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Summary

Temperate grasslands cover approximately 38% of the European agricultural area

and provide various ecosystem services such as forage production, biodiversity

conservation and carbon sequestration. These ecosystem services strongly depend

on the biomass productivity, which with future global changes remains uncertain.

Above all, an increasing atmospheric CO2 concentration ([CO2]) is assumed to

enhance biomass productivity (called the CO2 fertilization effect; CFE) in particular

under dry and hot conditions, while such probable future environmental conditions

rather decrease the grassland productivity in general. However, recent doubts about

the classic view on the CFE call for in-depth analysis of the interacting effects of

the CFE and varying environmental conditions on grassland productivity, which is

usually done by CO2 enrichment studies. Here, Free Air Carbon dioxide Enrichment

(FACE) experiments have proven to be the most suitable approaches due to their

minimal invasive character. Consequently, this study uses the worldwide longest

operating FACE experiment on grassland, the Giessen FACE facility (GiFACE), to

improve the assessment of the potential future of ecosystem services under global

change.

Initially, it was tested whether the CFE in the GiFACE grassland is reduced under

more extreme average weather conditions and after single extreme climatic events.

To cope with the real-world conditions, a specific approach, called moving subset

analysis, was developed to enable the quantification of the CFE in dependence

of average weather conditions under varying [CO2]s. Additionally, a time series

analysis was developed to link single extreme climatic events (ECEs) with the

strength of the CFE. It was found that the CFE was significant and strong under

local average environmental conditions (defined by ±1 SD of long-term average

conditions), but decreased under more extreme weather conditions. The strongest

decrease in the CFE under ECEs was associated with intensive and long heat waves,

xi



and could be quantified to a large extent by calculating the Killing Degree Days

(∼30% variance of the magnitude of the CFE).

Since the CFE was found to be reduced under unfavourable environmental condi-

tions, the potential of future grassland productivity was assessed in a further step.

Therefore, potential future climate regimes and statistical models of biomass were

created using the long-term experimental observations. Biomass was predicted using

climate variable alterations within the potential climate regimes. The comparison

of the potential regimes with the climate model projections for the years with a

similar [CO2] compared to enriched [CO2]s revealed that biomass is likely to be

reduced in the mid of 21st century despite the increase in [CO2], and thus that the

CFE cannot compensate yield losses due to unfavourable environmental conditions.

Short-term environmental changes such as ECEs were shown to affect the grass-

land productivity while their influence might be elusive to the traditional destructive

sampling approaches at harvest dates. To overcome these sampling restrictions, in

the final step of this study, the feasibility of the non-invasive hyperspectral monitor-

ing of the GiFACE grassland on a high spatio-temporal resolution was investigated.

Thus, methods were developed to work with hyperspectral data and the compre-

hensive statistical software CRAN R. The methods developed were used to derive

transfer functions between hyperspectral measurements and various laboratory-

derived grassland traits by applying machine learning approaches. Good to very

good leave-one-out prediction results revealed that the most important ecosystem

services can precisely be predicted by hyperspectral approaches. Hyperspectral

predictions of the most important grassland traits during the vegetation period

highlighted how remote sensing approaches can improve grassland management in

future.

Alarmingly, the reduced CFE and biomass productivity in grasslands under

unfavourable future environmental conditions as detected in this thesis, suggest

decreasing ecosystem services such as carbon sequestration and related climate

mitigation function in future. This may – in a vicious circle – lead to a further

aggravation of expected global changes and urgently calls for better mitigation

and adaptation strategies. Measures necessary for this could be instructed and

monitored by remote sensing methods, as was shown by the present thesis.
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Zusammenfassung

Grünländer bedecken etwa 38% der europäischen Agrarfläche und bieten ver-

schiedene Ökosystemdienstleistungen wie Futterproduktion, Biodiversitätsschutz

und Kohlenstoffbindung. Diese Ökosystemleistungen hängen stark von der Biomasse-

produktion ab, welche aufgrund des globalen Wandels in Zukunft ungewiss ist.

Allem voran wird davon ausgegangen, dass eine steigende atmosphärische CO2-

Konzentration ([CO2]) die Biomasseproduktivität insbesondere unter trockenen

und heißen Bedingungen erhöht (genannt CO2-Düngeeffekt; CFE), während im

Allgemeinen solche wahrscheinlichen zukünftigen Umweltbedingungen die Grün-

landproduktivität eher verringern. Jüngst aufgekommene Zweifel an der klassischen

Sichtweise auf den CFE erfordern jedoch eine gründliche Analyse der Wechsel-

wirkungen des CFE mit unterschiedlichen Umgebungsbedingungen auf die Grün-

landproduktivität, welche in der Regel mittels CO2-Anreicherungsstudien erreicht

wird. Hier haben sich Free Air Carbon dioxide Enrichment (FACE) Experimente

aufgrund ihres minimal-invasiven Charakters als am besten geeignete Ansätze

bewiesen. Folglich verwendet diese Studie das weltweit am längsten laufende FACE-

Experiment auf Grünland, das Giessen FACE (GiFACE), um den potentiellen,

zukünftigen Wert verschiedener Ökosystemleistungen unter Einfluss des globalen

Wandels besser abschätzen zu können.

Zunächst wurde getestet, ob der CFE im GiFACE-Grünland unter extremeren

durchschnittlichen Wetterbedingungen und nach extremen Klimaereignissen re-

duziert ist. Für die Quantifizierung des CFE in Abhängigkeit von durchschnittlichen

Wetterbedingungen unter verschiedenen [CO2]s wurde ein spezifischer Ansatz,

genannt Moving Subset Analyse, entwickelt, um den realen Bedingungen Rech-

nung zu tragen. Zusätzlich wurde eine Zeitreihenanalyse entwickelt, um einzelne

extreme Klimaereignisse (ECEs) mit der Stärke des CFE zu korrelieren. Es wurde

festgestellt, dass der CFE unter den lokal durchschnittlichen Wetterbedingungen
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signifikant und stark ausfiel (definiert durch ±1 SD der langfristigen durchschnitt-

lichen Wetterbedingungen), unter extremeren Wetterbedingungen sich jedoch stark

verringerte. Der stärkste Rückgang des CFE unter ECEs war mit intensiven und

langen Hitzewellen verbunden und konnte weitgehend durch die Berechnung der

Killing Degree Days quantifiziert werden (∼30% der Varianz des CFE).

Da festgestellt wurde, dass der CFE unter ungünstigen Umweltbedingungen

reduziert ist, wurde das zukünftige Potenzial der Grünlandproduktivität in einem

weiteren Schritt bewertet. Hierfür sind potenzielle zukünftige Klimaregime und

statistische Modelle für den Biomassezuwachs auf Basis der langfristigen experi-

mentellen Beobachtungen erstellt worden. Der Biomassezuwachs wurde mit leicht

veränderten Klimavariablen innerhalb der potenziellen Klimaregime vorhergesagt.

Der Vergleich der potentiellen Klimaregime mit den Prognosen von Klimamodellen

für die Jahre mit einer ähnlichen [CO2] im Vergleich zu der angereicherten [CO2]

ergab, dass die Biomasse in der Mitte des 21. Jahrhunderts trotz der Zunahme von

[CO2] voraussichtlich reduziert sein wird. Dies zeigt, dass der CFE Ertragsausfälle

durch ungünstige Umgebungsbedingungen nicht kompensieren kann.

Kurzfristige Umweltveränderungen wie ECEs wirkten sich nachweislich auf die

Produktivität des Grünlandes aus, während ihr Einfluss mittels traditioneller de-

struktiver Stichprobenverfahren zu den Erntezeiten schwer zu erheben ist. Um diese

Einschränkungen durch die Probenahme zu überwinden, wurde im letzten Schritt

dieser Studie die Machbarkeit des nicht-invasiven hyperspektralen Monitoring des

GiFACE-Grünlands mit einer hohen raum-zeitlichen Auflösung untersucht. Um

mit den hyperspektralen Daten und der umfassenden Statistiksoftware CRAN R zu

arbeiten wurden spezifische Methoden entwickelt. Mit diesen Methoden wurden

Transferfunktionen zwischen hyperspektralen Messungen und verschiedenen im

Labor gemessenen Grünlandmerkmalen unter Anwendung maschineller Lernansätze

abgeleitet. Gute bis sehr gute Leave-One-Out-Kreuzvalidierung Ergebnisse zeigten,

dass die wichtigsten Ökosystemleistungen durch hyperspektrale Ansätze präzise

vorhergesagt werden können. Hyperspektrale Vorhersagen der wichtigsten Grün-

landmerkmale während der Vegetationsperiode zeigten, wie Fernerkundungsansätze

das Grünlandmanagement in Zukunft verbessern können.

Alarmierend ist, dass ein reduzierter CFE und eine reduzierte Biomassepro-

duktivität in Grünland unter ungünstigen zukünftigen Umweltbedingungen, wie
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sie in dieser Arbeit festgestellt wurden, einen abnehmenden Wert an Ökosystem-

dienstleistungen wie der Kohlenstoffsequestrierung und der damit verbundenen

Klimaschutzfunktionen in Zukunft erwarten lassen. Dies kann – einem Teufelskreis

ähnlich – zu einer weiteren Verschärfung der erwarteten globalen Veränderungen

führen und erfordert dringend bessere Minderungs- und Anpassungsstrategien.

Hierfür notwendige Maßnahmen könnten, wie die vorliegende Arbeit zeigt, durch

Fernerkundungsmethoden angeleitet und überwacht werden.
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1 Introduction

Grassland ecosystems, characterised by an extensive cover of grasses and other

graminoid vegetation and little or no cover of trees and shrubs, are one of the

world’s major biome types (Blair et al., 2014). Grasslands cover approximately

26% of the terrestrial area (Foley et al., 2011), and approximately 50% of the

worldwide grassland area is used as pastures (Ramankutty et al., 2008).

This enormous extent highlights the importance of grasslands for the provision

of multiple ecosystem services like forage for wildlife and ruminants (globally

supplying almost 50% of biomass for animals, Herrero et al. 2013), maintenance

of hydrological cycles, provision of recreational space and biodiversity conservation

(Christensen et al., 1996; Lemaire et al., 2011; Millennium Ecosystem

Assessment, 2005). In total, the livelihood of an estimated 1.3 billion people

depends directly on the goods and services derived from pastures (Herrero et al.,

2013). Additionally, grasslands provide key functions within the global carbon

cycle through the assimilation of carbon dioxide (CO2), storing approximately

20% of the world’s carbon pool (Schlesinger & Andrews, 2000; White et al.,

2000). Thereby, grasslands are assumed to function as a sink for atmospheric

CO2, and consequently to mitigate climate change (the latter assumed to be

“the single greatest threat to a sustainable future” as stated by United Nations

Secretary-General Ban Ki-Moon at the Climate Leaders Summit 2014).

The CO2 sink and adherent climate regulation functions of grasslands mainly

depend on the carbon uptake in plants which is defined by biomass productivity

(Parton et al., 2012; Peters et al., 2017). But, grassland productivity is uncertain

under future global change conditions (Blair et al., 2014; Booth et al., 2012;

Friedlingstein et al., 2006; Gao et al., 2016; IPCC, 2013; Reichstein et al.,

2013; Schimel et al., 2015). Along with a globally increasing atmospheric CO2

concentration ([CO2]), climate models for central Europe project increases in the
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mean air temperature, the variability of air temperature and of precipitation, and

the occurrence of extreme weather events (Beniston et al., 2007; Easterling

et al., 2000; IPCC, 2013; Meehl & Tebaldi, 2004; Sillmann et al., 2013). These

alterations in the environmental conditions may have contrasting effects on the

grassland productivity in future. As a result, the maintenance of the ecosystem

services provided by grasslands remains unclear, and the strength of the future

terrestrial carbon sink has been questioned (Booth et al., 2012; Cox et al., 2000;

Fung et al., 2005; Huntzinger et al., 2017; IPCC, 2013; Reichstein et al.,

2013; Schimel et al., 2015; Smith et al., 2016; Zhao & Running, 2010).

1.1 Motivation

In the most recent decades, steadily increasing extreme weather conditions have

been observed around the globe, and strong evidence links the increase of heat

waves and precipitation extremes to the human influence on climate (Coumou &

Rahmstorf, 2012). For example, a particularly extreme climate event in Europe

during the summer of 2003 is probably the consequence of anthropogenic global

warming (Stott et al., 2004). In the summer of 2003, air temperatures up to 6◦C

above the long-term average and precipitation deficits up to 300 mm (50% below

the average) occurred over Europe (Ciais et al., 2005; Fink et al., 2004; Garćıa-

Herrera et al., 2010; Tubiello et al., 2007). This heat and drought event led to

enormous adverse social, economic and environmental effects, with an estimate of

70 000 deaths mostly of the elderly (Robine et al., 2008), a loss of 10% of mass in

alpine glaciers, record-breaking forest fires in Portugal, and estimated economic

losses exceeding 10 billion US$ (Garćıa-Herrera et al., 2010). Regarding the

terrestrial ecosystems, the summer heat and drought in 2003 caused a reduction

by approximately 30% in the primary productivity across Europe and resulted in

a very anomalous net source of CO2 for the atmosphere, reversing the effect of

four years of net ecosystem CO2 sequestration (Ciais et al., 2005). Notably, such

a reduction in Europe’s primary productivity was unprecedented during the last

century (Ciais et al., 2005), and the synoptic conditions that caused its emergence

are assumed statistically extremely unlikely (Schär et al., 2004). Nevertheless,

the next record-breaking droughts combined with heat waves were observed only a
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few years later in Europe, in the summer 2015 (Ionita et al., 2017; Laaha et al.,

2017; NOAA National Centers for Environmental Information, 2016;

Orth et al., 2016) and in the summer 2018 (NOAA National Centers for

Environmental Information, 2018).

Consistent with the observed trend for the past decades, it is projected that along

with increasing [CO2] and rising air temperatures, the intensity, frequency and

duration of heat waves will increase in future summers in Central Europe (Beniston

et al., 2007; Meehl & Tebaldi, 2004; Schär et al., 2004; Seneviratne et al.,

2014; Sillmann et al., 2013). Additionally, Orth et al. (2016) showed that a

future drying out in the summer is very likely for Central Europe. Independent from

such changes in the precipitation totals, the frequency of meteorological droughts

(medium confidence) and heavy precipitation events (high confidence) is likely to

increase in Europe, and the intervening dry spells between precipitation events are

projected to become longer (Easterling et al., 2000; Hov et al., 2013; IPCC,

2013; Seneviratne et al., 2012; Sillmann et al., 2013; Solomon et al., 2007;

Tebaldi et al., 2006). Consequently, single extreme climatic events (ECEs) such

as heat-waves, droughts, heavy rainfall, and frosts will increase in both frequency

and intensity (Beniston et al., 2007; Christidis et al., 2015; Easterling et al.,

2000; IPCC, 2013; Jentsch et al., 2007; Seneviratne et al., 2012; Sillmann

et al., 2013; Williams et al., 2014). Christidis et al. (2015) even predicted that

summers similar to the record-breaking hot and dry summer 2003 will be very

common by the mid 21st century.

Considering projected global changes, it is conceivable that the terrestrial ecosys-

tems in Europe will be subject to much more extreme weather conditions, a higher

frequency and intensity of extreme climatic events, and increased [CO2] in future

(IPCC, 2013; Jentsch et al., 2007). Consequently, the productivity of European

grasslands, which consist mainly of permanent meadows and pastures composed of

C3 species, will be modified under global change-related environmental alterations.

This is of particular interest since grasslands are one of the major biomes, covering

approximately 38% of the whole agricultural area within Europe (Food and

Agriculture Organization of the United Nations Statistics Division,

2015). Thus, the value of various ecosystem services provided by grasslands, such

as a considerable share of Europe’s green fodder supply and the livestock sector,
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is uncertain. Additionally, this may feedback into climate change since European

grasslands acted as carbon sinks in the past five decades (1961-2010; Chang et al.,

2016, 2015), and it is estimated that Europe’s terrestrial biosphere absorbs 7 to

12% of the anthropogenic CO2 emissions of Europe (Janssens et al., 2003).

Since the plant species of European grasslands feature the C3 photosynthetic

pathway (most common carbon fixation process in plants growing under temperate

climate conditions), it is expected that a reduced CO2 limitation in plants growing

under increased [CO2] ([eCO2]) enhances the biomass productivity, which is usually

termed the CO2 fertilization effect (CFE). The CFE is assumed to be particularly

strong under hot and dry conditions (described more in detail in section 2.1.3;

Ainsworth & Rogers, 2007; Coughenour & Chen, 1997; Drake et al., 1997;

Idso et al., 1987; Jordan & Ogren, 1984; Long et al., 2004; Morgan et al.,

2004; Owensby et al., 1999; Soussana & Lüscher, 2007; Volk et al., 2000;

Wullschleger et al., 2002). Moreover, [eCO2] may enhance the recovery of plants

after extreme climatic events (Roy et al., 2016). In line with this carbon-centric

view, many numerical models predict an increasing trend for future European

grassland productivity which is mainly explained by a strong CFE (e.g., Chang

et al. 2017; Gu et al. 2014; Hufkens et al. 2016; Huntzinger et al. 2017; Roun-

sevell et al. 2005; Williams et al. 2014). However, the projections from numerical

models should be circumspectly perceived since there is a large model disagreement

attributed to the models’ sensitivity to rising atmospheric CO2 (Huntzinger

et al., 2017) and the too simplified implementation of experimentally observed

physiological responses to global change-related variables (Tubiello et al., 2007).

This was highlighted by a large divergence within satellite and model estimates

of the CFE in terrestrial areas across the globe (Smith et al., 2016). Additional

doubts about the classical view on the CFE have arisen from recent studies based on

long-term CO2 enrichment experiments revealing that the CFE might be reduced

under drier conditions, which was explained by resource limitation due to water

scarcity (Hovenden et al., 2014), or a joint water and nitrogen limitation that

generally limited plant growth (Reich et al., 2014).

The controversial experimental results and the high uncertainty within numerical

models reveal that the interaction of the effects of increased [CO2] and environmental
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conditions on grassland productivity, an indicator for plant and ecosystem carbon

storage, is poorly understood (Hovenden et al., 2014; IPCC, 2013; Reich et al.,

2014; Smith et al., 2016; Tubiello et al., 2007; White et al., 2011). Consequently,

the potential of grassland productivity under global change, and thus, the value

of the future ecosystem services provided by grasslands, is highly uncertain. To

reduce this uncertainty, and allow for a better parametrisation e.g. within dynamic

global vegetation models, suitable long-term experiments providing continuous and

high quality data are urgently required (Frank et al., 2015; Lüscher et al., 2004;

Norby & Luo, 2004; Rustad, 2008). Here, free air carbon dioxide enrichment

(FACE) experiments are the culmination of efforts to investigate ecosystems in

a manner that is minimally invasive. Therefore, the longest worldwide available

time series of data acquired on a FACE experiment, the Giessen FACE facility

(GiFACE), is used in this study to analyse the interacting effects of increased [CO2]

and environmental conditions on grassland productivity.

Long-term investigations are traditionally confined to destructive sampling ap-

proaches at certain sampling plots and harvest dates with consecutive, costly and

labour-intensive laboratory analysis. Due to the restricted temporal resolution of

the conventional sampling methods at single harvest dates, no short-term changes

in the grassland productivity are captured in datasets acquired by such sampling

strategies. This is problematic because it has been shown that the quantification

of the effects of extreme climatic events on grassland poses a mayor challenge for

ecosystem analysis (Jentsch et al., 2007; Niu et al., 2014; van der Molen et al.,

2011). Therefore, FACE experiments should be monitored with a higher temporal

resolution and possibly more cost-effectively procedure. Here, remote sensing ap-

proaches might have a great potential because they are rapid, non-destructive and

allow high temporal resolutions with spatially explicit information. Recent advances

in remote sensing have lead to the development of hyperspectral sensors which

are capable of recording contiguous spectral bands with a fine spectral resolution

covering a wide range of the electromagnetic spectrum. Thereby, hyperspectral

approaches are expected to advance the remote estimation of e.g., grassland prop-

erties as compared to the commonly applied multispectral approaches, that cover

fewer bands with a coarser spectral resolution. Consequently, this study wants to

bridge scales to overcome the conventional sampling restrictions by investigating
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the feasibility of the hyperspectral monitoring of the GiFACE grassland. Thereby, a

deeper insight into the interacting of [eCO2] and weather conditions on the grassland

productivity than is possible by conventional destructive sampling methods will

be given. In addition to an enhanced grassland monitoring, future applications of

remote sensing techniques might encompass an improved grassland management

(Iftikhar et al., 2016), e.g. by helping farmers to adapt fertiliser input, adjust

stocking rates or find optimal harvest dates.

Summarising, the motivation of the present thesis is based on knowledge deficits

regarding

• the extent of the CO2 fertilization effect in grasslands under varying environ-

mental conditions,

• the potential of future grassland biomass productivity under global change

conditions, and

• techniques for non-invasive measurements to enable a high-resolution spatio-

temporal grassland monitoring.
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1.2 Aims, research questions and hypotheses

The overall goal of this thesis is to improve the assessment of the value of ecosystem

services provided by temperate grasslands under global change conditions. There-

fore, this study investigates the influence of real-world climatic variations on the

above-ground biomass of a temperate C3 grassland under different CO2 concen-

trations within the globally longest operating FACE experiment on grasslands at

different scales.

Based on the above mentioned gaps in knowledge, the present thesis has the

following three main aims:

• to assess the influence of environmental conditions on the CO2 fertilization

effect in a temperate grassland,

• to improve the assessment of potential future grassland productivity under

global change conditions, and

• to facilitate a high-resolution spatio-temporal monitoring of the GiFACE

grassland characteristics by remote sensing techniques.

The first key question to be addressed is whether and how the CO2 fertilization

effect in the grassland under investigation interrelates with changing average weather

conditions in summer. Since single ECEs might also influence grassland productivity,

this key question will be expanded to the investigation of the influence of ECEs on

the CFE.

In the second key question, the potential future productivity of temperate

grasslands will be investigated considering increased [CO2]s and projected future

climatic conditions. Thus, it shall be assessed whether an increased grassland

biomass productivity can be expected in future mainly due to rising [CO2], or if the

projected global change-related weather alterations are likely to reduce grassland

productivity in future, despite increased [CO2].

Short-term influences of ECEs on grassland productivity per se and the CFE in

particular might fall through the relatively coarse temporal resolutions possible by

conventional sampling approaches. Therefore, the third key question concerns

the possibilities for non-invasive hyperspectral monitoring of the grassland with a
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high spatio-temporal resolution. Consequently, methods will be developed which

facilitate work with hyperspectral data and comprehensive statistical software (as

provided by the open-source software CRAN R), and it will be examined, whether

the grassland traits related to the most important ecosystem services can accurately

be predicted by non-invasive, hyperspectral approaches within the GiFACE facility.

To answer the above-mentioned questions, the following three hypotheses will

be tested:

H 1 The CO2 fertilization effect is reduced under more extreme average
weather conditions and after extreme climatic events

H 2 Future increases in above-ground biomass productivity under el-
evated CO2 concentrations more than compensate for potential
biomass reductions due to global change-related environmental al-
terations

H 3 State-of-the-art remote sensing techniques enable the monitoring of
grassland ecosystem services providing high spatio-temporal resolu-
tions within a FACE experiment
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1.3 Thesis outline

The main part of the present thesis consists of five scientific articles which are

either published (2), accepted (1) or under review (2) in internationally renowned

journals. The general work flow is presented in Fig. 1.1.

Within the thesis, the five articles are embedded in the scientific context by

summarizing the current state of the research (chapter 2), and outlining the

conception and technical preparation of the working packages (chapter 3). At

first, a description of the main global change-related environmental influences on

grassland productivity will be given (section 2.1), followed by a short description

of experimental facilities to investigate the effect of increased [CO2] on plant pro-

ductivity (section 2.2). Subsequently the conception and technical preparation of

the working packages will be described (chapter 3), beginning with a short de-

scription of the GiFACE experiment (section 3.1) and followed by the preparation

of the working packages, subdivided into the investigations on the three established

hypotheses (section 3.2-3.4) and an overview of the resulting working packages

for this thesis.

In the first article (chapter 4), a new method will be developed to investigate

the influence of average weather conditions on the effect of increased [CO2] on

summer above-ground biomass productivity within the long-term time series of the

GiFACE experiment, to test part one of H 1.

In the second article (chapter 5), the same 16-year time series will be used to

investigate the effects of extreme climatic events on the CO2 fertilization effect, for

both, spring and summer harvests, to test part two of H 1.

In the third article (chapter 6), the potential of future C3 grassland productivity

will be evaluated using statistical models and potential climate regimes created

from the long-term GiFACE data series along with projected climate alterations

found in global climate models, to test H 2.

The fourth article (chapter 7) presents the enhanced R-package hsdar containing

methods to process hyperspectral data with open-source software, and preliminary

investigations on H 3, the hyperspectral predictability of grassland traits within

the GiFACE experiment, using the example of canopy chlorophyll concentrations.
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In the fifth article (chapter 8), the hyperspectral predictability, and thus the po-

tential of a high-resolution spatio-temporal monitoring, of fourteen grassland traits

related to ecosystem services will be investigated under varying CO2 concentrations,

to test H 3.

Figure 1.1: General work flow of the thesis.

Finally, the present work will end with a summary of the most important

findings regarding the influence of average weather conditions and extreme climatic

events on the CO2 fertilization effect, the potential of future above-ground biomass

productivity under projected global change conditions, and the hyperspectral

possibilities that enhance monitoring of FACE experiments in particular and

generally provide a wide range of applications (chapter 9). The chapter will

finish with a short outlook on further research needed and a perspective on the

importance of the thesis for policy makers.
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Wang, X., Sultan, B., & Soussana, J.F. (2016): Effect of climate change,

CO2 trends, nitrogen addition, and land-cover and management intensity changes

on the carbon balance of European grasslands. Global Change Biology, 22, 1,

338–350.

Chang, J., Ciais, P., Viovy, N., Vuichard, N., Sultan, B., & Soussana,

J.F. (2015): The greenhouse gas balance of European grasslands. Global Change

Biology, 21, 10, 3748–3761.

Christensen, N.L., Bartuska, A.M., Brown, J.H., Carpenter, S.,

D’Antonio, C., Francis, R., Franklin, J.F., MacMahon, J.A., Noss,

11



1 Introduction

R.F., Parsons, D.J. et al. (1996): The report of the Ecological Society of

America committee on the scientific basis for ecosystem management. Ecological

Applications, 6, 3, 665–691.

Christidis, N., Jones, G.S., & Stott, P.A. (2015): Dramatically increasing

chance of extremely hot summers since the 2003 European heatwave. Nature

Climate Change, 5, 1, 46.

Ciais, P., Reichstein, M., Viovy, N., Granier, A., Ogée, J., Allard, V.,

Aubinet, M., Buchmann, N., Bernhofer, C., Carrara, A., Chevallier,

F., De Noblet, N., Friend, a.D., Friedlingstein, P., Grünwald, T.,

Heinesch, B., Keronen, P., Knohl, A., Krinner, G., Loustau, D.,

Manca, G., Matteucci, G., Miglietta, F., Ourcival, J.M., Papale, D.,

Pilegaard, K., Rambal, S., Seufert, G., Soussana, J.F., Sanz, M.J.,

Schulze, E.D., Vesala, T., & Valentini, R. (2005): Europe-wide reduction

in primary productivity caused by the heat and drought in 2003. Nature, 437,

7058, 529–533.

Coughenour, M. & Chen, D.X. (1997): Assessment of Grassland and Ecosystem

Responses to Atmospheric Change Using Linked Plant-Soil Process Models.

Ecological Applications, 7, 3, 802–827.

Coumou, D. & Rahmstorf, S. (2012): A decade of weather extremes. Nature

Climate Change, 2, 7, 491.

Cox, P.M., Betts, R.A., Jones, C.D., Spall, S.A., & Totterdell, I.J.

(2000): Acceleration of global warming due to carbon-cycle feedbacks in a coupled

climate model. Nature, 408, 184–187.

Drake, B.G., Gonzalez-Meler, M.a., & Long, S.P. (1997): MORE EFFI-

CIENT PLANTS: A Consequence of Rising Atmospheric CO2? Annual Review

of Plant Physiology and Plant Molecular Biology, 48, 609–639.

Easterling, D.R., Evans, J., Groisman, P.Y., Karl, T.R., Kunkel, K.E.,

& Ambenje, P. (2000): Observed variability and trends in extreme climate

events: a brief review. Bulletin of the American Meteorological Society, 81, 3,

417–426.

12



References
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Soussana, J.F. & Lüscher, A. (2007): Temperate grasslands and global atmo-

spheric change: A review. Grass and Forage Science, 62, 2, 127–134.

Stott, P.A., Stone, D.A., & Allen, M.R. (2004): Human contribution to the

european heatwave of 2003. Nature, 432, 7017, 610.

Tebaldi, C., Hayhoe, K., Arblaster, J.M., & Meehl, G.A. (2006): Going

to the extremes. Climatic change, 79, 3-4, 185–211.

19



1 Introduction

Tubiello, F.N., Soussana, J.F., & Howden, S.M. (2007): Crop and pasture

response to climate change. Proceedings of the National Academy of Sciences,

104, 50, 19 686–19 690.

van der Molen, M.K., Dolman, A.J., Ciais, P., Eglin, T., Gobron, N.,

Law, B.E., Meir, P., Peters, W., Phillips, O.L., Reichstein, M., Chen,
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2 State of research

As previously stated, this thesis aims to shed new light on the interacting effects of

increased [CO2] and climatic drivers on grassland biomass productivity with the

most important goal to gain better estimates of the future provision of grassland

ecosystem services under global change. Therefore, this chapter will start with a

short overview of the main global change-related environmental factors affecting

grassland productivity (section 2.1), considering precipitation (section 2.1.1),

air temperature (section 2.1.2), CO2 concentrations (section 2.1.3), and other

environmental drivers (section 2.1.4). This will be followed by a brief description

and critical examination of experimental designs used to investigate the effects of

increased [CO2] on plant productivity (section 2.2).

2.1 Global change-related environmental influences

on European grasslands

One of the basic plant physiological principles is the exchange of gas and water

between the atmosphere and plants through small pores on the epidermis of the

leaves – the stomata. When stomata are open, CO2, the main substrate for the

photosynthesis enters the leaves. At the same time, via the so-called transpiration

water exits the leaves. Consequently, the opening of the stomata leads to an

unavoidable trade-off between water losses and CO2 uptake, where the latter is

the prerequisite for photosynthesis. This process, which permits carbon uptake by

plants will be affected by altered environmental conditions under global climate

change.
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2 State of research

2.1.1 Effects of altered precipitation

Decreased water input is assumed to lower the photosynthetic activity via stomatal

limitation, because plants need to close the stomata to avoid water stress. Con-

sequently, biomass productivity is reduced under lower precipitation input while

increases in the precipitation stimulate plant growth (Miranda-Apodaca et al.,

2015; Nippert et al., 2006; Weltzin et al., 2003; Wu et al., 2011; Yang et al.,

2008; Zhao & Running, 2010). However, the projected increases in the variability

of the precipitation input will probably decrease biomass productivity irrespective

of the total precipitation (Knapp et al., 2008; Nippert et al., 2006). On the one

hand, very intense precipitation events can lead to a nutrient loss through fast

surface runoff or if the latter is impeded cause water-logging of the soils, and thus

reduce in the biomass productivity. On the other hand, particularly in summer,

longer dry intervals may lead to a critical drying of the soil and thus a reduced

biomass productivity which is of particular importance in grasslands with their

relatively shallow roots bringing the plants water from the upper layers of the soil

(Gherardi & Sala, 2015; Knapp et al., 2008).

2.1.2 Effects of increased air temperature

In contrast to the widely accepted view on the influence of altered precipitation

regimes on ecosystem productivity, the influence of air temperatures is still under

debate. An increased air temperature may lead to a lengthening of the growing

period (Hufkens et al., 2016; Luo, 2007), an enhanced microbial activity which

increases nutrient availability (Luo, 2007; Rustad et al., 2001), and a shift towards

an optimum growth temperature (Luo, 2007; Myneni et al., 1997), altogether

possibly enhancing biomass productivity. However, when net photosynthesis reaches

a maximum at optimal temperature further temperature increases cause declines in

the photosynthesis (carbon uptake) and increased respiration (carbon loss) rates,

which reduces the biomass productivity in C3 plants (Brooks & Farquhar, 1985;

Farquhar et al., 1980; Long, 1991; Luo, 2007). In addition to the direct effects

on plant physiology, an increasing air temperature enhances evapotranspiration and

thus causes earlier water depletion in soils, which will reduce biomass productivity,

especially if water availability is limited. Moreover, increasing air temperatures
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may increase heat stress, and thus reduce biomass productivity especially when

a low water availability limits potential for evaporative cooling in plants (De

Boeck & Verbeeck, 2011; De Boeck et al., 2008; Leuzinger & Körner,

2007; Morison & Lawlor, 1999). Additionally, single events such as prolonged

heat waves and frosts affect or even prevent the carbon uptake in plants which

reduces biomass productivity (De Boeck et al., 2008; Jentsch et al., 2007; Niu

et al., 2014; van der Molen et al., 2011). Consequently, the influence of increased

air temperature on grassland productivity is not certain.

Summarising, it is evident that the projected climatic changes are likely to alter

grassland productivity in the future. However, the direction and magnitude of the

response, especially in the interaction with an increased [CO2] remain uncertain.

To gain a better insight into the underlying physiological principles, the basics of

the biomass yield stimulation under [eCO2], namely the CO2 fertilization effect

(CFE), will be described in the following section.

2.1.3 Influence of increased CO2 concentrations – the

CO2 fertilization effect

The CFE is expected to increase C3 grassland biomass productivity mainly via

(1) the direct effects of an increased photosynthetic carbon fixation through lesser

CO2 limitation, and (2) the indirect effects of a decreased stomatal conductance

since shorter stomata opening fulfils the carbon-demand in plants (Ainsworth &

Rogers, 2007; Ainsworth & Long, 2005; Field et al., 1995; Körner, 2000;

Lloyd & Farquhar, 2008; Soussana & Lüscher, 2007; Volk et al., 2000).

2.1.3.1 The CO2 fertilization effect and altered water availability

Shorter stomatal opening periods and the reduced stomatal conductance lead to

lower transpirational losses and an enhanced water use efficiency of plants grown

under [eCO2]. This is expected to cause soil water savings which reduce potential

water stress for plants, and thus lead to a particularly strong CFE under dry

conditions (Ainsworth & Rogers, 2007; Drake et al., 1997; Idso, 1994; Jordan

& Ogren, 1984; Leakey et al., 2009; Morgan et al., 2004; Owensby et al., 1999;

Soussana & Lüscher, 2007; Wullschleger et al., 2002). Moreover, there is
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Figure 2.1: Simplified schematic of the projected global change-related environmental
alterations (dashed boxes) and their widely expected influences on temperate grassland
productivity. The wider arrow represents the assumption of an increased CO2 fertilization
effect under drier and warmer conditions, environmental conditions that would rather
decrease the grassland biomass productivity in general.

also the possibility of an enhanced recovery after ECEs under [eCO2], which might

counterbalance biomass reductions due to global change-related environmental

alterations such as a higher intensity and frequency of precipitation events (Roy

et al., 2016). Nevertheless, contrasting findings in literature reported the strongest

CFE under intermediate precipitation regimes (Hunt et al., 1996; Nowak et al.,

2004; Volk et al., 2000), and most recent studies reported even a positive influence

of summer rainfall on the CFE (Hovenden et al., 2014; Reich et al., 2014). In

line with this, a long-term decline in the grassland productivity in the Northern

Rocky Mountains from 1969 to 2012 was explained by increasing dryness despite
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of the increases in [CO2] (Brookshire & Weaver, 2015). And, Zhu et al.

(2016) showed in a Californian grassland under long-term CO2 enrichment that

future climatic conditions are likely to push the investigated ecosystem away from

conditions that maximise net primary production.

2.1.3.2 The CO2 fertilization effect and increased air temperature

Various assumptions are also found in the scientific community regarding the

effect of air temperature on the CFE. Many studies assume a particularly strong

CFE under higher air temperature (Coughenour & Chen, 1997; Idso et al.,

1987; Long, 1991; Long et al., 2004; Morison & Lawlor, 1999; Wang et al.,

2012). This is explained by the favouring of the oxygenation (photorespiration)

as the specificity of Rubisco for O2 compared to CO2 is increased under higher

temperatures. Thereby, the ratio of photosynthesis to photorespiration is decreased

under higher temperatures, which increases the relative importance of a promoted

photosynthesis under [eCO2] (Ainsworth & Rogers, 2007; Long, 1991; Long

et al., 2004). In contrast, other studies revealed that the CO2 fertilization effect

might be temperature independent or even reduced under a higher air temperature

(Drake et al., 1997; Jongen & Jones, 1998; Sillen & Dieleman, 2012; Ziska

& Bunce, 1994). This is explained by indirect effects such as the reduced stomatal

conductance, which decreases the potential for evaporative cooling in plants grown

under [eCO2] (Drake et al., 1997; McNaughton & Jarvis, 1991). Especially

when water availability is limited, increased air temperature and increased [CO2]

in conjunction may thus lead to a drying of the boundary layer of the leaves which

increases heat stress and results in a reduced biomass productivity (De Boeck &

Verbeeck, 2011; Leuzinger & Körner, 2007; McNaughton & Jarvis, 1991;

Morison & Lawlor, 1999). Moreover, Oren et al. (1999) have shown that a

concomitant increase in the vapour pressure deficit with increasing air temperature

results in stomatal closure, which might be more important than the direct [CO2]

effects on the photosynthetic metabolism.
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2.1.4 Influence of other environmental drivers

In addition to climate and CO2 concentration, other factors such as nutrient

availability (in particular nitrogen and phosphorus), herbivores (Frank, 2007), and

species diversity affect grassland productivity. An increased species diversity may

for example increase biomass productivity under drought conditions, through an

enhanced resistance or recovery (Kreyling et al., 2017) of ecosystems. The grazing

by herbivores was shown to increase, decrease, or have no influence on productivity,

depending on the type of herbivore, grassland studied, and the intensity of grazing

(Frank, 2007).

