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Abstract

Background

Tuberculosis is a major cause of morbidity and mortality in the developing world. Drug resis-

tance, which is predicted to rise in many countries worldwide, threatens tuberculosis treat-

ment and control.

Objective

To identify features associated with treatment failure and to predict which patients are at

highest risk of treatment failure.

Methods

On a multi-country dataset managed by the National Institute of Allergy and Infectious Dis-

eases we applied various machine learning techniques to identify factors statistically associ-

ated with treatment failure and to predict treatment failure based on baseline demographic

and clinical characteristics alone.

Results

The complete-case analysis database consisted of 587 patients (68% males) with a median

(p25-p75) age of 40 (30–51) years. Treatment failure occurred in approximately one fourth

of the patients. The features most associated with treatment failure were patterns of drug

sensitivity, imaging findings, findings in the microscopy Ziehl-Nielsen stain, education sta-

tus, and employment status. The most predictive model was forward stepwise selection

(AUC: 0.74), although most models performed at or above AUC 0.7. A sensitivity analysis

using the 643 original patients filling the missing values with multiple imputation showed sim-

ilar predictive features and generally increased predictive performance.
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Conclusion

Machine learning can help to identify patients at higher risk of treatment failure. Closer moni-

toring of these patients may decrease treatment failure rates and prevent emergence of anti-

biotic resistance. The use of inexpensive basic demographic and clinical features makes

this approach attractive in low and middle-income countries.

Introduction

Tuberculosis (TB) is a bacterial infectious disease that is endemic in many countries around

the world. According to the World Health Organization (WHO), approximately 6.6 million

new cases of TB are reported by national and international health organizations each year [1].

The yearly death global toll of TB is estimated to be approximately 1.5 million. Inherently,

these figures are underestimations of the true burden of disease since many cases are not diag-

nosed or reported. Though exact estimates of the true prevalence of TB are variable, most

sources recurrently estimate it to exceed 10 million [1, 2]. TB thereby frequently coexists with

other infections, such as HIV or hookworms [1]. There are many challenges for effective pre-

vention, diagnosis, and treatment, with some of the most important being lack of funding,

limited access to health resources (infrastructure, testing facilities, drug availability), stigmati-

zation, poverty, and lack of compliance. Furthermore, these challenges are highly country

dependent, explaining much of the regional variation.

Over the last decade multidrug resistant (MDR) and extensively drug resistant (XDR) TB

has become an important public and global health concern. Multidrug resistance is defined as

resistance to at least rifampicin and isoniazid, while XDR refers to bacteria that are additionally

resistant to any fluoroquinolone and at least one of three injectable second-line drugs (i.e. ami-

kacin, kanamycin, or capreomycin)[2]. While the percentage of MDR/XDR is still relatively

small globally, it varies significantly by region and country. In Belarus, the rate of MDR/XDR

TB is estimated to be approx. 50/100,000 and has steadily been declining since 2010. Rates

exceed 100/100,000 in Thailand and are increasing by approximately 4% annually [1]. Recent

data by the WHO estimates the success rate of TB treatment to be approximately 83%, while

the success rate for MDR TB is only 54% and even less (30%) for XDR. Promisingly, the intro-

duction of shorter drug regimens has increased treatment success rates to approximately 90%

[1].

In a recent publication, Sharma et al. modelled the proportion of TB patients likely to

develop MDR/XDR and forecasted a steady increase for most countries over the next 25 years.

Particularly alarming rates have been predicted for Russia, where MDR rates might exceed

30% by 2040 [3]. Long established clinical risk factors for treatment failure and subsequent

development of MDR/XDR include the number of previous treatments, score on sputum

smears, weight and imaging abnormalities (extensive lesions, cavities, mediastinal shift)[4].

More recently, research has focused on the prediction of resistance based on genomic sequenc-

ing data. Using whole genome sequencing, Walker et al. identified 120 mutations conferring

treatment resistance and were able to predict 89.2% of the validation-set phenotypes with a

mean sensitivity of 92.3% and a specificity of 98.4% [5]. Though more accurate than traditional

sensitivity essays, it seems unlikely that this technique will be widely applied in low and mid-

dle-income countries due to limited resources.

