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To date, axisymmetric internal wave fields, which have relevance to atmospheric internal
wave fields generated by storm cells and oceanic near-inertial wave fields produced by
surface perturbations, have been experimentally realized using an oscillating sphere or
torus as the source. Here we use a wave generator configuration capable of exciting
axisymmetric internal wave fields of arbitrary radial form to generate axisymmetric
internal wave modes. After establishing the theoretical background for axisymmetric mode
propagation, taking into account lateral and vertical confinement, and also accounting
for the effects of weak viscosity, we study modes of different order. We characterize the
efficiency of the wave generator through careful measurement of the wave amplitude based
upon group velocity arguments, and then consider the effect of vertical confinement to
induce resonance, identifying a series of experimental resonant peaks that agree well with
theoretical predictions. In the vicinity of resonance, the wave fields undergo a transition to
nonlinear behavior that is initiated on the central axis of the domain and proceeds to erode
the wave field throughout the domain.
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I. INTRODUCTION

Since the early studies of Görtler [1] and Mowbray and Rarity [2], laboratory experiments have
played a central role in the development of understanding of internal wave fields. Initially, much
of the focus was on two-dimensional internal wave beams generated by excitation methods such as
an oscillating cylinder [2,3] or moving topography [4,5]. For modeling purposes, such a wave field
can be treated as nominally invariant in the transverse direction and thus described in terms of plane
waves via Fourier transforms [6,7].

Inspired by oceanographic studies, and building on earlier experiments that used paddle genera-
tors to excite vertical [8] or horizontal [9,10] modes, novel internal wave generator technology [11]
has been used for a variety of studies of two-dimensional internal wave modes. We define modes as
standing waves produced via the interference between two waves of the same magnitude but differ-
ent directions. In doubly confined geometries (i.e., sidewalls, top and bottom), two-dimensional
modes of different orders, determined by the combination of stratification, imposed frequency,
and dimensions of confinement, have been studied [7,12]. The capability of the novel generator
technology to investigate wave beams and two-dimensional modes was thoroughly explored by
Mercier et al. [13]. Such capabilities have been employed to investigate, for example, the triadic
resonant instability (TRI) in a vertical mode propagating horizontally [14] or the formation of
multilayered stratifications [15]. While theoretical studies for linear stratifications describe such
wave fields in terms of the natural modal basis of sines and cosines, it should be recalled that the
modal pattern can be considered as a combination of plane waves propagating and reflecting from
the system boundaries [13].
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Axisymmetric wave fields have traditionally been experimentally excited using a vertically
oscillating sphere and exploring the shape of the wave beams [16–21]. While the form of the wave
field close to the oscillating body is nontrivial, modeling studies have explored the limit states of
the wave beams in terms of plane waves with a spherical amplitude decreasing as r−1/2, r being the
radial distance from the sphere, computed from the Green function of the moving source [22], or
as infinite sums of Bessel functions with complex coefficients [7,23]. The amplitude decrease and
the viscous decay of the conical wave beam emitted by an oscillating sphere has been explored in
laboratory experiments by Flynn et al. [17] showing good agreement with theoretical predictions.
More sophisticated axisymmetric experimental geometries have been investigated using a vertically
and a horizontally oscillating torus, respectively [24,25], in which case a highly nonlinear process
occurs due to the three-dimensional geometric focusing, able to transport momentum and break into
turbulence. None of these experimental configurations, however, readily permitted a change in the
form or the wave number of the wave field being excited.

In Ref. [26], Maurer et al. developped an axisymmetric wave generator, adapted from its planar
counterpart [11] by using oscillating concentric cylinders instead of parallel plates. It has been used
to generate high-fidelity axisymmetric internal wave fields, with substantial flexibility in the setting
of the radial wavelength. Studies using this technology reveal axisymmetric wave cones propagating
in the stratified medium according to the internal wave dispersion relation and with radial profiles
imposed by the configuration of the generator, such as ring-shaped excitation or truncated Bessel
functions [26]. Wave amplitudes and frequencies were measured, showing a good agreement with
the linear theory for axisymmetric waves in a stratified fluid of constant buoyancy, in both the
nonrotating and rotating cases.

To date, there have been no experimental studies of internal wave modes in an axisymmetric
geometry. Furthermore, to our knowledge, there is no quantitative study of resonant confined modes,
even in two-dimensional geometries. In this paper we perform laboratory experimental realizations
of axisymmetric modes. In Sec. II we establish the general theory for axisymmetric modes of
internal waves by considering both radial and vertical confinement as well as weakly viscous
effects. Then in Sec. III we describe our experimental apparatus, adapted from Maurer et al. [26].
Experimental results are presented in Sec. IV, followed by conclusions and discussion in Sec. V.

II. THEORY

A. Governing equations

In a cylindrical framework (er, eθ , ez), with ez vertically upwards, small-amplitude inertia gravity
waves in an inviscid fluid with a constant background stratification satisfy the following equations
in the Boussinesq approximation:

ρ0

[
∂v
∂t

+ (v · ∇)v
]

= −∇p − (ρ − ρ̄)gez, (1)

∂ρ

∂t
+ (v · ∇)ρ = 0, (2)

∇ · v = 0, (3)

where v = (vr, vθ , vz ) is the velocity field, p the pressure field, ρ the density field, and ρ̄ the
background density field. We define the buoyancy frequency N via the relation N2 = (−g/ρ0)∂ρ̄/∂z
with ρ0 being a reference density.

