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Abstract

In this paper, a fully statistical investigation of the control of family structure as random effects is analyzed and
discussed, using both the genome-wide association studies (GWAS) data and simulated data. Three modeling
strategies are proposed and the analysis results suggest the hybrid use of results from all possible models should
be combined in practice.

Background
It is well known that genome-wide association studies
(GWAS) may lead to spurious findings if one fails to
address the dependence among individuals such as that
resulting from family structure. If the true dependence
structure is known, the best practice is to explicitly
incorporate this information into the analysis. However,
the true dependence structure is rarely available.
Consequently, different strategies have been proposed to
address this issue [1–13].
Statistically, we use multilevel models to model

complicated family structures. Multilevel models, also
known as variance component models, random effects
models, or hierarchical linear models, have seen rapid
growth and development in many different fields [14].
Multilevel models provide a flexible regression
modeling framework for handling data sampled from
clustered population structures, such as students within
classes that are within schools, patients within
hospitals, repeated measurements within individuals, or
children within families. Ignoring the multilevel
structure of the data can lead to incorrect inferences
that result from underestimating the standard errors
for the regression coefficients.

Linear mixed-effect regression models assume the fam-
ily effect to be a random effect. The covariance structure
for the random effect is generally assumed to correspond
to that implied by a polygenic model, incorporating the
genetic relationship (kinship) between each pair of indi-
viduals. Although the use of this linear mixed-effect
regression model was originally proposed for pedigrees
with known relationships [1–5], this approach is popular
for use with samples of unknown or uncertain relationship
[6–13], including apparently unrelated samples that may
nevertheless display distant levels of common ancestry.
The data set we use for this analysis is collected under

the Genetics of Lipid Lowering Drugs and Diet Network
(GOLDN) study. It was designed to identify genetic
determinants of lipid response to two interventions: (1)
a high-fat meal challenge and (2) fenofibrate treatment
for 3 weeks [15]. The dataset only includes families with
at least two siblings. This family information allow us
for the analysis of family structural dependencies. Volun-
teers were required to withhold lipid-lowering agents
(pharmaceuticals or nutraceuticals) for at least 4 weeks
prior to their initial visit. A total of 1053 met all eligibil-
ity requirements. For the current study, we evaluated
fasting triglyceride (TG) and very-low-density lipopro-
tein cholesterol among 991 participants for whom epi-
genetic data were available [16].* Correspondence: yh2692@columbia.edu
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Methods
Model setup and statistical analysis
Using a linear mixed-effect model, we model the
response to both the fixed effects X and random effects
Z as follows:

y ¼ Xβþ Zμþ ϵ ð1Þ

μ � N 0; σ2μIm
� �

ð2Þ

ϵ � N 0; σ2ε In
� � ð3Þ

where y is the vector of observations, with mean Xβ; β is
an unknown vector of fixed effects; μ is the vector of
unknown random effects, with mean 0 and the variance–
covariance matrix proportional to the kinship matrix; and
ϵ is an unknown vector of random errors, with mean 0 and
the variance–covariance matrix assumed to be propor-
tional to the identity matrix. X and Z are design matrices
and Im and In are identity matrices.
The variance–covariance matrix of y is given by

Cov yð Þ ¼ σ2μ ZZ
0 þ σ2ε In ð4Þ

Analysis of variance is one of the popular methods in
the statistical literature to estimate the variance compo-
nents σ2μ and σ2ε .

In a mixed-effect model, one needs to consider a covari-
ance matrix for the random effects. In this study, family
structures provide additional information on potential de-
pendence among individuals. We attempt three different
strategies to account for family structures. First, we recre-
ate the Irvin study [13]: modeling the beta score as a func-
tion of TG level using mixed linear regression adjusted for
age, gender, study site, and 4 methylation principal com-
ponents as fixed effects [namely, the X in eq. (1)] and the
family structure [the Z in eq. (1)] as random effects.
Throughout the 3 models we try, the matrices X are iden-
tical, as in [13]. We made this decision because our inter-
est is in the evaluation of the covariance matrix
introduced by the random effects Z, but not the fixed part
X. Here, the kinship matrix is based on the theoretical

estimates—the probability of sharing genetic relatedness.
We refer to this ideal option as the kinship option. When
the kinship information is not available, there are two other
coping strategies: one that assumes everyone in this study
is independent, ignoring family structure (denoted as the
independence option), and one that uses only one randomly
drawn representative individual from each family (referred
as the representative option). While these 3 modeling
options differ in the covariance matrix for the random
effects, the fixed-effect parts remain the same. Figure 1
illustrates the assumed variance–covariance matrices.
Option 1, in expectation, is equivalent to using cen-

troids for each family, which is not always feasible for all
data types.
Under the assumption that the assumed model is correct,

the important single-nucleotide polymorphisms (SNPs)
identified by these 3 modeling options should have a nested
structure as in Fig. 2 in expectation, where the black box

Fig. 1 Kinship coefficient matrices used in 3 modeling options for fitting the linear mixed-effects model to data with family structures. a Option
1: representatives. b Option 2: kinship. c Option 3: independent

Fig. 2 Ideal relation among significant SNP sets from 3 different
modeling options
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includes all SNPs and each circle includes the significant
SNP sets concluded from each model. In practice, we also
expect that the random variations in data and departures
from model assumptions will lead to fewer overlapped
identified SNP sets. If the analysis results from real data
meet these expectations, it is only a matter of tradeoff be-
tween effective sample size and power. If any results from
real data analysis deviates from this theoretical expectation,
it might suggest the need for more detailed inspection of
the coping strategies for family structures.
We use the lmekin function in R package coxme for

the estimation of the mixed effect model and compare
the results from the 3 modeling options. This is done by
using user-specified variance functions. We use the 3

random effect structures explained previously in Fig. 1
for the simulation. The results from the application to
the GAW data set and a simple simulation study are
shown and discussed in the next section.

