but that age did not affect the magnitude of these 

RTs, suggesting that (similar to local switch-costs within the task-switching literature) the 

executive processes responsible for within-item revisions are largely age invariant. In the 

second experiment utilizing a forced strategy cue (indicated by the font color of the 

stimulus) wherein half of the trials required participants to switch strategies and half did 

not, greater strategy switch costs were observed for older adults than younger adults. The 

age groups also differed in which variables were indicative of switch cost asymmetries, 

with the younger participants showing larger switch costs when switching from the poor 

strategy to the best strategy and older adults showing larger switch costs when switching 

from the rounding up strategy to the rounding down strategy, possibly reflective of the 

differential difficulty of these two strategies. The authors suggest that these findings could 

be accounted for by the impact of processes like priming or tacit reconfiguration processes. 
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These results were replicated by Taillan, Ardiale, & Lemaire (2013) in another 

experiment which collected both the mean percentages of strategy switches and the 

strategy switch costs, at least in heterogeneous problems (meaning problems in which the 

unit digits of the two numbers being multiplied were alternatively below and above five, 

making the selection of the best strategy more computationally intensive). This could 

indicate that older adults avoid switching strategies because of the increased cognitive load 

of doing so. They also found that switch costs when switching from the harder strategy to 

an easier strategy were greater than the reverse, conflicting with between-items strategy 

switches previously observed. Moreover, switch costs were found to be shorter in within-

item strategy switching than in between-item switches observed in the past. 

Based on similar findings by Luwell et al. (2009), Lemaire and Leclere (2013) used 

the well studied computational estimation paradigm described above to study the 

phenomenon of sub-optimal strategy repetition, wherein people are more likely to use the 

same strategy on a particular problem when they have previously used that strategy in the 

immediately preceding problem, even when the problem characteristics suggest a better 

strategy could be employed. This conflicts with most formal models of strategy selection, 

which suggest that strategies are chosen on a problem by problem basis; instead these 

findings suggest that strategy use is also influenced by the sequence of strategies used. 

These authors suggest that this phenomenon may result from the additional 

cognitive load necessitated to change strategies, and that there may be an underlying bias 

to engage in the same strategies unless the advantages of switching to an alternative 

strategy are great enough. Assuming this, they hypothesized that participants should be 
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even more likely to repeat a strategy on a given trial if they had used the same strategy on 

two preceding trials consecutively. Given that strategy selection is at least in part mediated 

by executive control functions, and that executive control functions decline with age, they 

also hypothesized that older adults would show a greater tendency toward strategy 

repetition than younger adults. 

In a sample of 100 participants (50 young and 50 old) as expected, in the two-prime 

condition (meaning participants had used the same strategy for two preceding trials) both 

groups of subjects repeated the same strategy more often (71%) than in the one prime 

condition (56%). This effect was exacerbated for the rounding up problems, which are 

considered slightly more difficult. Also as expected, older participants repeated strategies 

more often than younger participants, but not by a great extent (66% versus 62%); again 

however this effect was exacerbated by the problem type–older adults were especially 

more likely to repeat strategies in the two prime condition following a rounding-up 

problem (which is slightly more difficult than rounding-down problems). In terms of 

strategy execution, repetition of a strategy tended to decrease reaction time in both young 

and old adults. 

This initial exploration into strategy shifts across trials suggests that the familiar 

task-switching paradigm can be successfully applied to the domain of cognitive strategies. 

As Rogers and Munsell noted (1995), the precise definition of what constitutes a “task” 

within this paradigm is lacking. The most frequently employed tasks within the task-

switching literature are basic single step stimulus-response tasks. Another common feature 

is the use of bivalent tasks, where in certain stimuli can be associated with both tasks the 
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participant completes (e.g, classifying some array of letters as vowel/consonant in one task, 

or as lowercase/uppercase in another). Moreover, the response mappings to these bivalent 

stimuli can sometimes be the same (e.g. pressing a left arrow key in response to a stimulus 

such as “e”, corresponding to either the rule “vowel” or the rule “lowercase”); when this is 

the case such trials are called congruent. Another potential characteristic of S-R mappings 

that can influence test switching behavior is the relative difficulty of applying such 

mappings; ranging from easy (e.g. for overlearned responses such as in word reading) to 

difficult (e.g. for arbitrary mappings, such as pressing a left arrow key in response to a 

vowel). 

This raises the question however of where exactly a “strategy” ends and a new 

“task” begins. While much task switching literature treats the “task” as a monolithic 

construct, some evidence exists to suggest that tasks must be much more precisely defined 

in order for researchers to understand their underlying cognitive processes. Ravizza and 

Carter (2008) argue that many studies conflate shifts of visual-spatial attention or 

perceptual switching with shifts of contextual rules or rule switching. For instance, in task-

switching paradigms that rely on a visual cue such as the color or shape of an object, 

effective switching would require both a shift in visual-spatial attention away from one set 

of features to another, but would also entail implementation of the appropriate set of 

response rules. They point out that terms such as “set shifting”, “task switching”, and 

“attention switching” are often used almost interchangeably and without precise definition, 

but that they may legitimately refer to different underlying phenomena. Previously Allport 

(1994) attempted to identify if there were differences in switch costs incurred on the basis 

of shifts in stimulus dimensions, semantic categories, cognitive operations, and response 
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modes, and found that all of these incurred similar switch costs. However, Ravizza and 

Carter argue that this paradigm was investigating primarily mixing costs which are known 

to be driven by additional working memory load. They hypothesized that perceptual 

shifting should only be seen when the competing stimulus set is present, necessitating a 

switch in visual-spatial attention, but that rule switching would be present even in the 

absence of such stimulus interference. They further hypothesized that target repetitions 

would lead to a lower switch cost in perceptual switching but not in rule switching. 

Much of the neuroimaging literature is mixed about whether the neural substrates 

of these varying types of shifting differ; Rushworth (2001) was able to find subregions of 

the medial frontal cortex as well as the parietal cortex (2002) that were distinctively 

associated with perceptual shifting, but Wager (2005) reported very weak dissociations 

when directly comparing these alternative forms of task switches. To explicitly test for the 

neural dissociability of perceptual switching and rule switching, Ravizza and Carter utilized 

an odd-man-out design relying on sets of letters and shapes presented simultaneously. 

Switch trials were designed such that the response rule differed from the one participants 

had followed in the immediately preceding trial. Behaviorally, switch costs to RT were 

greater in the perceptual switching condition than the rule switching condition. In a 

separate study of 14 young participants utilizing the same test design run within the 

context of fMRI imaging, the authors report that a region of the left dorsolateral prefrontal 

cortex was sensitive to rule shifts but not to perceptual shifts, while a region in the right 

superior parietal cortex was sensitive to perceptual shifts but not to rule shifts, and 

likewise for a region of the right premotor cortex. Furthermore, greater activity in the left 

dorsolateral prefrontal cortex is also predictive of better performance in the rule shifting 
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condition, while greater activity in the right superior parietal cortex predicted diminished 

performance in the perceptual shifting condition. To further support the neural 

dissociability of these different types of shifting, these researchers also conducted a small 

meta-analysis of neuroimaging studies probing perceptual shifting but not rule shifting, 

finding that none of the studies found significant correlations in the dorsolateral prefrontal 

cortex as would be expected if indeed this was only associated with rule shifting. Similarly, 

in a sample of neuroimaging studies with rule shifting tasks that do not engage perceptual 

shifting, lateral regions of the prefrontal cortex are universally engaged (although the peak 

region of activity varies widely from study to study). 

Given this pattern of findings, combining alternative fluid reasoning strategies with 

a task-switching paradigm represents a novel yet highly tractable way to investigate the 

relationship between age and strategic flexibility, and may suggest further studies 

depending on the contributions of factors such as working memory. 
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CHAPTER 3 
STUDY ONE 

 

Introduction 

The task-switching paradigm refers to common experimental design wherein participants 

perform a series of distinct tasks on a series of similar items in succession. A cost in 

performance (typically measured in reaction time or accuracy) is expected when the 

participant must perform a task on a given trial that differs from the task she was asked to 

perform on the immediately preceding trial; this is termed the switch cost. Switch costs are 

predominantly classified into one of two types: a global switch cost/mixing cost, referring 

to the difference in performance between a non-switch trial in a pure task block (meaning a 

task block in which each item necessitates performing the same task) and a non-switch 

trial in a mixed block (meaning a block in which the tasks alternate in some fashion). A 

local switch cost instead refers to the difference in performance between a switch trial in a 

non-switch trial within a single mixed block. While global switch costs (sometimes called 

mixing costs) are theoretically related to goal maintenance in the central executive as well 

as added load to working memory capacity, local switch costs instead are theoretically 

related to the executive process which deactivates recent test sets and activating a new and 

more relevant tasks at (Monsell, 2003). Cray and Lindenberger (2000) confirmed the 

dissociability of these two types of costs using structural equation modeling. 

Stimuli for the study of strategy-switching in Raven’s-like problems were generated 

using a software package described by Matzen et al (2010). These authors designed a 

program to systematically generate new Raven’s-like matrix problems, allowing total 
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control over a variety of parameters of each item. They also normed a sample of these 

problems generated using this software and compared the behavioral characteristics to the 

classic RPM items. Previous research on the RPM has identified certain problem features 

that must be taken account when generating new items. The difficulty of problems depends 

highly on the number of rules or relations that must be utilized in combination to solve 

them, with zero-relation problems being matrices in which no element transformations 

occur and the answer is a simple one-to-one match to a shape that is repeated in the item, 

one-relation problems being those in which one rule dictates the pattern of changes a test-

taker must implement to achieve the solution, etc. 

Using some of the classic taxonomies developed by Carpenter et al (1990), these 

authors identified two broad sets of problems within the RPM: problems involving object 

transformations, and logic problems. While logic problems utilize rules such as conjunction 

(“AND”), disjunction (“OR”), and exclusive disjunction (“XOR”), object transformation 

problems instead focus on systematic alterations to features like the shape, size, shading, 

numerosity, and orientation of figural elements. Each of these object transformations can 

be manipulated to apply in a particular direction within the matrix, either row-wise, 

column-wise, diagonally (from either the top left to lower right of the matrix or from the 

lower left the top right of the matrix), or in an outward progression beginning from the top-

left corner. Using Carpenter’s taxonomy, such rules could be directly mapped onto existing 

rule types, such that horizontal and vertical transformations would be equivalent to the 

constant-in-a-row rule or quantitative progression rule, diagonal transformations match 

the distributional-of-three-values rule, and outward progression would be a combination 

of two quantitative progression rules. 
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The Sandia matrix generation software was written in Java (J2SE JRE:6), and the 

software uses a recurring set of six basic shapes as feature elements–ovals, rectangles, 

triangles, diamonds, trapezoids, and T-shapes. The shapes were selected because of their 

easy identifiability, as well as their susceptibility to all of the previously listed rules. In 

addition to generating the matrix problems themselves, the software also generates a 2 x 4 

matrix of potential answer choices for each problem, containing the correct answer in a 

position specified by the user as well as seven incorrect distractors generated based on 

models of the structure of the RPM distractors. The distractors are generated by a random 

combination of the following set of procedures: the correct answer has a random 

transformation applied to it; an incorrect trait is drawn from the shapes in the generated 

matrix; an incorrect shape is drawn from the shapes in the generated matrix, and randomly 

transformed; a transformation is randomly applied to a previously generated distractor; 

randomly sampled surface features from the generated matrix are combined; the shape is 

generated with novel surface features that do not appear the matrix. The software is 

designed to allow generation of object transformation problems with zero, one, two, or 

three relations 

To test the items generated using their software, the authors generated a subset of 