Considering axisymmetric wave fields, we assume that there is no variation in the azimuthal
direction and hence all functions depend only on (r, z, t). By introducing the axisymmetric stream
function ψ such that

vr = −1

r

∂ (rψ )

∂z
and vz = 1

r

∂ (rψ )

∂r
, (4)
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Eqs. (1), (2), and (3) become

∂2
t

{
∂2

z ψ + ∂r

[
1

r
∂r (rψ )

]}
+ N2∂r

[
1

r
∂r (rψ )

]
= 0. (5)

Natural axisymmetric solutions of this equation can be found through a Fourier-Hankel decomposi-
tion. Using a modal basis, the solutions write as linear combinations of Bessel functions of the first
kind J1 and of the second kind Y1. The latter has a singularity at r = 0 so only the J1 function will be
considered. As different radial wave numbers may enter in the decomposition, the stream function
ψ can then be written as a modal sum

ψ (r, z, t ) =
∫∫

φ(z)J1(lr) exp(−iωt ) dl dω. (6)

Radial and vertical velocities can be derived from Eq. (6) using classic relations for the Bessel
derivatives, as follows:

vr (r, z, t ) =
∫∫

φ′(z)J1(lr) exp(−iωt ) dl dω, (7)

vz(r, z, t ) =
∫∫

lφ(z)J0(lr) exp(−iωt ) dl dω. (8)

For a given frequency ω and radial mode l , φ(z) satisfies

ω2φ′′(z) − l2(N2 − ω2)φ(z) = 0. (9)

Solutions of Eq. (9) are exponential functions, either complex or real. They can be either propagative
or evanescent waves, depending on the frequency, as long as the vertical wave number m satisfies
the dispersion relation

m2 = l2 N2 − ω2

ω2
. (10)

If we define β = sin−1(l/k) to be the angle between the vertical axis and the wave vector
k = (l, 0, m) of magnitude k = √

l2 + m2, the dispersion relation (10) simplifies in

sin β = ±ω

N
. (11)

According to Eq. (11), internal gravity waves propagate along a direction fixed by the angle β.
In a two-dimensional geometry, four wave beams on a St Andrew’s cross are formed [2,3]. In a
three-dimensional axisymmetric geometry, the dispersion relation sets two cones aligned along the
vertical direction and connected by the apex [7,20].

B. Radial confinement

In a previous study, Maurer et al. [26] analyzed the production of a conical wave field generated
by an axisymmetric moving form at the surface, for which the radial profile was a truncated Bessel
function. Although Bessel functions form a natural basis of study for axisymmetric wave fields, the
analytical form of the wave field for a truncated Bessel function is not so simple. An illustration is
presented in Fig. 1(a), which displays a vertical cut of the spatial structure of the wave field studied in
Ref. [26]. Immediately below the generator [region 1 in Fig. 1(a)], the wave field preserves its radial
form, but further below, the wave field develops a conical beam-shaped profile (region 2), which can
locally be modeled by a plane wave. Finally, due to the propagation angle set by (11), sufficiently far
below the oscillating body around the vertical axis the wave field is absent (region 3). Analytically,
this evolution of the wave field is a natural consequence of the truncated Bessel function forcing
being expressed as an integral over Bessel functions of different wavelengths, with coefficients
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FIG. 1. Left: Beams for downwards propagating wave generation in (a) unconfined and (b) confined
geometries produced by a wave generator or an oscillating body (light gray rectangle). Right: (c) Phase lines of
two different wave beams allowed by the dispersion relation and (d) phase lines of the wave rerecombination
for vertically propagating horizontal (radial) modes. The reader is directed to Fig. 2 or Ref. [26] for practical
details on the wave generation process.

depending on the spatial forcing. Complex models have been set up to understand the nature of
such radiated wave fields [17,23,27].

Given the finite spatial extent of the forcing, to generate a modal wave field described by a single
radial Bessel function, confinement can be imposed experimentally to the fluid, as illustrated in
Fig. 1(b). As for planar geometries, confinement prevents the wave from propagating in the bounded
direction. Given the assumption of axisymmetry, we seek a wave field that is radially confined by
a cylinder of radius R equal to the radius of the generator, and vertically propagating, which is in
contrast to the planar scenario that has vertical confinement and permits lateral propagation [13–15].
We impose the radial boundary condition

vr (r = R, z) =
(

∂ψ

∂z

)
(r=R,z)

= 0, (12)

which means that ψ (r = R, z) is a constant, corresponding to a maximum of vertical velocity and
a vanishing radial velocity at the outer boundary, and conserving volume in the domain. Condition
(12) limits possible values of the radial wave number l , as the product lR has to be a zero of the J1

Bessel function, and if the fluid is excited with one of these wave numbers at frequency ω, a single
propagating mode is expected to result.