Moreover, these environmental drivers are also likely to affect grassland response

to [eCO2]. For example, the CFE is thought to interact with the nutrient availability

in soils, as plants grown in conditions of a high nutrient supply may respond more

strongly to [eCO2] than nutrient-stressed plants (Poorter, 1998; Reich et al.,

2006b; Soussana & Lüscher, 2007). The concomitantly increased nitrogen deple-

tion in soils under [eCO2] causes that available soil nitrogen becomes increasingly

limited and reduces the CFE which is referred to as a progressive nitrogen limitation

(PNL; Leuzinger et al. 2011; Luo et al. 2004; Reich et al. 2006a).

Summarising, it was shown that global change involves simultaneously occurring

alterations in environmental conditions. Due to the number of factors and the

possibility of interactive effects, the prediction of ecosystem responses to these

global changes remains challenging. To gain better insights on the future provision

of ecosystem services by grasslands, and thus the global carbon cycle, this study

will focus on the investigation of the influences of the most certain, and uniformly

accepted predictions of global change.

2.2 Experimental investigation of influences of

global change on grasslands

Since decades, the influence of increased atmospheric CO2 concentrations on plant

productivity has been intensively analysed in various experiments. Here, grasslands

are often used for the development and testing of ecological theories, because

they are sensitive to perturbations, respond relatively rapidly to environmental
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alterations, and it is relatively easy to perform experiments on them (Blair et al.,

2014). However, early CO2 enrichment studies were performed in greenhouses

or open-top-chambers (White et al., 2011), which may have caused unintended

artificial alterations, e.g. in the micro climate of the investigated plot (Carlyle

et al., 2011; Dukes et al., 2005; Porter et al., 2015). For example, increased air

temperature with infrared heaters reduces the humidity of the air and causes an

unrealistic vapour pressure deficit (De Boeck & Nijs, 2011; Kimball, 2005) and

alters soil moisture content (Marchand et al., 2006). Therefore the derived results

may be unrealistic. This was indicated by an inconsistency of the results regarding

the CO2 fertilization effect that was mainly caused by the drawbacks of the mostly

short-running manipulative experiments (Carlyle et al., 2011; Körner, 2000;

Long, 2006; Long et al., 2004). Additionally, long-term experiments under natural

conditions revealed a weaker grassland response to [eCO2] than expected from

short-term laboratory experiments (Leakey et al., 2009; Long, 2006; Lüscher

et al., 2004). Therefore, it has been advocated that the analysis of biomass responses

to increased CO2 and the interacting effects of multiple environmental factors have

to be regarded for ecosystems in their natural environment (Lüscher et al., 2004;

Norby & Luo, 2004; Wu et al., 2011). Consequently, to overcome the limitations

of the early experimental designs, so-called Free Air Carbon dioxide Enrichment

(FACE) experiments represent the most appropriate technology (Leakey et al.,

2009; Long, 1991; McLeod & Long, 1999; Nowak et al., 2004; Soussana &

Lüscher, 2007). Not surprisingly, results from FACE experiments are in contrast

to those from open-top-chamber and greenhouse experiments and raise questions

concerning the early findings of the interactions between global change and plant

physiology (e.g., Hovenden et al. 2014; Reich et al. 2014). However, due to

the high costs for the construction and maintenance of FACE experiments, most

investigations so far were relatively short-term and long-term studies are rare.

Since biomass data from ecosystem studies is traditionally derived by destructive

sampling methods at harvest dates, the analysis of changes in the grassland pro-

ductivity remains confined to a relatively broad temporal resolution. However, it is

assumed that also short-term changes in environmental conditions, such as ECEs,

influence grassland productivity (Angert et al., 2005; Jentsch et al., 2007; Niu

et al., 2014; Parmesan et al., 2000; van der Molen et al., 2011). Therefore,
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the monitoring of FACE experiments should be provided by an enhanced spatial

and temporal resolution at, if possible, low cost as well as non-destructive and

rapid. Such enhanced monitoring is possible by hyperspectral techniques, while

their application to FACE experiments have so far not been tested.
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Pan, Y., Peng, S., Peñuelas, J., & Poulter, B. (2016): Greening of the

Earth and its drivers. Nature Climate Change, 6, 8, 791–795.

Ziska, L.H. & Bunce, J.a. (1994): Increasing growth temperature reduces the

stimulatory effect of elevated CO2 on photosynthesis or biomass in 2 perennial

species. Physiologia Plantarum, 91, 183–190.

37





3 Conception and technical

preparation of the working

packages

In this work, the analysis of global change-related influences on the productivity of a

temperate grassland will be based on the longest globally operating FACE systems

on grasslands, the GiFACE experiment. Contrasting results from earlier, mostly

manipulative experiments highlighted the need for an analysis based on long-term

data under natural climatic conditions. Since biomass data from long-term time

series is traditionally derived by destructive sampling methods at harvest dates,

short-term changes in grassland characteristics might be overseen. To overcome this

limitation and bridge the scales i.e. establish a link from long-term observations to

in-depth analysis by high-resolution spatio-temporal approaches, the possibilities of

non-destructive grassland monitoring using hyperspectral approaches will be tested.

Therefore, this chapter starts with a short description of the GiFACE experiment

(section 3.1), followed by the methodological work flow of the thesis, divided into

the working packages needed for the investigations of H 1 (section 3.2), H 2

(section 3.3), H 3 (section 3.4), and a general overview of the working packages

including a detailed overview of the work flow in Figure 3.2.

3.1 Study area - the Giessen Free Air Carbon

dioxide Enrichment experiment

The investigation of the influence of global change-related environmental drivers

on the grassland productivity in this study is based on the longest operating FACE
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systems on grassland, the GiFACE experiment. The GiFACE facility covers a

non-grazed and extensively managed species-rich grassland located near Giessen,

Germany (50° 32’ N and 8° 41’E; 172 m a.s.l.), and is in operation since 1998. The

experimental facility comprises six FACE rings of 8 m in diameter (for a detailed

description, see Andresen et al. 2018; Jäger et al. 2003). Three rings are operated

under elevated CO2 conditions by enriching the air during daylight hours to ∼20%

above the ambient [CO2] ([aCO2]). In the other three rings (controls) the grassland

vegetation grows under [aCO2]. Due to variable wind conditions and technical

limitations, the CO2 enrichment showed slight variations within and over years.

The C3 vegetation showed similar abundances within all rings, dominated by the

grasses Arrhenatherum elatius, Holcus lanatus and Poa pratensis, accompanied by

a forb fraction including one legume species present in low abundance (Kammann

et al., 2005). From 1995 onwards, the grassland was fertilised with 40 kg ha−1

yr−1 calcium ammonium nitrate, which equals the annual N deposition in many

intensively used agricultural regions (Reich et al., 2001), supplemented by 600

kg ha−1 yr−1 of 10% P2 O5 + 15% K2O + 3% MgO and 33% CaO + MgO each

spring (Kammann et al., 2005). The soil is a fluvic gleysol (Spaargaren et al.,

1994) with a sandy clay loam layer above a clay layer of variable depth (Kammann

et al., 2005). To maintain an undisturbed soil, the sensor installation inside the

rings proceeded non-invasively.

3.2 Investigations on H 1: Reduced CO2 fertilization

effect under more extreme average weather

conditions and after extreme climatic events

A general issue for the investigation of CO2 enrichment experiments is that the

mostly factorial treatment designs are used to quantify cause-effect relationships

(e.g. Ainsworth & Long, 2005; Bindi et al., 2001; Casella & Soussana,

1996; Kammann et al., 2005; Shaw et al., 2002; Wullschleger et al., 2002).

However, due to the complexity of CO2 enrichment studies in general, and of FACE

experiments in particular, the actual [CO2] in the plots that are enriched with

elevated CO2 concentrations is fluctuating. Consequently, the interpretation of
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Figure 3.1: Experimental plots for the CO2 enrichment at the Giessen FACE site.

plant responses to elevated [CO2] in interaction with e.g., environmental condi-

tions might be misleading when constant CO2 concentrations as defined by the

factorial design are assumed. Therefore, a method has to be developed, which

investigates the responses of above-ground grassland productivity to elevated [CO2]

and average weather conditions under consideration of the actual, measured CO2

concentrations within the relevant plots. Situated in a real-world environment,

the variables that describe the environmental conditions are highly correlated

which complicates the disentanglement of the influence of a single environmental

variable to biomass productivity. Therefore, this approach has also to depict the

accompanying environmental conditions. Combining biomass measurements, the

actual CO2 concentrations, and real-world environmental conditions, WP 1 aims

to increase the understanding of the effect of average weather conditions on the

CFE in the grassland under investigation. Additionally, since this approach might

also be useful to reliably quantify cause-effect relationships in other experiments,

the proposed method shall be made publicly available within a new R-package

entitled “Moving Subset Analysis FACE” (msaFACE).
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Beyond the estimated impacts from changes in the mean variables (what might be

termed the “trend effect”), changes in the magnitude or frequency of extreme events

(“single climatic event effect”) are likely to impair plant production under climatic

change, and thus are essential when investigating the response of biotic systems

to climate drivers (Jentsch et al., 2007; Parmesan et al., 2000). Therefore,

within WP 2, a time series analysis on the combined effects of increased [CO2] and

extreme climatic events on above-ground biomass production will be conducted

using the long-term GiFACE data. This will be the first time that such a continuous

long-term data set is used to evaluate this kind of response. The CFE in this

study will be represented by the effect size of the above-ground biomass, which is

defined as the relative differences in biomasses of the plots under [eCO2] compared

to the control plots under [aCO2]. The assumptions is, that sudden changes in

growing conditions such as those caused by ECEs may lead to significant changes

in the effect size, while the effect size of adjacent years under similar growing

conditions should not differ significantly. Thus, changes in effect size of the biomass

in comparison with the previous year will be used to examine the impact of ECEs

on the yield stimulating effect of [eCO2].

3.3 Investigations on H 2: Assessment of potential

future above-ground biomass productivity under

projected global change conditions.

Within the subsequent working package (WP 3), a method has to be developed

linking the experimental data from the GiFACE experiment with projected climate

alterations from the IPCC model ensemble, to assess the potential of the future

provision of ecosystem services by temperate grasslands. Therefore, individual

statistical models will be developed that predict the biomasses within the rings

under [eCO2] and the control rings, respectively. Additionally, potential future

climatic regimes will be generated based on the observed environmental conditions

during the experimental period, and the derived statistical biomass models will

be used to predict potential biomasses within these regimes for both, rings under

[eCO2] and rings under [aCO2]. To assess the potential future grassland productivity,
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the different potential climate regimes and their climate predictor alterations will

be compared to the projected climate changes in the mid 21st century, when the

atmospheric [CO2] will be approximately at the level of the experimentally enriched

[CO2] in the GiFACE (∼ 20% above the [aCO2] under present-day conditions).

3.4 Investigations on H 3: Do hyperspectral

techniques enable the monitoring of grassland

ecosystem services with high spatio-temporal

resolutions?

Although the analysis of the long-term time series (WP 1 - WP 3) will likely give

important insights on the carbon-plant relationship, it is expected to be constrained

by the low temporal resolution of the conventional, destructive sampling approach

(e.g., two harvests in the GiFACE experiment). To overcome this restriction,

methods have to be developed that are able to investigate the plant responses

on a spatially and temporally higher resolution than is possible by conventional

approaches. Here, approaches based on hyperspectral data have proven to be

advantageous, since they allow a high temporal resolution including spatially

explicit data. Additionally, they are rapid, non-destructive and cost-effective

which makes them very interesting for the monitoring of ecosystem studies. The

comprehensive statistical methods implemented in the open-source software CRAN

R provide the ideal requirements for the processing and analysing of large datasets,

such as those derived by remote sensing techniques. However, only fragmentary

solutions are available to work with hyperspectral data within CRAN R, while a

combination of hyperspectral techniques with the statistical power of R is straight

forward. Therefore, within WP 4, the existing R functionality regarding the basic

processing functions for hyperspectral data will be enhanced. The new functionality

was made publicly available in a new R-package entitled “Hyperspectral Data

Analysis in R” (hsdar).

Using the enhanced and newly developed methods of the open-source software R

(WP 4), the investigation of the hyperspectral predictability of various grassland
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traits within the GiFACE experiment will be conducted within WP 5. At first,

various spectral normalisation techniques have to be applied to the hyperspectral

data to enhance reflectance features and reduce perturbing effects that may arise

e.g., from soil background, varying illumination and viewing geometry. Defined

by the different normalisation approaches, various predictor feature spaces will be

created, and after a careful selection of predictor variables for each grassland trait

and within each feature space, the most suitable predictors will be chosen for the

final models for each grassland trait. The final models will then be interpreted

with regard to their predictive performances, and then used to predict the most

important grassland traits related to ecosystem services to show the potential of

non-destructive, hyperspectral monitoring techniques. Here, it is anticipated that

the accuracy of hyperspectral approaches might be affected by different [CO2]s,

since the latter are assumed to alter plant physiology. Therefore, the investigation

of the hyperspectral predictability of the grassland traits will be expanded to the

analysis of potential prediction biases that might occur due to combined analysis

of plots under [eCO2] and [aCO2].

Figure 3.2: Detailed work flow of the thesis’ main part. Note. aCO2 and eCO2 are
ambient and elevated CO2 concentrations, respectively. CFE is the CO2 fertilization
effect.

44



3.4 Investigations on H3

Due to complexity and the necessity of developing different methods for the

investigation of H 1 and H 3, two working packages deal with each of these

hypotheses (compare Figs 1.1 and 3.2). Consequently, to test the hypotheses, the

following five working packages will build the framework of the present thesis:

WP 1 Meteorological observations and CO2 concentrations have to be
aggregated to represent average conditions. Statistical models have
to be developed to link different average weather conditions and
varying CO2 concentrations with above-ground biomass productivity.
Model outputs will be investigated regarding if and how the CFE
depends on average weather conditions to test part one of H 1.

WP 2 The meteorological time series has to be analysed regarding the
occurrence of extreme climatic events. Changes in the response
of above-ground biomass to different CO2 concentrations between
consecutive years have to be linked to intervening extreme climatic
events to test part two of H 1.

WP 3 Statistical models to link biomass productivity with average weather
conditions have to be developed for the rings under ambient and
elevated [CO2], respectively. Potential future climate regimes have
to be created based on the observed weather conditions during the
experimental period. Biomass productivities will be predicted within
each regime and compared to projected climate change conditions in
years with a similar [CO2] compared to the experimentally enriched
one, to test H 2.

WP 4 Functions and classes have to be developed to manage, process, and
analyse hyperspectral data within the open-source software CRAN
R. Using chlorophyll data from the GiFACE plots, a preliminary
study on the feasibility of H 3 will be conducted.

WP 5 Different transformations of hyperspectral reflectance data have to be
delineated and linked to grassland traits related to ecosystem services
that are derived in the laboratory. The spectral transformations
will be investigated regarding their predictive performances for each
grassland trait, and the most suitable ones used to predict on a
high-resolution spatio-temporal level, and analysed regarding their
performances under different CO2 concentrations, to test H 3.
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Abstract The increase in atmospheric greenhouse gas con-

centrations from anthropogenic activities is the major driver of

recent global climate change (IPCC, 2013). The stimulation of

plant photosynthesis due to rising atmospheric carbon dioxide

concentrations ([CO2]) is widely assumed to increase the net
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primary productivity (NPP) of C3 plants - the CO2 fertiliza-

tion effect (CFE; Ainsworth & Rogers 2007; Arneth et al.

2010; IPCC 2013; Long 1991; Luo 2007; Nowak et al. 2004;

Soussana & Lüscher 2007). However, the magnitude and

persistence of the CFE under future climates, including more

frequent weather extremes, are controversial (Ainsworth &

Rogers, 2007; Arneth et al., 2010; Friedlingstein et al.,

2014; Hovenden et al., 2014; IPCC, 2013; Reich et al., 2014;

Reichstein et al., 2013; Smith et al., 2016). Here we use

data from 16 years of temperate grassland grown under ’free-air

carbon dioxide enrichment’ conditions to show that the CFE

on above-ground biomass is strongest under local average en-

vironmental conditions. The observed CFE was reduced or

disappeared under wetter, drier and/or hotter conditions when

the forcing variable exceeded its intermediate regime. This

is in contrast to predictions of an increased CO2 fertilization

effect under drier and warmer conditions (Wang et al., 2012).

Such extreme weather conditions are projected to occur more

intensely and frequently under future climate scenarios (IPCC,

2013). Consequently, current biogeochemical models might

overestimate the future NPP sink capacity of temperate C3

grasslands and hence underestimate future atmospheric [CO2]

increase.

Subject terms Climate Change, Climate-change ecology,

Ecophysiology, Grassland ecology

4.1 Main

Grassland covers approximately 26% of the terrestrial area (Foley et al., 2011)

and approximately 70% of the global farmland (Soussana & Lüscher, 2007). In
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Europe, approximately 38% of the agricultural area is covered by permanent mead-

ows and pastures (Food and Agriculture Organization of the United

Nations Statistics Division, 2011), which are mainly composed of C3 species.

As the photosynthesis of C3 plants responds positively to rising [CO2], C3 grass-

lands may play an important role in mitigating the increase of atmospheric [CO2]

(Ainsworth & Rogers, 2007; Arneth et al., 2010; Friedlingstein et al.,

2014; IPCC, 2013; Long, 1991; Luo, 2007; Nowak et al., 2004; Soussana &

Lüscher, 2007). However, the effects of elevated CO2 ([eCO2]) on the future

terrestrial carbon balance and the [eCO2]-induced carbon sink remain uncertain

because of the scarcity of experimental long-term field data (Booth et al., 2012;

Friedlingstein et al., 2014; IPCC, 2013; Schimel et al., 2015; Smith et al.,

2016).

Photosynthesis, which is the central mechanism of terrestrial carbon (C) uptake,

is primarily controlled by the fixation of CO2 through carboxylation and the

stomatal resistance that limits the CO2 supply (Ainsworth & Rogers, 2007;

Long, 1991; Luo, 2007; Nowak et al., 2004; Soussana & Lüscher, 2007).

In C3 plants, higher CO2 partial pressure under [eCO2] leads to an enhanced

carboxylation, concurrently reducing oxygenation and photorespiratory CO2 losses

(Long, 1991; Luo, 2007; Morison & Lawlor, 1999). As a consequence, net C

uptake is enhanced if the [CO2] increases (Ainsworth & Rogers, 2007; Long,

1991; Luo, 2007; Nowak et al., 2004; Soussana & Lüscher, 2007). Moreover,

plants growing under [eCO2] may reduce stomatal aperture since the C demand of

photosynthesis is met earlier, which decreases stomatal conductance. This results

in reduced transpirational water loss and increased water-use efficiency (WUE),

which can translate into slower soil moisture depletion and, thus, reduced water

stress for plants (Ainsworth & Rogers, 2007; Morgan et al., 2004; Owensby

et al., 1999; Soussana & Lüscher, 2007; Volk et al., 2000). Therefore, in this

classic carbon-centric view, the CFE can be assumed to be particularly high under

drier and/or hotter weather conditions.

However, the magnitude and persistence of the CFE must be questioned under

changing environmental conditions, particularly if climate extremes occur more

frequently (Friedlingstein et al., 2014; Hovenden et al., 2014; Reich et al.,

2014; Reichstein et al., 2013; Smith et al., 2016). Liebig’s law-of-the-minimum
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and the multiple-limitation hypotheses indicate that plant biomass production is

not solely limited by the C supply but also by a set of cofactors including water

availability, temperature and solar radiation (Farrior et al., 2013; Fatichi et al.,

2014; Körner, 2015; Reich et al., 2014). Accordingly, the C uptake per unit

leaf area and the plant growth rate may not strictly correlate, especially when

C uptake is dependent on tissue growth (Fatichi et al., 2014; Körner, 2015).

Under such circumstances, these environmental controls on tissue growth govern

the C demand and, hence, the C uptake of plants (Fatichi et al., 2014; Körner,

2015). In contrast to the carbon-centric view, the greatest CFE would, therefore,

be expected when environmental conditions are favourable for plant growth, that

is close to the average conditions to which the plant community is adapted.

Free-air carbon dioxide enrichment (FACE) experiments represent the most ap-

propriate technology for testing the effects of multiple environmental factors on CFE

(Long, 1991; Nowak et al., 2004; Soussana & Lüscher, 2007). Few studies have

addressed the CFE of grasslands with regard to the changing environmental condi-

tions over timescales of several years (Morgan et al., 2004; Owensby et al., 1999).

Those studies have primarily relied on forced manipulations (Dukes et al., 2005;

Hovenden et al., 2014; Reich et al., 2014; Shaw et al., 2002) which may cause

unintended artificial alterations (Dukes et al., 2005). The aim of our study was to

investigate the influence of real-world climatic variations on the CFE of temperate

C3 grassland by the globally longest FACE time series gathered in the Giessen

FACE experiment (1998-2013, see Supplementary Figures 4.4 - 4.6). As no standard

approach for such an analysis is available, we developed a new custom-tailored

technique termed moving subset analysis. This approach is explained in detail in the

Methods and the Supplementary Information (see Supplementary Figures 4.7 - 4.9).

Briefly, the approach includes the following main features. Initially, the available

time series (1998-2013) from the experiment is accumulated to averages or sums of

a three-month period before harvest each year (for experiment-support variables,

for example, average air temperature, see Supplementary Table 4.1). Then, the

sequence of the years is rearranged in ascending order regarding the level of each

environmental variable (forcing experiment-support variable), to form five-year

subsets with similar environmental characteristics. In the next step, the CFE for

each subset is derived as the slope between the total above-ground biomass (TAB)
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and the average [CO2] three months before harvest (both logarithmus naturalis

(ln)-transformed). Finally, the calculated CFE values and their significance (slope

and p value of the regression models) are plotted against the average of each

forcing experiment-support variable in the subset (see Figures 4.1 and 4.2, and

Supplementary Figures 4.8 and 4.9) to interpret the environmental influence of

single and combinations of the experiment-support variables on the CFE. In the

following, the definition of ’intermediate climatic conditions’ refers to the mean

± 1 s.d. of the respective experiment-support variable three months before the

harvest (vertical dashed lines in Figures 4.1 and 4.2; see Supplementary Table 4.2

for the values). More extreme environmental conditions can be assumed when the

five-year averages of the experiment-support variables exceed the thresholds of their

mean ± 1 s.d. of the entire time series.

We find the strongest CFE when intermediate environmental conditions prevail

in the three months before harvest, as evidenced by the cumulative rainfall (168

mm, Fig. 4.1a), groundwater table height (−90 cm, Fig. 4.1b), vapour pressure

deficit (0.67 kPa, Fig. 4.1c) and evapotranspiration (113 mm, Fig. 4.2d). These

conditions were also characterized by low to intermediate five-year averages of

air temperature and solar radiation whereas wind speed was higher than average

(see the rows beneath the CFE plot for the respective environmental variable

in Fig. 4.1). Likewise, the most prominent CFE was observed under conditions

of intermediate air temperature (17.4◦C, Fig. 4.2a) and wind speed (2.42 m s−1,

Fig. 4.2c), when five-year averages of rainfall and the height of the groundwater

table were on an intermediate level, too. The same trend was observed for a

multi-scalar drought index based on the climatic water balance (the standardized

precipitation evapotranspiration index, SPEI; Fig. 4.1d), which shows the greatest

CFE under weak drought conditions (negative values).
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Figure 4.1: Dependence of the CO2 fertilization effect (CFE) on drought-
related variables. a-d, The upper row depicts the CFE dependent on rainfall (a),
groundwater table height (b), vapour pressure deficit (c), and standardized precipitation
evapotranspiration index (d); the accompanying environmental conditions are plotted
in the rows underneath. See Methods and Supplementary Information for a detailed
explanation of the calculations. Point sizes increase with decreasing p values as shown
in the legend. Horizontal lines depict the absolute range of the experiment-support
variable in the respective subset. The vertical dashed lines mark the thresholds of the
intermediate and extreme environmental regimes. The solid grey line depicts the average
total above-ground biomass (TAB) of all observations. Due to subset-wise aggregation
regarding the forcing experiment-support variables, the accompanying experiment-support
variables’ values do not necessarily indicate conditions within single years.

56



4.1 Main

Figure 4.2: Dependence of the CO2 fertilization effect (CFE) on heat-related
variables. a-d, The upper row depicts the CFE dependent on air temperature (a),
solar radiation (b), wind speed (c) and evapotranspiration (d); the accompanying
environmental conditions are plotted in the rows underneath. For a description of the
graphic, see the caption of Fig. 4.1.

Regarding water-related variables, the CFE is, in theory, characterized by an

increased WUE of plants exposed to [eCO2] (Morgan et al., 2004; Nowak et al.,

2004; Owensby et al., 1999; Volk et al., 2000), which is advantageous if there
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is the need for plants to cope with drier conditions when water scarcity may

limit growth (Hovenden et al., 2014; Morgan et al., 2004; Nowak et al., 2004;

Reich et al., 2014). Under ample water availability, the benefit from an increased

WUE is less important. As the stomatal resistance is lower when more water is

available, the sensitivity of photosynthesis to an altered [CO2] should essentially

decrease with water availability. Notably, this ability to modulate stomatal aperture

appears to be important even in the strong mesic ecosystem of the current study,

as suggested by the reduced CFE under conditions of water surplus (Fig. 4.3).

Plants that are adapted to a good water supply should be susceptible to improved

WUE under [eCO2] in combination with reduced water availability. However, the

reduced CFE found under drier conditions (Fig. 4.3) indicates a limitation of the

positive effect of enhanced WUE under [eCO2], which stays in contrast to previous

studies (Ainsworth & Rogers, 2007; Morgan et al., 2004; Nowak et al., 2004;

Owensby et al., 1999; Volk et al., 2000). Similar observations were reported in

FACE experiments on drier temperate grasslands in Australia (Hovenden et al.,

2014) and in the United States (Reich et al., 2014). These observations were

explained by resource limitation if water scarcity generally limited plant growth

(Hovenden et al., 2014; Reich et al., 2014) due to insufficient turgor pressure

(Fatichi et al., 2014; Körner, 2015). This effect may be exacerbated by limited

microbial activity and nutrient availability in dry soils, factors that contribute to

multiple environmental limitations (Ainsworth & Rogers, 2007; Hovenden

et al., 2014; Nowak et al., 2004).

The weak or nonsignificant CFEs under warmer conditions (Fig. 4.3) are also

in contrast to the classic carbon-centric view, which assumes an enhancement

of the CFE under higher air temperature when the ratio of photosynthesis to

photorespiration is decreased (Long, 1991; Morison & Lawlor, 1999; Wang

et al., 2012). However, for increasing air temperatures, a concomitant increase

in the vapour pressure deficit (see also Supplementary Tables 4.3 and 4.4) and

resulting stomatal closure was shown to be more important than the direct [CO2]

effects on the photosynthetic metabolism (Oren et al., 1999). Thus, in combination

with the reduced stomatal conductance under [eCO2], stomata closure can cause

a strong reduction in transpirational cooling, which is likely to aggravate heat

stress, especially under conditions of low wind speed (De Boeck & Verbeeck,
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Figure 4.3: Synopsis of the CO2 fertilization effect dependent on different
environmental conditions during the three months preceding the harvest. The
columns are ordered from wetter to drier on the basis of the standardized precipitation
evapotranspiration index (SPEI).

2011; Morison & Lawlor, 1999) (Figure 2c). Moreover, heat stress may even

be exacerbated as high air temperatures are frequently related with dry periods

(Figures 4.1a and 4.2a,b and Supplementary Tables 4.3 and 4.4), thereby inducing

stomatal closure (De Boeck & Verbeeck, 2011).

Irrespective of previous work on the CO2 fertilization effect, we describe for the

first time within a 16-year-long data set from a mesic grassland that environmental

limitations other than CO2 availability govern the grassland CO2 response in

both directions (low and high extremes), which is in clear contrast to the carbon-

centric view on [CO2] effects. Our results do not support the assumption that the

CFE is greater with lower water availability and higher air temperature (Long,

1991; Morison & Lawlor, 1999; Wang et al., 2012), conditions under which

above-ground biomass production is reduced per se (see Figures 4.1a and 4.2a).

The strongest benefit from rising [CO2] can be expected under ’average’ climatic

conditions (that is, those conditions to which the plant community is adapted).

The CFE decreases when environmental conditions approach boundaries of ’too

hot’, ’too dry’, or ’too wet’, that is, extreme weather periods that may occur more

frequently in the coming decades.

Beyond increased air temperatures (high confidence), an increased frequency

of meteorological droughts (medium confidence) and heavy precipitation events
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(high confidence) is projected for future summers in Central Europe (IPCC, 2013).

Therefore, the CFE, which currently represents a significant global C sink (IPCC,

2013), will probably decline under future climatic conditions. As the total above-

ground biomass production of the investigated grassland decreases under such

conditions, terrestrial ecosystems may turn from C sinks to C sources earlier than

previously projected (for the mid twenty-first century) (Cox et al., 2000). Such a

change in ecosystem services was observed during a strong Europe-wide reduction

of the net primary productivity, resulting in a net source of CO2 caused by the

pronounced heat and drought in 2003 (Ciais et al., 2005). Notably, in this European

’heat wave year’, a negative effect of [eCO2] on biomass production was observed in

our FACE experiment (see Supplementary Figures 4.5 and 4.6), which supports

our findings. A weakening of the CFE accompanied with a reduced terrestrial C

sink capacity under the more frequent extreme climatic conditions in the coming

decades may thus accelerate the increase of atmospheric [CO2] and global warming.

Acknowledgements

The contribution of the following individuals to the initiation, construction, instal-

lation and long-term, ongoing maintenance of the Giessen FACE experiment is
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4.2 Methods

4.2.1 Experiment.

The experimental site is a non-grazed and extensively managed species-rich grassland

located near Giessen, Germany (50° 32’ N and 8° 41’E; 172 m a.s.l.). A FACE

experiment has been in operation here since 1998. In total, six FACE rings of

8 m in diameter were established (for a detailed description, see Jäger et al.

2003 and Supplementary Fig. 4.4). To maintain an undisturbed soil, the sensor

installation inside the rings proceeded non-invasively. In three rings, the grassland

vegetation has been exposed to elevated CO2 conditions by enriching the air during

daylight hours to ∼20% above the ambient [CO2]. The other three rings (controls)

are operated under ambient [CO2]. The CO2 enrichment showed slight variations

within and among years that were caused by variable wind conditions and technical

failures due to material fatigue in 2012 and 2013 (see Supplementary Fig. 4.5

b). The C3 vegetation was compared in all rings and dominated by the grasses

Arrhenatherum elatius, Holcus lanatus and Poa pratensis, accompanied by a forb

fraction including one legume species present in low abundance (Kammann et al.,

2005). The grassland was fertilized with 40 kg ha−1 yr−1 calcium ammonium nitrate,

which equals the annual N deposition in many intensively used agricultural regions

(Reich et al., 2001), supplemented by 600 kg ha−1 yr−1 of 10% P2 O5 + 15% K2O

+ 3% MgO and 33% CaO + MgO each spring beginning in 1995 (Kammann et al.,

2005). The soil is a fluvic gleysol (Spaargaren et al., 1994) with a sandy clay

loam layer above a clay layer of variable depth (Kammann et al., 2005).

4.2.2 Climate and vegetation data.

Climate data were taken from meteorological stations on the field site operated by

the Hessian Agency for Nature Conservation, Environment and Geology (HNLUG),

the Environmental Monitoring and Climate Impact Research Station Linden (UKL)

and the German Meteorological Service (DWD). Other variables were measured

within each ring. All data sets cover the time period from 1998 to 2013. Data

measured within each ring were TAB and [CO2] of the air (ring-wise data). The

biomass was cut each year at the beginning of September at approximately 5 cm
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above ground. The yield of each ring was oven dried at 105◦C to obtain TAB. [CO2]

was measured in the centre of each ring at 60 cm above ground with an infrared gas

analyser (LI-COR 6252). Air temperature and relative air humidity were used to

calculate the vapour pressure deficit (Allen et al., 1998). Evapotranspiration was

derived on a daily basis by the FAO Penman-Monteith method (Allen et al., 1998).

It was used to calculate the monthly standardized precipitation evapotranspiration

index (SPEI), which is a multi-scalar drought index. Climatic and groundwater-

related data are referred to as experiment-support data. The characteristics of the

ring-wise and experiment-support data can be found in Supplementary Table 4.1.

4.2.3 Aggregation of variables.

[CO2] data of each ring were aggregated from the three months preceding the

harvests in September, with all values being used to calculate the average (refer

to Supplementary Table 4.1, and Supplementary Figures 4.5 and 4.6). For air

temperature, wind speed and vapour pressure deficit, daily average values were

calculated from half-hourly measurements. For rainfall, the solar radiation and

evapotranspiration, daily sums were determined. These daily values were subse-

quently aggregated to averages or sums for the respective three months preceding

the harvest to obtain the experiment-support variables. The monthly values for the

SPEI were averaged to obtain the respective values for the three months prior to

harvest.

4.2.4 Data analysis.

Prior to the analysis of the CFE, all experiment-support variables were tested by

cross-correlation to reveal the interactions among them. For this process, Pearson’s

correlation coefficient was used with a confidence interval of 0.95 (see Supplementary

Table 4.3). We note that Pearson’s correlation revealed a close correlation between

the TAB and the [CO2] (Pearson r : 0.46, p < 0.001, n = 96).

Due to the variable CO2 enrichment, a methodology was developed that provides

robust CFE estimates regarding the inherent variability of the CO2 enrichment

in long-term experiments such as the GiFACE (for theoretical considerations re-

fer Supplementary Fig. 4.10; for an analysis excluding two years with distinctly
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different CO2 enrichment refer to Supplementary Fig. 4.11). The details of the

moving subset analysis and data pre-/post-processing are described in the Supple-

mentary Information. Essentially, (i) a copy of the total data set was created for

each experiment-support variable (represented by the average or sum in the three

months prior to the harvest) and the data were rearranged in ascending order of the

respective variable (forcing experiment-support variable, for order compare Supple-

mentary Figures 4.5 and 4.6). The resulting data sets were iteratively partitioned

into subsets, each comprising five years and thus thirty ring-wise observations (both

ambient and elevated rings, six rings per year), with similar characteristics for

the respective variable. Consequently, the first subset contains the five years with

the lowest and the last subset contains the five years with the highest levels of

the forcing experiment-support variable. After the first subset was identified, the

second, third, and so on subsets were compiled by dropping the year with the lowest

characteristics and adding the year with the next highest characteristics of the re-

spective variable in the subset. (ii) The relation between the ring-wise observations

with the dependent variable TAB and the predictor variable [CO2] was calculated

through regression analysis within each subset. Here, the slope of the regression

model is the magnitude and the p value is the significance of the CFE under the

respective environmental conditions. We compared this method with frequently

used approaches using only biomass yields based on a factorial treatment design

(see Supplementary Fig. 4.12). (iii) In the final diagram (upper row in Figures 4.1

and 4.2), the magnitude of the CFE (y axis, slope of regression model) and its sig-

nificance (point size, p value that slope is 6= 0) were plotted against the average and

absolute range of the forcing experiment-support variable in the five-year subsets

(x axis; compare Supplementary Figures 4.8 and 4.9). The grey line depicts the

averaged TAB of all observations in the subset. The averaged values per subset are

plotted alongside the accompanying experiment-support variables (see lower panels

Figures 4.1 and 4.2). Here, the y tick marks indicate the minimum and maximum

of the subset-wise averaged experiment-support variable. Interpreting Figures 4.1

and 4.2, the reader may keep in mind two issues regarding the experiment-support

variables. (1) The accompanying variables’ values within a subset represent the

five-year average grouped according to the forcing experiment-support variable and,

thus, may arise from a combination of variable years. They must not necessarily
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indicate conditions within single years. (2) Given the complexity of statistical

interrelations between the environmental variables (for Pearson correlations among

environmental variables see Supplementary Tables 4.3 and 4.4 and Supplementary

Section 4.3.3.3), any inference of the interplay between the environmental variables

and the CFE must be interpreted with caution. To give an easy-to-understand

summary of the CFE dependent on the various experiment-support variables the

thresholds of the environmental regimes were used (see Fig. 4.3, for thresholds

see Supplementary Table 4.2). Arrows in Fig. 4.3 generally show positive CFEs

while horizontal bars represent environmental conditions without a clear CFE. The

strength of the CFE indicated by the colour and the length of the arrows is assessed

via the average slope of the regression models within the environmental regimes

(thicker black arrows – average CFE > 1.5; smaller grey arrows – 0.25 < average

CFE < 1.5). Environmental regimes with fewer than two significant regression

models (p < 0.05) are defined as not significant (grey bars). To enhance readabil-

ity, the experiment-support variables are ordered from droughty to mesic and a

grey shade gradient indicates the variables’ values. All statistical analyses were

performed with the R statistical software version 3.1.2 (R Core Team, 2014).

Code availability.

The developed methodology is available as open source CRAN R package ’msaFACE’

(Obermeier et al., 2016).

Data availability.