840 representative problems for investigation in a norming study. The problems were 

designed such that each particular combination of relation and direction were tested. The 

authors hypothesized that one-relation matrices would be the easiest to solve, and that 

higher-order relation matrices would be more difficult, with three-relation matrices 

necessitating diagonal application of rules or outward progression being more difficult 

than those requiring row-wise or column-wise application of rules. They also speculated 
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however that logic problems would be the most difficult to solve, both because of the more 

abstract nature of the rule involved, and because the overlapping nature of these problems 

makes each individual shape less salient. In a sample of 80 undergraduate participants (52 

female), the authors administered both the RPM task as well as a subsample of the 

generated matrices so that each participant received a different selection of 20 problems 

from the list of 840 matrices. Results indicated similar levels of reliability (Cronbach’s 

alpha = .73 for the RPM problems, and equal to .76 for the generated matrices) and 

correlation between accuracy for the two sets of problems was .69, with an attenuation-

corrected correlation of .93. Analysis of the object transformation problems indicated that 

there were no significant differences in accuracy performance on the basis of the type of 

transformation applied, so changes to shape, shading, size, orientation, and number had 

relatively equivalent difficulty. Direction of transformation was also assessed, with no 

significant differences in accuracy being found between row-wise or column-wise 

transformations, or between these horizontal transformations and diagonal 

transformations; however outward progression problems were significantly more difficult 

in both one-relation and two-relation problem types. In particular, outward 

transformations involving shading were significantly more difficult than other outward 

transformation problems. The same pattern held for three-relation problem types. 

Analysis of generated logic matrices revealed that the average accuracy is quite low 

(37.9%), and significantly different than the average accuracy on the RPM logic problems 

(53.6%). The “OR” problems had the highest accuracy (.46), while the “AND” and “XOR” 

problems had equivalent accuracies (.34); further analysis revealed that the only specific 

rule type that significantly differed in accuracy from the RPM problems was the “OR” 
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condition, and this was driving the entire effect. The authors speculate that this might be 

due to the fact that the “OR” problems in the RPM are visually very simple, whereas the 

figural elements in the generated matrices tend to overlap to a much greater degree and 

thus reduce the salience of each individual element. 

This study was designed to test a sample of matrices generated using this software, 

and ordered in a way that should induce switching costs if indeed shifts in broad strategy 

use result in additional cognitive load. To this effect we designed two distinct sets of 

stimuli: logical items (requiring use of rules “AND”, “OR”, and “XOR”) were generated, 

roughly corresponding to the previously identified logico-analytic strategy for solving RPM 

problems; object transformation items (requiring use of the color, shape, size, and number 

transformations) were also generated, with these assumed to correspond to the 

visuospatial strategy. All stimuli were generated to use only one set of these rules, and so 

no item can be solved by utilizing the alternative strategy (unlike a selection of items from 

the RPM). Additionally, a selection of the normed stimuli from Matzen’s study were also 

included where they fit the needed parameters, since the relative difficulty of these items 

had already been established. All new matrices generated were piloted by a small sample 

(n=20) of young adults to estimate their relative difficulty and to gauge appropriate time 

limits for the task. While the RPM allows participants to spend as long as required for each 

individual item, we imposed restrictions on time in order to more precisely measure 

switch-costs in the form of RTs. 
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Methods 

Participants 

Participants were recruited via Amazon’s Mechanical Turk platform. Thirty-seven young 

(20-40) and thirty-one old (60-80) subjects took the task over a period of 2 weeks. In order 

to be eligible to participate, all participants had to be native English speakers and reside in 

the US. Subjects also completed a pre-study questionnaire asking them to report their age, 

gender, and years of education. The entire duration of the task was approximately 25 

minutes, and subjects were compensated $3 for their participation. 

Studies of MTurk samples show generally good validity and reliability. Samples culled from 

MTurk generally compare well to more traditional samples in terms of psychometric 

properties (Buhrmester et al., 2011; Behrend et al., 2011), and have been found to 

accurately reflect their reported demographics (Rand, 2012). Furthermore as compared to 

traditional convenience samples such as undergraduate students, MTurk workers display 

higher levels of demographic and psychometric diversity (Buhrmester et al., 2011). While 

this worker pool tends to be slightly more educated than the general population, and 

typically has a higher representation of males (Berinsky et al., 2012), MTurk samples have 

been widely used to replicate research findings previously demonstrated in more 

traditional samples. 

Measures 

Pre-Study Screening Questionnaire 

A basic pre-study screener was administered to all participants asking them to enter their 

assigned subject ID, their age in years, their years of education, their biological sex (male or 

female), and whether English was their native language. 
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STRATA Design 

Participants received the original form of the STRATA task. The task was programmed 

using PHP and displayed 4 blocks of 20 trials each. The first block consisted entirely of 

logico-analytic strategy items, displayed in a randomized but fixed order for all 

participants. The second block contained a mix of logico-analytic and visuospatial strategy 

trials, again randomized but fixed across subjects; there were an equal number of each 

problem type, and the block was designed to include 9 “switch” trials (i.e trials wherein 

subjects have just completed a trial of the alternate strategy type and now they are seeing 

the other one) and 11 “non-switch” trials. The third block contained exclusively 

visuospatial strategy trials but was otherwise identical in structure to the first block, while 

the fourth block was again mixed and identical in structure to the second block. 

Figure 1 displays the structure of this task. 
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Figure 1. Stimuli ordering in a mixed block. L = logico-analytic problems. V = visuospatial 
problems. Red borders indicate a switch trial. 

 

Each trial was preceded by a 500-ms inter-trial-interval (ITI), and the trial ended either 

when participants entered a numeric value from 1 to 8, representing their answer to the 

problem, or after 30-seconds elapsed without a response. In the latter case these trials 

were coded as “Time-Outs”. For each item, accuracy and RT (in milliseconds) were 

recorded. 

Stimuli. Stimuli included in the norming study (Matzen et al., 2010) matching either the 

two-relation transformation problem type (row-wise) or the logical problem type, and 

demonstrating high levels of accuracy (around .75) were included in the test set. Two-

relation problems consisted of every combination of object manipulation (e.g., shape + 



52 
 

number, size + orientation, etc.), both in order to use as many pre-normed items as possible 

and to test whether these combinations differed in terms of performance. This resulted in a 

full set of 40 visuospatial problems, and a partial set of 5 logico-analytic problems (all of 

which consisted of the “OR” rule). We generated an additional set of 100 logical items using 

the Sandia tool, and these were designed to match the structure and relative figural 

complexity of the normed stimuli. Piloting results showed a range of mean accuracies for 

these items, ranging from .8 to .15, from which we selected the top 35 most accurately 

answered items for inclusion in the study; the least accurate of these items still showed 

comparable mean accuracy (.65) to the mean accuracy of the visuospatial stimuli. Although 

the norming data did not include reaction time, we observed that at least in young adults, a 

time limit of 30 seconds per item resulted in over 90% of the items being answered. 

An example of each problem type is shown in figures 2 and 3. 
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Figure 2. Sample logico-analytic problem (“OR” rule). 
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Figure 3. Sample visuospatial problem (“Shading+Orientation” transformation). 

 

Procedures 

Participants were recruited via Mechanical Turk and linked directly to the URL for the 

study, where they viewed an informed consent form before completing the screening 

questionnaire. Following the questionnaire, participants viewed the instructions for the 

task. They were instructed to complete each item by finding the pattern in the matrix, and 
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to select the answer choice that best completes the pattern. They were then given 4 self-

paced practice trials, with two examples of each item type (visuospatial and logico-

analytic). For each practice item, detailed feedback about the series of necessary steps to 

solve the item were shown to participants after each incorrect response. Following the 

practice, participants were instructed that they would have a 30-second time limit on each 

problem so they had to work as quickly as possible on each problem without sacrificing 

accuracy. They indicated when they were ready to commence the task with a press of the 

space-bar. Between blocks 2 and 3, participants were presented a screen with a visible 

two-minute countdown timer and told that they could rest for this time, or press a key to 

continue with the final two blocks. Following the last block, participants were thanked for 

their participation and their study compensation was automatically released. 

Data Analysis 

Behavioral Analysis. Behavioral analyses were conducted on two separate dependent 

measures: reaction time (RT) and accuracy (ACC). To ensure the non-normal distribution of 

the percentages would not impact the analyses, we also computed the arcsin transform of 

the ACC measure, and replicated each analysis using both variables (we report only results 

of the initial models, since these were identical to the arcsin models). The RT models used 

mean RT for correct trials only. 

The initial set of simple models used a 2 x 2 repeated-measures ANOVA, with one within-

subjects factor (either switch type or block type) and one between-subjects factor (age 

group). These were designed to test explicitly for differences in global (overall block-level 

differences, utilizing block type alone as the within-subjects factor), local (switch versus 
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nonswitch differences within mixed blocks, utilizing switch type as the within-subjects 

factor within mixed blocks only), and mixing costs (mixed block nonswitch versus pure 

block nonswitch differences, utilizing block type as the within-subjects factor within switch 

trials only). The level of significance was set at .05. Prior to RT analyses, all RTs for 

incorrect responses were excluded from the data set. For correct responses, RTs shorter 

than 300 ms and longer than 2 SDs above the mean RT were also excluded; the former due 

to their likelihood of being anticipation errors. This resulted in the removal of 87 trials 

from the subsequent analyses. 

To analyze the effects of covariates on the dependent measures, we constructed two 

separate general linear models (GLM) that were analyzed in stages (heterogeneous slopes) 

(Kumar et al., 2008; Siegel, 1956). In each model we introduced the covariates of interest, 

in this case gender. The initial, heterogeneous-slopes model used a repeated measures 

analysis of variance (ANOVA) design with strategy type as a within-subjects factor 

(visuospatial versus logico-analytic problems), and added the main effects of the covariate 

in addition to its interaction with age group. The latter effects tested the assumption of the 

analysis of covariance that the effects of the covariates are equivalent at each level of the 

model’s fixed effects, and only these equivalent effects were further inspected. In the first 

stage, we constructed a full model with the following predictors: age group, gender, 

education, age group X gender, and age group X education. Gender was controlled for 

because of past research which observed sex differences in strategy use, particularly within 

the context of the RPM task (Lynn, Allik, & Irwin, 2004; Macintosh & Bennett,2005). After 

performing this full model, retaining strategy-type as a within-subjects factor, we 
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constructed a reduced model which retained only the covariate main effects, as well as any 

interaction terms which were statistically significant in the full model (p < .05). 

Post-hoc analyses for all significant ANOVAs were conducted to further inspect the pattern 

of these relationships. These were designed within the context of a linear mixed-effects 

model to replicate the structure of the mixed ANOVAs and computed using the ‘nlme’ 

package in R, with either RT or ACC being predicted by age group as well as the task factor 

of interest. Next, the equivalent of Tukey HSDs were computed simultaneously for all linear 

models using R’s multicomp package, with p-values Bonferroni-corrected. 