Figure 1(c) shows the two directions of propagation allowed for the wave beams by the dispersion
relation (11), in a vertical planar cross section, for a wave generation at the surface. In our
experiment, the radial confinement leads to downward propagating modes which are, as depicted in
Figs. 1(c) and 1(d) (still in a vertical planar cross section) a recombination of conically propagating
beams. Due to the symmetry with respect to the vertical axis, the radial direction of propagation
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FIG. 2. Schematic of the experimental apparatus. Left: A cylindrical tank, inside a square tank, confines
the waves produced by the generator located at the surface, leading to a radial Bessel mode propagating
downwards. Right: Example of linear stratification measured in the experiments. Vertical dimension of the
generator is not to scale.

cancels out, and, for a downwards propagating wave at a selected frequency ω and wave number k,
the phase and group velocities can be computed from the dispersion relation (11):

vφ = 1

2π

∫ 2π

0

Nl

k
(ler + mez) dθ = Nlm

k
ez, (13)

vg = 1

2π

∫ 2π

0

mlN2

ωk4
(mer − lez) dθ = −ml2N2

ωk4
ez. (14)

Equations (13) and (14) show phase and group velocity oriented in opposite directions, illustrated in
Fig. 1(d), consistent with oceanic signatures identified by oceanographers looking for internal waves
[28,29]. This feature contrasts with horizontally propagating modes, relevant only in Cartesian
geometry, which show phase and group velocities pointing towards the same direction [13].

To investigate the shape of the wave field in the experimental domain, and more specifically
its amplitude, we extend the axisymmetric analysis of Sutherland [7, ch. 5], first derived for an
oscillating cylinder in a two-dimensional geometry, by applying it to our axisymmetric flat generator
in a confined domain. Through a Fourier transform, the time dependency of the stream function can
be expressed in complex coordinates as ψ ∝ e−iωt , the velocity field being the real part of the stream
function derivatives. Neglecting rotation and introducing 
2 = 1 − N2/ω2, Eq. (5) can be rewritten


2 ∂

∂r

[
1

r

∂ (rψ )

∂r

]
+ ∂2ψ

∂z2
= 0. (15)

Considering that the cylindrical plates of the generator are moving vertically (as shown in Fig. 2,
and detailed in Ref. [26]) and are injecting a vertical velocity aω, with a being a sufficiently small
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displacement so that the fluid surface can be considered to reside at z = 0, the boundary conditions
that apply to the stream function field are

vz(r, z = 0) =
[

1

r

∂ (rψ )

∂r

]
(r,z=0)

= aωJ0(lr), (16)

vr (r = R, z) =
(

∂ψ

∂z

)
(r=R,z)

= 0. (17)

Equation (16) means that the generator imposes its own movement to the fluid at the top of the
domain. The modal boundary condition is expressed by Eq. (17) as detailed before.

For ω > N , the problem can be readily solved via a coordinate transformation: (r′ = 
r, z′ = z)
so that Eq. (15) becomes

�′
hψ = 0, (18)

where �′
h is the horizontal Laplacian. The solution can be obtained using separation of variables.

The radial part of the equation satisfies a Bessel differential equation of first order, leading to ψ ∝
J1(lr). The vertical component is found to be exponential [see Eq. (9)], and ψ ∝ exp(
lz) as the
amplitude decreases as z goes to −∞. From the boundary conditions, the different coefficients can
be set. Recasting the solution in the original coordinates, we obtain

ψω>N (r, z, t ) = −aω

l
J1(lr) exp(mz) cos(ωt ), (19)

where we define m = 
l , which contains the influence of the stratification.
In the case ω < N , the term 1 − N2/ω2 is negative. We thus define γ 2 = N2

ω2 − 1, and, by analytic
continuation, the problem can be solved using the same method as before. Because of the second-
order derivatives, the problem remains well defined, though we are using complex analysis and the
final stream function belongs to the real space of functions

ψω<N (r, z, t ) = −aω

l
J1(lr) cos(mz − ωt ), (20)

with m the vertical wave number defined as m2 = γ 2l2. Hence, we obtain two different radial modes,
one being evanescent (19) and the other one propagating in the vertical direction (20).

Henceforth, we are considering only the case of propagative waves with ω < N . The vertical
velocity being a radial derivative of ψ , it behaves as vz ∝ aω:

vz(r, z, t ) = 1

r

∂ (rψ )

∂r
= aωJ0(lr) cos(mz − ωt ), (21)

vr (r, z, t ) = ∂ψ

∂z
= −aωm

l
J1(lr) sin(mz − ωt ). (22)

C. Vertical confinement

In our experiments, boundaries at the top (z = 0) and at the bottom (z = −L) are to be taken
into account. This confinement creates a finite domain where a behavior similar to an opto-
electromagnetic cavity [30] or a Melde’s string for acoustic or mechanical waves [31] can take place,
with different modes and resonances. The total wave field in the cavity is obtained by a superposition
of all the reflected waves, from the top and the bottom of the tank, causing constructive or destructive
interferences. In this configuration, the generator is continuously exciting a velocity field given by
a stream function ψ1, described in complex notation by

ψ1(r, z, t ) = ψ0
1 J1(lr)ei(ωt−mz), (23)

with ψ0 = aω/l . At z = −L, the downwards wave field ψ1 is reflected into an upwards wave field
ψ2, and at z = 0, the ψ2 stream function is reflected into another downwards wave ψ3. Repeated
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reflections occur at z = 0 and z = −L, and as a result the total stream field is composed of an infinite
sum of reflected wave fields.