The data set generated and analysed during the current study has been de-

posited in the Laboratory for Climatology and Remote Sensing repository (DOI:

http://dx.doi.org/10.5678/LCRS/DAT.265; Obermeier 2016), and is included as

an example within the CRAN R package ’msaFACE’ (Obermeier et al., 2016).
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4.3 Supplementary Information

The Supplementary Information contains figures, tables and text (in respective

order). The sequence of the figures follows the order of citation in the main text. The

text is structured as follows: data, methods and a combined results and discussion

section. Initially, additional information on the aggregation and derivation of

the experiment-support variables is provided (Supplementary Section 4.3.1). We

continue with a supporting explanation of how we have derived the CO2 fertilization

effect (CFE) in our study termed CFESlope (Supplementary Section 4.3.2.1). Refer

to Supplementary Section 4.3.3.1 for the distribution characteristics of the dependent

and independent variables of the underlying regression model. The new method

(CFESlope) is compared to several approaches that derive the CFE based on a

factorial treatment design (Supplementary Section 4.3.2.2 and Supplementary

Section 4.3.3.2). Furthermore, we show the high-order correlations of the experiment-

support variables aggregated within the subsets (Supplementary Section 4.3.2.3 and

Supplementary Section 4.3.3.3). Finally, we analyse and discuss a possible time

dependence of the CFE in our study (Supplementary Section 4.3.2.4).

Supplementary Figure 4.4: Experimental site. Aerial photograph provided by Thomas
Wißner (© 2013).
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Supplementary Figure 4.5: Long-term time series of the GiFACE. Barplot of the
late-summer total aboveground biomass (TAB) in the different rings (a), the [CO2] of
the ambient rings (b) and selected experiment-support variables (c - e). Points depict
daily values (left y-axis), line segments in (b) and (c - e) show the CO2-ratio between
the elevated and ambient rings (right y-axis) and the aggregated values used for the
moving subset analysis (three months preceding harvest, right y-axis), respectively. The
daily means of the [CO2] in the ambient rings were derived by averaging all measured
values (24 h at 60 cm above ground). The CO2-ratios were calculated as the percentage
change of the three-months averaged [CO2] of all measured values from the elevated
rings compared to the ambient rings. The grey numbers in the lower panels indicate the
index of the year when the data were rearranged in ascending order of the respective
experiment-support variables.
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Supplementary Figure 4.6: Long-term time series of the GiFACE. (a) Barplot of the
late-summer total aboveground biomass (TAB) in the different rings and (b - f) selected
experiment-support variables. For the description, see the caption for Supplementary
Fig. 4.5.
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Supplementary Figure 4.7: Distribution characteristics of the dependent and inde-
pendent ring-wise variables (six rings, 16 years, n = 96). Box plot with the median and
the 1st and 3rd quartiles; the lowest value is within 1.5 interquartile range of the lower
quartile and the highest value is within 1.5 interquartile range of the upper quartile,
extreme outliers (first and third column), and the frequency distribution with the results
of the Kolmogorov-Smirnov test on normality (KS-Test; second and fourth column) for
(a) the logarithmus naturalis of [CO2], (b) the logarithmus naturalis of TAB, and (c) the
detrended logarithmus naturalis of [CO2].
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Supplementary Figure 4.8: Extended explanation plot describing how the CO2 fer-
tilization effect is determined on the basis of the moving subset analysis. To illustrate,
the forcing experiment-support variable rainfall is used as an example. Two exemplary
subsets are presented in detail: (a) the strongest and (b) the weakest CO2 fertilization
effect (CFE), which correspond to the 5-years moving subset N◦ 5 (left regression plot)
and N◦ 10 (right regression plot).
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Supplementary Figure 4.9: Overview of the processing steps and an example plot
using rainfall sums. Rectangles in (a) outline data types and parallelograms depict
methods. The results in (b) depict the influence of the rainfall sum on the relation
between CO2 concentration ([CO2]) and the total aboveground biomass. It shows the
strength of the CO2 fertilization effect (CFE) (y-axis) plotted against the average (points)
and the absolute range (horizontal lines) of the variable in the respective subset. Here,
the size of the points shows the significance of the CFE, indicated by the p-value of the
regression model in the subset within four classes. To depict the general response of the
biomass to the respective experiment-support variable, the average total aboveground
biomass (TAB) of all rings in the subsets is plotted in grey. Dashed vertical lines depict
the arithmetic mean ± 1 standard deviation (δ) of the experiment-support variable over
the entire time series to reveal the intermediate environmental conditions that have
occurred during the experiment.
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Supplementary Figure 4.10: Schematic description of the CO2 fertilization effect
under idealized (a) and real-world (b) conditions. Under idealized conditions (a), the
CO2 enrichment is constant over time. Consequently, the biomass depends only on
environmental conditions (four different conditions are exemplary depicted by colour
in the figure). In this case, the CO2 fertilization effects (CFE) calculated with the
new method (slope) and calculated as the ratio between ambient and elevated biomass
yield are similar for all time slides. However, since the experiment has been conducted
under natural environmental conditions, the CO2 fertilization is not constant (b, see
Supplementary Fig. 4.8 for actual CO2-concentrations in the moving subsets). This
causes varying CO2-concentrations over time, which do not affect the CFE derived as
the slope of the linear regression but have a considerably high effect on the ratio between
ambient and elevated biomass yields.
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Supplementary Figure 4.11: Analysis of the CO2 fertilization effect dependent on
various experiment-support variables exluding the years with exceptional low and high
CO2 enrichment (2012, 2013, see Supplementary Fig. 4.5 for actual CO2-ratios in the
years). The results reveal very similar trends compared to those including all available
years (1998-2013, Figures 4.1 and 4.2). This highlights that the used method is stable
against occurring variations in the CO2 enrichment and thus, that the CO2 fertilization
effect of this study could be analysed using the whole time series.
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Supplementary Figure 4.12: Comparison of different approaches to derive the CO2

fertilization effect (CFE) with the approach used in the present study (x-axis). The
y-axis shows, (a) the difference of the aboveground biomass in the elevated rings minus
the aboveground biomass in the ambient rings, (b) the ratio of the aboveground biomass
in the elevated rings to the aboveground biomass in the ambient rings, (c) the relative
change of aboveground biomass in the elevated rings compared to aboveground biomass
in the ambient rings and (d) the adapted biomass-ratio approach using all possible
combinations of the change in aboveground biomass in the elevated rings relative to
aboveground biomass in the ambient rings. The grey lines depict the linear regression
models between the dependent and independent variables using all observations. The
black lines present the regression models excluding the two outliers in grey color.
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Supplementary Table 4.1: Ring-wise and experiment-support data.

Measurements Temporal No. of Sensors Aggregation (three months
resolution measurements prior to harvest)

TAB on harvest 1 each ring - -
CO2 concentration hourly 1 each ring Infrared gas analyser mean of all values

(LI-COR 6252)
Air temperature half-hourly 1 Pt-100 resistance mean of daily means

thermometer
Wind speed half-hourly 1 Cup Anemometer mean of daily means
Solar radiation half-hourly 1 Pyranometer sum of all values
Relative humidity half-hourly 1 Hygro-thermo transmitter mean of daily means
Rainfall half-hourly 3 Hellmann samplers sum of all values
Groundwater daily 3 gauges mean of daily values
VPD half-hourly - - mean of daily means
FAO PM ET0 daily - - mean of daily means
SPEI monthly - - mean of monthly values

TAB – Total Aboveground Biomass; VPD – Vapour Pressure Deficit; FAO PM ET0 – Evapotranspiration (cal-
culated by the FAO Penman-Monteith method); SPEI – Standardized Precipitation Evapotranspiration Index

Supplementary Table 4.2: Thresholds for the environmental regimes.

Experiment-support low moderate intermediate elevated intermediate high
variable

Rainfall (mm) < 145.6 145.6 – 179.7 179.7 – 213.8 > 213.8
Groundwater (cm) < -96.2 -96.2 – -90.5 -90.5 – -84.7 > -84.7
VPD (kPa) < 0.61 0.61 – 0.69 0.69 – 0.76 > 0.76
Air temperature (◦C) < 16.8 16.8 – 17.4 17.4 – 17.9 > 17.9
Solar radiation (MJ m−2) < 1,488 1,488 – 1,592 1,592 – 1,695 > 1,695
Wind speed (m−1) < 2.33 2.33 – 2.42 2.42 – 2.50 > 2.5
FAO PM ET0 (mm) < 103.3 103.3 – 113.1 113.1 – 122.9 > 122.9
SPEI < -0.37 -0.37 – 0.03 0.03 – 0.44 > 0.44

VPD – Vapour Pressure Deficit; FAO PM ET0 – Evapotranspiration (calculated by the FAO
Penman-Monteith method); SPEI – Standardized Precipitation Evapotranspiration Index
Thresholds are defined by the mean and mean ± 1 standard deviation for the respective
experiment-support variable when averaged in the different subsets.
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Supplementary Table 4.3: Pearson’s correlation coefficients (lower triangle) and p-
values (upper triangle) of the experiment-support variables.

Experiment-support Rainfall Ground- VPD Air Solar Wind FAO PM SPEI
variable water temperature radiation speed ET0

Rainfall 0.59 0.05 <0.05 <0.05 0.35 0.63 <0.0001
Groundwater −0.15 0.55 0.24 0.45 0.83 0.14 0.50
VPD −0.49 0.16 <0.01 <0.01 0.72 <0.01 <0.001
Air temperature −0.57 0.31 0.74 <0.001 0.23 <0.05 <0.001
Solar radiation −0.57 0.2 0.72 0.76 0.12 0.16 <0.01
Wind speed 0.25 −0.06 −0.1 −0.32 −0.4 0.70 0.36
FAO PM ET0 −0.13 0.35 0.64 0.51 0.37 −0.1 0.08
SPEI 0.9 −0.18 −0.8 −0.75 −0.72 0.24 −0.45

VPD – Vapour Pressure Deficit; FAO PM ET0 – Evapotranspiration (calculated by the FAO
Penman-Monteith method); SPEI – Standardized Precipitation Evapotranspiration Index

Supplementary Table 4.4: High-order correlation matrix of the experiment-support
variables within the subset-wise aggregations. Please note that the two triangles are not
identical because of the aggregation of the variables for different temporal subsets.

AT WND GWL SR

Trans p R2 Trans p R2 Trans p R2 Trans p R2

AT – – – exp <0.001 0.8 ln n.s. 0.03 ln <0.001 0.96
WND no <0.001 0.78 – – – no <0.01 0.64 ln <0.01 0.62
GWL no <0.05 0.46 ln n.s. 0.28 – – – ln n.s. 0.05
SR exp <0.001 0.95 exp <0.01 0.52 no n.s. 0.18 – – –
PPT exp <0.001 0.77 exp <0.05 0.38 exp <0.01 0.63 exp <0.001 0.87
VPD ln <0.001 0.9 exp <0.05 0.45 exp <0.01 0.5 ln <0.001 0.88
SPEI exp <0.001 0.92 exp <0.01 0.66 exp <0.01 0.55 exp <0.001 0.94
ET0 ln <0.01 0.67 ln n.s. 0.11 exp n.s. 0.1 ln n.s. 0.19

PPT VPD SPEI ET0

Trans p R2 Trans p R2 Trans p R2 Trans p R2

AT no <0.001 0.79 ln <0.001 0.84 no <0.001 0.88 exp <0.001 0.84
WND ln n.s. 0.12 ln n.s. 0.16 exp n.s. 0.13 ln n.s. 0.26
GWL ln <0.001 0.72 ln <0.05 0.46 exp n.s. 0.18 exp n.s. 0.04
SR no <0.001 0.8 no <0.001 0.88 no <0.001 0.94 no <0.01 0.56
PPT – – – exp <0.001 0.77 no <0.001 0.95 exp <0.01 0.53
VPD exp <0.001 0.78 – – – no <0.001 0.9 no <0.001 0.79
SPEI exp <0.001 0.97 exp <0.001 0.93 – – – no <0.001 0.84
ET0 no <0.05 0.33 exp <0.001 0.77 no <0.05 0.38 – – –

AT – Air Temperature; WND – Wind Speed; GWL – Groundwater Level; SR – Solar Radiation;
PPT – Rainfall; VPD – Vapour Pressure Deficit; SPEI – Standardized Precipitation Evap-
otranspiration Index; ET0 – Evapotranspiration (calculated by the FAO Penman-Monteith
method)
Trans column indicates the transformation (no – not transformed; ln – logarithm naturalis;
exp – exponential) for the aggregated accompanying variables (row-wise) with the best fit to
the aggregated forcing experiment-support variable.
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4.3.1 Supplementary Data

We have supplemented the experiment-support variables by two multi-factorial

variables: (i) evapotranspiration and (ii) the standardised precipitation evapotran-

spiration index (SPEI) for drought indication.

The evapotranspiration for a homogeneous grass canopy was estimated on a

daily basis using the FAO Penman-Monteith method (FAO PM ET0; Allen et al.

1998), implemented in the sirad package (CRAN R; Bojanowski et al. 2013; R

Core Team 2014). The input variables were the daily minimum and maximum

air temperature (◦C), daily mean wind speed (m s−1), daily solar radiation sum

(MJ m−2 d−1), and the mean daily vapour pressure (kPa). The latter was derived

as (Allen et al., 1998):

es = 0.6108 · exp

(
17.27 · Tmean

Tmean + 237.3

)
(4.1)

vap pres = RHmean/100 · es , (4.2)

where Tmean is the mean daily air temperature in◦C, RHmean is the mean daily

relative humidity in %, and vap pres is the mean daily vapour pressure in kPa.

Additional input parameters were the clear sky transmissivity (cst), altitude above

sea level (165 m), height of the wind speed measurement (2 m), and the latitude of

the study site (50.053◦N). The cst, which is the ratio between the measured solar

radiation and the extra-terrestrial irradiance for clear sky days, was derived (cst

= 0.725) by means of the reference solar radiation (sirad, CRAN R; Bojanowski

et al. 2013; R Core Team 2014).

The FAO PM ET0 was used to derive the standardised precipitation evapo-

transpiration index (SPEI; Vicente-Serrano et al. 2010) on a monthly basis,

which is a multi-scalar drought index. The SPEI is based on the climatic water

balance defined by the total amount of precipitation minus evapotranspiration. The

SPEI package (CRAN R; R Core Team 2014; Vicente-Serrano et al. 2010)

was used for its calculation. Essentially, the data are transformed to a Gaussian

standard distribution with zero mean and a standard deviation of one, assuming a

Log-logistic distribution and using probability weighted moments for parameter

estimation. Thus, a self-calibrating and standardized index for a given location is
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obtained (negative values indicate dry conditions and positive values indicate wet

conditions).

4.3.2 Supplementary Methods

4.3.2.1 Extended explanation of the method used to derive the

CO2 fertilization effect

In our study, the CFE was calculated by the regression of the ln (logarithmus

naturalis) transformed total aboveground biomass (TAB in grams dry weight per

square meter) with the actual ln transformed [CO2] measured in the centre of each

ring (parts per million, average of three months preceding the harvest) (see the

Methods section and Supplementary Figures 4.8 and 4.9). Here, all observations

(both treatments, ambient and elevated) were used. For a better understanding,

Supplementary Fig. 4.8 shows the determination of the CFE, which is the basis of

the entire moving subset analysis presented in Supplementary Fig. 4.9, with rainfall

as an example of an experiment-support variable.

1. In the first step, the dataset containing ring-wise and experiment-support vari-

ables is rearranged in ascending order of the rainfall sum (forcing experiment-

support variable) in the three months before harvest (Supplementary Fig. 4.9).

The total dataset is then partitioned into subsets where each contains 5 years

featuring similar environmental characteristics. In case of the rainfall, the first

subset encompasses the five driest years. For the second one, the year with

the lowest rainfall sum is dropped and replaced by the year with the sixth

lowest rainfall sum to achieve a four years overlap of adjacent subsets. This is

repeated until the last subset is reached which encompasses the five wettest

years. With 16 years (1998-2013) of available data and the four-year overlap

12 subsets are created. Please note that by not grouping consecutively but

ordered according to their numerical characteristics we are able to analyse

the CFE-environment relationship starting from low via moderate to high

values of the forcing experiment-support variable.

2. Supplementary Fig. 4.8 reveals that the CFE represents the amount of change

in the TAB concomitant with the amount of change in the [CO2]. The CFE is
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derived as the slope of the regression model between [CO2] and TAB, which are

calculated separately within each of the subsets defined above (presented for

two rainfall subsets in Supplementary Fig. 4.8). Before regression modelling,

the dependent variable (TAB) and the explanatory variable ([CO2]) were

transformed to their logarithmus naturalis to strengthen the statistical validity

of the regression models (see Supplementary Results and Supplementary

Fig. 4.7). By considering six rings for each year and a 5-year subset, every

regression is based on 30 samples (Supplementary Fig. 4.8). Consequently,

the significance of the CFE was derived as the p-value of the slope in the

regression model for each subset.

3. By presenting the slope and its significance against the sum of the rainfall in

the respective subset, the influence of rainfall on the CFE is revealed. The

results are presented in a comprehensive way in Figures 4.1 and 4.2. For a

more detailed description of the Figures, see Supplementary Fig. 4.9 b and

its caption.

4.3.2.2 Determination of the CFE: novel approach of this study compared

to common approaches

We compare the yearly CFE derived as the slope of the regression model (CFESlope,

newly developed approach, this study) with the most common options to derive

the CFE on the basis of a factorial treatment design (results are presented in

Supplementary Fig. 4.10). These approaches include the calculation of the CFE

based on (1) the simple difference of the TAB in the elevated rings (eTAB) minus

the TAB in the ambient rings (aTAB) (CFEE−A), (2) the averaged eTAB divided by

the averaged aTAB (CFEE/A−Ratio) and (3) the difference of the eTAB minus aTAB

divided by the aTAB (CFEE/A−change). Moreover, (4) we have slightly adapted

the latter approach by using the relative change in the eTAB compared to the

aTAB for each possible combination in one year. Encompassing three elevated and
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three ambient rings, nine values result for one year, whose average represents the

percentage change of eTAB relative to aTAB for one year (CFEbiomass−ratio):

ratio =
3∑
i=1

3∑
k=1

ei − ak
ak

(4.3)

where:

ei = biomass yield in elevated ring (i)

ak = biomass yield in ambient ring (k)

CFEbiomass−ratio =
ratio

32
(4.4)

In the final plots (see Supplementary Fig. 4.10), the CFE-values of the different

approaches are plotted against the CFESlope of the linear regression models, includ-

ing and excluding outliers. Aware that expected differences might be explained

by variations of the actual CO2 enrichment, we have complemented this analysis

with an schematic overview of the CFE calculation based on different calculations

(see Supplementary Fig. 4.12). Therefore, we compare the CFEbiomass−ratio with

the CFESlope, under idealized experimental conditions and under more realistic

conditions which included a varying [CO2].

4.3.2.3 Method to derive a high-order correlation matrix

Situated in a real-world environment, most of the experiment-support variables

are highly correlated (see the Methods section and Supplementary Table 4.3).

Because of frequently non-linear relationships of such environmental variables, we

have determined the correlations of the experiment-support variables using different

transformations. To this end, the subset-wise aggregations of the experiment-support

variables were used, because we describe the CFE-environment relations within

these. For each subset defined by the forcing experiment-support variable (columns

in Supplementary Table 4.4, and compare the upper panels in Figures 4.1 and 4.2)

the average of the accompanying experiment-support variables within the subset was

derived (compare lower panels Figures 4.1 and 4.2). Three transformation modes

(logarithmus naturalis, unchanged and exponential) were applied to the averaged

accompanying experiment-support variables. To highlight any strong interactions
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of the subsets, the correlations between the transformations of the accompanying

and forcing experiment-support variables (subset-wise aggregated) were examined,

with the best results indicated by Pearson’s product moment correlation coefficient

presented in Supplementary Table 4.4.

4.3.2.4 Analysis of the time dependence of the CFE

Some studies have shown time dependences of the CFE, either as the result of

a declining trend, for example because of progressive nitrogen limitation (PNL;

Leuzinger et al. 2011), or an increasing trend, for example by legacy effects

caused by fertilization through artificial ploughing during the experimental setup

(Stiling et al., 2013). To check for a potential time dependence of the CFE in our

study, we calculated the rank correlation between the CFE and years by means of

Kendall’s tau.

4.3.3 Supplementary Results and Discussion

4.3.3.1 Characteristics of the dependent and independent variables

Neither a bimodal distribution of the [CO2] data, which may be expected because

of the factorial treatment design, nor TAB are visible in the data (see the Methods

section and Supplementary Fig. 4.7). The Kolmogorov-Smirnov (KS) test on

normality for both variables (transformed to their logarithmus naturalis) showed

good results. Thus, the statistical validity of regression techniques for the derivation

of the CFE is not constrained, for example, by the occurrence of two clouds of points.

We explain this by the low CO2 enrichment level (20% during daylight hours, which,

on average, caused a 9.5% higher [CO2] in the elevated rings compared to ambient

rings for the three month average, and the long-term time series with an associated

increasing atmospheric [CO2], which caused an 8% higher [CO2] in the ambient

rings of 2013 compared to 1998. This relationship is clearly shown by detrending the

[CO2] data. Therefore, we subtracted the atmospheric background [CO2] increase,

which we derived by the linear model through the ambient [CO2]. The remaining

distribution of the residual [CO2] values reveals a bimodal distribution as defined

by the factorial treatment design. This highlights that a similar magnitude of the
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inter- and intra-annual differences in the [CO2] prevented a bimodal distribution of

the [CO2].

4.3.3.2 Comparison of the CFE derived by the different approaches

We compared the yearly CFESlope (method used in the present study) with various

approaches that derive the CFE on basis of a factorial treatment design (see

Supplementary Fig. 4.10). The results show positive linear relations between the

CFESlope and all tested alternative methods (all significant on 0.05 level), that

were enhanced by excluding the outliers (p-value < 0.001). However, differences

between the CFESlope and the other approaches occur. We explain this by a

varying CO2 enrichment over time (compare Supplementary Fig. 4.5 b). This

relation is clearly depicted in a schematic overview (Supplementary Fig. 4.12).

Supplementary Fig. 4.12 a shows an idealized experimental setup with the CFESlope

and the CFEbiomass−ratio calculated for four different dates, which differ in that

varying environmental conditions lead to different biomass yields. Here, the CO2

enrichment within the four different dates remains stable. Consequently, the CFE

derived by both approaches CFESlope and CFEbiomass−ratio) remains stable for the

different dates. In Supplementary Fig. 4.12 b the CO2 enrichment is not constant

for all dates, which depicts a more realistic picture of the real-world conditions

observed in our experiment (compare Supplementary Fig. 4.5 b). Consequently,

the CFEbiomass−ratio strongly varies whereas the CFESlope remains stable. This is

because the CFEbiomass−ratio approach assumes a stable CO2 enrichment defined by

the factorial design. In contrast, the CFESlope accounts for the occurring variations

in the CO2 enrichment because it considers the actual [CO2], which has been

measured in the centre of each ring in our experiment. This shows the necessity for

considering the actual [CO2] to derive the CFE, especially under a variable CO2

enrichment over time, which we believe is the normal case in such long-term field

experiments.

4.3.3.3 High-order correlation matrix

Located in a real-world environment, strong correlations were found between the

experiment-support variables (see Supplementary Table 4.3). A strong statistical
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connection was also found for the different transformations of the subset-wise

aggregated experiment-support variables (see Supplementary Table 4.4). Highly sig-

nificant strong correlations were found for air temperature with all other experiment-

support variables, for rainfall and vapour pressure deficit to all variables except

wind speed, and for the SPEI as well as the PET to all variables except wind

speed and groundwater table. Weak and partly non-significant correlations were

observed for wind speed and groundwater table height with the other experiment-

support variables. Overall, strong correlations indicate the difficulties in allocating

the actual influences of each individual experiment-support variables on the CFE.

However, the non-significant correlations between groundwater table and the FAO

PM ET0 and SPEI highlights the utility of analysing single environmental variables

because even a multi-factorial climatic drought index, for example, does not reflect

the actual amount of available water in an ecosystem.

4.3.3.4 Time-independence of the CFE

The inter-annual variability of the CFE was much higher than the long-term

changes (see Supplementary Figures 4.5a and 4.6a). Thus, applying a Kendall rank

correlation test did not reveal a temporal trend of the CFE (p-value = 0.35, T =

71, tau = 0.183). We believe that the constant fertilization of our experimental site

with mineral nutrients (N fertilization approximately equals the annual N deposition

in intensively used agricultural regions; Reich et al. 2001) inhibited a depletion of

the mineral nutrients in the soil, and thus PNL. Feng et al. (Feng et al., 2015)

did not find any evidence of PNL constraints on the CFE at a decennial timescale

in their meta-analysis, including an eight year data series from our experiment.

They report a significantly decreasing trend of eCO2-induced decreases in plant N

concentration that diminished over time. Additionally, we are convinced that legacy

effects did not cause a bias in our results, as the site has not been ploughed for

more than 100 years (Kammann et al., 2008). Moreover, the permanent grassland

has been fertilized consistently with 40 kg ha−1a−1 N and cut twice a year for

decades (Kammann et al., 2005). The soil beneath the harvested vegetation was

never markedly disturbed and the sensor installation was carefully implemented.
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Abstract Terrestrial ecosystems are considered as carbon

sinks that may mitigate the impacts of increased atmospheric

CO2 concentration ([CO2]). However, it is not clear what their

carbon sink capacity will be under extreme climatic condi-

tions. In this study, we used long-term (1998-2013) data from

a C3 grassland Free Air CO2 Enrichment (FACE) experiment

in Germany to study the combined effects of elevated [CO2]
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and extreme climatic events (ECEs) on aboveground biomass

production. CO2 fertilization effect (CFE), which represents

the promoted plant photosynthesis and water use efficiency

under higher [CO2], was quantified by calculating the relative

differences in biomass between the plots with [CO2] enrichment

and the plots with ambient [CO2]. Down-regulated CFEs were

found when ECEs occurred during the growing season, and

the CFE decreases were statistically significant with p well

below 0.05 (t-test). Of all the observed ECEs, the strongest

CFE decreases were associated with intensive and prolonged

heat waves. These findings suggest that more frequent ECEs

in the future are likely to restrict the mitigatory effects of

C3 grassland ecosystems, leading to an accelerated warming

trend. To reduce the uncertainties of future projections, the

atmosphere-vegetation interactions, especially the ECEs effects,

are emphasized and need to be better accounted.

Subject terms Climate-change impacts, Climate-change

mitigation, Climate-change ecology, Grassland ecology

5.1 Main

Atmospheric carbon dioxide concentration [CO2] has increased substantially since

industrialization and is projected to rise by 40% from approx. 400 ppm in early 2017

to 550 ppm by 2050 (RCP8.5 scenario; Dlugokencky & Tans 2017; IPCC 2013).

The rising atmospheric CO2 concentration contributes largely to global warming,

and also stimulates ecosystem productivity (Ainsworth & Long, 2005; Leakey

et al., 2009; Long et al., 2004). It has been estimated that terrestrial ecosystems

have sequestered about 25% of the anthropogenic carbon emissions over the past

half-century (Le Quéré et al., 2009). Therefore, most ecosystems potentially

act as carbon (C) sinks and mitigate the effects of increased [CO2] (Hörtnagl
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et al., 2018; Schimel et al., 2001). Concerns regarding the future capacity of

ecosystems as C sinks have been raised due to the negative effects of extreme

climatic events (ECEs; Williams et al. 2014). Extreme events such as prolonged

heat waves, droughts, and frosts can significantly reduce ecosystem carbon uptake

and productivity, thereby influencing the regional carbon cycle (Ciais et al., 2005;

Reichstein et al., 2013; Zhao & Running, 2010) and gradually shifting the

ecosystems from a C sink towards a C source (Ciais et al., 2005). Since ECEs

have been projected to increase in both frequency and intensity (Christidis et al.,

2015; Sillmann et al., 2013), studying the combined effects of ECEs and elevated

atmospheric [CO2] ([eCO2]) on the carbon cycle of ecosystems is important for both

understanding mechanisms (Zhu et al., 2017) and reducing predictive uncertainty

(Huntzinger et al., 2017).

Elevated [CO2] stimulates ecosystem productivity (termed the CO2 fertilization

effect, CFE) directly through i) enhanced photosynthesis (Long, 1991; Long et al.,

2004), or indirectly through ii) reduced stomatal conductance (Ainsworth &

Rogers, 2007; Ding et al., 2018; Kellner et al., 2017; Morgan et al., 2004)

and iii) reduced respiration (Haworth et al., 2016). Accordingly, one may expect

stronger CFEs at higher temperatures or in drier conditions (Bernacchi et al.,

2006; Bishop et al., 2014), and the negative effects of ECEs may be ameliorated

through improving water use efficiency (WUE; Robredo et al. 2007), increasing

the plant carbon uptake (Yu et al., 2012), and enhancing recovery after ECEs

(Roy et al., 2016). However, different studies have demonstrated that these

theories are not applicable to all ecosystems (Hovenden et al., 2014; Reich et al.,

2014). In some experiments, [eCO2] was found to have no alleviating effect against

ECEs (Brookshire & Weaver, 2015; Duan et al., 2014). On the contrary,

[eCO2] may increase the risk of exposure to ECEs by extending the growing season

length (Liu et al., 2018). Meanwhile, ECEs can prevent plants from benefiting

from [eCO2] (Fitzgerald et al., 2016). The CFEs may be strongest under

intermediate environmental conditions and vanish under more extreme weather

conditions (Obermeier et al., 2017). The inconsistencies in these results indicate

an important role for ECEs in altering CFEs, and emphasize the necessity for more

detailed studies, which have thus far been prevented due to the lack of suitable

long-term continuous and high quality data (Frank et al., 2015).
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In this study, we analyzed data from one of the longest Free Air Carbon dioxide

Enrichment (FACE) experiments (Gi-FACE, 1998-2013) in the world and studied

the combined effects of [eCO2] and ECEs on aboveground biomass production. The

Gi-FACE experiment was carried out on a permanent grassland in the German

federal state of Hesse, near Giessen (50°32’N and 8°41’E) at 172 m a.s.l. (Fig. S5.8).

Three circular plots were subjected to [eCO2], while another three circular plots

served as controls at ambient [CO2] ([aCO2]). They were arranged in a randomized

block design (three blocks). The CO2 fumigation began in May 1998 with an

enrichment level of +20% [CO2] above the ambient level during daylight hours

(Fig. S5.9). The vegetation comprised species-rich grassland where aboveground

grass biomass contributed more than 2/3 of the harvest in most years (Tab. S5.2-

S5.3). Biomass was harvested twice a year before the end of spring (H1) and

summer (H2) (Jäger et al., 2003) (Tab. S5.4).

In contrast to recent work by Obermeier et al. (2017), that used the summer

growing season data from the Gi-FACE only, we here focused on both growing

seasons and defined ECEs directly using various environmental datasets including

semi-hourly 2m-air temperature records, semi-hourly precipitation records, daily

soil moisture, etc. We determined extreme dry events for both growing seasons,

anomalous cold events including hard frost in spring, and extreme hot events

including heat waves in summer. The definitions are provided in the “Material and

Method” section, and corresponding figures can be found in the supplementary

materials (Figs. S5.10- S5.15). The CFE in this study is represented by the effect

size (ES) of the aboveground biomass, which is defined as the relative differences

in biomass between the eCO2 plots and the aCO2 plots. We assumed that the ES

of adjacent years under similar growing conditions did not differ significantly, i.e.,

sudden changes in growing conditions, such as those caused by ECEs, may lead

to significant changes in ES. Therefore, by investigating the changes in ES of the

biomass in comparison with the previous year we were able to examine the impact

of ECEs on the yield stimulating effect of [eCO2].

Before the connections between extreme climatic events and the CO2 fertilization

effects on the aboveground biomass can be studied, we first need to check whether

the calculated effect size represented the true CO2 effect. By setting a repeated

measures analysis of variance (rmANOVA) model with factors time, CO2, block,
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time × CO2 , and time × block included, the treatment effects for different plant

functional groups were studied. As shown in Tab. 5.1, there were significant CO2

fertilization effects on grass (H1, 1998-2005, 1998-2013; H2, 1998-2005), but the

differences of the forbs (incl. legumes) biomass cannot be explained by the [CO2 ]

treatment. As a result, when considering total biomass, the treatment effect was

only statistically significant for H2 when the second time section (2007-2013) was

considered. This is reasonable as large initial biases of the forbs (incl. legumes)

existed in the first few years of the experiment. As discussed in (Andresen et al.,

2018), since 1997 before the start of the FACE up to the years before 2006/2007,

there were more forbs and legumes harvested in the aCO2 plots than in the eCO2

plots. Benefited from the higher [CO2] in eCO2 plots, an increasing trend of ES

was observed from 2001 to 2008 (see Fig. 5.3 in Andresen et al. 2018), but the

positive effects of elevated [CO2] were still covered especially for the first time

section (1998-2005/2006). Therefore, the ES of forbs (incl. legumes) is not a

good indicator for the CFEs. In the following analysis, we will mainly focus on

the reactions of the aboveground total biomass, as well as grass biomass to the

emergence of ECEs. The results regarding forbs (incl. legumes) will be shown in

the supplementary materials (Fig. S5.16).

Using various environmental and meteorological datasets (see “Material and

Method” section), different ECEs were identified. For the spring growing periods,

we identified extreme cold events in 2003, 2005, and 2013; spring hard frost events in

2005, 2010, and 2013; as well as extreme dry events in 2007 (Fig. 5.1; Luterbacher

et al. 2007). For each year with ECEs, see Fig. 5.2a, the ES of total biomass in

H1 was found to be lower than in the previous year, while for most non-extreme

years, the ES in H1 was higher than in the previous year or remained unchanged.

There were only two years (1999 and 2012) where lower ES values were found but

not related to ECEs. For 1999, one explanation for the relatively low ES may

be attributed to the initial unbalanced effects of the FACE experiment, as the

Gi-FACE experiment started in 1998. For 2012, the low ES were most probably

related to the extremely low [CO2] enrichment, which was caused by technical

problems (Fig. S5.9). In fact, due to the low [CO2] enrichment in 2013, together

with the extreme cold events, an even lower ES was found in 2013 than in 2012

(Fig. 5.2a), indicating a combined effect of low [CO2] enrichment and ECEs. Similar
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Table 5.1: P-values for effect of the factors: Time, CO2 treatment, block,
time × CO2, and time × block, on the biomass (Total, Grasses, and Forbs &
Legumes) examined by repeated measures ANOVA. The effect was assessed for
each harvest (H1 and H2) and the rmANOVA model was used at the full time series, as
well as the two half time sections as suggested by Andresen et al. (2018). For significant
effect at P < 0.05, one asterisk was marked, while for P < 0.01, we use two asterisks.
‘n.s.’ indicated non-significant effect at P > 0.1.

PFG Factors H1 H2

1998-2005 2006-2013 1998-2013 1998-2005 2006-2013 1998-2013

Total Time 0.033* 0.019* 0.015* 0.026* 0.099 0.051
CO2 n.s. 0.108 n.s. n.s. 0.007** n.s.
Block 0.047* n.s. n.s. n.s. 0.054 n.s.

Time × CO2 n.s. n.s. n.s. n.s. n.s. n.s.
Time × Block n.s. n.s. n.s. n.s. n.s. n.s.

Grasses Time 0.026* 0.032* 0.006** 0.023* 0.013* 0.032*
CO2 0.004** 0.053 0.005** 0.016* n.s. 0.070
Block 0.002** 0.032* 0.002** 0.047* n.s. n.s.

Time × CO2 n.s. n.s. n.s. n.s. n.s. n.s.
Time × Block n.s. n.s. n.s. n.s. 0.039* n.s.

Forbs Time 0.016* 0.017* 0.019* 0.071 n.s. 0.039*
& CO2 n.s. n.s. n.s. n.s. n.s. n.s.
Legume Block n.s. n.s. n.s. n.s. n.s. n.s.

Time × CO2 n.s. n.s. n.s. n.s. n.s. n.s.
Time × Block n.s. n.s. n.s. n.s. n.s. n.s.

results were found for the grass biomass (Fig. 5.2b). If we remove the potential

effects of extremely low [CO2] enrichment, and classify the ES changes (compared

to the previous year) from 1999-2011 into two groups according to the occurrence

of ECEs, the ES changes were well separated (Fig. 5.3a, b). For the years with

ECEs, the ES decrease were statistically significant with p = 0.01 for the total

biomass and p = 0.007 for the grass biomass. Therefore, the ECEs in spring played

a major role in decreasing the ES.

For the summer growing period, prolonged heat wave events were detected in 2003

and 2006 (Fig. 5.1), with twelve and nine consecutive days with daily maximum

temperature Tmax higher than 30◦C, respectively (Fig. S5.12). By calculating the

sum of maximum temperatures exceeding 30◦C (killing degree days [KDDs], see

“Material and Method” section, similar to the definition in Butler & Huybers

2013), we found also high values in 2010 and 2013 (Fig. S5.11c), suggesting potential

damages from high temperature in these years. Considering that there were four

consecutive days with Tmax > 0◦C in 2010 (Fig. S5.12), which could almost be

classified as a heat wave event (see Fig. 5.1, the light red color), we determine that
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Figure 5.1: Detected extreme climate events (ECEs) in the spring and sum-
mer growing periods for years from 1998 to 2013. The colored boxes with check
marks depict the occurrence of ECEs in the corresponding years. For the spring growing
period, ECEs including hard frost in spring, extreme cold and dry events are shown,
while for the summer growing period, heat wave events, high KDDs, and extreme dry
events are detected. For the years that experienced a strong heat wave event, we used
a dark red color. For the years that did not experience a strong heat wave event, but
are very close to satisfying the conditions for being a heat wave event (4 days in a row
with Tmax > 30◦C), we used a light red color. Besides ECEs, extreme [CO2] enrichment
events are also shown.

the summer growing period in 2010 also experienced extreme hot events. While for

2012 and 2013, extreme low and high [CO2] enrichments were observed, respectively

(Fig. 5.1 and Fig. S5.9). Therefore, to remove the potential side effects from the

extreme [CO2] enrichments, we only consider the ECEs in 2003, 2006, and 2010.