Results 

Participant characteristics are given in table 1. T-tests were used to ensure that the 

covariates were not significantly different in each group. Error rates were on average low 

(ranging from 21% to 32%). On average, older adults (whose mean accuracy was .68 across 

all trials) displayed more errors than younger adults (mean accuracy = .79). Older adults 

demonstrated greater reaction times depending on block type, with the largest RTs being 

observed in mixed blocks than in pure blocks. 
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Global (Block-Level) Switch Costs 

To investigate the overall impact of age and strategy type, two mixed ANOVAs were 

conducted with age group as the between-subjects factor and block type as the within-

subjects factor. These ANOVAs were conducted to determine if global differences in 

reaction time and/or accuracy could be observed based only on the between-subjects 

factor and the type of block. 

RT. Analysis of global differences to reaction time (i.e. differences across all blocks) based 

on age group and type of block resulted in a significant main effect of block type, F = 

50.906, p < .05. Age group, and the interaction of age group with block type, were not 

significant (F= 1.233, and F = 2.21, respectively). Results of this ANOVA are reported in 

table 2. 
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Post-Hoc Analyses for RT. At the block-level, post-hoc analyses revealed that older adults 

in mixed blocks showed significantly higher RTs than younger adults in pure blocks, and 

this was the greatest estimated difference between subgroups. Older adults in the mixed 

blocks also displayed significantly higher RTs than older adults in the pure blocks. Finally, 

young adults in the mixed blocks also showed significantly higher RTs than young adults in 

the pure blocks. See table 3 for these results. 
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ACC. Analysis of global differences to mean proportion accuracy (i.e. differences across all 

blocks) based on age group and type of block displayed the opposite pattern of findings; 

here we observed a main effect of age group, F = 5.373, p < .05, as well as a significant 

interaction between age group and block type (F = 7.736, p <.05). Block type alone (F 

=8.905) by contrast did not result in a significant main effect as with RT. These results are 

reported in table 4. 
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Post-Hoc Analyses for ACC. At the block-level, post-hoc analyses revealed that older adults 

in mixed blocks showed significantly lower accuracy than younger adults in pure blocks. 

Older adults in the mixed blocks also displayed diminished accuracy relative to young 

adults in the pure blocks, and relative to young adults in mixed blocks. Younger adults in 

the mixed blocks also displayed slightly greater accuracy than older adults in the pure 

blocks. Table 5 displays these results. 
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Learning Effects. To analyze the potential for learning within a block as items progress, the 

average RT for each item within the two pure blocks was plotted against item index. As 

shown in figures 4 and 5, no evidence for learning in the form of reduced RTs during later 

trials is observed. Paired T-tests confirmed that no significant difference between each 

participant’s mean RT in the first half of a block and the second half are present. 
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Figure 4. Average RT Across Pure Block Trials. Block 1 (logico-analytic). 
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Figure 5. Average RT Across Pure Block Trials. Block 2 (visuospatial). 

 

Local Switch Costs 

To analyze the local switch costs (i.e. differences in performance between switch and 

nonswitch trials within the mixed blocks), mixed ANOVAs were conducted controlling for 

the impact of block type on both reaction time and accuracy. A 2 (age group: young or old) 

by 2 (trial type: switch or nonswitch) design was utilized exclusively within the mixed 

blocks. 

Local Switch Costs: RT. Local switch-costs to RT within mixed blocks were significantly 

associated with trial type (switch or nonswitch), F = 5.95, p < .05. No significant main effect 

of age-group, or interaction effect between age group and trial type, was observed. Results 

of this ANOVA are described in table 6. 
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Post-Hoc Analyses for Local RT Switch Costs. At the block-level, post-hoc analyses 

revealed that older adults in mixed blocks showed significantly higher RTs than younger 

adults in pure blocks, and this was the greatest estimated difference between subgroups. 

Older adults in the mixed blocks also displayed significantly higher RTs than older adults in 

the pure blocks. Finally, young adults in the mixed blocks also showed significantly higher 

RTs than young adults in the pure blocks. See table 7 for these results. 
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Local Switch Costs: ACC. Local switch-costs to ACC within mixed blocks were assessed 

identically to RT, and resulted in a significant main effect of age group (F = 3.357, p < .05). 

The main effect of trial type, and the interaction between trial type and age group, were not 

significant. See table 8 for detailed ANOVA results. 
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Post-Hoc Analyses for ACC. At the block-level, post-hoc analyses revealed that older adults 

in mixed blocks showed significantly lower accuracy than younger adults in pure blocks. 

Older adults in the mixed blocks also displayed diminished accuracy relative to young 

adults in the pure blocks, and relative to young adults in mixed blocks. Younger adults in 

the mixed blocks also displayed slightly greater accuracy than older adults in the pure 

blocks. Table 9 displays these results. 
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Mixing Costs 

Mixing costs (i.e. the difference in performance between nonswitch trials within mixed 

blocks versus nonswitch trials within pure blocks) were assessed by controlling for the 

trial type factor. A 2 (age group: young or old) by 2 (block type: mixed or pure) mixed 

design was conducted exclusively among nonswitch trials. 

Mixing Costs: RT. Results of the ANOVA of RT values of nonswitch trials revealed a 

significant main effect of block type (F = 35.262, p < .05), but age group and age group x 

block type were not significant. ANOVA results are reported in table 10. 
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Mixing Costs: ACC. ANOVA results for mixing costs to accuracy again demonstrated the 

opposite pattern as those for RT; block type alone was not a significant main effect, yet age 

group (F = 28.58) as well as the interaction of age group with block type (F = 4.07) were 

both significant (p < .05). Results of this mixed ANOVA are reported in table 11. 
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Covariates. Both gender and education displayed low and insignificant correlations with 

RT and ACC. 

Discussion 

Results of the first study confirmed our hypothesis that strategy-shifting within a single 

task would result in switch costs as measured using RT. Subjects were overall less fast at 

making selections in switch trials, and showed greater errors during these trials. Also as 

expected, older adults showed even more dramatic mixing costs in error rates than young 

adults. Despite this, we could not find statistically significant evidence for our hypothesis 
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that older adults are slower on switch trials than on non-switch trials within mixed blocks. 

While performance on mixed blocks was overall slower, particularly in the old group, than 

on pure blocks, RTs on the switch trials within any given mixed block did not significantly 

differ from those of the nonswitch trials. 

One potential explanation for this however lies in the conflicting pattern of results 

observed for reaction time and accuracy; among all analyses assessing global switch costs, 

local switch costs, or mixing costs, age group and its interaction with the within-subjects 

factor were only significant predictors of accuracy, not reaction time differences. This 

pattern of findings has two potential implications that warrant investigation: 1) switch 

costs within the STRATA may be falling victim to a speed-accuracy trade-off, and 2) older 

adults may be preferentially sacrificing accuracy for lowered costs to speed. While the 

second implication is interesting and is itself suggestive of age-related strategic behavior, 

the presence of such a trade-off potentially compromises the interpretability of this work 

and hence will be explored more fully in study 2 below. 

These results are overall consistent with existing task-switching literature; mixing 

costs have been repeatedly shown to be exacerbated in older adults, and this is thought to 

derive from age-related declines to working memory capacity. While mixing costs (or 

global switch costs) are taken as a reflection of the set up costs for maintaining and 

scheduling the two mental tasks sets, local switch costs are thought instead to reflect the 

inhibitory potential to deactivate a just active but now irrelevant mental task set. Since 

mixed blocks require maintaining two distinct tasks sets (or in this case, strategies) within 

working memory, mixing costs are not only frequently observed but are negatively 
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impacted by advancing age. Local switch costs, meanwhile, which instead are thought to 

reflect a subject’s inhibitory capacity to deactivate a now irrelevant rule and instead apply 

the appropriate rule, are less consistently exacerbated by age. 

While there are some studies that suggests that older adults are subject to increases 

in both global switch costs and local switch costs (e.g., Merian, Gotler, & Perlman, 2001; 

Kray et al., 2002), the overall pattern of findings is more consistent with age effects on 

global switch costs, but only negligible effects on local switch costs. In a recent meta-

analysis of 36 independent task-switching studies, Wasylyshyn & Verhaeghen (2011) found 

overwhelming evidence that older adults are especially prone to global switch costs but are 

no more impaired and local switch costs than younger adults. These authors even suggest 

that some of the results of the contrary may be due to specific aspects of the paradigm 

utilized which increased the importance of working memory; Kray et al. (2002) for 

instance found that local switch costs were more impacted by age than global switch costs, 

however here they used a paradigm which doubled the number of relevant tasks sets 

participants had to maintain (from 2 to 4) potentially exacerbating the working memory 

load within mixed blocks. 

The observation of age-related mixing costs within the context of a strategy-shift 

within a single task is significant. Such a result extends the bridge between the two 

literatures of cognitive strategies and age-related group differences from both directions: 

first by reinforcing that classical neuropsychological instruments can indeed be 

decomposed into discrete strategic approaches, and second by showing that distinct 
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strategies within even domain-general tests can be experimentally manipulated to gauge a 

more generalizable measure of the importance of such alternation. 

One potential limitation of this study lies in the particular choices made about the 

task-switching sequence utilized. As noted, participants were given an unpredictable 

sequence of strategy-switches to apply, and these switches were signaled only by their own 

recognition of the pattern in the particular matrix they were presented with. Cueing 

paradigms, wherein subjects receive explicit cues about the type of task they will next see, 

often result in a smaller switch cost (Kray, Li, & Lindenberger, 2002; Kray & Lindenberger, 

2000), possibly because they alleviate much of the demand to working memory capacity by 

offloading S-R rules. Unpredictable switch sequences have also been associated with larger 

switch costs (Rogers & Monsell, 1995), potentially the results of the removal of external 

inhibitory reinforcers which would otherwise make individuals more confident in the 

application of a specific rule when it is called for on a specific schedule. However, 

Wasylyshyn & Verhaeghen’s (2011) meta-analysis did not find strong evidence that these 

factors significantly affected the relationship between age and task-switch costs. 

Another potential limitation is the training for the task. While most task-switching 

paradigms rely on training prior to assessment, these vary widely in the amount and nature 

of the training presented. Some research has suggested that extensive practice can reduce 

switch costs during task-switching (Cepeda et al., 2001; Kray and Lindenberger, 2000), 

while some research suggests that mixing costs can be virtually eliminated with sufficient 

practice (Berryhill & Highes, 2009) within bivalent tasks– i.e. tasks wherein stimuli can 

have two response mappings. However, given that performance was held relatively 
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constant across the duration of the tasks (including mixing costs to RT), we think the 

effects of practice were negligible in this study. Here in order to cut down on the time 

required to complete the study, participants were exposed to a small number of practice 

trials, but practice trials that gave explicit instructions about how to apply each strategy. It 

could also be argued that the explicit instruction removes some of the validity of the matrix 

items themselves, since they are probing the application of the appropriate rule rather than 

the ex nihilo generation of that rule. Future research is required to determine if knowledge 

of the rules to apply affects the strategic engagement ordinarily presupposed by the 

particular trial type. 
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CHAPTER 4 
STUDY TWO 

Introduction 

The second study was designed to replicate the effects observed in the first study, and to 

examine the relationship between the strategic flexibility measure and a proxy measure of 

CR. This experimental procedure was also revised to more precisely match existing task 

switching paradigms. Specifically, stimuli ordering was reconfigured to correspond to the 

so-called alternating runs paradigm in the task switching literature (Monsell, 2003). 