We denote by odd numbers the downwards waves and by even numbers the upwards waves. At
the boundaries, as well as changing direction, reflection also induces a π phase shift, and if we
assume that there is no dissipation, the amplitudes of the stream functions are equal before and after
reflection. Boundary conditions at the top and at the bottom of the tank then apply as

ψ2k−1(z = −L) = ψ2k (z = −L)eiπ , (24)

ψ2k+1(z = 0) = ψ2k (z = 0)eiπ , (25)

leading to

ψ0
2k = ψ0

2k−1e−2imL−iπ , (26)

ψ0
2k = ψ0

2k+1eiπ . (27)

We deduce that the general expression of these wave amplitudes are

ψ0
2k = ψ0

1 e−2ikmL+(2k−1)π , (28)

ψ0
2k+1 = ψ0

1 e−2ikmL+(2k)π . (29)

As the tank undergoes an infinite number of wave reflections, we describe the total wave field by a
sum over all the reflected waves

ψ =
∞∑

k=1

ψk = ψ0
1 J1(lr)eiπ/2eiωt sin[m(z − L)]

i sin(mL)
, (30)

hence the real field becomes

�(ψ ) = ψ0
1 J1(lr)

cos(ωt ) sin[m(z − L)]

sin(mL)
. (31)

Waves that contribute to the total wave field interact either constructively or destructively. In the
first case, we would be able to define a temporal and a spatial period, fixed by the wave parameters
ω, l , and m, and by the size of the cavity L, as in any wave resonator. Exact cavity modes are
obtained if the reflection at z = −L produces a reflected wave in phase with the incoming wave,
which means that this position is already a node of the wave field. This resonance condition can be
expressed as

L = n
λ

2
, for n ∈ N, (32)

with λ = 2π/m being the vertical wavelength. A direct consequence is that the reflection at z = 0
also produces a wave in phase with the incoming wave, so all reflected waves will be interacting
constructively. Therefore, this relation can be written as a condition involving resonant frequencies
ωn:

ωn

N
= (Ll )2

π2n2 + (Ll )2
. (33)

Similar to electromagnetic waves, the cavity operates as a frequency selector, as a discrete number
of frequencies ωn fulfills the resonance condition. We present in Table I a list of the first 10 resonant
frequencies that can be selected in a radial mode 1 configuration with L = 60 cm and l = 19 m−1.
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TABLE I. First 10 resonant frequencies computed for L = 60 cm and l = 19 m−1.

n 0 1 2 3 4 5 6 7 8 9 10

ωn/N 1 0.964 0.876 0.771 0.672 0.588 0.518 0.460 0.413 0.374 0.341

D. Weakly viscous correction

In the preceding derivations, an inviscid fluid was assumed. This made possible the propagation
of a single mode at all frequencies without a damping effect and the existence of exact resonant
cavity modes. As we will see, however, such an approximation is relevant only for a selected range
of frequencies. To quantify the viscous effects on the wave propagation, we write the vertical wave
number as the following expansion:

m = m(0) + iεm(1) + O(ε2), (34)

with ε = νl2/ω, m(0) being the inviscid wave number [Eq. (10)] and m(1) being the first order
correction. Including viscous terms, Eq. (9) becomes

φ(4)(z) −
(

2l2 − i
ω2

ν

)
φ′′(z) + l2

(
l2 + i

N2 − ω2

νω

)
φ(z) = 0. (35)

Hence, with the vertical dependence being exp(imz) [complex notation of Eq. (20)] and m defined
as in Eq. (34), one can extract from Eq. (35) the following weakly viscous correction:

iεm(1) = ∓ iεl

2α3
√

1 − α2
, (36)

where α = ω/N . Hence, at an altitude z below the wave generation source, the weakly viscous
stream function ψν writes

ψν (z) = ψ (z) exp(−εm(1)|z|). (37)

According to Eq. (37), the typical vertical length of viscous damping 1/εm(1) depends on the
frequency ω and is smaller at low frequencies than at high frequencies. These results will help us to
understand experimental measurements of the wave field amplitudes when comparing them to the
velocity amplitudes of the generator.

III. EXPERIMENTAL APPARATUS

To conduct our experiments, the experimental setup of Maurer et al. [26] was adapted. A general
schematic of the experimental apparatus is presented in Fig. 2. We introduce natural cylindrical
coordinates with the origin taken at the surface of the water at the center of the tank.

The generator comprises 16, 12-mm-thick, concentric PVC cylinders periodically oscillating,
each of them being forced by two eccentric cams. The eccentricities can be configured to introduce
a phase shift between the different cylinders, and the oscillating amplitude can be set for each
individual cylinder. As a result, the vertical displacement of the nth cylinder can be described by

an(t ) = An cos(ωt + α), (38)

with An its amplitude, ω the forcing frequency, and α a phase shift. For a smooth motion of the PVC
cylinders, a 1 mm gap is kept between each cylinder, and the total diameter of the wave generator
is then 402 mm. The generator is mounted at the surface of the water to force downwards internal
waves.