For the total biomass in H2, ES decreases were found in two of the three years

(2003, 2010; Fig. 5.4a). Only in 2006, the ES was not decreased, which was most

probably due to the sudden increase of ES of forbs (Fig. S5.16b). After removing
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Figure 5.2: Connections between ECEs and the effect size (ES) of above-
ground biomass in the spring harvest (H1). a) shows the ES of the aboveground
total biomass, b) shows the ES of the aboveground grass biomass. The blue columns
mark the years with ECEs, and the type of ECEs are shown within each column. For
years with extreme [CO2] enrichment events, the columns are in dashed-borders. In both
a) and b), the decreases of ES are marked by blue arrows. As one can see, for all the
years with ECEs, the ES of both total biomass and grass biomass decreased.

the forbs from the total biomass, ES decreases were observed in all the three years

(Fig. 5.4b). Conversely, for the majority of the other years without ECEs, the

ES was higher than in the previous year or remained unchanged (Fig. 5.4). If we

classify the ES changes (compare to the previous year) into two groups according

to the occurrence of ECEs, clear separations were again revealed (Fig. 5.3c, d). For

the years with ECEs, the ES decreases are statistically significant with p = 0.04

for the total biomass and p = 0.002 for the grass biomass. Therefore, the CFEs in

H2 also decreased significantly under the effects of ECEs.

To confirm these findings, we further compared the different CFEs using a new

method proposed by Obermeier et al. (2017), who quantified CFEs as the slopes

of productivity versus [CO2]. Although the enrichment level of [CO2] was set as

20% above the ambient level, the actually measured [CO2] varied over the six
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Figure 5.3: ES changes under different environmental conditions The ES
changes (compared to the previous year) were classified into two groups according
to the occurrence of ECEs. a), c) show the results for the total biomass, for H1 and
H2 respectively; while b), d) show the results for the grass biomass. The dashed line
in each sub-figure is the zero line. The two groups in each figure are well separated.
By applying student’s t-test (two sided), the differences are statistically significant with
p = 0.01, 0.007, 0.04, and 0.002 for the sub-figures from a)-d), respectively

rings, which enabled to analyze productivity changes dependent on different CO2

concentrations. Fig. 5.5 indicates the case in 2002 versus 2003 (H1, H2) and the

case in 2009 versus 2010 (H1, H2) for total biomass, while Fig. 5.6 shows the results

for grass biomass. In 2002 and 2009, no ECE was observed in both spring and

summer growing periods. While in 2003, we found extreme cold events in spring,

heat waves in summer; and in 2010, we found hard frost events in spring, high

KDDs in summer (Fig. 5.1). Therefore, these two pairs were suitable examples

to show the effects of ECEs on ES. For the years without ECEs (2002 and 2009,

red), stronger responses of the total productivity to increased [CO2] were found

in Fig. 5.5. The steeper slope indicates higher CFEs. While for years with ECEs

99



5 Extreme climatic events down-regulate the grassland biomass response to

elevated carbon dioxide

-10

0

10

20

30

40

50 H
igh K

D
D

s &
 H

igh [C
O

2]

H
igh K

D
D

s

H
eat W

aves

b) Grass Biomass: H2

Low
 [C

O
2]

 

 

 

E
ffe

ct
 S

iz
e 

(%
)

H
eat W

aves

a) Total Biomass: H2

1998 2000 2002 2004 2006 2008 2010 2012 2014
-20

-10

0

10

20

30

40

50

 

 

Figure 5.4: Connections between ECEs and ES of aboveground biomass in
the summer harvest (H2). a) shows the ES of the aboveground total biomass, b)
shows the ES of the aboveground grass biomass. Similar to Fig. 5.2, the ECEs are marked
with red columns. For years with extreme [CO2] enrichment events, the columns have red
dashed-borders. In both a) and b), the decreases of ES are marked by blue arrows. As
one can see, for most years with ECEs, the ES of both total biomass and grass biomass
decreased. Only one exception was found in 2006 for the total biomass.

(2003 and 2010, blue), the slope decreased, vanished, or even became negative,

suggesting smaller CFEs under the stress of ECEs. Similar results were obtained

for the grass biomass. As shown in Fig. 5.6, after removing the biomass of forbs

from the calculation, the results became even clearer. Since the regression analysis

was based on the measurements of only six rings, due to the large fluctuations, the

differences in the slopes between 2002 and 2003 (or 2009 and 2010) were not all

statistically significant (see p-values in the figure captions). However, from this

simple comparison, we can still observe clear down-regulations of CFEs under the

effects of ECEs.
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Figure 5.5: Regression analysis of the aboveground total biomass versus CO2

concentrations for growing periods with/without ECEs. a-b) indicate the results
of 2002 (red) and 2003 (blue) for H1 and H2, respectively. c-d) show the results
of 2009 (red) and 2010 (blue). For the growing periods without ECEs (2002 and
2009), steeper slopes are obtained indicating stronger links between biomass and [CO2].
Conversely, for the growing periods with ECEs (2003 and 2010), the slopes are lower,
indicating weaker CFEs. The difference in the slopes in each sub-figure is clear, with
p = 0.13, 0.16, 0.31, and 0.57 for (a-d), respectively.

5.2 Discussion and Conclusion

In this study, we investigated the combined effects of extreme climatic events (e.g.

heat wave events, extremely hot/cold events, extremely dry events, as well as hard

frost events, etc.) and elevated [CO2] on aboveground biomass production. For

both spring and summer, down-regulated effect size of aboveground biomass was

observed when extreme climatic events occurred during the growing season, and

the strongest decreases were associated with intensive and prolonged heat waves.

In contrast to previous theories that suggest that stronger CO2 fertilization effects
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Figure 5.6: Regression analysis of the aboveground grass biomass versus CO2

concentrations for growing periods with/without ECEs. Similar to Fig. 5.5, but
for the grass biomass. The difference in the slopes in each sub-figure is clear, with
p = 0.23, 0.05, 0.50, and 0.31 for (a-d), respectively.

may be expected under higher temperatures and drier conditions (Ainsworth &

Rogers, 2007; Long, 1991; Long et al., 2004; Morgan et al., 2004), our results

suggest the CO2 fertilization effects can be lower if the growth conditions are too

harsh, e.g., when heat wave events and droughts occur. This is reasonable as plant

growth is influenced by multiple factors. Besides water, CO2, and light, plants

also depend on factors including nutrient availability, temperature, pathogens, and

herbivores. Stress from ECEs may limit plant growth via reduced enzyme activity,

increased vulnerability to pathogens and herbivores, increased respiratory losses,

etc. Accordingly, the high availability of CO2 cannot be fully utilized by plants.

Our results are different to previous theories, but do not violate them. We argue

that the previous theories (Ainsworth & Rogers, 2007; Long, 1991; Long
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et al., 2004; Morgan et al., 2004) are only applicable within a certain range, which

may be determined by the local average environmental conditions (Obermeier

et al., 2017, 2018). Exceeding this optimal range, e.g., under extreme climatic

events, the CO2 fertilization will no longer overrule the plant growth.

Besides the growing periods with ECEs, there are also few cases (e.g., 1999 and

2012 for both total biomass and grass biomass in H1; 2009 and 2012 for grass

biomass in H2) where the decreased ES were not related to ECEs. Accordingly,

the occurrence of ECEs is only a sufficient condition for the decrease of ES,

not a prerequisite. The changes of ES can be influenced by other factors such as

anomalous low [CO2] enrichment, or PFG competitions. For instance, the decreased

ES in both harvest of 2012 were most probably related to the extremely low [CO2]

enrichment (Fig. S5.9), which was caused by technical problems. For H2 in 2009,

the competition between grass and other plant functional types (forbs, legumes)

may have contributed to the decreased ES of grass biomass (Fig. S5.17). The

interactions between plants also plays an important role, e.g., in dry growing periods,

one of the dominant grasses and biomass builder (Arrhenaterum elatius) reduces

significantly its growth but is only in parts replaced by other species. This was part

of other studies (Andresen et al., 2018). In our analysis, only the abiotic climatic

factors were considered, biotic factors and species interactions were disregarded.

In view of the non-negligible effect of ECEs, it is necessary to include the effects

of ECEs for the understanding of ecosystem responses to increased [CO2]. Properly

quantified indexes that present the effects of ECEs may be important for future

projections. In our work, we calculated the killing degree days (KDDs) as one

measure of the extreme events. Actually, it can also serve as an useful indicator

of the negative effects of high temperatures in summer. As shown in Fig. 5.7, a

significant negative correlation between KDDs and ES of grass biomass was found.

For high KDDs, the ES dropped, while when the KDDs were low, the effect size

increased. Due to the unstable [CO2] enrichment in 2012 and 2013, we calculated

the correlation between ES and KDDs using the early 14-year data (1998-2011),

which yielded a coefficient r of -0.52 with p = 0.056. The regression analysis

indicated that 28% of the variance in the natural logarithm ES could be explained

by the natural logarithm KDDs, which was significant with p = 0.031 (Fig. 5.7b;

see Fig. S5.18 for the same result but without natural logarithm transformation).
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Therefore, we have reason to believe the extremely high temperatures may control

the ES of the grass biomass during summer, which may be associated with the

reduced transpiration caused by reduced stomatal conductance (De Boeck &

Verbeeck, 2011) and increased respiration (Haworth et al., 2016). In this case,

KDDs could potentially be used for development as an index for future projections

of the response of the grassland to increased [CO2].

Figure 5.7: Relationships between the killing degree days (KDDs) and the
effect size (ES) of grass biomass in the summer harvest (H2). To remove the
side effects of extreme [CO2] enrichment events in 2012 and 2013, only the early 14 years
data (1998-2011) were used for this figure. a) Time series of KDDs (red curve, refer to
right axis) and the ES (black curve, refer to left axis). b) Regression analysis, 28% variance
of the natural logarithm effect size can be explained by the natural logarithm KDDs,
which is significant with p = 0.031. For the results without logarithmic transformation,
please refer to Fig. S11.

Our work focused on a grassland in central Europe. For other ecosystems,

although different ECEs may occur and play different roles, we believe that the

findings should be similar, in that i) the ECEs can down-regulate the CFEs, and

ii) a properly quantified index (e.g. KDDs) may help explain the changes in CFEs.

As extreme climatic events such as drought, heat waves, etc., are projected to

increase in both frequency and intensity (Christidis et al., 2015; Sillmann et al.,

2013), the mitigatory effects of C3 grassland ecosystems are likely to be restricted,

leading to an accelerated warming trend in the future. To better understand

atmosphere-vegetation interactions and further alleviate the uncertainties of future

projections, additional results from other long-term studies over different climate

zones are required.
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5.3 Materials and Methods

5.3.1 Site description

The Gi-FACE experiment was carried out at a field site with an area of 1.5 ha in

the German federal state of Hesse, near the town Giessen (50°32’N and 8°41’E) at

172 m a.s.l. The local annual mean precipitation over the research period was 558 ±
92mm and the annual mean 2m-air temperature was 9.4 ± 0.1◦C. The research area

has been managed as a meadow. It was mowed twice a year and not ploughed for at

least 100 years. The old, non-grazed grassland has been fertilized with 50-80 kg N

ha−1 yr−1 up to 1995. Afterwards nitrogen fertilization was reduced to 40 kg N ha−1

yr−1. The harvested biomass of this species rich grassland is dominated by grass,

with small amounts of forb and legume included. The FACE experiment started in

May 1998 and the mean [CO2] enrichment is +20% above ambient during daylight

hours. There are three circular plots (rings) subjected to elevated [CO2] (eCO2),

while another three circular plots (rings) served as controls with ambient [CO2]

(aCO2) (see Fig. S5.8). They were arranged in a randomized block design (three

blocks). Each ring had an inner diameter of 8m with an inner circular buffer-zone

of 0.9m. Biomass was harvested twice a year before the end of spring (H1) and

summer (H2). In each harvest from 1998 on, the vegetation was cut manually

with garden scissors at 3-5 cm above the soil surface. The harvested aboveground

biomass was stored at 4◦C and sorted by hand into three functional groups: grasses,

forbs and legumes. For more details of the site, please refer to (Andresen et al.,

2018; Jäger et al., 2003).

5.3.2 Data description

Aboveground biomass harvested from both spring (H1) and summer (H2) were used

in this study. The spring harvest date was around the end of May (beginning of June)

each year, while the summer harvest date was around the beginning of September

(see Tab. S5.4). Mean biomass calculated over the three elevated [CO2] plots and

biomass averaged over the three ambient [CO2] plots were used to quantitatively

show the CO2 fertilization effects. Besides biomass, daily soil moisture (volumetric

water content in 10 cm soil depth, averaged from the measurements of 4 probes
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in each plot), semi-hourly 2m-air temperature, semi-hourly precipitation, as well

as the hourly mean of CO2 concentration measured in the center of each ring,

were used in this study. The soil moisture (averaged over the six rings) and

precipitation are used for the determination of extreme dry events, while the 2m-air

temperature records are used for the determination of extreme cold/hot events (as

well as hard frost events and heat wave events), and also the calculation of Killing

Degree Days (KDDs). With the measured CO2 concentration in each ring, we

investigated the true [CO2] enrichment (see Fig. S5.9). Before determining extreme

events, new data such as the number of days with daily maximum temperature

higher than 30◦C, the number of consecutive rain free days, the averaged daily

minimum temperatures, etc., were derived for each growing period, to better show

the environmental properties (see Tab. S5.5 and Tab. S5.6).

5.3.3 Statistical Analysis

5.3.3.1 Determination of the growing periods.

For spring, the start of growing season was defined as the first day after winter,

when the daily mean air temperature is higher than 5◦C (Tab. S5.5), as phenological

observations showed significant aboveground growth from that day onwards and

CO2 flux measurements show a net CO2 assimilation. The end of growing season

thus was the harvest day of H1 (Tab. S5.4). For summer, the start of growing

season was the first day after H1, while the end of growing season was the harvest

day of H2 (around the beginning of September).

5.3.3.2 Calculation of Effect Size (ES).

The CO2 fertilization effects in this study are represented by the effect size (ES) of

aboveground biomass, which is defined as:

ES =
Bio(eCO2)−Bio(aCO2)

Bio(aCO2)
∗ 100%, (5.1)

where Bio(eCO2) stands for the dry biomass matter obtained from eCO2 plots,

while Bio(aCO2) represents the dry biomass matter obtained from the aCO2 plots.

It is worth to note that there are three blocks in the experiment, and each block
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consist of two plots (one eCO2 plots and one aCO2 plots). Although the plots

within each block are closely located (Fig. S5.8), they may still carry different

background information which could further affect the productivity. Besides, from

the rmANOVA (Tab. 5.1), the factor “Block” has significant effects for both the

total biomass and the grass biomass, indicating inter-replicate discrepancies. To

remove this background information, we used the averaged biomass (over the 3

replicates) to better estimate the CO2 fertilization effects.

5.3.3.3 Repeated-measures ANOVA (rmANOVA).

To check whether the effect size (ES) was indeed induced by the elevated [CO2],

the treatment effect was assessed by rmANOVA. Aboveground total biomass, grass

biomass, and the forbs (incl. legumes) measured from the six plots (three blocks)

were analyzed, respectively. Factors including time, CO2 treatment, block, as well

as the interactions time × CO2 , time × block were considered in the model. For

each harvest (H1 and H2), the rmANOVA model was run for the full time period

of 1998-2013. Meanwhile, as suggested by the break point analysis in (Andresen

et al., 2018), two half time sections, 1998-2005 and 2006-2013, were also analyzed by

rmANOVA. If the p-values for the CO2 treatment is smaller than 0.05, we consider

there were significant treatment effect and ES can be used to represent the CO2

fertilization effect.

5.3.3.4 Competition of Plant Functional Groups (PFGs).

To quantify the competition of grass with other plant functional groups (forb+legume),

the Relative Changes (RCs) of grass percentage compared with that in the previous

year were calculated (Tab. S5.2-S5.3). To quantitatively test for the different RCs

in eCO2 rings and in aCO2 rings, the product of RC in eCO2 rings and RC in aCO2

rings were calculated for each year (Fig. S5.17). Positive products indicate that

the grass percentages in eCO2 rings and in aCO2 rings changed towards the same

direction (increased or decreased) compared with the previous year, while negative

products depict different changing directions (increase and decrease). By definition,

increased grass percentage in eCO2 rings and decreased grass percentage in aCO2

rings may contribute to an increasing ES of grass biomass (e.g., H1 in 2011), while

107



5 Extreme climatic events down-regulate the grassland biomass response to

elevated carbon dioxide

a decreased grass percentage in eCO2 rings associated with an increased grass

percentage in aCO2 rings lead to a decreasing ES of grass biomass (e.g., H2 in

2009).

5.3.3.5 Definition of Extreme Climatic Events (ECEs).

We have defined different ECEs, including extreme cold and hot events, extreme

dry events, hard frost in spring, as well as heat wave events. Their definitions

are shown below. It is worth to note that i) two times standard deviation (2SD)

was widely used for the determination of ECEs, but other threshold (e.g. 1.5SD)

has also been checked, which gives robust results; ii) when studying the period-

averaged (accumulated) temperature (precipitation), linear trends over 1997-2013

were removed before the analysis.

Extreme cold events: For a given growing period, if i) the minimum temperature

averaged over this period was exceptionally low (exceeds 2SD, based on the data from

1997-2013); or ii) the number of days with below-zero daily air mean temperature

(Tmean < 0◦C) was exceptionally high (exceeds 2SD, based on the data from

1997-2013); or iii) the consecutive days with Tmean < 0◦C was exceptionally long

(exceeds 2SD, based on the data from 1997-2013), we defined this growing period

had experienced an extreme cold event (Fig. S5.10).

Extreme hot events: For a given growing period, if i) the maximum temperature

averaged over this period was exceptionally high (exceeds 2SD, based on the data

from 1997-2013); or ii) the number of days with Tmax > 30◦C was exceptionally

high (exceeds 2SD, based on the data from 1997-2013); or iii) the consecutive

days with Tmax > 30◦C was longer than 5 days, we considered this growing period

had experienced an extreme hot event (Figs. S5.11-S5.12). Especially, when the

condition iii) was satisfied, we define a heat wave event (Fig. S5.12). The threshold

30◦C was determined according to the 95th percentile of the daily maximum

temperature distribution, a definition similar to those used previously (Anderson

& Bell, 2011).

Extreme dry events: For a given growing period, if i) the precipitation accumu-

lated over this period was exceptionally low (exceeds 2SD, based on the data from

1997-2013); or ii) the soil moisture averaged over this period was exceptionally low
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(exceeds 2SD, based on the data from 1997-2013); or iii) the consecutive rain free

days were long enough to exceed 2SD, we say this growing period had experienced

an extreme dry event (Figs. S5.13- S5.14).

Hard frost in spring: If in spring (March, April, and May) after the first day

of the growing season, the daily minimum temperature dropped below -10◦C, we

defined it as a hard frost event in spring (Fig. S5.15), which is believed to cause

severe damages to vegetation (Frank et al., 2015).

5.3.3.6 Calculation of Killing Degree Days (KDDs).

KDDs is the sum of maximum temperatures in excess of 30◦C, as shown below,

KDDs =
n∑
i=1

aTi, a =

1 Ti ≥ 30◦C

0 Ti < 30◦C
(5.2)

where Ti, i = 1, 2, · · · , n represent the daily maximum temperatures from the

beginning to the end of the growing period. KDDs is one indicator that represent

the negative impacts of high temperature. Different from (Butler & Huybers,

2013), where the threshold was 29◦C, here in this study we use 30◦C, as this is the

threshold we used to determine heat wave events. Fig. S5.11c shows the KDDs

calculated for each year.
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5.4 Supplementary Material

Figure 5.8: Aerial photo of the Gi-FACE field site. Locations of the rings with
elevated CO2 (eCO2) and ambient CO2 (aCO2) are indicated. Inner diameter of the
rings is 8m. We acknowledge the Hessian Agency for Nature Conservation, Environment
and Geology (HLNUG) for providing this photo.

Figure 5.9: Measured [CO2] enrichment for spring and summer growing pe-
riods before the respective harvest dates. The open squares represent the [CO2]
enrichment of the spring Harvest (H1), while the solid squares stand for the [CO2]
enrichment of the summer Harvest (H2). The error bars are the one standard deviation
calculated from the [CO2] records over different rings. For H1 in 2012 and 2013, the
[CO2] enrichments were extremely low due to technical issues, while for H2 in 2012 and
2013, the [CO2] enrichments were extremely low and high, respectively.
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Figure 5.10: Determination of extreme cold events during spring growing
period. a) shows the daily minimum temperature (with linear trend over 1997-2013
removed) averaged over the growing period for each year, b) shows the number of days
with Tmean < 0◦C during the growing period for each year, and c) shows the number of
consecutive days with Tmean < 0◦C during the growing period for each year. The red
and blue dashed lines represent the 1.5 and 2 times of standard deviations. Extreme cold
events were found in 2003, 2005, and 2013.
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Figure 5.11: Determination of extreme hot events as well as Killing Degree
Days (KDDs) during summer growing period. a) shows the daily maximum
temperature (with linear trend over 1997-2013 removed) averaged over the growing period
for each year, b) shows the number of days with Tmax > 30◦C during the growing period
for each year, and c) shows the KDDs calculated for each year. In 2003 the grassland
had experienced an extreme hot event.
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Figure 5.12: Determination of heat wave events during summer growing pe-
riod. The black curve represents the daily mean temperature, while the red curve shows
the daily maximum temperature. The red number in each sub-figure represents the
number of consecutive days with Tmax > 30◦C. a) shows the results of 2003, while b), c),
d) are for 2006, 2010, and 2012. There were strong heat wave events in 2003 and 2006.
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Figure 5.13: Determination of extreme dry events during spring growing pe-
riod. a) shows the precipitation (with linear trend over 1997-2013 removed) accumulated
over the growing period for each year, b) shows the soil moisture averaged over the
growing period for each year, and c) shows the number of consecutive rain free days
during the growing period for each year. The red and blue dashed lines represents the
1.5 and 2 times of standard deviations. Extreme dry events occurred in 2007.
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Figure 5.14: Determination of extreme dry events during summer growing
period. The same as Fig. S5.13, but for the summer growing period. There was no
extreme dry event in the summer growing period, but an extremely wet season in 2007.
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Figure 5.15: Determination of hard frost events in spring. The black curve
represents the daily mean air temperature, while the blue curve shows the daily minimum
temperature. The black arrow points to the day when the growing season started and
the blue arrow points to the day with hard frost event. a) shows the results of 2005,
and b), c) are for 2010 and 2013. After the start of growing season, these three years all
experienced hard frost events in spring.
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Figure 5.16: Effect size (ES) of forbs (incl. legumes). a) shows the results for
H1, b) shows the results for H2. The blue columns mark the years with ECEs in spring
growing period, while the red columns mark the years with ECEs in summer growing
period. The type of ECEs are also shown in each column.
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Figure 5.17: Quantitative analysis of the different changing directions of grass
percentage between eCO2 rings and aCO2 rings, for H1 (a) and H2 (b). Using
the “Relative Change” (RC) values shown in Tab. S5.2 and Tab. S5.3, we calculated the
product of RC in eCO2 rings and RC in aCO2 rings. Positive products indicate the same
changing direction (increase or decrease) of grass percentage in eCO2 rings and aCO2

rings. In this case, we mark a plus (+). Negative products are shown with different
colors. When RC in eCO2 rings is positive but RC in aCO2 rings is negative, we use
red color. On the contrary, when RC in eCO2 rings is negative but RC in aCO2 rings is
positive, we use blue color.

Figure 5.18: Relations between the effect size of grass biomass in H2 and
the KDDs. This figure is similar to the Fig. 5.7 in the main text, but the data are
not transformed by natural log. By making power-law fitting, one can find significant
relations (p < 0.001) between the effect size of grass biomass and the KDDs.
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Table 5.2: Grass Percentage measured in each year, for H1. In this table, the
grass percentage (%) measured in H1 are shown in the 2nd column (for the eCO2 rings,
E rings) and the 4th column (for the aCO2 rings, A rings). The numbers in the 3rd and
the 5th columns are the relative changes (RC) of the grass percentage compared to that
in the previous year.

Year Grass Percentage Relative Change Grass Percentage Relative Change
(H1) in E rings (%) in E rings (%) in A rings (%) in A rings (%)

1997 88.3 83.8
1998 86.3 −2.22 80.8 −3.62
1999 90.3 4.63 88.1 9.02
2000 81.1 −10.16 76.4 −13.28
2001 95.2 17.37 87.9 15.08
2002 92.4 −2.94 81.3 −7.55
2003 86.7 −6.15 76.1 −6.39
2004 79.4 −8.50 69.7 −8.34
2005 78.8 −0.76 73.8 5.79
2006 79.6 1.12 74.6 1.14
2007 74.5 −6.46 72.2 −3.25
2008 74.4 −0.81 72.3 0.21
2009 68.0 −8.57 67.2 −7.12
2010 62.0 −8.85 63.7 −5.14
2011 63.4 2.29 60.5 −5.13
2012 57.0 −10.11 59.1 −2.34
2013 57.3 0.56 60.4 2.26
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Table 5.3: Grass Percentage measured in each year, for H2. In this table, the
grass percentage (%) measured in H2 are shown in the 2nd column (for the eCO2 rings,
E rings) and the 4th column (for the aCO2 rings, A rings). The numbers in the 3rd and
the 5th columns are the relative changes (RC) of the grass percentage compared to that
in the previous year.

Year Grass Percentage Relative Change Grass Percentage Relative Change
(H2) in E rings (%) in E rings (%) in A rings (%) in A rings (%)

1997 77.4 83.8
1998 80.4 3.85 80.8 11.99
1999 78.9 −1.86 88.1 0.59
2000 80.3 1.84 76.4 −0.36
2001 89.5 11.34 87.9 −3.25
2002 87.9 −1.71 81.3 −0.79
2003 74.6 −15.13 76.1 −16.16
2004 69.9 −6.37 69.7 −9.20
2005 70.6 1.09 73.8 −0.10
2006 64.9 −8.09 74.6 5.73
2007 67.7 4.23 72.2 −0.14
2008 59.6 −11.89 72.3 −13.53
2009 54.6 −8.38 67.2 4.35
2010 50.3 −7.90 63.7 −4.96
2011 55.9 11.13 60.5 13.61
2012 56.9 1.84 59.1 −0.94
2013 43.5 −22.63 60.4 −26.30
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Table 5.4: Harvest dates of the Gi-FACE experiment. In this table, the harvest
dates (start date and end date) of both spring harvest (H1) and summer harvest (H2)
are shown.

Year H1 H1 H2 H2
Harvest Start Harvest End Harvest Start Harvest End

1998 15th Jun 16th Jun 3rd Sep 7th Sep
1999 14th Jun 14th Jun 25th Aug 31th Aug
2000 23rd May 23rd May 11th Sep 11th Sep
2001 28th May 28th May 10th Sep 10th Sep
2002 3rd Jun 3rd Jun 9th Sep 9th Sep
2003 19th May 19th May 8th Sep 8th Sep
2004 1st Jun 1st Jun 6th Sep 6th Sep
2005 13th Jun 13th Jun 13th Sep 13th Sep
2006 29th May 29th May 11th Sep 11th Sep
2007 30th May 30th May 10th Sep 10th Sep
2008 27th May 27th May 8th Sep 8th Sep
2009 25th May 25th May 7th Sep 7th Sep
2010 25th May 25th May 6th Sep 6th Sep
2011 23rd May 23rd May 5th Sep 5th Sep
2012 29th May 29th May 3rd Sep 3rd Sep
2013 3rd Jun 3rd Jun 2nd Sep 2nd Sep
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Table 5.5: Data derived from the growing period of each year, for spring.
Detailed data for better characterization of the properties of growing period are shown.
For spring, six columns of data including the Day Of Year (DOY) of the last hard frost
event, the DOY of the start of growing season, the number of days with Tmean < 0◦C,
the number of rain free days, the number of rain free consecutive days, as well as the
true CO2 Enrichment level, are presented in the table. “-” means there was no hard frost
event in the corresponding year.

Year Hard Frost Start of Num of Days Num of Rain Rain free CO2

DOY Growing SeasonTmean < 0◦C free Days Consecutive Days enrichment (%)

1998 35 43 0 67 21 no data
1999 50 1 60 7 17.73
2000 28 29 1 48 8 19.12
2001 56 36 3 51 9 21.05
2002 6 20 0 64 21 21.92
2003 12 20 25 70 19 19.23
2004 32 12 80 14 17.77
2005 60 42 19 66 7 23.70
2006 24 47 14 47 9 21.45
2007 26 29 0 70 33 24.45
2008 53 2 37 11 25.22
2009 16 57 0 47 18 26.45
2010 67 54 7 47 11 27.85
2011 54 35 6 77 14 21.06
2012 43 48 0 63 15 8.46
2013 74 20 26 60 18 10.61
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elevated carbon dioxide

Table 5.6: Data derived from the growing period of each year, for summer.
Detailed data for better characterization of the properties of growing period are shown.
For summer, five columns of data including the DOY of the start of growing season, the
number of days with Tmax > 30◦C, the number of rain free days, the number of rain free
consecutive days, as well as the true CO2 enrichment level, are presented in the table.

Year Start of Num of Days Num of Rain Rain free CO2

Growing Season Tmax > 30◦C free Days Consecutive Days enrichment (%)

1998 166 6 45 17 no data
1999 165 2 45 12 17.55
2000 143 4 46 10 17.92
2001 148 7 56 14 18.97
2002 154 4 54 9 19.60
2003 139 17 64 11 16.44
2004 152 4 38 13 19.22
2005 164 3 46 12 21.91
2006 149 13 59 11 21.70
2007 150 3 50 14 19.76
2008 149 3 50 7 21.82
2009 148 3 52 8 23.44
2010 143 9 51 14 28.71
2011 144 3 43 7 24.93
2012 151 6 40 7 7.62
2013 155 9 61 18 48.53
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Abstract Temperate grasslands play globally an important

role, for example, for biodiversity conservation, livestock forage

production, and carbon storage. The latter two are primarily

controlled by biomass production, which is assumed to decrease

with lower amounts and higher variability of precipitation,

while increasing air temperature might either foster or sup-

press biomass production. Additionally, a higher atmospheric

CO2 concentration ([CO2]) is supposed to increase biomass

productivity either by directly stimulating photosynthesis or
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indirectly by inducing water savings (CO2 fertilization effect).

Consequently, future biomass productivity is controlled by the

partially contrasting effects of changing climatic conditions and

[CO2], which to date are only marginally understood. This

results in high uncertainties of future biomass production and

carbon storage estimates. Consequently, this study aims at sta-

tistically estimating mid-21st century grassland aboveground

biomass (AGB) based on 18 years of data (1998-2015) from a

free air carbon enrichment experiment. We found that lower

precipitation totals and a higher precipitation variability re-

duced AGB. Under drier conditions accompanied by increasing

air temperature, AGB further decreased. Here AGB under

elevated [CO2] was partly even lower compared to AGB under

ambient [CO2], probably because elevated [CO2] reduced evapo-

rative cooling of plants, increasing heat stress. This indicates a

higher susceptibility of AGB to increased air temperature under

future atmospheric [CO2]. Since climate models for Central

Europe project increasing air temperature and decreasing total

summer precipitation associated with an increasing variability,

our results suggest that grassland summer AGB will be reduced

in the future, contradicting the widely expected positive yield

anomalies from increasing [CO2].

Keywords Free Air Carbon Enrichment (FACE), climate

extremes, climate change, temperate grassland, aboveground

biomass, future yields

6.1 Introduction

On a global scale, approximately 26% of the terrestrial areas (Foley et al., 2011)

and 70% of farmland (Soussana & Lüscher, 2007) are covered by grasslands. In
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Europe, permanent meadows and pastures (mainly composed of C3 species) cover

approximately 38% of the agricultural area (Food and Agriculture Organi-

zation of the United Nations Statistics Division, 2015). The enormous

extent highlights the importance of grasslands for biodiversity conservation and

forage supply for wildlife and livestock. Additionally, grasslands play an important

role within the global carbon cycle through carbon assimilation, today harboring

approximately 20% of the world’s carbon pool (Schlesinger & Andrews, 2000;

White et al., 2000) and potentially maintaining its CO2 sink function under fu-

ture climate conditions (Schimel et al., 2015), depending upon future biomass

productivity (Parton et al., 2012).

Biomass productivity, in respect to climate variables, is claimed to be mainly

controlled by air temperature and precipitation inputs (Andresen et al., 2016; Luo,

2007; Mowll et al., 2015; Nippert et al., 2006; Parton et al., 2012; Weltzin

et al., 2003). However, the effect of air temperature on biomass productivity is

still under debate. With increasing air temperature, a shift towards an optimum

growth temperature (Luo, 2007; Myneni et al., 1997), lengthening of the growing

season through earlier spring emergence and later autumn senescence (Hufkens

et al., 2016; Luo, 2007), and increased nutrient availability due to higher microbial

activity (Luo, 2007; Rustad et al., 2001) may foster aboveground biomass (AGB)

production. In contrast, if atmospheric water availability remains constant, rising

air temperature increases evaporation, decreases soil moisture availability (Niu

et al., 2008), and increases midday heat stress (De Boeck et al., 2008), altogether

hampering AGB productivity. The current view on the expected influences of

changes in precipitation on grassland AGB is more uniform. Since the productivity

of most temperate grasslands is positively influenced by rainfall, increases in

total summer precipitation will concomitantly increase grassland productivity

(Nippert et al., 2006; Weltzin et al., 2003; Yang et al., 2008). However, changes

in precipitation variability alter grassland productivity independent of the total

precipitation (Fay et al., 2011, 2003; Gherardi & Sala, 2015; Knapp et al.,

2008; Nippert et al., 2006). Especially during the summer, decreased AGB

with increasing precipitation variability has been related to a critical dry-down

of soil moisture (Nippert et al., 2006). This effect of precipitation variability on

productivity is particularly evident for grasslands that feature relatively shallow
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roots feeding the plant water demand from the upper layers of soil (Gherardi &

Sala, 2015; Knapp et al., 2008).

Despite climate-induced changes in AGB productivity, it is widely accepted

that increasing [CO2] will enhance future biomass productivity through reduced

CO2 limitation of (C3) plants, which is usually referred to as the CO2 fertilization

effect (Ainsworth & Rogers, 2007; Ainsworth & Long, 2005; Lloyd &

Farquhar, 2008; Soussana & Lüscher, 2007). As a consequence of reduced

CO2 limitation, water-use efficiency of plants increases because stomata need less

be opened to obtain CO2 (Kellner et al., 2017). Thus, it is expected that the

CO2 fertilization effect is particularly strong under drier conditions (Morgan

et al., 2004; Soussana & Lüscher, 2007; Volk et al., 2000). Likewise, a strong

CO2 fertilization effect is anticipated under warm conditions, when the ratio of

photosynthesis to photorespiration is decreased, since photosynthesis is promoted

by elevated [CO2] (Long, 1991; Luo, 2007; Morison & Lawlor, 1999). However,

field studies have shown that the CO2 fertilization effect is reduced under more

extreme conditions (e.g., drier and/or hotter; Hovenden et al. 2014; Obermeier

et al. 2017; Reich et al. 2014). In agreement with those findings, recent studies

suggest that plants benefit from increasing CO2 only if carbon demand is high, the

latter depending on processes of tissue formation and cell growth (Fatichi et al.,

2014; Körner, 2015).

As a result, changing climate and increasing atmospheric [CO2] interact and

may have contrasting effects on biomass productivity in the future, which is

currently poorly understood and is mainly studied by numerical models (e.g.,

Chang et al. 2017; Gu et al. 2014; Hufkens et al. 2016; Huntzinger et al. 2017;

Rounsevell et al. 2005). To overcome model uncertainties, a field data-driven

assessment of the future AGB productivity is urgently needed, for example, to

estimate future vulnerability of livestock forage, biodiversity conservation, and

carbon storage. Large-scale and long-term experiments under natural conditions

provide the best possibility to test AGB response to the multitude of interactions

under climate change (De Boeck et al., 2008; Zhu et al., 2016). Therefore, free

air carbon enrichment (FACE) experiments represent a state-of-the-art technique.

Here we use one of the longest continuously operating FACE experiments on

grasslands to estimate, for the first time, future biomass production, combining
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field measurements, simulated future climate regimes, and a variable atmospheric

[CO2]. To construct future climate regimes, we modified the ranges and relations of

the climate variables during the experimental period, to coincide with the general

findings of IPCC projections. By comparing the AGB under the different climate

regimes, we quantified changes of biomass production in the mid of the 21st century

in relation to current yields. To achieve this, we (1) generated potential future

climatic regimes, by slightly altering the ranges and relations of climate variables

selected during an exhaustive AGB model selection approach, and (2) estimated

the AGB productivity under ambient and elevated [CO2] within the potential

future climate regimes. Significant changes among climatic regimes and [CO2] were

evaluated to quantify the relative changes and the uncertainties of future biomass

production in C3 grasslands of Central Europe.