As Rogers and Monsell noted (1995), the precise definition of what constitutes a 

“task” within this paradigm is lacking. The most frequently employed tasks within the task 

switching literature are basic single step stimulus-response (S-R) tasks. Another common 

feature is the use of bivalent tasks, wherein certain stimuli can be associated with both 

tasks the participant completes (e.g, classifying some array of letters as vowel/consonant 

in one task, or as lowercase/uppercase in another). Moreover, the response mappings to 

these bivalent stimuli can sometimes be the same (e.g. pressing a left arrow key in 

response to a stimulus such as “e”, corresponding to either the rule “vowel” or the rule 

“lowercase”); when this is the case such trials are called congruent. Another potential 

characteristic of S-R mappings that can influence task switching behavior is the relative 

difficulty of applying such mappings; ranging from easy (e.g. for overlearned responses 

such as in word reading) to difficult (e.g. for arbitrary mappings, such as pressing a left 

arrow key in response to a vowel). 

The introduction of the alternating runs paradigm (as opposed to Jersild’s original 

task switching paradigm, employing mixed blocks of the form ABAB which did not include 
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any non-switch trials) allowed for the observation of alternation or mixing costs. Normally, 

subjects are slower overall during such mixed blocks than they are during pure blocks, 

suggesting a global cost associated with switching tasks. Rogers and Monsell (1985) argued 

that global costs may reflect the additional working memory load necessitated by mixed 

blocks, and may not be related directly to what was traditionally meant by task switching. 

The alternating runs paradigm attempts to correct for this potential confound by allowing 

the direct comparison of such block level global switch costs, to performance costs 

associated with switch trials but not with non-switch trials within a mixed block. Such local 

switch costs are closer in meaning to the original theoretical conception of task switching. 

This paradigm has even been applied to more complex tasks sequences, so long as they are 

presented in a rigidly predictable order (e.g. Gotler, Meiran, & Tzelgov, 2003; Koch, 2001, 

2005, 3008; Logan,2007; Schneider & Logan, 2006). 

Switch costs are commonly calculated in two distinct ways: local switch costs refer 

to the difference in performance measure (e.g. RT) on non-switch versus switch trials 

within a mixed block. These are associated with the execution of the task switch. Global 

switch costs, or mixing costs, are instead calculated as the difference between a 

performance measure on non-switch trials in a mixed block versus non-switch trials in a 

pure block. These are associated with factors relating to goal management and the retrieval 

of appropriate goals. 

While working memory capacity has been shown to share a significant degree of 

variance with fluid intelligence (Ackerman, Beier, & Boyle, 2005), and is considered critical 

in many theoretical models of task switching because deactivating an irrelevant task set 
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and reactivating a newly relevant task set imposes demands on this capacity, many studies 

investigating the relationship between these two components do not find a correlation 

(e.g. Keisel, Wendt, & Peters, 2007; Logan, 2004; Miyake et al, 2000). Moreover, some 

studies actually find that a higher working memory capacity is predictive of decreased 

task-switching performance (Draheim et al, 2015). 

Draheim et al. (2015) argue that one potential reason for this lack of association lies 

in the methodology by which tasks switches are measured. Latency switch costs, whether 

on the global or the local level, do not take into account the accuracy with which individuals 

are performing the given task. Individual differences may exist between test-takers in 

terms of their calculation of the speed-accuracy trade-off; while some individuals may 

preference speed, others may prioritize accuracy, and vice versa. Another major 

methodological issue is the comparatively low reliability of difference scores (Cronbach & 

Furby, 1970). Based on how difference scores are calculated, it’s a mathematical necessity 

that if the two component scores are highly correlated (which we would expect given that 

they are measured within-subjects and likely reflect highly similar mental processes), the 

reliability of the scores will be low. Given these two limitations of difference scores, the 

lack of correlational relationship between working memory capacity and task switching 

may be a function of how the latter is computed, rather than the absence of a genuine 

relationship. 

As an alternative to difference scores within task-switching, Hughes et al. (2014) 

proposed a rank ordering binning procedure capable of combining speed and accuracy into 

a single metric. Unlike difference scores, this metric has been shown to have high reliability 
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(Hughes et al., 2014). Using the binning procedure, Draheim et al. (2015) re-analyzed a 

large set of data from 552 subjects collected by Shipstead et al. (2015). Not only did the 

internal consistency and reliability of task switching performance improve when 

operationalized this way, but the expected relationship between task switching ability and 

working memory capacity showed a significant correlation in the expected direction (.49, 

versus -.26 when measured using difference scores). In a further reanalysis of task 

switching and working memory data on 131 subjects collected by Oberauer et al. (2003), 

the binning procedure dramatically improved the amount of shared variance between the 

new task switching score and six individual working memory tasks. Shipstead et al. (2015) 

further used this binning procedure to show that Gf measures contribute significantly more 

unique variance over working memory capacity to the explanation of task switching scores 

than the reverse. 

Given that the purpose of this study is to investigate expected relationships between 

task-switching ability and other covariates, we utilize this nontraditional method of scoring 

to explore how age and our lifetime exposure variables interact with strategy switching 

performance. We hypothesized that older adults would overall display higher bin scores 

(reflecting a combined measure of greater errors and higher RTs), that bin scores should be 

higher in mixed blocks than in pure blocks, and that our CR measures would moderate the 

effect of age on bin score. We further speculated that the inclusion of within-strategy rule 

switches would induce small changes to bin score, but that these would be lesser in 

magnitude than those changes induced by full strategy shifts. 
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Methods 

Participants 

Participants were recruited via Amazon’s Mechanical Turk platform. Forty-eight young 

(20-40) and thirty-five old (60-80) subjects took the task over a period of one month. In 

order to be eligible to participate, all participants had to be native English speakers and 

reside in the US. Subjects also completed a pre-study questionnaire asking them to report 

their age, gender, and years of education. The entire duration of the task was 

approximately 30 minutes, and subjects were compensated $4 for their participation. 

Three young participants and one older participant were excluded for failing to 

complete the task. Additionally one older participant was excluded for failing to respond to 

the majority (>90%) of trials. This left a final study sample of 45 young adults and 33 older 

adults. Informed consent was obtained at the beginning of the study. 

Measures 

Cognitive Status Questionnaire 

Cognitive status was assessed using a combination of three separate measures: the AD8 to 

assess for any functional impairment which may be caused by neurological disease, the 

extended instrumental activities of daily living (E-IADL) to probe for lifestyle factors which 

may be predictive of well-preserved cognitive functioning, and an 

educational/occupational questionnaire based on the Lifetime Experiences Questionnaire 

(LEQ). These measures were administered using Qualtrics. 

AD8. The AD8 was administered as a screener for any participants who may exhibit early 

signs of cognitive impairment, ensuring that any age effects observed derived from 
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cognitive changes rather than Alzheimer’s pathology. The form is extremely brief (8 items) 

and probes memory, orientation, judgment, and function, and shows good sensitivity 

(86%) and specificity (74%) in prior research (Galvin et al., 2005). We utilized a 

conservative cut-off score of 2 on this test, excluding any participants scoring higher than 

this. 

E-IADL. The extended instrumental activities of daily living (E-IADL) extends the predictive 

validity of traditional IADL measures by incorporating several items related to leisure 

activities. While traditional IADL measures are designed to detect cognitive risk factors 

based on physical or cognitive impairments, the E-IADL is better equipped to detect risk 

factors based on activities corresponding to many of the intellectually stimulating exposure 

variables associated with CR (e.g. “gone to classes of any kind”, “club or center activities”, 

etc.). Prior investigation into this scale demonstrated both a severe decrease in ceiling 

effects (from 67% to 3%) over the traditional IADL, and good predictive utility (Fieo et al, 

2013). The sum of all items representing risk factors (e.g. endorsing difficulties performing 

chores without assistance) were subtracted from the sum of all items representing 

stimulating leisure activities (e.g. going to classes of some kind). All scores were 

individually standardized within age group (since older adults displayed higher levels in all 

of these measures as a function of more life experience), before being averaged for each 

participant. This measure was also used to screen out subjects at a high risk for cognitive 

impairment. 

LEQ Items. Educational and Occupational sections of the Lifetime Experiences 

Questionnaire (LEQ) were administered (Valenzuela & Sachdev, 2006). This questionnaire 
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has been shown to produce a dominant factor with high loadings on education, occupation, 

and leisure activity, has strong correlations with tests of cognitive ability, and good 

predictive validity towards cognitive decline when applied to a sample of 18-month 

longitudinal data (ibid). It additionally allows the measurement of education and 

occupation values over a respondent’s lifetime rather than statically. 

Using the LEQ items, we computed a composite CR-proxy score designed to quantify the 

level of complex cognition participants had engaged in throughout their lifetimes. For 

education, total years endorsed of primary and secondary education were totaled, and to 

this we added the higher-weighted years of post-secondary education endorsed, weighted 

by 1) percent of coursework completed and 2) enrollment status (half-time was weighted 

by .5). To this was added the years of professional or graduate education, weighted by a 

factor of 1.5 to reflect the additional cognitive demands of this track, and additionally 

weighted by percent completed and enrollment status. For occupation, each subject’s 

reported occupations were matched to the closest available occupation in the Dictionary of 

Occupational Titles (DOT), which provides complexity scores along the dimensions of work 

with data (ranging from “comparing” to “synthesizing”), people (ranging from “taking 

instructions” to “mentoring”), and things (ranging from “handling” to “setting up”). We 

combined these scores to avoid multicollinearity among the predictors. 

Revised STRATA 

Based in part on our findings from Study 1, the STRATA task was redesigned to more 

precisely match the structure of a traditional task-switching paradigm. This version of the 

task was programmed using the jsPsych Javascript library, which allowed it to be directly 

accessed via a web browser just as the PHP version had been. Most importantly, stimuli in 
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the mixed blocks were reordered to follow an alternating-runs structure, wherein a 

task(strategy)-switch is induced after every two successive trials; i.e. trial order became: 

A,A,B,B,A,A,B…(Monsell, 2003).The purpose of this was twofold: first, it allowed us to 

maximize the distribution of the two strategy types, and second, it provided participants 

with a more predictable pattern of strategy switches. The task was also altered to allow for 

a completely randomized presentation of block orders, so that participants would not be 

affected by exposure to one type of strategy before the other. Finally, the pure blocks were 

redesigned to include two distinct rule sets within each particular strategy which also 

corresponded to an alternating-runs structure. Thus the pure logico-analytic block, 

although still containing only trials falling under the logico-analytic strategy, now consisted 

of both “OR” and “XOR” problems presented in a predictable sequence [A,A,B,B…]. Likewise, 

the visuospatial block was revised to present alternating runs of “shape + orientation” rule 

trials, along with “size + number” rule trials. The mixed blocks meanwhile used only one 

rule type of each strategy (“OR” trials for logico-analytic, and “shape + orientation” trials for 

visuospatial). This was done to test for the effects of a smaller, rule-specific switch cost, 

which we hypothesized would be present in both pure strategy blocks but that would be 

lesser in magnitude than the between-strategy switch costs. As before, both RT and 

accuracy were recorded for each item. 