For various conditions, demographics have been established as potent predictors of loss to

follow-up [6] and various outcome measures [7]. Here, we aim to explore whether it is possible

to predict treatment failure based on basic clinical and demographic information. Various
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machine learning models were developed to predict treatment failure without making prior

assumptions to discover potential novel predictors of treatment failure.

Methods

Database

The National Institute of Allergy and Infectious Diseases (NIAID) Office of Cyber Infrastruc-

ture and Computational Biology (OCICB) established the TB Portals Program as a multi-

national collaboration for TB data sharing and analysis to advance TB research [8]. A consor-

tium of clinicians and scientists from countries with a heavy burden of TB, especially drug-

resistant TB, work together with data scientists and IT professionals to collect multidomain TB

data and make it available to the clinical and research communities. The majority of cases in

the TB Portals is from drug-resistant TB. The TB Portals dataset includes clinical, imaging,

genomic, and other metadata integrated in patient case records, which originate from coun-

tries around the world. This study analyzed data from Azerbaijan, Belarus, Moldova, Georgia,

and Romania (Fig 1). The main descriptive features of the database are presented in Table 1.

In this study we used data from the TB portals (https://depot.tbportals.niaid.nih.gov), which

has been stripped of all individual identifying information and has been assigned random, unique

codes. While the database continues to be actively populated with participants, we used all avail-

able data as per March 2018. NIH safeguards the confidentiality and privacy of the individuals

whose data have been deposited into the TB Portals. The primary outcome was treatment failure,

which we defined as failure of therapy or death. The variables used for prediction were: country,

age of onset, sex, education level, employment status, number of daily contacts, type of resistance,

Fig 1. Countries included in the NIAID database and their respective mortality rates. Yearly trends in mortality rates per 100,000 people between 2000 and

2016 are plotted (Data obtained from the WHO Global tuberculosis report 2017 [1]).

https://doi.org/10.1371/journal.pone.0207491.g001
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Table 1. Basic demographic and clinical features of the study population stratified by treatment outcome. BMI: Body mass index, MDR: multi-drug resistant, XDR:

extensively drug resistant.

Variables Level Treatment success Treatment failure

Number of participants (n (%)) 491 (76.36%) 152 (23.64%)

Female (n (%)) 168 (34.2%) 35 (23.0%)

BMI (mean (±sd)) 21.31 (±3.52) 21.04 (±3.01)

Age of onset (mean (±sd)) 41.11 (±14.78) 42.56 (±13.57)

Country (n (%)) Azerbaijan 51 (10.4%) 9 (5.9%)

Belarus 307 (62.5%) 106 (69.7%)

Georgia 29 (5.9%) 31 (20.4%)

Moldova 15 (3.1%) 3 (2.0%)

Romania 89 (18.1%) 3 (2.0%)

Type of resistance (n (%)) Sensitive 95 (19.3%) 11 (7.2%)

Mono drug resistant 26 (5.3%) 1 (0.7%)

Poly drug resistant 8 (1.6%) 6 (3.9%)

MDR 269 (54.8%) 89 (58.6%)

XDR 89 (18.1%) 44 (28.9%)

Not reported 4 (0.8%) 1 (0.7%)

Employment (n (%)) Disabled 29 (5.9%) 18 (11.8%)

Employed 187 (38.1%) 36 (23.7%)

Not reported 21 (4.3%) 2 (1.3%)

Retired 47 (9.6%) 10 (6.6%)

Student 23 (4.7%) 1 (0.7%)

Unemployed 184 (37.5%) 85 (55.9%)

Social risk factors (n(%)) Alcoholism 89 (18.1%) 36 (23.7%)

Current smoker 181 (36.9%) 69 (45.4%)

Documented MDR contact 10 (2.0%) 1 (0.7%)

Ex-prisoner 3 (0.6%) 2 (1.3%)

Homeless 1 (0.2%) 0 (0.0%)

Not reported 204 (41.5%) 43 (28.3%)

Registered drug abuse 1 (0.2%) 0 (0.0%)

Worked abroad 2 (0.4%) 1 (0.7%)

Education (n (%)) Primary schooling 38 (7.7%) 6 (3.9%)

College bachelor 170 (34.6%) 56 (36.8%)

High School 165 (33.6%) 47 (30.9%)

Higher University 66 (13.4%) 10 (6.6%)

Not reported 52 (10.6%) 33 (21.7%)

Regimen drug (n (%)) Amikacin 51 (10.4%) 20 (13.2%)