6.2 Materials and Methods

6.2.1 Study site

The large-scale FACE field experiment near Giessen, Germany (GiFACE; 50°32’N

and 8°41’E; 172 m a.s.l.) has been running since 1998. The main purpose of

the GiFACE experiment is to study the effects of higher [CO2] on a temperate,

nongrazed and extensively managed, species-rich grassland ecosystem. Six FACE

rings of 8-m diameter were established (for a detailed description of the study

site see Andresen et al. 2018; Jäger et al. 2003. In three of the rings (control

rings) plants grew under ambient CO2 conditions. In the other three rings, the

vegetation has been exposed to elevated CO2 conditions (∼20% above ambient

[CO2] during daylight hours), roughly simulating the CO2 conditions expected for

the period from 2021 to 2050. Compared to other FACE studies, such a low CO2

enrichment was chosen to prevent artifacts that may arise from a sudden stepwise

increase in [CO2] (Luo, 2001; Newton et al., 2001). The soil is a Fluvic Gleysol

(Food and Agriculture Organization of the United Nations Statistics

Division, 1994) with a sandy clay loam layer above a clay layer of variable depth

(Kammann et al., 2005). The grassland composition is comparable within all

rings and is dominated by the C3 grasses Arrhenaterum elatium, Galium mollugo,
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Holcus lanatus, and Poa pratensis, accompanied by a forb fraction and legumes, the

latter at low abundance (Kammann et al., 2005). Throughout the experimental

period, the vegetation has been steadily fertilized with 40-kg nitrogen·ha−1·year−1

and 600 kg·ha−1·year−1 of 10% phosphorus pentoxide +15% potassium oxide +3%

magnesium oxide and 33% calcium oxide + magnesium oxide in spring (Kammann

et al., 2005).

6.2.2 Meteorological Data, Vegetation, and CO2 Data

The meteorological data were measured at the field site from climate stations

run by the Hessian Agency of Nature Conservation, Environment and Geology

(HLNUG) and the Environmental Monitoring and Climate Impact Research Station

Linden (UKL). For air temperature, a Pt-100 resistance thermometer at 2-m height

was used. Precipitation was measured using three Hellmann samplers, randomly

distributed over the experimental area.

The AGB (dry matter) was derived at the time of peak biomass accumulation

(beginning of September) by cutting the vegetation approximately 5 cm above

ground and subsequently oven drying at 105◦C. To enable a comparison of climate-

induced changes on AGB productivity, we investigated the AGB in the control rings

under ambient [CO2] (aAGB) and in the rings exposed to elevated CO2 (eAGB).

Mean values of AGB were calculated for both treatments and each year.

To model AGB productivity depending on environmental conditions, we gen-

erated various climate predictors (refer to section 6.2.3). Therefore, we used the

meteorological data sets (hourly and half-hourly measurements) and included the 90

days prior to each September harvest in the analysis, roughly corresponding to the

summer months of June, July, and August. Within these 90-day periods, predictors

for AGB estimation were calculated. Hourly precipitation was aggregated to daily

precipitation total. Daily mean, minimum, and maximum values of air temperature

were extracted from half-hourly measurements. All data sets used for current

biomass modeling covered the time period from 1998 to 2015. Technical problems

caused a very low CO2 enrichment in 2012 and a very high CO2 enrichment in 2013

(Obermeier et al., 2017). Thus, both years were excluded from further analysis.

Data analysis was conducted using the CRAN R version 3.3.3 (R Core Team,
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Table 6.1: Overview of the predictors derived from air temperature (2 m) measurement.

Abbreviation Long form Unit Formula

AT Mean Mean air temperature ◦C
∑h
i=h−90

Tmeani
90

AT MeanTrans Transformed mean air ◦C Tmeanall =
∑

ATMean
18

temperature Tmeanall =
√(∑h

i=h−90
Tmeani

90
− Tmeanall

)2
AT MaxMean Mean of the daily maximum ◦C

∑h
i=h−90

Tmaxi
90

air temperature

GDD Growing degree-days ◦C
∑h
i=h−90

Tmini+Tmaxi
2

− 5,

Tmini =

{
5◦C if Tmini < 5◦C,

Tmini otherwise

Tmaxi =

{
30◦C if Tmaxi > 30◦C,

Tmaxi otherwise

KDD Killing degree-days ◦C
∑h
i=h−90 Tmaxi

Tmaxi =

{
0◦C if Tmaxi < 30◦C,

Tmaxi otherwise

Note. h denotes the day of year of harvest. Tmeani, Tmaxi, and Tmini refer to the aggregated average, maxi-
mum, and minimum air temperature of day i, respectively; Tmeanall is the long-term average air temperature
within the investigated 90-day periods.

2018). An overview of the processing steps is given in the Supporting Information

(Supplementary Fig. 6.7).

6.2.3 Predictors for AGB

The estimation of future grassland AGB requires a wide set of variables to account

for both changes in absolute air temperature and precipitation values and shifts in

their variability. While simple statistical models depend on basic climate variables,

such as the mean annual temperature and total annual precipitation (e.g., Lee

et al. 2011), other studies suggest that additional attributes such as the timing and

frequency of precipitation events influence ecosystem productivity and thus should

be included in the analysis (Craine et al., 2012; Heisler-White et al., 2009;

Knapp et al., 2015; Nippert et al., 2006; Parton et al., 2012; Pierre et al.,

2011; Swemmer et al., 2007; Yang et al., 2008). To depict a realistic image of the

most important ecophysiological conditions, we created various predictors based on

air temperature (Table 6.1) and precipitation (Table 6.2) data. Further details on

the predictor variables used in this study can be found in 6.1.
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Table 6.2: Overview of the predictors derived from precipitation measurements.

Abbreviation Long form Unit Formula

PPT Sum Total summer mm
∑h
i=h−90 PPTi

precipitation
N◦ dry days Number of days with days

∑h
i=h−90 DD,

less than 1 mm of precipitation DD =

{
0 if PPTi ≥ 1mm

1 if PPTi < 1mm
Mean dry- Mean dry-interval days A dry-interval is defined by at least six
interval length length consecutive days with less than 1 mm

precipitation. The average length of the
dry-intervals is calculated.

Max dry-interval Maximum dry-interval days Number of days in the longest period of
length length consecutive dry days with less than 1 mm

precipitation.
N◦ rain events Number of rain events events Number of rain events, where consecutive

days with precipitation > 1 mm are
counted as one event.

Mean event size Mean precipitation mm
∑h

i=h−90 PPTi

N◦ rain events
total for one rain event

PPT Max Maximum of the daily mm max(PPTi)
precipitation totals

Note. h denotes the Day of Year of harvest. PPTi is the sum of the daily precipitation in day i.

6.2.4 Creation of Predictor Subsets

To ensure that, regardless of the result of the variable selection (refer to section

6.2.5), biomass alterations can be attributed to either changes in air temperature or

the variability of precipitation inputs, two separate predictor subsets were created:

The first subset consisted of temperature-related variables, and the second one

was based on precipitation-related variables. However, since the total summer

precipitation is expected to dominate the influence on the AGB production, it is

included as predictor in both subsets. Consequently, the precipitation amount and

air temperature subset includes the mean air temperature, mean daily maximum

air temperature, growing degree-days, killing degree-days, and the transformed

mean air temperature, along with the total summer precipitation. The precipitation

amount and variability subset contains the variables of total summer precipitation,

maximum daily precipitation, number of dry days, number of rain events, mean

event size, maximum dry-interval length, and the mean dry-interval length.

6.2.5 Selection of Final Predictors and Final Model Creation

Two separate partial least squares regression (PLSR) models were fitted to estimate

aAGB and eAGB in relation to the predictors included in the precipitation amount
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and air temperature and the precipitation amount and variability subsets. The final

set of predictor variables within each subset was selected applying an exhaustive

information-theoretic model-selection approach based on the Akaike information

criterion (Akaike, 1998), supported by PLSR regression outputs. The selection of

the optimal set of predictor variables was performed using the averaged AGB of all

rings, resulting in an identical predictor space for eAGB and aAGB. For further

information on predictor selection, model tuning and validation of the biomass

estimation, see Supplementary Section 6.5.2.

6.2.6 Future Climate Regime Creation and Regime-Based AGB

Estimations

For each subset, we created the most plausible future climate regimes by altering

the selected predictor variables. Since neither air temperature nor precipitation

regimes have experimentally been altered, we extracted potential future regimes

(e.g., low precipitation input with high air temperature) within the ranges and

inherent relations of the climatic variables measured during the experimental period.

The methodology is described briefly in the following; for a detailed description

with the example of the dry regime in the precipitation amount and air temperature

subset refer to Supplementary Fig. 6.7 and Supplementary Section 6.5.3.

Since total summer precipitation is the most important predictor for summer

AGB, all climatic regimes were primarily defined by means of the total summer

precipitation (precipitation amount regime; compare Fig. 6.1). Dry regimes are

located within the lower quartile and medium precipitation regimes within the

interquartile range of the observed 90-day precipitation amount measured during

the 18 years of the experiment. To account for other variables that influence the

biomass productivity, we defined three subregimes for each main precipitation

amount regime by altering the remaining predictors. This resulted in two main

regimes and six subregimes for each of the two subsets (precipitation amount and

air temperature, and precipitation amount and variability subset; Figures 6.1, 6.3,

and 6.4).

For the creation of subregimes we used the empirical relationship between the

climatic drivers during the experimental period assuming that the qualitative
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Figure 6.1: Schematic overview of the regimes and subregimes for the precipitation
amount and air temperature subset and the precipitation amount and variability subset.
Main regimes were primarily defined by the precipitation amounts. For each main regime
and subset, three subregimes were defined by modifying the related predictor variables.
The predictor ranges for the different subregimes can be found in Supplementary Tables 6.9
and 6.10. Med stands for medium precipitation amount, medT stands for medium air
temperature, medP stands for medium precipitation variability, cld stands for cold, varP
stands for a high precipitation variability, and conP stands for a low variability in the
precipitation inputs.

relationships between the climate variables will persist despite of climate change.

Therefore, linear regression models between the total summer precipitation and

each predictor variable were calculated. To account for possible stronger variations

of the climatic conditions in the future, 1,000 precipitation sample values were

uniformly drawn within the respective precipitation amount regime boundaries

(e.g., a total summer precipitation between 105 and 155 mm for the dry regime).

For each precipitation value, the regression estimates were used to interpolate

the corresponding predictor values. Since lower correlations between climatic

variables enlarge the uncertainty of the regression results, the estimates were not

directly used. Instead, 1,000 normal distributions were fitted to the sampled

precipitation values, with the corresponding predictor estimate as mean value,

and a standard deviation calculated according to the 0.05 and 0.95 confidence

interval of the linear regression model. From each of the 1,000 distributions, one

single value was randomly sampled and used as the predictor value corresponding

to the respective precipitation sample value. For the hot (hot in Fig. 6.1) and
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variable precipitation (varP in Fig. 6.1) subregimes, the mean values of the normal

distributions were shifted by plus one standard deviation. For the cold (cld in

Fig. 6.1) and constant precipitation variability (conP in Fig. 6.1) subregimes, the

mean values of the normal distributions were reduced by one standard deviation

accordingly. The resulting boundaries of the subregimes are depicted in Figures 6.3

and 6.4, respectively (thresholds of the climate variables within the subregimes can

be found in Supplementary Tables 6.9 and 6.10, respectively). Within each of these

subregimes, eAGB and aAGB were estimated by means of the 1,000 samples for

each predictor and the final PLSR models. To compare the biomass estimations, we

also calculated the relative AGB change in the elevated compared to the ambient

rings for each subregime (100*(eAGB-aAGB)/aAGB).

6.2.7 Assessment of Future Climate Conditions

To assess the climate regimes that are most likely to depict frequent future condi-

tions, we compared the projected predictor alterations to various climate model

results. Due to the well-known, nonlinear relationship between [CO2] and photo-

synthesis (Farquhar et al., 1980), we constrained our analysis to the years 2021

to 2050 with a predicted atmospheric [CO2] in the range of the experimentally

enriched [CO2] in the elevated rings. One hundred twenty-three numerical regional

climate models based on different global models and emission scenarios publicly

available in the Regionaler Klimaatlas Deutschland (Regionale Klimabüros in der

Helmholtz-Gemeinschaft, 2017) were used. Here various climate calculations based

on the Special Report on Emissions Scenarios A1B (total number = 24; Holl-

weg et al. 2008; Jacob et al. 2007; van der Linden & Mitchell 2009), A2

(20; Christensen et al. 2005; Jacob et al. 2008), B1 (3; Hollweg et al. 2008;

Jacob et al. 2008), and B2 (4; Christensen et al. 2005), as well as based on

representative concentration pathways (RCP) 2.6 (10; Jacob et al. 2014, RCP),

4.5 (30; Jacob et al. 2014), and RCP8.5 (32, Jacob et al. 2014) were included.

To assess the most probable predictor alterations for the years 2021 to 2050, we

considered model runs that depict the minimum, mean, and maximum changes of

the respective variable in the ensemble in Germany. Moreover, we depicted the

mean change of the respective variable in the ensemble and selected future time
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period for the experimental area in Linden. For ease of assignment, we refer to the

climate calculations always in the form of “emission scenario/global model/regional

model”.

6.3 Results

To unravel the relations between predictor variables and biomass productivity,

Pearson’s correlation coefficients were calculated (Supplementary Table 6.4). For

total summer precipitation, Pearson’s correlation coefficient was greater than 0.8

for the mean size of rain events, which we therefore excluded from further analysis

to enable a proper predictor selection. Very high correlations were found between

mean air temperature, growing degree-days, killing degree-days, and mean of daily

maximum air temperature. The strongest correlation with AGB was observed

for total summer precipitation. Significant correlations with summer AGB were

found for all predictors except growing degree-days, number of dry days, maximum

dry-interval length, and transformed mean air temperature.

The combined approach using information theory and PLSR technique revealed

predictors for the finals models for AGB estimation within the two subsets (Supple-

mentary Tables 6.5 and 6.6, and Supplementary Section 6.5.1). For the precipitation

amount and air temperature subset, final predictors were total summer precipi-

tation and transformed mean air temperature. For the precipitation amount and

variability subset, total summer precipitation, number of rain events, number of

dry days, and mean dry-interval length were chosen as final predictors.

The predictive performance of the final PLSR model for the precipitation amount

and air temperature subset was generally high, except for 2 years (2008 and 2015,

Figures 6.2a and 6.2b). The best performances were yielded for aAGB if one latent

vector was used and for eAGB if two latent vectors were used (Supplementary

Table 6.7). Within the precipitation amount and variability subset three latent

vectors were used for the estimation of aAGB as well as for eAGB (Supplementary

Table 6.8). Here differences between estimated and measured AGB values were

very small (Figures 6.2c and 6.2d). The model residuals did not tend to change

towards the more extreme AGB yields (e.g., very high yields in 2000, 2007, and

2014; and very low yields in 2003 and 2015).
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Figure 6.2: Leave-one-out cross-validation of summer aboveground biomass (AGB)
estimation in the ambient (a and c) and the elevated rings (b and d) for the precipitation
amount and air temperature subset (a and b), and the precipitation amount and variability
subset (c and d). Each point represents the treatment-wise AGB per square meter and
harvest date. The solid and dashed lines depict the linear regression line and the 1:1 line,
respectively.

The ranges of the predictor values within the future subregimes of the precipita-

tion amount and air temperature subset, as well as the precipitation amount and

variability subset, can be found in Supplementary Tables 6.9 and 6.10, respectively.

Within the precipitation amount and air temperature subset, lower precipitation

totals coincided with higher air temperature (Fig. 6.3). Air temperature changes

were higher within the dry subregimes (dry) than in the medium precipitation

subregimes (medP). Within the precipitation amount and variability subset, a

higher variability in rainfall (varP) coincided with a higher number of dry days, a

longer mean dry-interval length, and a lower number of rain events (Fig. 6.4). The

regimes with comparable constant precipitation inputs (conP) were characterized

by a lower number of dry days, a shorter mean dry-interval length, and a higher

number of rain events.
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Figure 6.3: Box plots of experimental (gray) and regime-wise (colored) precipitation
total (a) and mean air temperature (b) of the precipitation amount and air temperature-
related subset. Median, first and third quartiles, and the lowest/highest value within the
1.5 interquartile range of the lower/upper quartile are shown. Please note that variable
mean air temperature shows the original air temperature values, while the model input
is the transformed mean air temperature variable (with growth optimum assumed at
long-term average of 17.4◦C).

Figure 6.4: Box plots of experimental (gray) and regime-wise (colored) precipitation
sum (a), number of dry days (b), number of rain events (c), and mean dry-interval length
(d) of the precipitation amount and variability-related subset. For a description, refer to
Figure 6.3.
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The results of the estimation of biomass under future conditions will be outlined

first for the air temperature-related subset, followed by the precipitation variability-

related subset. AGB productivity was lowest in the dry main regime with a biomass

yield lower than the average during the experimental period, for both rings with

elevated [CO2] and rings under ambient atmospheric [CO2] (Fig. 6.5a). With an

increase in air temperature, eAGB was significantly further decreased within the dry

regime, and the dry and hot subregime (dry/hot) showed the overall lowest summer

AGB. Accordingly, the highest AGB within the dry regime was estimated in the dry

and cold subregime (dry/cld). The medium precipitation regime revealed an eAGB

in the range of the elevated [CO2] rings during the experimental period, while

changes in the air temperature caused slightly significant changes only between the

hot (med/hot) and medium temperature (med/medT) subregimes. Significantly

higher eAGB compared to aAGB was found for all subregimes (<0.001; Fig. 6.5b).

This relative AGB change was highest for the medium precipitation and medium air

temperature subregime (med/medT) and hardly altered by air temperature in the

medium precipitation regime. In the dry regime, increasing air temperature reduced

the relative AGB change. Here even negative values were observed, representing

lower AGB values under elevated compared to ambient conditions.

Within the precipitation amount and variability subset, the estimated AGB

was lowest in the dry regime (Fig. 6.6a), with AGB lower than the mean AGB

of the experimental period. For the medium precipitation regime, AGB was in

the range of the average AGB during the experimental period. Over the full

range of the predictors appearances, summer AGB increased with total summer

precipitation and number of rain events, while an increase in the number of dry

days and mean dry-interval length significantly reduced summer eAGB. With

a more even distribution of rainfall events, eAGB productivity was significantly

enhanced, which was more pronounced in the dry (dry/conP) compared to the

medium precipitation (med/conP) regime. For all subregimes, the relative AGB

change was strongly significant (<0.001; Fig. 6.6b), with the highest AGB change

in the medium precipitation regime. Here increases in precipitation variability

decreased relative AGB change only slightly. For the dry regime, increases in the

variability of precipitation inputs (dry/varP) led to strong reductions in eAGB

productivity and relative AGB changes.
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Figure 6.5: Box plots of experimental (gray) and regime-wise (colored) summer above-
ground biomass (AGB, a) and relative change in AGB (b) for the precipitation amount
and air temperature-related subsets. For AGB (a, upper row), A denotes under normal
atmospheric [CO2], and E stands for elevated [CO2] conditions; the solid line represents
mean AGB in the elevated rings (eAGB), and the dashed line depicts mean AGB under
ambient [CO2] (aAGB). Differences among eAGB estimates in the different subregimes
were all significant except those pairs indicated by the same lower case letter (a, upper
row). “***” (b, lower row) highlights a significantly higher eAGB compared to aAGB.

Projected future summer precipitation totals in Germany ranged broadly, from

an increase of 23% to a decrease of 28%, with a mean decrease in the experimental

area of 0% to 10% (Table 6.3). Similarly, the number of rainy days in summer

(an indicator for the number of rain events used in our study) ranged from an

increase of 4 days to a decrease of 5 days in Germany, with a mean decrease of 0 to

3 days for the experimental area (Table 6.3). Projected air temperature changes for

Germany in summer were very constant among the models with a mean increase

of 1.3◦C and a range from 0.2◦C to 3◦C across the models. The number of dry

days and mean dry-interval length were not modeled by the investigated global and

regional climate models.
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Figure 6.6: Box plots of experimental (gray) and regime-wise (colored) summer above-
ground biomass (AGB, a) and relative change in AGB (b) for the precipitation amount
and variability-related subset. For a description, refer to Fig. 6.5.

6.4 Discussion

To evaluate potential changes in biomass productivity under future climatic and

atmospheric conditions, we estimated summer AGB under ambient and elevated

CO2 by means of climate predictors and 18 years of the GiFACE climate manip-

ulation experiment. Despite a distinct overestimation of the most extreme AGB

values, the PLSR models for the precipitation amount and air temperature-related

models yielded good results. However, the PLSR models based on the precipita-

tion amount and variability-related variables outperformed the best precipitation

amount and air temperature-related model by far. Here the nearly perfect fit of the

regression line between the measured and estimated summer AGB and the 1:1 line

revealed that eAGB in particular was accurately estimated. Even under the most

extreme conditions, in the record dry and hot summers of 2003 (Ciais et al., 2005)

and 2015 (Orth et al., 2016), AGB yields were estimated very well. Therefore,

we conclude that the combination of the selected predictors realistically reflects
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Table 6.3: Projected changes of the climatic variables during summer for the period
2021-2050 compared to 1961-1990.

Germany Study area

Climatic variableUnit of change Minimum Mean Maximum Mean
PPT Sum % -28 RCP8.5/NorESM1-M/ 0 RCP2.6/MPI-ESM-LR/+23 RCP8.5/HadGEM2-ES/ 0 to -10

HIRHAM5 REMO2009 RegCM4-3
AT Mean ◦C +0.2A1B/BCM2/ +1.3RCP8.5/MIROC5/ +3 RCP8.5/HadGEM2-ES/ +1 to +1.5

HIRHAM5 RC4 CCLM4-8-17
N◦ rainy days days -5 RCP2.6/EC-EARTH/ -1 RCP4.5/MPI-ESM-LR/ +4 RCP4.5/IPSL-CM5A-MR/ 0 to -3

RCA4 REMO2009 WRF331F 0 to -3

Note. Minimum, mean, and maximum values of 123 climate models are given, averaged over all grid cells in Germany. The
mean change for the experimental area is derived from the climate model run with the smallest absolute deviation to the mean
of all 123 model runs. The climate model runs are referred to in form of “emission scenario/global model/regional model.”

the ecophysiological importance especially of the precipitation variability-related

variables. The results prove that aAGB and eAGB can be estimated accurately by

means of the selected climate predictors and long-term (18 years) field observations.

We used the selected climate predictors to simulate potential future climate

regimes on the basis of the predictor relations during the experimental period and

their expected alterations under different climate model runs. Irrespective of the

high uncertainty especially regarding precipitation trends in Central Europe in

IPCC AR5 model ensemble, those climate models that captured past droughts

(1901-2015) best, suggested a future drying in the summer (Orth et al., 2016).

Therefore, we conclude that the dry regime seems to depict environmental conditions

that will frequently occur in Central Europe in the mid of the 21st century.

Air temperature is widely projected to increase with a high certainty; thus, the

hot subregimes are considered to reflect dominant conditions in the near future.

Therefore, the dry and hot subregime (dry/hot) is assumed to be the most realistic

future scenario within the precipitation amount and air temperature subset.

In concert with rising air temperature, the intervening dry spells between pre-

cipitation events may become longer (Easterling et al., 2000; Hov et al., 2013;

Seneviratne et al., 2012; Sillmann et al., 2013; Solomon et al., 2007). There-

fore, the number of dry days and the mean dry-interval length will most likely

increase, which is supported by the projected decrease in the number of rain events

for the study area. Thus, we conclude that the subregimes with a high variability

of rainfall inputs (dry/varP and med/varP) are most likely representing dominant

future conditions. Due to the concomitant reductions in total precipitation, the

dry and variable precipitation subregime (dry/varP) is likely to present the most

dominant future conditions within the precipitation amount and variability subset.
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6.4 Discussion

Using the potential future climate regimes and the PLSR models, we were able

to estimate regime-wise AGB under ambient and elevated [CO2] and thus compare

potential future alterations in AGB productivity. Regime-wise AGB alterations

will be first discussed for the dry regimes, followed by the hot subregimes (hot) and

finally the variable precipitation subregimes (varP).

The strong reduction in AGB productivity in the dry regimes was not surpris-

ing, since total summer precipitation is widely recognized as the main driver of

biomass productivity (Mowll et al., 2015; Nippert et al., 2006; Weltzin et al.,

2003). Lower aAGB and eAGB in the dry regimes compared to average AGB

in the experimental period indicated that precipitation-related biomass reduction

outperforms the yield-stimulating effects of higher [CO2]. This is in line with the

observed long-term decline in grassland productivity due to increasing dryness

despite increasing atmospheric [CO2] (Brookshire & Weaver, 2015). However,

the stronger reduction in eAGB compared to aAGB (low relative AGB change) in

the dry regimes was unexpected, since increased water-use efficiency of plants grown

under elevated CO2 leads to the widespread assumption that plants profit from

elevated CO2 particularly under drier conditions (Morgan et al., 2004; Soussana

& Lüscher, 2007; Volk et al., 2000). Nevertheless, this is in line with a recent

paradigm change, which states that plants may only profit from elevated CO2 if

the carbon demand is high, which depends on processes of tissue formation and

cell growth (Fatichi et al., 2014; Körner, 2015). The results are in clear contrast

to the expectations of a strongly enhanced AGB productivity in the future (Gu

et al., 2014; Hufkens et al., 2016; Li et al., 2014), which is mainly attributed to

increasing atmospheric [CO2] (Chang et al., 2017; Rounsevell et al., 2005).

In the dry regime where air temperature is generally high, the pronounced

decrease in AGB productivity with increasing air temperature may result from

heat stress and indicates that the optimum temperature of this plant community is

already exceeded (Luo, 2007; Mowll et al., 2015). The concept of an optimum

growth temperature to which vegetation is adapted is also suggested by the low

influence of air temperature on AGB in the medium precipitation regime, where

air temperature is near the optimum growth temperature. Remarkably, in the dry

regime, the influence of air temperature on eAGB was way beyond its influence

on aAGB. This can be explained by the increased water-use efficiency of plants
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grown under elevated CO2, which reduces transpiration cooling, and thus may

lead to intensified heat stress. Thus, negative impacts of rising air temperature

on biomass productivity have especially to be assumed for plants grown under

elevated CO2. This is supported by the additional negative relative AGB changes

estimated in the dry subregimes with increasing air temperature, and the negative

CO2 fertilization effect observed in the experiment during the record hot summer

of 2003. Therefore, we conclude that the negative influence of high air temperature

on biomass productivity is likely to increase with increasing [CO2] and that strong

reductions in biomass productivity in dry summers will be further aggravated by

higher air temperature.

In the dry regime with high variability in precipitation inputs (dry/varP), lower

AGB indicates the importance of soil moisture variability. Here increases in the

number of dry days and mean dry-interval length, combined with the decreasing

number of rain events, reduced AGB production independently of changes in total

summer precipitation. This highlights the importance of the direct effects of soil

moisture variability on root activity, plant water status, and photosynthesis (Fay

et al., 2011), especially when soil water becomes limited. Such a strong influence

of timing and variability of precipitation inputs on biomass productivity (Craine

et al., 2012; Fay et al., 2011, 2003; Gherardi & Sala, 2015) is supported by

the strongly improved model performance when variability-related variables were

included. However, since changes in air temperature often translates to altered

water balance (De Boeck et al., 2008; Mowll et al., 2015; Niu et al., 2008), it is

difficult to disentangle temperature from precipitation variability-related effects

on biomass productivity. Increasing air temperature positively affects carbon gain

several days after a substantial rain event (more likely in the medium precipitation

main regime and constant precipitation variability subregimes), while causing

negative effects when soil water is low during dry periods (more likely in the dry

main regime and variable precipitation subregimes; Niu et al. 2008. Nevertheless,

the lower relative AGB change with higher precipitation variability is in line with

the new paradigm that plants profit from elevated CO2 only if carbon demand is

high (Fatichi et al., 2014; Körner, 2015). Therefore, we conclude that further

reductions in grassland AGB are likely due to increasing variability in precipitation

in the near future.
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6.4 Discussion

Our study clearly reveals that grassland biomass productivity is reduced under

more extreme climate regimes, despite higher [CO2]. Such conditions, namely,

reduced total precipitation and increased air temperature and precipitation vari-

ability, are very likely to occur more frequently in the near future (Easterling

et al., 2000; Seneviratne et al., 2012; Solomon et al., 2007). Importantly, under

such unfavorable environmental conditions, elevated CO2 might even reduce AGB

productivity, probably due to reduced transpiration, which weakens evaporative

cooling. Therefore, the importance of air temperature to AGB productivity might

increase in future. The results are in clear contrast to the expected strong positive

yield anomalies owing to increases in [CO2] and its widely expected mitigating

effect on negative climate-change impacts. Moreover, our results are in contrast

to a single-year study, which simulated near-future climate and concluded that

higher [CO2] might mitigate the effects of extreme drought and heat waves on

ecosystem net carbon uptake (Roy et al., 2016). Given the high species diversity

in the investigated grassland, the results seem even more noticeable, since it has

been shown that a high biodiversity should stabilize ecosystem productivity during

more extreme climatic events (Isbell et al., 2015). Therefore, we assume an

overestimation of the yield-stimulating effect of higher [CO2] by model simulations,

because biomass reductions due to altered climatic conditions are not sufficiently

considered. Thus, the amount of livestock and wildlife forage per area in the tem-

perate grassland of our study area and similar ecosystems are expected to decrease

in the future. Assuming constant respiration rates, reduced biomass productivity

will also translate into reduced terrestrial carbon uptake, the latter characterized by

large uncertainties mainly due to model disagreement for their sensitivity to rising

atmospheric [CO2] (Huntzinger et al., 2017; Luo et al., 2008; Solomon et al.,

2007). This will further strengthen global climate change via ecosystem feedback.
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N., Kotlarski, S., Kriegsmann, A., Martin, E., van Meijgaard, E.,

Moseley, C., Pfeifer, S., Preuschmann, S., Radermacher, C., Radtke,

K., Rechid, D., Rounsevell, M., Samuelsson, P., Somot, S., Sousanna,

J.F., Teichmann, C., Valentini, R., Vautard, R., Weber, B., & Yiou,

P. (2014): EURO-CORDEX: new high-resolution climate change projections for

European impact research. Regional Environmental Change, 14, 2, 563–578.
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6.5 Supporting Information

6.5.1 Predictors for AGB

A non-linear response of aboveground biomass (AGB) to the mean air temperature

(AT Mean) can be expected due to physiological reasons. For C3 plants, it has

been shown that increases in cool air temperatures promote net photosynthesis,

which peaks at an optimal temperature and declines with further increases in air

temperature (Luo, 2007; Mowll et al., 2015). Assuming that the growth optimum

temperature is equal to the long-time local average air temperature (Tmeanall =

17.5◦C, in our study), we defined a transformed mean air temperature variable

(AT MeanTrans). Additionally, heat waves have shown to reduce AGB productivity

(Craine et al., 2012), and therefore we calculated the mean of daily maximum

air temperatures (AT MaxMean). Moreover, to reflect potentially occurring heat

stress, which could reduce yield, e.g., directly through damaging plant tissues or

enzymes (Butler & Huybers, 2013; Lobell et al., 2011; Yan & Hunt, 1999),

we also included a variable called killing degree days (KDD). To complement the

indicators related to the thermal regime, we calculated the cumulative growing

degree-days (GDD), which reflects the accumulated heat (or insolation) above a

certain base temperature (5◦C in our study) and below a defined upper threshold

(30◦C in our study) where plant growth is assumed to occur (Beier et al., 2004;

Butler & Huybers, 2013; Roltsch et al., 1999; Schlenker & Roberts, 2009).

It is widely accepted that the main factor controlling the AGB productivity is the

total summer precipitation (PPT Total; Mowll et al. 2015; Nippert et al. 2006;

Weltzin et al. 2003). As an indicator for drought stress, we derived the number of

dry days (N◦ dry days). However, the aggregated total summer precipitation and

number of dry days alone do not account for the full dynamics of plant available

water because the duration and frequency of dry periods between rain events

significantly alter ecosystem functioning (Knapp et al., 2008; Swemmer et al.,

2007). Longer dry-intervals lead to below-average soil water content and show

substantial negative impacts on aboveground productivity in mesic grasslands

(Heisler-White et al., 2009; Knapp et al., 2002). To consider such drought stress

induced by higher variability of water inputs, we derived the mean and maximum
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dry-interval length (mean and max dry-interval length; Heisler-White et al. 2009;

Swemmer et al. 2007), where a dry-interval was defined as a period of at least six

consecutive dry days as defined in the Regionaler Klimaatlas Deutschland (Regional

Climate Atlas of Germany; Regionale Klimabüros in der Helmholtz-Gemeinschaft,

2017). We complemented the indicators for the precipitation distribution with the

number of precipitation events (N◦ rain events), and we included the mean size

of such rain events (Mean event size) since they are claimed to significantly alter

grassland productivity regardless of the total amount (Heisler-White et al., 2009;

Swemmer et al., 2007). Since very high precipitation sums may lead to a water

loss through fast run-off, or cause the water-logging of soils, we have also included

the absolute maximum of the daily precipitation sums as a predictor (PPT Max).

6.5.2 Final predictor selection and final model creation

At first, to enable a proper predictor selection, all predictors that were strongly

correlated with the total summer precipitation (absolute Pearson correlation co-

efficients > 0.8) were excluded from further analysis (compare Supplementary

Table 6.4). The remaining predictors were used in a second step as candidates for

the selection of two independent multivariate biomass estimation models. The most

relevant predictors within each subset were selected by means of Kullback-Leibler

information loss, as implemented in the small-sample corrected Akaike information

criteria (AICc; Hurvich & Tsai 1989; Sugiura 1978). Therefore, all possible

unique multivariate linear models involving the remaining predictor candidates

within both subsets were built using the CRAN R package ’glmulti’ (Calcagno

et al., 2010). The AICc for each of the models is calculated, and the most favourable

model within each subset is defined by the lowest AICc value (AICc min), where

Kullback-Leibler information loss is minimized. However, the model with the lowest

AICc value is not necessarily the one that best represents the data, and expert

knowledge has proven to be mandatory for the selection of a final model (Burnham

et al., 2011). Therefore, all models can be ranked by their AICc and, in the sense of

information theory, considered more or less plausible regarding their AICc change

respective to AICc min (4AICc). While earlier literature suggested that models

with a 4AICc greater than two might be dismissed, (Burnham et al., 2011)
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have shown that models with a 4AICc smaller than seven need to be considered

as plausible. The properties of the most plausible models, as indicated by their

4AICc (< 7) for the precipitation amount and air temperature subset (12 models)

and the precipitation amount and variability subset (10 models), are depicted in

Supplementary Tables 6.5 and 6.6, respectively. To cope with the inherent model

selection uncertainty, we compared the predictors used within the most plausible

models with the relative variable importance of the predictors within all possible

models for each subset (compare Supplementary Fig. 6.8).

To give additional information on the quality of the models selected by the

information-theoretic approach, each set of predictor variables in the best models

was tested for their individual predictive performances regarding AGB. Therefore,

we calculated partial least squares (PLSR) regression models (Wold et al., 2001)

to cope with potentially non-linear relationships between the predictors and AGB.

PLSR techniques transfer the information content of the predictor variables to

independent latent vectors (LVs), which are generated with respect to a maximum

representativeness of the dependent variable. Within both subsets, we chose two

final PLSR models to estimate summer AGB, one for eAGB and one for aAGB.

The final models and their optimum number of latent vectors (LVs) were selected

by the Pearson correlation coefficient between the measured AGBs and estimated

values from a leave-one-out cross validation (LOO) cross validation (compare

Supplementary Tables 6.7 and 6.8). Since our focus is the estimation of future

AGB productivity (eAGB, elevated rings), we attached a higher value to the model

performances of eAGB compared to aAGB. The final PLSR models were then used

to estimate eAGB and aAGB within different climatic regimes for the precipitation

amount and air temperature as well as precipitation amount and variability subset.

6.5.3 Future climate regime creation (example dry regimes)

All climatic regimes were primarily defined by means of the total summer precipita-

tion. Subsequently, each of the sub-regimes is defined by the empirical relationship

between the climatic drivers during the 18 year experimental period. In the fol-

lowing, the steps for the sub-regime creation are described with the example of all

sub-regimes within the dry regime. Beginning with the medium air temperature
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sub-regime, the estimation of the mean air temperature values is required (refer

also to Supplementary Fig. 6.7 – section 6.2.5). At first, a linear regression model

between the total summer precipitation and the mean air temperature was calcu-

lated to maintain any interaction between the climatic drivers of AGB. To account

for the possible stronger variations of the climatic conditions in the future, 1000

specific precipitation sample values were uniformly drawn within the boundaries

of the respective precipitation amount regime, e.g., a total summer precipitation

between 105 and 155 mm for the dry regime. For each of the uniformly sampled

precipitation values, the above mentioned regression model was used to estimate the

corresponding values of air temperature. However, the lower the correlation between

climatic variables, the higher the uncertainty of the associated air temperature

estimate. To account for this, the estimates were not directly used. Instead, a

normal distribution was fitted to each of the randomly created air temperatures by

using the estimate as the mean value of the normal distribution. The standard de-

viation of the distributions was calculated according to the 0.05 and 0.95 confidence

interval of the linear regression model for the respective precipitation sample value.

Consequently, if the correlation between climatic drivers gets weaker, as is the case

towards extreme values, the wider the normal distribution is. From each of the 1000

air temperature distributions, one single value was randomly sampled and used as

the mean air temperature value corresponding to the respective precipitation sample

value. For the hot sub-regime, the means of the normal distributions were shifted

by one standard deviation towards hotter air temperatures. The associated mean

air temperature value for each precipitation sample was then randomly sampled

from the shifted normal distribution. For the cold sub-regime, the means of the

normal distributions were reduced by one standard deviation accordingly.