Procedures 

Participants were recruited via Mechanical Turk and linked directly to the URL for the 

study, taking them to a Qualtrics survey where they viewed an informed consent form 

before completing the Cognitive Status questionnaire. Following the questionnaire, 

participants were given a link to the task. As in Study 1, they first saw the instructions for 
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the task. They were instructed to complete each item by finding the pattern in the matrix, 

and to select the answer choice that best completes the pattern. They were then given 4 

sample trials, with two examples of each item type (visuospatial and logico-analytic). These 

practice trials were further divided into two varieties of each strategy–an example “OR” 

problem and an example “XOR” problem for the logico-analytic trials, and an example 

“shape + orientation transformation” problem and an example “size + number 

transformation” problem for the visuospatial trials. For each self-paced practice item, 

detailed feedback about the series of necessary steps to solve the item were shown to 

participants after each response, regardless of their initial accuracy. This was done to 

ensure that participants had explicit knowledge of the types of strategies available to them. 

Following the practice, participants were instructed that they would have a 30-second time 

limit on each problem so they had to work as quickly as possible on each problem without 

sacrificing accuracy. They indicated when they were ready to commence the task with a 

press of the space-bar. Between each trial, a fixation cross was displayed in the center of 

the screen for the 500ms ITI. Between each block, participants were presented a screen 

telling them that they had 1 minute to rest, and told that they could rest for this time, or 

press a key to continue with the next block. This was done to reduce cognitive fatigue as 

the test progressed. Following the last block, participants were thanked for their 

participation and their study compensation was automatically released. 

Data Analysis 

As in study 1, behavioral analyses were conducted on global, local, and mixing costs in both 

RT and ACC. Additionally, analyses were conducted on bin scores representing both 

accuracy and reaction time. This was done both to obviate the possibility of a speed-
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accuracy trade-off, and to ensure the expected psychometric associations with covariates 

would not be confounded by individual differences in one of the dependent measures. It 

also allowed us to retain the full set of responses in our analyses. 

Binning Procedure. In addition to investigating reaction times and error rates, we also 

computed a single combined measure designed to incorporate both of these components. 

Such metrics are useful whenever a task may be subject to a speed accuracy trade-off, and 

though study one did not indicate that this was the case on a group-wide level there 

remains the possibility that some individual subjects may prioritize responding accurately 

while others may prioritize responding quickly. The binning procedure was conducted as 

follows: first, mean RTs from accurate non-switch trials were calculated and subtracted 

from each subject’s RT for accurate switch trials. This results in a score for each accurate 

switch trial that represents the speed in that trial relative to the subject’s average non-

switch speed. These scores are combined for all subjects, then rank ordered into deciles; 

the fastest decile is assigned a score of one, the second fastest is assigned a score of two, 

and so on. Thus each accurate switch trial receives a bin score ranging from 1 (fastest) to 

10 (slowest), and then inaccurate switch trials were given a bin score of 20. This value is 

arbitrary, but it’s key property is that it is sufficiently larger than the slowest accurate 

responses to penalize inaccurate responses; moreover variations in this number have been 

shown to only very mildly change the strength of resulting correlations. Finally, individual 

bin scores for each participant were summed to obtain a single bin score. 

To analyze the effects of covariates on the dependent measures, we constructed two 

separate general linear models (GLM) that were analyzed in stages (heterogeneous slopes) 
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(Kumar et al., 2008; Siegel, 1956). In each model we introduced the covariates of interest, 

in this case gender and a composite CR score based on the Cognitive Status questionnaire. 

The initial, heterogeneous-slopes model used a repeated measures analysis of variance 

(ANOVA) design with strategy type as a within-subjects factor (visuospatial versus logico-

analytic problems), and added the main effects of the covariates in addition to their 

respective interaction with age group. The latter effects tested the assumption of the 

analysis of covariance that the effects of the covariates are equivalent at each level of the 

model’s fixed effects, and only these equivalent effects were further inspected. In the first 

stage, we constructed a full model with the following predictors: age group, CR, gender, and 

the interaction of each covariate by age group. After performing this full model, retaining 

strategy-type as a within-subjects factor, we constructed a reduced model which retained 

only the covariate main effects, as well as any interaction terms which were statistically 

significant in the full model (p < .05). 

The switch cost models, in contrast, used a 2 x 2 repeated-measures ANOVA, with one 

within-subjects factor (either block-type or switch-type) and one between-subjects factor 

(age group). The level of significance was set at .05. 

A separate set of 2 (age group) x 2 (strat type) x 2 (rule type) mixed ANOVA models were 

conducted to analyze the effect of rule switching within any particular strategy, but these 

failed to reach significance and are not reported here. 

Finally, to investigate the effects of CR proxies on the dependent measures within the 

context of repeated measures, a series of mixed effect linear models were constructed. 

These models allow the specification of both random slopes (e.g. random effects from 
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subjects or across items) and fixed slopes (e.g. stable effects based on the condition of 

interest, in this case strategy type and age group.) These models were constructed using CR 

and other covariates and without them then compared to determine if CR is useful in 

accounting for variance in the dependent measure. 

For bin scores, the initial model constructed consisted of fixed effects, plus random slopes 

accounting for the possible random differences between subjects and individual items in 

their susceptibility to strategy types: 

Model 1 = lmer(Dependent Measure ~ strategy-type + age-group + (1 + strategy-type|subject) + (1 + 
strategy-type|item) 

Successive models first added CR as a covariate, then as an interaction term with age group, 

then as both a covariate and interaction term: 

Model 2 = lmer(Dependent Measure ~ strategy-type + age-group + CR + (1 + strategy-type|subject) + (1 + 
strategy-type|item) Model 3 = lmer(Dependent Measure ~ strategy-type + (age-group * CR) + (1 + 
strategy-type|subject) + (1 + strategy-type|item) Model 4 = lmer(Dependent Measure ~ strategy-type + 
age-group + CR + (age-group * CR) + (1 + strategy-type|subject) + (1 + strategy-type|item) 

These models were compared using AIC and BIC scores to determine if the addition of CR 

to the fixed or random effects contributed to the explanatory power of the model in a 

parsimonious way. 

RT models were constructed in the same manner, except (i) all trials were included 

(whereas bin scores are only computed for switch trials), and as a result (ii) CR level–low 

versus high along a median split of the data–was used rather than CR and was used as a 

random effect per subject, since the degrees of freedom in these models was greater. All 

other modeling steps and comparison metrics were conducted the same. 
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Results 

Demographic information for participants are shown in table 14. 

  

Global (Block-Level) Switch Costs 

To analyze the overall impact of age and strategy type on switch costs, we replicated the 

analytic strategy of study 1 by conducting two mixed design ANOVAs with age group as the 

between-subjects factor and block type as the within-subjects factor. 

RT. Analysis of global differences to reaction time across all blocks as a function of age 

group and type of block resulted in a significant main effect of block type, F = 1186.551, p < 

.05. Age group also displayed a significant main effect (F = 99.837, p < .05). Additionally, the 

interaction of age group with block type was significant in this model (F = 14.684, p < .05). 

Results of this ANOVA are reported in table 16. 
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Post-Hoc Analyses for Global RT Switch Costs. At the block-level, post-hoc analyses 

revealed significantly higher RTs for older adults relative to younger adults, regardless of 

condition. The lone exception to this was the comparison of young RTs in mixed blocks 

with old RTs in pure blocks, where no significant difference was observed. Additionally, 

both young and olds in the mixed blocks displayed higher RTs than their corresponding 

RTs in the pure blocks. See table 17 for these results. 
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ACC. Analysis of global differences to mean proportion based on age group and type of 

block were less successful than the RT analyses; none of the main effects (age group or 

block type), nor the interaction term showed significance. An ANOVA table of these results 

can be seen in table 18. 
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Post-Hoc Analyses for Global ACC Switch Costs. None of the group-level comparisons 

were significant. See table 19 for these results. 
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Local Switch-Cost Analyses 

Mixed ANOVAs were conducted controlling for the impact of block type on both reaction 

time and accuracy to analyze local switch costs. Again, a 2 (age group: young or old) by 2 

(trial type: switch or nonswitch) design was utilized exclusively within the mixed blocks. 

Local Switch Costs: RT. Local switch-costs to RT within mixed blocks were significantly 

associated with the main effect of trial type (switch or nonswitch), the main effect of age 

group, as well as the interaction of age group with trial type. Results of this ANOVA are 

given in table 20. 
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Post-Hoc Analyses for Local RT Switch Costs. Older adults displayed higher RTs in switch 

trials relative to nonswitch trials, as did young adults. Additionally, older adults displayed 

higher RTs than younger adults, regardless of trial type combinations with one exception; 

again young adults in switch trials only slightly outperformed older adults in nonswitch 

trials, but this did not reach significance. See table 20 for these results. 
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Local Switch Costs: ACC. Local switch-costs to ACC within mixed blocks were again 

assessed using mixed design ANOVA, and as with the analysis of global switch costs did not 

result in any significant main effects or interaction effects. Post-hoc analyses for local ACC 

switch costs confirmed that none of the group-level comparisons were significant. 

Mixing Cost Analyses 

Mixing costs were assessed using a 2 (age group: young or old) by 2 (block type: mixed or 

pure) mixed design conducted exclusively among nonswitch trials to control for the trial 

type factor. 
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Mixing Costs: RT. Results of the ANOVA of RT values of nonswitch trials revealed a 

significant main effect of age group (F = 103.072, p < .05), as well as block type (F = 54.893, 

p <.05), in addition to the interaction term (age group x block type), F = 4.685, p <.05. 

Detailed results are reported in table 22. 

 

Post-Hoc Analyses for Mixing Costs in RT. In all group by group comparisons, older adults 

displayed higher mixing costs than young adults, and within-group RTs were always higher 

in mixed blocks than pure blocks. See table 23 for these results. 
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Mixing Costs: ACC. ANOVA results for accuracy mixing costs conformed to those of the local 

switch costs: no significant main effects or interactions were observed. See table 24 for 

these results. Post-hoc analyses for mixing costs in ACC confirmed that none of the group-

level comparisons were significant. See table 25 for these results. 
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Figures 6-9 display the mean RT differences based on age-group, block type, rule type, and 

strategy type. 
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Figure 6. RT by Age Group. Mean RT in milliseconds, 0 = youngs, 1 =olds. 

 

 

Figure 7. RT by Block Type. Mean RT in milliseconds. 0 = pure blocks, 1 = mixed blocks. 
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Figure 8. RT by Rule Type. Mean RT in milliseconds, majority rule type is labeled as â�œ0â�� 
for both strategy conditions, alternative rule type labeled as â�œ1â�� across both 
conditions. Note these are collapsed within-strategy as the interaction of strategy type with 
rule type had no effect on RT. 

 

 

Figure 9. RT by Strategy Type. Mean RT in milliseconds, 0 = logico-analytic strategy, 1 = 
visuospatial strategy. 
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Bin Score Analysis. Bin scores for each subject were highly correlated with the CR measure 

in the old group (-.619) but not in the young group (-.231). This suggests that CR is 

protecting the strategy-switching flexibility in older adults but is not associated with it in 

younger adults, consistent with prior studies showing that CR’s protective role increases in 

importance over the lifetime. 

Mixed Effects Linear Models 

Bin Scores. Model comparisons amongst the four models for bin scores showed that CR did 

not contribute to improved model fit, as the AIC and BIC values remained lowest for the 

first model. A liklihood ratio test confirmed that the ‘p-value’ for these latter models did not 

reach an estimated significance of .05. These results are reported in tables 26 and 27. 
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RT. Model comparison results showed that the addition of CR as a fixed effect did decrease 

the AIC and BIC values, suggesting a contribution to the explanatory power of the model to 

RT. Moreover, further adjusting the model to include the interaction of CR level with age 

group further reduced AIC and BIC, albeit slightly, suggesting that treating CR as a 

moderator of a fixed effect (as it is theorized to be) lends the highest explanatory power. 