Amoxicillin-clavulanate 62 (12.6%) 35 (23.0%)

Bedaquiline 29 (5.9%) 2 (1.3%)

Capreomycin 146 (29.7%) 56 (36.8%)

Clofazimine 3 (0.6%) 0 (0.0%)

Cyclosporine 71 (14.5%) 12 (7.9%)

Ethambutol 113 (23.0%) 17 (11.2%)

Not reported 6 (1.2%) 2 (1.3%)

Total cavity formation

(n (%))

No cavities 173 (35.2%) 52 (34.2%)

1 cavity 76 (15.5%) 34 (22.4%)

2 cavities 31 (6.3%) 13 (8.6%)

>2 cavities 46 (9.4%) 36 (23.7%)

Not reported 165 (33.6%) 17 (11.2%)

(Continued)
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body mass index (BMI), localization in the lung, number of X-rays, number of CT scans, dissemi-

nation (diffuse pulmonary nodules detected), size of the lung cavity, pleural involvement, imaging

pattern, pneumothorax, pleuritis, nodal calcinosis, process extension, decrease in lung capacity,

lung caverna, culture results, microscopy results, social risk factors (including smoking, alcohol-

ism, ex-prisoner, etc.), and drug regimen. Imaging features were based mostly on chest CT scans,

except for Georgia, where features were based mostly on chest X-rays.

Dataset division

We randomly split the original dataset into 70% of patients for a training subset and 30% for a

testing or validation subset. The clinical characteristics of the training and testing subsets were

Table 1. (Continued)

Variables Level Treatment success Treatment failure

Size of cavities (n (%)) No cavities 173 (35.2%) 52 (34.2%)

>2 5mm 29 (5.9%) 35 (23.0%)

<10 mm 87 (17.7%) 26 (17.1%)

10–25 mm 37 (7.5%) 22 (14.5%)

Not reported 165 (33.6%) 17 (11.2%)

Calcified nodes (n (%)) No 280 (57.0%) 109 (71.7%)

Yes 46 (9.4%) 26 (17.1%)

Not reported 165 (33.6%) 17 (11.2%)

Decreased lung capacity (n (%)) No 239 (48.7%) 77 (50.7%)

Not reported 163 (33.2%) 17 (11.2%)

Yes 89 (18.1%) 58 (38.2%)

Pneumothorax (n (%)) No 318 (64.8%) 131 (86.2%)

Yes 9 (1.8%) 4 (2.6%)

Not reported 164 (33.4%) 17 (11.2%)

Dissemination (n (%)) No 242 (49.3%) 94 (61.8%)

Not reported 160 (32.6%) 17 (11.2%)

Yes 89 (18.1%) 41 (27.0%)

Shadow pattern (n (%)) Infiltrates 11 (2.2%) 8 (5.3%)

Node >10 mm 4 (0.8%) 2 (0.3%)

Nodule and node 147 (29.9%) 49 (32.2%)

Nodule <10 mm 77 (15.7%) 33 (21.7%)

Nodule, node and infiltrate 85 (17.3%) 43 (28.3%)

Not reported 167 (34.0%) 17 (11.2%)

Number of CTs (mean (sd)) 1.64 (1.58) 1.09 (1.09)

Number of daily contacts (mean (sd)) 2.21 (1.62) 2.13 (1.72)

Lung localization (n (%)) Not reported 3 (0.6%) 0 (0.0%)

Pulmonary 345 (70.3%) 78 (51.3%)

Pulmonary and extrapulmonary 143 (29.1%) 74 (48.7%)

Number of X-rays (mean (sd)) 1.98 (2.13) 1.93 (2.50)

Process prevalence (n (%)) �2 segments 208 (42.4%) 108 (71.1%)

<2 segments 118 (24.0%) 27 (17.8%)

Not reported 165 (33.6%) 17 (11.2%)

Pleuritis (n (%)) No 306 (62.3%) 121 (79.6%)

Not reported 164 (33.4%) 17 (11.2%)

Yes 21 (4.3%) 14 (9.2%)

https://doi.org/10.1371/journal.pone.0207491.t001
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similar (S1 Table). Predictive models were developed using only the training subset data and,

only after all predictive models were developed, were they tested on the testing data subset.