To investigate the ability of this experimental setup to produce modal wave fields, we set the
generator in three different configurations to excite first-, second-, and third-order modes. Modes
are defined by the number of nodes of the Bessel function present in the range r ∈ [0; 20] cm (size
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TABLE II. Steepness la of the profile, and amplitudes (in mm) of the different cams of the generator in the
different mode profiles we used. The first cam is located at r = 0.

Cams Steepness 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Mode 1
(high-amplitude) 0.095 5 4.9 4.7 4.3 3.9 3.3 2.6 1.9 1.2 0.5 −0.2 −0.6 −1.2 −1.6 −1.9 −2
Mode 1
(low-amplitude) 0.048 2.5 2.4 2.3 2.1 1.9 1.6 1.3 0.9 0.6 0.2 −0.1 −0.3 −0.6 −0.8 −0.9 −1
Mode 2 0.175 5 4.7 4 2.9 1.6 0.3 −0.8 −1.6 −2 −1.9 −1.5 −0.9 −0.1 0.6 1.2 1.5
Mode 3 0.255 5 4.5 3 1.2 −0.6 −1.7 −2 −1.4 −0.4 0.7 1.4 1.5 0.9 0 −0.8 −1.2

of the generator). It sets the radial wavelength, and we computed the three associated wave numbers:
l1 = 19 m−1, l2 = 35 m−1, and l3 = 51 m−1. We did not look for modes of higher orders because
the discretization of the generator profile would not be sufficient to produce smooth enough shapes
of Bessel functions. In addition, coarse discretization of high modes might severely compromise
the volume-preserving nature of a Bessel function that is approximately preserved for low modes.
The amplitudes of the different cams for the three modes are summarized in Table II. The profiles
can be defined by the radial wave number l and the amplitude at r = 0 that we call a. The different
amplitudes an, for n 	= 0, are taken to be the discrete approximation of the Bessel function defined
by l and a. The steepness of the profile is defined as the product la.

Experiments were conducted in a cylindrical acrylic tank. To respect the boundary condition
(12), the tank is of the same diameter as the generator. This transparent cylindrical tank was set into
a square acrylic tank to prevent the experiment visualization suffering from optical deformations
that would occur due to the curved interface created by the cylinder. Both tanks were filled with
salt-stratified water with the same density profile. We used the double-bucket method to fill the
tanks with a linear stratification [32,33]. Density and buoyancy were measured as a function of depth
using a calibrated PME conductivity and temperature probe mounted on a motorized vertical axis.
Buoyancy frequency is estimated from the mean value of the N profile obtained from the density
function ρ(z) measured from the free surface to within a couple of centimeters of the bottom of the
tank, due to the construction of the probe. The wave generator was immersed at a depth of 2 cm into
the stratification. Errors on the buoyancy frequency are estimated using the standard deviation of this
N profile and are in most cases about 4% of the estimated N value. We used buoyancy frequencies
in the range N ≈ 0.6 rad s−1 to N ≈ 1 rad s−1.

Velocity fields were obtained via particle image velocimetry (PIV). A laser sheet was created by
a laser beam (Ti:Sapphire, 2 W, wavelength 532 nm) going through a cylindrical lens. It could be
oriented either horizontally (to measure the radial and orthoradial velocity) or vertically (to measure
the vertical and radial velocity). For the purpose of visualization, 10 μm diameter hollow glass
spheres of volumetric mass 1.1 kg L−1 were added to the fluid while filling the tank. To obtain
good quality velocity fields near the bottom of the tank and while imaging in a horizontal plane,
10 μm silver-covered spheres of volumetric mass 1.4 kg L−1 were added when needed in some
experiments. Images were recorded at 1 Hz, and data processing of the PIV raw images was done
using the CIVx algorithm [34].

IV. RESULTS

A. Radial modes

Figure 3 presents a summary of the experimental PIV results for the generation of modes 1
through 3 in a linear stratification with ω/N = 0.6 for modes 1 and 2 and ω/N = 0.65 for mode 3,
and a generator amplitude a = 5 mm. The generator plate configuration for each mode is illustrated
in the left-hand column, with n nodes for mode n. The vertical cross-sectional plots of the vertical
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FIG. 3. Radial modes 1, 2, and 3, as observed in PIV in the experiment. First column: generator
configuration that sets the mode. Second column: vertical velocity in a vertical plane. Third and fourth columns:
radial velocity in a vertical and in a horizontal plane around middepth. Shaded areas are outside of the confining
cylinder. For the purpose of visualization, negative values of r are used in the vertical PIV plane, leading to
antisymmetric radial velocities as predicted by Eq. (22).

velocity, presented in column 2, possess the horizontal structure of the generator, increasingly
intricate for the higher modes, with associated vertical sequences of maxima and minima. Columns 3
and 4 in Fig. 3 present vertical and horizontal cross sectional plots of the radial velocity component.
For every mode, the radial velocity structure possesses a left-right antisymmetry in the vertical
plane. The different nodes of radial velocity, which correspond to antinodes of vertical velocity, are
also clearly visible in plots of the velocity in the horizontal plane, presented in column 4; these
images also show the form of the generator being reproduced by the underlying wave field. No
orthoradial velocity vθ was observed in the horizontal plane.