6.5.4 Detailed results for variable selection and model

performances

For the precipitation amount and air temperature subset, the most plausible

models (4AICc < 7) showed different combinations of the predictor variables

(Supplementary Table 6.5). The best model, according to information theory within

this subset (AICc min), included only the total summer precipitation and revealed
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an AICc of 161.05 and an Akaike weight of 0.356. The second-best model included

the transformed mean air temperature along with precipitation sum and revealed

an AICc of 162.87 and an Akaike weight of 0.144. The PLSR models for the AGB

in the rings under atmospheric [CO2] performed equally for both sets of predictor

variables with a LOO-R2 of 0.48 and a RMSE of 32 gr dr wt / m2 (Supplementary

Table 6.8). For the AGB in the rings with enriched [CO2], the PLSR model that

included the transformed mean air temperature outperformed the best model as

selected by the Akaike information criteria (LOO-R2 of 0.57 vs. 0.52 and RMSE

of 37.6 vs. 39.7 gr dr wt / m2) and had the overall highest LOO-R2 and smallest

RMSE-value with respect to all tested models for the precipitation amount and

air temperature subset. Within the precipitation amount and variability subset,

the AICc values for ten models were sufficiently low and have consequently been

tested (4AICc < 7, Supplementary Table 6.6). The model with the lowest AICc

included the variables of total summer precipitation, N◦ dry days, N◦ rain events

and the mean dry-interval length and had an AICc of 151.36 and an Akaike weight

of 0.437. The LOO cross validation of the corresponding PLSR model on eAGB

resulted in the overall highest LOO-R2 (0.83) and the smallest RMSE (23.3 gr dr

wt / m2; Supplementary Table 6.8). The coinciding results from the information-

theoretic approach and the PLSR technique gave strong indications for the predictor

choice for the final PLSR model within the subsets.
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Supplementary Figure 6.7: Overview of the processing steps for the estimation of
aboveground biomass in the elevated rings using the example of the dry regime. Rectangles
outline data types and parallelograms depict methods. Grey numbers refer to the sections
in the text. AGB is the aboveground biomass, AT is the mean air temperature, PPT is
the total summer precipitation, med stands for the medium water amount regime, medT
stands for the medium air temperature regime, cld stands for the cold regime, µ is the
mean of the normal distribution, and sd stands for the standard deviation. S1, S2 and
S1000 refer to the index of 1000 precipitation values, uniformly sampled within the dry
regime.

172



Supporting Information

Supplementary Figure 6.8: Relative importance of the variables used within the
model selection for (a) the precipitation amount and air temperature subset and (b)
the precipitation amount and variability subset. The relative importance equals the
sum of the relative Akaike weights of the models where the variables appear. AT is air
temperature.

Supplementary Table 6.4: Pearson correlation coefficients and significance levels
(p < 0.001 - “***”; p < 0.01 - “**”; and p < 0.05 - “*”) of the predictor candidates and
summer aboveground biomass in the elevated rings (eAGB) calculated for the 1998-2015
period. Due to the number of variables, the table is split into two sheets. Bold font
represents variables included in the final models to estimate future biomass production.
Normal fonts represent variables that were excluded either due to high correlation with
the precipitation sum or information-theory based model selection (see text for details).

PPT Total GDD AT Mean AT Max Mean PPT Max N◦ dry days

GDD −0.51*
AT Mean −0.56* 0.99***
AT Max Mean −0.55* 0.97*** 0.98***
PPT Max 0.73** −0.18 −0.25 −0.28
N◦ dry days −0.53* 0.58* 0.63** 0.64** −0.21
N◦ rain events 0.28 −0.45 −0.53* −0.53* 0.21 −0.74**
Mean event size 0.86*** −0.31 −0.32 −0.31 0.58* −0.15
Max dry-interval length −0.19 0.19 0.26 0.23 −0.03 0.50
Mean dry-interval length −0.29 0.32 0.38 0.33 −0.08 0.68**
KDD −0.47 0.75*** 0.82*** 0.80*** −0.23 0.59*
AT Mean Trans 0.00 −0.17 −0.24 −0.24 −0.02 −0.04
eAGB 0.81*** −0.45 −0.54* −0.52 0.67** −0.48

N◦ Mean Dry-interval length AT Mean
rain events event size Max Mean KDD Trans

Mean event size −0.22
Max dry-interval length −0.54* 0.06
Mean dry-interval length −0.70** 0.05 0.76***
KDD −0.58* −0.20 0.43 0.33
AT Mean Trans 0.21 −0.04 −0.34 −0.14 −0.59*
eAGB 0.57* 0.56* −0.43 −0.55* −0.50* 0.27

Note. GDD – Growing degree days; AT – Air temperature; PPT – Precipitation; KDD – Killing degree days
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Supplementary Table 6.5: Overview of the twelve most plausible models of summer
above-ground biomass based on the precipitation amount and air temperature
subset, as selected by the small-sample corrected Akaike information criteria (AICc).
Model number indicates decreasing plausibility, and the Akaike weight represents the
relative probability of the model.

Akaike Precipitation Mean AT Growing Killing Mean
Model AICc weight total (trans.) degree days degree days max AT Mean AT

1 161.05 0.356 X
2 162.87 0.144 X X
3 163.93 0.085 X X X
4 164.21 0.073 X X
5 164.42 0.066 X X
6 164.55 0.062 X X
7 164.67 0.058 X X
8 167.16 0.017 X X X
9 167.21 0.016 X X X
10 167.22 0.016 X X X
11 167.23 0.016 X X X
12 167.76 0.012 X X X X

AT – Air temperature

Supplementary Table 6.6: Overview of the ten most plausible models of summer
aboveground biomass based on the precipitation amount and variability subset, as
selected by the small-sample corrected Akaike information criteria (AICc). Model number
indicates decreasing plausibility, and the Akaike weight represents the relative probability
of the model.

Akaike Precipitation Dry-interval length
Model AICc weight total maximum N◦ dry days N◦ rain events mean maximum

1 151.36 0.437 X X X X
2 151.51 0.149 X X X
3 153.65 0.139 X X X X X
4 155.7 0.05 X X X
5 156.63 0.031 X X
6 156.66 0.031 X X X X
7 157.56 0.02 X X X X
8 157.57 0.02 X X
9 157.84 0.017 X X X
10 158.00 0.016 X X X X X
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Supplementary Table 6.7: Characteristics of the leave-one-out cross validation (LOO)
for the best partial least squares model within selected predictor combinations in the
precipitation amount and air temperature subset. For the specified predictors refer
to Supplementary Table 6.5 and the respective model number (first column).

PLSR model ambient rings PLSR model elevated rings
Model N◦ latent vectors LOO-R2 RMSE N◦ latent vectors LOO-R2 RMSE

1 1 0.48 32 1 0.52 39.7
2 1 0.48 32 2 0.57 37.6
3 3 0.45 33.8 3 0.54 39.1
4 2 0.34 37.2 2 0.45 42.8
5 1 0.48 32 1 0.52 39.7
6 1 0.48 32 1 0.52 39.7
7 2 0.41 34.9 2 0.43 44.1
8 2 0.34 37.2 3 0.52 40.3
9 1 0.48 32 1 0.52 39.7
10 2 0.41 34.9 3 0.52 40.2
11 1 0.48 32 1 0.52 39.7
12 4 0.45 33.7 4 0.49 41.8

RMSE – Root mean Square Error

Supplementary Table 6.8: Characteristics of the leave-one-out cross validation (LOO)
for the best partial least squares model within selected for each predictor combinations in
the precipitation amount and variability subset. For the specified predictors refer
to Supplementary Table 6.6 and the respective model number (first column).

PLSR model ambient rings PLSR model elevated rings
Model N◦ latent vectors LOO-R2 RMSE N◦ latent vectors LOO-R2 RMSE

1 3 0.63 27.8 3 0.83 23.3
2 3 0.66 26.2 3 0.71 32.1
3 4 0.75 22.9 4 0.81 25.3
4 3 0.69 25.3 3 0.6 36.8
5 2 0.73 22.8 2 0.58 36.7
6 4 0.54 31.7 4 0.8 26.0
7 4 0.69 25.7 4 0.68 34.7
8 2 0.56 29.6 2 0.62 35.9
9 3 0.64 27.7 3 0.58 38.6
10 4 0.56 31 4 0.82 24.3

RMSE – Root mean Square Error
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6 Reduced Summer Aboveground Productivity in Temperate C3 Grasslands

Under Future Climate Regimes

Supplementary Table 6.9: Regimes and sub-regimes defined within the precipitation
amount and air temperature subset. Values were rounded for clarity.

PPT amount regime dry medium wet

Temperature sub-regime hot medT cld hot medT cld hot medT cld

PPT Total (mm) 105-155 105-55 105-155 155-208 155-208 155-208 208-313 208-313 208-313
AT Mean (◦C) 17.4-19.5 17.1-19.2 16.8-18.8 17.0-18.5 16.8-18.3 16.5-18.0 15.6-18.7 15.1-18.2 14.6-17.8

AT – Air temperature; PPT – Precipitation

Supplementary Table 6.10: Regimes and sub-regimes defined within the precipita-
tion amount and variability subset. Values were rounded for clarity.

PPT amount regime dry medium wet

PPT variability sub-regime varP medP conP varP medP conP varP medP conP

PPT Total (mm) 105-155 105-55 105-155 155-208 155-208 155-208 208-313 208-313 208-313
N◦ drydays (days) 62-74 60-72 58-70 60-68 59-67 57-66 52-68 49-65 47-63
N◦ rain events (events) 12-17 13-18 14-19 14-18 14-18 15-19 12-21 13-22 14-23
Mean dry-inter-val length (days) 8-13 8-12 7-11 8-12 8-11 7-11 6-12 5-11 4-11

PPT – Precipitation
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Abstract
Hyperspectral remote sensing is a promising tool for a variety

of applications including ecology, geology, analytical chemistry

and medical research. This article presents the new hsdar

package for R statistical software, which performs a variety of

analysis steps taken during a typical hyperspectral remote sens-

ing approach. The package introduces a new class for efficiently

storing large hyperspectral datasets such as hyperspectral cubes

within R. The package includes several important hyperspectral

analysis tools such as continuum removal, normalized ratio in-

dices and integrates two widely used radiation transfer models.

In addition, the package provides methods to directly use the

functionality of the caret package for machine learning tasks.

179



7 Hyperspectral Data Analysis in R: The hsdar-Package

Two case studies demonstrate the package’s range of functional-

ity: First, plant leaf chlorophyll content is estimated and second,

cancer in the human larynx is detected from hyperspectral data.

Keywords hyperspectral remote sensing, hyperspectral

imaging, spectroscopy, continuum removal, normalized ratio

indices

7.1 Introduction

Hyperspectral data refers to measurements of reflectance, transmission or absorp-

tion of electromagnetic radiation with a very high spectral resolution. Consider

photographs taken with a normal digital camera to illustrate the concept of spectral

resolution. The sensors in digital cameras have three bands that cover the blue,

green and red portions of the visible electromagnetic radiation. Each band is sensi-

tive to radiation in a wavelength range of approximately 100 nm. Hyperspectral

sensors, in contrast, feature hundreds of such bands that are sensitive to a very

narrow wavelength range along the electromagnetic spectrum (often down to 1 nm).

Together, all bands continuously cover a certain portion of the electromagnetic spec-

trum. Additionally, most hyperspectral sensors feature bands within the infrared

or ultraviolet ranges. For instance, the hyperspectral satellite sensor Hyperion

provides data with 220 bands with a spectral resolution of approximately 11 nm

(wavelength range) at each 10 nm (sampling interval) from 400 nm (visible) to

2500 nm (short-wavelength infrared, Pearlman et al., 2001).

Hyperspectral imaging, also referred to as imaging spectroscopy, is used in

various disciplines, such as analytical chemistry (Blanco & Villarroya, 2002),

agricultural research (precision farming, Haboudane et al., 2002), ecology (Ustin

et al., 2004), pedology (Gomez et al., 2008), geology (Bishop et al., 2011),

and medical research (Calin et al., 2014; Regeling et al., 2015). The main

advantages of hyperspectral imaging are its cost-effectiveness in spatial analysis,

the non-destructive measurement of biophysical and biochemical properties of the
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investigated surface and the speed of analysis (up to real-time). Hyperspectral

analysis is not restricted to space-born approaches. Many of the above-mentioned

fields make use of portable spectrometers or hyperspectral cameras, which can

be used in the field, in the laboratory or even in a surgical suite. The choice of

the measuring device and its spectral specifications depends on the surface under

investigation and the aim of the analysis. For instance, vegetation has a very

prominent spectral feature called the red-edge. This refers to a sharp increase of

reflectance values in the near infrared wavelengths. These wavelengths, in contrast,

are less informative in geological analyzes, which usually require the short- and

mid-infrared wavelengths.

Currently, most hyperspectral approaches use commercial software tools such

as Erdas Imagine, ENVI or the hyperspectral toolbox in MATLAB. These tools

are generally expensive and have limited functionalities for statistical analysis.

Therefore, we developed a new package in the open source software R (R Core

Team, 2013). The Hyperspectral Data Analysis (“hsdar”) package combines

important hyperspectral analysis tools with the statistical power of R. This article

is structured as follows: The first section summarizes the reasons why R is convenient

for hyperspectral analysis. The next section outlines the main functionalities and

the implementation of the hsdar package, and also compares it with other available

software tools with a special focus on the other hyperspectral package “hyperSpec”

in R. Finally, two examples demonstrate the effectiveness of combining hyperspectral

techniques with the statistical power of R.

7.2 Why use R for hyperspectral imaging analysis

The methodology which is commonly applied in the analysis of hyperspectral

datasets consists of three parts: (1) the preprocessing of spectra, (2) the extraction

of the relevant information (i.e., spectral characteristics associated with biophysical

properties of the target), and (3) a classification or regression analysis to predict

biophysical properties in space and time. R is the most comprehensive software

tool for performing statistical analyses during step (3). In this context, especially

the machine learning algorithms such as support vector machines, Random forests

and artificial neural networks are powerful tools for modelling different parameters
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across space and time (for applications see e.g., Bacour et al., 2006; Hansen

et al., 2002; Schwieder et al., 2014). However, the functionality required for steps

(1) and (2) has only been partly available in R, was distributed across multiple

packages and was not directly applicable to hyperspectral data.

Thus, to take advantage of the statistical power of R for hyperspectral data

analysis, a new package was developed that provides a framework for handling

and analyzing hyperspectral data. A special focus was set on the analysis of large

datasets taken under field conditions for e.g., vegetation remote sensing. The

R-package hsdar implements commonly used processing routines for hyperspectral

data and further combines or extends the existing functionality of R to include

hyperspectral data into a broad range of statistical analyses.

7.3 Overview of the functionality of hsdar

This section gives a brief technical overview on the general functionality provided

by hsdar. The description starts with a short introduction of the classes followed

by a summary of the main functions.

7.3.1 Classes

To provide a framework to handle large hyperspectral datasets, the hsdar-package

defines a new S4-class called “Speclib”. This allows the user to store hyperspectral

measurements and all information associated with those measurements in a single

object (Figure 7.1). The hyperspectral measurements consist of reflectance values

stored in the spectra slot and their spectral specifications. The spectra are stored

either as a numeric matrix or a RasterBrick-object. The matrix is intended for

smaller data sets such as point measurements, whereas the RasterBrick object

may contain large hyperspectral (satellite) images. If the spectra are stored as a

matrix, the rows delineate between different samples while the columns represent

the different spectral bands. The spectral specification consists of two numeric

vectors stored in the wavelength and the full-width-half-maximum (fwhm) slots.

The wavelength gives the central position of each band and the fwhm value describes

the difference between the wavelength values where the sensitivity of the sensor is
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1

2

3

4

...

N

@
 ID

@ spectra
 

@ fwhm2.5 2.5 2.5 2.5 2.5 2.5 ...
nm

@ SI

Date Coordinates

@ wavelength300 305 310 315 320 325 ...
nm

Matrix

RasterBrick

Figure 7.1: Scheme of the S4-class “Speclib” implemented in hsdar. Black Slots are
Required and Grey Ones are Optional. The Spectra’s Slot can Either be a Matrix or
a RasterBrick Object. The SI Slot can Encompass Various Types of Objects Including
Raster Images. Note that Functions Exist to set and return Data in Each Slot.

half of its maximum in the respective band. Both values are specifications of the

sensor used to acquire the data and must be in the same unit. It is preferred to

use nm but automatic conversion from other typical units such as µm is supported.

If the fwhm values are unknown, the difference between neighboring bands are

used as an approximation. The associated data (termed SI as an abbreviation for

supplementary information), which is included as a list, may contain any type

of ancillary information like the measurement setup or the geographical position.

Additionally, raster images are supported as part of the SI.

Speclibs can be created through several methods. For each method, the user

must at least know the wavelength values of all bands that must be available as a

numeric vector. The most important method to create an object of class Speclib is

using the file path pointing to a hyperspectral raster image readable by rgdal or

raster (Bivand et al., 2016; Hijmans, 2016; Pebesma et al., 2015). The second

option to create a Speclib is to read the reflectance values from a file (e.g., a

comma-separated list) and store these in a matrix. This matrix, together with the

wavelength information, can then be used to create a Speclib. In the following
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short example, the example dataset “spectral data” (which is already a Speclib) is

divided into its basic components, which are then used to create a new Speclib:

R> library("hsdar")

R> data("spectral_data")

R> reflectance <- spectra(spectral_data)

R> class(reflectance)

[1] "matrix"

R> wv <- wavelength(spectral_data)

R> class(wv)

[1] "numeric"

R> spec_lib <- speclib(reflectance, wv)

R> class(spec_lib)

[1] "Speclib"

attr(,"package")

[1] "hsdar"

In this example, the spectra (reflectance) are stored as a matrix and the wavelength

(wv) is stored as a numeric vector.

Aside from using local offline data, hsdar can search online hyperspectral

databases and automatically download data. The following example searches

for spectra from grass species in the USGS Digital splib04 Spectral Library and

downloads the data. Note that missing data in the downloaded spectra are auto-

matically masked out.

R> avl <- USGS_get_available_files()

R> grass_spectra <- USGS_retrieve_files(avl = avl,

+ pattern = "grass-fescue")

In the example above, the first command returns all available spectra. Users can

specify a subset of spectra in a search string within the retrieve function (in this

case “grass-fescue”), which is downloaded and converted to a Speclib. Note that

the function supports approximate string matching so that entries similar to the

search string are found.
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7.3.2 Functionality

Along with the new Speclib class, hsdar includes several methods to summarize,

plot, query and replace data in Speclib objects. Since many hyperspectral datasets

are available as raster datasets (e.g., if acquired by satellite), hsdar provides a simple

interface to the raster package that allows users to read and save data from and to all

common raster formats via the rgdal interface (Bivand et al., 2016; Hijmans, 2016;

Pebesma et al., 2015). On commonly used hardware, hyperspectral raster datasets

often exceed the capacity of the RAM. To overcome this issue, hsdar provides two

processing options for such large datasets. The simpler, less computational effective

option is to store the spectra as a RasterBrick object in a Speclib. In this case, the

spectra are read into memory only upon request and most of the functions process

the spectral data block-wise. In this context, the functions automatically detect if

the data should be processed block-wise or if all the data should be read before

executing the function. For block-wise computation, the resulting spectra are saved

as a temporary raster file and the function returns a new Speclib object pointing

to the temporary file. The disadvantage of this option is that if more than one

function is applied, the spectra have to be saved and re-read multiple times. Thus,

a second option is available, which follows the framework of the raster package but

requires the user to be familiar with simple programming tasks in R. Like the raster

package, hsdar provides writeStart, getValuesBlock, writeValues and writeStop methods

for the Speclib class so that the user can easily process a large dataset by iteratively

reading parts (chunks) of the images, passing it through multiple functions and

writing the result to a new raster file. Only one reading and writing process is

required in this case, which considerably expedites the analysis. A typical code

block would look like the following. To execute it, note that wavelength needs to

be defined and infile must point to an existing file readable by the raster package.

The result will be a new file in the GeoTIFF-format defined by outfile featuring the

same number of bands as the existing file (option ’nl’):

R> ra <- speclib(infile, wavelength)

R> tr <- blockSize(ra)

R> res <- writeStart(ra, outfile, nl = nbands(ra),

+ format = "GTiff")
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R> for (i in 1:tr$n)

+ {

+ v1 <- getValuesBlock(ra, row=tr$row[i],

+ nrows=tr$nrows[i])

+ v2 <- ANY_FUNCTION(v1)

+ res <- writeValues(res, v2, tr$row[i])

+ }

R> res <- writeStop(res)

In the loop, function(s) provided by the hsdar package can be applied to the Speclib

v1. Examples of functions will be discussed in detail in the following sections. The

result of the function(s) (termed v2 in this example) is then written to the initially

defined file (res). Note that objects res and v1 are of class Speclib, while v2 may be

a vector, matrix or a Speclib depending on the return value of the functions applied

in between. Please read the help files and the corresponding vignette available in

the raster package for further information.

The functionality provided by the hsdar package can be divided into preprocessing,

analysis and modelling stages (Table 7.1). In the following, we briefly outline the

most important features except those that are part of the analysis in the section of

case studies.

Noise reduction is a critical preprocessing task in hyperspectral analysis because,

as a consequence of their high spectral resolution, the sensors often suffer from

low signal to noise ratios, thus, an important step of each hyperspectral analysis

is filtering the spectra. In hsdar the function noiseFiltering applies one of four

predefined filters (Savitzky-Golay-, Lowess-, mean-, Spline-filter) or any other

filter function from the signal package (Ligges et al., 2013). Figure 7.2 shows

the effect of filtering (red lines) spectra that were artificially affected by random

noise (black lines). Additionally, hsdar provides functions to calculate variables

derived from spectral features and allows the user to integrate (bin or spectrally

resample) hyperspectral datasets to sensors featuring a lower spectral resolution.

Spectral resampling can be performed using predefined spectral response functions

of common satellite sensors or using Gaussian spectral response functions defined

by the fwhm values of the sensor with the lower resolution. Alternatively, spectral
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Preprocessing Analysis Modeling

• Filtering

• Derivations

• Spectral resampling

• Continuum removal

• Red edge parameters

• ∼ 100 Vegetation in-
dices

• Soil indices

• Normalized ratio in-
dices

• Spectral unmixing

• Feature selection algo-
rithms

• Extraction of absorp-
tion features

• Implementation of the
leaf reflectance model
PROSPECT and the
canopy reflectance
model PROSAIL

• Link to machine learn-
ing functionality of
caret (Kuhn, 2008)

Table 7.1: Summary of the Main Functionalities of the hsdar-package. Items in Italic
are Presented in Detail in the Case Studies Section.

response values may be stored in a Speclib and passed directly to the resampling

function.

To analyze hyperspectral datasets, the computation of approximately 100 vege-

tation and soil indices is implemented in hsdar. The indices can be accessed via

the functions vegindex and soilindex which encompass widely used indices such as

the normalized difference vegetation index (NDVI, Tucker, 1979) in addition to

specialized indices such as the cellulose absorption index (CAI), which is a proxy

for litter amounts and plant coverage (Nagler et al., 2003). Additionally, users

can easily define their own index using a simple syntax. In (hyperspectral) remote

sensing of vegetation, the sharp increase in the reflectance values between 680 and

750 nm (red edge) is the most important feature, as the shape of the red edge is

determined by the amount of water and chlorophyll in the vegetation. Thus, the

red edge is seen as a reliable indicator for plant health in addition to leaf area

index, plant coverage, chlorophyll, water and nitrogen content (e.g., Filella &

Peñuelas, 1994). Different methods for extracting relevant information in the

shape of the red edge are included in hsdar. These encompass common methods

such as deriving the red edge inflection point using a Gaussian fit (Miller et al.,
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Figure 7.2: Effect of Filtering to Reduce Noise in Spectral Data. Red Lines are the
Filtered Reflectance and the Black Lines the Raw Reflectance. All Filters are Applied
to the Same Spectrum. Note that for Illustration Purposes, the Values of the Lowess-,
Mean-, and Spline-Reflectances have been Increased by 10, 20 and 30 % After Filtering,
respectively. Settings for the Filters are as follows: n and p for the Savitzky-Golay- Spline-
and Meanfilters are the Filter Lengths, whereas f Gives the Proportion of Bands in the
Spectrum that Influence the Smooth at Each Value in the Loewess-filter.

1990) or more recent advances such as the red edge position through linear extrapo-

lation (Cho & Skidmore, 2006). Finally, hsdar provides functionality to perform

linear spectral unmixing (LSU, Sohn & McCoy, 1997) e.g., for estimating the

fractional vegetation cover.

hsdar implements two frequently used radiative transfer models to simulate

the reflectance values of vegetation. The first one is the leaf reflectance model

PROSPECT (vers. 5B and D, Féret et al., 2017; Jacquemoud & Baret, 1990).

The second one is the canopy reflectance model PROSAIL which enhances the

functionality of PROSPECT and includes canopy directional reflectance simulation

(Jacquemoud et al., 2009). In addition, the inverted PROSPECT model allows

the user to estimate the content of various biochemical parameters in the leaves

from hyperspectral data (Jacquemoud, 1993).
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7.4 Other hyperspectral imaging tools

Comparable functionality can be found in commercial software tools, i.e., MAT-

LAB (The MathWorks, Inc., Natick, Massachusetts) and ENVI (Environment for

visualizing images, Exelis Visual Information Solutions, Boulder, Colorado). A

hyperspectral toolbox is available in MATLAB that provides feature extraction

algorithms such as principal component analysis as well as supervised classification

algorithms such as a Maximum Likelihood classifier (Arzuaga-Cruz et al., 2004).

ENVI has functions for preprocessing hyperspectral images such as continuum

removal and feature extraction algorithms such as the spectral angle mapper.

In the open source software R, hsdar completes its hyperspectral functionality

together with another major hyperspectral package called hyperSpec (Beleites

& Sergo, 2016). The primary difference between the packages is that hsdar is

intended for analyzing datasets collected under field conditions with satellites or

spectrometers with a special focus on vegetation and ecosystem remote sensing

(Dechant et al., 2017; Große-Stoltenberg et al., 2016; Lehnert et al., 2014;

Meyer et al., 2017). In contrast, the hyperSpec package provides many useful

functions for plotting with a special focus on hyperspectral data acquired under

laboratory conditions as in chemistry or medical research (Beleites et al., 2011,

2013). Functions in hsdar allow it to interface with the hyperSpec package, i.e., to

convert between Speclib objects and the hyperSpec class. Consequently, hsdar

users also have access to various import and plotting functions provided by the

latter package.

7.5 Case studies

In the following sections two study cases are presented to explore the functionality

of hsdar. The first case study uses data from a field experiment conducted in

central Germany where hyperspectral images were taken from grassland vegetation

exposed to enhanced CO2 air concentrations (Figure 7.3a). The example includes

spectra preprocessing, followed by the extraction of absorption features, calibration

and validation of a prediction model for chlorophyll content. In the second case

study, emphasis is given to the calculation of normalized ratio indices and model
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Figure 7.3: Sampling of Hyperspectral Data at the GiFACE Experimental Site with
the Spectrometer (a). The Silver Ring is Part of the CO2-Enrichment System. In (b), an
Example Image Illustrates the Hyperspectral Cube of the Human Larynx Produced by
the hsdar Function ”cubePlot”. The RGB-image on top of the Cube is Created from the
Bands of the Hyperspectral Image Corresponding to the Center of the Red, Green and
Blue Wavelengths. The Colors at the Vertical Sides of the Cube Represent the Intensity
Values of the 30 Different Spectral Bands of the Sensor (blue = low to red = high).

parameterization to detect cancer cells in human larynx tissue using hyperspectral

images (Figure 7.3b).

7.5.1 Remote sensing of vegetation: chlorophyll content

The first example demonstrates the applicability of hsdar for hyperspectral data

analysis in vegetation studies. Specifically, the package is used to estimate chloro-

phyll content of plants from hyperspectral data. The dataset was acquired within

the scope of a FACE (free air carbon dioxide enrichment) experiment conducted

on a temperate grassland situated near Giessen, Germany (Kammann et al., 2005;

Obermeier et al., 2017). On 15 plots (each 2 x 2 m), the chlorophyll content of

the two most abundant grasses (Arrhenatherum elatius and Trisetum flavescens)

was measured using a Konica Minolta SPAD-502Plus chlorophyll meter. The

mean value of chlorophyll content of both species was calculated and weighted
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by their corresponding plant coverage. Hyperspectral data were acquired at the

time of the chlorophyll measurements using a HandySpec® field spectrometer,

which simultaneously measures reflectance values from 305 nm to 1705 nm with a

spectral resolution of 1 nm (Figure 7.3a). The field spectrometer has two sensors

measuring from 305 to 1049 nm and 1050 to 1705 nm. On each plot, 24 spectra

were collected under natural (solar) illumination and averaged. Each plot was

visited three times, on 30.05.2014, 08.08.2014 and 13.05.2015. Thus, the dataset

contains 45 observations.

The following paragraph describes the preprocessing steps that reduce measure-

ment errors and artifacts in the spectral data. Then, the spectra are transformed

to reduce the influence of the illumination at time of acquisition. Finally, the

chlorophyll content is estimated with Random Forest using the transformed spectra

as predictors (Breiman, 2001). Here, we use the randomForest package by Liaw

& Wiener (2002) in combination with the caret package created by Kuhn (2008).

In the first preprocessing step noise is removed from the spectra using a Savitzky-

Golay filter (method “sgolay”) with a length of 15 nm. The filter reduces the

noise of the reflectance values by fitting a polynomial function and eliminates

small differences between neighboring bands, which are most likely a result of

measurement inaccuracy.

R> data("spectral_data")

R> spectral_data <- noiseFiltering(spectral_data,

+ method = "sgolay", p = 15)

The result is a Speclib object, which contains a filtered spectral signature in

the original sampling resolution. In addition, the empirical function of Coste

et al. (2010) is used to transform the chlorophyll SPAD values to µg cm−2 (Ca,b) to

facilitate the interpretation of the chlorophyll content values:

Ca,b =
117.1 · SPAD

148.84− SPAD
(7.1)

Note that the SPAD chlorophyll value is shipped with the example dataset and

stored in the supplementary information (SI) of the object.
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R> SI(spectral_data)$chlorophyll <-

+ (117.1 * SI(spectral_data)$chlorophyll) /

+ (148.84 - SI(spectral_data)$chlorophyll)

Chlorophyll strongly absorbs light at around 460 nm in the blue and around

670 nm in the red parts of the electromagnetic radiation (e.g., Mutanga &

Skidmore, 2004a). Therefore, the spectra are trimmed to their visible and near

infrared part (310 - 1000 nm). The resulting spectral data after preprocessing are

visualized in Figure 7.4a.

R> spectral_data <- spectral_data[,

+ wavelength(spectral_data) >= 310 &

+ wavelength(spectral_data) <= 1000]

Since the absorption of chlorophyll is not restricted to the central wavelength,

but also affects the neighboring bands, the reflectance values are considerably

lowered in the blue and red parts which lead to “absorption features” in the spectral

signature of the reflectance (shown as gray boxes in Figure 7.4a). The form and

magnitude of these absorption features are correlated to the chlorophyll content

of the measured vegetation (Mutanga & Skidmore, 2004a,b). To enhance the

form of the absorption features, the spectra can be transformed by constructing

a continuum hull around each spectrum. In general, there are two methods for

defining such a hull. In the first approach, the convex hull uses the global maximum

of the reflectance values as an initial fix point. Then, additional fix points are

found to create a convex hull (see red line in Figure 7.4a). The second approach is

called segmented upper hull. Here, the slope of the line to the left and right of the

maximum must be positive and negative, respectively (see blue line in Figure 7.4a).

This does not necessarily mean the hull is convex, however. Geologic hyperspectral

analyzes often use the convex hull because the distinct absorption features of

minerals in the mid-infrared part of the spectrum are easily derived. In vegetation

studies, the absorption features of chlorophyll are very close to one another and

the reflectance maximum in the green part is considerably lower than in the near

infrared. Consequently, only one absorption feature would be detectable. Therefore,

a segmented upper hull (option ’sh’) is used in this example to ensure that two

small features are identified instead of one large feature. To enhance the chlorophyll
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Figure 7.4: Spectral Data of the Vegetation at the 15 Plots. Black Lines Show Mean
(Solid) and Mean ± one Standard Deviation (Dashed) of Reflectance Values (a). The Red
and Blue Dashed Lines Symbolize the Convex and Segmented Upper Hull of the Upper
Standard Deviation Spectrum, respectively. The Gray Boxes Symbolize the Absorption
Wavelength of Chlorophyll. In (b) Band Depth Values are Plotted as the Result of the
Segmented Upper Hull Transformation Applied to the Reflectance Spectra.

absorption features, the reflectance values are afterward transformed into band

depth values (option ’bd’):

BDd ,λ = 1− Rλ

CV λ

(7.2)

where R is the measured reflectance and CV is the reflectance value of the con-

structed continuum line at wavelength λ.

R> spec_bd <- transformSpeclib(spectral_data,

+ method = "sh", out = "bd")

The band depth values in relation to the wavelength of all 45 spectra are plotted

in Figure 7.4b. The chlorophyll absorption features correspond to the first two

peaks of the band depth values. The absorption features are now defined as the

part of the spectrum between two fix points (band depth values of 0). Since the

third absorption feature centered around 980 nm is related to plant water content

and biomass rather than chlorophyll (Peñuelas et al., 1993), only the absorption

features at 460 nm and 670 nm are selected for further analysis.
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R> featureSpace <- specfeat(spec_bd, c(460, 670))

Several parameters can be calculated from absorption features. These include

the wavelength values corresponding to the maximum and the half maximum band

depth values. Additionally, the area under the curve is extracted as well as the

difference between an idealized Gaussian curve and the observed band depth values.

See Table 7.2 for a subset of the resulting parameters of the example data set.

R> featureSpace <- feature_properties(featureSpace)

In the last part of this example, the chlorophyll contents of the measured samples

are estimated using the parameters derived from the absorption feature and the

band depth values within the features as predictors. Multivariate statistics and

machine learning approaches are frequently used for this purpose, because prediction

models based on multiple (and often correlated) variables usually out-perform the

univariate approaches. To cope with multivariate and machine learning tasks, hsdar

provides wrapper functions that enable the user to directly use the functionalities

of the caret package. This is by far the most comprehensive multivariate package

since it includes various approaches with the same syntax and functions. To use the

functions of caret, the response variable has to be defined, which must be stored in

the SI attached to the Speclib object (“featureSpace”).

R> featureSpace <- setResponse(featureSpace, "chlorophyll")

The spectra are the default selection for predictors. However, additional predictor

variables from the attributes of the spectra can be included. In this example, all

parameters extracted above are added.

R> featureSpace <- setPredictor(featureSpace,

+ names(SI(featureSpace))[4:ncol(SI(featureSpace))])

The final model for deriving chlorophyll content is trained by tuning the required

parameter for the Random Forest model (Number of randomly selected predictor

variables, mtry). 10-fold cross validation is repeated 5 times for model tuning and

estimating accuracy. The internal predictions of the final tuning setup are returned

providing an independent data set for validation. The accuracy of the predictions
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performed by the model is evaluated with the root mean square error (RMSE) and

the R2-value. For further information about strategies on model settings and cross

validation see Kuhn & Johnson (2013) and Kuhn (2008).

R> ctrl <- trainControl(method = "repeatedcv", number = 10,

+ repeats = 5, savePredictions = "final")

R> rfe_trained <- train(featureSpace, trControl = ctrl,

+ method = "rf")

The number of randomly selected predictor variables at each split of the trees is

set to mtry = 453. Using the repeated cross validation, the chlorophyll contents

estimated by the Random Forest model fit well if compared to the measured ones

(RMSE = 2.49 mg, R2 = 0.95, Figure 7.5). This shows that the proposed method

incorporating hyperspectral data is a valid approach for chlorophyll estimation.

The resulting model can be used to predict the chlorophyll content of plots where

it has not been measured in the field (e.g., Lehnert et al., 2014).

7.5.2 Hyperspectral detection of cancer

The second example shows how hyperspectral imaging can be used in non-invasive

detection of cancer of the human larynx (head and neck squamous cell carcinoma;

hence referred to as “HNSCC”). This is demonstrated with a data subset acquired

at the University of Bonn, Germany that includes hyperspectral images from 25

patients, 10 of which have a histopathological diagnosis of HNSCC. The images

were acquired using an endoscope, which was coupled with a monochromatic CCD

camera. A special Polychrome V light machine allowed researchers to change the

wavelength of the impinging radiation so that several images taken under different

illuminations could be combined into hyperspectral cubes (Figure 7.3b). The images

were preprocessed and collocated using the methodology proposed by Regeling

et al. (2015). The preprocessing is key because the different bands are acquired

with short time lapse as a consequence of the varying light source. Medical experts’

manual classification into cancerous and non-cancerous tissue was used as reference.

The following code loads the data into R and plots them to explore the differences

between cancerous and non-cancerous tissue (Figure 7.6).
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Figure 7.5: Estimated vs. Measured Chlorophyll Content.

R> data("cancer_spectra")

R> plot(subset(cancer_spectra, infected == 1),

+ ylim = c(0, 400), col = "darkred")

R> plot(subset(cancer_spectra, infected == 0),

+ new = FALSE)

Additionally, the response variable (“infected”) is converted to a factor:

R> SI(cancer_spectra)$infected <-

+ as.factor(SI(cancer_spectra)$infected)

In contrast to the first example, the spectra of the human larynx are expressed

in counts and not reflectance values. Thus, the absolute values highly depend on

the light source, the temperature of the sensor, and the illumination geometry. To
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Figure 7.6: Spectral Data of the Cancerous (red) and Non-cancerous (black) Parts of
the Larynx Showing the Mean (Solid Line) and Standard Deviation (Dashed Lines) of
the Count Values Detected by the Monochromatic CCD Camera.

cope with this limitation, normalized ratio indices are calculated instead of using

the absolute count values. Mathematically, these are defined as:

NRI i,j =
Ri −Rj

Ri +Rj

(7.3)

Here, R is the reflectance (or in this case the number of counts) at wavelength i or

j. These indices are then calculated for all possible combinations of bands through

the predefined function “nri”.