The performance of the models was optimized with cross-validation in the training subset

before implementing them in the testing subset. This approach ensures that the performance

of the algorithms in the testing subset is similar to their performance in other data which the

models have never been exposed to.

We performed a complete case analysis with only the cases that had all variables available.

As a sensitivity analysis, we performed the same analysis with all cases after imputing missing

values with multiple imputation using predictive mean matching. The limits between statistics

and machine learning are difficult to delineate [9]. For the purpose of this study we considered

machine learning techniques as those that developed models based only on the data available

without any human intervention. We used several of the most commonly used techniques for

machine learning: stepwise forward selection, stepwise backward elimination, backward elimi-

nation and forward selection, Least Absolute Shrinkage and Selection Operator (LASSO)

regression, random forests, support vector machine (SVM) with linear kernel and polynomial

kernel [10, 11]. The stepwise selection or elimination models select variables based on a greedy

algorithm that tries to minimize the Akaike Information Criterion (AIC) and, therefore, bal-

ances predictive power with model complexity [10, 11]. LASSO regression also penalizes

model complexity but tends to shrink less important variables towards zero, so that the result-

ing model is sparse and more interpretable. Random forests fits several de-correlated decision

trees to the data and “averages” them so that the resulting model has as little bias and as little

variance as possible [10, 11]. With de-correlation only a random subset of all available vari-

ables is used for each given branch, ensuring that the individual trees are heterogeneous and

capture as much variability in the data as possible. As observations might not be separable in

their original dimensional space, support vector machines separate the observations in a

higher dimensional space that they visit through a kernel [10, 11]. Regarding parameter tun-

ing, forward stepwise selection, backwards stepwise elimination, and backwards elimination

with forward selection did not require parameter tuning and just minimized the AIC. In

LASSO regression, the lambda value that shrinks small coefficients to zero was chosen by

cross-validation in the training set [10, 11]. For random forests, we selected 1000 trees, a com-

monly used default, and the default leaf size of 5 in the randomForest function in R. We

selected the number of variables randomly sampled as candidates at each split (mtry parameter

in the randomForest function in R) by cross-validation in the training set. In SVM, the cost

parameter quantifies the cost of a violation of the margin: when the cost is small the margins

will be wide and many support vectors will be on the margin or will violate the margin, in con-

trast, when the cost is large the margins will be narrow and there will be few support vectors

on the margin or violating the margin [11]. The cost was chosen by cross-validation in the

training set. The gamma parameter for non-linear kernels in SVM is the free parameter of the

Gaussian radial basis function. Large gamma leads to high bias and low variance models and

vice versa. We used the default value of 1/data dimension in the SVM function in R for the

gamma parameter. In summary, we used defaults for the most established parameters and

tuned the rest of the parameters with cross-validation in the training set. Predictive perfor-

mance was measured with the area under the receiving operating characteristic curve (AUC)

in the testing model. The thresholds for prediction in an AUC are domain-specific and depend

on the trade-off between the consequences of false positives and false negatives. We calculated

the statistically “optimal” cut point in the probability of treatment failure: the Youden index,

which maximizes sensitivity–(1 –specificity) [12]. Based on these thresholds, in order to give

an approximate idea of clinical applicability, we provide sensitivities, specificities, positive pre-

dictive values (PPV), and negative predictive values (NPV) in our cohort. The full code for
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performing this study with full results is available on github (www.github.com/dsasson48/

niaid_TB).

Statistical software

All statistical analyses were performed with R (version 3.2.2) and the packages gmodels,

caTools, MASS, glmnet, randomFores, e1071, mice, gridExtra, ggplot2, and pROC. WHO data

were visualized with Tableau Desktop (version 10.3, Tableau, Seattle, WA, USA).

Results

Demographic and clinical features

The complete-case analysis database consisted of 587 patients (68% males) (411 for training

and 176 for testing) with a median (p25-p75) age of 40 (30–51) years. Belarus contributed a

major proportion of cases. Treatment failure occurred in approximately one fourth of the

cases. The demographic and clinical features are summarized in Table 1.

Feature selection

Features that were statistically significantly most associated with the outcome of treatment fail-

ure are summarized in Table 2. The patterns of drug sensitivity, imaging findings, drug regi-

men, education and employment were associated with the outcome of treatment failure. As an

illustrative example, the importance of variables for the random forest model is shown in Fig 2.