Results
Application to GAW20 data set
We first apply the 3 modeling options for fitting linear
mixed effects model to the GAW20 data. For each SNP,
as in Irvin et al. [13], we test for statistical significant
departure from the null hypothesis that the SNP has no
effect on the beta scores. The Manhattan plots from
these 3 modeling options are shown in Figs. 3 and 4. As
expected, when the effective sample size is small, as with

Fig. 3 Manhattan plots for option 1

Fig. 4 Manhattan plots for option 2 and option 3 (black dots)
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the representative option, we have less power in detect-
ing significant SNPs. So the overall p values from option
1 are lower than those from options 2 and 3. Figure 4
plots the results from options 2 and 3 together, because
of their similarity. While the chromatic dots show the
results using the original Irvin et al. study [13], the black
dots are the significant findings from option 3. The
results from these 2 options are very similar. In fact, the
top 100 significant SNPs identified using options 2 and 3
have 71 SNPs in common. Using option 1, cg12033043
from chromosome 8 is found to be the most significant
SNP. Using option 2, cg27026926 from chromosome 8,
cg05599320 from chromosome 1, cg13982695 from
chromosome 11, cg27331738 from chromosome 8, and
cg00223867 from chromosome 8 are identified to be the
top 5 significant SNPs, which are among the top 100
SNPs identified by option 3.
To average out random variation resulting from

change, we randomly choose 5 sets of representatives
(one from each family for each set). Figure 5 shows
Venn diagrams of the overlaps in findings from the 3
modeling options. Note that there is only one set of
results from the independence option and the kinship
option. Five different sets are derived from 5 ran-
domly drawn sets of individuals for the representative
option, which lead to a different level of overlap with
the other two options. The numbers represent the
number of overlapping SNPs.
For each run, one individual was randomly drawn

from each family, which led to different results. The
results from the kinship and the independence options
remain unchanged. (Coloring: red for representative,
green for kinship, and blue for independence.)
This result does not completely meet our expect-

ation. Both option 1 and option 2 are fitting statistical
valid models to the data, while option 3 (independ-
ence) is based on an incorrect assumption. We
observe from Fig. 5 that results from option 1 are
highly variable and overlap very little with those from
option 2. Conversely, even though option 3 is under
an incorrect assumption, it has a substantial overlap
with option 2.

Simulation studies
To understand what we observed in the real data ana-
lysis, we carry out a simple simulation study to further
compare the three coping options. We ran independ-
ently 3 sets of simulations, in which we draw samples
under the model assumed in eq. (1) to eq. (3), with ran-
dom effects from multivariate normal distribution and
known variance–covariance structure. Among the 1000
SNPs simulated, only 10 are under the alternative
hypothesis that the mean of the responses is not zero.
We simulated 1000 individual SNPs within 200 families.
Figure 6 shows the kinship coefficient matrix used in the
simulation. Venn diagrams in Fig. 7 summarize the
results from these 3 simulations; the numbers show the
“average counts ± SD.” First, we can see that option 2
(the kinship option) provides the best performance, with
the largest overlap with the true signals. Second, in the
third Venn diagram we obtained, we see the same
phenomenon as in the real data analysis; that is, the
findings from the representative option is further away
from the independent option to the kinship option. Con-
versely, the overlapped results from the representative

Fig. 5 Significant SNP sets identified from 3 different models (top 100) from 5 random runs. For each run, 1 individual was randomly drawn from
each family, which led to different results. The results from the kinship and the independence options remain unchanged. (Coloring: red for
representative, green for kinship, and blue for independence)

Fig. 6 Kinship coefficient matrix used in the simulation study for
family structures
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option and the independence option have, on average,
slightly lower false discovery rates. This suggests a po-
tential hybrid modeling option that combines results
from the independence option and the representative
option when the kinship coefficients are not available.

Discussion and conclusions
In this paper, we evaluate different modeling options for
coping with data with family structure in the context of
genetics studies. Our analysis suggests the need for
adjusting for kinships. When kinship information is not
known, we compare two opposite strategies, one that
treats all individuals in the study as independent and the
other that approximately uses the family centroid by
randomly sampling 1 representative from each family.
Our results suggest that the cost of ignoring other mem-
bers from a family (the representative option) is greater
than that of ignoring dependence among all individuals
in a study (the independence option). More research
should be conducted to understand this phenomenon.
From the results of a simple simulation, we suggest that
both strategies should be used in practice and that the
focus should be on SNPs that are identified by both.
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