In a previous study, Maurer et al. [26] experimentally measured the internal wave dispersion
relation for freely propagating waves generated by an axisymmetric wave generator with no
lateral confinement, which was consistent with theoretical predictions. In the modal configuration,
however, the dispersion relation does not explicitly contain an angle of propagation, only a statement
of the vertical wavelength as a function of the forcing frequency and horizontal wave number. The
vertical wave number m was measured for different frequencies ω/N for the three modes in our
experiments. Figure 4 compares the experimental values of m with the theoretical one extracted
from Eq. (10) given the control parameters. Measurements were performed by looking at the spatial
vertical period of the vertical velocity on PIV images. It shows a good agreement for the three modes
considered in the study, though there is a slight deviation at low frequencies, probably because of
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FIG. 4. Measured values of the vertical wave number (data points) for modes 1, 2, and 3, compared to the
theoretical expectations from Eq. (10) (lines). Vertical errors were determined using measurements of m at
different times, and horizontal errors using the standard deviation on the buoyancy frequencies from the probe
profiles.

the error in N , which was about 10% for mode 1 experiment and 4% for mode 2 and mode 3
experiments.

To quantitatively investigate how close the experiments reproduce the theoretical modal Bessel
profile, Fig. 5 presents radial profiles of vz and vr , fitted to the expected radial dependency of the
Bessel mode, for mode 1, mode 2, and mode 3 configurations. We see that vz(r) ∝ J0(lr) and
vr (r) ∝ J1(lr), with l = 19 m−1, 35 m−1, or 51 m−1, as expected; these horizontal structures are
preserved through the vertical propagation of the wave field. Small deformations sometimes appear
close to the boundaries at r = 20 cm, due to boundary layer effects. The perturbation observed
symmetrically around 12 cm < |r| < 16 cm is actually caused by laser reflections in the cylinder,
producing locally poor PIV visualization.

B. Generator efficiency

The efficiency of the wave generator, being the ratio of the amplitude of the waves produced
to the amplitude of the generator motion, is investigated in order to characterize the quality of
the produced wave field. Hence, it is essential to reliably measure the amplitude of the internal
wave field, which is, due to unavoidable reflections in closed domains, a delicate task and more
challenging than measuring their frequency or wavelength.

A few previous studies have made direct measurements of velocity amplitude, although these are
typically done either at high frequencies or relatively high amplitudes. Mathur and Peacock [35]
studied transmission and reflection of internal wave beams across a transmission region and took a
Fourier transform of the reflected and transmitted wave fields along appropriately chosen transects,
Maurer [36] measured wave amplitudes by looking at the maximum of the velocity over a given
spatial area, and Supekar [37] utilized the distribution of maxima of amplitudes for a velocity field
in a widespread two-dimensional beam. In performing our experiments, it was necessary to more
rigorously define our amplitude measurement methodology based on understanding of the group
velocity of the wave fields we were studying.
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FIG. 5. From top to bottom: examples of experimental velocity profiles (left) vz and (right) vr for mode 1,
mode 2, and mode 3, taken at a given time and altitude, fitted by appropriate Bessel functions: J0(lr) for vz and
J1(lr) for vr , with l = 19 m−1, l = 35 m−1, and l = 51 m−1 respectively.

The procedure to determine the wave amplitude was the following. In a first step, experimental
amplitudes at a given time tm were determined by fitting a Bessel function to the instantaneous
horizontal profile at a given depth zm of the vertical velocity, as illustrated in Fig. 5. The depth zm

chosen for this profile was selected to be 15 cm below the generator, as the wave field was properly
developed at this depth. Since the stratification, the forcing frequency, and the radial wavelength are
imposed, the only free parameter for the fit is the amplitude of the Bessel function. Note that we
used the vertical component of the velocity field for this fitting, since it has larger amplitudes than
the radial velocity profile (which is characterized by a node at r = 0) and so was more amenable to
fitting.

Measurements were repeated for all images over a time interval tm ∈ [ti; t f ], with ti being the time
when the wave is expected to first cross the horizontal cross section at z = zm. The time t f is the time
when the reflected wave is predicted to reach z = zm after returning from the bottom of the tank,
resulting in a disturbance of the wave field. Both ti and t f were estimated using the group velocity
of the wave field established in Eq. (14). This series of measurements provided a time series of local
wave amplitudes at z = zm. An example of such a time series is shown in Fig. 6. One would expect
this time signal to be sinusoidal. As can be seen in this example, the growth of the wave amplitude
due to the presence of other frequencies associated with the ramping up of the wave generator can
be observed for the first few periods, and the decay after t f is due to the interfering waves returning
out of phase. This illustrates the difficulty of wave amplitude measurement in a finite-size tank.

In a second step, in order to best estimate the wave amplitude of the steady state before the
reflected wave returned (there is some uncertainty on the exact return time), we computed the RMS
value of the time signal over three time-windows of one period length close to t f half-covering
each other, the middle one being just before theoretically seeing the reflected wave, the previous
time-window covering the first half of this one, and the following time-window covering the second
half of it (these measurement windows are illustrated by three rectangles in Fig. 6). The experimental
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FIG. 6. Example of time series of fitted instantaneous Bessel function amplitudes of the vertical velocity,
measured at z = zm = −15 cm for a mode 1 wave. After identifying t f (solid vertical line), three time-windows
half-covering each other (rectangles) are used to extract the global wave amplitude via RMS estimates.

global amplitude was determined as the mean value of the three RMS values obtained (multiplied
by

√
2), and the standard deviation of these three measurements gives an estimate of the associated

error. We checked that the method was sound by repeating some test measurements for other
horizontal planes and obtaining consistent results.