Prediction performance

We compared the prediction performance of the different machine learning models in their

ability to predict treatment failure. The most predictive model was forward stepwise selection,

Table 2. Main factors correlated with treatment failure. LASSO: Least absolute shrinkage and selection operator.

Model Top factors correlated with treatment failure

Forward stepwise selection Negatively correlated: drug sensitivity (sensitive), employment status

(employed), microscopy: 1 to 99 acid-resistant bacteria in 100 fields of view

when stained by Ziehl-Nielsen, dissemination (diffuse pulmonary nodules

detected)

Backward stepwise elimination Negatively correlated: employment status (employed), drug sensitivity

(sensitive), dissemination (diffuse pulmonary nodules detected),

microscopy: 0 acid-resistant bacteria in 100 fields of view when stained by

Ziehl-Nielsen

Backwards elimination and forward

stepwise selection

Negatively correlated: employment status (employed), drug sensitivity

(sensitive), dissemination (diffuse pulmonary nodules detected),

microscopy: 0 acid-resistant bacteria in 100 fields of view when stained by

Ziehl-Nielsen

LASSO Positively correlated: country (Georgia), employment status (unemployed),

extrapulmonary localization, lung cavity size (more than 25mm), decrease

in lung capacity, microscopy: more than 99 acid-resistant bacteria in 100

fields of view when stained by Ziehl-Nielsen

Negatively correlated: country (Romania), employment status (employed),

employment status (student), drug sensitivity (sensitive), pattern of chest

imaging (not reported)

Random forests

(see Fig 2)

Unknown whether positively or negatively correlated:

By mean decrease in accuracy: lung cavity size, type of resistance,

employment status, country, total caverna

By mean decrease in Gini index: age of onset, drug regimen, lung cavity

size, number of daily contacts

https://doi.org/10.1371/journal.pone.0207491.t002
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although most models performed at or above AUC 0.7 (Table 3, Fig 3). If predictive models

are used as a screening tool for identifying subjects that may benefit from more detailed evalu-

ation of resistant TB, forward stepwise selection was the best model with a sensitivity of 0.36

and a NPV of 0.81. If predictive models are used to start treatment in resistant TB, the best

model was LASSO with a specificity of 0.96 and a PPV of 0.64. Depending on the intended use

of predictive models, modifications of the thresholds may provide higher sensitivities and

specificities that meet the intended use of the model.

Fig 2. Variable importance in random forests considering mean decrease in accuracy (left) or mean decrease in Gini index (right). In random forest

models, node heterogeneity can be measured as a decrease in classification accuracy over all out-of-bag validated predictions when a variable is permuted after

training and before prediction (mean decrease accuracy) or it can be measured as a decreased in node impurity (mean decreased Gini). The term “decrease” in

these metrics does not imply any direction of the correlation.

https://doi.org/10.1371/journal.pone.0207491.g002

Table 3. Comparison of the prediction performance of the different statistical models. Classic regression approaches with forward and/or backward stepwise selection

yield the highest AUC. Exemplary values for misclassification, sensitivity, specificity, PPV and NPV are provided for reference. AUC: Area under the receiver-operator

curve, 95% CI: 95% Confidence interval, PPV: Positive predictive value, NPV: Negative predictive value, LASSO: Least absolute shrinkage and selection operator, SVM:

Support vector machine.

Method AUC (95% CI) Misclassi-fication Sensitivity Specificity PPV NPV

Forward stepwise selection 0.74 (0.66–0.82) 0.24 0.36 0.89 0.53 0.81

Backward stepwise elimination 0.73 (0.65–0.81) 0.27 0.3 0.88 0.45 0.79

Backward stepwise elimination & forward stepwise selection 0.73 (0.65–0.81) 0.27 0.30 0.88 0.45 0.79

LASSO 0.72 (0.64–0.80) 0.23 0.21 0.96 0.64 0.78

Random forest 0.70 (0.62–0.79) 0.24 0.30 0.91 0.52 0.80

SVM linear kernel 0.69 (0.60–0.77) 0.24 0.21 0.94 0.56 0.78

SVM polynomial kernel 0.69 (0.60–0.77) 0.25 0 1 NA 0.75

https://doi.org/10.1371/journal.pone.0207491.t003
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Sensitivity analysis

To evaluate the robustness of our findings, we performed the same analyses in the dataset con-

sidering all original patients and imputing missing values with multiple imputation. This data-

base of 643 patients (450 patients in the training set and 193 patients in the testing set) showed

similar demographic and clinical features than the complete case analysis dataset. The factors

consistently associated with treatment failure persisted to be the patterns of drug sensitivity,

imaging findings, drug regimen, education and employment and some other factors like cul-

ture findings, or number of daily contacts. The predictive performance in the imputed dataset

was generally superior than in the complete case analysis dataset, suggesting that larger data-

sets may improve prediction power (S2 Table and S1 Fig).