These results could not be confirmed using a likelihood ratio test, but such tests are only 

rough approximations of p-values for mixed models and so the model comparison 

approach gives a more reliable interpretation. See table 26. 
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Discussion 

The second study largely replicated the effects of the first, and extended the method of 

analyzing performance data by combining RT and accuracy into a combined metric. Age 

was shown to interact with block type (mixed versus pure) such that older adults 

performed worse in mixed blocks relative to younger adults. Also as expected, our CR 

measure correlated highly with overall STRATA performance in the old group but not in 

the young group, consistent with other proxies of CR. An unexpected result was that 

within-strategy rule shifts did not elicit statistically significant switch costs, but this result 

provides further evidence that strategy-shifting is a distinct phenomenon with potentially 

greater magnitudes of influence on overall performance. 

The results from the mixed models conducted on bin scores and RT surprisingly 

yielded no evidence that CR may be contributing to the variation in bin scores, but does 

suggest it is interacting with age group to modulate RT. One potential explanation for this 

may be the sheer number of trials analyzed by these models; since bin scores were only 

conducted for switch trials, each subject contributed only 18 unique trials to these analyses 

as opposed to the potential 80 in the RT models. Moreover the effect of switch type itself is 

effectively parsed out in such an analysis, and this may be what is primarily interacting 

with CR. 

While we chose to redesign the STRATA to more closely reflect the alternating runs 

paradigm within task-switching, the options left unchosen are an area rife for exploration 

with this task and others like it. An alternative to the alternating runs paradigm is the task-

queuing paradigm, wherein tasks are presented in a randomized way but the appropriate 
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S-R mappings are given in an explicit cue that either precedes or accompanies each trial. 

Studies utilizing this paradigm have often shown worst performance in the form of RT or 

error rates in switch trials than a non-switch trials, and sometimes have demonstrated 

declining RTs over several trials of the same task (Monsell, 2003). 

Another potential task switching paradigm is the intermittent instructions cueing, 

wherein participants complete some series of trials utilizing bivalent stimuli, randomly 

preceded by explicit instructions cueing the next task to be performed. Not only are local 

switch-costs present in such a paradigm, but in addition so-called restart costs can also be 

inferred; these are costs associated with non-switch trials that are explicitly cued versus 

non-switch trials that were not (Gopher, Armony, Greenshpan 2000). Altmann and Gray 

(2008) further showed the presence of increasing RTs and error rates as block length 

increased, a further source of costs they termed within-run slowing. 

A more recent task switching paradigm developed is voluntary task selection 

(Arrington and Logan 2004a, 2005) which relies on subjects using internally generated 

task switches as opposed to externally cued ones. Here using bivalent stimuli, the 

participants can choose which set of S-R mappings to apply to any given trial, and even in 

the absence of exogenously enforced switching switch costs can still be seen. 

The STRATA can be modified to suit any of these existing paradigms, and doing so 

may result in greater switch costs, the emergence of local switch costs, and potentially 

other avenues to study more strategy dimensions (such as strategy distribution). 
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CHAPTER 5 

STUDY THREE 

Introduction 

In the final experiment, we aimed to replicate the effects found in Studies 1 and 2 in a 

sample of participants who had previously been investigated by our lab. The Reference 

Ability Neural Network (RANN) study was designed to study potential neural 

underpinnings of four “reference abilities” previously proposed by Salthouse (2009) as 

accounting for the vast majority of age-related variance in cognitive performance: episodic 

memory, perceptual speed, fluid reasoning, and vocabulary. Using a battery of 12 tasks (3 

from each reference ability) adapted for fMRI imaging, this study’s early conclusions 

suggest that a) these reference abilities can be used to define largely task-invariant 

activation patterns, b) these activation patterns differ for each reference ability, and c) age 

changes the typical pattern of expression of such networks (Stern et al., 2014). 

While the findings of this study are less immediately relevant than its procedures 

and participant characteristics, it does serve as an example of just where cognitive strategic 

decomposition may further come into play; the fluid reasoning reference ability network, 

for instance, of which an adapted version of the RPM is a measure, may easily show 

differential expression patterns as a function of strategy use in young versus old, among 

olds alone, or among youngs. 

Some previous research has been conducted examining the relationship between 

strategy use and neurofunctional patterns. Miller et al. (2012) note that topographical 

patterns of brain activity during fMRI memory retrieval tasks show vast inter-individual 
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differences (Miller, 2009) yet can be consistent over time. Such differences are often 

masked in neuroimaging literature by group analyses, which can show brain regions as 

equally active that may in fact be differentially preferred by subgroups of participants. 

These authors attempted to induce such differential activation patterns through the use of 

differential cognitive strategies within a recognition memory task. Previous research 

(Kirchoff & Buckner, 2006) identified a set of alternative strategies subjects could adopt 

during the encoding phase of a memory task, finding that strategies such as verbal 

elaboration were associated with greater prefrontal activity whereas strategies relying 

more on visual inspection were associated with extrastriatal cortex activation. 

These authors also note the potential importance of overall cognitive styles to 

interpreting group-level differences in activation, with styles being associated with a more 

general set of strategic preferences over time (for instance, the preference to rely on verbal 

strategies in general over and above visual strategies). Using a memory retrieval task, these 

researchers speculated that individual differences in strategy and/or cognitive style would 

account for activation differences inter-individually beyond anatomical differences or 

performance differences. Cognitive styles were assessed using a test battery classifying 

subjects along the visualizer-verbalizer dimension using principal components analysis, 

while encoding strategy was measured using a strategy questionnaire adopted from 

Kirchoff and Buckner (2006) as well as explicitly probing subjects to report their chosen 

strategy. In a set of 50 participants ranging from 18 to 55, cognitive style and strategy was 

associated with whole brain differences in activation controlling for presentation order, 

demographics, anatomy, and performance. Interestingly, with advancing age the variability 

in activation patterns increased. FA maps derived from diffusion tensor imaging were 
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particularly impactful. The greater the magnitude of difference in strategy use and 

cognitive style was also predictive of the magnitude of differences in activation patterns. FA 

in the temporal cortex was the strongest anatomical difference in its relation to activation 

patterns. Overall this study confirmed the expected activation patterns, with the majority 

of significant differences being found in frontal and parietal regions. 

Evidence more directly related to figural reasoning of the type induced by RPM-type 

items also exists to show differential underpinnings. Prior research within neuroimaging 

shows reliable prefrontal and posterior parietal cortical activation during fluid intelligence 

tasks (Masunaga et al., 2008). In a study of the RPM comparing analytic and 

figural/visuospatial reasoning items, Prabhajaran (1997) found that whereas the former 

correlated with the right frontal and parietal activations, left hemisphere linguistic and 

object working memory regions, and left hemispheric regions associated with induction of 

visuospatial relations, as well as frontal regions link to goal management and executive 

processes. Moreover these authors note that cortical structures related to G are not 

invariant with age, but differ in somewhat predictable ways (e.g. demonstrating more 

diffuse patterns of activation.) They also review research into beginner through advanced 

expert “go” players, and find that while age continues to negatively correlate with each 

subgroup of players, the more expert a subgroup is these correlations decrease such that 

beginner go players show a correlation between topology scores of -.5 whereas 

professional go players show only a correlation of -.07 (Horn & Masunaga. 2006), 

indicating that advanced levels of performance and expertise in the game can mitigate age-

related deficits. These authors found activation patterns in the frontal and parietal lobes 

associated with performance of the topology test when compared to control tests. Heyer, 
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Siegel, and Tang (1992) show that after practicing the computer game Tetris, individuals 

with high Gf demonstrated a reduction in glucose metabolic rates in the brain overall as 

well as in neural regions associated with Tetris performance, suggesting that the learning 

associated with expertise can increase neural efficiency in corresponding regions. 

In order to begin to probe how strategic flexibility can be used to further explore 

relationships among age, brain structure, and other metrics of cognitive performance, this 

study will utilize mediation, moderation, and moderated-mediation models. Previously, 

Steffener et al. (2013) used moderated-mediation analyses to explore how CR (as 

measured with verbal IQ and years of education) may modulate the effect of age on MRI-

derived brain structure variables, and/or how it may modulate the effect of those variables 

on cognitive performance in the form of performance scores taken from a lengthy 

neuropsychological battery. Testing the impact of age on cognitive performance in the 

domains of perceptual speed, episodic memory, and fluid intelligence/reasoning, as 

mediated by brain-wide cortical thickness and volume measures, these authors applied 

models designed to test: a) that CR is reducing the effect of age on brain structure, b) that 

CR is reducing the effect of brain structure on cognitive performance, c) that CR is reducing 

the effect of age on brain structure, and the effect of brain structure on cognitive 

performance, and d) that CR is not moderating any of these relationships. 

Results indicated that in one cognitive domain (fluid intelligence/reasoning) and 

under one of the above models (b above), CR was indeed reducing the effect of age-related 

cortical thickness and volume declines on cognition in at least 6 brain regions: bilateral 

putamen, left accumbens, the bank of the right superior sulcus, right middle frontal gyrus, 
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right posterior central gyrus, and right superior temporal gyrus mean thickness. While 

these regions have some reported relationships to cognitive performance (e.g., Macdonald 

et al., 2013; Samanez-Larkin et al., 2010; Alexander et al., 2008), what is more significant to 

the current study’s motivation was the potential to investigate how exposure variables like 

CR can interact with neurostructural variables in the context of such models to infer causal 

mechanisms. With this in mind, we collected data using the STRATA task from the previous 

studies in a sample of subjects who have already had extensive neuropsychological and 

neuroimaging testing performed. 

Using similar moderated-mediation models, we hypothesized that if strategic 

flexibility can be taken as a byproduct of CR, it may function in a similar way to it; i.e., we 

expected that the STRATA score can be used to successfully moderate the age-related effect 

of brain structure on cognitive performance when the same brain regions and performance 

measures are tested. We further expected this relationship because of the closer 

association between the nature of the two performance measures: one of the fluid 

reasoning components is a variant of the RPM task, and so we would expect that any metric 

based on a similar task may be an even stronger moderator. 

These predictions derive from the role that cognitive strategies have played as 

neurofunctional reinforcers within neuroimaging contexts. As reviewed in the introduction, 

cognitive strategy (and/or cognitive style) might be conceptualized as a multifaceted factor 

reflecting the repertoire, distribution, selection, execution, and flexibility of specific sets of 

mental operations that have been acquired either through explicit processes of instruction 

(education) or implicit sources of learning (occupational complexity, leisure activities). 
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While each of these subcomponents of cognitive strategy may themselves interact in some 

way with other interindividual differences (e.g., brain structure, executive functions, 

motivational factors), they may also collectively serve as a mediator between exposure 

variables like CR and activation differences during task performance. 