The results of our efficiency experiments are presented in Fig. 7 for two different generator
amplitudes. We plot the velocity amplitude normalised by the generator velocity amplitude aω.
From Eq. (37), without dissipation effects, one expects this ratio to be 1 (straight line in Fig. 7).
This proves correct in the high-frequency range (0.5 < ω/N < 0.9), except close to the buoyancy
frequency as discussed further. The decrease at low frequency can be interpreted by viscous effects.
Indeed, when one includes viscous dissipation in the theoretical development, the expression of the
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FIG. 7. Generator efficiency measured at z = −15 cm, for two experiments with a = 5 mm and
a = 2.5 mm. Results are compared to the theoretical predictions in the inviscid case and in the weakly
viscous case (viscous damping curve, computed for N = 0.9 rad s−1).
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stream function is given by Eq. (21). The curve corresponding to the vertical velocity extracted
from this equation [at a depth of −15 cm since Eq. (21) depends on z] is plotted in Fig. 7, showing a
similar behavior as the experimental data points for the two forcing amplitudes a = 2.5 mm and a =
5 mm. The difference in amplitude may be ascribed to boundary layer effects. Based on the approach
of Beckebanze et al. [38], an order of magnitude calculation of the damping on the boundaries gives
an estimate comparable to the dissipation in the bulk. At very low frequencies (below ω/N = 0.05),
the amplitude is so low that measurements become impossible. Finally, for ω/N = 0.9 to 1, we
notice a decrease in amplitude that is expected, as shown by the theoretical curve, since the waves
are evanescent for ω/N > 1. However, this decrease comes sooner than expected.

To conclude, the generator efficiency was investigated and shows a similar behavior as the
theoretical prediction in all frequency ranges, providing one takes viscous effects into account. In
addition, we identify a range of frequencies, from ω/N = 0.5 to ω/N = 0.9, where there is a very
good agreement with the nonviscous theory, making this range suitable for axisymmetric modes
experiment and for resonant enhancement.

C. Resonance

Having established the response of the stratification to the wave generator forcing, we then
conducted experiments to detect resonance for a mode 1 excitation, due to the multiple reflections
of the wave field at the top and bottom boundaries of the tank. These experiments consisted of
measuring the amplitude of the wave by looking for the maximum value of vertical velocity in z and
t at r = 0 [since J0(r = 0) is maximal and equal to 1]. The time window for these measurements
was chosen to ensure the establishment of the steady state resonant wave field. In order to allow a
minimum of about 10 back and forth crossings, we chose this time window to be from 280 s after
starting the forcing, based on the minimum value of the group velocity of the waves, to 300 s, the
end of the experiment duration.

Our experimental results are presented in Fig. 8, showing the measured velocity amplitude,
normalized by the generator velocity amplitude aω. We performed two sets of experiments: one
with a = 2.5 mm and N � 0.90 rad s−1 (blue circles) and another one with a = 5 mm and N �
0.88 rad s−1 (red squares). The first set of experiments was mainly aimed at identifying the resonant
peaks; the second set was more evenly spread over all frequencies (100 values of ω/N from 0.625
to 1 at a regular interval). In the latter case, however, because of the larger generator amplitude,
all experiments where the frequency was too close to the resonance led to strong nonlinear effects,
making the measurement of an amplitude impossible. For this reason, the corresponding data points
are not shown. The theoretical curve for the maximal amplitude of vertical velocity normalized by
the generator, computed from Eq. (31), is also plotted in Fig. 8 as a solid line.

With the generator configured at low forcing amplitude (a = 2.5 mm), the peaks corresponding
to the first resonant frequencies were observed as predicted by the theory (see Table I). The
measured resonance peaks are not exactly centered on the predicted resonant frequencies, but this
is not inconsistent with the characteristic 4% error on N . We see that in the vicinity of resonant
frequencies the wave field reaches twice the amplitude of the generator, and even more for the
highest frequencies. For nonresonant frequencies, however, the wave interaction is destructive, and
the measured amplitude is half the amplitude of the generator.

In the vicinity of a resonant excitation frequency, we observed that the wave field amplitude
kept strengthening until it triggered substantial nonlinear effects. To illustrate this, Fig. 9 presents
the temporal evolution of a horizontal profile of the vertical velocity component for ω/N = 0.73
[Fig. 9(a), nonresonant] and ω/N = 0.77 [Fig. 9(b), resonant]. In the nonresonant case, each
velocity profile has the shape of a Bessel profile, which is conserved during the whole experiment.
No nonlinear deformation of the wave field can be observed. The beating behavior (i.e., low-
frequency fading amplitude) is a transient state due to the fact that the reflected wave fields are not
perfectly in phase, due to the nonresonance condition. In the resonant case, such oscillations do not
exist as all reflections are in phase and interfere constructively. These reflections, however, lead to
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FIG. 8. Amplitude measurements of the vertical velocity in the resonant cavity normalized by the generator
velocity amplitude. Yellow line: theoretical amplitude for an infinite sum of waves as a function of the
frequency ω/N . The dots are from three different sets of measurements run for different buoyancies or
amplitudes. Red hatched regions show intervals of frequencies in which nonlinear effects are clearly seen
in the experiment for a = 5 mm.