Discussion

This study identified patterns of drug sensitivity, imaging findings, findings in the microscopy

Ziehl-Nielsen stain, education status, and employment status as the top factors correlated with

treatment failure. In addition, our models based on basic demographic and clinical features

predicted treatment failure with an AUC at or above 0.7, with the best-performing model hav-

ing an AUC of 0.74.

The first to use clinical and demographic data for the prediction of tuberculosis treatment

were Keane et al. in 1997, who compared 130 Vietnamese subjects failing to respond to 673

responders. Hereby, they identified X-ray signs and degree of sputum smear positivity as the

strongest predictors of treatment failure (70% sensitivity, 80% specificity) [4]. In 2002, study-

ing 676 patients from Southern India, Santha et al. identified irregular treatment, being male,

alcoholism and history of previous therapy to be associated with treatment failure [13]. More

recently, Huang and colleagues reported extensive lesions, cavities and mediastinal shift to

Fig 3. Comparison of (A) non-smooth and (B) smooth AUC for the different models. Linear models outperform the other machine learning models.

https://doi.org/10.1371/journal.pone.0207491.g003
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have the strongest association with treatment failure in their cohort [14]. Furthermore, they

established age above 60 years and a history of smoking to be predictive. Concurrently, a case

series of 167 TB patients in Iran identified coinfection with other pathogens, male sex, family

history of TB, Turkoman ethnicity, and household size to be associated with treatment failure

[15]. Of note, most studies reported different factors to have the strongest predictive perfor-

mance. These differences are likely due to considerable heterogeneity in the underlying data-

bases, regional population demographics and divergent analysis approaches. Furthermore,

some studies were relatively small, thus allowing factors to become strong predictors by

chance.

The first to employ a logistic regression model for prediction were Kalhori et al. in 2008,

which, using clinical data, achieved an AUC of 0.70 [16]. Similarly, Rodrigo et al. report a pre-

dictive scoring instrument for tuberculosis lost to follow-up with an AUC of 0.67 (95%CI

0.65–0.70) [17]. Recently, Cherkaoui et al. conducted a prospective study employing question-

naires in rural Morocco. In the post-hoc analysis, the authors developed a scoring system with

a high AUC (0.93, 95%CI 0.90–0.96), which was however not been validated in either a valida-

tion arm or external dataset and is therefore likely to be an overestimate of the true predictive

power [18]. Though our dataset is relatively small, our unsupervised machine-learning

approach still yielded a predictive model that outperformed previous ones.

Apart from emphasizing the importance of several well-established microbiological and

imaging factors, our results add to the existing literature by identifying demographic and clini-

cal factors with a strong and consistent statistical association with treatment failure or death,

such as level of education and employment status. These results come from the application of

machine learning techniques on data to discover associations that might have been overlooked

by hypothesis-driven approaches. At the same time, both level of education and employment

status are appealing predictors to treatment response, since they have been shown to affect

health in various ways, including but not limited to health care seeking, treatment initiation,

coherence and response in various other diseases [19–22]. Furthermore, the efficiency of TB

treatment provision depends on national policies and health care systems, thus explaining why

country is a strong predictor in our model. Number of daily contacts is strongly correlated

with health care seeking behavior and treatment complications, all of which have been shown

to predict outcome [23].

The identification and validation within a predictive model allows for easy and cheap iden-

tification of patients at high risk for treatment failure and can be used as a starting point for a

patient-centered approach to resistance prevention.