Methods 

Participants 

Participants who had already been studied within the context of the Reference Ability 

Neural Network (RANN) study were recruited. Forty-four young (20-40) and forty-two old 

(60-80) participants took part in the study. These participants were initially recruited 

using market-mailing procedures designed to equalize the recruitment approaches of the 

two groups. Participants who responded to the mailing were screened over the phone to 

ensure that they were right-handed, English was their first language, they had no recent 

history of neurological disorders, were not currently taking psychotropic medications, and 

their vision was normal or corrected-to-normal. Participants meeting these basic inclusion 

criteria were then tested in person with an extensive neuropsychological battery. Global 

cognitive functioning was assessed with the Mattis Dementia Rating Scale, on which a score 

of at least 130 was required for inclusion in the remaining study procedures (Mattis, 1988). 

This study was approved by the Internal Review Board of the College of Physicians and 

Surgeons of Columbia University. Written informed consent was obtained from all 

participants prior to study participation, and participants were compensated $20 for their 

participation in the STRATA study. 
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Measures 

Previous factor analyses from our laboratory identified neuropsychological and behavioral 

measures underlying the construct of CR and three cognitive domains: memory, processing 

speed/attention, and fluid ability (Siedlecki et al., 2009). Composite scores for each of these 

measures were created using the mean of the z-transformed measurements. Missing values 

from any of the measurements were imputed using a simplified version of multivariate 

imputation based on Principal Components Analysis (PCA) without regard for assumptions 

such as robustness or the randomness of the missing values. (Missing values are not 

believed to be due to a participant’s unwillingness or inability to complete the test, but 

rather to time constraints during administration and/or experimenter error.) We 

estimated the factor scores from the test values present for each participant separately for 

young and old. Based on this process, we believe that the PC structure is the same for 

subjects with complete data as those with incomplete data. 

Fluid ability. Fluid ability was defined as the composite score comprising the Letter-

Number Sequencing, Matrix Reasoning, and Block Design subtests of the WAIS-3 

(Wechsler, 1997). Fluid ability refers to the capacity to solve novel problems in tests of 

abstract reasoning; as discussed above, the Raven;s matrix reasoning tests tend to have the 

highest loadings on this construct (Raven, 1962). The Letter-Number Sequencing test 

requires participants to repeat verbally-presented lists of intermixed letters and numbers 

in alphabetical and numerical order, with list lengths increasing on each subsequent trial. 

The Matrix Reasoning subtest requires participants to find a pattern in a set of eight 

possible patterns that best completes the missing cell of a matrix. The Block Design task 

measures visuospatial ability and requires participants to construct a series of increasingly 
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complex geometrical shapes presented to them in a booklet using 4 or 9 identical blocks 

that are colored half-red and half-white on either side of their diagonals. 

Memory. Memory was defined as the composite score of three sub-scores of the Selective 

Reminding Task (SRT)–total, delayed recall, and delayed recognition (Buschke, 1974). 

Participants in this task are instructed to read a list of 12 words and then asked to recall 

the words over the course of six trials. Following a recall attempt, they are reminded of the 

words they failed to recall. SRT-total is the total number of recalled words for all trials and 

has a maximum score of 72. SRT-delayed is the number of correctly recalled words after a 

15-minute delay. SRT-delayed recognition is the number of correctly recognized words 

when each of the 12 words is visually presented alongside three distractor words. 

Processing speed/attention. Processing speed/attention is defined as the composite score 

of performance on the Wechsler Adult Intelligence Scale-Revised (WAIS-R; Wechsler, 

1997) Digit Symbol subtest, the Trail Making Test (Reitan, 1993), and the Stroop test. The 

Digit Symbol test presents participants with a key at the top of the form wherein each digit 

from 0 to 9 is paired with an arbitrary symbol, then requires participants to write down the 

symbol corresponding to each single-digit in an array of digits as quickly as possible. We 

used the time to complete the Trails A (numbers only) from the Trail Making Test, which 

requires connecting in sequential order a series of randomly dispersed numerals on a sheet 

of paper. Time taken to complete the Stroop Color test, wherein subjects must name the 

color of ink used to spell an incongruent words (e.g. the word “blue” written in red ink) as 

quickly as possible, was also used. 
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Cognitive Reserve. Cognitive reserve was defined as the composite score comprising years 

of education and scores on two IQ indices: the NART (Nelson, 1978) and WAIS-R 

vocabulary score (Wechsler, 1997). Previous work from our laboratory has demonstrated 

the validity of this construct using these cognitive tests (Siedlecki et al., 2009). 

Procedures 

Image Acquisition Procedure 

MRI images were acquired in a 3.0T Philips Achieva Magnet using a standard quadrature 

head coil. A T1-weighted scout image was acquired to determine subject position. One 

hundred sixty-five contiguous 1 mm coronal T1-weighted images of the whole brain were 

acquired for each subject with an MPRAGE sequence using the following parameters: TR 

6.5 ms, TE 3 ms; flip angle 8°, acquisition matrix 256x256 and 240 mm field of view. A 

neuroradiologist reviewed anatomical scans and any with potentially clinically significant 

findings, such as abnormal neural structure were removed from the sample prior to the 

current analysis. 

Freesurfer Methods 

Participants’ structural T1 scans were reconstructed using FreeSurfer (Fischl, 2012) 

(http://surfer.nmr.mgh.harvard.edu/). Subcortical segmentation and cortical parcellation 

(Fischl et l., 2002; Fischl et al., 2004) accuracy using FreeSurfer has been reported to be 

comparable to manual labeling. Each subject’s white and gray matter boundaries, and gray 

matter and cerebrospinal fluid boundaries were visually inspected slice by slice by an 

experienced user, manual control points were added in the case of any visible discrepancy, 

and reconstruction was repeated until we reached satisfactory results within every subject. 

The subcortical structure borders were plotted by Freeview visualization tools and 

http://surfer.nmr.mgh.harvard.edu/
http://surfer.nmr.mgh.harvard.edu/
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compared against the actual brain regions. In case of discrepancy, they were corrected 

manually. The regions of interest used in this analysis are listed above. 

STRATA Administration 

Participants took the STRATA task online as detailed in Study 2. After providing informed 

consent via Qualtrics, they were directed to the task directly in their web browser. They 

were instructed to take the task on a laptop or desktop computer with a full screen, and to 

ensure that they could work continuously on the task in a distraction-free environment for 

at least one hour. 

Data Analysis 

Behavioral Analysis 

Switch Cost Models. Switch-cost models were conducted identically to studies 1 and 2, 

using a 2 x 2 repeated-measures ANOVA, with one within-subjects factor (either block type 

or switch type) and one between-subjects factor (age group); these were run for both RT 

and ACC. 

Behavioral analyses were conducted on the bin scores as in Study 2. To analyze the effects 

of covariates on the dependent measures, we constructed two separate general linear 

models (GLM) that were analyzed in stages (heterogeneous slopes) (Kumar et al., 2008; 

Siegel, 1956). In each model we introduced the covariates of interest, including gender, CR 

composite scores (CR), executive composite scores (EF), processing speed composite 

scores (PS), fluid reasoning composite scores (FR), and memory composite scores (M). The 

initial, heterogeneous-slopes model used a repeated measures analysis of variance 

(ANOVA) design with strategy type as a within-subjects factor (visuospatial versus logico-
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analytic problems), and added the main effects of the three covariates in addition to their 

respective interactions with age group. The latter effects tested the assumption of the 

analysis of covariance that the effects of the covariates are equivalent at each level of the 

model’s fixed effects, and only these equivalent effects were further inspected. In the first 

stage, we constructed a full model with the following predictors: age group, CR, EF, FR, PS, 

M, and gender. We also added interaction terms by multiplying the group predictor by each 

of the covariates, allowing us to test for the presence of group differences in slopes 

describing the relationship between the covariates and dependent measures. After 

performing this full model, retaining strategy-type as a within-subjects factor, we 

constructed a reduced model which retained only the covariate main effects, as well as any 

interaction terms which were statistically significant in the full model (p < .05). 

Brain Covariate Analyses 

Moderated-Mediation Models. Using statistical path modeling we tested the hypothesis 

that age-related neural differences affected fluid reasoning ability in a selection of ROIs, 

and that CR would decrease the effect of age-related declines in these areas on 

performance. Statistical path model tested each of the four hypotheses of this study. All 

brain measures of thickness were corrected for mean cortical thickness and brain 

measures of volume were corrected for normalized brain volume, and corrected for sex. 

Two regression models were constructed, the first examining the effect of age group on the 

mediator (brain measures), and second one looking at the effect of age group, bin score, 

and age group X bin score on fluid reasoning performance. Next, we examined the effect of 

bin score (the moderator) on the mediation path of brain measure to fluid reasoning score. 
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This was accomplished by testing the bin score at both low (1 S.D. below the mean) and 

high (1 S.D. above the mean) values. 

Results 

Participant characteristics are given in Table 28. 

 

Global (Block-Level) Switch Costs 

To analyze the overall impact of age and strategy type on switch costs, we replicated the 

analytic strategy of studies 1 and 2, using two mixed-design ANOVAs with age group as the 

between-subjects factor and block type as the within-subjects factor. 

RT. Analysis of global differences to reaction time across all blocks as a function of age-

group and type of block resulted in a significant main effect of block-type, and a significant 

interaction effect of block-type with age-group. Table 29 displays results from this ANOVA. 
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Post-Hoc Analyses for Global RT Switch Costs. The only significant group difference was 

found in the RT difference between older adults in the pure blocks and older adults in the 

mixed blocks, with the latter displaying higher RTs. See table 30 for these results. 
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ACC. Analysis of global differences to mean proportion accuracy did not reveal any main 

effects of block type or age group. And while the interaction between age group and block 

type also failed to reach significance, it was trending in that direction (.078). An ANOVA 

table of these results can be seen in table 31. Post-hoc analyses for global ACC switch costs 

confirmed that none of the group-level comparisons were significant. See table 32 for these 

results. 
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Local Switch Costs 

Mixed ANOVAs were conducted controlling for the impact of block-type on both reaction 

time and accuracy to analyze local switch costs. Again, a 2 (age group: young or old) by 2 

(trial type: switch or nonswitch) design was utilized exclusively within the mixed blocks. 

Local Switch Costs: RT. Local switch-costs to RT within mixed blocks were significantly 

associated with the main effect of trial-type (switch or nonswitch), as well as the 

interaction of age-group with trial-type. Results of this ANOVA are given in table 33. 
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Post-Hoc Analyses for Local RT Switch Costs. Older adults displayed significantly higher 

RTs in switch trials relative to their own performance on nonswitch trials, and relative to 

young adults’ performance on nonswitch trials. Younger adults showed a significant 

difference in RTs between switch and nonswitch trials as well. See table 34 for these 

results. 
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Local Switch Costs: ACC. Local switch-costs to ACC within mixed blocks were again 

assessed using mixed design ANOVA, and as with the analysis of global switch costs did not 

result in any significant main effects or interaction effects. See table 35 for the ANOVA 

results. Post-hoc analyses showed again that none of the group-level comparisons were 

significant–see table 36 for these results. 
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Mixing Costs 

Mixing costs were assessed using a 2 (age-group: young or old) by 2 (block-type: mixed or 

pure) mixed design conducted exclusively among nonswitch trials to control for the trial-

type factor. 