R> nri_data <- nri(cancer_spectra, recursive = TRUE)

The NRI values can be directly used as predictors in univariate generalized linear

models, for example. Note that a multitude of models must be derived depending

on the number of bands in the hyperspectral dataset. Initially, it is worthwhile

to resample the spectra to a coarser spectral resolution to reduce the number of

models. Alternatively, some functions in hsdar directly support parallel processing

using the foreach package. To execute a function on two cores in parallel, simply

use the following code depending on the operating system.
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For Linux/Mac OS:

R> library("doMC")

R> n_cores <- 2

R> registerDoMC(n_cores)

For Windows:

R> library("doMPI")

R> n_cores <- 2

R> cl <- startMPIcluster(count = n_cores)

R> registerDoMPI(cl)

Please note that the dataset in the current example is not large enough to benefit

from parallel processing. Therefore, the previous code snippet can be skipped, and

we continue by calculating the generalized linear models using the NRI values as

predictors for infection:

R> glm_models <- glm.nri(infected ~ nri_data,

+ preddata = cancer_spectra, family = binomial)

It must be noted that the indices are highly correlated, which is a common drawback

to using them in a multivariate analysis. In this example, however, each index is

used as a predictor in a separate model to eliminate collinearity.

The coefficients, p-values and test statistics of the generalized linear models can

now be plotted in 2-d correlograms. In such diagrams, the x-axis and the y-axis

represent the two spectral bands used to calculate the index. The color in the

diagram symbolizes the coefficient of the model. Thus, the diagrams provide an

initial look at band combinations that might be useful for distinguishing between

cancerous and non-cancerous parts of the tissue.

R> plot(glm_models, coefficient = "z.value",

+ legend = "outer")

R> plot(glm_models, coefficient = "p.value",

+ uppertriang = TRUE, zlog = TRUE)
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The plot is shown in Figure 7.7. Almost every index calculated from wavelengths

between 400 nm and 450 nm and any other band featured low p-values and, thus,

had a significant effect on the distinction between cancerous and non-cancerous

tissue (see white rectangle in Figure 7.7). Positive z-values were observed for NRI

values calculated from longer wavelengths. Negative z-values were obtained for

indices calculated from 450 nm to 550 nm for the first band and 400 nm to 480 nm

for the second band. The index with the worst performance was calculated from

bands 490 nm and 590 nm (see shaded black rectangle in Figure 7.7).
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This approach, however, precludes multiple NRI values from being used as

predictors because they are usually highly correlated, as previously mentioned.

Thus, machine learning algorithms classify cancerous cells, as in the first example,

because collinearity among predictor variables does not affect their predictive

performance. Predictor and response variables have to be defined: As response

variable, the column “infected” in the SI was used and the NRI values are used as

predictors by default. The stage of the cancer is used as an additional predictor

variable, because the spectral signal in the early stages of the cancer differs from

that in later stages.

R> nri_data <- setResponse(nri_data, "infected")

R> nri_data <- setPredictor(nri_data, "stage")

Unlike the first example, highly correlated predictor variables are excluded before

model training by applying a recursive feature elimination, which reduces the

computational time. Afterwards, two techniques are used to classify cancerous and

non-cancerous tissues: (1) support vector machine (Chang & Lin, 2011; Meyer

et al., 2014) and (2) neural network classification (Ripley, 1996; Venables &

Ripley, 2002).

R> sel_feat <- rfe(nri_data, cutoff = 0.9)

R> ctrl <- trainControl(method = "repeatedcv", number = 10,

+ repeats = 5, savePredictions = "final")

R> rfe_trained_svm <- train(sel_feat, trControl = ctrl,

+ importance = TRUE, method = "svmRadial")

R> rfe_trained_nnet <- train(sel_feat, trControl = ctrl,

+ importance = TRUE, method = "nnet")

Table 7.3 shows the validation result of the final models for both methods. Sup-

port vector machine performed slightly better and yielded an overall accuracy of

93.33% as compared to 90% for the neural network classification. This shows that

hyperspectral imaging and machine learning approaches may yield positive results

for detecting cancer in human tissue. The data used in this case study have several

drawbacks mainly due to the acquisition with a variable light source instead of a

hyperspectral camera in combination with a constant light source. This causes the
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count values to be dependent on movements of the patient and the illumination ge-

ometry by the light source. However, the analysis based on normalized ratio indices

yielded robust results clearly highlighting its large potential. Since hyperspectral

imaging is a non-invasive measurement technology, the examination is relatively

comfortable for the patient. However, it has to be noted that the detection of

cancer with hyperspectral imaging may only facilitate the diagnose of a medical

expert. At the moment, there is no possibility to automatically diagnose cancer in

the human larynx without the knowledge of a trained medical expert (Regeling

et al., 2016).

7.6 Conclusions

The two case studies provide an initial impression of what hyperspectral remote

sensing can be used for and how a typical approach may look. Both examples show

how the hsdar package can be used as a powerful tool within R for remote sensing

and spatial applications. Based on the widely used raster package, hsdar introduces

new functionalities for processing hyperspectral data and gives users control over

the results of univariate and multivariate modeling approaches, including machine

learning techniques. Although hsdar is dedicated to spectral data featuring many

bands, it is applicable to any multispectral satellite data including Landsat 8 (8

bands in the visible and near infrared part of the electromagnetic radiation) or

MODIS (19 bands) (Lehnert et al., 2015). For example, hsdar can perform

linear spectral unmixing or calculate spectral indices such as the NDVI. hsdar

differentiates itself from the other hyperspectral package available for R (hyperSpec,

Beleites & Sergo, 2016) by focusing on environmental instead of laboratory

analysis. Data can easily be transferred between both packages since hsdar provides

functions to convert to and from objects in hyperSpec. Both packages extend R

by functions for all state of the art methods in hyperspectral imaging which have

been available only in commercial software tools so far.
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ID Area Width Feature Dist. to Gauss Curve
Width f460 f670

f460 f670 f460 f670 f460 f670 left right left right

1 23.85 131.44 518 715 0.11 0.77 191.00 0.13 139.00 0.06
2 22.13 134.01 521 716 0.12 0.76 194.00 0.11 142.00 0.06
3 31.44 136.32 520 718 0.11 0.78 194.00 0.13 144.00 0.07
4 17.26 132.26 519 715 0.11 0.77 192.00 0.12 139.00 0.06
5 21.75 135.03 520 716 0.12 0.78 193.00 0.10 142.00 0.07
6 23.88 132.46 519 717 0.11 0.76 192.00 0.12 142.00 0.06
7 21.39 136.13 519 716 0.11 0.78 193.00 0.13 141.00 0.07
8 20.75 134.76 519 720 0.11 0.79 193.00 0.12 147.00 0.07
9 22.75 138.98 520 717 0.12 0.80 194.00 0.12 143.00 0.07

10 22.94 130.43 520 716 0.11 0.76 192.00 0.11 141.00 0.06
11 27.89 135.50 520 716 0.12 0.77 193.00 0.12 142.00 0.06
12 24.28 129.25 519 718 0.11 0.76 192.00 0.12 144.00 0.06
13 26.50 135.68 520 718 0.11 0.77 195.00 0.14 145.00 0.07
14 22.13 131.74 520 718 0.11 0.77 193.00 0.11 144.00 0.07
15 21.36 134.58 520 717 0.12 0.77 193.00 0.12 143.00 0.06
16 37.25 123.95 514 718 0.11 0.77 192.00 0.13 143.00 0.06
17 36.99 131.96 519 718 0.12 0.75 193.00 0.14 146.00 0.07
18 45.60 127.86 517 719 0.11 0.75 191.00 0.15 146.00 0.06
19 42.09 130.61 518 718 0.11 0.77 194.00 0.15 144.00 0.06
20 51.52 129.11 518 718 0.11 0.75 190.00 0.15 145.00 0.06
21 39.35 126.57 518 718 0.11 0.73 195.00 0.13 144.00 0.06
22 47.63 130.76 517 718 0.11 0.77 192.00 0.16 144.00 0.06
23 39.94 128.55 515 718 0.10 0.77 194.00 0.14 143.00 0.07
24 41.99 128.45 517 718 0.11 0.76 190.00 0.15 144.00 0.06
25 48.01 128.43 518 717 0.11 0.75 190.00 0.14 144.00 0.06
26 38.35 134.08 518 718 0.11 0.77 193.00 0.15 145.00 0.07
27 35.58 130.27 517 719 0.10 0.75 195.00 0.14 146.00 0.06
28 45.22 131.08 517 719 0.11 0.76 192.00 0.15 146.00 0.06
29 47.61 130.07 517 718 0.10 0.76 194.00 0.14 144.00 0.07
30 42.90 130.90 519 719 0.12 0.75 193.00 0.15 148.00 0.07
31 50.20 128.63 520 722 0.12 0.70 202.00 0.18 152.00 0.07
32 45.42 129.62 520 724 0.12 0.71 202.00 0.21 155.00 0.08
33 46.55 132.49 520 721 0.12 0.72 202.00 0.21 150.00 0.07
34 46.95 133.73 521 722 0.12 0.71 204.00 0.20 152.00 0.08
35 56.06 129.62 521 724 0.13 0.70 203.00 0.18 156.00 0.08
36 43.08 130.81 520 722 0.12 0.70 203.00 0.21 152.00 0.07
37 36.21 135.46 521 723 0.13 0.72 204.00 0.19 154.00 0.08
38 45.62 134.72 521 723 0.12 0.72 203.00 0.20 154.00 0.08
39 46.81 134.62 520 722 0.12 0.74 202.00 0.22 153.00 0.08
40 46.84 134.71 520 723 0.13 0.73 202.00 0.20 154.00 0.08
41 41.39 133.68 521 722 0.13 0.72 204.00 0.20 153.00 0.08
42 43.09 134.26 520 723 0.12 0.73 203.00 0.21 154.00 0.08
43 50.85 130.39 520 724 0.13 0.70 203.00 0.21 156.00 0.08
44 44.85 131.95 520 722 0.12 0.72 202.00 0.19 153.00 0.07
45 44.30 135.09 520 722 0.13 0.73 202.00 0.21 153.00 0.07

Table 7.2: Selected Feature Properties Extracted from the Band Depth Values. The Area
is the Sum of all Band Depth Values within the Respective Feature. The Feature Width
is the Difference Between the Wavelength Values at the Upper and Lower FWHM-Values.
Distance to Gauss Curve is the Root Mean Square Error (RMSE) of the Part Smaller
than (Left) and Greater than (Right) the Maximum. Note that Each Line Represents
one Spectral Measurement and the two Chlorophyll Absorption Features are Abbreviated
According to Their Central Wavelengths as f460 and f670.
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a
Infected Not Infected

Infected 68.40 3.40
Not Infected 6.60 71.60

b
Infected Not Infected

Infected 65.60 5.60
Not Infected 9.40 69.40

Table 7.3: Error Matrix of the Obtained Classification Results for the Support Vector
Machine (a) and the Neural Network (b) Models. The Rows and Columns are the
Mean Values of Observations and Estimations within the 5 Repeats of the 10-fold Cross
Validation, respectively.
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Peñuelas, J., Filella, I., Biel, C., Serrano, L., & Savé, R. (1993): The
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Abstract
Provisioning services from grassland ecosystems are strongly

linked to physical and chemical grassland traits, which are

affected by atmospheric CO2 concentrations ([CO2]s). The in-

fluences of increased [CO2]s ([eCO2]s) are typically investigated
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in Free Air Carbon dioxide Enrichment (FACE) studies via

destructive sampling methods. This traditional approach is

restricted to sampling plots and harvest dates, while hyperspec-

tral approaches provide new opportunities as they are rapid,

non-destructive and cost-effective. They further allow a high

temporal resolution including spatially explicit information. In

this study we investigated the hyperspectral predictability of

14 grassland traits linked to forage quality and quantity within

a FACE experiment in central Germany with three plots under

ambient atmospheric [CO2]s, and three plots at [eCO2]s (∼20%

above ambient [CO2]s). We analysed the suitability of various

normalisation and feature selection techniques to link compre-

hensive laboratory analyses with two years of hyperspectral

measurements (spectral range 600 - 1600 nm). We applied

partial least squares regression and found good to excellent pre-

dictive performances (0.51 ≤ leave one out cross-validation R2

≤ 0.94), which depended on the normalisation method applied

to the hyperspectral data prior to model training. Notewor-

thy, the models’ predictive performances were not affected by

the different [CO2]s, which was anticipated due to the altered

plant physiology under [eCO2]s. Thus, an accurate monitoring

of grassland traits under different [CO2]s (present-day versus

future, or within a FACE facility) is promising, if appropriate

predictors are selected. Moreover, we show how hyperspectral

predictions can be used e.g., within a future phenotyping ap-

proach, to monitor the grassland on a spatially explicit level and

on a higher temporal resolution compared to conventional de-

structive sampling techniques. Based on the information during

the vegetation period we show how hyperspectral monitoring

might be used e.g. to adapt harvest practices or gain deeper

insights into physiological plant alterations under [eCO2]s.
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8.1 Introduction

Grasslands provide multiple important ecosystem services such as the supply of

forage for livestock and substrate for biogas production, provision of recreational

space, and carbon sequestration (Herrero et al., 2013; White et al., 2000).

Grassland ecosystem services are strongly linked to physical and chemical plant

traits, which are vulnerable to environmental conditions (e.g. CO2 concentration,

air temperature, water availability). Increasing atmospheric CO2 concentration

([eCO2]) under climate change conditions affect plant physiology through increas-

ing the photosynthesis rate and the water use efficiency, and thus increases the

aboveground biomass productivity in C3 grasslands (Ainsworth & Rogers, 2007;

Ainsworth & Long, 2005; Campbell & Stafford Smith, 2000; Lee et al.,

2010; McGranahan & Yurkonis, 2018; Morgan et al., 2004; Nowak et al.,

2004), which is accompanied by a decreased forage N content (Ainsworth &

Long, 2005; Augustine et al., 2018; Campbell & Stafford Smith, 2000;

Cotrufo et al., 1998; Dumont et al., 2015; Nowak et al., 2004). From an agroe-

conomic perspective, forage digestibility may either remain unchanged (Dumont

et al., 2015) or decreased (Augustine et al., 2018; Morgan et al., 2004), and

forage quality (indicated by crude protein availability) might either be reduced

(Soussana & Lüscher, 2007) or increased (McGranahan & Yurkonis, 2018).

Such influences of [eCO2]s on grassland traits, and thus, ecosystem services, are

mainly investigated within free air carbon dioxide enrichment (FACE) experiments.

To estimate the ecosystem status and potential outcomes of grassland ecosystems

in general and on FACE experiments, in-situ measurements of plant traits are

usually performed by destructive vegetation samples, such as labour- and cost-

intensive biomass cuttings for subsequent time-consuming laboratory analysis.

Consequently, traditional sampling methods constrain the analysis of the grassland
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traits under different [CO2]s to certain harvest dates and sampling plots. To

overcome these problems, multi- and hyperspectral approaches have proven to

be advantageous due to their rapid and non-destructive sampling, allowing for

high temporal resolutions with spatially explicit information at high accuracy

and a reasonable price. While multi- or hyperspectral applications to grassland

FACE experiments have not yet been considered, various studies have proven the

feasibility of the optical delineation of physical and chemical grassland traits such as

aboveground biomass (Kawamura et al., 2008; Marabel & Alvarez-Taboada,

2013; Xiaoping et al., 2011; Zhao et al., 2007), nitrogen content (Ramoelo

et al., 2013), chlorophyll content (Darvishzadeh et al., 2008), leaf area index

(Darvishzadeh et al., 2008), crude protein (Biewer et al., 2009; Kawamura

et al., 2008; Pullanagari et al., 2012a,b, 2013; Suzuki et al., 2008; Zhao

et al., 2007), crude lipids (Pullanagari et al., 2012b, 2013), crude ash (Biewer

et al., 2009; Pullanagari et al., 2012a,b, 2013), neutral and acid detergent fibre

(Biewer et al., 2009; Kawamura et al., 2008; Pullanagari et al., 2012a,b,

2013; Zhao et al., 2007), enzyme-soluble organic matter (Pullanagari et al.,

2012a,b), and metabolizable energy which is required to derive the potential of

energy extraction for ruminants (Pullanagari et al., 2013). Most of these studies

applied different methods of spectral transformations, to minimize the effect of

external perturbing factors e.g. soil background, illumination, and viewing geometry

and/or to enhance the spectral absorption features in hyperspectral data.

To date, hyperspectral monitoring of different grassland traits under varying

[CO2]s and accompanying plant physiological alterations (e.g. within a FACE

facility) have not been tested with respect to their feasibility. Therefore, it is

not clear whether transfer functions derived under present-day [CO2] conditions

will accurately predict grassland traits under future atmospheric [CO2] conditions.

Difficulties may arise since the spectral delineation of plant traits might be affected

by different CO2 concentrations as a function of the altered physiology of plants

under increasing [CO2]s. For instance, an increased photosynthesis under [eCO2]s

may lead to a higher biomass for plants under [eCO2] compared to plants grown

under ambient [CO2], despite a similar chlorophyll content (the latter is well

detectable by optical sensors; e.g., Daughtry et al. 2000; Gitelson et al. 2003;

Haboudane et al. 2002; le Maire et al. 2008; Maccioni et al. 2001).
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We combine advanced hyperspectral measurements and data processing tech-

niques within a FACE facility in central Germany, to set up a non-invasive mon-

itoring approach for the most important grassland traits under different CO2

concentrations. Here, a careful selection of methods and predictors is mandatory

to enable the hyperspectral monitoring of grassland traits. The latter shall help

to overcome the sampling restriction of invasive procedures to certain plots and

dates, which may shed new light on the spatio-temporal dynamics of grassland

traits under different CO2 concentrations and weather conditions.

Consequently, we hypothesize that: (1a) Specific spectral transformations enable

different performances for the prediction of each canopy trait, (1b) using the

most suitable trait-specific transformations, each of the selected canopy traits can

accurately be predicted by hyperspectral data, (2) the hyperspectral predictability

of different grassland traits is biased under different [CO2]s due to physiological

alterations, and (3) higher spatial and temporal resolutions of grassland trait values

(hyperspectral predictions compared to destructive sampling) enable knowledge

gains e.g. to improve management practices and the understanding of biophysical

plant alterations under ambient and elevated [CO2]s.

8.2 Materials and Methods

8.2.1 Study area and sampling

Field samplings were conducted at the Environmental Monitoring and Climate

Impact Research Station Linden located near Giessen, Germany (50° 32’ N and

8° 41’E; 172 m a.s.l.). Here, a FACE experiment comprising six rings with 8 m

in diameter is in operation on a non-grazed and extensively managed species-rich

grassland under moderate climate conditions (Andresen et al., 2018; Jäger

et al., 2003). The C3 vegetation is dominated by the grasses Arrhenaterum elatius,

Holcus lanatus and Poa pratensis accompanied by forbs and legumes present at

lower abundances. In three rings, the grassland vegetation has been exposed to

elevated CO2 conditions by enriching the air during daylight hours to ∼20% above

the ambient [CO2]s. The other three rings (controls) are operated under ambient
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atmospheric CO2 conditions. The six rings act as the measurement units for this

study. Field data were taken in the years 2014 and 2015.

8.2.2 Biomass sampling and basic analysis

The vegetation was cut manually twice a year at approximately five centimetres

above ground within four sub-plots per ring, before the end of spring (spring

harvest) and at time of peak biomass accumulation in late summer (late summer

harvest). The harvested aboveground biomass for each sub-plot was individually

stored at 4◦C and sorted by hand into three plant functional types (PFTs): grasses,

forbs and legumes. One part of the sub-plot-wise biomasses for the different PFTs

was oven-dried at 105◦C until a constant weight was reached and weighed to

determine the dry matter of each PFT. The samples from each sub-plot were

proportionally mixed to one composite sample for each ring for further chemical

analysis. Subsequently, the weighed PFT-wise biomass samples were grinded to

0.5 mm and used to analyse the carbon- and nitrogen-content with an elemental

analyser (vario MAX, elementar Analysensysteme GmbH, Hanau, Germany). Other

parts of the sorted biomass samples were oven-dried at 60◦C, grinded with a cutting

mill (SM 300, Retsch, Haan, Germany) to 0.5 mm, proportionally mixed, and sent

to the laboratory for analysis (8.2.2.1).

8.2.2.1 Laboratory analyses of plant traits

The predried (60◦C) PFT-wise biomass samples were subjected to Weende proxi-

mate analysis for estimation of fodder quality and biogas formation potential at

the laboratory for forage quality, sensory evaluation and food quality at the South

Westphalia University of Applied Sciences. Here, biomass samples of grasses and

forbs (the latter including legumes) were analysed regarding the most important for-

age quality traits by near infrared (NIR) spectroscopy (Weende analyis, Verband

Deutscher Landwirtschaftlicher Untersuchungs- und Forschungs-

anstalten 2012): dry matter (DM), crude protein, crude fibre, crude lipids,

crude sugar, organic neutral detergent fibre (NDFom), organic acid detergent fibre

(ADFom), enzyme-resistant organic matter, enzyme-soluble organic matter (ESOM).

Crude ash was then defined by weighing after burning at 550◦C, and fermentable
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organic dry matter was derived by subtracting the crude ash content from the

total dry matter. To increase comparability and to eliminate the dilution effect of

moisture, all traits defined by NIR spectroscopy in the laboratory are reported in

percentages of dry matter (%DM).

Subsequently, potential biological utilization was analysed with a focus on energy

extraction for ruminants (metabolizable energy, net energy for lactation) and

on substrate for biogas (fermentable organic matter, biogas and methane). The

energy extraction for ruminants was approximated by calculating the metabolizable

energy (ME) on basis of indicators for fibre ingredients and metabolization in the

forestomach (Deutsche Landwirtschafts-Gesellschaft, 2013). On basis

of the metabolizable energy, the net energy for lactation (NEl) was derived by

considering metabolizable gross-energy (GE) and efficiency for milk production

(Flachowsky et al., 2001).

The potential of substrate for biogas was analysed according to Weißbach

(2008) as the fermentable organic dry matter, by subtracting the organic matter

which is not biological usable under anaerobic conditions from the total organic

dry matter. The yields of biogas and methane were then derived by means of

stoichiometric calculations, multiplying the fermentable organic dry matter content

with factors 0.8 and 0.42, respectively (Weißbach, 2008).

8.2.2.2 Upscaling to canopy average traits

For each ring, the dry matters of the different PFTs (legumes, forbs, grasses) were

used as weights to upscale the PFT-wise traits measured in the laboratory for the

canopy (hereinafter referred to as canopy trait). For canopy traits with a perfect

correlation (Tab. 8.5), we included only one of the traits to reduce computational

effort. For the energy extraction for ruminants we focused on net energy for lactation

(and excluded the metabolizable energy), and for biogas potential we used methane

productivity (and excluded biogas and fermentable organic matter). Moreover,

due to inherent perfect correlation between enzyme-soluble organic matter and

enzyme-resistant organic matter, the latter was dismissed from further analyses.
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8.2.3 Hyperspectral data

Hyperspectral measurements were taken during clear-sky conditions with ImSpector

V16M - eNIR (Specim Imaging Ltd., Oulu, Finland) hyperspectral scanner camera

shortly before the biomass cutting in 2014 and 2015, and during the summer period

of 2015. The hyperspectral scanner covers the electromagnetic radiation region

from 600 to 1600 nm with a 7 nm spectral resolution (256 bands) and a 320 pixel

spatial resolution. All measurements were conducted within an hour before and

after local noon. For each ring, scans from two positions were performed to acquire

images covering the entire plot with the sensor mounted at around 3 m height on a

traverse system (Fig. 8.1). Before and after the two scans per ring, we measured the

dark current (DC) and a grey spectralon (Zenith Polymer ® Diffuse Reflectance

Target - 50% R, SphereOptics, Herrsching, Germany) over the full 320 pixel spatial

range. Additionally, at each image scan, the grey spectralon was placed within the

scanner’s field of view on the ground to correct for the occurring sky conditions.

8.2.3.1 Spectral calibration

Combining the DC and spectralon measurements, we converted raw counts to re-

flectance values by a two-step spectral calibration procedure to eliminate distortions

due to slightly differing spectral sensitivities of the sensor pixels in the scanner line.

In a first calibration step, the sensor array (containing 320 pixels) was corrected

using the dark current and spectralon measurements taken before and after the

actual scan:

R1λ,c =
countsλ,c − dλ,c
g1λ,c − dλ,c

· gλ,standard (8.1)

Here, R1λ,c is the reflectance in band λ and column c (referring to the scan line

of one pixel in the sensor array) after the first calibration step. countsλ,c are raw

count values of the sensor, and dλ,c and g1λ,c are dark current and grey standard

values (averages for each column and band from the measurements before and after

the image scans), respectively. gλ,standard is the grey spectralon reflectance factor

for band λ.

In a second calibration step, the homogenised image scenes were further spectrally

calibrated to the present sky conditions using the ground-placed grey spectralon:
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Figure 8.1: Hyperspectral measurement setup with the scanner mounted on a traverse
system (∼3 m height) above a CO2 enrichment ring with releasing (lower) and absorbing
(higher) vent pipes. The yellow dashed lines depict the approximate field of view for one
image scan.

R2λ = R1λ ·
gλ,standard

g2λ
(8.2)

Here, R2λ is the reflectance in band λ after the second calibration step; R1λ is

the reflectance and g2λ are the grey standard values (averages for each band from

the spectralon placed within the image scene) in band λ after the first calibration

step, respectively.

8.2.3.2 Geometric correction

Using a hyperspectral scanner (mounted on the northern end of the investigated

grassland plots), the tilting of the scanner led to panoramic scale distortions where
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pixels at the swath edges are larger compared to nadir pixels due to the relatively

longer path length. To produce equal-area, distortion-free images, we corrected

this panoramic error in along-scan and across-scan directions using information

about the sensor height, sensor position, and the slit width (30 µm) as well as focal

length (f = 25 mm) of the sensor lens (Richards, 2013). At first, we triangulated

the sensor viewing angles for each line and column of the hyperspectral image

cube. Based on the viewing angles for each pixel we generated a new raster matrix

with the actual, equal-area pixel extensions. In a second step, we filled each cell of

the newly created raster matrix with the corresponding reflectance values of the

hyperspectral image cube to maintain a distortion-free, equal-area output.

8.2.3.3 Mean spectra for each plot

The two geometrically and spectrally corrected image cubes resulting from the two

scan positions for each ring have been merged to get one image cube per ring. Due

to well known differences in shaded versus sunlit reflectances (e.g. Aboutalebi

et al. 2018; Zhang et al. 2015), we excluded shaded pixels on histogram basis with

a threshold in the 1050 nm band where plant reflectance is very high. Thereby,

also pixels containing non-organic spectra e.g. from measurement equipment were

thoroughly excluded. Additionally, the spectrum for each pixel has been smoothed

applying a Savitzky-Golay noise reduction filter with a filter length of nine bands

(comprising 65 nm; Lehnert et al. in press). Using the geometrically and spectrally

corrected image containing only sunlit pixels, we derived the mean spectra for each

ring which was used for further analysis.

8.2.3.4 Predictors and feature spaces

Based on the ring-wise mean spectra, we delineated six different and widely used

hyperspectral predictor feature spaces by different normalisation techniques: (1)

band depth values and (2) absorption feature variables based on continuum removal,

(3) the most common vegetation indices, (4) the log (1/Reflectance) and (5) the first

and (6) second derivatives of the spectra. Each of the predictor spaces was based

on a different method developed either to enhance the spectral absorption features

and/or to minimize the effect of external perturbing factors e.g. soil background,
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illumination and viewing geometry. Due to the small sample size and the common

high collinearity of predictor variables in spectronomic analysis, we did not include

all predictors in one feature space and rather constructed separate feature spaces

for each of the transformation methods. In an additional step, the feature spaces

comprising the log (1/Reflectance), the band depth values and the first and second

derivatives of the spectra were further normalised by calculation of narrow band

reflectance indices (NRIs), NDVI-like calculations using all possible band (predictor)

combinations.

Feature spaces of absorption features and NRI band depth were derived from

continuum removal transformation using a segmented hull (8.3).

BDλ = 1− Rλ

CV λ

(8.3)

Here, Rλ and CV λ denote the reflectance and continuum line value at wavelength

λ.

For the absorption features space, we have chosen the main features at ap-

prox. 690 nm for chlorophyll, and 1045 nm, 1150 nm and 1450 nm for the water

absorption, respectively. For each absorption feature, the integral and the width

between lower and upper full-width-half-maximum values have been used as predic-

tors. For the NRI band depths, normalised ratio indices (8.4) of all band depth

values BDλ (calculated in 8.3) were used.

NRI λ1, λ2 =
Rλ1 −Rλ2

Rλ1 +Rλ2

(8.4)

Here, R is the reflectance or band depth (BD) at wavelength λ.

Likewise, the NRIs for the first derivative spectra (NRI 1st derivative), the second

derivative spectra (NRI 2nd derivative) and the logarithm of the inverse of the

reflectance (NRI log(1/R)) were calculated.

Moreover, we created a feature space comprising more than 50 of the most

commonly used vegetation indices (Common indices, for calculations refer to

Tab. 8.1).

For computational issues, the geometric correction was performed in fortran

(Gehrke, 2012); all other hyperspectral analysis was performed with CRAN R
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Table 8.1: Narrowband indices tested in the present case study for their suitability to
hyperspectrally predict the different grassland traits. Indices are sorted alphabetically.

Name Formula Reference

Boochs D703 Boochs et al. (1990)
Boochs2 D720 Boochs et al. (1990)
Carter2 R695/R760 Carter (1994)
Carter3 R605/R760 Carter (1994)
Carter4 R710/R760 Carter (1994)
Carter5 R695/R670 Carter (1994)
CI R675 ·R690/R2

683 Zarco-Tejada et al. (2003)
CI2 R760/R700 − 1 Gitelson et al. (2003)

ClAInt
∫ 735nm
600nm R Oppelt & Mauser (2004)

D1 D730/D706 Zarco-Tejada et al. (2003)
D2 D705/D722 Zarco-Tejada et al. (2003)
Datt (R850 −R710)/(R850 −R680) Datt (1999)
Datt2 R850/R710 Datt (1999)
Datt3 D754/D704 Datt (1999)
DD (R749 −R720)− (R701 −R672) le Maire et al. (2004)
DDn 2 · (R710 −R660 −R760) le Maire et al. (2008)
DPI (D688 ·D710)/D2

697 Zarco-Tejada et al. (2003)
GDVI n (Rn800 −Rn680)/(Rn800 +Rn680)* Wu (2014)
Gitelson 1/R700 Gitelson et al. (1999)
Gitelson2 (R750 −R800/R695 −R740)− 1 Gitelson et al. (2003)
GMI2 R750/R700 Gitelson et al. (2003)
LWVI 1 (R1094 −R983)/(R1094 +R983) Galvão et al. (2005)
LWVI 2 (R1094 −R1205)/(R1094 +R1205) Galvão et al. (2005)
Maccioni (R780 −R710)/(R780 −R680) Maccioni et al. (2001)

MSAVI 0.5 ·
(

2 ·R800 + 1−
(

(2 ·R800 + 1)2 − 8 · (R800 −R670)
)0.5)

Qi et al. (1994)

MSI R1600/R817 Hunt & Rock (1989)
mSR2 (R750/R705)− 1/(R750/R705 + 1)0.5 Chen (1996)
MTCI (R754 −R709)/(R709 −R681) Dash & Curran (2004)
NDVI (R800 −R680)/(R800 +R680) Tucker (1979)
NDVI2 (R750 −R705)/(R750 +R705) Gitelson & Merzlyak (1994)
NDWI (R860 −R1240)/(R860 +R1240) Gao (1996)

OSAVI (1 + 0.16) · (R800−R670)
(R800+R670+0.16)

Rondeaux et al. (1996)

OSAVI2 (1 + 0.16) · (R750−R705)
(R750+R705+0.16)

Wu et al. (2008)

PSSR R800/R635 Blackburn (1998)
PWI R900/R970 Peñuelas et al. (1997)
RDVI (R800 −R670)/

√
R800 +R670 Roujean & Breon (1995)

REP LE Red-edge position through linear extrapolation. Cho & Skidmore (2006)
REP Li Rre = (R670 +R780)/2 Guyot & Baret (1988)

700 + 40 · ((Rre −R700)/(R740 −R700))
SAVI (1 + L) · (R800 −R670)/(R800 +R670 + L) Huete (1988)
SR R800/R680 Jordan (1969)
SR1 R750/R700 Gitelson & Merzlyak (1997)
SR2 R752/R690 Gitelson & Merzlyak (1997)
SR4 R700/R670 McMurtrey et al. (1994)
SR5 R675/R700 Chappelle et al. (1992)
SR6 R750/R710 Zarco-Tejada & Miller (1999)
SRWI R850/R1240 Zarco-Tejada et al. (2003)

Sum Dr1
∑795
i=626Di Elvidge & Chen (1995)

Sum Dr2
∑780
i=680Di Filella & Penuelas (1994)

Vogelmann R740/R720 Vogelmann et al. (1993)
Vogelmann2 (R734 −R747)/(R715 +R726) Vogelmann et al. (1993)
Vogelmann3 D715/D705 Vogelmann et al. (1993)
Vogelmann4 (R734 −R747)/(R715 +R720) Vogelmann et al. (1993)

Note. Rλ is the reflectance at wavelength λ (nm) and Dλ is the first derivation of the reflectance value at wave-
length λ (nm). L is the soil correction factor set to 0.5 in this study.
*For GDVI, indices with n = 2, 3, and 4 were derived.
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statistical software (R Core Team, 2018) using the raster- (Hijmans & van

Etten, 2014) and hsdar-packages (Lehnert et al., in press).

8.2.4 Statistical analyses

In general, our approach aims at finding the best statistical model (partial least

squares regression) for each canopy trait based on hyperspectral data covering the

harvest dates of 2014 and 2015. After the creation of the different feature spaces

through spectral transformations (8.2.3.4), a careful selection of predictor variables

is performed within each feature space (8.2.4.1), and the predictive performance of

the final predictors is investigated for each feature space and canopy trait (8.2.4.2).

8.2.4.1 Predictors selection

Despite of the creation of separate feature spaces, the high number of predictor

variables resulting from the narrow spectral band width in hyperspectral data

results in highly correlated predictor variables being prone to overfitting of the

models (Gowen et al., 2011; Wang et al., 2007). Here, the use of iterative

variable selection approaches to reduce the number of predictors has been proven to

increase the predictive power of hyperspectral data (Kawamura et al., 2008, 2006;

Zhao et al., 2007). However, approaches such as recursive, backward, and forward

feature selection are critically discussed especially due to a biased selection of

relevant predictors (Krawczuk &  Lukaszuk, 2016). Here, we apply a more recent

approach that selects all relevant predictors based on random forest (Breiman,

2001), using the CRAN R package Boruta for each feature space and canopy trait

(Kursa & Rudnicki, 2010).

To eliminate further collinearity that may still exist after eliminating all irrelevant

predictors, we applied a subsequent step by deriving a new set of variables. Within

each feature space and for each canopy trait, we used the frequently used step-wise

variance inflation factor approach (VIF; CRAN R package usdm; Naimi et al.

2014) to eliminate explanatory variables with an excessive correlation. Basically,

the VIF for a single predictor is calculated as the reciprocal of 1 - R2 to all other

predictors and thereby does not only include pairwise correlations but rather takes

into account the correlations with all other variables (Dormann et al., 2013).
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By means of a threshold (in our study a conservative VIF of 5, as suggested in

Rogerson 2001), highly collinear predictors have been removed from the dataset

in this step. Since the VIF changes after predictors are removed, we performed a

stepwise approach by iteratively calculating the VIF for all predictors and removing

the variable with the highest VIF in each step. This approach was repeated until

all predictors reached values below the defined threshold. Through the selection

of all relevant variables and subsequent removal of highly collinear predictors,

we assembled the predictors used in the final models for each canopy trait and

predictors feature space.

8.2.4.2 Final model selection

For each feature space and canopy trait, the final predictors were used to perform

partial least squares regression (PLSR) using the CRAN R packages caret (Kuhn,

2008) and pls (Mevik et al., 2016). PLSR techniques transfer the information

content of the predictors to independent latent vectors, which are generated with

respect to a maximum representativeness of the dependent variable (Wold et al.,

2001). Thereby, the number of predictors is reduced, and it is widely assumed that

PLSR is insusceptible to problems of multicollinearity and overfitting even if the

number of observations is low (Kawamura et al., 2008) as in our study. The PLSR

models were trained by repeated cross-validation, and subsequently the model with

the optimum number of latent vectors was chosen for each canopy trait and feature

space. The models performances were validated by leave one out cross-validation

R2s (R2
LOO) of the predicted versus observed canopy trait values. LOO was selected

due to the small sample size, and its proven similar performance to validation via

an independent dataset (Darvishzadeh et al., 2008). For each canopy trait, the

feature space that revealed the highest R2
LOO was chosen as the final PLSR model

for canopy trait prediction.

To compare the overall suitability of the different feature spaces for grassland

traits prediction, we also considered that only one feature space is used for the

prediction of all canopy traits. Therefore, we performed a rescaling of the R2
LOOs

within each canopy trait by min-max normalisation and averaged all normalised

R2
LOOs for each feature space.
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8.2.4.3 Model performance under different CO2 concentrations

Under increasing CO2 concentrations, plant physiology is expected to be altered,

mainly by increasing the photosynthesis rate and the water use efficiency. Therefore,

a bias in the hyperspectral predictability of different grassland traits in FACE

experiments can be assumed. Consequently, it has to be proven whether transfer

functions derived under present CO2 concentrations can also be used in future

to accurately predict grassland traits. To investigate these potential biases in

the hyperspectral predictions under different CO2 concentrations, we performed

Student’s t-tests on the means of the residuals in the final models for the elevated

versus the ambient rings (for each canopy trait; confidence interval = 0.95).