Machine learning

Learning from data is typically used in situations with no theoretical or prior knowledge solu-

tion, but where data can be used to construct an empirical solution [10]. Currently most regres-

sion models in medicine consist of multivariable linear or logistic regression models constructed

based on biological plausibility and prior medical knowledge. These models emphasize causality

and have the major advantage of simplicity and interpretability: it is clear from the model which

variables influence the outcome and their relative weights. In contrast, the more complex the

machine learning models, the less intuitive interpretation of results [9]. In this study, we show

that machine learning algorithms provided additional information as compared to explanatory

models in prior literature based on prior medical knowledge. Furthermore, it had a higher AUC

than any previous studies relying on clinical or demographic data.

Recently, many specialties including public health, are experiencing an increase in multi-

center collaborations that yield datasets with large numbers of variables collected on numerous
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patients. The rapid increase in the number and quality of large datasets makes it possible to

implement big data approaches to data analysis in the field of public health and TB.

Recently, a wide and deep neural network used targeted or whole genome sequencing and

conventional drug resistance phenotyping data from 3,601 M. tuberculosis strains, 1,228 of

which were multidrug resistant, to predict phenotypic drug resistance to 10 anti-tubercular

drugs [24]. On an independent validation set, this wide and deep neural network showed sig-

nificant performance gains over baseline models, with average sensitivities and specificities,

respectively, of 84.5% and 93.6% for first-line drugs and 64.0% and 95.7% for second-line

drugs [24].

In this publication, we relied on clinical data rather than genomic data, since gene sequenc-

ing is expensive and not widely available in low and middle-income countries. Contrarily, clin-

ical data is easily accessible and can be used without incurring additional costs.

Strengths and weaknesses

The present study demonstrates that machine learning techniques add to explanatory models

by identifying variables that may be correlated with TB treatment failure, thus informing better

predictive models. All machine learning techniques, which have no subject-matter knowledge,

identified relevant variables and showed a consistently high predictive performance.

The advantage of our model compared to pharmacological [25], microbiological [26] or

genetic approaches [5, 27] is that the required data is already been collected routinely, thus

being widely available and cheap, which is a major advantage in resource- and budget-strained

environments.

The clinical and public health contribution of this study are to provide low- and middle-

income countries with inexpensive and easy to apply tools to identify populations where the

yield of identification and treatment of resistant TB may be highest. Different stakeholders

may build on our analyses, for which we provide the full code online.

Importantly, we do not intend to imply that factors correlated with resistant TB such as

level of education, or level of employment are pathophysiologically causal in resistance to anti-

tuberculotic medications. Drug resistance is ultimately dependent on factors of the causal

germ: Mycobacterium tuberculosis. A detailed microbiological and genomic characterization

of the strain of Mycobacterium tuberculosis from each patient may predict resistant TB better

[24], but is frequently not be feasible in low-resource setting. The orientation of this manu-

script therefore was to find demographic and clinical features that are inexpensive to collect

and can predict TB treatment failure. These factors may help identify inexpensively popula-

tions where the yield of detecting and treating resistant TB may be higher. The purpose of this

manuscript was not to improve the performance of well-established algorithms in machine

learning, but to show that different machine learning algorithms may be used to predict resis-

tant TB using widely available data and off-the-shelf machine learning algorithms.

Missing data may have influenced the predictive capacity of our models. The sensitivity

analysis imputing missing data showed an increased performance compared to the complete

case analysis, although these results may also be interpreted as the higher predictive perfor-

mance of a larger dataset. Furthermore, combining treatment failure and death might have

biased the results towards the null since some cases might have died independent of tuberculo-

sis (e.g. from traumatic causes). Another limitation is that the underlying data is derived from

only a few countries in Eastern Europe.

Future studies in larger datasets should therefore validate our findings and prediction mod-

els for other countries. The current dataset was collected with a focus on resistant TB. There-

fore, patients with resistant TB cases are oversampled in this dataset and generalizability might
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therefore be limited to countries with high resistance rates. In the future, addition of more var-

iables and cases to the NIAID tuberculosis dataset might further improve predictive perfor-

mance. Additional studies could focus on translation of these findings into a validated (online)

prediction model that can be used by clinicians to identify patients at highest risk of treatment

failure in routine practice.

Conclusions

In a mid-size dataset we found that machine learning techniques added information to explan-

atory models for prediction of resistance to TB treatment. The novel identification of demo-

graphic factors and validation of a prediction tool for TB treatment failure provides a proof-of-

concept that use of routinely collected data can help to improve routine care. This approach

can potentially be more cost-effective in resource-constrained environments.
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