Mixing Costs: RT. Results of the ANOVA of RT values of nonswitch trials revealed a 

significant main effect of block-type. Age-group, and its interaction with block-type, did not 

reach significance. Detailed results are reported in table 37. None of the post-hoc group 

comparisons yielded a statistically significant difference–see table 38 for values. 
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Mixing Costs: ACC. ANOVA results for accuracy mixing costs were again negative: no 

significant main effects or interactions were observed. See table 39 for these results. 
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Post-Hoc Analyses for Mixing Costs in ACC. Despite the nonsignificant findings of the 

overall ANOVA, post-hoc comparisons displayed statistically significant higher accuracy for 

young adults in the pure blocks relative to older adults in the pure blocks, young adults in 

the pure blocks relative to older adults in the mixed blocks, and young adults in the mixed 

blocks relative to older adults in either block type. Results are given in table 40. 
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Cortical Thickness - Neuropsychological Patterns 

Cortical Thickness Expression Scores. Using the MRI-derived cortical thickness of various 

brain regions, past studies (RANN) in our lab have been capable of finding “expression 

scores” of these patterns representing the topological network most highly-predictive of 

performance in a variety of neuropsychological abilities, including fluid reasoning, 

memory, processing speed, and vocabulary. 

To test if these patterns interact with the cognitive flexibility measure (bin score), these 

patterns for 68 subjects were entered into a moderation model with age as the 

independent variable, expression score for either memory or fluid reasoning as the 

outcome variable, and bin score as the moderator. In neither case was a successful 
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interaction observed between age and bin score, possibly reflective of an age-related 

systematic switch in preference for accuracy over speed as observed in study 1. The t-

values for these moderation analyses are reported in table 41. 

Moderation and Moderated-Mediation Models 

Moderated-Mediation Results. Analyses designed to replicate those of Steffener et al. 

(2014) using the strategic flexibility measure did not yield any significant findings. 

Although within this sample two of the regions previously tested were still significant 

mediators of the relationship between age and fluid reasoning performance, moderation 

from bin scores was not observed. 

Moderation Models. Simple moderation models were conducted to test whether the 

relationship between brain volumes/thicknesses and fluid reasoning performance could be 

modified by differing levels of the bin score, which would suggest again that performance 

on the STRATA behaves in a similar fashion to CR by allowing subjects to take advantage of 

existing neural networks/volume after the start of age-related decline. To rule out the 

contradictory impact of age on reasoning performance, these analyses were conducted only 

in the older group. 

The brain measures tested included all seven regions previously identified in being 

successfully moderated by CR, as well as orbitofrontal cortex volumes due to their 

behavioral links to task-switching and cognitive strategies, and total gray matter volume. 

None of these moderation models attained the level of prespecified significance. However 

the model for total gray matter volume did suggest trends consistent with our hypotheses. 

See figure 10. 
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Figure 10. Effect of total gray matter volume on reasoning, moderated by bin scores. 

 

Greater gray matter volume (GMV) was predictive of higher fluid reasoning scores overall, 

but this trend varied depending on the bin scores of participants; subjects with lower bin 

scores (meaning better strategic performance) displayed increased performance at lower 

levels of GMV relative to those with higher bin scores (worse strategic performance). At the 

highest levels of GMV these trends converge, suggesting that strategic advantage can play a 

compensatory role up to a point but that it may not confer advantage to those already 

blessed with high levels of intrinsic brain volume and/or high levels of brain maintenance. 
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While neither the effect of bin score on fluid reasoning or the interaction with GMV reached 

significance (p = .07 and .11, respectively) the trend is still suggestive. 

To rule out the possibility that strategic flexibility is better captured within the theoretical 

spectrum of brain maintenance rather than cognitive reserve (e.g., somehow its practice 

leads to preserved levels of neural integrity/volume/thickness, rather than functioning as a 

compensatory mechanism once the brain has begun to deteriorate), we repeated these 

same moderation analyses using age as the independent variable and the regional metrics 

as dependent variables, with bin scores as moderators. Predictably, none of these models 

yielded significant or close-to-significant results. 

Exploratory Analyses 

Regression Analyses. To analyze the effect of covariates on participants’ bin scores, we 

constructed a multiple regression model with age, CR composite, gender, fluid reasoning 

score, processing speed/attention, memory, executive function composite, as well as total 

gray matter volume as predictors. This regression model was highly significant (p<.001), 

with CR and fluid reasoning being highly significant predictors accounting for large degrees 

of variability in the bin score. The coefficients for this model are displayed in table 42. 
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We next computed a partial F-test to compare a full regression model with age, CR, and 

fluid reasoning as predictors, with a reduced model which included just CR and fluid 

reasoning. Results showed that age was still not a significant predictor of the bin score 

(F=1.8282, p = .09284) even after partialling out the effects of CR and speed/attention. 
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Correlational Analyses. Correlational analyses were conducted between the bin scores 

and various neuropsychological variables of interest, including all neuropsychological 

composite scores (reasoning, memory, speed/attention, and vocabulary), as well as the CR 

and executive function composites. A correlation matrix can be seen in figure 11. 

 

Figure 11. Correlation matrix for bin scores with composite measures (flex_z = bin score, CR_z 
= standardized CR, EXEC_z = standardized EF.) 

 

In general, the biggest correlations were observed between strategic flexibility and CR 

measures, including the composite vocabulary score. However the fluid reasoning 

composite score also correlated well (.29) with the bin measure. Additionally, education 

individually was highly correlated with this score (.55), and as expected the bin score 
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correlated moderately with matrix reasoning performance from both the WAIS-III (.23) 

and the total number of correct answers from the RANN matrix reasoning task (.26). The 

letter-number sequencing task from the WAIS-III also showed moderate correlation (.21), 

consistent with working memory’s role both in task-switching and in matrix reasoning 

performance. 

Mediation Models. To directly compare the effectiveness of CR and the flexibility score as 

mediators of age-related cognitive performance differences, we entered the simple raw 

scores from NART IQ and the bin score into a mediation model between age and raw scores 

from the WAIS-III Matrix Reasoning test. Results from these models are displayed in tables 

43 and 44. While both models held significance, NART IQ was still a better mediator of the 

effect of age on cognitive performance. 
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Discussion 

Results of the third study replicated the findings of studies 1 and 2, with older adults 

displaying greater impairment to performance in mixed blocks relative to younger adults, 

and all participants showing greater RTs in mixed than in pure blocks. Additionally, the 

high correlations between our bin metric and CR, as well as the moderate correlations with 

other indices of fluid reasoning performance as well as with working memory supported 
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the validity of the STRATA as an effective proxy for both CR and to some extent fluid 

reasoning itself. 

Our lack of significant moderated-mediation findings was surprising given the role 

that CR had played in relation to the tested set of brain regions, and the theoretically closer 

relationship between performance on this task and fluid reasoning performance. However, 

it is possible that strategic flexibility is just one mechanistic component of CR, and hence 

may play a role in moderating the effect of age-related variance in other brain regions not 

tested here on cognitive performance. Future studies will need to investigate this 

possibility, as well as the possibility that this metric would more effectively moderate the 

relationship of functional rather than structural variance on cognitive performance. Indeed, 

given the literature reviewed in the general introduction, this relationship would be more 

expected. 

Moderated-mediation is also a stringent analysis that was possibly too ambitious 

considering the limited sample size. Given this, the moderation results are perhaps a fairer 

test of the potential for strategic flexibility to serve in a similar role to CR. Even here we 

failed to observe conclusive evidence that better strategy-shifting performance can 

differentially affect the relationship between brain volume and reasoning performance in 

previously identified regions. However there is suggestion that on a global scale brain 

volume can be utilized differentially depending on one’s strategic performance, exactly as 

would be predicted if strategic flexibility is a manifestation of reserve. 

While this study did not find any conclusive evidence that strategic flexibility could 

be a mechanism of CR, the interesting pattern of behavioral correlations observed between 
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the STRATA task and various other neuropsychological instruments suggests it may have 

some utility as not only a new measure of strategy use within fluid reasoning, but also as a 

non-exposure based proxy variable of CR. 
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CHAPTER 6 
GENERAL DISCUSSION 

 

The studies outlined in this project introduce a new instrument for assessing the degree of 

flexible engagement in alternative strategies within a fluid reasoning task. Study 1 

demonstrated that the STRATA task, and potentially other complex reasoning tasks 

decomposed into their constituent strategies and presented within a vetted task-switching 

design, is sensitive to age effects in the form of switch costs. In particular, mixing costs 

were determined to be significantly impacted by age, which fits well with existing literature 

on the importance of working memory to both task switching and fluid intelligence. Study 2 

replicated this effect, and demonstrated that these forms of tasks need not be confined to 

analysis with difference scores (and in fact, shouldn’t, given the potential to view speed-

accuracy trade-offs as a higher-level cognitive strategy in and of itself), and showed a 

strong correlation between an index of CR and performance on this task in older but not 

younger participants. Study 3 explored the relationships between this task and standard 

neuropsychological instruments as well as neurostructural variables. Taken together, these 

findings suggest a novel method of investigating cognitive strategy use within the context 

of preexisting tasks and a preexisting and well-understood experimental paradigm. 

Despite its findings, some of the major hypotheses of this project were not 

supported. In particular, the hypothesis that strategic flexibility could serve as a 

mechanistic proxy for CR in existing moderated-mediation models was invalidated. 

Likewise, direct comparison of this measure with a traditional proxy variable of CR within 

mediation models failed to show that it can account for a stronger mediational effect than 
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the existing metric. These results may indicate that strategic flexibility is just one small part 

of a much larger puzzle, or they may derive from inadequate methods of testing its 

mechanistic role. 

One potential extension of the methods employed here might be to investigate 

STRATA performance within the context of neuroimaging. As suggested above, 

decomposition of existing tasks into strategic components has been perhaps most 

instructive when it has demonstrated that group-wide activation differences may derive 

from differential strategy use, rather than from cognitive deficits or mostly static individual 

differences. Moderated-mediation models may even be applied to such activation 

differences more successfully, since the strategic flexibility metric outlined here is the 

result of dynamic processing and not necessarily of the features inherent to an individual. It 

would be particularly interesting to see if task-invariant activation patterns (such as the 

RANNs described above) can be further decomposed based on domain-wide strategy use 

rather than their component tasks. 

Another limitation of this series is the unclear relationship between the STRATA 

performance and many of the other dimensions of cognitive strategy use mentioned in the 

introduction. While performance of this task does seem to measure some aspects of 

strategy selection and strategy execution in a highly structured way, it leaves untouched 

the dimensions of strategy repertoire and strategy distribution. It could be the case that a 

more direct relationship exists between CR on the one hand, and strategy repertoire; as 

formal education increases, for instance, it’s easy to imagine that so does exposure to 

various novel strategies for performing cognitive tasks both structured and unstructured. 
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Future work extending this line of research into other strategic dimensions is required to 

answer this question. 

Another potential extension of this line of research lies in the prospect of training 

reasoning strategies. Evidence already exists that such training can be more successful than 

more procedural forms of training (such as working memory training). In two separate 

studies Aries, Groot, & van den Brink (2014) used a cognitive intervention program in 

attempt to improve reasoning abilities among secondary school students. In the first 

intervention, the researchers utilized a working memory training intervention resulting in 

an increase in scores of reasoning ability. While the second study the researchers used 

independent training of reasoning strategies along with working memory training 

intervention, resulting in a significant increase in reasoning ability scores based on the 

reasoning strategies training but not the working memory capacity training. Importantly, 

the working memory training in these studies was embedded within the context within 

domain-relevant material (history), suggesting that limitations to transfer effects may be 

overcome if the context of the cognitive capacity being trained is taken into account by 

researchers. 
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