8.2.4.4 Non-invasive trait prediction during vegetation period

To precisely adapt the management practices and to gain a deeper insight on

grassland trait dynamics in the interplay of [eCO2] and abiotic environmental

factors, explicit knowledge of the spatio-temporal dynamics of the ecosystems

health status and potential harvest outcomes is mandatory. Therefore, we used

the final PLSR models to non-invasively predict each grassland trait on a pixel

level. For each ring and measurement day, the pixel-wise grassland trait predictions

were furthermore averaged to maintain a ring-wise mean canopy trait value. The

predicted ring-wise mean canopy trait values were subsequently averaged within

the elevated (elevated group) and the ambient treatment (ambient group), and

treatment-wise mean values of selected grassland traits were plotted along with

meteorological data to reveal the grassland trait dynamics in-between the harvest

dates of 2015.

8.3 Results

The summary statistics of the measured canopy traits can be found in the appendix

(Tab. 8.4). In general, the canopy traits revealed a good forage quality for the

investigated grassland plots, indicated by net energy for lactation (> 5.8 MJ kg−1),

crude fibre (< 32%DM), and crude protein (> 9%DM, compare Tab. 8.4). Highest

trait variances (coefficients of variation) were found for biomass followed by crude
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sugar, while lowest coefficients of variation were found for dry matter followed by

carbon. Strong correlations were observed for many of the grassland traits (see

Tab. 8.5).

8.3.1 Performance of the different feature spaces

The analysed feature spaces revealed different performances in the prediction of the

investigated canopy traits (Fig. 8.2). The feature space NRI 2nd derivative showed

the best prediction performances for the highest number of canopy traits (6, organic

acid detergent fibre, carbon, nitrogen, neutral acid detergent fibre, crude fibre, and

crude sugar). The second best prediction results were obtained from the NRI 1st

derivative feature space (5, crude ash, enzyme-soluble organic matter, methane,

net energy for lactation, and crude protein). The common indices outperformed

the other feature spaces only in two cases, for biomass and crude lipids. The

NRI log(1/R) outperformed the other feature spaces only for dry matter. The

absorption features and band depths feature spaces did not outperform the other

feature spaces in the prediction of any of the canopy traits.

Similar patterns were observed for the performances of the features spaces con-

sidering the prediction of all canopy traits by only one feature space (compare

Fig. 8.2o). Here, the average min-max normalised R2
LOOs revealed the best perfor-

mances for the NRI 2nd derivative, followed by the feature spaces NRI 1st derivative,

NRI log(1/R), NRI band depths, common indices and the absorption features in

descending order. All feature spaces that performed best for the predictions of at

least one grassland trait, did also perform, at least one time, worse than all other

feature spaces.

8.3.2 The final models for the prediction of the different

canopy traits

LOO validation results of the final models for the prediction of the different canopy

traits were all statistically significant (n = 23) and showed high to very high

goodness of fits (compare Fig. 8.3 and Tab. 8.2). Very good validation results

(R2
LOO > .8) were observed for biomass, crude lipids, nitrogen, and dry matter,
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Figure 8.2: (a-n) Leave one out R2s (R2
LOO) from the best partial least squares regression

models of the different feature spaces for each canopy trait. (o) Boxplots of min-max
normalised R2

LOOs of each feature space for the prediction of all traits. The white asterisk
(a-n) denotes the feature space selected for the final predictive models (compare Fig. 8.3
and Tab. 8.2). NDFom - Organic neutral detergent fibre; ADFom - Organic acid detergent
fibre; ESOM - Enzyme-soluble organic matter; NEl - Net energy content for lactation

while only moderate LOO validation results were derived for crude ash, methane,

crude fibre (.5 < R2
LOO ≤ .6).

The models for the traits that were best predictable (biomass and crude lipids)

used only common indices with predictors related to chlorophyll absorption (GDVI 4,

Gitelson, REP LE, and Sum Dr1), and the water status of plants (LWVI 1 and

PWI). Dry matter was very well predicted using the NRI log(1/R2) and only two

predictors (with wavelengths around the minor water absorption feature ∼1130 nm,
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Table 8.2: Summary of the used feature space and characteristics for the best partial
least squares regression models on each grassland canopy trait.

Trait Feature space R2
LOO NRMSE No. of Predictors

(%) predictors

ADFom NRI 2nd derivative 0.73 15.4 10 B930|810 + B960|910 + B1000|910 + B1050|910 + B1070|910 +
B1080|910 + B960|920 + B1460|1000 + B1030|1010 + B1080|1020

Crude ash NRI 1st derivative 0.51 16.0 4 B1260|1140 + B1350|1160 + B1210|1180 + B1290|1180

Carbon NRI 2nd derivative 0.65 17.8 12 B1240|860 + B1250|860 + B1030|870 + B1080|870 + B1100|870 +
B1170|940 + B1180|1000 + B1510|1050 + B1510|1060 + B1350|1090

+ B1490|1090 + B1320|1190

Nitrogen NRI 2nd derivative 0.84 10.6 12 B1160|910 + B1510|910 + B1010|920 + B1110|940 + B1170|940 +
B1090|950 + B1140|1010 + B1330|1010 + B1350|1090 + B1330|1100

+ B1310|1290 + B1580|1520

Biomass Common indices 0.94 7.0 4 GDVI 4 + Gitelson + LWVI 1 + PWI
ESOM NRI 1st derivative 0.74 12.8 9 B1480|890 + B920|910 + B1180|910 + B970|950 + B1140|950 +

B1040|1010 + B1300|1120 + B1150|1130 + B1570|1140

Methane NRI 1st derivative 0.54 15.9 7 B970|820 + B1500|830 + B920|910 + B1180|910 + B980|950 +
B1310|990 + B1040|1020

NDFom NRI 2nd derivative 0.65 17.2 11 B720|640 + B870|660 + B790|710 + B930|710 + B1280|710 +
B880|820 + B1050|860 + B1600|860 + B1050|880 + B1190|890 +
B1050|1010

NEl NRI 1st derivative 0.62 15.6 10 B1590|690 + B1090|770 + B1180|780 + B1510|800 + B880|820 +
B1150|830 + B1180|850 + B1190|910 + B1300|1080 + B1100|1090

Dry matter NRI log(1/R) 0.82 11.8 2 B1560|1130 + B1290|1240

Crude fibre NRI 2nd derivative 0.6 15.9 11 B770|710 + B790|710 + B1060|720 + B1240|720 + B870|820 +
B1110|820 + B1600|850 + B1600|880 + B1050|960 + B1240|1100 +
B1570|1170

Crude lipids Common indices 0.93 7.7 4 GDVI 4 + LWVI 1 + REP LE + Sum Dr1
Crude protein NRI 1st derivative 0.68 15.9 12 B1350|690 + B1460|710 + B1310|730 + B1010|750 + B1180|850 +

B1130|960 + B1190|960 + B1030|1000 + B1180|1060 + B1520|1130

+ B1280|1140 + B1580|1310

Crude sugar NRI 2nd derivative 0.74 12.6 6 B1480|1060 + B1160|1140 + B1580|1140 + B1200|1150 + B1350|1150

+ B1550|1320

Note. Bλ1|λ2 are NDVI-like calculations using the reflectance values in bands λ1 and λ2 (compare 8.4). The calculations of the
different vegetation indices can be found in Section 8.2.3.4 (Tab. 8.1). All models contained 23 observations. NRMSE is the
normalised root mean square error.
NDFom - Organic neutral detergent fibre; ADFom - Organic acid detergent fibre; ESOM - Enzyme-soluble organic matter; NEl -
Net energy content for lactation

∼1250 nm, and ∼1560 nm). Carbon was well predicted by the NRI 2nd derivative

and wavelengths related to biomass quantity (∼870 nm), and water absorption

(∼1180 nm and ∼1245 nm). The traits which represent fodder quality (net energy

for lactation) and biogas quality (methane) showed only modest R2
LOOs of 0.62 and

0.54, respectively.

8.3.3 Influence of different CO2 concentrations on

hyperspectral grassland trait predictability

We did not find biases in the predictability of the different grassland traits due

to different [CO2]s (e.g. clustering of elevated rings below the PLSR regression
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Figure 8.3: Leave one out predictions results for the best partial least squares regression
models on each canopy trait. The solid and dashed lines depict the linear regression
model and the 1:1 line, respectively. Outliers are marked with arrows in b), f), and g).
Hyperspectral feature spaces used for the predictions can be found in Fig. 8.2 and Tab. 8.2.
All regression analyses were statistically significant (p ≤ 0.001). NDFom - Organic neutral
detergent fibre; ADFom - Organic acid detergent fibre; ESOM - Enzyme-soluble organic
matter; NEl - Net energy content for lactation

line; Fig. 8.3). In line, no significant differences were found for the means of the

residuals in the final models between the predicted values in the elevated and

ambient rings for any of the investigated grassland traits (Tab. 8.3). Outliers were

found in three cases, for the prediction of crude ash (Ring 5 at 27th August 2014;

highest measured value strongly underestimated; Fig. 8.3b), enzyme-soluble organic
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matter (Ring 2 at 26th August 2015; lowest measured value strongly overestimated;

Fig. 8.3f), and methane (Ring 2 at 26th August 2015; lowest measured value

strongly overestimated, Fig. 8.3g).

Table 8.3: T-test statistics on the difference in the means of the final model residuals
for elevated and ambient rings.

Canopy trait p value

Nitrogen 0.70
Carbon 0.37
Biomass 0.75
Dry matter 0.97
Crude protein 0.07
Crude fibre 0.39
Crude lipids 0.73
Crude sugar 0.44
NDFom 0.98
ADFom 0.61
ESOM 0.86
Crude ash 0.99
NEl 0.85
Methane 0.07

8.3.4 Hyperspectral prediction of selected canopy traits

Based on the final PLSR models, spatially explicit pixel-wise predictions of grassland

traits were possible (see Fig. 8.4 for the example of aboveground biomass under

elevated CO2 concentrations). Figure 8.4 reveals realistic aboveground biomass

predictions with relatively high values for the measurement days shortly before

the harvest days in 2014 and before the spring harvest in 2015. Low aboveground

biomasses were observed for the measurement days ensuing the 2015 spring harvest.

High within-ring variances in AGB predictions were observed for the image scenes

of 27th August 2014 and 13th May 2015.

Additionally, we plotted mean values of selected grassland traits within the ele-

vated and ambient groups for the vegetation period 2015 along with meteorological

observations (Fig. 8.5). The maximum daily air temperatures were very high from

the beginning of July to the mid of August with a short cooling in the last week of

July. In this period, also the daily precipitation sums were very low, and only one

day (19th June) revealed precipitation sums higher than 10 mm day−1.
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Figure 8.4: Pixel-wise, hyperspectral predictions of aboveground biomass (AGB) for
one of the rings under elevated CO2 concentrations. White areas were either excluded
due to shade or measurement equipment. Scenes encompass harvest dates used to derive
the predictive models (22 May 2014, 27 September 2014, 13 May 2015 and 26 September
2015) and vegetation period measurements for 2015 (interval around every three weeks;
remaining ones).

Highest aboveground biomass predictions were found for the spring harvest date

for both, ambient and elevated groups, with the latter showing a slightly higher

AGB. In both groups, AGB recovered after the spring cuttings to a level of ∼178 g

DM m−2, while no increase in the AGBs occurred in the following measurement

days. The biomass even decreased to ∼133 g DM m−2 on 13th August and slightly

recovered to ∼150 g DM m−2 at the late summer harvest date, where AGB in

the elevated group was again slightly higher compared to the ambient group. The

predicted carbon content was highest at spring harvest (∼45.5% DM) and decreased

with the ongoing vegetation period (minimum ∼44.8% DM at 13th August) before

it distinctly increased on the last measurement day (more pronounced in the

elevated compared to ambient group). Besides spring harvest, carbon content was

higher in the elevated compared to the ambient group. The relative dry matter

content was lowest in both groups for the spring harvest and increased in the first

subsequent measurement day. Afterward, relative dry matter slightly decreased

before it increased until 13th August. Subsequently, relative dry matter content

slightly decreased for the late summer harvest date. At the spring harvest, dry
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matter in the elevated group was slightly higher compared to the ambient group;

at later measurement days the reverse relation occurred.

The predicted methane productivity was very high for the spring harvest date.

After biomass cuttings, methane productivity increased until 30th June and subse-

quently followed a decreasing trend until the late summer harvest. Besides of the

spring harvest, predicted methane productivity was slightly higher in the elevated

compared to the ambient group. Predicted net energy for lactation was very low at

the springs harvest date, with pronounced higher values in the elevated compared

to the ambient group. In both treatment groups, NEl was higher for the first

measurement after the spring harvest and subsequently decreased until 22nd July,

followed by a strong increase in 13th August and only minor changes at the late

summer harvest.

234



8.3 Results

Figure 8.5: Meteorological observations (daily maximum air temperature and daily
precipitation sum) and hyperspectral predictions of selected grassland canopy traits for
the summer period 2015. (a) Daily maximum air temperatures and daily precipitation
sums. (b-f) Mean of the predicted grassland canopy trait in the ambient and elevated
groups at harvest (2015/05/13 and 2015/08/26; dark grey boxes) and during the growing
period (knowledge gains by non-invasive hyperspectral approach; light grey box). Note,
trait values of the elevated group are shifted by three days for readability. AGB -
aboveground biomass; NEl - Net energy content for lactation
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8.4 Discussion

8.4.1 Performance of the different feature spaces

In general, the validity of our approach using feature selection and elimination

of multicollinearity was highlighted by good to excellent LOO validation results

(Fig. 8.3). Interestingly, the common indices (available indices from literature)

outperformed the other feature spaces for biomass and crude lipids. This suggests

that the vegetation indices proposed in the literature can accurately predict the

aboveground biomass, and their combination even increased the predictive power.

For biomass, the combination of indices sensitive to chlorophyll and liquid water

was not surprising given the combination of different growth stages (spring and

late summer harvest) in our study. However, similar predictors were chosen for the

crude lipids, which might either indicate an indirect predictability due to the strong

correlation between crude lipids and aboveground biomass (r = -0.91; Tab. 8.5),

or a direct reflectance response of leaf pigments as indicated in another study

(Pullanagari et al., 2012b). All other grassland canopy trait predictions made

use of feature spaces derived by different normalisation techniques.

Since normalisation techniques (such as derivative spectra and/or the calculation

of narrowband ratio indices) are known to reduce artificial effects that may arise e.g.

from different illumination conditions, we were not surprised that they improved

most of the predictive models in our study combining measurements from different

years and growth stages. However, given the different performances of the feature

space for different grassland traits, our results reveal that it is not sufficient to

predict all grassland traits by means of a single feature space comprising only one

method of transformation. The NRI 2nd derivative, for example, outperformed

the outer feature spaces for six out of 14 investigated grassland traits and showed

the best overall performance (indicated by the normalised R2
LOOs, Fig. 8.2o), while

it performed worst for the prediction of dry matter and showed distinct inferior

performances compared to the best performing feature spaces for biomass, methane,

and crude lipids. This shows that a proper creation and selection of suitable

predictor variables remains a necessary task that is needed for each grassland trait

individually.
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8.4.2 The final models for the prediction of the different

canopy traits

The predictive performance for most of the grassland traits investigated in our

study outperformed or ranged well within reported accuracies from previous studies

(Buitrago et al., 2018; Homolova et al., 2013; Kawamura et al., 2008; Mu-

tanga & Skidmore, 2003; Pullanagari et al., 2013; Zhao et al., 2007). This

highlights the general suitability of hyperspectral data for monitoring of various

grassland canopy traits even under different growth stages (spring and late summer

harvests). However, since the selected spectral predictors in our study partly

differed from previously published ones (e.g., Buitrago et al. 2018; Homolova

et al. 2013; Kawamura et al. 2008; Mutanga & Skidmore 2003; Pullanagari

et al. 2013; Zhao et al. 2007), we highlight, that a careful site-specific calibration

is needed when using hyperspectral approaches.

8.4.3 Influence of different CO2 concentrations on

hyperspectral grassland trait predictability

Student’s t-tests on the final model residuals for the elevated and the ambient

rings, revealed that the final models performed well in the prediction of grassland

traits irrespective of the different [CO2]s (Tab. 8.3). This seems noteworthy, since

we expected a bias in the prediction results due to an altered plant physiology

under [eCO2]s (e.g. clustering of elevated rings on one side of the regression line).

We confirmed this by a t-test between the reflectance values for each band when

comparing elevated and ambient group spectra, where no significant differences

were found (not shown). Therefore, our results suggest, that the established

relationships between hyperspectral data and grassland traits were not influenced

by the different [CO2]s. Thus, the hyperspectral monitoring of grassland traits

within FACE facilities is possible, and transfer functions derived in the present

seem also to be capable to accurately predict grassland traits in future (under

[eCO2]s).
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8.4.4 Hyperspectral predictions of selected canopy traits

The high heterogeneity of the pixel-wise AGB predictions in two of the scenes of

the presented elevated ring (Fig. 8.4) points to a major advantage of hyperspectral

monitoring techniques – the spatial explicit information. Although invasive biomass

samplings are usually randomly distributed, they may not properly represent the

whole plot, and can not give information about the spatial distribution of the

investigated grassland traits. Here, hyperspectral data leads to a clear knowledge

gain.

Due to the altered plant physiology under [eCO2]s, we exemplary investigated

selected canopy traits under different [CO2]s during the vegetation period 2015. A

slightly higher biomass in the elevated compared to the ambient group at spring

harvest date is in line with the expectations related to the CO2 fertilization effect

(Ainsworth & Rogers, 2007; Ainsworth & Long, 2005; Nowak et al., 2004).

The absence of biomass growth during the later vegetation period can be explained

by the excessive heat and dry period during July and August (similar to europe-wide

observations in 2003, Ciais et al. 2005), which also prevented the plants to profit

from [eCO2] (Obermeier et al., 2018). However, the lower relative dry matter

content of the plants growing under [eCO2] for the same period may result from

the increased water use efficiency, and, thus indicate an active CO2 fertilization

effect. Similarly, in the same period, the carbon content was higher in the elevated

compared to the ambient rings. This suggests that plants growing under [eCO2]

and exposed to hot and dry conditions may indeed assimilate more carbon via

photosynthesis and save water, while this can not be translated into an increased

biomass productivity. This is in line with the new perspective on plant growth,

hypothesizing that meristem activity is restricted earlier than photosynthesis by

environmental conditions (Fatichi et al., 2014; Körner, 2015; Obermeier et al.,

2017), and thus, that plants grown under [eCO2] do not necessarily extend their

growth but rather allocate non structural carbohydrates within the plant.

Regarding potential management practices in the investigated grassland, the

peak of methane values at 30th June indicates the ideal harvest date in 2015 if the

forage would be used for biogas production, while for the net energy for lactation

the ideal harvest date in 2015 was around two weeks before the actual late summer
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harvest (although only slightly improved compared to the actual harvest date). By

finding the ideal harvest date, the increased temporal resolution of grassland trait

values via hyperspectral monitoring might help farmers to optimize utilization of

grasslands ecosystem services. Additionally, such timely knowledge of grassland

vitality and emerging stress situations, but also of the expected yield quality and

quantity, may help farmers in decision making during the vegetation period e.g.

for precise fertilizer application or to adjust stocking rates, which increases profit

and decreases the environmental footprint.

8.5 Conclusion

Our results clearly show that the hyperspectral prediction, and thus a non-invasive

monitoring, of various grassland traits in the investigated grassland is in general

feasible. However, careful creations and selections of appropriate predictor variables

are needed for each canopy trait as shown by the large differences in the predictive

performance of the different feature spaces. Interestingly, our results show that

[eCO2] does not lead to biases in the hyperspectral predictions of grassland traits.

Consequently, the monitoring of grassland traits within a FACE facility is possible,

and no indication was observed that transfer functions derived at present [CO2]s

should not be used under future [CO2]s e.g., for phenotyping of grassland vegetation.

Moreover, by monitoring selected grassland traits within a FACE experiment during

the vegetation period, we highlighted how timely and spatially explicit hyperspectral

data can provide new insights regarding the interacting effects of [eCO2]s and

environmental conditions on plant physiology, and help the farmers to find the

ideal management practices to guarantee a proper management of the ecosystem

services.
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Herrero, M., Havĺık, P., Valin, H., Notenbaert, A., Rufino, M.C.,
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Appendix

8.6 Appendix

8.6.1 Measured canopy traits

The summary statistics of the measured and calculated grassland canopy traits

revealed highest within-trait-variances (coefficients of variation) for biomass, crude

sugar, crude ash, crude lipids, nitrogen, and crude protein in the same order

(Tab. 8.4). Lowest coefficients of variation were found for dry matter, carbon,

and traits linked to the production of biogas (fermentable organic matter, biogas,

methane).

Table 8.4: Descriptive statistics of ring-wise canopy traits. All ring-wise traits were
calculated by biomass-weighting of the plant functional type specific trait characteristics
(compare Section 8.2.2.2)

Canopy trait Unit Mean Minimum Maximum SD CV (%)

Nitrogen %DM 2.01 1.50 2.58 0.29 14.38
Carbon %DM 44.95 44.08 46.12 0.62 1.37
Biomass g DM m−2 303.61 118.30 528.10 119.60 39.39
Dry matter %fw 93.51 92.80 94.50 0.48 0.51
Crude protein %DM 14.33 11.35 17.78 1.83 12.75
Crude fibre %DM 25.36 21.51 29.13 2.06 8.13
Crude lipids %DM 2.51 1.97 3.45 0.43 16.98
Crude sugar %DM 5.44 2.41 7.88 1.38 25.43
Organic neutral detergent fibre %DM 50.78 45.54 57.48 3.53 6.96
Organic acid detergent fibre %DM 33.27 29.78 35.90 1.82 5.48
Enzyme-resistant organic matter %DM 35.88 31.75 42.20 2.64 7.36
Enzyme-soluble organic matter %DM 64.13 57.80 68.26 2.64 4.12
Crude ash %DM 5.85 3.70 8.30 1.08 18.41
Metabolizable energy MJ kg−1 10.70 10.07 11.52 0.38 3.52
Net energy content for lactation MJ kg−1 6.41 5.98 6.98 0.26 4.06
Fermentable organic matter g kg−1 689.72 649.52 721.84 17.20 2.49
Biogas m3 t−1 551.78 519.61 577.47 13.76 2.49
Methane m3 t−1 289.68 272.80 303.17 7.22 2.49

SD - standard deviation; CV - coefficient of variation; DM - dry matter; fw - fresh weight

Strong correlations were observed between many of the canopy traits (Tab. 8.5),

the most important statistically significant ones are described in the following.

Nitrogen showed significant positive correlations with carbon and crude protein,

and a significant negative correlation with organic acid detergent fibre. Addition-

ally, carbon was significantly positive correlated with crude lipids, crude protein,

metabolizable energy and net energy for lactation, and significantly negative corre-

lated to biomass and crude ash. For biomass, significant positive correlations were

observed with crude fibre, crude sugar, organic neutral detergent fibre, and crude
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ash, while carbon, dry matter, crude lipids, metabolizable energy and net energy

for lactation were significantly negative correlated to biomass. The net energy for

lactation showed significant positive correlations with metabolizable energy (perfect

correlation, therefore excluded), crude lipids, dry matter, carbon, traits linked to

biogas, and crude protein, while significant negative correlations were found with

crude fibre, organic neutral detergent fibre, biomass, crude ash, crude sugar, and

organic acid detergent fibre. Methane revealed significant positive correlations

with fermentable organic matter (perfect correlation, therefore excluded), biogas

(perfect correlation, therefore excluded), enzyme-soluble organic matter, net energy

for lactation, metabolizable energy, and crude protein. Significant negative correla-

tions for methane were found with enzyme-resistant organic matter, organic acid

detergent fibre, crude fibre, organic neutral detergent fibre.
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Appendix

Table 8.5: Pearson product moment correlation coefficients (r) for measured, ring-wise
canopy traits. Note, that the correlation matrix is split into two tables.

Nitrogen Carbon Biomass Dry matter Crude protein Crude fibre Crude lipids

Carbon 0.67∗∗∗

Biomass -0.14 -0.60∗∗

Dry matter -0.33 0.25 -0.73∗∗∗

Crude protein 0.75∗∗∗ 0.52∗ -0.17 -0.24
Crude fibre -0.03 -0.39 0.72∗∗∗ -0.67∗∗∗ -0.27
Crude lipids 0.06 0.60∗∗ -0.91∗∗∗ 0.83∗∗∗ 0.09 -0.64∗∗∗

Crude sugar -0.24 -0.58∗∗ 0.69∗∗∗ -0.59∗∗ -0.33 0.36 -0.82∗∗∗

NDFom 0.05 -0.32 0.65∗∗∗ -0.62∗∗ -0.12 0.94∗∗∗ -0.51∗

ADFom -0.53∗∗ -0.25 0.01 0.33 -0.81∗∗∗ 0.39 0.17
EROM -0.13 0.22 -0.31 0.36 -0.25 0.27 0.44∗

ESOM 0.13 -0.22 0.31 -0.36 0.25 -0.27 -0.44∗

Crude ash -0.21 -0.63∗∗ 0.60∗∗ -0.58∗∗ -0.26 0.41 -0.70∗∗∗

ME 0.26 0.59∗∗ -0.75∗∗∗ 0.61∗∗ 0.51∗ -0.93∗∗∗ 0.70∗∗∗

NEl 0.26 0.58∗∗ -0.74∗∗∗ 0.59∗∗ 0.52∗ -0.94∗∗∗ 0.68∗∗∗

FOM 0.28 0.13 -0.02 -0.06 0.47∗ -0.59∗∗ -0.09
Biogas 0.28 0.13 -0.02 -0.06 0.47∗ -0.59∗∗ -0.09
Methane 0.28 0.13 -0.02 -0.06 0.47∗ -0.59∗∗ -0.09

Crude sugar NDFom ADFom EROM ESOM Crude ash ME NEl FOM Biogas

NDFom 0.19
ADFom -0.18 0.34
EROM -0.64∗∗ 0.28 0.71∗∗∗

ESOM 0.64∗∗ -0.28 -0.71∗∗∗ -1.00∗∗∗

Crude ash 0.77∗∗∗ 0.36 -0.08 -0.57∗∗ 0.57∗∗

ME -0.56∗∗ -0.84∗∗∗ -0.46∗ -0.10 0.10 -0.65∗∗∗

NEl -0.54∗∗ -0.84∗∗∗ -0.49∗ -0.14 0.14 -0.62∗∗ 1.00∗∗∗

FOM 0.29 -0.58∗∗ -0.81∗∗∗ -0.85∗∗∗ 0.85∗∗∗ 0.05 0.54∗∗ 0.57∗∗

Biogas 0.29 -0.58∗∗ -0.81∗∗∗ -0.85∗∗∗ 0.85∗∗∗ 0.05 0.54∗∗ 0.57∗∗ 1.00∗∗∗

Methane 0.29 -0.58∗∗ -0.81∗∗∗ -0.85∗∗∗ 0.85∗∗∗ 0.05 0.54∗∗ 0.57∗∗ 1.00∗∗∗ 1.00∗∗∗

Statistical significance indicated with asterisks ∗ p < .05, ∗∗ p < .01, ∗∗∗ p < .001. NDFom - Organic neutral
detergent fibre; ADFom - Organic acid detergent fibre; EROM - Enzyme-resistant organic matter; ESOM -
Enzyme-soluble organic matter; ME - Metabolizable energy; NEl - Net energy content for lactation; FOM -
Fermentable organic matter
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The overall objectives of the present study were to estimate the ecosystem ser-

vices provided by temperate grasslands under global change scenarios, to generally

improve the monitoring of grassland ecosystem services, and to enable a better

parametrization of the CFE in grasslands within climate-biogeochemical mod-

els. This resulted in three main aims, namely the assessment of the influence of

environmental conditions on the CFE in grasslands, an improved assessment of

potential above-ground productivity under future global change conditions, and

the facilitation of a high-resolution spatio-temporal monitoring of grasslands by

remote sensing techniques. To achieve these aims, the present study investigated

and modelled the interacting effects of [eCO2] and climatic drivers on grassland

biomass productivity using the long-term GiFACE data (1998-2013), and explored

the potential of hyperspectral techniques for an improved, non-destructive grassland

monitoring providing data with high spatio-temporal resolution at low cost. The

aims of the thesis resulted in three hypotheses being tested within five working

packages leading to novel results and summarised in the following.

Located in a real-world environment the high correlations between environmental

variables and varying CO2 concentrations are factors which generally complicated

the disentanglement of the influence of single environmental variables and the

[eCO2] on grassland above-ground productivity. Additionally, changes in the

average weather conditions but also in the intensity and frequency of single extreme

climatic events affect grassland productivity. To cope with this complexity different

methods had to be developed, which resulted in two working packages (WP 1 and

WP 2) testing the following hypothesis:

H 1 The CO2 fertilization effect is reduced under more extreme average

weather conditions and after extreme climatic events
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Within WP 1, the interacting effects of average weather conditions and varying

CO2 concentrations on above-ground biomass productivity were investigated apply-

ing the specifically developed moving subset analysis. The novelty of this method

is the rejection of the factorial treatment design which dominated the analysis of

FACE data since the origin of such experiments but has proven to be invalid in

real-world experiments with a varying CO2 enrichment. Instead, the novel method

explores linear regression models between variables created by combinations of years

with similar environmental conditions, and uses the actual [CO2] (measured in the

centre of each ring in the GiFACE experiment). Therefore, the quantification of the

CFE remains robust against varying [CO2]s which represents a clear advancement

in the comparison to the conventionally used approaches (Nowak, 2017). The

new approach is also applicable to other CO2 enrichment studies, and is available

to the public as CRAN R package “msaFACE” (Obermeier et al., 2016). The

application of this approach to the GiFACE time series showed that the CFE was

significant and strong under local average environmental conditions, but decreased

as conditions became substantially wetter, drier or hotter than average. This was

the first study within a single ecosystem which revealed that the greatest response

to [eCO2] has to be expected under average growth conditions to which plants have

adapted in the long-term. Therefore, part one of H 1 was confirmed, which

assumes a reduced CFE under more extreme average weather conditions.

In WP 2, a new method was developed linking the occurrence of single extreme

climatic events to the strength of the CFE in the GiFACE. Results of this analysis

based on the longest time available to date, encompassed reductions of the CFE if

ECEs occurred during the growing season. The strongest decreases in the CFEs

were associated with intensive and long heat waves, and could be quantified to

a large extent (∼30% variance of the magnitude of the CFE) by calculating the

Killing Degree Days (KDDs). Thereby also part two of H 1, which assumes a

reduced CFE when extreme climatic events occur, was confirmed. The results

indicate that the classical carbon-centric theories, which suggest a stronger CFE

at higher temperature or dryer conditions, seem only applicable within a certain

range of growth conditions, when no other environmental factor except CO2 limits

the productivity. Since resource limitations by other factors than [CO2] seem

important when the range of long-term average growth conditions is exceeded, this
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study suggested in line with a recent theory on plant growth (Fatichi et al., 2014;

Körner, 2015), that a paradigm shift from the carbon centric view towards a

more holistic perspective considering tissue formation and cell growth is urgently

required.

By confirming part one and two of H 1, this thesis convincingly shows

that the CO2 fertilization effect is reduced under more extreme average weather

conditions and after extreme climatic events, which is in clear contrast to the widely

carbon-centric assumptions e.g. within numerical models.

The CFE on grassland was proven to be dependent on weather conditions.

Consequently, WP 3 investigated whether the positive influence of [eCO2] or the

potentially negative influences of the projected more extreme weather conditions

will dominate above-ground biomass productivity in future, to test the following

hypothesis:

H 2 Future increases in above-ground biomass productivity under el-

evated CO2 concentrations more than compensate for potential

biomass reductions due to global change-related environmental al-

terations

To estimate future grassland above-ground biomass based on the long-term

experimental observations, a complex statistical approach was developed in WP 3.

For the rings under [eCO2] and [aCO2] enrichment, individual statistical models

on AGB were derived based on climate variables selected during an exhaustive

selection approach based on the Akaike information criteria. The models were

used to predict AGBs within potential future regimes by means of partial least

squares regression techniques. The potential future regimes were generated by

slightly modifying the ranges and relations of the selected climate variables during

the experimental period. The results revealed that especially under hot and dry

conditions above-ground biomass under [eCO2] is below the average yields during

the experimental period for both, rings under [eCO2] and [aCO2]. In contrast to the

predictions of an increased future grassland productivity mainly due to [eCO2] and

warming by numerical models, the comparison of the potential future regimes with
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the findings of IPCC projections revealed that grassland above-ground biomass is

likely to be reduced in the mid of 21st century despite the increase in atmospheric

CO2 concentration.

Thus, the positive effect of [eCO2] on biomass production cannot compensate for

yield losses due to unfavourable environmental conditions that are likely to prevail

in future, and H 2 was rejected.

The analysis of the long-term time series revealed strong interactions between

varying CO2 concentrations, average weather conditions (WP 1), single extreme

climatic events (WP 2) and grassland above-ground productivity. However, due

to the traditional, destructive sampling approach, these investigations were so far

restricted to the harvest dates, and additional grassland traits have only rarely

been measured due to the required cost-intensive laboratory analysis. To bridge

this scale towards a spatially and temporally enhanced monitoring of multiple

grassland traits, non-destructive and low-cost approaches are urgently needed. In

order to meet this challenge, WP 4 created the necessary prerequisites to enable

an analysis of the predictability of different grassland ecosystem services by means

of hyperspectral techniques within WP 5, to test the following hypothesis:

H 3 State-of-the-art remote sensing techniques enable the monitoring of

grassland ecosystem services under high spatio-temporal resolutions

within a FACE experiment

In WP 4, functions and classes were developed to manage, process, and analyse

hyperspectral data with the open-source software CRAN R, and thus to provide the

necessary tools for WP 5. Since the newly developed functions and classes greatly

extend the previously existing functionalities in R, they have been made available to

the public as CRAN R-package “hsdar” (Lehnert et al., in press). Within WP 4, a

first case study showed promising results regarding the remotely sensed estimation

of chlorophyll content of the vegetation within the GiFACE rings.

The newly developed functions were used within WP 5, for the first hyperspectral

and non-destructive estimation of fourteen grassland traits related to ecosystem

services within a FACE experiment. After a comprehensive preprocessing, various
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hyperspectral predictors were derived by different transformation techniques and

the calculation of known vegetation indices in the literature. The final predictor

variables were selected by combining machine learning techniques with the variance

inflation factor, and used to create predictive models between hyperspectral data

and grassland traits using partial least squares regression techniques. Based on the

information gained during the vegetative period it was shown how hyperspectral

monitoring might be used e.g. to adapt harvest practices or gain deeper insights

into physiological plant alterations under [eCO2].

Good to very good leave-one-out cross-validation results for the final models

even under varying CO2 concentrations confirmed H 3 in that techniques for the

monitoring of grassland ecosystem services under high spatio-temporal resolutions

within a FACE experiment can be provided.

The analysis of the long-term data series and the hyperspectral analysis of various

grassland traits revealed how complex ecosystems respond to multiple interacting

factors that co-limit ecosystem processes. Therefore it is necessary to further

improve the understanding of the underlying processes by in-depth analysis and

to improve the integration of experimental observations into modelling efforts.

Regarding the process understanding, the present thesis suggests that hyperspectral

techniques could provide a remedy in future as their increased spatio-temporal

resolution enables the detection of small but physiologically important differences

in the response of plants, non-destructively and at low cost. Future applications of

hyperspectral techniques range from phenotyping approaches within experimental

sites to high temporal resolution and regional to large scale whole ecosystem

assessments with satellite data once the required sensors become operational (e.g.,

ENMAP; Guanter et al. 2015). For an improved model parametrisation, the

presented results might help ecosystem models to properly quantify the strength

of the CFE, e.g., by the definition of environmental thresholds (e.g., local average

conditions defined by ± 1 SD of long-term average conditions) or the implementation

of new indices (e.g., KDDs). However, further and continued FACE experiments

are needed because the limited number of replications and the mostly short-term

duration of FACE experiments (resulting from the operational costs), as well as
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their underrepresentatation in remote areas (insufficient infrastructure) hinders a

global extrapolation of experimentally observed effects of [eCO2].

In addition to the recommendations on future research needed, the results of

the present studies fill an important research gap emphasised in the 5th IPCC

assessment (IPCC, 2013) and can be seen as a continued wake-up call for policy

makers. The provision of important ecosystem services such as forage production,

biodiversity preservation and carbon storage seems uncertain in future. Grasslands

might even become a carbon source much earlier than expected (e.g. Cox et al.

2000). Therefore, the increase of atmospheric [CO2] and global warming might

become accelerated, which in turn feeds back to a reduced grassland productivity,

and in a vicious circle may lead to a further aggravation of the expected global

changes. Alarmingly, such self-reinforcing feedback could rapidly lead to a crossing

of the planetary boundary conditions for climate change and might push the Earth

system into a new state (Steffen et al., 2015), possibly leading to a “Hothouse

Earth” pathway even as man made emissions are reduced (Steffen et al., 2018).

To counteract the foreseeable, devastating consequences of global climate change,

policy makers should implement actions entailing the decarbonisation of the global

economy, enhancement of biosphere carbon sinks, behavioural changes, technological

innovations, new governance arrangements, and transformed social values (Heck

et al., 2018; Steffen et al., 2018).
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C. Wallis, N. Turini, C. Kolbe, K. Trachte, R. Rollenbeck, and B. Thies for their

wide-ranging assistance. Moreover, I would like to thank B. Kühne-Bialozyt and C.

Philippi for their constant efforts when I struggled with administrative challenges.

Thanks go to the PhD commission for taking the time to read through this little

book and, thus, contributing to the completion of my PhD.

Most of all, however, thank you to my family, friends and multiple flatmates for

providing inspiration, ongoing patience and space.

265





Erklärung
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