an increasing amplitude that quickly triggers nonlinear effects in which waves at other frequencies
than ω are excited, after 80 s in the example in Fig. 9(b). The Bessel axisymmetric shape of the
profile starts to disappear from the center of the tank due to emerging nonlinear features, as the
amplitude is maximum at r = 0. The nonlinearities then propagate radially towards the boundaries

(a)
0.2

0.1

0

0.1

0.2

r
(m

)

−4.8

−2.4

0

2.4

4.8

v z
(m

m
s−

1
)

(b)

0 40 80 120 160 200 240 280 320 360 400

0.2

0.1

0

0.1

0.2

t (s)

r
(m

)

FIG. 9. Temporal evolution of a horizontal profile of vertical velocity located at the center of the tank,
for (a) ω/N = 0.73 (nonresonant case) and (b) ω/N = 0.77 (resonant case). These profiles are measured at
middepth in the tank for a mode 1 excitation, with a = 5 mm.
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of the cylindrical tank, and the velocity field does not have a modal shape anymore [after 250 s in
Fig. 9(b)].

By performing a similar analysis for all frequencies in the large-amplitude case (a = 5 mm), we
identified four frequency ranges in which all experiments led to nonlinear effects. These ranges are
marked with red hatched zones in Fig. 8. These intervals show a good agreement with the predicted
resonance peaks (Table I) and with the increasing amplitude observed for the low-amplitude
measurements (a = 2.5 mm).

V. CONCLUSIONS AND DISCUSSION

We have presented the results of a combined theoretical and experimental study of axisymmetric
internal wave modes, in which we first developed the theoretical framework of radial standing waves
propagating vertically in uniform stratifications, incorporating both radial and vertical confinement
and accounting for the impact of weak viscous damping. Then we presented the results of a
laboratory experimental study of axisymmetric internal wave mode generation. The effect of
rotation was not explored in our experiments, but the governing equations predict qualitatively
similar behavior as in the nonrotating case, the impact of rotation being foremost to influence the
vertical wave number of the wave field for a given forcing frequency and buoyancy frequency
[20,26]. The experimental wave fields were produced using a configuration of internal wave
generator technology that has previously been primarily used to excite nominally planar wave fields;
in our experiments the arrangement directly excited the Bessel functions that are the natural basis
of cylindrical modes.

For the basic structure of the wave fields, there was very good qualitative and quantitative
agreement between experiments and theory. Modes 1 through 3 were excited, leading to vertical
and radial velocity profiles consistent with associated Bessel function forcing, and confirming the
expected dispersion relation. As an additional component of these studies, we determined the
efficiency of modal excitation by carefully studying the fluid system response to the generator
forcing, fitting the PIV data to Bessel functions. A range of frequencies, from ω/N = 0.5 to 0.9,
was identified as being particularly suitable for studying axisymmetric modes as in this frequency
range the wave field is attenuated very little and has an almost full response to the forcing amplitude
of the generator.

Having established the ability to excite vertical modes, the role of vertical confinement was
then investigated. Such confinement has the potential to generate a resonance effect when reflected
modes constructively interfere with each other. The resonance conditions for our system were
determined, and a series of experiments with different forcing amplitudes were performed. The
experimental results on the wave field amplification aligned well with resonance predictions that
incorporates weakly viscous correction for the wave field. Further refinement to account for the
enhanced attenuation by boundary layers effects or the effects of near-surface and near-bottom
homogeneous fluid layers due to the filling process or diffusion could account for the minor
discrepancies observed. Within the bounds of resonant peaks, the wave field was seen to amplify
sufficiently to trigger nonlinear effects that then eroded the linear wave field structure outwards
from the centerline of the experimental domain, ultimately leading to a fully nonlinear wave field
throughout the experimental domain.

While there have been a number of nominally two-dimensional experimental studies comparing
plane wave or mode behavior with theoretical models, considering both their spatiotemporal
form and transition to nonlinear phenomena, there have been few such studies for axisymmetric
geometries, and most of them have been limited to the wave field excited by a vertically oscillating
sphere. Axisymmetric wave fields are arguably more relevant as fundamental configurations for
studying scenarios such as the excitation of atmospheric internal wave fields by storm cells [28] and
the excitation of near-inertial wave fields in the ocean by surface storms [39]. This kind of laboratory
experiments may also help to shed light on the resonance of seiches in appropriately shaped water
basins, lakes, and estuaries [40,41]. The experimental apparatus and consequent studies presented
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here demonstrate an ability to excite axisymmetric wave fields and pure radial modes, opening the
path to investigation of linear (e.g., internal wave transmission) and nonlinear (e.g., TRI) internal
wave phenomena in axisymmetric geometries. For example, inertial wave breaking and rotating
turbulence, which was studied by Duran-Matute et al. [24] using an oscillating torus, could be
further investigated using our configuration with any desired combination of Bessel modes.
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